/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_179 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField48 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_178 __annonCompField49 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_192 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_192 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_193 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_193 __annonCompField59 ; unsigned long nr_segs ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_195 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_195 sync_serial_settings; struct __anonstruct_te1_settings_196 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_196 te1_settings; struct __anonstruct_raw_hdlc_proto_197 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_197 raw_hdlc_proto; struct __anonstruct_fr_proto_198 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_198 fr_proto; struct __anonstruct_fr_proto_pvc_199 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_199 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_200 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_200 fr_proto_pvc_info; struct __anonstruct_cisco_proto_201 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_201 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_202 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_202 ifs_ifsu ; }; union __anonunion_ifr_ifrn_203 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_204 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_203 ifr_ifrn ; union __anonunion_ifr_ifru_204 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_207 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_206 { struct __anonstruct____missing_field_name_207 __annonCompField60 ; }; struct lockref { union __anonunion____missing_field_name_206 __annonCompField61 ; }; struct vfsmount; struct __anonstruct____missing_field_name_209 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_208 { struct __anonstruct____missing_field_name_209 __annonCompField62 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_208 __annonCompField63 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_210 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_210 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_212 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_211 { struct __anonstruct____missing_field_name_212 __annonCompField64 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_211 __annonCompField65 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_214 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_214 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_215 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_215 __annonCompField67 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_218 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_219 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_220 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_218 __annonCompField68 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_219 __annonCompField69 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_220 __annonCompField70 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_221 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_221 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_223 { struct list_head link ; int state ; }; union __anonunion_fl_u_222 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_223 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_222 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_24359 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_24359 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_241 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_240 { u64 v64 ; struct __anonstruct____missing_field_name_241 __annonCompField72 ; }; struct skb_mstamp { union __anonunion____missing_field_name_240 __annonCompField73 ; }; union __anonunion____missing_field_name_244 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_243 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_244 __annonCompField74 ; }; union __anonunion____missing_field_name_242 { struct __anonstruct____missing_field_name_243 __annonCompField75 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_246 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_245 { __wsum csum ; struct __anonstruct____missing_field_name_246 __annonCompField77 ; }; union __anonunion____missing_field_name_247 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_248 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_249 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_242 __annonCompField76 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_245 __annonCompField78 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_247 __annonCompField79 ; __u32 secmark ; union __anonunion____missing_field_name_248 __annonCompField80 ; union __anonunion____missing_field_name_249 __annonCompField81 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_28224 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_28224 phy_interface_t; enum ldv_28277 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_28277 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_266 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_267 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_265 adj_list ; struct __anonstruct_all_adj_list_266 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_267 __annonCompField87 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct eeprom_93cx6 { void *data ; void (*register_read)(struct eeprom_93cx6 * ) ; void (*register_write)(struct eeprom_93cx6 * ) ; int width ; char drive_data ; char reg_data_in ; char reg_data_out ; char reg_data_clock ; char reg_chip_select ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_275 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_275 __annonCompField88 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_msrment_ie { u8 token ; u8 mode ; u8 type ; u8 request[0U] ; }; struct ieee80211_ext_chansw_ie { u8 mode ; u8 new_operating_class ; u8 new_ch_num ; u8 count ; }; struct ieee80211_tpc_report_ie { u8 tx_power ; u8 link_margin ; }; struct __anonstruct_auth_277 { __le16 auth_alg ; __le16 auth_transaction ; __le16 status_code ; u8 variable[0U] ; }; struct __anonstruct_deauth_278 { __le16 reason_code ; }; struct __anonstruct_assoc_req_279 { __le16 capab_info ; __le16 listen_interval ; u8 variable[0U] ; }; struct __anonstruct_assoc_resp_280 { __le16 capab_info ; __le16 status_code ; __le16 aid ; u8 variable[0U] ; }; struct __anonstruct_reassoc_resp_281 { __le16 capab_info ; __le16 status_code ; __le16 aid ; u8 variable[0U] ; }; struct __anonstruct_reassoc_req_282 { __le16 capab_info ; __le16 listen_interval ; u8 current_ap[6U] ; u8 variable[0U] ; }; struct __anonstruct_disassoc_283 { __le16 reason_code ; }; struct __anonstruct_beacon_284 { __le64 timestamp ; __le16 beacon_int ; __le16 capab_info ; u8 variable[0U] ; }; struct __anonstruct_probe_req_285 { u8 variable[0U] ; }; struct __anonstruct_probe_resp_286 { __le64 timestamp ; __le16 beacon_int ; __le16 capab_info ; u8 variable[0U] ; }; struct __anonstruct_wme_action_289 { u8 action_code ; u8 dialog_token ; u8 status_code ; u8 variable[0U] ; }; struct __anonstruct_chan_switch_290 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_ext_chan_switch_291 { u8 action_code ; struct ieee80211_ext_chansw_ie data ; u8 variable[0U] ; }; struct __anonstruct_measurement_292 { u8 action_code ; u8 dialog_token ; u8 element_id ; u8 length ; struct ieee80211_msrment_ie msr_elem ; }; struct __anonstruct_addba_req_293 { u8 action_code ; u8 dialog_token ; __le16 capab ; __le16 timeout ; __le16 start_seq_num ; }; struct __anonstruct_addba_resp_294 { u8 action_code ; u8 dialog_token ; __le16 status ; __le16 capab ; __le16 timeout ; }; struct __anonstruct_delba_295 { u8 action_code ; __le16 params ; __le16 reason_code ; }; struct __anonstruct_self_prot_296 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_mesh_action_297 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_sa_query_298 { u8 action ; u8 trans_id[2U] ; }; struct __anonstruct_ht_smps_299 { u8 action ; u8 smps_control ; }; struct __anonstruct_ht_notify_cw_300 { u8 action_code ; u8 chanwidth ; }; struct __anonstruct_tdls_discover_resp_301 { u8 action_code ; u8 dialog_token ; __le16 capability ; u8 variable[0U] ; }; struct __anonstruct_vht_opmode_notif_302 { u8 action_code ; u8 operating_mode ; }; struct __anonstruct_tpc_report_303 { u8 action_code ; u8 dialog_token ; u8 tpc_elem_id ; u8 tpc_elem_length ; struct ieee80211_tpc_report_ie tpc ; }; union __anonunion_u_288 { struct __anonstruct_wme_action_289 wme_action ; struct __anonstruct_chan_switch_290 chan_switch ; struct __anonstruct_ext_chan_switch_291 ext_chan_switch ; struct __anonstruct_measurement_292 measurement ; struct __anonstruct_addba_req_293 addba_req ; struct __anonstruct_addba_resp_294 addba_resp ; struct __anonstruct_delba_295 delba ; struct __anonstruct_self_prot_296 self_prot ; struct __anonstruct_mesh_action_297 mesh_action ; struct __anonstruct_sa_query_298 sa_query ; struct __anonstruct_ht_smps_299 ht_smps ; struct __anonstruct_ht_notify_cw_300 ht_notify_cw ; struct __anonstruct_tdls_discover_resp_301 tdls_discover_resp ; struct __anonstruct_vht_opmode_notif_302 vht_opmode_notif ; struct __anonstruct_tpc_report_303 tpc_report ; }; struct __anonstruct_action_287 { u8 category ; union __anonunion_u_288 u ; }; union __anonunion_u_276 { struct __anonstruct_auth_277 auth ; struct __anonstruct_deauth_278 deauth ; struct __anonstruct_assoc_req_279 assoc_req ; struct __anonstruct_assoc_resp_280 assoc_resp ; struct __anonstruct_reassoc_resp_281 reassoc_resp ; struct __anonstruct_reassoc_req_282 reassoc_req ; struct __anonstruct_disassoc_283 disassoc ; struct __anonstruct_beacon_284 beacon ; struct __anonstruct_probe_req_285 probe_req ; struct __anonstruct_probe_resp_286 probe_resp ; struct __anonstruct_action_287 action ; }; struct ieee80211_mgmt { __le16 frame_control ; __le16 duration ; u8 da[6U] ; u8 sa[6U] ; u8 bssid[6U] ; __le16 seq_ctrl ; union __anonunion_u_276 u ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NL80211_IFTYPE_OCB = 11, NUM_NL80211_IFTYPES = 12, NL80211_IFTYPE_MAX = 11 } ; struct nl80211_sta_flag_update { __u32 mask ; __u32 set ; }; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1, NL80211_USER_REG_HINT_INDOOR = 2 } ; enum nl80211_mesh_power_mode { NL80211_MESH_POWER_UNKNOWN = 0, NL80211_MESH_POWER_ACTIVE = 1, NL80211_MESH_POWER_LIGHT_SLEEP = 2, NL80211_MESH_POWER_DEEP_SLEEP = 3, __NL80211_MESH_POWER_AFTER_LAST = 4, NL80211_MESH_POWER_MAX = 3 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; enum nl80211_txrate_gi { NL80211_TXRATE_DEFAULT_GI = 0, NL80211_TXRATE_FORCE_SGI = 1, NL80211_TXRATE_FORCE_LGI = 2 } ; enum nl80211_tx_power_setting { NL80211_TX_POWER_AUTOMATIC = 0, NL80211_TX_POWER_LIMITED = 1, NL80211_TX_POWER_FIXED = 2 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; u32 dfs_cac_ms ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[3U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; unsigned int dfs_cac_ms ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct survey_info { struct ieee80211_channel *channel ; u64 time ; u64 time_busy ; u64 time_ext_busy ; u64 time_rx ; u64 time_tx ; u64 time_scan ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; struct rate_info { u8 flags ; u8 mcs ; u16 legacy ; u8 nss ; u8 bw ; }; struct sta_bss_parameters { u8 flags ; u8 dtim_period ; u16 beacon_interval ; }; struct cfg80211_tid_stats { u32 filled ; u64 rx_msdu ; u64 tx_msdu ; u64 tx_msdu_retries ; u64 tx_msdu_failed ; }; struct station_info { u32 filled ; u32 connected_time ; u32 inactive_time ; u64 rx_bytes ; u64 tx_bytes ; u16 llid ; u16 plid ; u8 plink_state ; s8 signal ; s8 signal_avg ; u8 chains ; s8 chain_signal[4U] ; s8 chain_signal_avg[4U] ; struct rate_info txrate ; struct rate_info rxrate ; u32 rx_packets ; u32 tx_packets ; u32 tx_retries ; u32 tx_failed ; u32 rx_dropped_misc ; struct sta_bss_parameters bss_param ; struct nl80211_sta_flag_update sta_flags ; int generation ; u8 const *assoc_req_ies ; size_t assoc_req_ies_len ; u32 beacon_loss_count ; s64 t_offset ; enum nl80211_mesh_power_mode local_pm ; enum nl80211_mesh_power_mode peer_pm ; enum nl80211_mesh_power_mode nonpeer_pm ; u32 expected_throughput ; u64 rx_beacon ; u8 rx_beacon_signal_avg ; struct cfg80211_tid_stats pertid[17U] ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; u8 mac_addr[6U] ; u8 mac_addr_mask[6U] ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; s32 rssi_thold ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 min_rssi_thold ; u32 delay ; u8 mac_addr[6U] ; u8 mac_addr_mask[6U] ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct callback_head callback_head ; u32 owner_nlportid ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 const *ssid ; u8 const *bssid ; struct cfg80211_chan_def chandef ; u8 const *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; struct ieee80211_channel *channel_hint ; u8 const *bssid ; u8 const *bssid_hint ; u8 const *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 const *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct __anonstruct_control_315 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; enum nl80211_txrate_gi gi ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_315 control[3U] ; }; struct cfg80211_pkt_pattern { u8 const *mask ; u8 const *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; struct cfg80211_sched_scan_request *nd_config ; }; struct cfg80211_gtk_rekey_data { u8 const *kek ; u8 const *kck ; u8 const *replay_ctr ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; u8 radar_detect_regions ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; int max_nd_match_sets ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u8 ext_features[0U] ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; u16 max_ap_assoc_sta ; u8 max_num_csa_counters ; u8 max_adj_channel_rssi_comp ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_316 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 const *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct cfg80211_chan_def chandef ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; unsigned int cac_time_ms ; u32 owner_nlportid ; struct __anonstruct_wext_316 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; enum ieee80211_chanctx_switch_mode { CHANCTX_SWMODE_REASSIGN_VIF = 0, CHANCTX_SWMODE_SWAP_CONTEXTS = 1 } ; struct ieee80211_vif; struct ieee80211_vif_chanctx_switch { struct ieee80211_vif *vif ; struct ieee80211_chanctx_conf *old_ctx ; struct ieee80211_chanctx_conf *new_ctx ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; enum nl80211_tx_power_setting txpower_type ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; unsigned char count : 5 ; unsigned short flags : 11 ; }; struct __anonstruct____missing_field_name_320 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; unsigned char use_rts : 1 ; unsigned char use_cts_prot : 1 ; unsigned char short_preamble : 1 ; unsigned char skip_table : 1 ; }; union __anonunion____missing_field_name_319 { struct __anonstruct____missing_field_name_320 __annonCompField90 ; unsigned long jiffies ; }; struct ieee80211_key_conf; struct __anonstruct_control_318 { union __anonunion____missing_field_name_319 __annonCompField91 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_321 { struct ieee80211_tx_rate rates[4U] ; s32 ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; u16 tx_time ; void *status_driver_data[2U] ; }; struct __anonstruct____missing_field_name_322 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_317 { struct __anonstruct_control_318 control ; struct __anonstruct_status_321 status ; struct __anonstruct____missing_field_name_322 __annonCompField92 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_317 __annonCompField93 ; }; struct ieee80211_scan_ies { u8 const *ies[3U] ; size_t len[3U] ; u8 const *common_ies ; size_t common_ie_len ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 vht_flag ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_channel_switch { u64 timestamp ; u32 device_timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_323 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_323 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; bool tdls ; bool tdls_initiator ; u8 drv_priv[0U] ; }; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; struct ieee80211_scan_request { struct ieee80211_scan_ies ies ; struct cfg80211_scan_request req ; }; struct ieee80211_tdls_ch_sw_params { struct ieee80211_sta *sta ; struct cfg80211_chan_def *chandef ; u8 action_code ; u32 status ; u32 timestamp ; u16 switch_time ; u16 switch_timeout ; struct sk_buff *tmpl_skb ; u32 ch_sw_tm_ie ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; enum ieee80211_reconfig_type { IEEE80211_RECONFIG_TYPE_RESTART = 0, IEEE80211_RECONFIG_TYPE_SUSPEND = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_scan_ies * ) ; int (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , u8 const * ) ; void (*sw_scan_complete)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; void (*sta_rate_tbl_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_statistics)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct station_info * ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , s16 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel_switch * ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*mgd_protect_tdls_discover)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; int (*switch_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif_chanctx_switch * , int , enum ieee80211_chanctx_switch_mode ) ; void (*reconfig_complete)(struct ieee80211_hw * , enum ieee80211_reconfig_type ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*pre_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel_switch * ) ; int (*post_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u32 (*get_expected_throughput)(struct ieee80211_sta * ) ; int (*get_txpower)(struct ieee80211_hw * , struct ieee80211_vif * , int * ) ; int (*tdls_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u8 , struct cfg80211_chan_def * , struct sk_buff * , u32 ) ; void (*tdls_cancel_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*tdls_recv_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_tdls_ch_sw_params * ) ; }; struct __anonstruct____missing_field_name_332 { u8 rf_sw_config ; u8 reserved_01[3U] ; __le32 TMGDA ; }; union __anonunion____missing_field_name_331 { __le32 MAR[2U] ; struct __anonstruct____missing_field_name_332 __annonCompField95 ; }; struct __anonstruct____missing_field_name_334 { u8 RX_FIFO_COUNT ; u8 reserved_1 ; u8 TX_FIFO_COUNT ; u8 BQREQ ; }; union __anonunion____missing_field_name_333 { struct __anonstruct____missing_field_name_334 __annonCompField97 ; __le32 TBKDA ; }; union __anonunion____missing_field_name_335 { __le32 TLPDA ; __le32 TVIDA ; }; union __anonunion____missing_field_name_336 { __le32 TNPDA ; __le32 TVODA ; }; struct __anonstruct____missing_field_name_338 { u8 reserved_2a ; u8 EIFS_8187SE ; }; union __anonunion____missing_field_name_337 { struct __anonstruct____missing_field_name_338 __annonCompField101 ; __le16 BRSR ; }; struct __anonstruct____missing_field_name_340 { u8 RESP_RATE ; u8 EIFS ; }; union __anonunion____missing_field_name_339 { struct __anonstruct____missing_field_name_340 __annonCompField103 ; __le16 BRSR_8187SE ; }; struct __anonstruct____missing_field_name_342 { __le16 INT_MASK ; __le16 INT_STATUS ; }; union __anonunion____missing_field_name_341 { struct __anonstruct____missing_field_name_342 __annonCompField105 ; __le32 INT_STATUS_SE ; }; union __anonunion____missing_field_name_343 { __le16 ANAPARAM3 ; u8 ANAPARAM3A ; }; union __anonunion____missing_field_name_344 { __le32 AC_VI_PARAM ; __le16 FEMR ; }; struct __anonstruct____missing_field_name_346 { u8 reserved_21[2U] ; __le16 TALLY_CNT ; }; union __anonunion____missing_field_name_345 { __le32 AC_BE_PARAM ; struct __anonstruct____missing_field_name_346 __annonCompField109 ; }; union __anonunion____missing_field_name_347 { u8 TALLY_SEL ; __le32 AC_BK_PARAM ; }; struct rtl818x_csr { u8 MAC[6U] ; u8 reserved_0[2U] ; union __anonunion____missing_field_name_331 __annonCompField96 ; union __anonunion____missing_field_name_333 __annonCompField98 ; __le32 TBEDA ; __le32 TSFT[2U] ; union __anonunion____missing_field_name_335 __annonCompField99 ; union __anonunion____missing_field_name_336 __annonCompField100 ; __le32 THPDA ; union __anonunion____missing_field_name_337 __annonCompField102 ; u8 BSSID[6U] ; union __anonunion____missing_field_name_339 __annonCompField104 ; u8 reserved_3[1U] ; u8 CMD ; u8 reserved_4[4U] ; union __anonunion____missing_field_name_341 __annonCompField106 ; __le32 TX_CONF ; __le32 RX_CONF ; __le32 INT_TIMEOUT ; __le32 TBDA ; u8 EEPROM_CMD ; u8 CONFIG0 ; u8 CONFIG1 ; u8 CONFIG2 ; __le32 ANAPARAM ; u8 MSR ; u8 CONFIG3 ; u8 CONFIG4 ; u8 TESTR ; u8 reserved_9[2U] ; u8 PGSELECT ; u8 SECURITY ; __le32 ANAPARAM2 ; u8 reserved_10[8U] ; __le32 IMR ; __le16 BEACON_INTERVAL ; __le16 ATIM_WND ; __le16 BEACON_INTERVAL_TIME ; __le16 ATIMTR_INTERVAL ; u8 PHY_DELAY ; u8 CARRIER_SENSE_COUNTER ; u8 reserved_11[2U] ; u8 PHY[4U] ; __le16 RFPinsOutput ; __le16 RFPinsEnable ; __le16 RFPinsSelect ; __le16 RFPinsInput ; __le32 RF_PARA ; __le32 RF_TIMING ; u8 GP_ENABLE ; u8 GPIO0 ; u8 GPIO1 ; u8 TPPOLL_STOP ; __le32 HSSI_PARA ; u8 reserved_13[4U] ; u8 TX_AGC_CTL ; u8 TX_GAIN_CCK ; u8 TX_GAIN_OFDM ; u8 TX_ANTENNA ; u8 reserved_14[16U] ; u8 WPA_CONF ; u8 reserved_15[3U] ; u8 SIFS ; u8 DIFS ; u8 SLOT ; u8 reserved_16[5U] ; u8 CW_CONF ; u8 CW_VAL ; u8 RATE_FALLBACK ; u8 ACM_CONTROL ; u8 reserved_17[24U] ; u8 CONFIG5 ; u8 TX_DMA_POLLING ; u8 PHY_PR ; u8 reserved_18 ; __le16 CWR ; u8 RETRY_CTR ; u8 reserved_19[3U] ; __le16 INT_MIG ; __le32 RDSAR ; __le16 TID_AC_MAP ; u8 reserved_20[4U] ; union __anonunion____missing_field_name_343 __annonCompField107 ; __le32 AC_VO_PARAM ; union __anonunion____missing_field_name_344 __annonCompField108 ; union __anonunion____missing_field_name_345 __annonCompField110 ; union __anonunion____missing_field_name_347 __annonCompField111 ; }; struct rtl818x_rf_ops { char *name ; void (*init)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; void (*set_chan)(struct ieee80211_hw * , struct ieee80211_conf * ) ; u8 (*calc_rssi)(u8 , u8 ) ; }; struct __anonstruct____missing_field_name_349 { __le16 frame_len_se ; __le16 frame_duration ; }; union __anonunion____missing_field_name_348 { __le32 frame_len ; struct __anonstruct____missing_field_name_349 __annonCompField112 ; }; struct rtl8180_tx_desc { __le32 flags ; __le16 rts_duration ; __le16 plcp_len ; __le32 tx_buf ; union __anonunion____missing_field_name_348 __annonCompField113 ; __le32 next_tx_desc ; u8 cw ; u8 retry_limit ; u8 agc ; u8 flags2 ; u32 reserved ; __le16 flags3 ; __le16 frag_qsize ; }; struct rtl818x_rx_cmd_desc { __le32 flags ; u32 reserved ; __le32 rx_buf ; }; struct rtl8180_rx_desc { __le32 flags ; __le32 flags2 ; __le64 tsft ; }; struct rtl8187se_rx_desc { __le32 flags ; __le64 tsft ; __le32 flags2 ; __le32 flags3 ; u32 reserved[3U] ; }; struct rtl8180_tx_ring { struct rtl8180_tx_desc *desc ; dma_addr_t dma ; unsigned int idx ; unsigned int entries ; struct sk_buff_head queue ; }; struct rtl8180_vif { struct ieee80211_hw *dev ; struct delayed_work beacon_work ; bool enable_beacon ; }; enum ldv_35582 { RTL818X_CHIP_FAMILY_RTL8180 = 0, RTL818X_CHIP_FAMILY_RTL8185 = 1, RTL818X_CHIP_FAMILY_RTL8187SE = 2 } ; struct rtl8180_priv { struct rtl818x_csr *map ; struct rtl818x_rf_ops const *rf ; struct ieee80211_vif *vif ; bool map_pio ; spinlock_t lock ; void *rx_ring ; u8 rx_ring_sz ; dma_addr_t rx_ring_dma ; unsigned int rx_idx ; struct sk_buff *rx_buf[32U] ; struct rtl8180_tx_ring tx_ring[5U] ; struct ieee80211_channel channels[14U] ; struct ieee80211_rate rates[12U] ; struct ieee80211_supported_band band ; struct ieee80211_tx_queue_params queue_param[4U] ; struct pci_dev *pdev ; u32 rx_conf ; u8 slot_time ; u16 ack_time ; enum ldv_35582 chip_family ; u32 anaparam ; u16 rfparam ; u8 csthreshold ; u8 mac_addr[6U] ; u8 rf_type ; u8 xtal_out ; u8 xtal_in ; u8 xtal_cal ; u8 thermal_meter_val ; u8 thermal_meter_en ; u8 antenna_diversity_en ; u8 antenna_diversity_default ; u16 seqno ; }; struct ldv_struct_EMGentry_17 { int signal_pending ; }; struct ldv_struct_free_irq_10 { int arg0 ; int signal_pending ; }; struct ldv_struct_ieee80211_free_hw_12 { struct ieee80211_hw *arg0 ; int signal_pending ; }; struct ldv_struct_ieee80211_instance_0 { struct netdev_hw_addr_list *arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_5 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_7 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_8 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef struct ieee80211_hw *ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct request; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } int ldv_undef_int(void) ; static void ldv_ldv_initialize_141(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_138(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_162(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_163(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_139(void) ; static void ldv_ldv_check_final_state_140(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static int ffs(int x ) { int r ; { __asm__ ("bsfl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern int printk(char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern unsigned long __phys_addr(unsigned long ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_rtl8180_priv(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_rtl8180_priv(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_124(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_125(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_125(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; extern unsigned long usecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern unsigned int ioread8(void * ) ; extern unsigned int ioread16(void * ) ; extern unsigned int ioread32(void * ) ; extern void iowrite8(u8 , void * ) ; extern void iowrite16(u16 , void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_try_set_mwi(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_136(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_137(struct pci_driver *ldv_func_arg1 ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static void *pci_zalloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_zalloc_coherent((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void get_random_bytes(void * , int ) ; extern int net_ratelimit(void) ; extern void kfree_skb(struct sk_buff * ) ; __inline static struct sk_buff *skb_peek(struct sk_buff_head const *list_ ) { struct sk_buff *skb ; { skb = list_->next; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)list_)) { skb = (struct sk_buff *)0; } else { } return (skb); } } __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField18.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->__annonCompField76.__annonCompField75.next = next; newsk->__annonCompField76.__annonCompField75.prev = prev; tmp = newsk; prev->__annonCompField76.__annonCompField75.next = tmp; next->__annonCompField76.__annonCompField75.prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { { __skb_insert(newsk, next->__annonCompField76.__annonCompField75.prev, next, list); } return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_before(list, (struct sk_buff *)list, newsk); } return; } } __inline static void __skb_unlink(struct sk_buff *skb , struct sk_buff_head *list ) { struct sk_buff *next ; struct sk_buff *prev ; struct sk_buff *tmp ; { list->qlen = list->qlen - 1U; next = skb->__annonCompField76.__annonCompField75.next; prev = skb->__annonCompField76.__annonCompField75.prev; tmp = (struct sk_buff *)0; skb->__annonCompField76.__annonCompField75.prev = tmp; skb->__annonCompField76.__annonCompField75.next = tmp; next->__annonCompField76.__annonCompField75.prev = prev; prev->__annonCompField76.__annonCompField75.next = next; return; } } __inline static struct sk_buff *__skb_dequeue(struct sk_buff_head *list ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = skb_peek((struct sk_buff_head const *)list); skb = tmp; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { __skb_unlink(skb, list); } } else { } return (skb); } } __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_103(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } __inline static void skb_set_queue_mapping(struct sk_buff *skb , u16 queue_mapping ) { { skb->queue_mapping = queue_mapping; return; } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_129(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_130(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void rtnl_lock(void) ; static void ldv_rtnl_lock_142(void) ; static void ldv_rtnl_lock_144(void) ; static void ldv_rtnl_lock_146(void) ; static void ldv_rtnl_lock_148(void) ; static void ldv_rtnl_lock_150(void) ; static void ldv_rtnl_lock_152(void) ; static void ldv_rtnl_lock_154(void) ; static void ldv_rtnl_lock_156(void) ; static void ldv_rtnl_lock_158(void) ; static void ldv_rtnl_lock_160(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_143(void) ; static void ldv_rtnl_unlock_145(void) ; static void ldv_rtnl_unlock_147(void) ; static void ldv_rtnl_unlock_149(void) ; static void ldv_rtnl_unlock_151(void) ; static void ldv_rtnl_unlock_153(void) ; static void ldv_rtnl_unlock_155(void) ; static void ldv_rtnl_unlock_157(void) ; static void ldv_rtnl_unlock_159(void) ; static void ldv_rtnl_unlock_161(void) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } extern void eeprom_93cx6_read(struct eeprom_93cx6 * , u8 const , u16 * ) ; extern void eeprom_93cx6_multiread(struct eeprom_93cx6 * , u8 const , __le16 * , u16 const ) ; __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } __inline static struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb ) { { return ((struct ieee80211_rx_status *)(& skb->cb)); } } extern void __compiletime_assert_823(void) ; extern void __compiletime_assert_825(void) ; extern void __compiletime_assert_826(void) ; extern void __compiletime_assert_832(void) ; __inline static void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info ) { int i ; bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_823(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_825(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_826(); } } else { } i = 0; goto ldv_51834; ldv_51833: info->__annonCompField93.status.rates[i].count = 0U; i = i + 1; ldv_51834: ; if (i <= 3) { goto ldv_51833; } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_832(); } } else { } { __memset((void *)(& info->__annonCompField93.status.ampdu_ack_len), 0, 24UL); } return; } } __inline static void SET_IEEE80211_DEV(struct ieee80211_hw *hw , struct device *dev ) { { { set_wiphy_dev(hw->wiphy, dev); } return; } } __inline static void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw , u8 *addr ) { { { __memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, 6UL); } return; } } __inline static struct ieee80211_rate *ieee80211_get_tx_rate(struct ieee80211_hw const *hw , struct ieee80211_tx_info const *c ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { __ret_warn_once = (int )((signed char )c->__annonCompField93.control.__annonCompField91.__annonCompField90.rates[0].idx) < 0; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/net/mac80211.h", 1916); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { return ((struct ieee80211_rate *)0); } else { } return (((hw->wiphy)->bands[(int )c->band])->bitrates + (unsigned long )c->__annonCompField93.control.__annonCompField91.__annonCompField90.rates[0].idx); } } __inline static struct ieee80211_rate *ieee80211_get_rts_cts_rate(struct ieee80211_hw const *hw , struct ieee80211_tx_info const *c ) { { if ((int )((signed char )c->__annonCompField93.control.__annonCompField91.__annonCompField90.rts_cts_rate_idx) < 0) { return ((struct ieee80211_rate *)0); } else { } return (((hw->wiphy)->bands[(int )c->band])->bitrates + (unsigned long )c->__annonCompField93.control.__annonCompField91.__annonCompField90.rts_cts_rate_idx); } } extern struct ieee80211_hw *ieee80211_alloc_hw_nm(size_t , struct ieee80211_ops const * , char const * ) ; __inline static struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len , struct ieee80211_ops const *ops ) { struct ieee80211_hw *tmp ; { { tmp = ieee80211_alloc_hw_nm(priv_data_len, ops, (char const *)0); } return (tmp); } } __inline static struct ieee80211_hw *ldv_ieee80211_alloc_hw_132(size_t priv_data_len , struct ieee80211_ops const *ops ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; extern void ieee80211_unregister_hw(struct ieee80211_hw * ) ; static void ldv_ieee80211_unregister_hw_134(struct ieee80211_hw *ldv_func_arg1 ) ; extern void ieee80211_free_hw(struct ieee80211_hw * ) ; static void ldv_ieee80211_free_hw_133(struct ieee80211_hw *ldv_func_arg1 ) ; static void ldv_ieee80211_free_hw_135(struct ieee80211_hw *ldv_func_arg1 ) ; extern void ieee80211_rx_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_tx_status_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw * , struct ieee80211_vif * , u16 * , u16 * ) ; __inline static struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct sk_buff *tmp ; { { tmp = ieee80211_beacon_get_tim(hw, vif, (u16 *)0U, (u16 *)0U); } return (tmp); } } extern __le16 ieee80211_rts_duration(struct ieee80211_hw * , struct ieee80211_vif * , size_t , struct ieee80211_tx_info const * ) ; extern __le16 ieee80211_ctstoself_duration(struct ieee80211_hw * , struct ieee80211_vif * , size_t , struct ieee80211_tx_info const * ) ; extern __le16 ieee80211_generic_frame_duration(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_band , size_t , struct ieee80211_rate * ) ; extern void ieee80211_wake_queue(struct ieee80211_hw * , int ) ; extern void ieee80211_stop_queue(struct ieee80211_hw * , int ) ; extern int ieee80211_queue_stopped(struct ieee80211_hw * , int ) ; void rtl8180_write_phy(struct ieee80211_hw *dev , u8 addr , u32 data ) ; void rtl8180_set_anaparam(struct rtl8180_priv *priv , u32 anaparam ) ; void rtl8180_set_anaparam2(struct rtl8180_priv *priv , u32 anaparam2 ) ; __inline static u8 rtl818x_ioread8(struct rtl8180_priv *priv , u8 *addr ) { unsigned int tmp ; { { tmp = ioread8((void *)addr); } return ((u8 )tmp); } } __inline static u16 rtl818x_ioread16(struct rtl8180_priv *priv , __le16 *addr ) { unsigned int tmp ; { { tmp = ioread16((void *)addr); } return ((u16 )tmp); } } __inline static u32 rtl818x_ioread32(struct rtl8180_priv *priv , __le32 *addr ) { unsigned int tmp ; { { tmp = ioread32((void *)addr); } return (tmp); } } __inline static void rtl818x_iowrite8(struct rtl8180_priv *priv , u8 *addr , u8 val ) { { { iowrite8((int )val, (void *)addr); } return; } } __inline static void rtl818x_iowrite16(struct rtl8180_priv *priv , __le16 *addr , u16 val ) { { { iowrite16((int )val, (void *)addr); } return; } } __inline static void rtl818x_iowrite32(struct rtl8180_priv *priv , __le32 *addr , u32 val ) { { { iowrite32(val, (void *)addr); } return; } } struct rtl818x_rf_ops const *rtl8180_detect_rf(struct ieee80211_hw *dev ) ; __inline static void rtl8225_write_phy_ofdm(struct ieee80211_hw *dev , u8 addr , u8 data ) { { { rtl8180_write_phy(dev, (int )addr, (u32 )data); } return; } } __inline static void rtl8225_write_phy_cck(struct ieee80211_hw *dev , u8 addr , u8 data ) { { { rtl8180_write_phy(dev, (int )addr, (u32 )((int )data | 65536)); } return; } } struct rtl818x_rf_ops const sa2400_rf_ops ; struct rtl818x_rf_ops const max2820_rf_ops ; struct rtl818x_rf_ops const grf5101_rf_ops ; struct rtl818x_rf_ops const *rtl8187se_detect_rf(struct ieee80211_hw *dev ) ; static struct pci_device_id const rtl8180_table[11U] = { {4332U, 33177U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4332U, 33157U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6041U, 28687U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6041U, 28703U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4332U, 33152U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6041U, 24577U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6041U, 24608U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 13056U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 13057U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5170U, 28934U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__rtl8180_table_device_table[11U] ; static struct ieee80211_rate const rtl818x_rates[12U] = { {0U, 10U, 0U, (unsigned short)0}, {0U, 20U, 1U, (unsigned short)0}, {0U, 55U, 2U, (unsigned short)0}, {0U, 110U, 3U, (unsigned short)0}, {0U, 60U, 4U, (unsigned short)0}, {0U, 90U, 5U, (unsigned short)0}, {0U, 120U, 6U, (unsigned short)0}, {0U, 180U, 7U, (unsigned short)0}, {0U, 240U, 8U, (unsigned short)0}, {0U, 360U, 9U, (unsigned short)0}, {0U, 480U, 10U, (unsigned short)0}, {0U, 540U, 11U, (unsigned short)0}}; static struct ieee80211_channel const rtl818x_channels[14U] = { {0, 2412U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2417U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2422U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2427U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2432U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2437U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2442U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2447U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2452U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2457U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2462U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2467U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2472U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2484U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}}; static int const rtl8187se_queues_map[5U] = { 5, 4, 3, 2, 7}; static int const rtl8180_queues_map[2U] = { 4, 7}; static u8 const rtl8187se_lna_gain[4U] = { 2U, 17U, 29U, 39U}; void rtl8180_write_phy(struct ieee80211_hw *dev , u8 addr , u32 data ) { struct rtl8180_priv *priv ; int i ; u32 buf ; u8 tmp ; int tmp___0 ; { { priv = (struct rtl8180_priv *)dev->priv; i = 10; buf = (data << 8) | (u32 )addr; rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->PHY), buf | 128U); } goto ldv_53472; ldv_53471: { rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->PHY), buf); tmp = rtl818x_ioread8(priv, (u8 *)(& (priv->map)->PHY) + 2UL); } if ((u32 )tmp == (data & 255U)) { return; } else { } ldv_53472: tmp___0 = i; i = i - 1; if (tmp___0 != 0) { goto ldv_53471; } else { } return; } } static void rtl8180_handle_rx(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; struct rtl818x_rx_cmd_desc *cmd_desc ; unsigned int count ; u8 agc ; u8 sq ; s8 signal ; dma_addr_t mapping ; void *entry ; struct sk_buff *skb ; u32 flags ; u32 flags2 ; u32 flags3 ; u64 tsft ; struct rtl8187se_rx_desc *desc ; struct rtl8180_rx_desc *desc___0 ; struct ieee80211_rx_status rx_status ; struct sk_buff *new_skb ; struct sk_buff *tmp ; long tmp___0 ; unsigned char *tmp___1 ; int tmp___2 ; u8 __min1 ; u8 __max1 ; u8 __max2 ; u8 __min2 ; u8 __min1___0 ; u8 __max1___0 ; u8 __max2___0 ; u8 __min2___0 ; u8 tmp___3 ; int idx ; int bb ; struct ieee80211_rx_status *tmp___4 ; long tmp___5 ; unsigned int tmp___6 ; { priv = (struct rtl8180_priv *)dev->priv; count = 32U; signal = 1; goto ldv_53514; ldv_53513: entry = priv->rx_ring + (unsigned long )(priv->rx_idx * (unsigned int )priv->rx_ring_sz); skb = priv->rx_buf[priv->rx_idx]; flags3 = 0U; if ((unsigned int )priv->chip_family == 2U) { desc = (struct rtl8187se_rx_desc *)entry; flags = desc->flags; __asm__ volatile ("lfence": : : "memory"); flags3 = desc->flags3; flags2 = desc->flags2; tsft = desc->tsft; } else { desc___0 = (struct rtl8180_rx_desc *)entry; flags = desc___0->flags; __asm__ volatile ("lfence": : : "memory"); flags2 = desc___0->flags2; tsft = desc___0->tsft; } if ((int )flags < 0) { return; } else { } { tmp___5 = ldv__builtin_expect((flags & 201359360U) != 0U, 0L); } if (tmp___5 != 0L) { } else { { rx_status.mactime = 0ULL; rx_status.device_timestamp = 0U; rx_status.ampdu_reference = 0U; rx_status.flag = 0U; rx_status.freq = (unsigned short)0; rx_status.vht_flag = (unsigned char)0; rx_status.rate_idx = (unsigned char)0; rx_status.vht_nss = (unsigned char)0; rx_status.rx_flags = (unsigned char)0; rx_status.band = (unsigned char)0; rx_status.antenna = (unsigned char)0; rx_status.signal = (signed char)0; rx_status.chains = (unsigned char)0; rx_status.chain_signal[0] = (signed char)0; rx_status.chain_signal[1] = (signed char)0; rx_status.chain_signal[2] = (signed char)0; rx_status.chain_signal[3] = (signed char)0; rx_status.ampdu_delimiter_crc = (unsigned char)0; tmp = dev_alloc_skb(2353U); new_skb = tmp; tmp___0 = ldv__builtin_expect((unsigned long )new_skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { goto done; } else { } { tmp___1 = skb_tail_pointer((struct sk_buff const *)new_skb); mapping = pci_map_single(priv->pdev, (void *)tmp___1, 2353UL, 2); tmp___2 = pci_dma_mapping_error(priv->pdev, mapping); } if (tmp___2 != 0) { { kfree_skb(new_skb); dev_err((struct device const *)(& (priv->pdev)->dev), "RX DMA map error\n"); } goto done; } else { } { pci_unmap_single(priv->pdev, *((dma_addr_t *)(& skb->cb)), 2353UL, 2); skb_put(skb, flags & 4095U); rx_status.antenna = (unsigned int )((u8 )(flags2 >> 15)) & 1U; rx_status.rate_idx = (unsigned int )((u8 )(flags >> 20)) & 15U; agc = (unsigned int )((u8 )(flags2 >> 17)) & 127U; } { if ((unsigned int )priv->chip_family == 1U) { goto case_1; } else { } if ((unsigned int )priv->chip_family == 0U) { goto case_0; } else { } if ((unsigned int )priv->chip_family == 2U) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ ; if ((unsigned int )rx_status.rate_idx > 3U) { __max1 = agc; __max2 = 25U; __min1 = (u8 )((int )__max1 > (int )__max2 ? __max1 : __max2); __min2 = 90U; signal = (s8 )(247U - (unsigned int )((unsigned char )((int )__min1 < (int )__min2 ? __min1 : __min2))); } else { __max1___0 = agc; __max2___0 = 30U; __min1___0 = (u8 )((int )__max1___0 > (int )__max2___0 ? __max1___0 : __max2___0); __min2___0 = 95U; signal = (s8 )(- ((int )((unsigned char )((int )__min1___0 < (int )__min2___0 ? __min1___0 : __min2___0)))); } goto ldv_53508; case_0: /* CIL Label */ { sq = (u8 )flags2; tmp___3 = (*((priv->rf)->calc_rssi))((int )agc, (int )sq); signal = (s8 )tmp___3; } goto ldv_53508; case_2: /* CIL Label */ ; if ((unsigned int )rx_status.rate_idx > 3U) { signal = (signed char )(flags3 >> 16); signal = (s8 )((unsigned int )((unsigned char )((int )signal / 2)) + 215U); } else { idx = ((int )agc & 96) >> 5; bb = ((int )agc & 31) * 2; signal = (s8 )((unsigned int )(- ((int )((unsigned char )bb)) - (int )((unsigned char )rtl8187se_lna_gain[idx])) + 4U); } goto ldv_53508; switch_break: /* CIL Label */ ; } ldv_53508: rx_status.signal = signal; rx_status.freq = (dev->conf.chandef.chan)->center_freq; rx_status.band = (u8 )(dev->conf.chandef.chan)->band; rx_status.mactime = tsft; rx_status.flag = rx_status.flag | 128U; if ((flags & 33554432U) != 0U) { rx_status.flag = rx_status.flag | 256U; } else { } if ((flags & 8192U) != 0U) { rx_status.flag = rx_status.flag | 32U; } else { } { tmp___4 = IEEE80211_SKB_RXCB(skb); __memcpy((void *)tmp___4, (void const *)(& rx_status), 40UL); ieee80211_rx_irqsafe(dev, skb); skb = new_skb; priv->rx_buf[priv->rx_idx] = skb; *((dma_addr_t *)(& skb->cb)) = mapping; } } done: cmd_desc = (struct rtl818x_rx_cmd_desc *)entry; cmd_desc->rx_buf = (unsigned int )*((dma_addr_t *)(& skb->cb)); cmd_desc->flags = 2147486001U; if (priv->rx_idx == 31U) { cmd_desc->flags = cmd_desc->flags | 1073741824U; } else { } priv->rx_idx = (priv->rx_idx + 1U) & 31U; ldv_53514: tmp___6 = count; count = count - 1U; if (tmp___6 != 0U) { goto ldv_53513; } else { } return; } } static void rtl8180_handle_tx(struct ieee80211_hw *dev , unsigned int prio ) { struct rtl8180_priv *priv ; struct rtl8180_tx_ring *ring ; struct rtl8180_tx_desc *entry ; struct sk_buff *skb ; struct ieee80211_tx_info *info ; u32 flags ; __u32 tmp ; __u32 tmp___0 ; { priv = (struct rtl8180_priv *)dev->priv; ring = (struct rtl8180_tx_ring *)(& priv->tx_ring) + (unsigned long )prio; goto ldv_53527; ldv_53526: entry = ring->desc + (unsigned long )ring->idx; flags = entry->flags; if ((int )flags < 0) { return; } else { } { ring->idx = (ring->idx + 1U) % ring->entries; skb = __skb_dequeue(& ring->queue); pci_unmap_single(priv->pdev, (dma_addr_t )entry->tx_buf, (size_t )skb->len, 1); info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); } if ((info->flags & 4U) == 0U && (flags & 32768U) != 0U) { info->flags = info->flags | 512U; } else { } { info->__annonCompField93.status.rates[0].count = (unsigned char )((unsigned int )((unsigned char )flags) + 1U); ieee80211_tx_status_irqsafe(dev, skb); tmp = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (ring->entries - tmp == 2U) { { ieee80211_wake_queue(dev, (int )prio); } } else { } ldv_53527: { tmp___0 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___0 != 0U) { goto ldv_53526; } else { } return; } } static irqreturn_t rtl8187se_interrupt(int irq , void *dev_id ) { struct ieee80211_hw *dev ; struct rtl8180_priv *priv ; u32 reg ; unsigned long flags ; int desc_err ; long tmp ; int tmp___0 ; int tmp___1 ; { { dev = (struct ieee80211_hw *)dev_id; priv = (struct rtl8180_priv *)dev->priv; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(& priv->lock); reg = rtl818x_ioread32(priv, & (priv->map)->__annonCompField106.INT_STATUS_SE); tmp = ldv__builtin_expect(reg == 4294967295U, 0L); } if (tmp != 0L) { { ldv_spin_unlock_irqrestore_122(& priv->lock, flags); } return (1); } else { } { rtl818x_iowrite32(priv, & (priv->map)->__annonCompField106.INT_STATUS_SE, reg); } if ((reg & 2097152U) != 0U) { { rtl818x_iowrite32(priv, & (priv->map)->INT_TIMEOUT, 0U); } } else { } if ((reg & 393216U) != 0U) { { rtl8180_handle_tx(dev, 4U); } } else { } if ((reg & 24576U) != 0U) { { rtl8180_handle_tx(dev, 0U); } } else { } if ((reg & 1536U) != 0U) { { rtl8180_handle_tx(dev, 1U); } } else { } if ((reg & 96U) != 0U) { { rtl8180_handle_tx(dev, 2U); } } else { } if ((reg & 24U) != 0U) { { rtl8180_handle_tx(dev, 3U); } } else { } if ((reg & 2436U) != 0U) { { rtl8180_handle_rx(dev); } } else { } if ((reg & 2048U) != 0U) { tmp___1 = desc_err; desc_err = desc_err + 1; if (tmp___1 > 2) { { tmp___0 = net_ratelimit(); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "No RX DMA Descriptor avail\n"); } } else { } } else { } } else { } { ldv_spin_unlock_irqrestore_122(& priv->lock, flags); } return (1); } } static irqreturn_t rtl8180_interrupt(int irq , void *dev_id ) { struct ieee80211_hw *dev ; struct rtl8180_priv *priv ; u16 reg ; long tmp ; { { dev = (struct ieee80211_hw *)dev_id; priv = (struct rtl8180_priv *)dev->priv; ldv_spin_lock_124(& priv->lock); reg = rtl818x_ioread16(priv, & (priv->map)->__annonCompField106.__annonCompField105.INT_STATUS); tmp = ldv__builtin_expect((unsigned int )reg == 65535U, 0L); } if (tmp != 0L) { { ldv_spin_unlock_125(& priv->lock); } return (1); } else { } { rtl818x_iowrite16(priv, & (priv->map)->__annonCompField106.__annonCompField105.INT_STATUS, (int )reg); } if (((int )reg & 3072) != 0) { { rtl8180_handle_tx(dev, 1U); } } else { } if (((int )reg & 12) != 0) { { rtl8180_handle_tx(dev, 0U); } } else { } if (((int )reg & 3) != 0) { { rtl8180_handle_rx(dev); } } else { } { ldv_spin_unlock_125(& priv->lock); } return (1); } } static void rtl8180_tx(struct ieee80211_hw *dev , struct ieee80211_tx_control *control , struct sk_buff *skb ) { struct ieee80211_tx_info *info ; struct ieee80211_tx_info *tmp ; struct ieee80211_hdr *hdr ; struct rtl8180_priv *priv ; struct rtl8180_tx_ring *ring ; struct rtl8180_tx_desc *entry ; unsigned long flags ; unsigned int idx ; unsigned int prio ; unsigned int hw_prio ; dma_addr_t mapping ; u32 tx_flags ; u8 rc_flags ; u16 plcp_len ; __le16 rts_duration ; u16 frame_duration ; u16 tmp___0 ; int tmp___1 ; struct ieee80211_rate *tmp___2 ; struct ieee80211_rate *tmp___3 ; struct ieee80211_rate *tmp___4 ; unsigned int remainder ; struct ieee80211_rate *tmp___5 ; struct ieee80211_rate *tmp___6 ; struct ieee80211_rate *tmp___7 ; __le16 duration ; struct ieee80211_rate *tmp___8 ; __u32 tmp___9 ; __u32 tmp___10 ; { { tmp = IEEE80211_SKB_CB(skb); info = tmp; hdr = (struct ieee80211_hdr *)skb->data; priv = (struct rtl8180_priv *)dev->priv; plcp_len = 0U; rts_duration = 0U; frame_duration = 0U; tmp___0 = skb_get_queue_mapping((struct sk_buff const *)skb); prio = (unsigned int )tmp___0; ring = (struct rtl8180_tx_ring *)(& priv->tx_ring) + (unsigned long )prio; mapping = pci_map_single(priv->pdev, (void *)skb->data, (size_t )skb->len, 1); tmp___1 = pci_dma_mapping_error(priv->pdev, mapping); } if (tmp___1 != 0) { { kfree_skb(skb); dev_err((struct device const *)(& (priv->pdev)->dev), "TX DMA mapping error\n"); } return; } else { } { tmp___2 = ieee80211_get_tx_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); tx_flags = ((unsigned int )((int )tmp___2->hw_value << 24) | skb->len) | 2952790016U; } if ((unsigned int )priv->chip_family != 0U) { tx_flags = tx_flags | 1073774592U; } else { } rc_flags = (u8 )info->__annonCompField93.control.__annonCompField91.__annonCompField90.rates[0].flags; if ((int )rc_flags & 1) { { tx_flags = tx_flags | 8388608U; tmp___3 = ieee80211_get_rts_cts_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); tx_flags = tx_flags | (u32 )((int )tmp___3->hw_value << 19); rts_duration = ieee80211_rts_duration(dev, priv->vif, (size_t )skb->len, (struct ieee80211_tx_info const *)info); } } else if (((int )rc_flags & 2) != 0) { { tx_flags = tx_flags | 8650752U; tmp___4 = ieee80211_get_rts_cts_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); tx_flags = tx_flags | (u32 )((int )tmp___4->hw_value << 19); rts_duration = ieee80211_ctstoself_duration(dev, priv->vif, (size_t )skb->len, (struct ieee80211_tx_info const *)info); } } else { } if ((unsigned int )priv->chip_family == 0U) { { tmp___5 = ieee80211_get_tx_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); tmp___6 = ieee80211_get_tx_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); plcp_len = (u16 )((((skb->len + 4U) * 16U + (unsigned int )(((int )tmp___5->bitrate * 2) / 10)) - 1U) / (unsigned int )(((int )tmp___6->bitrate * 2) / 10)); tmp___7 = ieee80211_get_tx_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); remainder = ((skb->len + 4U) * 16U) % (unsigned int )(((int )tmp___7->bitrate * 2) / 10); } if (remainder <= 6U) { plcp_len = (u16 )((unsigned int )plcp_len | 32768U); } else { } } else { } if ((unsigned int )priv->chip_family == 2U) { { tmp___8 = ieee80211_get_tx_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); duration = ieee80211_generic_frame_duration(dev, priv->vif, 0, (size_t )skb->len, tmp___8); frame_duration = (int )priv->ack_time + (int )duration; } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(& priv->lock); } if ((info->flags & 2U) != 0U) { if ((info->flags & 16U) != 0U) { priv->seqno = (unsigned int )priv->seqno + 16U; } else { } hdr->seq_ctrl = (unsigned int )hdr->seq_ctrl & 15U; hdr->seq_ctrl = (__le16 )((int )hdr->seq_ctrl | (int )priv->seqno); } else { } { tmp___9 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); idx = (ring->idx + tmp___9) % ring->entries; entry = ring->desc + (unsigned long )idx; } if ((unsigned int )priv->chip_family == 2U) { entry->__annonCompField113.__annonCompField112.frame_duration = frame_duration; entry->__annonCompField113.__annonCompField112.frame_len_se = (unsigned short )skb->len; entry->flags3 = 16U; } else { entry->__annonCompField113.frame_len = skb->len; } { entry->rts_duration = rts_duration; entry->plcp_len = plcp_len; entry->tx_buf = (unsigned int )mapping; entry->retry_limit = (unsigned int )info->__annonCompField93.control.__annonCompField91.__annonCompField90.rates[0].count + 255U; __asm__ volatile ("sfence": : : "memory"); entry->flags = tx_flags; __asm__ volatile ("sfence": : : "memory"); __skb_queue_tail(& ring->queue, skb); tmp___10 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (ring->entries - tmp___10 <= 1U) { { ieee80211_stop_queue(dev, (int )prio); } } else { } { ldv_spin_unlock_irqrestore_122(& priv->lock, flags); } if ((unsigned int )priv->chip_family == 2U) { { hw_prio = (unsigned int )rtl8187se_queues_map[prio]; rtl818x_iowrite8(priv, & (priv->map)->TX_DMA_POLLING, (int )((u8 )(1 << (int )hw_prio))); } } else { { hw_prio = (unsigned int )rtl8180_queues_map[prio]; rtl818x_iowrite8(priv, & (priv->map)->TX_DMA_POLLING, (int )((u8 )((int )((signed char )(1 << (int )hw_prio)) | 6))); } } return; } } static void rtl8180_set_anaparam3(struct rtl8180_priv *priv , u16 anaparam3 ) { u8 reg ; { { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); reg = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((unsigned int )reg | 64U)); rtl818x_iowrite16(priv, & (priv->map)->__annonCompField107.ANAPARAM3, (int )anaparam3); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )reg & 191); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } return; } } void rtl8180_set_anaparam2(struct rtl8180_priv *priv , u32 anaparam2 ) { u8 reg ; { { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); reg = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((unsigned int )reg | 64U)); rtl818x_iowrite32(priv, & (priv->map)->ANAPARAM2, anaparam2); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )reg & 191); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } return; } } void rtl8180_set_anaparam(struct rtl8180_priv *priv , u32 anaparam ) { u8 reg ; { { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); reg = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((unsigned int )reg | 64U)); rtl818x_iowrite32(priv, & (priv->map)->ANAPARAM, anaparam); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )reg & 191); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } return; } } static void rtl8187se_mac_config(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u8 reg ; { { priv = (struct rtl8180_priv *)dev->priv; rtl818x_iowrite32(priv, (__le32 *)priv->map + 124UL, 0U); rtl818x_ioread32(priv, (__le32 *)priv->map + 124UL); rtl818x_iowrite32(priv, (__le32 *)priv->map + 125UL, 0U); rtl818x_ioread32(priv, (__le32 *)priv->map + 125UL); rtl818x_iowrite8(priv, (u8 *)priv->map + 504UL, 0); rtl818x_ioread8(priv, (u8 *)priv->map + 504UL); reg = rtl818x_ioread8(priv, & (priv->map)->PHY_PR); rtl818x_iowrite8(priv, & (priv->map)->PHY_PR, (int )((unsigned int )reg | 4U)); rtl818x_iowrite16(priv, (__le16 *)priv->map + 432UL, 4096); rtl818x_iowrite16(priv, (__le16 *)priv->map + 433UL, 4096); rtl818x_iowrite16(priv, (__le16 *)priv->map + 440UL, 1376); rtl818x_iowrite16(priv, (__le16 *)priv->map + 441UL, 1376); rtl818x_iowrite16(priv, (__le16 *)priv->map + 442UL, 3492); rtl818x_iowrite16(priv, (__le16 *)priv->map + 443UL, 3492); rtl818x_iowrite16(priv, (__le16 *)priv->map + 444UL, 1376); rtl818x_iowrite16(priv, (__le16 *)priv->map + 445UL, 1376); rtl818x_iowrite16(priv, (__le16 *)priv->map + 446UL, 236); rtl818x_iowrite16(priv, (__le16 *)priv->map + 447UL, 236); rtl818x_iowrite8(priv, (u8 *)priv->map + 590UL, 1); rtl818x_iowrite8(priv, (u8 *)priv->map + 10UL, 114); } return; } } static void rtl8187se_set_antenna_config(struct ieee80211_hw *dev , u8 def_ant , bool diversity ) { struct rtl8180_priv *priv ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8225_write_phy_cck(dev, 12, 9); } if ((int )diversity) { if ((unsigned int )def_ant == 1U) { { rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 0); rtl8225_write_phy_cck(dev, 17, 187); rtl8225_write_phy_cck(dev, 1, 199); rtl8225_write_phy_ofdm(dev, 13, 84); rtl8225_write_phy_ofdm(dev, 24, 178); } } else { { rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 3); rtl8225_write_phy_cck(dev, 17, 155); rtl8225_write_phy_cck(dev, 1, 199); rtl8225_write_phy_ofdm(dev, 13, 92); rtl8225_write_phy_ofdm(dev, 24, 178); } } } else if ((unsigned int )def_ant == 1U) { { rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 0); rtl8225_write_phy_cck(dev, 17, 187); rtl8225_write_phy_cck(dev, 1, 71); rtl8225_write_phy_ofdm(dev, 13, 84); rtl8225_write_phy_ofdm(dev, 24, 50); } } else { { rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 3); rtl8225_write_phy_cck(dev, 17, 155); rtl8225_write_phy_cck(dev, 1, 71); rtl8225_write_phy_ofdm(dev, 13, 92); rtl8225_write_phy_ofdm(dev, 24, 50); } } return; } } static void rtl8180_int_enable(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned int )priv->chip_family == 2U) { { rtl818x_iowrite32(priv, & (priv->map)->IMR, 421884U); } } else { { rtl818x_iowrite16(priv, & (priv->map)->__annonCompField106.__annonCompField105.INT_MASK, 65535); } } return; } } static void rtl8180_int_disable(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned int )priv->chip_family == 2U) { { rtl818x_iowrite32(priv, & (priv->map)->IMR, 0U); } } else { { rtl818x_iowrite16(priv, & (priv->map)->__annonCompField106.__annonCompField105.INT_MASK, 0); } } return; } } static void rtl8180_conf_basic_rates(struct ieee80211_hw *dev , u32 basic_mask ) { struct rtl8180_priv *priv ; u16 reg ; u32 resp_mask ; u8 basic_max ; u8 resp_max ; u8 resp_min ; int tmp ; int tmp___0 ; int tmp___1 ; { priv = (struct rtl8180_priv *)dev->priv; resp_mask = basic_mask; if ((resp_mask & 15U) == resp_mask) { resp_mask = resp_mask | 336U; } else { } { if ((unsigned int )priv->chip_family == 0U) { goto case_0; } else { } if ((unsigned int )priv->chip_family == 1U) { goto case_1; } else { } if ((unsigned int )priv->chip_family == 2U) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ { tmp = fls((int )basic_mask); basic_max = (unsigned int )((u8 )tmp) + 255U; reg = rtl818x_ioread16(priv, & (priv->map)->__annonCompField102.BRSR); reg = (unsigned int )reg & 65532U; reg = (int )reg | (int )((u16 )basic_max); rtl818x_iowrite16(priv, & (priv->map)->__annonCompField102.BRSR, (int )reg); } goto ldv_53612; case_1: /* CIL Label */ { tmp___0 = fls((int )resp_mask); resp_max = (unsigned int )((u8 )tmp___0) + 255U; tmp___1 = ffs((int )resp_mask); resp_min = (unsigned int )((u8 )tmp___1) + 255U; rtl818x_iowrite16(priv, & (priv->map)->__annonCompField102.BRSR, (int )((u16 )basic_mask)); rtl818x_iowrite8(priv, & (priv->map)->__annonCompField104.__annonCompField103.RESP_RATE, (int )((u8 )((int )((signed char )((int )resp_max << 4)) | (int )((signed char )resp_min)))); } goto ldv_53612; case_2: /* CIL Label */ { rtl818x_iowrite16(priv, & (priv->map)->__annonCompField104.BRSR_8187SE, (int )((u16 )resp_mask)); } goto ldv_53612; switch_break: /* CIL Label */ ; } ldv_53612: ; return; } } static void rtl8180_config_cardbus(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u16 reg16 ; u8 reg8 ; { { priv = (struct rtl8180_priv *)dev->priv; reg8 = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); reg8 = (u8 )((unsigned int )reg8 | 2U); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )reg8); } if ((unsigned int )priv->chip_family == 2U) { { rtl818x_iowrite16(priv, (__le16 *)priv->map + 234UL, 65535); } } else { { reg16 = rtl818x_ioread16(priv, & (priv->map)->__annonCompField108.FEMR); reg16 = (u16 )((unsigned int )reg16 | 49168U); rtl818x_iowrite16(priv, & (priv->map)->__annonCompField108.FEMR, (int )reg16); } } return; } } static int rtl8180_init_hw(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u16 reg ; u32 reg32 ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; u8 reg___0 ; u8 tmp___6 ; u8 tmp___7 ; { { priv = (struct rtl8180_priv *)dev->priv; rtl818x_iowrite8(priv, & (priv->map)->CMD, 0); rtl818x_ioread8(priv, & (priv->map)->CMD); msleep(10U); rtl8180_int_disable(dev); rtl818x_ioread8(priv, & (priv->map)->CMD); tmp = rtl818x_ioread8(priv, & (priv->map)->CMD); reg = (u16 )tmp; reg = (unsigned int )reg & 2U; reg = (u16 )((unsigned int )reg | 16U); rtl818x_iowrite8(priv, & (priv->map)->CMD, 16); rtl818x_ioread8(priv, & (priv->map)->CMD); msleep(200U); tmp___0 = rtl818x_ioread8(priv, & (priv->map)->CMD); } if (((int )tmp___0 & 16) != 0) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "reset timeout!\n"); } return (-110); } else { } { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 64); rtl818x_ioread8(priv, & (priv->map)->CMD); msleep(200U); tmp___1 = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); } if (((int )tmp___1 & 8) != 0) { { rtl8180_config_cardbus(dev); } } else { } if ((unsigned int )priv->chip_family == 2U) { { rtl818x_iowrite8(priv, & (priv->map)->MSR, 16); } } else { { rtl818x_iowrite8(priv, & (priv->map)->MSR, 0); } } if ((unsigned int )priv->chip_family == 0U) { { rtl8180_set_anaparam(priv, priv->anaparam); } } else { } { rtl818x_iowrite32(priv, & (priv->map)->RDSAR, (u32 )priv->rx_ring_dma); } if ((unsigned int )priv->chip_family != 2U) { { rtl818x_iowrite32(priv, & (priv->map)->TBDA, (u32 )priv->tx_ring[1].dma); rtl818x_iowrite32(priv, & (priv->map)->__annonCompField99.TLPDA, (u32 )priv->tx_ring[0].dma); } } else { { rtl818x_iowrite32(priv, & (priv->map)->TBDA, (u32 )priv->tx_ring[4].dma); rtl818x_iowrite32(priv, & (priv->map)->__annonCompField100.TVODA, (u32 )priv->tx_ring[0].dma); rtl818x_iowrite32(priv, & (priv->map)->__annonCompField99.TVIDA, (u32 )priv->tx_ring[1].dma); rtl818x_iowrite32(priv, & (priv->map)->TBEDA, (u32 )priv->tx_ring[2].dma); rtl818x_iowrite32(priv, & (priv->map)->__annonCompField98.TBKDA, (u32 )priv->tx_ring[3].dma); } } { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); tmp___2 = rtl818x_ioread8(priv, & (priv->map)->CONFIG2); reg = (u16 )tmp___2; rtl818x_iowrite8(priv, & (priv->map)->CONFIG2, (int )((u8 )reg) & 247); } if ((unsigned int )priv->chip_family == 1U) { { tmp___3 = rtl818x_ioread8(priv, & (priv->map)->CONFIG2); reg = (u16 )tmp___3; rtl818x_iowrite8(priv, & (priv->map)->CONFIG2, (int )((unsigned int )((u8 )reg) | 16U)); } } else { } { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); rtl818x_iowrite32(priv, & (priv->map)->INT_TIMEOUT, 0U); } if ((unsigned int )priv->chip_family != 0U) { { rtl818x_iowrite8(priv, & (priv->map)->WPA_CONF, 0); rtl818x_iowrite8(priv, & (priv->map)->RATE_FALLBACK, 0); } } else { { rtl818x_iowrite8(priv, & (priv->map)->SECURITY, 0); rtl818x_iowrite8(priv, & (priv->map)->PHY_DELAY, 6); rtl818x_iowrite8(priv, & (priv->map)->CARRIER_SENSE_COUNTER, 76); } } if ((unsigned int )priv->chip_family == 1U) { { tmp___4 = rtl818x_ioread8(priv, & (priv->map)->GP_ENABLE); reg = (u16 )tmp___4; rtl818x_iowrite8(priv, & (priv->map)->GP_ENABLE, (int )((u8 )reg) & 191); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); tmp___5 = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); reg = (u16 )tmp___5; rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((unsigned int )((u8 )reg) | 4U)); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } if ((int )priv->map_pio) { { reg___0 = rtl818x_ioread8(priv, & (priv->map)->PGSELECT); rtl818x_iowrite8(priv, & (priv->map)->PGSELECT, (int )((unsigned int )reg___0 | 1U)); rtl818x_iowrite8(priv, (u8 *)priv->map + 255UL, 53); rtl818x_iowrite8(priv, & (priv->map)->PGSELECT, (int )reg___0); } } else { { rtl818x_iowrite8(priv, (u8 *)priv->map + 511UL, 53); } } } else { } if ((unsigned int )priv->chip_family == 2U) { { rtl818x_iowrite16(priv, (__le16 *)priv->map + 240UL, 4095); rtl818x_ioread16(priv, (__le16 *)priv->map + 240UL); rtl818x_iowrite8(priv, & (priv->map)->TPPOLL_STOP, 66); rtl818x_iowrite8(priv, & (priv->map)->ACM_CONTROL, 0); rtl818x_iowrite16(priv, & (priv->map)->TID_AC_MAP, 64080); rtl818x_iowrite16(priv, & (priv->map)->INT_MIG, 0); rtl8187se_mac_config(dev); rtl818x_iowrite16(priv, (__le16 *)priv->map + 313UL, 22170); rtl818x_ioread16(priv, (__le16 *)priv->map + 313UL); rtl8180_set_anaparam(priv, 2953137408U); rtl8180_set_anaparam2(priv, 1222U); rtl8180_set_anaparam3(priv, 16); tmp___6 = rtl818x_ioread8(priv, & (priv->map)->CONFIG5); rtl818x_iowrite8(priv, & (priv->map)->CONFIG5, (int )tmp___6 & 127); tmp___7 = rtl818x_ioread8(priv, & (priv->map)->PGSELECT); rtl818x_iowrite8(priv, & (priv->map)->PGSELECT, (int )((unsigned int )tmp___7 | 8U)); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, 1152); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 7167); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, 9352); rtl818x_iowrite32(priv, & (priv->map)->RF_TIMING, 16387U); reg32 = rtl818x_ioread32(priv, & (priv->map)->RF_PARA); reg32 = reg32 & 16776960U; reg32 = reg32 | 3087007828U; rtl818x_iowrite32(priv, & (priv->map)->RF_PARA, reg32); } } else { { rtl818x_iowrite8(priv, & (priv->map)->TX_DMA_POLLING, 6); } } { (*((priv->rf)->init))(dev); } if ((unsigned int )priv->chip_family == 0U) { { rtl8180_conf_basic_rates(dev, 3U); } } else { { rtl8180_conf_basic_rates(dev, 499U); } } if ((unsigned int )priv->chip_family == 2U) { { rtl8187se_set_antenna_config(dev, (int )priv->antenna_diversity_default, (unsigned int )priv->antenna_diversity_en != 0U); } } else { } return (0); } } static int rtl8180_init_rx_ring(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; struct rtl818x_rx_cmd_desc *entry ; int i ; struct sk_buff *skb ; struct sk_buff *tmp ; dma_addr_t *mapping ; unsigned char *tmp___0 ; int tmp___1 ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned int )priv->chip_family == 2U) { priv->rx_ring_sz = 32U; } else { priv->rx_ring_sz = 16U; } { priv->rx_ring = pci_zalloc_consistent(priv->pdev, (size_t )((int )priv->rx_ring_sz * 32), & priv->rx_ring_dma); } if ((unsigned long )priv->rx_ring == (unsigned long )((void *)0) || ((unsigned long )priv->rx_ring & 255UL) != 0UL) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "Cannot allocate RX ring\n"); } return (-12); } else { } priv->rx_idx = 0U; i = 0; goto ldv_53637; ldv_53636: { tmp = dev_alloc_skb(2353U); skb = tmp; entry = (struct rtl818x_rx_cmd_desc *)priv->rx_ring + (unsigned long )((int )priv->rx_ring_sz * i); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "Cannot allocate RX skb\n"); } return (-12); } else { } { priv->rx_buf[i] = skb; mapping = (dma_addr_t *)(& skb->cb); tmp___0 = skb_tail_pointer((struct sk_buff const *)skb); *mapping = pci_map_single(priv->pdev, (void *)tmp___0, 2353UL, 2); tmp___1 = pci_dma_mapping_error(priv->pdev, *mapping); } if (tmp___1 != 0) { { kfree_skb(skb); dev_err((struct device const *)(& (dev->wiphy)->dev), "Cannot map DMA for RX skb\n"); } return (-12); } else { } entry->rx_buf = (unsigned int )*mapping; entry->flags = 2147486001U; i = i + 1; ldv_53637: ; if (i <= 31) { goto ldv_53636; } else { } entry->flags = entry->flags | 1073741824U; return (0); } } static void rtl8180_free_rx_ring(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; int i ; struct sk_buff *skb ; { priv = (struct rtl8180_priv *)dev->priv; i = 0; goto ldv_53647; ldv_53646: skb = priv->rx_buf[i]; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_53645; } else { } { pci_unmap_single(priv->pdev, *((dma_addr_t *)(& skb->cb)), 2353UL, 2); kfree_skb(skb); } ldv_53645: i = i + 1; ldv_53647: ; if (i <= 31) { goto ldv_53646; } else { } { pci_free_consistent(priv->pdev, (size_t )((int )priv->rx_ring_sz * 32), priv->rx_ring, priv->rx_ring_dma); priv->rx_ring = (void *)0; } return; } } static int rtl8180_init_tx_ring(struct ieee80211_hw *dev , unsigned int prio , unsigned int entries ) { struct rtl8180_priv *priv ; struct rtl8180_tx_desc *ring ; dma_addr_t dma ; int i ; void *tmp ; { { priv = (struct rtl8180_priv *)dev->priv; tmp = pci_zalloc_consistent(priv->pdev, (unsigned long )entries * 32UL, & dma); ring = (struct rtl8180_tx_desc *)tmp; } if ((unsigned long )ring == (unsigned long )((struct rtl8180_tx_desc *)0) || ((unsigned long )ring & 255UL) != 0UL) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "Cannot allocate TX ring (prio = %d)\n", prio); } return (-12); } else { } { priv->tx_ring[prio].desc = ring; priv->tx_ring[prio].dma = dma; priv->tx_ring[prio].idx = 0U; priv->tx_ring[prio].entries = entries; skb_queue_head_init(& priv->tx_ring[prio].queue); i = 0; } goto ldv_53659; ldv_53658: (ring + (unsigned long )i)->next_tx_desc = (unsigned int )dma + ((unsigned int )(i + 1) % entries) * 32U; i = i + 1; ldv_53659: ; if ((unsigned int )i < entries) { goto ldv_53658; } else { } return (0); } } static void rtl8180_free_tx_ring(struct ieee80211_hw *dev , unsigned int prio ) { struct rtl8180_priv *priv ; struct rtl8180_tx_ring *ring ; struct rtl8180_tx_desc *entry ; struct sk_buff *skb ; struct sk_buff *tmp ; __u32 tmp___0 ; { priv = (struct rtl8180_priv *)dev->priv; ring = (struct rtl8180_tx_ring *)(& priv->tx_ring) + (unsigned long )prio; goto ldv_53670; ldv_53669: { entry = ring->desc + (unsigned long )ring->idx; tmp = __skb_dequeue(& ring->queue); skb = tmp; pci_unmap_single(priv->pdev, (dma_addr_t )entry->tx_buf, (size_t )skb->len, 1); kfree_skb(skb); ring->idx = (ring->idx + 1U) % ring->entries; } ldv_53670: { tmp___0 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___0 != 0U) { goto ldv_53669; } else { } { pci_free_consistent(priv->pdev, (unsigned long )ring->entries * 32UL, (void *)ring->desc, ring->dma); ring->desc = (struct rtl8180_tx_desc *)0; } return; } } static int rtl8180_start(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; int ret ; int i ; u32 reg ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; { { priv = (struct rtl8180_priv *)dev->priv; ret = rtl8180_init_rx_ring(dev); } if (ret != 0) { return (ret); } else { } i = 0; goto ldv_53681; ldv_53680: { ret = rtl8180_init_tx_ring(dev, (unsigned int )i, 16U); } if (ret != 0) { goto err_free_rings; } else { } i = i + 1; ldv_53681: ; if (i < (int )dev->queues + 1) { goto ldv_53680; } else { } { ret = rtl8180_init_hw(dev); } if (ret != 0) { goto err_free_rings; } else { } if ((unsigned int )priv->chip_family == 2U) { { ret = ldv_request_irq_129((priv->pdev)->irq, & rtl8187se_interrupt, 128UL, "rtl818x_pci", (void *)dev); } } else { { ret = ldv_request_irq_130((priv->pdev)->irq, & rtl8180_interrupt, 128UL, "rtl818x_pci", (void *)dev); } } if (ret != 0) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "failed to register IRQ handler\n"); } goto err_free_rings; } else { } { rtl8180_int_enable(dev); } if ((unsigned int )priv->chip_family != 2U) { { rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->__annonCompField96.MAR), 4294967295U); rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->__annonCompField96.MAR) + 1UL, 4294967295U); } } else { } reg = 2417231626U; if ((unsigned int )priv->chip_family == 1U) { reg = reg | 1610612736U; } else if ((unsigned int )priv->chip_family == 0U) { reg = reg | (((int )priv->rfparam & 4) != 0 ? 536870912U : 0U); reg = reg | (((int )priv->rfparam & 8) != 0 ? 1073741824U : 0U); } else { reg = reg & 2684354559U; } { priv->rx_conf = reg; rtl818x_iowrite32(priv, & (priv->map)->RX_CONF, reg); } if ((unsigned int )priv->chip_family != 0U) { { tmp = rtl818x_ioread8(priv, & (priv->map)->CW_CONF); reg = (u32 )tmp; reg = reg & 4294967294U; reg = reg | 2U; rtl818x_iowrite8(priv, & (priv->map)->CW_CONF, (int )((u8 )reg)); tmp___0 = rtl818x_ioread8(priv, & (priv->map)->TX_AGC_CTL); reg = (u32 )tmp___0; reg = reg & 4294967294U; reg = reg & 4294967293U; reg = reg | 4U; rtl818x_iowrite8(priv, & (priv->map)->TX_AGC_CTL, (int )((u8 )reg)); rtl818x_iowrite8(priv, (u8 *)priv->map + 236UL, 63); } } else { } { reg = rtl818x_ioread32(priv, & (priv->map)->TX_CONF); reg = reg | 13107200U; } if ((unsigned int )priv->chip_family == 2U) { reg = reg | 1073741824U; } else { } if ((unsigned int )priv->chip_family != 0U) { reg = reg & 3758096383U; } else { reg = reg & 3221225471U; } { reg = reg & 4293918719U; reg = reg & 4278190079U; rtl818x_iowrite32(priv, & (priv->map)->TX_CONF, reg); tmp___1 = rtl818x_ioread8(priv, & (priv->map)->CMD); reg = (u32 )tmp___1; reg = reg | 8U; reg = reg | 4U; rtl818x_iowrite8(priv, & (priv->map)->CMD, (int )((u8 )reg)); } return (0); err_free_rings: { rtl8180_free_rx_ring(dev); i = 0; } goto ldv_53684; ldv_53683: ; if ((unsigned long )priv->tx_ring[i].desc != (unsigned long )((struct rtl8180_tx_desc *)0)) { { rtl8180_free_tx_ring(dev, (unsigned int )i); } } else { } i = i + 1; ldv_53684: ; if (i < (int )dev->queues + 1) { goto ldv_53683; } else { } return (ret); } } static void rtl8180_stop(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u8 reg ; int i ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8180_int_disable(dev); reg = rtl818x_ioread8(priv, & (priv->map)->CMD); reg = (unsigned int )reg & 251U; reg = (unsigned int )reg & 247U; rtl818x_iowrite8(priv, & (priv->map)->CMD, (int )reg); (*((priv->rf)->stop))(dev); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); reg = rtl818x_ioread8(priv, & (priv->map)->CONFIG4); rtl818x_iowrite8(priv, & (priv->map)->CONFIG4, (int )((unsigned int )reg | 128U)); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); ldv_free_irq_131((priv->pdev)->irq, (void *)dev); rtl8180_free_rx_ring(dev); i = 0; } goto ldv_53693; ldv_53692: { rtl8180_free_tx_ring(dev, (unsigned int )i); i = i + 1; } ldv_53693: ; if (i < (int )dev->queues + 1) { goto ldv_53692; } else { } return; } } static u64 rtl8180_get_tsf(struct ieee80211_hw *dev , struct ieee80211_vif *vif ) { struct rtl8180_priv *priv ; u32 tmp ; u32 tmp___0 ; { { priv = (struct rtl8180_priv *)dev->priv; tmp = rtl818x_ioread32(priv, (__le32 *)(& (priv->map)->TSFT)); tmp___0 = rtl818x_ioread32(priv, (__le32 *)(& (priv->map)->TSFT) + 1UL); } return ((unsigned long long )tmp | ((unsigned long long )tmp___0 << 32)); } } static void rtl8180_beacon_work(struct work_struct *work ) { struct rtl8180_vif *vif_priv ; struct work_struct const *__mptr ; struct ieee80211_vif *vif ; u8 const (*__mptr___0)[0U] ; struct ieee80211_hw *dev ; struct ieee80211_mgmt *mgmt ; struct sk_buff *skb ; int tmp ; unsigned long tmp___0 ; { { __mptr = (struct work_struct const *)work; vif_priv = (struct rtl8180_vif *)__mptr + 0xfffffffffffffff8UL; __mptr___0 = (u8 const *)vif_priv; vif = (struct ieee80211_vif *)__mptr___0 + 0xfffffffffffffee0UL; dev = vif_priv->dev; tmp = ieee80211_queue_stopped(dev, 0); } if (tmp != 0) { goto resched; } else { } { skb = ieee80211_beacon_get(dev, vif); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto resched; } else { } { mgmt = (struct ieee80211_mgmt *)skb->data; mgmt->u.beacon.timestamp = rtl8180_get_tsf(dev, vif); skb_set_queue_mapping(skb, 0); rtl8180_tx(dev, (struct ieee80211_tx_control *)0, skb); } resched: { tmp___0 = usecs_to_jiffies((unsigned int const )((int )vif->bss_conf.beacon_int * 1024)); schedule_delayed_work(& vif_priv->beacon_work, tmp___0); } return; } } static int rtl8180_add_interface(struct ieee80211_hw *dev , struct ieee80211_vif *vif ) { struct rtl8180_priv *priv ; struct rtl8180_vif *vif_priv ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned long )priv->vif != (unsigned long )((struct ieee80211_vif *)0)) { return (-16); } else { } { if ((unsigned int )vif->type == 2U) { goto case_2; } else { } if ((unsigned int )vif->type == 1U) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ ; case_1: /* CIL Label */ ; goto ldv_53721; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_53721: { priv->vif = vif; vif_priv = (struct rtl8180_vif *)(& vif->drv_priv); vif_priv->dev = dev; __init_work(& vif_priv->beacon_work.work, 0); __constr_expr_0.counter = 137438953408L; vif_priv->beacon_work.work.data = __constr_expr_0; lockdep_init_map(& vif_priv->beacon_work.work.lockdep_map, "(&(&vif_priv->beacon_work)->work)", & __key, 0); INIT_LIST_HEAD(& vif_priv->beacon_work.work.entry); vif_priv->beacon_work.work.func = & rtl8180_beacon_work; init_timer_key(& vif_priv->beacon_work.timer, 2U, "(&(&vif_priv->beacon_work)->timer)", & __key___0); vif_priv->beacon_work.timer.function = & delayed_work_timer_fn; vif_priv->beacon_work.timer.data = (unsigned long )(& vif_priv->beacon_work); vif_priv->enable_beacon = 0; rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->MAC), *((__le32 *)(& vif->addr))); rtl818x_iowrite16(priv, (__le16 *)(& (priv->map)->MAC) + 4U, (int )*((__le16 *)(& vif->addr) + 4U)); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } return (0); } } static void rtl8180_remove_interface(struct ieee80211_hw *dev , struct ieee80211_vif *vif ) { struct rtl8180_priv *priv ; { priv = (struct rtl8180_priv *)dev->priv; priv->vif = (struct ieee80211_vif *)0; return; } } static int rtl8180_config(struct ieee80211_hw *dev , u32 changed ) { struct rtl8180_priv *priv ; struct ieee80211_conf *conf ; { { priv = (struct rtl8180_priv *)dev->priv; conf = & dev->conf; (*((priv->rf)->set_chan))(dev, conf); } return (0); } } static void rtl8187se_conf_ac_parm(struct ieee80211_hw *dev , u8 queue ) { struct ieee80211_tx_queue_params const *params ; struct rtl8180_priv *priv ; u32 ac_param ; u8 aifs ; u8 txop ; u8 cw_min ; u8 cw_max ; int tmp ; int tmp___0 ; { { priv = (struct rtl8180_priv *)dev->priv; params = (struct ieee80211_tx_queue_params const *)(& priv->queue_param) + (unsigned long )queue; tmp = fls((int )params->cw_min); cw_min = (u8 )tmp; tmp___0 = fls((int )params->cw_max); cw_max = (u8 )tmp___0; aifs = (unsigned int )((int )((u8 )params->aifs) * (int )priv->slot_time) + 10U; txop = (u8 )params->txop; ac_param = (u32 )(((((int )txop << 16) | ((int )cw_max << 12)) | ((int )cw_min << 8)) | (int )aifs); } { if ((int )queue == 3) { goto case_3; } else { } if ((int )queue == 2) { goto case_2; } else { } if ((int )queue == 1) { goto case_1; } else { } if ((int )queue == 0) { goto case_0; } else { } goto switch_break; case_3: /* CIL Label */ { rtl818x_iowrite32(priv, & (priv->map)->__annonCompField111.AC_BK_PARAM, ac_param); } goto ldv_53749; case_2: /* CIL Label */ { rtl818x_iowrite32(priv, & (priv->map)->__annonCompField110.AC_BE_PARAM, ac_param); } goto ldv_53749; case_1: /* CIL Label */ { rtl818x_iowrite32(priv, & (priv->map)->__annonCompField108.AC_VI_PARAM, ac_param); } goto ldv_53749; case_0: /* CIL Label */ { rtl818x_iowrite32(priv, & (priv->map)->AC_VO_PARAM, ac_param); } goto ldv_53749; switch_break: /* CIL Label */ ; } ldv_53749: ; return; } } static int rtl8180_conf_tx(struct ieee80211_hw *dev , struct ieee80211_vif *vif , u16 queue , struct ieee80211_tx_queue_params const *params ) { struct rtl8180_priv *priv ; u8 cw_min ; u8 cw_max ; int tmp ; int tmp___0 ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned int )priv->chip_family == 0U) { return (0); } else { } { tmp = fls((int )params->cw_min); cw_min = (u8 )tmp; tmp___0 = fls((int )params->cw_max); cw_max = (u8 )tmp___0; } if ((unsigned int )priv->chip_family == 2U) { { priv->queue_param[(int )queue] = *params; rtl8187se_conf_ac_parm(dev, (int )((u8 )queue)); } } else { { rtl818x_iowrite8(priv, & (priv->map)->CW_VAL, (int )((u8 )((int )((signed char )((int )cw_max << 4)) | (int )((signed char )cw_min)))); } } return (0); } } static void rtl8180_conf_erp(struct ieee80211_hw *dev , struct ieee80211_bss_conf *info ) { struct rtl8180_priv *priv ; u8 sifs ; u8 difs ; int eifs ; u8 hw_eifs ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned int )priv->chip_family == 0U) { return; } else { } sifs = 34U; if ((int )info->use_short_slot) { priv->slot_time = 9U; } else { priv->slot_time = 20U; } { difs = (unsigned int )((u8 )((int )priv->slot_time + 5)) * 2U; eifs = ((int )difs + 10) + (int )priv->ack_time; hw_eifs = (u8 )((eifs + 3) / 4); rtl818x_iowrite8(priv, & (priv->map)->SLOT, (int )priv->slot_time); rtl818x_iowrite8(priv, & (priv->map)->SIFS, (int )sifs); rtl818x_iowrite8(priv, & (priv->map)->DIFS, (int )difs); rtl818x_iowrite8(priv, & (priv->map)->CARRIER_SENSE_COUNTER, (int )hw_eifs); } if ((unsigned int )priv->chip_family == 2U) { { rtl818x_iowrite8(priv, & (priv->map)->__annonCompField102.__annonCompField101.EIFS_8187SE, (int )hw_eifs); } } else if ((unsigned int )priv->chip_family == 1U) { { hw_eifs = (u8 )(((eifs - (int )difs) + 3) / 4); rtl818x_iowrite8(priv, & (priv->map)->__annonCompField104.__annonCompField103.EIFS, (int )hw_eifs); } } else { } return; } } static void rtl8180_bss_info_changed(struct ieee80211_hw *dev , struct ieee80211_vif *vif , struct ieee80211_bss_conf *info , u32 changed ) { struct rtl8180_priv *priv ; struct rtl8180_vif *vif_priv ; int i ; u8 reg ; bool tmp ; __le16 tmp___0 ; { priv = (struct rtl8180_priv *)dev->priv; vif_priv = (struct rtl8180_vif *)(& vif->drv_priv); if ((changed & 128U) != 0U) { { rtl818x_iowrite16(priv, (__le16 *)(& (priv->map)->BSSID), (int )*((__le16 *)info->bssid)); rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->BSSID) + 2U, *((__le32 *)info->bssid + 2U)); tmp = is_valid_ether_addr(info->bssid); } if ((int )tmp) { if ((unsigned int )vif->type == 1U) { reg = 4U; } else { reg = 8U; } } else { reg = 0U; } if ((unsigned int )priv->chip_family == 2U) { reg = (u8 )((unsigned int )reg | 16U); } else { } { rtl818x_iowrite8(priv, & (priv->map)->MSR, (int )reg); } } else { } if ((changed & 32U) != 0U) { { rtl8180_conf_basic_rates(dev, info->basic_rates); } } else { } if ((changed & 12U) != 0U) { { tmp___0 = ieee80211_generic_frame_duration(dev, priv->vif, 0, 10UL, (struct ieee80211_rate *)(& priv->rates)); priv->ack_time = (unsigned int )tmp___0 + 65526U; rtl8180_conf_erp(dev, info); } if ((unsigned int )priv->chip_family == 2U) { i = 0; goto ldv_53782; ldv_53781: { rtl8187se_conf_ac_parm(dev, (int )((u8 )i)); i = i + 1; } ldv_53782: ; if (i <= 3) { goto ldv_53781; } else { } } else { } } else { } if ((changed & 512U) != 0U) { vif_priv->enable_beacon = info->enable_beacon; } else { } if ((changed & 768U) != 0U) { { cancel_delayed_work_sync(& vif_priv->beacon_work); } if ((int )vif_priv->enable_beacon) { { schedule_work(& vif_priv->beacon_work.work); } } else { } } else { } return; } } static u64 rtl8180_prepare_multicast(struct ieee80211_hw *dev , struct netdev_hw_addr_list *mc_list ) { { return ((u64 )mc_list->count); } } static void rtl8180_configure_filter(struct ieee80211_hw *dev , unsigned int changed_flags , unsigned int *total_flags , u64 multicast ) { struct rtl8180_priv *priv ; { priv = (struct rtl8180_priv *)dev->priv; if ((changed_flags & 4U) != 0U) { priv->rx_conf = priv->rx_conf ^ 32U; } else { } if ((changed_flags & 32U) != 0U) { priv->rx_conf = priv->rx_conf ^ 524288U; } else { } if ((changed_flags & 64U) != 0U) { priv->rx_conf = priv->rx_conf ^ 1U; } else { } if ((*total_flags & 2U) != 0U || multicast != 0ULL) { priv->rx_conf = priv->rx_conf | 4U; } else { priv->rx_conf = priv->rx_conf & 4294967291U; } *total_flags = 0U; if ((priv->rx_conf & 32U) != 0U) { *total_flags = *total_flags | 4U; } else { } if ((priv->rx_conf & 524288U) != 0U) { *total_flags = *total_flags | 32U; } else { } if ((int )priv->rx_conf & 1) { *total_flags = *total_flags | 64U; } else { } if ((priv->rx_conf & 4U) != 0U) { *total_flags = *total_flags | 2U; } else { } { rtl818x_iowrite32(priv, & (priv->map)->RX_CONF, priv->rx_conf); } return; } } static struct ieee80211_ops const rtl8180_ops = {& rtl8180_tx, & rtl8180_start, & rtl8180_stop, 0, 0, 0, & rtl8180_add_interface, 0, & rtl8180_remove_interface, & rtl8180_config, & rtl8180_bss_info_changed, 0, 0, & rtl8180_prepare_multicast, & rtl8180_configure_filter, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl8180_conf_tx, & rtl8180_get_tsf, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void rtl8180_eeprom_register_read(struct eeprom_93cx6 *eeprom ) { struct rtl8180_priv *priv ; u8 reg ; u8 tmp ; { { priv = (struct rtl8180_priv *)eeprom->data; tmp = rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); reg = tmp; eeprom->reg_data_in = (int )((char )reg) & 2; eeprom->reg_data_out = (int )((char )reg) & 1; eeprom->reg_data_clock = (int )((char )reg) & 4; eeprom->reg_chip_select = (int )((char )reg) & 8; } return; } } static void rtl8180_eeprom_register_write(struct eeprom_93cx6 *eeprom ) { struct rtl8180_priv *priv ; u8 reg ; { priv = (struct rtl8180_priv *)eeprom->data; reg = 128U; if ((int )((signed char )eeprom->reg_data_in) != 0) { reg = (u8 )((unsigned int )reg | 2U); } else { } if ((int )((signed char )eeprom->reg_data_out) != 0) { reg = (u8 )((unsigned int )reg | 1U); } else { } if ((int )((signed char )eeprom->reg_data_clock) != 0) { reg = (u8 )((unsigned int )reg | 4U); } else { } if ((int )((signed char )eeprom->reg_chip_select) != 0) { reg = (u8 )((unsigned int )reg | 8U); } else { } { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, (int )reg); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(42950UL); } return; } } static void rtl8180_eeprom_read(struct rtl8180_priv *priv ) { struct eeprom_93cx6 eeprom ; int eeprom_cck_table_adr ; u16 eeprom_val ; int i ; u32 tmp ; u16 txpwr ; u16 txpwr___0 ; __le32 anaparam ; { { eeprom.data = (void *)priv; eeprom.register_read = & rtl8180_eeprom_register_read; eeprom.register_write = & rtl8180_eeprom_register_write; tmp = rtl818x_ioread32(priv, & (priv->map)->RX_CONF); } if ((tmp & 64U) != 0U) { eeprom.width = 8; } else { eeprom.width = 6; } { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 128); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(42950UL); eeprom_93cx6_read(& eeprom, 6, & eeprom_val); eeprom_val = (unsigned int )eeprom_val & 255U; priv->rf_type = (u8 )eeprom_val; eeprom_93cx6_read(& eeprom, 23, & eeprom_val); priv->csthreshold = (u8 )((int )eeprom_val >> 8); eeprom_93cx6_multiread(& eeprom, 7, (__le16 *)(& priv->mac_addr), 3); } if ((unsigned int )priv->chip_family == 2U) { eeprom_cck_table_adr = 48; } else { eeprom_cck_table_adr = 16; } i = 0; goto ldv_53815; ldv_53814: { eeprom_93cx6_read(& eeprom, (int )((int const )((u8 const )eeprom_cck_table_adr) + (int const )((u8 const )(i >> 1))), & txpwr); priv->channels[i].hw_value = (unsigned int )txpwr & 255U; priv->channels[i + 1].hw_value = (u16 )((int )txpwr >> 8); i = i + 2; } ldv_53815: ; if (i <= 13) { goto ldv_53814; } else { } if ((unsigned int )priv->chip_family != 0U) { i = 0; goto ldv_53819; ldv_53818: { eeprom_93cx6_read(& eeprom, (int )((unsigned int )((u8 const )(i >> 1)) + 32U), & txpwr___0); priv->channels[i].hw_value = (u16 )((int )((short )priv->channels[i].hw_value) | (int )((short )((int )txpwr___0 << 8))); priv->channels[i + 1].hw_value = (u16 )((int )((short )priv->channels[i + 1].hw_value) | ((int )((short )txpwr___0) & -256)); i = i + 2; } ldv_53819: ; if (i <= 13) { goto ldv_53818; } else { } } else { } if ((unsigned int )priv->chip_family == 0U) { { eeprom_93cx6_multiread(& eeprom, 13, (__le16 *)(& anaparam), 2); priv->anaparam = anaparam; eeprom_93cx6_read(& eeprom, 25, & priv->rfparam); } } else { } if ((unsigned int )priv->chip_family == 2U) { { eeprom_93cx6_read(& eeprom, 63, & eeprom_val); priv->antenna_diversity_en = ((int )eeprom_val & 256) != 0; priv->antenna_diversity_default = ((int )eeprom_val & 3072) == 1024; eeprom_93cx6_read(& eeprom, 124, & eeprom_val); priv->xtal_out = (unsigned int )((u8 )eeprom_val) & 15U; priv->xtal_in = (u8 )(((int )eeprom_val & 240) >> 4); priv->xtal_cal = ((int )eeprom_val & 4096) != 0; priv->thermal_meter_val = (u8 )(((int )eeprom_val & 3840) >> 8); priv->thermal_meter_en = ((int )eeprom_val & 8192) != 0; } } else { } { rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } return; } } extern void __compiletime_assert_1792(void) ; extern void __compiletime_assert_1793(void) ; static int rtl8180_probe(struct pci_dev *pdev , struct pci_device_id const *id ) { struct ieee80211_hw *dev ; struct rtl8180_priv *priv ; unsigned long mem_addr ; unsigned long mem_len ; unsigned int io_addr ; unsigned int io_len ; int err ; char const *chip_name ; char const *rf_name ; u32 reg ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; void *tmp___4 ; void *tmp___5 ; bool __cond ; bool __cond___0 ; char const *tmp___6 ; char const *tmp___7 ; char const *tmp___8 ; char const *tmp___9 ; bool tmp___10 ; int tmp___11 ; struct lock_class_key __key ; char const *tmp___12 ; { { rf_name = (char const *)0; err = pci_enable_device(pdev); } if (err != 0) { { tmp = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): Cannot enable new PCI device\n", tmp); } return (err); } else { } { err = pci_request_regions(pdev, "rtl818x_pci"); } if (err != 0) { { tmp___0 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): Cannot obtain PCI resources\n", tmp___0); } return (err); } else { } io_addr = (unsigned int )pdev->resource[0].start; io_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? ((unsigned int )pdev->resource[0].end - (unsigned int )pdev->resource[0].start) + 1U : 0U; mem_addr = (unsigned long )pdev->resource[1].start; mem_len = pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned long )((pdev->resource[1].end - pdev->resource[1].start) + 1ULL) : 0UL; if (mem_len <= 255UL || io_len <= 255U) { { tmp___1 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): Too short PCI resources\n", tmp___1); err = -12; } goto err_free_reg; } else { } { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { tmp___2 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): No suitable DMA available\n", tmp___2); } goto err_free_reg; } else { { err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { tmp___2 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): No suitable DMA available\n", tmp___2); } goto err_free_reg; } else { } } { pci_set_master(pdev); dev = ldv_ieee80211_alloc_hw_132(2192UL, & rtl8180_ops); } if ((unsigned long )dev == (unsigned long )((struct ieee80211_hw *)0)) { { tmp___3 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): ieee80211 alloc failed\n", tmp___3); err = -12; } goto err_free_reg; } else { } { priv = (struct rtl8180_priv *)dev->priv; priv->pdev = pdev; dev->max_rates = 1U; SET_IEEE80211_DEV(dev, & pdev->dev); pci_set_drvdata(pdev, (void *)dev); priv->map_pio = 0; tmp___4 = pci_iomap(pdev, 1, mem_len); priv->map = (struct rtl818x_csr *)tmp___4; } if ((unsigned long )priv->map == (unsigned long )((struct rtl818x_csr *)0)) { { tmp___5 = pci_iomap(pdev, 0, (unsigned long )io_len); priv->map = (struct rtl818x_csr *)tmp___5; priv->map_pio = 1; } } else { } if ((unsigned long )priv->map == (unsigned long )((struct rtl818x_csr *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot map device memory/PIO\n"); err = -12; } goto err_free_dev; } else { } __cond = 0; if ((int )__cond) { { __compiletime_assert_1792(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_1793(); } } else { } { __memcpy((void *)(& priv->channels), (void const *)(& rtl818x_channels), 896UL); __memcpy((void *)(& priv->rates), (void const *)(& rtl818x_rates), 144UL); priv->band.band = 0; priv->band.channels = (struct ieee80211_channel *)(& priv->channels); priv->band.n_channels = 14; priv->band.bitrates = (struct ieee80211_rate *)(& priv->rates); priv->band.n_bitrates = 4; (dev->wiphy)->bands[0] = & priv->band; dev->flags = 6U; dev->vif_data_size = 240; (dev->wiphy)->interface_modes = 6U; dev->max_signal = 65; reg = rtl818x_ioread32(priv, & (priv->map)->TX_CONF); reg = reg & 234881024U; } { if (reg == 67108864U) { goto case_67108864; } else { } if (reg == 100663296U) { goto case_100663296; } else { } if (reg == 134217728U) { goto case_134217728; } else { } if (reg == 167772160U) { goto case_167772160; } else { } if (reg == 201326592U) { goto case_201326592; } else { } goto switch_default; case_67108864: /* CIL Label */ chip_name = "RTL8180"; priv->chip_family = 0; goto ldv_53849; case_100663296: /* CIL Label */ chip_name = "RTL8180vF"; priv->chip_family = 0; goto ldv_53849; case_134217728: /* CIL Label */ chip_name = "RTL8185"; priv->chip_family = 1; goto ldv_53849; case_167772160: /* CIL Label */ chip_name = "RTL8185vD"; priv->chip_family = 1; goto ldv_53849; case_201326592: /* CIL Label */ chip_name = "RTL8187SE"; if ((int )priv->map_pio) { { dev_err((struct device const *)(& pdev->dev), "MMIO failed. PIO not supported on RTL8187SE\n"); err = -12; } goto err_iounmap; } else { } priv->chip_family = 2; goto ldv_53849; switch_default: /* CIL Label */ { tmp___6 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): Unknown chip! (0x%x)\n", tmp___6, reg >> 25); err = -19; } goto err_iounmap; switch_break: /* CIL Label */ ; } ldv_53849: ; if ((unsigned int )priv->chip_family == 2U) { dev->queues = 4U; } else { dev->queues = 1U; } if ((unsigned int )priv->chip_family != 0U) { { priv->band.n_bitrates = 12; pci_try_set_mwi(pdev); } } else { } if ((unsigned int )priv->chip_family != 0U) { dev->flags = dev->flags | 64U; } else { dev->flags = dev->flags | 32U; } { rtl8180_eeprom_read(priv); } { if ((int )priv->rf_type == 1) { goto case_1; } else { } if ((int )priv->rf_type == 2) { goto case_2; } else { } if ((int )priv->rf_type == 3) { goto case_3; } else { } if ((int )priv->rf_type == 4) { goto case_4; } else { } if ((int )priv->rf_type == 5) { goto case_5; } else { } if ((int )priv->rf_type == 9) { goto case_9; } else { } if ((int )priv->rf_type == 10) { goto case_10; } else { } goto switch_default___0; case_1: /* CIL Label */ rf_name = "Intersil"; goto ldv_53859; case_2: /* CIL Label */ rf_name = "RFMD"; goto ldv_53859; case_3: /* CIL Label */ priv->rf = & sa2400_rf_ops; goto ldv_53859; case_4: /* CIL Label */ priv->rf = & max2820_rf_ops; goto ldv_53859; case_5: /* CIL Label */ priv->rf = & grf5101_rf_ops; goto ldv_53859; case_9: /* CIL Label */ ; if ((unsigned int )priv->chip_family == 2U) { { priv->rf = rtl8187se_detect_rf(dev); } } else { { priv->rf = rtl8180_detect_rf(dev); } } goto ldv_53859; case_10: /* CIL Label */ rf_name = "RTL8255"; goto ldv_53859; switch_default___0: /* CIL Label */ { tmp___7 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): Unknown RF! (0x%x)\n", tmp___7, (int )priv->rf_type); err = -19; } goto err_iounmap; switch_break___0: /* CIL Label */ ; } ldv_53859: ; if ((unsigned long )priv->rf == (unsigned long )((struct rtl818x_rf_ops const *)0)) { { tmp___8 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): %s RF frontend not supported!\n", tmp___8, rf_name); err = -19; } goto err_iounmap; } else { } { tmp___10 = is_valid_ether_addr((u8 const *)(& priv->mac_addr)); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { { tmp___9 = pci_name((struct pci_dev const *)pdev); printk("\f%s (rtl8180): Invalid hwaddr! Using randomly generated MAC addr\n", tmp___9); eth_random_addr((u8 *)(& priv->mac_addr)); } } else { } { SET_IEEE80211_PERM_ADDR(dev, (u8 *)(& priv->mac_addr)); spinlock_check(& priv->lock); __raw_spin_lock_init(& priv->lock.__annonCompField18.rlock, "&(&priv->lock)->rlock", & __key); err = ieee80211_register_hw(dev); } if (err != 0) { { tmp___12 = pci_name((struct pci_dev const *)pdev); printk("\v%s (rtl8180): Cannot register device\n", tmp___12); } goto err_iounmap; } else { } { _dev_info((struct device const *)(& (dev->wiphy)->dev), "hwaddr %pm, %s + %s\n", (u8 *)(& priv->mac_addr), chip_name, (priv->rf)->name); } return (0); err_iounmap: { pci_iounmap(pdev, (void *)priv->map); } err_free_dev: { ldv_ieee80211_free_hw_133(dev); } err_free_reg: { pci_release_regions(pdev); pci_disable_device(pdev); } return (err); } } static void rtl8180_remove(struct pci_dev *pdev ) { struct ieee80211_hw *dev ; void *tmp ; struct rtl8180_priv *priv ; { { tmp = pci_get_drvdata(pdev); dev = (struct ieee80211_hw *)tmp; } if ((unsigned long )dev == (unsigned long )((struct ieee80211_hw *)0)) { return; } else { } { ldv_ieee80211_unregister_hw_134(dev); priv = (struct rtl8180_priv *)dev->priv; pci_iounmap(pdev, (void *)priv->map); pci_release_regions(pdev); pci_disable_device(pdev); ldv_ieee80211_free_hw_135(dev); } return; } } static int rtl8180_suspend(struct pci_dev *pdev , pm_message_t state ) { pci_power_t tmp ; { { pci_save_state(pdev); tmp = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp); } return (0); } } static int rtl8180_resume(struct pci_dev *pdev ) { { { pci_set_power_state(pdev, 0); pci_restore_state(pdev); } return (0); } } static struct pci_driver rtl8180_driver = {{0, 0}, "rtl818x_pci", (struct pci_device_id const *)(& rtl8180_table), & rtl8180_probe, & rtl8180_remove, & rtl8180_suspend, 0, 0, & rtl8180_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rtl8180_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_136(& rtl8180_driver, & __this_module, "rtl818x_pci"); } return (tmp); } } static void rtl8180_driver_exit(void) { { { ldv_pci_unregister_driver_137(& rtl8180_driver); } return; } } void ldv_EMGentry_exit_rtl8180_driver_exit_17_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_rtl8180_driver_init_17_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_12_2(struct ieee80211_hw *arg0 ) ; void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_11_17_4(void) ; void ldv_dispatch_instance_deregister_9_2(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_10_1(int arg0 ) ; void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_3(struct netdev_hw_addr_list *arg0 ) ; void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_11_17_5(void) ; void ldv_entry_EMGentry_17(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) ; void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) ; void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) ; void ldv_ieee80211_ieee80211_instance_1(void *arg0 ) ; void ldv_ieee80211_ieee80211_instance_2(void *arg0 ) ; void ldv_ieee80211_ieee80211_instance_3(void *arg0 ) ; void ldv_ieee80211_ieee80211_instance_4(void *arg0 ) ; void ldv_ieee80211_instance_callback_0_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) ; void ldv_ieee80211_instance_callback_0_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_0_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_0_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) ; void ldv_ieee80211_instance_callback_0_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) ; void ldv_ieee80211_instance_callback_0_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_callback_1_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_1_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_1_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_1_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) ; void ldv_ieee80211_instance_callback_1_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_1_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_1_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_1_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_1_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) ; void ldv_ieee80211_instance_callback_1_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_1_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) ; void ldv_ieee80211_instance_callback_1_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_callback_2_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_2_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_2_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_2_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) ; void ldv_ieee80211_instance_callback_2_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_2_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_2_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_2_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_2_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) ; void ldv_ieee80211_instance_callback_2_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_2_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) ; void ldv_ieee80211_instance_callback_2_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_callback_3_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_3_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_3_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_3_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) ; void ldv_ieee80211_instance_callback_3_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_3_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_3_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_3_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_3_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) ; void ldv_ieee80211_instance_callback_3_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_3_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) ; void ldv_ieee80211_instance_callback_3_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_callback_4_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_4_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_4_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_4_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) ; void ldv_ieee80211_instance_callback_4_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_4_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_4_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_4_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_4_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) ; void ldv_ieee80211_instance_callback_4_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_4_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) ; void ldv_ieee80211_instance_callback_4_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_resume_1_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_resume_2_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_resume_3_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_resume_4_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_1_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_2_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_3_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_4_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_1_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_2_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_3_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_4_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_5_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_6_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_5_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_6_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_5(void *arg0 ) ; void ldv_interrupt_interrupt_instance_6(void *arg0 ) ; int ldv_pci_instance_probe_7_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_7_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_7_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_7_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_7_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_7_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_7_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_7(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_timer_dummy_factory_9(void *arg0 ) ; void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_8(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_17 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_rtl8180_driver_exit_17_2(void (*arg0)(void) ) { { { rtl8180_driver_exit(); } return; } } int ldv_EMGentry_init_rtl8180_driver_init_17_9(int (*arg0)(void) ) { int tmp ; { { tmp = rtl8180_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_16_pci_driver_pci_driver = arg1; ldv_dispatch_register_16_2(ldv_16_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_12_2(struct ieee80211_hw *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_54596; case_1: /* CIL Label */ ; goto ldv_54596; case_2: /* CIL Label */ ; goto ldv_54596; case_3: /* CIL Label */ ; goto ldv_54596; case_4: /* CIL Label */ ; goto ldv_54596; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54596: ; return; } } void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_11_17_4(void) { { return; } } void ldv_dispatch_instance_deregister_9_2(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_8 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_timer_instance_8 *)tmp; cf_arg_8->arg0 = arg0; ldv_timer_timer_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_irq_deregister_10_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_5 *cf_arg_5 ; struct ldv_struct_interrupt_instance_5 *cf_arg_6 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_5 = (struct ldv_struct_interrupt_instance_5 *)tmp; cf_arg_5->arg0 = arg0; cf_arg_5->arg1 = arg1; cf_arg_5->arg2 = arg2; cf_arg_5->arg3 = arg3; ldv_interrupt_interrupt_instance_5((void *)cf_arg_5); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_6 = (struct ldv_struct_interrupt_instance_5 *)tmp___0; cf_arg_6->arg0 = arg0; cf_arg_6->arg1 = arg1; cf_arg_6->arg2 = arg2; cf_arg_6->arg3 = arg3; ldv_interrupt_interrupt_instance_6((void *)cf_arg_6); } } return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_5 *cf_arg_5 ; struct ldv_struct_interrupt_instance_5 *cf_arg_6 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_5 = (struct ldv_struct_interrupt_instance_5 *)tmp; cf_arg_5->arg0 = arg0; cf_arg_5->arg1 = arg1; cf_arg_5->arg2 = arg2; cf_arg_5->arg3 = arg3; ldv_interrupt_interrupt_instance_5((void *)cf_arg_5); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_6 = (struct ldv_struct_interrupt_instance_5 *)tmp___0; cf_arg_6->arg0 = arg0; cf_arg_6->arg1 = arg1; cf_arg_6->arg2 = arg2; cf_arg_6->arg3 = arg3; ldv_interrupt_interrupt_instance_6((void *)cf_arg_6); } } return; } } void ldv_dispatch_register_11_3(struct netdev_hw_addr_list *arg0 ) { struct ldv_struct_ieee80211_instance_0 *cf_arg_0 ; struct ldv_struct_ieee80211_instance_0 *cf_arg_1 ; struct ldv_struct_ieee80211_instance_0 *cf_arg_2 ; struct ldv_struct_ieee80211_instance_0 *cf_arg_3 ; struct ldv_struct_ieee80211_instance_0 *cf_arg_4 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_ieee80211_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; ldv_ieee80211_ieee80211_instance_0((void *)cf_arg_0); } goto ldv_54663; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_ieee80211_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; ldv_ieee80211_ieee80211_instance_1((void *)cf_arg_1); } goto ldv_54663; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_ieee80211_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; ldv_ieee80211_ieee80211_instance_2((void *)cf_arg_2); } goto ldv_54663; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_ieee80211_instance_0 *)tmp___3; cf_arg_3->arg0 = arg0; ldv_ieee80211_ieee80211_instance_3((void *)cf_arg_3); } goto ldv_54663; case_4: /* CIL Label */ { tmp___4 = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_ieee80211_instance_0 *)tmp___4; cf_arg_4->arg0 = arg0; ldv_ieee80211_ieee80211_instance_4((void *)cf_arg_4); } goto ldv_54663; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54663: ; return; } } void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_pci_instance_7 *)tmp; cf_arg_7->arg0 = arg0; ldv_pci_pci_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_dummy_factory_11_17_5(void) { struct ldv_struct_EMGentry_17 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_17 *)tmp; ldv_timer_dummy_factory_9((void *)cf_arg_9); } return; } } void ldv_entry_EMGentry_17(void *arg0 ) { void (*ldv_17_exit_rtl8180_driver_exit_default)(void) ; int (*ldv_17_init_rtl8180_driver_init_default)(void) ; int ldv_17_ret_default ; int tmp ; int tmp___0 ; { { ldv_17_ret_default = ldv_EMGentry_init_rtl8180_driver_init_17_9(ldv_17_init_rtl8180_driver_init_default); ldv_17_ret_default = ldv_ldv_post_init_138(ldv_17_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_17_ret_default != 0); ldv_ldv_check_final_state_139(); ldv_stop(); } return; } else { { ldv_assume(ldv_17_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_factory_11_17_5(); ldv_dispatch_deregister_dummy_factory_11_17_4(); } } else { } { ldv_EMGentry_exit_rtl8180_driver_exit_17_2(ldv_17_exit_rtl8180_driver_exit_default); ldv_ldv_check_final_state_140(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_141(); ldv_entry_EMGentry_17((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_10_line_line ; { { ldv_10_line_line = arg1; ldv_dispatch_irq_deregister_10_1(ldv_10_line_line); } return; return; } } struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) { struct ieee80211_hw *ldv_11_ieee80211_hw_ieee80211_hw ; struct ieee80211_bss_conf *ldv_11_ieee80211_hw_struct_ieee80211_bss_conf_ptr ; struct ieee80211_conf *ldv_11_ieee80211_hw_struct_ieee80211_conf_ptr ; struct ieee80211_tx_control *ldv_11_ieee80211_hw_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_11_ieee80211_hw_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_11_ieee80211_hw_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_11_ieee80211_hw_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_11_ieee80211_hw_struct_sk_buff_ptr ; struct ieee80211_ops *ldv_11_ieee80211_ops_ieee80211_ops ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; { { tmp___7 = ldv_undef_int(); } if (tmp___7 != 0) { { ldv_11_ieee80211_ops_ieee80211_ops = arg2; tmp = ldv_xmalloc(144UL); ldv_11_ieee80211_hw_ieee80211_hw = (struct ieee80211_hw *)tmp; tmp___0 = ldv_xmalloc(240UL); ldv_11_ieee80211_hw_struct_ieee80211_bss_conf_ptr = (struct ieee80211_bss_conf *)tmp___0; tmp___1 = ldv_xmalloc(56UL); ldv_11_ieee80211_hw_struct_ieee80211_conf_ptr = (struct ieee80211_conf *)tmp___1; tmp___2 = ldv_xmalloc(8UL); ldv_11_ieee80211_hw_struct_ieee80211_tx_control_ptr = (struct ieee80211_tx_control *)tmp___2; tmp___3 = ldv_xmalloc(10UL); ldv_11_ieee80211_hw_struct_ieee80211_tx_queue_params_ptr = (struct ieee80211_tx_queue_params *)tmp___3; tmp___4 = ldv_xmalloc(288UL); ldv_11_ieee80211_hw_struct_ieee80211_vif_ptr = (struct ieee80211_vif *)tmp___4; tmp___5 = ldv_xmalloc(24UL); ldv_11_ieee80211_hw_struct_netdev_hw_addr_list_ptr = (struct netdev_hw_addr_list *)tmp___5; tmp___6 = ldv_xmalloc(232UL); ldv_11_ieee80211_hw_struct_sk_buff_ptr = (struct sk_buff *)tmp___6; ldv_dispatch_register_11_3(ldv_11_ieee80211_hw_struct_netdev_hw_addr_list_ptr); } return (ldv_11_ieee80211_hw_ieee80211_hw); return (arg0); } else { { ldv_assume((unsigned long )ldv_11_ieee80211_hw_ieee80211_hw == (unsigned long )((struct ieee80211_hw *)0)); } return ((struct ieee80211_hw *)0); return (arg0); } return (arg0); } } void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) { struct ieee80211_hw *ldv_12_ieee80211_hw_ieee80211_hw ; { { ldv_dispatch_deregister_12_2(ldv_12_ieee80211_hw_ieee80211_hw); ldv_free((void *)ldv_12_ieee80211_hw_ieee80211_hw); } return; return; } } void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) { int (*ldv_0_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_0_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; unsigned char (*ldv_0_callback_calc_rssi)(unsigned char , unsigned char ) ; int (*ldv_0_callback_conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) ; int (*ldv_0_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_0_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; unsigned long long (*ldv_0_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_0_callback_init)(struct ieee80211_hw * ) ; unsigned long long (*ldv_0_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*ldv_0_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_0_callback_set_chan)(struct ieee80211_hw * , struct ieee80211_conf * ) ; void (*ldv_0_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_0_container_ieee80211_ops ; unsigned int ldv_0_ldv_param_18_3_default ; unsigned char ldv_0_ldv_param_21_0_default ; unsigned char ldv_0_ldv_param_21_1_default ; unsigned short ldv_0_ldv_param_24_2_default ; unsigned int ldv_0_ldv_param_27_1_default ; unsigned int ldv_0_ldv_param_30_1_default ; unsigned int *ldv_0_ldv_param_30_2_default ; unsigned long long ldv_0_ldv_param_30_3_default ; struct ieee80211_hw *ldv_0_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_0_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_conf *ldv_0_resource_struct_ieee80211_conf_ptr ; struct ieee80211_tx_control *ldv_0_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_0_resource_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_0_resource_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_0_resource_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_0_resource_struct_sk_buff_ptr ; int ldv_0_ret_default ; struct ldv_struct_ieee80211_instance_0 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_0 *)0)) { { ldv_0_resource_struct_netdev_hw_addr_list_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_0; return; ldv_main_0: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_142(); ldv_0_ret_default = ldv_ieee80211_instance_start_0_6(ldv_0_container_ieee80211_ops->start, ldv_0_resource_ieee80211_hw); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); ldv_rtnl_unlock_143(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_started_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { return; } return; ldv_started_0: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_0_38(ldv_0_callback_tx, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_tx_control_ptr, ldv_0_resource_struct_sk_buff_ptr); } goto ldv_started_0; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_0_37(ldv_0_callback_set_chan, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_conf_ptr); } goto ldv_started_0; goto ldv_started_0; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_0_36(ldv_0_callback_remove_interface, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_0_35(ldv_0_callback_prepare_multicast, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_netdev_hw_addr_list_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_0_34(ldv_0_callback_init, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_0_33(ldv_0_callback_get_tsf, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_7: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_0_ldv_param_30_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_0_30(ldv_0_callback_configure_filter, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_30_1_default, ldv_0_ldv_param_30_2_default, ldv_0_ldv_param_30_3_default); ldv_free((void *)ldv_0_ldv_param_30_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_0_27(ldv_0_callback_config, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_27_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_0_24(ldv_0_callback_conf_tx, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr, (int )ldv_0_ldv_param_24_2_default, ldv_0_resource_struct_ieee80211_tx_queue_params_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_0_21(ldv_0_callback_calc_rssi, (int )ldv_0_ldv_param_21_0_default, (int )ldv_0_ldv_param_21_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_11: /* CIL Label */ { ldv_ieee80211_instance_callback_0_18(ldv_0_callback_bss_info_changed, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr, ldv_0_resource_struct_ieee80211_bss_conf_ptr, ldv_0_ldv_param_18_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_12: /* CIL Label */ ; if ((unsigned long )ldv_0_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_0_12(ldv_0_container_ieee80211_ops->resume, ldv_0_resource_ieee80211_hw); } } else { } goto ldv_started_0; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_0_10(ldv_0_callback_add_interface, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_14: /* CIL Label */ { ldv_rtnl_lock_144(); ldv_ieee80211_instance_stop_0_8(ldv_0_container_ieee80211_ops->stop, ldv_0_resource_ieee80211_hw); ldv_rtnl_unlock_145(); } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_ieee80211_instance_1(void *arg0 ) { int (*ldv_1_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_1_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; unsigned char (*ldv_1_callback_calc_rssi)(unsigned char , unsigned char ) ; int (*ldv_1_callback_conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) ; int (*ldv_1_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_1_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; unsigned long long (*ldv_1_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_1_callback_init)(struct ieee80211_hw * ) ; unsigned long long (*ldv_1_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*ldv_1_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_1_callback_set_chan)(struct ieee80211_hw * , struct ieee80211_conf * ) ; void (*ldv_1_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_1_container_ieee80211_ops ; unsigned int ldv_1_ldv_param_18_3_default ; unsigned char ldv_1_ldv_param_21_0_default ; unsigned char ldv_1_ldv_param_21_1_default ; unsigned short ldv_1_ldv_param_24_2_default ; unsigned int ldv_1_ldv_param_27_1_default ; unsigned int ldv_1_ldv_param_30_1_default ; unsigned int *ldv_1_ldv_param_30_2_default ; unsigned long long ldv_1_ldv_param_30_3_default ; struct ieee80211_hw *ldv_1_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_1_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_conf *ldv_1_resource_struct_ieee80211_conf_ptr ; struct ieee80211_tx_control *ldv_1_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_1_resource_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_1_resource_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_1_resource_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_1_resource_struct_sk_buff_ptr ; int ldv_1_ret_default ; struct ldv_struct_ieee80211_instance_0 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_0 *)0)) { { ldv_1_resource_struct_netdev_hw_addr_list_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_1; return; ldv_main_1: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_146(); ldv_1_ret_default = ldv_ieee80211_instance_start_1_6(ldv_1_container_ieee80211_ops->start, ldv_1_resource_ieee80211_hw); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); ldv_rtnl_unlock_147(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_started_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { return; } return; ldv_started_1: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_1_38(ldv_1_callback_tx, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_tx_control_ptr, ldv_1_resource_struct_sk_buff_ptr); } goto ldv_started_1; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_1_37(ldv_1_callback_set_chan, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_conf_ptr); } goto ldv_started_1; goto ldv_started_1; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_1_36(ldv_1_callback_remove_interface, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_1_35(ldv_1_callback_prepare_multicast, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_netdev_hw_addr_list_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_1_34(ldv_1_callback_init, ldv_1_resource_ieee80211_hw); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_1_33(ldv_1_callback_get_tsf, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_7: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_1_ldv_param_30_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_1_30(ldv_1_callback_configure_filter, ldv_1_resource_ieee80211_hw, ldv_1_ldv_param_30_1_default, ldv_1_ldv_param_30_2_default, ldv_1_ldv_param_30_3_default); ldv_free((void *)ldv_1_ldv_param_30_2_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_1_27(ldv_1_callback_config, ldv_1_resource_ieee80211_hw, ldv_1_ldv_param_27_1_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_1_24(ldv_1_callback_conf_tx, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr, (int )ldv_1_ldv_param_24_2_default, ldv_1_resource_struct_ieee80211_tx_queue_params_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_1_21(ldv_1_callback_calc_rssi, (int )ldv_1_ldv_param_21_0_default, (int )ldv_1_ldv_param_21_1_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_11: /* CIL Label */ { ldv_ieee80211_instance_callback_1_18(ldv_1_callback_bss_info_changed, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr, ldv_1_resource_struct_ieee80211_bss_conf_ptr, ldv_1_ldv_param_18_3_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_12: /* CIL Label */ ; if ((unsigned long )ldv_1_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_1_12(ldv_1_container_ieee80211_ops->resume, ldv_1_resource_ieee80211_hw); } } else { } goto ldv_started_1; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_1_10(ldv_1_callback_add_interface, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_14: /* CIL Label */ { ldv_rtnl_lock_148(); ldv_ieee80211_instance_stop_1_8(ldv_1_container_ieee80211_ops->stop, ldv_1_resource_ieee80211_hw); ldv_rtnl_unlock_149(); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_ieee80211_instance_2(void *arg0 ) { int (*ldv_2_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_2_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; unsigned char (*ldv_2_callback_calc_rssi)(unsigned char , unsigned char ) ; int (*ldv_2_callback_conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) ; int (*ldv_2_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_2_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; unsigned long long (*ldv_2_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_2_callback_init)(struct ieee80211_hw * ) ; unsigned long long (*ldv_2_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*ldv_2_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_2_callback_set_chan)(struct ieee80211_hw * , struct ieee80211_conf * ) ; void (*ldv_2_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_2_container_ieee80211_ops ; unsigned int ldv_2_ldv_param_18_3_default ; unsigned char ldv_2_ldv_param_21_0_default ; unsigned char ldv_2_ldv_param_21_1_default ; unsigned short ldv_2_ldv_param_24_2_default ; unsigned int ldv_2_ldv_param_27_1_default ; unsigned int ldv_2_ldv_param_30_1_default ; unsigned int *ldv_2_ldv_param_30_2_default ; unsigned long long ldv_2_ldv_param_30_3_default ; struct ieee80211_hw *ldv_2_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_2_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_conf *ldv_2_resource_struct_ieee80211_conf_ptr ; struct ieee80211_tx_control *ldv_2_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_2_resource_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_2_resource_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_2_resource_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_2_resource_struct_sk_buff_ptr ; int ldv_2_ret_default ; struct ldv_struct_ieee80211_instance_0 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_0 *)0)) { { ldv_2_resource_struct_netdev_hw_addr_list_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_2; return; ldv_main_2: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_150(); ldv_2_ret_default = ldv_ieee80211_instance_start_2_6(ldv_2_container_ieee80211_ops->start, ldv_2_resource_ieee80211_hw); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_rtnl_unlock_151(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_started_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { return; } return; ldv_started_2: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_2_38(ldv_2_callback_tx, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_tx_control_ptr, ldv_2_resource_struct_sk_buff_ptr); } goto ldv_started_2; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_2_37(ldv_2_callback_set_chan, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_conf_ptr); } goto ldv_started_2; goto ldv_started_2; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_2_36(ldv_2_callback_remove_interface, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_vif_ptr); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_2_35(ldv_2_callback_prepare_multicast, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_netdev_hw_addr_list_ptr); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_2_34(ldv_2_callback_init, ldv_2_resource_ieee80211_hw); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_2_33(ldv_2_callback_get_tsf, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_vif_ptr); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_7: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_2_ldv_param_30_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_2_30(ldv_2_callback_configure_filter, ldv_2_resource_ieee80211_hw, ldv_2_ldv_param_30_1_default, ldv_2_ldv_param_30_2_default, ldv_2_ldv_param_30_3_default); ldv_free((void *)ldv_2_ldv_param_30_2_default); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_2_27(ldv_2_callback_config, ldv_2_resource_ieee80211_hw, ldv_2_ldv_param_27_1_default); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_2_24(ldv_2_callback_conf_tx, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_vif_ptr, (int )ldv_2_ldv_param_24_2_default, ldv_2_resource_struct_ieee80211_tx_queue_params_ptr); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_2_21(ldv_2_callback_calc_rssi, (int )ldv_2_ldv_param_21_0_default, (int )ldv_2_ldv_param_21_1_default); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_11: /* CIL Label */ { ldv_ieee80211_instance_callback_2_18(ldv_2_callback_bss_info_changed, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_vif_ptr, ldv_2_resource_struct_ieee80211_bss_conf_ptr, ldv_2_ldv_param_18_3_default); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_12: /* CIL Label */ ; if ((unsigned long )ldv_2_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_2_12(ldv_2_container_ieee80211_ops->resume, ldv_2_resource_ieee80211_hw); } } else { } goto ldv_started_2; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_2_10(ldv_2_callback_add_interface, ldv_2_resource_ieee80211_hw, ldv_2_resource_struct_ieee80211_vif_ptr); } goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; goto ldv_started_2; case_14: /* CIL Label */ { ldv_rtnl_lock_152(); ldv_ieee80211_instance_stop_2_8(ldv_2_container_ieee80211_ops->stop, ldv_2_resource_ieee80211_hw); ldv_rtnl_unlock_153(); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_ieee80211_instance_3(void *arg0 ) { int (*ldv_3_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_3_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; unsigned char (*ldv_3_callback_calc_rssi)(unsigned char , unsigned char ) ; int (*ldv_3_callback_conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) ; int (*ldv_3_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_3_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; unsigned long long (*ldv_3_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_3_callback_init)(struct ieee80211_hw * ) ; unsigned long long (*ldv_3_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*ldv_3_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_3_callback_set_chan)(struct ieee80211_hw * , struct ieee80211_conf * ) ; void (*ldv_3_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_3_container_ieee80211_ops ; unsigned int ldv_3_ldv_param_18_3_default ; unsigned char ldv_3_ldv_param_21_0_default ; unsigned char ldv_3_ldv_param_21_1_default ; unsigned short ldv_3_ldv_param_24_2_default ; unsigned int ldv_3_ldv_param_27_1_default ; unsigned int ldv_3_ldv_param_30_1_default ; unsigned int *ldv_3_ldv_param_30_2_default ; unsigned long long ldv_3_ldv_param_30_3_default ; struct ieee80211_hw *ldv_3_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_3_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_conf *ldv_3_resource_struct_ieee80211_conf_ptr ; struct ieee80211_tx_control *ldv_3_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_3_resource_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_3_resource_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_3_resource_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_3_resource_struct_sk_buff_ptr ; int ldv_3_ret_default ; struct ldv_struct_ieee80211_instance_0 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_0 *)0)) { { ldv_3_resource_struct_netdev_hw_addr_list_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_3; return; ldv_main_3: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_154(); ldv_3_ret_default = ldv_ieee80211_instance_start_3_6(ldv_3_container_ieee80211_ops->start, ldv_3_resource_ieee80211_hw); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_rtnl_unlock_155(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_started_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { return; } return; ldv_started_3: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_3_38(ldv_3_callback_tx, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_tx_control_ptr, ldv_3_resource_struct_sk_buff_ptr); } goto ldv_started_3; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_3_37(ldv_3_callback_set_chan, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_conf_ptr); } goto ldv_started_3; goto ldv_started_3; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_3_36(ldv_3_callback_remove_interface, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_vif_ptr); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_3_35(ldv_3_callback_prepare_multicast, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_netdev_hw_addr_list_ptr); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_3_34(ldv_3_callback_init, ldv_3_resource_ieee80211_hw); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_3_33(ldv_3_callback_get_tsf, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_vif_ptr); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_7: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_3_ldv_param_30_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_3_30(ldv_3_callback_configure_filter, ldv_3_resource_ieee80211_hw, ldv_3_ldv_param_30_1_default, ldv_3_ldv_param_30_2_default, ldv_3_ldv_param_30_3_default); ldv_free((void *)ldv_3_ldv_param_30_2_default); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_3_27(ldv_3_callback_config, ldv_3_resource_ieee80211_hw, ldv_3_ldv_param_27_1_default); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_3_24(ldv_3_callback_conf_tx, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_vif_ptr, (int )ldv_3_ldv_param_24_2_default, ldv_3_resource_struct_ieee80211_tx_queue_params_ptr); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_3_21(ldv_3_callback_calc_rssi, (int )ldv_3_ldv_param_21_0_default, (int )ldv_3_ldv_param_21_1_default); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_11: /* CIL Label */ { ldv_ieee80211_instance_callback_3_18(ldv_3_callback_bss_info_changed, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_vif_ptr, ldv_3_resource_struct_ieee80211_bss_conf_ptr, ldv_3_ldv_param_18_3_default); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_12: /* CIL Label */ ; if ((unsigned long )ldv_3_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_3_12(ldv_3_container_ieee80211_ops->resume, ldv_3_resource_ieee80211_hw); } } else { } goto ldv_started_3; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_3_10(ldv_3_callback_add_interface, ldv_3_resource_ieee80211_hw, ldv_3_resource_struct_ieee80211_vif_ptr); } goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; goto ldv_started_3; case_14: /* CIL Label */ { ldv_rtnl_lock_156(); ldv_ieee80211_instance_stop_3_8(ldv_3_container_ieee80211_ops->stop, ldv_3_resource_ieee80211_hw); ldv_rtnl_unlock_157(); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_ieee80211_instance_4(void *arg0 ) { int (*ldv_4_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_4_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; unsigned char (*ldv_4_callback_calc_rssi)(unsigned char , unsigned char ) ; int (*ldv_4_callback_conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) ; int (*ldv_4_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_4_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; unsigned long long (*ldv_4_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_4_callback_init)(struct ieee80211_hw * ) ; unsigned long long (*ldv_4_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*ldv_4_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_4_callback_set_chan)(struct ieee80211_hw * , struct ieee80211_conf * ) ; void (*ldv_4_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_4_container_ieee80211_ops ; unsigned int ldv_4_ldv_param_18_3_default ; unsigned char ldv_4_ldv_param_21_0_default ; unsigned char ldv_4_ldv_param_21_1_default ; unsigned short ldv_4_ldv_param_24_2_default ; unsigned int ldv_4_ldv_param_27_1_default ; unsigned int ldv_4_ldv_param_30_1_default ; unsigned int *ldv_4_ldv_param_30_2_default ; unsigned long long ldv_4_ldv_param_30_3_default ; struct ieee80211_hw *ldv_4_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_4_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_conf *ldv_4_resource_struct_ieee80211_conf_ptr ; struct ieee80211_tx_control *ldv_4_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_4_resource_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_4_resource_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_4_resource_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_4_resource_struct_sk_buff_ptr ; int ldv_4_ret_default ; struct ldv_struct_ieee80211_instance_0 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_0 *)0)) { { ldv_4_resource_struct_netdev_hw_addr_list_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_4; return; ldv_main_4: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_158(); ldv_4_ret_default = ldv_ieee80211_instance_start_4_6(ldv_4_container_ieee80211_ops->start, ldv_4_resource_ieee80211_hw); ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); ldv_rtnl_unlock_159(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_started_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_started_4: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_4_38(ldv_4_callback_tx, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_tx_control_ptr, ldv_4_resource_struct_sk_buff_ptr); } goto ldv_started_4; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_4_37(ldv_4_callback_set_chan, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_conf_ptr); } goto ldv_started_4; goto ldv_started_4; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_4_36(ldv_4_callback_remove_interface, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_vif_ptr); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_4_35(ldv_4_callback_prepare_multicast, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_netdev_hw_addr_list_ptr); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_4_34(ldv_4_callback_init, ldv_4_resource_ieee80211_hw); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_4_33(ldv_4_callback_get_tsf, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_vif_ptr); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_7: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_4_ldv_param_30_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_4_30(ldv_4_callback_configure_filter, ldv_4_resource_ieee80211_hw, ldv_4_ldv_param_30_1_default, ldv_4_ldv_param_30_2_default, ldv_4_ldv_param_30_3_default); ldv_free((void *)ldv_4_ldv_param_30_2_default); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_4_27(ldv_4_callback_config, ldv_4_resource_ieee80211_hw, ldv_4_ldv_param_27_1_default); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_4_24(ldv_4_callback_conf_tx, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_vif_ptr, (int )ldv_4_ldv_param_24_2_default, ldv_4_resource_struct_ieee80211_tx_queue_params_ptr); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_4_21(ldv_4_callback_calc_rssi, (int )ldv_4_ldv_param_21_0_default, (int )ldv_4_ldv_param_21_1_default); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_11: /* CIL Label */ { ldv_ieee80211_instance_callback_4_18(ldv_4_callback_bss_info_changed, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_vif_ptr, ldv_4_resource_struct_ieee80211_bss_conf_ptr, ldv_4_ldv_param_18_3_default); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_12: /* CIL Label */ ; if ((unsigned long )ldv_4_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_4_12(ldv_4_container_ieee80211_ops->resume, ldv_4_resource_ieee80211_hw); } } else { } goto ldv_started_4; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_4_10(ldv_4_callback_add_interface, ldv_4_resource_ieee80211_hw, ldv_4_resource_struct_ieee80211_vif_ptr); } goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; goto ldv_started_4; case_14: /* CIL Label */ { ldv_rtnl_lock_160(); ldv_ieee80211_instance_stop_4_8(ldv_4_container_ieee80211_ops->stop, ldv_4_resource_ieee80211_hw); ldv_rtnl_unlock_161(); } goto ldv_main_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_instance_callback_0_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { rtl8180_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) { { { rtl8180_conf_tx(arg1, arg2, (int )arg3, (struct ieee80211_tx_queue_params const *)arg4); } return; } } void ldv_ieee80211_instance_callback_0_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { rtl8180_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { rtl8180_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_get_tsf(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) { { { rtl8180_prepare_multicast(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { rtl8180_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_1_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { rtl8180_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_1_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) { { { rtl8180_conf_tx(arg1, arg2, (int )arg3, (struct ieee80211_tx_queue_params const *)arg4); } return; } } void ldv_ieee80211_instance_callback_1_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { rtl8180_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { rtl8180_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_1_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_get_tsf(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) { { { rtl8180_prepare_multicast(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { rtl8180_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_2_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_2_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { rtl8180_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_2_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) { { { rtl8180_conf_tx(arg1, arg2, (int )arg3, (struct ieee80211_tx_queue_params const *)arg4); } return; } } void ldv_ieee80211_instance_callback_2_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { rtl8180_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_2_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { rtl8180_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_2_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_get_tsf(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_2_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) { { { rtl8180_prepare_multicast(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_2_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_2_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { rtl8180_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_3_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_3_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { rtl8180_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_3_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) { { { rtl8180_conf_tx(arg1, arg2, (int )arg3, (struct ieee80211_tx_queue_params const *)arg4); } return; } } void ldv_ieee80211_instance_callback_3_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { rtl8180_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_3_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { rtl8180_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_3_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_get_tsf(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_3_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) { { { rtl8180_prepare_multicast(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_3_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_3_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { rtl8180_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_4_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_4_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { rtl8180_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_4_24(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) { { { rtl8180_conf_tx(arg1, arg2, (int )arg3, (struct ieee80211_tx_queue_params const *)arg4); } return; } } void ldv_ieee80211_instance_callback_4_27(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { rtl8180_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_4_30(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { rtl8180_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_4_33(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_get_tsf(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_4_35(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) { { { rtl8180_prepare_multicast(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_4_36(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { rtl8180_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_4_38(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { rtl8180_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_ieee80211_instance_resume_1_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_ieee80211_instance_resume_2_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_ieee80211_instance_resume_3_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_ieee80211_instance_resume_4_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = rtl8180_start(arg1); } return (tmp); } } int ldv_ieee80211_instance_start_1_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = rtl8180_start(arg1); } return (tmp); } } int ldv_ieee80211_instance_start_2_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = rtl8180_start(arg1); } return (tmp); } } int ldv_ieee80211_instance_start_3_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = rtl8180_start(arg1); } return (tmp); } } int ldv_ieee80211_instance_start_4_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = rtl8180_start(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_2_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl8180_stop(arg1); } return; } } enum irqreturn ldv_interrupt_instance_handler_5_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = rtl8180_interrupt(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_6_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = rtl8187se_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_5_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_6_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_5(void *arg0 ) { enum irqreturn (*ldv_5_callback_handler)(int , void * ) ; void *ldv_5_data_data ; int ldv_5_line_line ; enum irqreturn ldv_5_ret_val_default ; enum irqreturn (*ldv_5_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_5 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_5 *)0)) { { ldv_5_line_line = data->arg0; ldv_5_callback_handler = data->arg1; ldv_5_thread_thread = data->arg2; ldv_5_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_5_ret_val_default = ldv_interrupt_instance_handler_5_5(ldv_5_callback_handler, ldv_5_line_line, ldv_5_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_5_ret_val_default == 2U); } if ((unsigned long )ldv_5_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_5_3(ldv_5_thread_thread, ldv_5_line_line, ldv_5_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_5_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_6(void *arg0 ) { enum irqreturn (*ldv_6_callback_handler)(int , void * ) ; void *ldv_6_data_data ; int ldv_6_line_line ; enum irqreturn ldv_6_ret_val_default ; enum irqreturn (*ldv_6_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_5 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_5 *)0)) { { ldv_6_line_line = data->arg0; ldv_6_callback_handler = data->arg1; ldv_6_thread_thread = data->arg2; ldv_6_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_6_ret_val_default = ldv_interrupt_instance_handler_6_5(ldv_6_callback_handler, ldv_6_line_line, ldv_6_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_6_ret_val_default == 2U); } if ((unsigned long )ldv_6_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_6_3(ldv_6_thread_thread, ldv_6_line_line, ldv_6_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_6_ret_val_default != 2U); } } return; return; } } int ldv_pci_instance_probe_7_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = rtl8180_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_7_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl8180_remove(arg1); } return; } } void ldv_pci_instance_resume_7_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl8180_resume(arg1); } return; } } void ldv_pci_instance_resume_early_7_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_7_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_7_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = rtl8180_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_7_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_7(void *arg0 ) { struct pci_driver *ldv_7_container_pci_driver ; struct pci_dev *ldv_7_resource_dev ; struct pm_message ldv_7_resource_pm_message ; struct pci_device_id *ldv_7_resource_struct_pci_device_id_ptr ; int ldv_7_ret_default ; struct ldv_struct_pci_instance_7 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_7 *)arg0; ldv_7_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_7 *)0)) { { ldv_7_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_7_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_7_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_7; return; ldv_main_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_162(); ldv_7_ret_default = ldv_pci_instance_probe_7_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_7_container_pci_driver->probe, ldv_7_resource_dev, ldv_7_resource_struct_pci_device_id_ptr); ldv_7_ret_default = ldv_ldv_post_probe_163(ldv_7_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_7_ret_default == 0); } goto ldv_call_7; } else { { ldv_assume(ldv_7_ret_default != 0); } goto ldv_main_7; } } else { { ldv_free((void *)ldv_7_resource_dev); ldv_free((void *)ldv_7_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_7: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_7; case_2: /* CIL Label */ { ldv_7_ret_default = ldv_pci_instance_suspend_7_8(ldv_7_container_pci_driver->suspend, ldv_7_resource_dev, ldv_7_resource_pm_message); ldv_7_ret_default = ldv_filter_err_code(ldv_7_ret_default); } if ((unsigned long )ldv_7_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_7_ret_default = ldv_pci_instance_suspend_late_7_7(ldv_7_container_pci_driver->suspend_late, ldv_7_resource_dev, ldv_7_resource_pm_message); } } else { } { ldv_7_ret_default = ldv_filter_err_code(ldv_7_ret_default); } if ((unsigned long )ldv_7_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_7_6(ldv_7_container_pci_driver->resume_early, ldv_7_resource_dev); } } else { } { ldv_pci_instance_resume_7_5(ldv_7_container_pci_driver->resume, ldv_7_resource_dev); } goto ldv_call_7; case_3: /* CIL Label */ ; if ((unsigned long )ldv_7_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_7_3(ldv_7_container_pci_driver->shutdown, ldv_7_resource_dev); } } else { } { ldv_pci_instance_release_7_2(ldv_7_container_pci_driver->remove, ldv_7_resource_dev); } goto ldv_main_7; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; { { ldv_15_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_15_1(ldv_15_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_14_callback_handler)(int , void * ) ; void *ldv_14_data_data ; int ldv_14_line_line ; enum irqreturn (*ldv_14_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_line_line = (int )arg1; ldv_14_callback_handler = arg2; ldv_14_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_14_data_data = arg5; ldv_dispatch_irq_register_14_2(ldv_14_line_line, ldv_14_callback_handler, ldv_14_thread_thread, ldv_14_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_dummy_factory_9(void *arg0 ) { struct timer_list *ldv_9_container_timer_list ; { { ldv_dispatch_instance_register_9_3(ldv_9_container_timer_list); ldv_dispatch_instance_deregister_9_2(ldv_9_container_timer_list); } return; return; } } void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_8(void *arg0 ) { struct timer_list *ldv_8_container_timer_list ; struct ldv_struct_timer_instance_8 *data ; { data = (struct ldv_struct_timer_instance_8 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_8 *)0)) { { ldv_8_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_8_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_8_2(ldv_8_container_timer_list->function, ldv_8_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_rtl8180_priv(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_rtl8180_priv(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_124(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_rtl8180_priv(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_125(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_rtl8180_priv(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_rtl8180_priv(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static int ldv_request_irq_129(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_130(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static struct ieee80211_hw *ldv_ieee80211_alloc_hw_132(size_t priv_data_len , struct ieee80211_ops const *ops ) { ldv_func_ret_type___3 ldv_func_res ; struct ieee80211_hw *tmp ; struct ieee80211_hw *tmp___0 ; { { tmp = ieee80211_alloc_hw(priv_data_len, ops); ldv_func_res = tmp; tmp___0 = ldv_ieee80211_alloc_hw(ldv_func_res, priv_data_len, (struct ieee80211_ops *)ops); } return (tmp___0); return (ldv_func_res); } } static void ldv_ieee80211_free_hw_133(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static void ldv_ieee80211_unregister_hw_134(struct ieee80211_hw *ldv_func_arg1 ) { { { ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(); ieee80211_unregister_hw(ldv_func_arg1); } return; } } static void ldv_ieee80211_free_hw_135(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static int ldv___pci_register_driver_136(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_137(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_138(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_139(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_140(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_141(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_rtnl_lock_142(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_143(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_144(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_145(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_146(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_147(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_148(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_149(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_150(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_151(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_152(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_153(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_154(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_155(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_156(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_157(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_158(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_159(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_160(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_161(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_ldv_pre_probe_162(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_163(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } extern int ieee80211_frequency_to_channel(int ) ; static void rtl8225_write(struct ieee80211_hw *dev , u8 addr , u16 data ) { struct rtl8180_priv *priv ; u16 reg80 ; u16 reg84 ; u16 reg82 ; u32 bangdata ; int i ; u16 tmp ; u16 reg ; { { priv = (struct rtl8180_priv *)dev->priv; bangdata = (u32 )(((int )data << 4) | ((int )addr & 15)); tmp = rtl818x_ioread16(priv, & (priv->map)->RFPinsOutput); reg80 = (unsigned int )tmp & 65523U; reg82 = rtl818x_ioread16(priv, & (priv->map)->RFPinsEnable); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, (int )((unsigned int )reg82 | 7U)); reg84 = rtl818x_ioread16(priv, & (priv->map)->RFPinsSelect); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, (int )((unsigned int )reg84 | 1031U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(42950UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 4U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )reg80); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(42950UL); i = 15; } goto ldv_52245; ldv_52244: reg = reg80; if ((bangdata & (u32 )(1 << i)) != 0U) { reg = (u16 )((unsigned int )reg | 1U); } else { } if (i & 1) { { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )reg); } } else { } { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg | 2U)); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg | 2U)); } if ((i & 1) == 0) { { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )reg); } } else { } i = i - 1; ldv_52245: ; if (i >= 0) { goto ldv_52244; } else { } { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 4U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(42950UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 4U)); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, (int )((unsigned int )reg84 | 1024U)); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); } return; } } static u16 rtl8225_read(struct ieee80211_hw *dev , u8 addr ) { struct rtl8180_priv *priv ; u16 reg80 ; u16 reg82 ; u16 reg84 ; u16 out ; int i ; u16 tmp ; u16 reg ; u16 tmp___0 ; { { priv = (struct rtl8180_priv *)dev->priv; reg80 = rtl818x_ioread16(priv, & (priv->map)->RFPinsOutput); reg82 = rtl818x_ioread16(priv, & (priv->map)->RFPinsEnable); tmp = rtl818x_ioread16(priv, & (priv->map)->RFPinsSelect); reg84 = (u16 )((unsigned int )tmp | 1024U); reg80 = (unsigned int )reg80 & 65520U; rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, (int )((unsigned int )reg82 | 15U)); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, (int )((unsigned int )reg84 | 15U)); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 4U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(17180UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )reg80); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(21475UL); i = 4; } goto ldv_52259; ldv_52258: reg = (u16 )((int )((short )reg80) | ((int )((short )((int )addr >> i)) & 1)); if ((i & 1) == 0) { { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )reg); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(4295UL); } } else { } { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg | 2U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg | 2U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); } if (i & 1) { { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )reg); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(4295UL); } } else { } i = i - 1; ldv_52259: ; if (i >= 0) { goto ldv_52258; } else { } { rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 14); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, 1038); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 10U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 8U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 8U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); out = 0U; i = 11; } goto ldv_52262; ldv_52261: { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 8U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(4295UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 10U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 10U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 10U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); tmp___0 = rtl818x_ioread16(priv, & (priv->map)->RFPinsInput); } if (((int )tmp___0 & 2) != 0) { out = (u16 )((int )((short )out) | (int )((short )(1 << i))); } else { } { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 8U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); i = i - 1; } ldv_52262: ; if (i >= 0) { goto ldv_52261; } else { } { rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, (int )((unsigned int )reg80 | 12U)); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); __const_udelay(8590UL); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, (int )reg82); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, (int )reg84); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, 928); } return (out); } } static u16 const rtl8225bcd_rxgain[95U] = { 1024U, 1025U, 1026U, 1027U, 1028U, 1029U, 1032U, 1033U, 1034U, 1035U, 1282U, 1283U, 1284U, 1285U, 1344U, 1345U, 1346U, 1347U, 1348U, 1349U, 1408U, 1409U, 1410U, 1411U, 1412U, 1413U, 1416U, 1417U, 1418U, 1419U, 1603U, 1604U, 1605U, 1664U, 1665U, 1666U, 1667U, 1668U, 1669U, 1672U, 1673U, 1674U, 1675U, 1676U, 1858U, 1859U, 1860U, 1861U, 1920U, 1921U, 1922U, 1923U, 1924U, 1925U, 1928U, 1929U, 1930U, 1931U, 1932U, 1933U, 1936U, 1937U, 1938U, 1939U, 1940U, 1941U, 1944U, 1945U, 1946U, 1947U, 1948U, 1949U, 1952U, 1953U, 1954U, 1955U, 1956U, 1957U, 1960U, 1961U, 1962U, 1963U, 1964U, 1965U, 1968U, 1969U, 1970U, 1971U, 1972U, 1973U, 1976U, 1977U, 1978U, 1979U, 1979U}; static u8 const rtl8225_agc[128U] = { 158U, 158U, 158U, 158U, 158U, 158U, 158U, 158U, 157U, 156U, 155U, 154U, 153U, 152U, 151U, 150U, 149U, 148U, 147U, 146U, 145U, 144U, 143U, 142U, 141U, 140U, 139U, 138U, 137U, 136U, 135U, 134U, 133U, 132U, 131U, 130U, 129U, 128U, 63U, 62U, 61U, 60U, 59U, 58U, 57U, 56U, 55U, 54U, 53U, 52U, 51U, 50U, 49U, 48U, 47U, 46U, 45U, 44U, 43U, 42U, 41U, 40U, 39U, 38U, 37U, 36U, 35U, 34U, 33U, 32U, 31U, 30U, 29U, 28U, 27U, 26U, 25U, 24U, 23U, 22U, 21U, 20U, 19U, 18U, 17U, 16U, 15U, 14U, 13U, 12U, 11U, 10U, 9U, 8U, 7U, 6U, 5U, 4U, 3U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U}; static u8 const rtl8225_gain[28U] = { 35U, 136U, 124U, 165U, 35U, 136U, 124U, 181U, 35U, 136U, 124U, 197U, 51U, 128U, 121U, 197U, 67U, 120U, 118U, 197U, 83U, 96U, 115U, 197U, 99U, 88U, 112U, 197U}; static u8 const rtl8225_threshold[7U] = { 141U, 141U, 141U, 141U, 157U, 173U, 189U}; static u8 const rtl8225_tx_gain_cck_ofdm[6U] = { 2U, 6U, 14U, 30U, 62U, 126U}; static u8 const rtl8225_tx_power_cck[48U] = { 24U, 23U, 21U, 17U, 12U, 8U, 4U, 2U, 27U, 26U, 23U, 19U, 14U, 9U, 4U, 2U, 31U, 30U, 26U, 21U, 16U, 10U, 5U, 2U, 34U, 33U, 29U, 24U, 17U, 11U, 6U, 2U, 38U, 37U, 33U, 27U, 20U, 13U, 6U, 3U, 43U, 42U, 37U, 30U, 22U, 14U, 7U, 3U}; static u8 const rtl8225_tx_power_cck_ch14[48U] = { 24U, 23U, 21U, 12U, 0U, 0U, 0U, 0U, 27U, 26U, 23U, 14U, 0U, 0U, 0U, 0U, 31U, 30U, 26U, 15U, 0U, 0U, 0U, 0U, 34U, 33U, 29U, 17U, 0U, 0U, 0U, 0U, 38U, 37U, 33U, 19U, 0U, 0U, 0U, 0U, 43U, 42U, 37U, 21U, 0U, 0U, 0U, 0U}; static u8 const rtl8225_tx_power_ofdm[6U] = { 128U, 144U, 162U, 181U, 203U, 228U}; static u32 const rtl8225_chan[14U] = { 2140U, 2268U, 2396U, 2524U, 2652U, 2780U, 2908U, 3036U, 3164U, 3292U, 3420U, 3548U, 3676U, 3954U}; static void rtl8225_rf_set_tx_power(struct ieee80211_hw *dev , int channel ) { struct rtl8180_priv *priv ; u8 cck_power ; u8 ofdm_power ; u8 const *tmp ; u32 reg ; int i ; u8 _min1 ; unsigned char _min2 ; u8 _min1___0 ; unsigned char _min2___0 ; u8 const *tmp___0 ; u8 tmp___1 ; { { priv = (struct rtl8180_priv *)dev->priv; cck_power = (u8 )priv->channels[channel + -1].hw_value; ofdm_power = (u8 )((int )priv->channels[channel + -1].hw_value >> 8); _min1 = cck_power; _min2 = 35U; cck_power = (u8 )((int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2); _min1___0 = ofdm_power; _min2___0 = 35U; ofdm_power = (u8 )((int )_min1___0 < (int )_min2___0 ? (int )_min1___0 : (int )_min2___0); rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_CCK, (int )((unsigned char )rtl8225_tx_gain_cck_ofdm[(int )((unsigned int )cck_power / 6U)]) >> 1); } if (channel == 14) { tmp = (u8 const *)(& rtl8225_tx_power_cck_ch14) + (unsigned long )((int )((unsigned int )cck_power % 6U) * 8); } else { tmp = (u8 const *)(& rtl8225_tx_power_cck) + (unsigned long )((int )((unsigned int )cck_power % 6U) * 8); } i = 0; goto ldv_52290; ldv_52289: { tmp___0 = tmp; tmp = tmp + 1; rtl8225_write_phy_cck(dev, (int )((unsigned int )((u8 )i) + 68U), (int )*tmp___0); i = i + 1; } ldv_52290: ; if (i <= 7) { goto ldv_52289; } else { } { msleep(1U); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); tmp___1 = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); reg = (u32 )tmp___1; rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((unsigned int )((u8 )reg) | 64U)); rtl818x_iowrite32(priv, & (priv->map)->ANAPARAM2, 2249059345U); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((u8 )reg) & 191); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_OFDM, (int )((unsigned char )rtl8225_tx_gain_cck_ofdm[(int )((unsigned int )ofdm_power / 6U)]) >> 1); tmp = (u8 const *)(& rtl8225_tx_power_ofdm) + (unsigned long )((unsigned int )ofdm_power % 6U); rtl8225_write_phy_ofdm(dev, 5, (int )*tmp); rtl8225_write_phy_ofdm(dev, 7, (int )*tmp); msleep(1U); } return; } } static void rtl8225_rf_init(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; int i ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8180_set_anaparam(priv, 2684357465U); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, 1152); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, 1160); rtl818x_iowrite8(priv, & (priv->map)->GP_ENABLE, 0); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); msleep(200U); rtl818x_iowrite8(priv, & (priv->map)->GP_ENABLE, 191); rtl818x_iowrite32(priv, & (priv->map)->RF_TIMING, 688136U); rtl818x_ioread16(priv, & (priv->map)->__annonCompField102.BRSR); rtl818x_iowrite16(priv, & (priv->map)->__annonCompField102.BRSR, 65535); rtl818x_iowrite32(priv, & (priv->map)->RF_PARA, 1048644U); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, 68); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); rtl8225_write(dev, 0, 103); rtl8225_write(dev, 1, 4064); rtl8225_write(dev, 2, 1101); rtl8225_write(dev, 3, 1089); rtl8225_write(dev, 4, 2238); rtl8225_write(dev, 5, 3056); rtl8225_write(dev, 6, 2790); rtl8225_write(dev, 7, (int )((u16 )rtl8225_chan[0])); rtl8225_write(dev, 8, 31); rtl8225_write(dev, 9, 820); rtl8225_write(dev, 10, 4052); rtl8225_write(dev, 11, 913); rtl8225_write(dev, 12, 80); rtl8225_write(dev, 13, 1755); rtl8225_write(dev, 14, 41); rtl8225_write(dev, 15, 2324); msleep(1U); rtl8225_write(dev, 2, 3149); msleep(100U); rtl8225_write(dev, 0, 295); i = 0; } goto ldv_52300; ldv_52299: { rtl8225_write(dev, 1, (int )((unsigned int )((u16 )i) + 1U)); rtl8225_write(dev, 2, (int )rtl8225bcd_rxgain[i]); i = i + 1; } ldv_52300: ; if ((unsigned int )i <= 94U) { goto ldv_52299; } else { } { rtl8225_write(dev, 0, 39); rtl8225_write(dev, 0, 559); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); i = 0; } goto ldv_52305; ldv_52304: { rtl8225_write_phy_ofdm(dev, 11, (int )rtl8225_agc[i]); msleep(1U); rtl8225_write_phy_ofdm(dev, 10, (int )((unsigned int )((u8 )i) + 128U)); msleep(1U); i = i + 1; } ldv_52305: ; if ((unsigned int )i <= 127U) { goto ldv_52304; } else { } { msleep(1U); rtl8225_write_phy_ofdm(dev, 0, 1); msleep(1U); rtl8225_write_phy_ofdm(dev, 1, 2); msleep(1U); rtl8225_write_phy_ofdm(dev, 2, 98); msleep(1U); rtl8225_write_phy_ofdm(dev, 3, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 4, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 5, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 6, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 7, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 8, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 9, 254); msleep(1U); rtl8225_write_phy_ofdm(dev, 10, 9); msleep(1U); rtl8225_write_phy_ofdm(dev, 11, 128); msleep(1U); rtl8225_write_phy_ofdm(dev, 12, 1); msleep(1U); rtl8225_write_phy_ofdm(dev, 14, 211); msleep(1U); rtl8225_write_phy_ofdm(dev, 15, 56); msleep(1U); rtl8225_write_phy_ofdm(dev, 16, 132); msleep(1U); rtl8225_write_phy_ofdm(dev, 17, 3); msleep(1U); rtl8225_write_phy_ofdm(dev, 18, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 19, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 20, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 21, 64); msleep(1U); rtl8225_write_phy_ofdm(dev, 22, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 23, 64); msleep(1U); rtl8225_write_phy_ofdm(dev, 24, 239); msleep(1U); rtl8225_write_phy_ofdm(dev, 25, 25); msleep(1U); rtl8225_write_phy_ofdm(dev, 26, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 27, 118); msleep(1U); rtl8225_write_phy_ofdm(dev, 28, 4); msleep(1U); rtl8225_write_phy_ofdm(dev, 30, 149); msleep(1U); rtl8225_write_phy_ofdm(dev, 31, 117); msleep(1U); rtl8225_write_phy_ofdm(dev, 32, 31); msleep(1U); rtl8225_write_phy_ofdm(dev, 33, 39); msleep(1U); rtl8225_write_phy_ofdm(dev, 34, 22); msleep(1U); rtl8225_write_phy_ofdm(dev, 36, 70); msleep(1U); rtl8225_write_phy_ofdm(dev, 37, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 38, 144); msleep(1U); rtl8225_write_phy_ofdm(dev, 39, 136); msleep(1U); rtl8225_write_phy_cck(dev, 0, 152); msleep(1U); rtl8225_write_phy_cck(dev, 3, 32); msleep(1U); rtl8225_write_phy_cck(dev, 4, 126); msleep(1U); rtl8225_write_phy_cck(dev, 5, 18); msleep(1U); rtl8225_write_phy_cck(dev, 6, 252); msleep(1U); rtl8225_write_phy_cck(dev, 7, 120); msleep(1U); rtl8225_write_phy_cck(dev, 8, 46); msleep(1U); rtl8225_write_phy_cck(dev, 16, 147); msleep(1U); rtl8225_write_phy_cck(dev, 17, 136); msleep(1U); rtl8225_write_phy_cck(dev, 18, 71); msleep(1U); rtl8225_write_phy_cck(dev, 19, 208); rtl8225_write_phy_cck(dev, 25, 0); rtl8225_write_phy_cck(dev, 26, 160); rtl8225_write_phy_cck(dev, 27, 8); rtl8225_write_phy_cck(dev, 64, 134); rtl8225_write_phy_cck(dev, 65, 141); msleep(1U); rtl8225_write_phy_cck(dev, 66, 21); msleep(1U); rtl8225_write_phy_cck(dev, 67, 24); msleep(1U); rtl8225_write_phy_cck(dev, 68, 31); msleep(1U); rtl8225_write_phy_cck(dev, 69, 30); msleep(1U); rtl8225_write_phy_cck(dev, 70, 26); msleep(1U); rtl8225_write_phy_cck(dev, 71, 21); msleep(1U); rtl8225_write_phy_cck(dev, 72, 16); msleep(1U); rtl8225_write_phy_cck(dev, 73, 10); msleep(1U); rtl8225_write_phy_cck(dev, 74, 5); msleep(1U); rtl8225_write_phy_cck(dev, 75, 2); msleep(1U); rtl8225_write_phy_cck(dev, 76, 5); msleep(1U); rtl818x_iowrite8(priv, & (priv->map)->TESTR, 13); msleep(1U); rtl8225_rf_set_tx_power(dev, 1); rtl8225_write_phy_cck(dev, 16, 155); msleep(1U); rtl8225_write_phy_ofdm(dev, 38, 144); msleep(1U); rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 3); msleep(1U); rtl818x_iowrite32(priv, (__le32 *)priv->map + 148U, 364904450U); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); rtl8225_write(dev, 12, 80); rtl8225_write_phy_ofdm(dev, 13, (int )rtl8225_gain[16]); rtl8225_write_phy_ofdm(dev, 35, (int )rtl8225_gain[17]); rtl8225_write_phy_ofdm(dev, 27, (int )rtl8225_gain[18]); rtl8225_write_phy_ofdm(dev, 29, (int )rtl8225_gain[19]); rtl8225_write_phy_cck(dev, 65, (int )rtl8225_threshold[0]); } return; } } static u8 const rtl8225z2_tx_power_cck_ch14[8U] = { 54U, 53U, 46U, 27U, 0U, 0U, 0U, 0U}; static u8 const rtl8225z2_tx_power_cck_B[8U] = { 48U, 47U, 41U, 33U, 25U, 16U, 8U, 4U}; static u8 const rtl8225z2_tx_power_cck_A[8U] = { 51U, 50U, 43U, 35U, 26U, 17U, 8U, 4U}; static u8 const rtl8225z2_tx_power_cck[8U] = { 54U, 53U, 46U, 37U, 28U, 18U, 9U, 4U}; static void rtl8225z2_rf_set_tx_power(struct ieee80211_hw *dev , int channel ) { struct rtl8180_priv *priv ; u8 cck_power ; u8 ofdm_power ; u8 const *tmp ; int i ; u8 const *tmp___0 ; u8 _min1 ; unsigned char _min2 ; u8 _min1___0 ; unsigned char _min2___0 ; { priv = (struct rtl8180_priv *)dev->priv; cck_power = (u8 )priv->channels[channel + -1].hw_value; ofdm_power = (u8 )((int )priv->channels[channel + -1].hw_value >> 8); if (channel == 14) { tmp = (u8 const *)(& rtl8225z2_tx_power_cck_ch14); } else if ((unsigned int )cck_power == 12U) { tmp = (u8 const *)(& rtl8225z2_tx_power_cck_B); } else if ((unsigned int )cck_power == 13U) { tmp = (u8 const *)(& rtl8225z2_tx_power_cck_A); } else { tmp = (u8 const *)(& rtl8225z2_tx_power_cck); } i = 0; goto ldv_52321; ldv_52320: { tmp___0 = tmp; tmp = tmp + 1; rtl8225_write_phy_cck(dev, (int )((unsigned int )((u8 )i) + 68U), (int )*tmp___0); i = i + 1; } ldv_52321: ; if (i <= 7) { goto ldv_52320; } else { } _min1 = cck_power; _min2 = 35U; cck_power = (u8 )((int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2); if ((unsigned int )cck_power - 13U <= 1U) { cck_power = 12U; } else { } if ((unsigned int )cck_power > 14U) { cck_power = (unsigned int )cck_power + 254U; } else { } { rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_CCK, (int )cck_power); rtl818x_ioread8(priv, & (priv->map)->TX_GAIN_CCK); msleep(1U); _min1___0 = ofdm_power; _min2___0 = 35U; ofdm_power = (u8 )((int )_min1___0 < (int )_min2___0 ? (int )_min1___0 : (int )_min2___0); rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_OFDM, (int )ofdm_power); rtl8225_write_phy_ofdm(dev, 2, 98); rtl8225_write_phy_ofdm(dev, 5, 0); rtl8225_write_phy_ofdm(dev, 6, 64); rtl8225_write_phy_ofdm(dev, 7, 0); rtl8225_write_phy_ofdm(dev, 8, 64); msleep(1U); } return; } } static u16 const rtl8225z2_rxgain[95U] = { 0U, 1U, 2U, 3U, 4U, 5U, 8U, 9U, 10U, 11U, 258U, 259U, 260U, 261U, 320U, 321U, 322U, 323U, 324U, 325U, 384U, 385U, 386U, 387U, 388U, 389U, 392U, 393U, 394U, 395U, 579U, 580U, 581U, 640U, 641U, 642U, 643U, 644U, 645U, 648U, 649U, 650U, 651U, 652U, 834U, 835U, 836U, 837U, 896U, 897U, 898U, 899U, 900U, 901U, 904U, 905U, 906U, 907U, 908U, 909U, 912U, 913U, 914U, 915U, 916U, 917U, 920U, 921U, 922U, 923U, 924U, 925U, 928U, 929U, 930U, 931U, 932U, 933U, 936U, 937U, 938U, 939U, 940U, 941U, 944U, 945U, 946U, 947U, 948U, 949U, 952U, 953U, 954U, 955U, 955U}; static void rtl8225z2_rf_init(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; int i ; u16 tmp ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8180_set_anaparam(priv, 2684357465U); rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, 1152); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, 1160); rtl818x_iowrite8(priv, & (priv->map)->GP_ENABLE, 0); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); msleep(200U); rtl818x_iowrite8(priv, & (priv->map)->GP_ENABLE, 191); rtl818x_iowrite32(priv, & (priv->map)->RF_TIMING, 557064U); rtl818x_ioread16(priv, & (priv->map)->__annonCompField102.BRSR); rtl818x_iowrite16(priv, & (priv->map)->__annonCompField102.BRSR, 65535); rtl818x_iowrite32(priv, & (priv->map)->RF_PARA, 1048644U); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, 68); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); rtl8225_write(dev, 0, 183); msleep(1U); rtl8225_write(dev, 1, 3808); msleep(1U); rtl8225_write(dev, 2, 1101); msleep(1U); rtl8225_write(dev, 3, 1089); msleep(1U); rtl8225_write(dev, 4, 2243); msleep(1U); rtl8225_write(dev, 5, 3186); msleep(1U); rtl8225_write(dev, 6, 230); msleep(1U); rtl8225_write(dev, 7, 2090); msleep(1U); rtl8225_write(dev, 8, 63); msleep(1U); rtl8225_write(dev, 9, 821); msleep(1U); rtl8225_write(dev, 10, 2516); msleep(1U); rtl8225_write(dev, 11, 1979); msleep(1U); rtl8225_write(dev, 12, 2128); msleep(1U); rtl8225_write(dev, 13, 3295); msleep(1U); rtl8225_write(dev, 14, 43); msleep(1U); rtl8225_write(dev, 15, 276); msleep(100U); tmp = rtl8225_read(dev, 6); } if (((int )tmp & 128) == 0) { { rtl8225_write(dev, 2, 3149); msleep(200U); rtl8225_write(dev, 2, 1101); msleep(100U); } } else { } { rtl8225_write(dev, 0, 439); rtl8225_write(dev, 3, 2); rtl8225_write(dev, 5, 4); i = 0; } goto ldv_52338; ldv_52337: { rtl8225_write(dev, 1, (int )((unsigned int )((u16 )i) + 1U)); rtl8225_write(dev, 2, (int )rtl8225z2_rxgain[i]); i = i + 1; } ldv_52338: ; if ((unsigned int )i <= 94U) { goto ldv_52337; } else { } { rtl8225_write(dev, 0, 183); msleep(100U); rtl8225_write(dev, 2, 3149); msleep(200U); rtl8225_write(dev, 2, 1101); msleep(100U); rtl8225_write(dev, 0, 703); rtl8225_write(dev, 255, 65535); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); i = 0; } goto ldv_52343; ldv_52342: { rtl8225_write_phy_ofdm(dev, 11, (int )rtl8225_agc[i]); msleep(1U); rtl8225_write_phy_ofdm(dev, 10, (int )((unsigned int )((u8 )i) + 128U)); msleep(1U); i = i + 1; } ldv_52343: ; if ((unsigned int )i <= 127U) { goto ldv_52342; } else { } { msleep(1U); rtl8225_write_phy_ofdm(dev, 0, 1); msleep(1U); rtl8225_write_phy_ofdm(dev, 1, 2); msleep(1U); rtl8225_write_phy_ofdm(dev, 2, 98); msleep(1U); rtl8225_write_phy_ofdm(dev, 3, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 4, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 5, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 6, 64); msleep(1U); rtl8225_write_phy_ofdm(dev, 7, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 8, 64); msleep(1U); rtl8225_write_phy_ofdm(dev, 9, 254); msleep(1U); rtl8225_write_phy_ofdm(dev, 10, 9); msleep(1U); rtl8225_write_phy_ofdm(dev, 24, 239); msleep(1U); rtl8225_write_phy_ofdm(dev, 11, 128); msleep(1U); rtl8225_write_phy_ofdm(dev, 12, 1); msleep(1U); rtl8225_write_phy_ofdm(dev, 13, 67); rtl8225_write_phy_ofdm(dev, 14, 211); msleep(1U); rtl8225_write_phy_ofdm(dev, 15, 56); msleep(1U); rtl8225_write_phy_ofdm(dev, 16, 132); msleep(1U); rtl8225_write_phy_ofdm(dev, 17, 6); msleep(1U); rtl8225_write_phy_ofdm(dev, 18, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 19, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 20, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 21, 64); msleep(1U); rtl8225_write_phy_ofdm(dev, 22, 0); msleep(1U); rtl8225_write_phy_ofdm(dev, 23, 64); msleep(1U); rtl8225_write_phy_ofdm(dev, 24, 239); msleep(1U); rtl8225_write_phy_ofdm(dev, 25, 25); msleep(1U); rtl8225_write_phy_ofdm(dev, 26, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 27, 17); msleep(1U); rtl8225_write_phy_ofdm(dev, 28, 4); msleep(1U); rtl8225_write_phy_ofdm(dev, 29, 197); msleep(1U); rtl8225_write_phy_ofdm(dev, 30, 179); msleep(1U); rtl8225_write_phy_ofdm(dev, 31, 117); msleep(1U); rtl8225_write_phy_ofdm(dev, 32, 31); msleep(1U); rtl8225_write_phy_ofdm(dev, 33, 39); msleep(1U); rtl8225_write_phy_ofdm(dev, 34, 22); msleep(1U); rtl8225_write_phy_ofdm(dev, 35, 128); msleep(1U); rtl8225_write_phy_ofdm(dev, 36, 70); msleep(1U); rtl8225_write_phy_ofdm(dev, 37, 32); msleep(1U); rtl8225_write_phy_ofdm(dev, 38, 144); msleep(1U); rtl8225_write_phy_ofdm(dev, 39, 136); msleep(1U); rtl8225_write_phy_cck(dev, 0, 152); msleep(1U); rtl8225_write_phy_cck(dev, 3, 32); msleep(1U); rtl8225_write_phy_cck(dev, 4, 126); msleep(1U); rtl8225_write_phy_cck(dev, 5, 18); msleep(1U); rtl8225_write_phy_cck(dev, 6, 252); msleep(1U); rtl8225_write_phy_cck(dev, 7, 120); msleep(1U); rtl8225_write_phy_cck(dev, 8, 46); msleep(1U); rtl8225_write_phy_cck(dev, 16, 147); msleep(1U); rtl8225_write_phy_cck(dev, 17, 136); msleep(1U); rtl8225_write_phy_cck(dev, 18, 71); msleep(1U); rtl8225_write_phy_cck(dev, 19, 208); rtl8225_write_phy_cck(dev, 25, 0); rtl8225_write_phy_cck(dev, 26, 160); rtl8225_write_phy_cck(dev, 27, 8); rtl8225_write_phy_cck(dev, 64, 134); rtl8225_write_phy_cck(dev, 65, 138); msleep(1U); rtl8225_write_phy_cck(dev, 66, 21); msleep(1U); rtl8225_write_phy_cck(dev, 67, 24); msleep(1U); rtl8225_write_phy_cck(dev, 68, 54); msleep(1U); rtl8225_write_phy_cck(dev, 69, 53); msleep(1U); rtl8225_write_phy_cck(dev, 70, 46); msleep(1U); rtl8225_write_phy_cck(dev, 71, 37); msleep(1U); rtl8225_write_phy_cck(dev, 72, 28); msleep(1U); rtl8225_write_phy_cck(dev, 73, 18); msleep(1U); rtl8225_write_phy_cck(dev, 74, 9); msleep(1U); rtl8225_write_phy_cck(dev, 75, 4); msleep(1U); rtl8225_write_phy_cck(dev, 76, 5); msleep(1U); rtl818x_iowrite8(priv, (u8 *)priv->map + 91U, 13); msleep(1U); rtl8225z2_rf_set_tx_power(dev, 1); rtl8225_write_phy_cck(dev, 16, 155); msleep(1U); rtl8225_write_phy_ofdm(dev, 38, 144); msleep(1U); rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 3); msleep(1U); rtl818x_iowrite32(priv, (__le32 *)priv->map + 148U, 364904450U); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); } return; } } static void rtl8225_rf_stop(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u8 reg ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8225_write(dev, 4, 31); msleep(1U); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 192); reg = rtl818x_ioread8(priv, & (priv->map)->CONFIG3); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )((unsigned int )reg | 64U)); rtl818x_iowrite32(priv, & (priv->map)->ANAPARAM2, 2215504913U); rtl818x_iowrite32(priv, & (priv->map)->ANAPARAM, 2685135705U); rtl818x_iowrite8(priv, & (priv->map)->CONFIG3, (int )reg & 191); rtl818x_iowrite8(priv, & (priv->map)->EEPROM_CMD, 0); } return; } } static void rtl8225_rf_set_channel(struct ieee80211_hw *dev , struct ieee80211_conf *conf ) { struct rtl8180_priv *priv ; int chan ; int tmp ; { { priv = (struct rtl8180_priv *)dev->priv; tmp = ieee80211_frequency_to_channel((int )(conf->chandef.chan)->center_freq); chan = tmp; } if ((unsigned long )((void (*)(struct ieee80211_hw * ))(priv->rf)->init) == (unsigned long )(& rtl8225_rf_init)) { { rtl8225_rf_set_tx_power(dev, chan); } } else { { rtl8225z2_rf_set_tx_power(dev, chan); } } { rtl8225_write(dev, 7, (int )((u16 )rtl8225_chan[chan + -1])); msleep(10U); } return; } } static struct rtl818x_rf_ops const rtl8225_ops = {(char *)"rtl8225", & rtl8225_rf_init, & rtl8225_rf_stop, & rtl8225_rf_set_channel, 0}; static struct rtl818x_rf_ops const rtl8225z2_ops = {(char *)"rtl8225z2", & rtl8225z2_rf_init, & rtl8225_rf_stop, & rtl8225_rf_set_channel, 0}; struct rtl818x_rf_ops const *rtl8180_detect_rf(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u16 reg8 ; u16 reg9 ; { { priv = (struct rtl8180_priv *)dev->priv; rtl818x_iowrite16(priv, & (priv->map)->RFPinsOutput, 1152); rtl818x_iowrite16(priv, & (priv->map)->RFPinsSelect, 1160); rtl818x_iowrite16(priv, & (priv->map)->RFPinsEnable, 8191); rtl818x_ioread8(priv, & (priv->map)->EEPROM_CMD); msleep(100U); rtl8225_write(dev, 0, 439); reg8 = rtl8225_read(dev, 8); reg9 = rtl8225_read(dev, 9); rtl8225_write(dev, 0, 183); } if ((unsigned int )reg8 != 1416U || (unsigned int )reg9 != 1792U) { return (& rtl8225_ops); } else { } return (& rtl8225z2_ops); } } void ldv_ieee80211_instance_callback_0_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl8225_rf_init(arg1); } return; } } void ldv_ieee80211_instance_callback_4_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl8225z2_rf_init(arg1); } return; } } void ldv_ieee80211_instance_callback_4_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) { { { rtl8225_rf_set_channel(arg1, arg2); } return; } } void ldv_ieee80211_instance_stop_4_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl8225_rf_stop(arg1); } return; } } static u32 const sa2400_chan[14U] = { 2412U, 526704U, 1050996U, 1575288U, 2432U, 526724U, 1051016U, 1575308U, 2452U, 526744U, 1051036U, 1575328U, 2472U, 2484U}; static void write_sa2400(struct ieee80211_hw *dev , u8 addr , u32 data ) { struct rtl8180_priv *priv ; u32 phy_config ; { { priv = (struct rtl8180_priv *)dev->priv; phy_config = 2952790016U; phy_config = phy_config | (((unsigned int )addr & 15U) << 24); phy_config = phy_config | (data & 16777215U); rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->RFPinsOutput), phy_config); msleep(3U); } return; } } static void sa2400_write_phy_antenna(struct ieee80211_hw *dev , short chan ) { struct rtl8180_priv *priv ; u8 ant ; { priv = (struct rtl8180_priv *)dev->priv; ant = 145U; if (((int )priv->rfparam & 2) != 0) { ant = (u8 )((unsigned int )ant | 64U); } else { } if ((int )chan == 14) { ant = (u8 )((unsigned int )ant | 12U); } else { } { rtl8180_write_phy(dev, 16, (u32 )ant); } return; } } static u8 sa2400_rf_rssi_map[79U] = { 100U, 100U, 99U, 98U, 97U, 96U, 95U, 94U, 93U, 92U, 91U, 90U, 87U, 84U, 82U, 80U, 78U, 76U, 74U, 72U, 70U, 68U, 65U, 63U, 60U, 58U, 55U, 54U, 54U, 28U, 28U, 27U, 27U, 26U, 26U, 25U, 25U, 24U, 24U, 23U, 23U, 22U, 22U, 21U, 21U, 20U, 20U, 19U, 19U, 18U, 18U, 17U, 17U, 16U, 16U, 15U, 15U, 14U, 14U, 13U, 13U, 12U, 12U, 11U, 11U, 10U, 10U, 9U, 9U, 8U, 8U, 7U, 7U, 6U, 6U, 5U, 4U, 3U, 2U}; static u8 sa2400_rf_calc_rssi(u8 agc , u8 sq ) { { if ((unsigned int )sq == 128U) { return (1U); } else { } if ((unsigned int )sq > 78U) { return (32U); } else { } return ((u8 )(((int )sa2400_rf_rssi_map[(int )sq] * 65) / 100)); } } static void sa2400_rf_set_channel(struct ieee80211_hw *dev , struct ieee80211_conf *conf ) { struct rtl8180_priv *priv ; int channel ; int tmp ; u32 txpw ; u32 chan ; { { priv = (struct rtl8180_priv *)dev->priv; tmp = ieee80211_frequency_to_channel((int )(conf->chandef.chan)->center_freq); channel = tmp; txpw = (u32 )priv->channels[channel + -1].hw_value & 255U; chan = sa2400_chan[channel + -1]; write_sa2400(dev, 7, txpw); sa2400_write_phy_antenna(dev, (int )((short )channel)); write_sa2400(dev, 0, chan); write_sa2400(dev, 1, 47952U); write_sa2400(dev, 2, 128U); write_sa2400(dev, 3, 0U); } return; } } static void sa2400_rf_stop(struct ieee80211_hw *dev ) { { { write_sa2400(dev, 4, 0U); } return; } } static void sa2400_rf_init(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u32 anaparam ; u32 txconf ; u8 firdac ; int analogphy ; u8 tmp ; { priv = (struct rtl8180_priv *)dev->priv; analogphy = (int )priv->rfparam & 1; anaparam = priv->anaparam; anaparam = anaparam & 4160749567U; anaparam = anaparam & 4161798143U; anaparam = anaparam & 2415919103U; if (analogphy != 0) { anaparam = anaparam | 41943040U; firdac = 0U; } else { anaparam = anaparam | 8388608U; anaparam = anaparam | 805306368U; firdac = 128U; } { rtl8180_set_anaparam(priv, anaparam); write_sa2400(dev, 0, sa2400_chan[0]); write_sa2400(dev, 1, 47952U); write_sa2400(dev, 2, 128U); write_sa2400(dev, 3, 0U); write_sa2400(dev, 4, (u32 )((int )firdac | 103232)); write_sa2400(dev, 5, 1023483U); write_sa2400(dev, 4, (u32 )((int )firdac | 103240)); } if (analogphy == 0) { { write_sa2400(dev, 4, 103308U); } } else { } { write_sa2400(dev, 4, (u32 )((int )firdac | 103232)); write_sa2400(dev, 0, sa2400_chan[0]); write_sa2400(dev, 1, 47952U); write_sa2400(dev, 2, 128U); write_sa2400(dev, 3, 0U); write_sa2400(dev, 4, (u32 )((int )firdac | 103236)); write_sa2400(dev, 6, 8393727U); write_sa2400(dev, 8, 0U); } if (analogphy != 0) { { rtl8180_set_anaparam(priv, anaparam | 134217728U); txconf = rtl818x_ioread32(priv, & (priv->map)->TX_CONF); rtl818x_iowrite32(priv, & (priv->map)->TX_CONF, txconf | 393216U); write_sa2400(dev, 4, 103233U); write_sa2400(dev, 4, 103237U); rtl818x_iowrite32(priv, & (priv->map)->TX_CONF, txconf); rtl8180_set_anaparam(priv, anaparam); } } else { } { write_sa2400(dev, 4, (u32 )((int )firdac | 103233)); rtl8180_write_phy(dev, 0, 152U); rtl8180_write_phy(dev, 3, 56U); rtl8180_write_phy(dev, 4, 224U); rtl8180_write_phy(dev, 5, 144U); rtl8180_write_phy(dev, 6, 26U); rtl8180_write_phy(dev, 7, 100U); sa2400_write_phy_antenna(dev, 1); rtl8180_write_phy(dev, 17, 128U); tmp = rtl818x_ioread8(priv, & (priv->map)->CONFIG2); } if (((int )tmp & 64) != 0) { { rtl8180_write_phy(dev, 18, 199U); } } else { { rtl8180_write_phy(dev, 18, 71U); } } { rtl8180_write_phy(dev, 19, (unsigned int )priv->csthreshold | 144U); rtl8180_write_phy(dev, 25, 0U); rtl8180_write_phy(dev, 26, 160U); } return; } } struct rtl818x_rf_ops const sa2400_rf_ops = {(char *)"Philips", & sa2400_rf_init, & sa2400_rf_stop, & sa2400_rf_set_channel, & sa2400_rf_calc_rssi}; void ldv_ieee80211_instance_callback_2_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) { { { sa2400_rf_calc_rssi((int )arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_2_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { sa2400_rf_init(arg1); } return; } } void ldv_ieee80211_instance_callback_2_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) { { { sa2400_rf_set_channel(arg1, arg2); } return; } } void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { sa2400_rf_stop(arg1); } return; } } static u32 const max2820_chan[14U] = { 12U, 17U, 22U, 27U, 32U, 37U, 42U, 47U, 52U, 57U, 62U, 67U, 72U, 84U}; static void write_max2820(struct ieee80211_hw *dev , u8 addr , u32 data ) { struct rtl8180_priv *priv ; u32 phy_config ; { { priv = (struct rtl8180_priv *)dev->priv; phy_config = (data & 15U) + 144U; phy_config = phy_config << 16; phy_config = phy_config + (u32 )addr; phy_config = phy_config << 8; phy_config = phy_config + ((data >> 4) & 255U); rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->RFPinsOutput), phy_config); msleep(1U); } return; } } static void max2820_write_phy_antenna(struct ieee80211_hw *dev , short chan ) { struct rtl8180_priv *priv ; u8 ant ; { priv = (struct rtl8180_priv *)dev->priv; ant = 179U; if (((int )priv->rfparam & 2) != 0) { ant = (u8 )((unsigned int )ant | 64U); } else { } if ((int )chan == 14) { ant = (u8 )((unsigned int )ant | 12U); } else { } { rtl8180_write_phy(dev, 16, (u32 )ant); } return; } } static u8 max2820_rf_calc_rssi(u8 agc , u8 sq ) { bool odd ; { odd = ((int )agc & 1) != 0; agc = (u8 )((int )agc >> 1); if ((int )odd) { agc = (unsigned int )agc + 76U; } else { agc = (unsigned int )agc + 66U; } return ((u8 )(((int )agc * 65) / 100)); } } static void max2820_rf_set_channel(struct ieee80211_hw *dev , struct ieee80211_conf *conf ) { struct rtl8180_priv *priv ; int channel ; int tmp ; int tmp___0 ; unsigned int chan_idx ; u32 txpw ; u32 chan ; { priv = (struct rtl8180_priv *)dev->priv; if ((unsigned long )conf != (unsigned long )((struct ieee80211_conf *)0)) { { tmp = ieee80211_frequency_to_channel((int )(conf->chandef.chan)->center_freq); tmp___0 = tmp; } } else { tmp___0 = 1; } { channel = tmp___0; chan_idx = (unsigned int )(channel + -1); txpw = (u32 )priv->channels[chan_idx].hw_value & 255U; chan = max2820_chan[chan_idx]; rtl8180_write_phy(dev, 3, txpw); max2820_write_phy_antenna(dev, (int )((short )channel)); write_max2820(dev, 3, chan); } return; } } static void max2820_rf_stop(struct ieee80211_hw *dev ) { { { rtl8180_write_phy(dev, 3, 8U); write_max2820(dev, 1, 0U); } return; } } static void max2820_rf_init(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u8 tmp ; { { priv = (struct rtl8180_priv *)dev->priv; write_max2820(dev, 0, 7U); write_max2820(dev, 1, 30U); write_max2820(dev, 2, 1U); max2820_rf_set_channel(dev, (struct ieee80211_conf *)0); write_max2820(dev, 4, 787U); write_max2820(dev, 5, 15U); rtl8180_write_phy(dev, 0, 136U); rtl8180_write_phy(dev, 3, 8U); rtl8180_write_phy(dev, 4, 248U); rtl8180_write_phy(dev, 5, 144U); rtl8180_write_phy(dev, 6, 26U); rtl8180_write_phy(dev, 7, 100U); max2820_write_phy_antenna(dev, 1); rtl8180_write_phy(dev, 17, 136U); tmp = rtl818x_ioread8(priv, & (priv->map)->CONFIG2); } if (((int )tmp & 64) != 0) { { rtl8180_write_phy(dev, 18, 199U); } } else { { rtl8180_write_phy(dev, 18, 71U); } } { rtl8180_write_phy(dev, 19, 155U); rtl8180_write_phy(dev, 25, 0U); rtl8180_write_phy(dev, 26, 159U); max2820_rf_set_channel(dev, (struct ieee80211_conf *)0); } return; } } struct rtl818x_rf_ops const max2820_rf_ops = {(char *)"Maxim", & max2820_rf_init, & max2820_rf_stop, & max2820_rf_set_channel, & max2820_rf_calc_rssi}; void ldv_ieee80211_instance_callback_1_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) { { { max2820_rf_calc_rssi((int )arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_1_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { max2820_rf_init(arg1); } return; } } void ldv_ieee80211_instance_callback_1_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) { { { max2820_rf_set_channel(arg1, arg2); } return; } } void ldv_ieee80211_instance_stop_1_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { max2820_rf_stop(arg1); } return; } } static int const grf5101_encode[16U] = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}; static void write_grf5101(struct ieee80211_hw *dev , u8 addr , u32 data ) { struct rtl8180_priv *priv ; u32 phy_config ; { { priv = (struct rtl8180_priv *)dev->priv; phy_config = (u32 )grf5101_encode[(data >> 8) & 15U]; phy_config = phy_config | (u32 )(grf5101_encode[(data >> 4) & 15U] << 4); phy_config = phy_config | (u32 )(grf5101_encode[data & 15U] << 8); phy_config = phy_config | (u32 )(grf5101_encode[((int )addr >> 1) & 15] << 12); phy_config = phy_config | (u32 )(((int )addr & 1) << 16); phy_config = phy_config | (u32 )(grf5101_encode[(data & 61440U) >> 12] << 24); phy_config = phy_config | 2415919104U; rtl818x_iowrite32(priv, (__le32 *)(& (priv->map)->RFPinsOutput), phy_config); msleep(3U); } return; } } static void grf5101_write_phy_antenna(struct ieee80211_hw *dev , short chan ) { struct rtl8180_priv *priv ; u8 ant ; { priv = (struct rtl8180_priv *)dev->priv; ant = 163U; if (((int )priv->rfparam & 2) != 0) { ant = (u8 )((unsigned int )ant | 64U); } else { } if ((int )chan == 14) { ant = (u8 )((unsigned int )ant | 12U); } else { } { rtl8180_write_phy(dev, 16, (u32 )ant); } return; } } static u8 grf5101_rf_calc_rssi(u8 agc , u8 sq ) { { if ((unsigned int )agc > 60U) { return (65U); } else { } return ((u8 )(((int )agc * 65) / 60)); } } static void grf5101_rf_set_channel(struct ieee80211_hw *dev , struct ieee80211_conf *conf ) { struct rtl8180_priv *priv ; int channel ; int tmp ; u32 txpw ; u32 chan ; { { priv = (struct rtl8180_priv *)dev->priv; tmp = ieee80211_frequency_to_channel((int )(conf->chandef.chan)->center_freq); channel = tmp; txpw = (u32 )priv->channels[channel + -1].hw_value & 255U; chan = (u32 )(channel + -1); write_grf5101(dev, 21, 0U); write_grf5101(dev, 6, txpw); write_grf5101(dev, 21, 16U); write_grf5101(dev, 21, 0U); write_grf5101(dev, 7, 0U); write_grf5101(dev, 11, chan); write_grf5101(dev, 7, 4096U); grf5101_write_phy_antenna(dev, (int )((short )channel)); } return; } } static void grf5101_rf_stop(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u32 anaparam ; { { priv = (struct rtl8180_priv *)dev->priv; anaparam = priv->anaparam; anaparam = anaparam & 1048575U; anaparam = anaparam | 1066401792U; rtl8180_set_anaparam(priv, anaparam); write_grf5101(dev, 7, 0U); write_grf5101(dev, 31, 69U); write_grf5101(dev, 31, 5U); write_grf5101(dev, 0, 2276U); } return; } } static void grf5101_rf_init(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u8 tmp ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8180_set_anaparam(priv, priv->anaparam); write_grf5101(dev, 31, 0U); write_grf5101(dev, 31, 0U); write_grf5101(dev, 31, 64U); write_grf5101(dev, 31, 96U); write_grf5101(dev, 31, 97U); write_grf5101(dev, 31, 97U); write_grf5101(dev, 0, 2788U); write_grf5101(dev, 31, 1U); write_grf5101(dev, 31, 65U); write_grf5101(dev, 31, 97U); write_grf5101(dev, 1, 6691U); write_grf5101(dev, 2, 18801U); write_grf5101(dev, 3, 16862U); write_grf5101(dev, 4, 11648U); write_grf5101(dev, 5, 26879U); write_grf5101(dev, 6, 0U); write_grf5101(dev, 7, 0U); write_grf5101(dev, 8, 30003U); write_grf5101(dev, 9, 50177U); write_grf5101(dev, 10, 0U); write_grf5101(dev, 12, 455U); write_grf5101(dev, 13, 10707U); write_grf5101(dev, 14, 744U); write_grf5101(dev, 16, 402U); write_grf5101(dev, 17, 584U); write_grf5101(dev, 18, 0U); write_grf5101(dev, 19, 8388U); write_grf5101(dev, 20, 62716U); write_grf5101(dev, 21, 0U); write_grf5101(dev, 22, 5376U); write_grf5101(dev, 7, 4096U); rtl8180_write_phy(dev, 0, 168U); rtl8180_write_phy(dev, 3, 0U); rtl8180_write_phy(dev, 4, 192U); rtl8180_write_phy(dev, 5, 144U); rtl8180_write_phy(dev, 6, 30U); rtl8180_write_phy(dev, 7, 100U); grf5101_write_phy_antenna(dev, 1); rtl8180_write_phy(dev, 17, 136U); tmp = rtl818x_ioread8(priv, & (priv->map)->CONFIG2); } if (((int )tmp & 64) != 0) { { rtl8180_write_phy(dev, 18, 192U); } } else { { rtl8180_write_phy(dev, 18, 64U); } } { rtl8180_write_phy(dev, 19, (unsigned int )priv->csthreshold | 144U); rtl8180_write_phy(dev, 25, 0U); rtl8180_write_phy(dev, 26, 160U); rtl8180_write_phy(dev, 27, 68U); } return; } } struct rtl818x_rf_ops const grf5101_rf_ops = {(char *)"GCT", & grf5101_rf_init, & grf5101_rf_stop, & grf5101_rf_set_channel, & grf5101_rf_calc_rssi}; void ldv_ieee80211_instance_callback_0_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) { { { grf5101_rf_calc_rssi((int )arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) { { { grf5101_rf_set_channel(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_3_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) { { { grf5101_rf_calc_rssi((int )arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_4_21(unsigned char (*arg0)(unsigned char , unsigned char ) , unsigned char arg1 , unsigned char arg2 ) { { { grf5101_rf_calc_rssi((int )arg1, (int )arg2); } return; } } extern void usleep_range(unsigned long , unsigned long ) ; void rtl8225se_rf_stop(struct ieee80211_hw *dev ) ; void rtl8225se_rf_set_channel(struct ieee80211_hw *dev , struct ieee80211_conf *conf ) ; void rtl8225se_rf_init(struct ieee80211_hw *dev ) ; static u32 const RF_GAIN_TABLE[37U] = { 150U, 118U, 86U, 54U, 22U, 502U, 470U, 438U, 406U, 374U, 247U, 215U, 183U, 151U, 119U, 87U, 55U, 251U, 219U, 187U, 255U, 227U, 195U, 163U, 131U, 99U, 67U, 35U, 3U, 483U, 451U, 419U, 387U, 355U, 323U, 291U, 259U}; static u8 const cck_ofdm_gain_settings[36U] = { 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U, 25U, 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U}; static u32 const rtl8225se_chan[14U] = { 128U, 256U, 384U, 512U, 640U, 768U, 896U, 1024U, 1152U, 1280U, 1408U, 1536U, 1664U, 1866U}; static u8 const ZEBRA_AGC[128U] = { 126U, 126U, 126U, 126U, 125U, 124U, 123U, 122U, 121U, 120U, 119U, 118U, 117U, 116U, 115U, 114U, 113U, 112U, 111U, 110U, 109U, 108U, 107U, 106U, 105U, 104U, 103U, 102U, 101U, 100U, 99U, 98U, 72U, 71U, 70U, 69U, 68U, 41U, 40U, 39U, 38U, 37U, 36U, 35U, 34U, 33U, 8U, 7U, 6U, 5U, 4U, 3U, 2U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 15U, 15U, 15U, 15U, 15U, 15U, 15U, 15U, 15U, 15U, 16U, 17U, 18U, 19U, 21U, 22U, 23U, 23U, 24U, 24U, 25U, 26U, 26U, 27U, 27U, 28U, 28U, 29U, 29U, 29U, 30U, 30U, 31U, 31U, 31U, 32U, 32U, 32U, 32U, 33U, 33U, 33U, 34U, 34U, 34U, 35U, 35U, 36U, 36U, 37U, 37U, 37U, 38U, 38U, 39U, 39U, 47U, 47U, 47U, 47U, 47U, 47U, 47U, 47U}; static u8 const OFDM_CONFIG[61U] = { 16U, 15U, 10U, 12U, 20U, 250U, 255U, 80U, 0U, 80U, 0U, 0U, 0U, 92U, 0U, 0U, 64U, 0U, 64U, 0U, 0U, 0U, 168U, 38U, 50U, 51U, 6U, 165U, 111U, 85U, 200U, 187U, 10U, 225U, 44U, 74U, 134U, 131U, 52U, 0U, 79U, 36U, 111U, 194U, 3U, 64U, 128U, 0U, 192U, 193U, 88U, 241U, 0U, 196U, 144U, 62U, 216U, 60U, 123U, 16U, 16U}; static void rtl8187se_three_wire_io(struct ieee80211_hw *dev , u8 *data , u8 len , bool write ) { struct rtl8180_priv *priv ; int i ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; { priv = (struct rtl8180_priv *)dev->priv; i = 0; goto ldv_52270; ldv_52269: { tmp = rtl818x_ioread8(priv, (u8 *)priv->map + 637UL); } if (((int )tmp & 3) == 0) { goto ldv_52268; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_52270: ; if (i <= 4) { goto ldv_52269; } else { } ldv_52268: ; if (i == 5) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "rtl8225 (se) CmdReg: 0x%x RE/WE bits aren\'t clear\n", (int )tmp); } } else { } { tmp___0 = rtl818x_ioread8(priv, & (priv->map)->__annonCompField96.__annonCompField95.rf_sw_config); tmp = (u8 )((unsigned int )tmp___0 | 2U); rtl818x_iowrite8(priv, & (priv->map)->__annonCompField96.__annonCompField95.rf_sw_config, (int )tmp); tmp___1 = rtl818x_ioread8(priv, (u8 *)priv->map + 132UL); tmp = (unsigned int )tmp___1 & 247U; rtl818x_iowrite8(priv, (u8 *)priv->map + 132UL, (int )tmp); } if ((int )write) { if ((unsigned int )len == 16U) { { rtl818x_iowrite16(priv, (__le16 *)priv->map + 314UL, (int )*((u16 *)data)); } } else if ((unsigned int )len == 64U) { { rtl818x_iowrite32(priv, (__le32 *)priv->map + 157UL, *((u32 *)data)); rtl818x_iowrite32(priv, (__le32 *)priv->map + 158UL, *((u32 *)data + 4U)); } } else { { dev_err((struct device const *)(& (dev->wiphy)->dev), "rtl8225 (se) Unimplemented length\n"); } } } else { { rtl818x_iowrite16(priv, (__le16 *)priv->map + 314UL, (int )*((u16 *)data)); } } if ((int )write) { tmp = 2U; } else { tmp = 1U; } { rtl818x_iowrite8(priv, (u8 *)priv->map + 637UL, (int )tmp); i = 0; } goto ldv_52273; ldv_52272: { tmp = rtl818x_ioread8(priv, (u8 *)priv->map + 637UL); } if (((int )tmp & 3) == 0) { goto ldv_52271; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_52273: ; if (i <= 4) { goto ldv_52272; } else { } ldv_52271: { rtl818x_iowrite8(priv, (u8 *)priv->map + 637UL, 0); } if (! write) { { *((u16 *)data) = rtl818x_ioread16(priv, (__le16 *)priv->map + 433UL); *((u16 *)data) = (unsigned int )*((u16 *)data) & 4095U; } } else { } return; } } static u32 rtl8187se_rf_readreg(struct ieee80211_hw *dev , u8 addr ) { u32 dataread ; { { dataread = (u32 )addr & 15U; rtl8187se_three_wire_io(dev, (u8 *)(& dataread), 16, 0); } return (dataread); } } static void rtl8187se_rf_writereg(struct ieee80211_hw *dev , u8 addr , u32 data ) { u32 outdata ; { { outdata = (data << 4) | ((u32 )addr & 15U); rtl8187se_three_wire_io(dev, (u8 *)(& outdata), 16, 1); } return; } } static void rtl8225se_write_zebra_agc(struct ieee80211_hw *dev ) { int i ; { i = 0; goto ldv_52290; ldv_52289: { rtl8225_write_phy_ofdm(dev, 15, (int )ZEBRA_AGC[i]); rtl8225_write_phy_ofdm(dev, 14, (int )((unsigned int )((u8 )i) + 128U)); rtl8225_write_phy_ofdm(dev, 14, 0); i = i + 1; } ldv_52290: ; if (i <= 127) { goto ldv_52289; } else { } return; } } static void rtl8187se_write_ofdm_config(struct ieee80211_hw *dev ) { int i ; { i = 0; goto ldv_52297; ldv_52296: { rtl8225_write_phy_ofdm(dev, (int )((u8 )i), (int )OFDM_CONFIG[i]); i = i + 1; } ldv_52297: ; if (i <= 59) { goto ldv_52296; } else { } return; } } static void rtl8225sez2_rf_set_tx_power(struct ieee80211_hw *dev , int channel ) { struct rtl8180_priv *priv ; u8 cck_power ; u8 ofdm_power ; { priv = (struct rtl8180_priv *)dev->priv; cck_power = (u8 )priv->channels[channel + -1].hw_value; if ((unsigned int )cck_power > 35U) { cck_power = 35U; } else { } { rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_CCK, (int )cck_ofdm_gain_settings[(int )cck_power]); usleep_range(1000UL, 5000UL); ofdm_power = (u8 )((int )priv->channels[channel + -1].hw_value >> 8); } if ((unsigned int )ofdm_power > 35U) { ofdm_power = 35U; } else { } { rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_OFDM, (int )cck_ofdm_gain_settings[(int )ofdm_power]); } if ((unsigned int )ofdm_power <= 11U) { { rtl8225_write_phy_ofdm(dev, 7, 92); rtl8225_write_phy_ofdm(dev, 9, 92); } } else { } if ((unsigned int )ofdm_power <= 17U) { { rtl8225_write_phy_ofdm(dev, 7, 84); rtl8225_write_phy_ofdm(dev, 9, 84); } } else { { rtl8225_write_phy_ofdm(dev, 7, 80); rtl8225_write_phy_ofdm(dev, 9, 80); } } { usleep_range(1000UL, 5000UL); } return; } } static void rtl8187se_write_rf_gain(struct ieee80211_hw *dev ) { int i ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; { i = 0; goto ldv_52319; ldv_52318: { rtl8187se_rf_writereg(dev, 1, (u32 )i); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_52312; ldv_52311: { __const_udelay(4295000UL); } ldv_52312: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_52311; } else { } } { rtl8187se_rf_writereg(dev, 2, RF_GAIN_TABLE[i]); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_52316; ldv_52315: { __const_udelay(4295000UL); } ldv_52316: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_52315; } else { } } i = i + 1; ldv_52319: ; if (i <= 36) { goto ldv_52318; } else { } return; } } static void rtl8187se_write_initial_gain(struct ieee80211_hw *dev , int init_gain ) { unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; unsigned long __ms___2 ; unsigned long tmp___2 ; unsigned long __ms___3 ; unsigned long tmp___3 ; unsigned long __ms___4 ; unsigned long tmp___4 ; unsigned long __ms___5 ; unsigned long tmp___5 ; unsigned long __ms___6 ; unsigned long tmp___6 ; unsigned long __ms___7 ; unsigned long tmp___7 ; unsigned long __ms___8 ; unsigned long tmp___8 ; unsigned long __ms___9 ; unsigned long tmp___9 ; unsigned long __ms___10 ; unsigned long tmp___10 ; unsigned long __ms___11 ; unsigned long tmp___11 ; unsigned long __ms___12 ; unsigned long tmp___12 ; unsigned long __ms___13 ; unsigned long tmp___13 ; unsigned long __ms___14 ; unsigned long tmp___14 ; unsigned long __ms___15 ; unsigned long tmp___15 ; unsigned long __ms___16 ; unsigned long tmp___16 ; unsigned long __ms___17 ; unsigned long tmp___17 ; unsigned long __ms___18 ; unsigned long tmp___18 ; unsigned long __ms___19 ; unsigned long tmp___19 ; unsigned long __ms___20 ; unsigned long tmp___20 ; unsigned long __ms___21 ; unsigned long tmp___21 ; unsigned long __ms___22 ; unsigned long tmp___22 ; { { if (init_gain == 2) { goto case_2; } else { } if (init_gain == 3) { goto case_3; } else { } if (init_gain == 4) { goto case_4; } else { } if (init_gain == 5) { goto case_5; } else { } if (init_gain == 6) { goto case_6; } else { } if (init_gain == 7) { goto case_7; } else { } if (init_gain == 8) { goto case_8; } else { } goto switch_default; switch_default: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 38); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_52328; ldv_52327: { __const_udelay(4295000UL); } ldv_52328: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_52327; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 134); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_52332; ldv_52331: { __const_udelay(4295000UL); } ldv_52332: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_52331; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 250); } if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_52336; ldv_52335: { __const_udelay(4295000UL); } ldv_52336: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_52335; } else { } } goto ldv_52338; case_2: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 54); } if (1) { { __const_udelay(4295000UL); } } else { __ms___2 = 1UL; goto ldv_52342; ldv_52341: { __const_udelay(4295000UL); } ldv_52342: tmp___2 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___2 != 0UL) { goto ldv_52341; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 134); } if (1) { { __const_udelay(4295000UL); } } else { __ms___3 = 1UL; goto ldv_52346; ldv_52345: { __const_udelay(4295000UL); } ldv_52346: tmp___3 = __ms___3; __ms___3 = __ms___3 - 1UL; if (tmp___3 != 0UL) { goto ldv_52345; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 250); } if (1) { { __const_udelay(4295000UL); } } else { __ms___4 = 1UL; goto ldv_52350; ldv_52349: { __const_udelay(4295000UL); } ldv_52350: tmp___4 = __ms___4; __ms___4 = __ms___4 - 1UL; if (tmp___4 != 0UL) { goto ldv_52349; } else { } } goto ldv_52338; case_3: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 54); } if (1) { { __const_udelay(4295000UL); } } else { __ms___5 = 1UL; goto ldv_52355; ldv_52354: { __const_udelay(4295000UL); } ldv_52355: tmp___5 = __ms___5; __ms___5 = __ms___5 - 1UL; if (tmp___5 != 0UL) { goto ldv_52354; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 134); } if (1) { { __const_udelay(4295000UL); } } else { __ms___6 = 1UL; goto ldv_52359; ldv_52358: { __const_udelay(4295000UL); } ldv_52359: tmp___6 = __ms___6; __ms___6 = __ms___6 - 1UL; if (tmp___6 != 0UL) { goto ldv_52358; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 251); } if (1) { { __const_udelay(4295000UL); } } else { __ms___7 = 1UL; goto ldv_52363; ldv_52362: { __const_udelay(4295000UL); } ldv_52363: tmp___7 = __ms___7; __ms___7 = __ms___7 - 1UL; if (tmp___7 != 0UL) { goto ldv_52362; } else { } } goto ldv_52338; case_4: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 70); } if (1) { { __const_udelay(4295000UL); } } else { __ms___8 = 1UL; goto ldv_52368; ldv_52367: { __const_udelay(4295000UL); } ldv_52368: tmp___8 = __ms___8; __ms___8 = __ms___8 - 1UL; if (tmp___8 != 0UL) { goto ldv_52367; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 134); } if (1) { { __const_udelay(4295000UL); } } else { __ms___9 = 1UL; goto ldv_52372; ldv_52371: { __const_udelay(4295000UL); } ldv_52372: tmp___9 = __ms___9; __ms___9 = __ms___9 - 1UL; if (tmp___9 != 0UL) { goto ldv_52371; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 251); } if (1) { { __const_udelay(4295000UL); } } else { __ms___10 = 1UL; goto ldv_52376; ldv_52375: { __const_udelay(4295000UL); } ldv_52376: tmp___10 = __ms___10; __ms___10 = __ms___10 - 1UL; if (tmp___10 != 0UL) { goto ldv_52375; } else { } } goto ldv_52338; case_5: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 70); } if (1) { { __const_udelay(4295000UL); } } else { __ms___11 = 1UL; goto ldv_52381; ldv_52380: { __const_udelay(4295000UL); } ldv_52381: tmp___11 = __ms___11; __ms___11 = __ms___11 - 1UL; if (tmp___11 != 0UL) { goto ldv_52380; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 150); } if (1) { { __const_udelay(4295000UL); } } else { __ms___12 = 1UL; goto ldv_52385; ldv_52384: { __const_udelay(4295000UL); } ldv_52385: tmp___12 = __ms___12; __ms___12 = __ms___12 - 1UL; if (tmp___12 != 0UL) { goto ldv_52384; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 251); } if (1) { { __const_udelay(4295000UL); } } else { __ms___13 = 1UL; goto ldv_52389; ldv_52388: { __const_udelay(4295000UL); } ldv_52389: tmp___13 = __ms___13; __ms___13 = __ms___13 - 1UL; if (tmp___13 != 0UL) { goto ldv_52388; } else { } } goto ldv_52338; case_6: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 86); } if (1) { { __const_udelay(4295000UL); } } else { __ms___14 = 1UL; goto ldv_52394; ldv_52393: { __const_udelay(4295000UL); } ldv_52394: tmp___14 = __ms___14; __ms___14 = __ms___14 - 1UL; if (tmp___14 != 0UL) { goto ldv_52393; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 150); } if (1) { { __const_udelay(4295000UL); } } else { __ms___15 = 1UL; goto ldv_52398; ldv_52397: { __const_udelay(4295000UL); } ldv_52398: tmp___15 = __ms___15; __ms___15 = __ms___15 - 1UL; if (tmp___15 != 0UL) { goto ldv_52397; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 252); } if (1) { { __const_udelay(4295000UL); } } else { __ms___16 = 1UL; goto ldv_52402; ldv_52401: { __const_udelay(4295000UL); } ldv_52402: tmp___16 = __ms___16; __ms___16 = __ms___16 - 1UL; if (tmp___16 != 0UL) { goto ldv_52401; } else { } } goto ldv_52338; case_7: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 86); } if (1) { { __const_udelay(4295000UL); } } else { __ms___17 = 1UL; goto ldv_52407; ldv_52406: { __const_udelay(4295000UL); } ldv_52407: tmp___17 = __ms___17; __ms___17 = __ms___17 - 1UL; if (tmp___17 != 0UL) { goto ldv_52406; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 166); } if (1) { { __const_udelay(4295000UL); } } else { __ms___18 = 1UL; goto ldv_52411; ldv_52410: { __const_udelay(4295000UL); } ldv_52411: tmp___18 = __ms___18; __ms___18 = __ms___18 - 1UL; if (tmp___18 != 0UL) { goto ldv_52410; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 252); } if (1) { { __const_udelay(4295000UL); } } else { __ms___19 = 1UL; goto ldv_52415; ldv_52414: { __const_udelay(4295000UL); } ldv_52415: tmp___19 = __ms___19; __ms___19 = __ms___19 - 1UL; if (tmp___19 != 0UL) { goto ldv_52414; } else { } } goto ldv_52338; case_8: /* CIL Label */ { rtl8225_write_phy_ofdm(dev, 23, 102); } if (1) { { __const_udelay(4295000UL); } } else { __ms___20 = 1UL; goto ldv_52420; ldv_52419: { __const_udelay(4295000UL); } ldv_52420: tmp___20 = __ms___20; __ms___20 = __ms___20 - 1UL; if (tmp___20 != 0UL) { goto ldv_52419; } else { } } { rtl8225_write_phy_ofdm(dev, 36, 182); } if (1) { { __const_udelay(4295000UL); } } else { __ms___21 = 1UL; goto ldv_52424; ldv_52423: { __const_udelay(4295000UL); } ldv_52424: tmp___21 = __ms___21; __ms___21 = __ms___21 - 1UL; if (tmp___21 != 0UL) { goto ldv_52423; } else { } } { rtl8225_write_phy_ofdm(dev, 5, 252); } if (1) { { __const_udelay(4295000UL); } } else { __ms___22 = 1UL; goto ldv_52428; ldv_52427: { __const_udelay(4295000UL); } ldv_52428: tmp___22 = __ms___22; __ms___22 = __ms___22 - 1UL; if (tmp___22 != 0UL) { goto ldv_52427; } else { } } goto ldv_52338; switch_break: /* CIL Label */ ; } ldv_52338: ; return; } } void rtl8225se_rf_init(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; u32 rf23 ; u32 rf24 ; u8 d_cut ; u8 tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; unsigned long __ms___2 ; unsigned long tmp___3 ; unsigned long __ms___3 ; unsigned long tmp___4 ; unsigned long __ms___4 ; unsigned long tmp___5 ; unsigned long __ms___5 ; unsigned long tmp___6 ; unsigned long __ms___6 ; unsigned long tmp___7 ; unsigned long __ms___7 ; unsigned long tmp___8 ; unsigned long __ms___8 ; unsigned long tmp___9 ; unsigned long __ms___9 ; unsigned long tmp___10 ; unsigned long __ms___10 ; unsigned long tmp___11 ; unsigned long __ms___11 ; unsigned long tmp___12 ; unsigned long __ms___12 ; unsigned long tmp___13 ; unsigned long __ms___13 ; unsigned long tmp___14 ; unsigned long __ms___14 ; unsigned long tmp___15 ; unsigned long __ms___15 ; unsigned long tmp___16 ; unsigned long __ms___16 ; unsigned long tmp___17 ; unsigned long __ms___17 ; unsigned long tmp___18 ; unsigned long __ms___18 ; unsigned long tmp___19 ; unsigned long __ms___19 ; unsigned long tmp___20 ; unsigned long __ms___20 ; unsigned long tmp___21 ; unsigned long __ms___21 ; unsigned long tmp___22 ; unsigned long __ms___22 ; unsigned long tmp___23 ; unsigned long __ms___23 ; unsigned long tmp___24 ; unsigned long __ms___24 ; unsigned long tmp___25 ; unsigned long __ms___25 ; unsigned long tmp___26 ; unsigned long __ms___26 ; unsigned long tmp___27 ; unsigned long __ms___27 ; unsigned long tmp___28 ; unsigned long __ms___28 ; unsigned long tmp___29 ; unsigned long __ms___29 ; unsigned long tmp___30 ; unsigned long __ms___30 ; unsigned long tmp___31 ; unsigned long __ms___31 ; unsigned long tmp___32 ; unsigned long __ms___32 ; unsigned long tmp___33 ; unsigned long __ms___33 ; unsigned long tmp___34 ; unsigned long __ms___34 ; unsigned long tmp___35 ; unsigned long __ms___35 ; unsigned long tmp___36 ; unsigned long __ms___36 ; unsigned long tmp___37 ; unsigned long __ms___37 ; unsigned long tmp___38 ; unsigned long __ms___38 ; unsigned long tmp___39 ; unsigned long __ms___39 ; unsigned long tmp___40 ; unsigned long __ms___40 ; unsigned long tmp___41 ; unsigned long __ms___41 ; unsigned long tmp___42 ; unsigned long __ms___42 ; unsigned long tmp___43 ; unsigned long __ms___43 ; unsigned long tmp___44 ; unsigned long __ms___44 ; unsigned long tmp___45 ; unsigned long __ms___45 ; unsigned long tmp___46 ; unsigned long __ms___46 ; unsigned long tmp___47 ; unsigned long __ms___47 ; unsigned long tmp___48 ; unsigned long __ms___48 ; unsigned long tmp___49 ; unsigned long __ms___49 ; unsigned long tmp___50 ; unsigned long __ms___50 ; unsigned long tmp___51 ; unsigned long __ms___51 ; unsigned long tmp___52 ; unsigned long __ms___52 ; unsigned long tmp___53 ; unsigned long __ms___53 ; unsigned long tmp___54 ; unsigned long __ms___54 ; unsigned long tmp___55 ; unsigned long __ms___55 ; unsigned long tmp___56 ; unsigned long __ms___56 ; unsigned long tmp___57 ; unsigned long __ms___57 ; unsigned long tmp___58 ; unsigned long __ms___58 ; unsigned long tmp___59 ; u8 tmp___60 ; { { priv = (struct rtl8180_priv *)dev->priv; d_cut = 0U; rtl8187se_rf_writereg(dev, 0, 319U); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_52440; ldv_52439: { __const_udelay(4295000UL); } ldv_52440: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_52439; } else { } } { rf23 = rtl8187se_rf_readreg(dev, 8); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_52444; ldv_52443: { __const_udelay(4295000UL); } ldv_52444: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_52443; } else { } } { rf24 = rtl8187se_rf_readreg(dev, 9); } if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_52448; ldv_52447: { __const_udelay(4295000UL); } ldv_52448: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_52447; } else { } } if (rf23 == 2072U && rf24 == 1804U) { d_cut = 1U; } else { } { _dev_info((struct device const *)(& (dev->wiphy)->dev), "RTL8225-SE version %s\n", (unsigned int )d_cut != 0U ? (char *)"D" : (char *)"not-D"); rtl8187se_rf_writereg(dev, 0, 159U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___2 = 1UL; goto ldv_52452; ldv_52451: { __const_udelay(4295000UL); } ldv_52452: tmp___3 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___3 != 0UL) { goto ldv_52451; } else { } } { rtl8187se_rf_writereg(dev, 1, 1760U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___3 = 1UL; goto ldv_52456; ldv_52455: { __const_udelay(4295000UL); } ldv_52456: tmp___4 = __ms___3; __ms___3 = __ms___3 - 1UL; if (tmp___4 != 0UL) { goto ldv_52455; } else { } } { rtl8187se_rf_writereg(dev, 2, 77U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___4 = 1UL; goto ldv_52460; ldv_52459: { __const_udelay(4295000UL); } ldv_52460: tmp___5 = __ms___4; __ms___4 = __ms___4 - 1UL; if (tmp___5 != 0UL) { goto ldv_52459; } else { } } { rtl8187se_rf_writereg(dev, 3, 2033U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___5 = 1UL; goto ldv_52464; ldv_52463: { __const_udelay(4295000UL); } ldv_52464: tmp___6 = __ms___5; __ms___5 = __ms___5 - 1UL; if (tmp___6 != 0UL) { goto ldv_52463; } else { } } { rtl8187se_rf_writereg(dev, 4, 2421U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___6 = 1UL; goto ldv_52468; ldv_52467: { __const_udelay(4295000UL); } ldv_52468: tmp___7 = __ms___6; __ms___6 = __ms___6 - 1UL; if (tmp___7 != 0UL) { goto ldv_52467; } else { } } { rtl8187se_rf_writereg(dev, 5, 3186U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___7 = 1UL; goto ldv_52472; ldv_52471: { __const_udelay(4295000UL); } ldv_52472: tmp___8 = __ms___7; __ms___7 = __ms___7 - 1UL; if (tmp___8 != 0UL) { goto ldv_52471; } else { } } { rtl8187se_rf_writereg(dev, 6, 2790U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___8 = 1UL; goto ldv_52476; ldv_52475: { __const_udelay(4295000UL); } ldv_52476: tmp___9 = __ms___8; __ms___8 = __ms___8 - 1UL; if (tmp___9 != 0UL) { goto ldv_52475; } else { } } { rtl8187se_rf_writereg(dev, 7, 202U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___9 = 1UL; goto ldv_52480; ldv_52479: { __const_udelay(4295000UL); } ldv_52480: tmp___10 = __ms___9; __ms___9 = __ms___9 - 1UL; if (tmp___10 != 0UL) { goto ldv_52479; } else { } } { rtl8187se_rf_writereg(dev, 8, 3612U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___10 = 1UL; goto ldv_52484; ldv_52483: { __const_udelay(4295000UL); } ldv_52484: tmp___11 = __ms___10; __ms___10 = __ms___10 - 1UL; if (tmp___11 != 0UL) { goto ldv_52483; } else { } } { rtl8187se_rf_writereg(dev, 9, 752U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___11 = 1UL; goto ldv_52488; ldv_52487: { __const_udelay(4295000UL); } ldv_52488: tmp___12 = __ms___11; __ms___11 = __ms___11 - 1UL; if (tmp___12 != 0UL) { goto ldv_52487; } else { } } { rtl8187se_rf_writereg(dev, 10, 2512U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___12 = 1UL; goto ldv_52492; ldv_52491: { __const_udelay(4295000UL); } ldv_52492: tmp___13 = __ms___12; __ms___12 = __ms___12 - 1UL; if (tmp___13 != 0UL) { goto ldv_52491; } else { } } { rtl8187se_rf_writereg(dev, 11, 442U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___13 = 1UL; goto ldv_52496; ldv_52495: { __const_udelay(4295000UL); } ldv_52496: tmp___14 = __ms___13; __ms___13 = __ms___13 - 1UL; if (tmp___14 != 0UL) { goto ldv_52495; } else { } } { rtl8187se_rf_writereg(dev, 12, 1600U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___14 = 1UL; goto ldv_52500; ldv_52499: { __const_udelay(4295000UL); } ldv_52500: tmp___15 = __ms___14; __ms___14 = __ms___14 - 1UL; if (tmp___15 != 0UL) { goto ldv_52499; } else { } } { rtl8187se_rf_writereg(dev, 13, 2271U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___15 = 1UL; goto ldv_52504; ldv_52503: { __const_udelay(4295000UL); } ldv_52504: tmp___16 = __ms___15; __ms___15 = __ms___15 - 1UL; if (tmp___16 != 0UL) { goto ldv_52503; } else { } } { rtl8187se_rf_writereg(dev, 14, 32U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___16 = 1UL; goto ldv_52508; ldv_52507: { __const_udelay(4295000UL); } ldv_52508: tmp___17 = __ms___16; __ms___16 = __ms___16 - 1UL; if (tmp___17 != 0UL) { goto ldv_52507; } else { } } { rtl8187se_rf_writereg(dev, 15, 2448U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___17 = 1UL; goto ldv_52512; ldv_52511: { __const_udelay(4295000UL); } ldv_52512: tmp___18 = __ms___17; __ms___17 = __ms___17 - 1UL; if (tmp___18 != 0UL) { goto ldv_52511; } else { } } { rtl8187se_rf_writereg(dev, 0, 319U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___18 = 1UL; goto ldv_52516; ldv_52515: { __const_udelay(4295000UL); } ldv_52516: tmp___19 = __ms___18; __ms___18 = __ms___18 - 1UL; if (tmp___19 != 0UL) { goto ldv_52515; } else { } } { rtl8187se_rf_writereg(dev, 3, 2054U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___19 = 1UL; goto ldv_52520; ldv_52519: { __const_udelay(4295000UL); } ldv_52520: tmp___20 = __ms___19; __ms___19 = __ms___19 - 1UL; if (tmp___20 != 0UL) { goto ldv_52519; } else { } } { rtl8187se_rf_writereg(dev, 4, 935U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___20 = 1UL; goto ldv_52524; ldv_52523: { __const_udelay(4295000UL); } ldv_52524: tmp___21 = __ms___20; __ms___20 = __ms___20 - 1UL; if (tmp___21 != 0UL) { goto ldv_52523; } else { } } { rtl8187se_rf_writereg(dev, 5, 1435U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___21 = 1UL; goto ldv_52528; ldv_52527: { __const_udelay(4295000UL); } ldv_52528: tmp___22 = __ms___21; __ms___21 = __ms___21 - 1UL; if (tmp___22 != 0UL) { goto ldv_52527; } else { } } { rtl8187se_rf_writereg(dev, 6, 129U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___22 = 1UL; goto ldv_52532; ldv_52531: { __const_udelay(4295000UL); } ldv_52532: tmp___23 = __ms___22; __ms___22 = __ms___22 - 1UL; if (tmp___23 != 0UL) { goto ldv_52531; } else { } } { rtl8187se_rf_writereg(dev, 7, 416U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___23 = 1UL; goto ldv_52536; ldv_52535: { __const_udelay(4295000UL); } ldv_52536: tmp___24 = __ms___23; __ms___23 = __ms___23 - 1UL; if (tmp___24 != 0UL) { goto ldv_52535; } else { } } { rtl8187se_rf_writereg(dev, 10, 1U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___24 = 1UL; goto ldv_52540; ldv_52539: { __const_udelay(4295000UL); } ldv_52540: tmp___25 = __ms___24; __ms___24 = __ms___24 - 1UL; if (tmp___25 != 0UL) { goto ldv_52539; } else { } } { rtl8187se_rf_writereg(dev, 11, 1048U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___25 = 1UL; goto ldv_52544; ldv_52543: { __const_udelay(4295000UL); } ldv_52544: tmp___26 = __ms___25; __ms___25 = __ms___25 - 1UL; if (tmp___26 != 0UL) { goto ldv_52543; } else { } } { rtl8187se_rf_writereg(dev, 12, 4030U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___26 = 1UL; goto ldv_52548; ldv_52547: { __const_udelay(4295000UL); } ldv_52548: tmp___27 = __ms___26; __ms___26 = __ms___26 - 1UL; if (tmp___27 != 0UL) { goto ldv_52547; } else { } } { rtl8187se_rf_writereg(dev, 13, 8U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___27 = 1UL; goto ldv_52552; ldv_52551: { __const_udelay(4295000UL); } ldv_52552: tmp___28 = __ms___27; __ms___27 = __ms___27 - 1UL; if (tmp___28 != 0UL) { goto ldv_52551; } else { } } if ((unsigned int )d_cut != 0U) { { rtl8187se_rf_writereg(dev, 14, 2055U); } } else { { rtl8187se_rf_writereg(dev, 14, 2054U); } } if (1) { { __const_udelay(4295000UL); } } else { __ms___28 = 1UL; goto ldv_52556; ldv_52555: { __const_udelay(4295000UL); } ldv_52556: tmp___29 = __ms___28; __ms___28 = __ms___28 - 1UL; if (tmp___29 != 0UL) { goto ldv_52555; } else { } } { rtl8187se_rf_writereg(dev, 15, 2764U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___29 = 1UL; goto ldv_52560; ldv_52559: { __const_udelay(4295000UL); } ldv_52560: tmp___30 = __ms___29; __ms___29 = __ms___29 - 1UL; if (tmp___30 != 0UL) { goto ldv_52559; } else { } } { rtl8187se_rf_writereg(dev, 0, 471U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___30 = 1UL; goto ldv_52564; ldv_52563: { __const_udelay(4295000UL); } ldv_52564: tmp___31 = __ms___30; __ms___30 = __ms___30 - 1UL; if (tmp___31 != 0UL) { goto ldv_52563; } else { } } { rtl8187se_rf_writereg(dev, 3, 3584U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___31 = 1UL; goto ldv_52568; ldv_52567: { __const_udelay(4295000UL); } ldv_52568: tmp___32 = __ms___31; __ms___31 = __ms___31 - 1UL; if (tmp___32 != 0UL) { goto ldv_52567; } else { } } { rtl8187se_rf_writereg(dev, 4, 3664U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___32 = 1UL; goto ldv_52572; ldv_52571: { __const_udelay(4295000UL); } ldv_52572: tmp___33 = __ms___32; __ms___32 = __ms___32 - 1UL; if (tmp___33 != 0UL) { goto ldv_52571; } else { } } { rtl8187se_write_rf_gain(dev); rtl8187se_rf_writereg(dev, 5, 515U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___33 = 1UL; goto ldv_52576; ldv_52575: { __const_udelay(4295000UL); } ldv_52576: tmp___34 = __ms___33; __ms___33 = __ms___33 - 1UL; if (tmp___34 != 0UL) { goto ldv_52575; } else { } } { rtl8187se_rf_writereg(dev, 6, 512U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___34 = 1UL; goto ldv_52580; ldv_52579: { __const_udelay(4295000UL); } ldv_52580: tmp___35 = __ms___34; __ms___34 = __ms___34 - 1UL; if (tmp___35 != 0UL) { goto ldv_52579; } else { } } { rtl8187se_rf_writereg(dev, 0, 311U); __ms___35 = 11UL; } goto ldv_52584; ldv_52583: { __const_udelay(4295000UL); } ldv_52584: tmp___36 = __ms___35; __ms___35 = __ms___35 - 1UL; if (tmp___36 != 0UL) { goto ldv_52583; } else { } { rtl8187se_rf_writereg(dev, 13, 8U); __ms___36 = 11UL; } goto ldv_52588; ldv_52587: { __const_udelay(4295000UL); } ldv_52588: tmp___37 = __ms___36; __ms___36 = __ms___36 - 1UL; if (tmp___37 != 0UL) { goto ldv_52587; } else { } { rtl8187se_rf_writereg(dev, 0, 55U); __ms___37 = 11UL; } goto ldv_52592; ldv_52591: { __const_udelay(4295000UL); } ldv_52592: tmp___38 = __ms___37; __ms___37 = __ms___37 - 1UL; if (tmp___38 != 0UL) { goto ldv_52591; } else { } { rtl8187se_rf_writereg(dev, 4, 352U); __ms___38 = 11UL; } goto ldv_52596; ldv_52595: { __const_udelay(4295000UL); } ldv_52596: tmp___39 = __ms___38; __ms___38 = __ms___38 - 1UL; if (tmp___39 != 0UL) { goto ldv_52595; } else { } { rtl8187se_rf_writereg(dev, 7, 128U); __ms___39 = 11UL; } goto ldv_52600; ldv_52599: { __const_udelay(4295000UL); } ldv_52600: tmp___40 = __ms___39; __ms___39 = __ms___39 - 1UL; if (tmp___40 != 0UL) { goto ldv_52599; } else { } { rtl8187se_rf_writereg(dev, 2, 2189U); __ms___40 = 221UL; } goto ldv_52604; ldv_52603: { __const_udelay(4295000UL); } ldv_52604: tmp___41 = __ms___40; __ms___40 = __ms___40 - 1UL; if (tmp___41 != 0UL) { goto ldv_52603; } else { } { rtl8187se_rf_writereg(dev, 0, 311U); __ms___41 = 11UL; } goto ldv_52608; ldv_52607: { __const_udelay(4295000UL); } ldv_52608: tmp___42 = __ms___41; __ms___41 = __ms___41 - 1UL; if (tmp___42 != 0UL) { goto ldv_52607; } else { } { rtl8187se_rf_writereg(dev, 7, 0U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___42 = 1UL; goto ldv_52612; ldv_52611: { __const_udelay(4295000UL); } ldv_52612: tmp___43 = __ms___42; __ms___42 = __ms___42 - 1UL; if (tmp___43 != 0UL) { goto ldv_52611; } else { } } { rtl8187se_rf_writereg(dev, 7, 384U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___43 = 1UL; goto ldv_52616; ldv_52615: { __const_udelay(4295000UL); } ldv_52616: tmp___44 = __ms___43; __ms___43 = __ms___43 - 1UL; if (tmp___44 != 0UL) { goto ldv_52615; } else { } } { rtl8187se_rf_writereg(dev, 7, 544U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___44 = 1UL; goto ldv_52620; ldv_52619: { __const_udelay(4295000UL); } ldv_52620: tmp___45 = __ms___44; __ms___44 = __ms___44 - 1UL; if (tmp___45 != 0UL) { goto ldv_52619; } else { } } { rtl8187se_rf_writereg(dev, 7, 992U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___45 = 1UL; goto ldv_52624; ldv_52623: { __const_udelay(4295000UL); } ldv_52624: tmp___46 = __ms___45; __ms___45 = __ms___45 - 1UL; if (tmp___46 != 0UL) { goto ldv_52623; } else { } } { rtl8187se_rf_writereg(dev, 6, 193U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___46 = 1UL; goto ldv_52628; ldv_52627: { __const_udelay(4295000UL); } ldv_52628: tmp___47 = __ms___46; __ms___46 = __ms___46 - 1UL; if (tmp___47 != 0UL) { goto ldv_52627; } else { } } { rtl8187se_rf_writereg(dev, 10, 1U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___47 = 1UL; goto ldv_52632; ldv_52631: { __const_udelay(4295000UL); } ldv_52632: tmp___48 = __ms___47; __ms___47 = __ms___47 - 1UL; if (tmp___48 != 0UL) { goto ldv_52631; } else { } } if ((unsigned int )priv->xtal_cal != 0U) { { tmp = (u8 )((int )((signed char )((int )priv->xtal_in << 4)) | (int )((signed char )((int )priv->xtal_out << 1))); rtl8187se_rf_writereg(dev, 15, (u32 )tmp); _dev_info((struct device const *)(& (dev->wiphy)->dev), "Xtal cal\n"); } if (1) { { __const_udelay(4295000UL); } } else { __ms___48 = 1UL; goto ldv_52636; ldv_52635: { __const_udelay(4295000UL); } ldv_52636: tmp___49 = __ms___48; __ms___48 = __ms___48 - 1UL; if (tmp___49 != 0UL) { goto ldv_52635; } else { } } } else { { _dev_info((struct device const *)(& (dev->wiphy)->dev), "NO Xtal cal\n"); rtl8187se_rf_writereg(dev, 15, 2764U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___49 = 1UL; goto ldv_52640; ldv_52639: { __const_udelay(4295000UL); } ldv_52640: tmp___50 = __ms___49; __ms___49 = __ms___49 - 1UL; if (tmp___50 != 0UL) { goto ldv_52639; } else { } } } { rtl8187se_rf_writereg(dev, 0, 191U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___50 = 1UL; goto ldv_52644; ldv_52643: { __const_udelay(4295000UL); } ldv_52644: tmp___51 = __ms___50; __ms___50 = __ms___50 - 1UL; if (tmp___51 != 0UL) { goto ldv_52643; } else { } } { rtl8187se_rf_writereg(dev, 13, 2271U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___51 = 1UL; goto ldv_52648; ldv_52647: { __const_udelay(4295000UL); } ldv_52648: tmp___52 = __ms___51; __ms___51 = __ms___51 - 1UL; if (tmp___52 != 0UL) { goto ldv_52647; } else { } } { rtl8187se_rf_writereg(dev, 2, 77U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___52 = 1UL; goto ldv_52652; ldv_52651: { __const_udelay(4295000UL); } ldv_52652: tmp___53 = __ms___52; __ms___52 = __ms___52 - 1UL; if (tmp___53 != 0UL) { goto ldv_52651; } else { } } { rtl8187se_rf_writereg(dev, 4, 2421U); __ms___53 = 31UL; } goto ldv_52656; ldv_52655: { __const_udelay(4295000UL); } ldv_52656: tmp___54 = __ms___53; __ms___53 = __ms___53 - 1UL; if (tmp___54 != 0UL) { goto ldv_52655; } else { } { rtl8187se_rf_writereg(dev, 0, 407U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___54 = 1UL; goto ldv_52660; ldv_52659: { __const_udelay(4295000UL); } ldv_52660: tmp___55 = __ms___54; __ms___54 = __ms___54 - 1UL; if (tmp___55 != 0UL) { goto ldv_52659; } else { } } { rtl8187se_rf_writereg(dev, 5, 1451U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___55 = 1UL; goto ldv_52664; ldv_52663: { __const_udelay(4295000UL); } ldv_52664: tmp___56 = __ms___55; __ms___55 = __ms___55 - 1UL; if (tmp___56 != 0UL) { goto ldv_52663; } else { } } { rtl8187se_rf_writereg(dev, 0, 159U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___56 = 1UL; goto ldv_52668; ldv_52667: { __const_udelay(4295000UL); } ldv_52668: tmp___57 = __ms___56; __ms___56 = __ms___56 - 1UL; if (tmp___57 != 0UL) { goto ldv_52667; } else { } } { rtl8187se_rf_writereg(dev, 1, 0U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___57 = 1UL; goto ldv_52672; ldv_52671: { __const_udelay(4295000UL); } ldv_52672: tmp___58 = __ms___57; __ms___57 = __ms___57 - 1UL; if (tmp___58 != 0UL) { goto ldv_52671; } else { } } { rtl8187se_rf_writereg(dev, 2, 0U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___58 = 1UL; goto ldv_52676; ldv_52675: { __const_udelay(4295000UL); } ldv_52676: tmp___59 = __ms___58; __ms___58 = __ms___58 - 1UL; if (tmp___59 != 0UL) { goto ldv_52675; } else { } } { tmp___60 = rtl818x_ioread8(priv, (u8 *)priv->map + 590UL); rtl818x_iowrite8(priv, (u8 *)priv->map + 590UL, (int )tmp___60 & 159); rtl8225_write_phy_cck(dev, 0, 200); rtl8225_write_phy_cck(dev, 6, 28); rtl8225_write_phy_cck(dev, 16, 120); rtl8225_write_phy_cck(dev, 46, 208); rtl8225_write_phy_cck(dev, 47, 6); rtl8225_write_phy_cck(dev, 1, 70); rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_CCK, 16); rtl818x_iowrite8(priv, & (priv->map)->TX_GAIN_OFDM, 27); rtl818x_iowrite8(priv, & (priv->map)->TX_ANTENNA, 3); rtl8225_write_phy_ofdm(dev, 0, 18); rtl8225se_write_zebra_agc(dev); rtl8225_write_phy_ofdm(dev, 16, 0); rtl8187se_write_ofdm_config(dev); rtl8187se_rf_writereg(dev, 0, 159U); __const_udelay(2147500UL); rtl8187se_rf_writereg(dev, 4, 2418U); __const_udelay(2147500UL); rtl8187se_rf_writereg(dev, 0, 159U); __const_udelay(2147500UL); rtl8187se_rf_writereg(dev, 4, 2418U); __const_udelay(2147500UL); rtl8225_write_phy_ofdm(dev, 16, 64); rtl8225_write_phy_ofdm(dev, 18, 64); rtl8187se_write_initial_gain(dev, 4); } return; } } void rtl8225se_rf_stop(struct ieee80211_hw *dev ) { struct rtl8180_priv *priv ; { { priv = (struct rtl8180_priv *)dev->priv; rtl8225_write_phy_ofdm(dev, 16, 0); rtl8225_write_phy_ofdm(dev, 18, 0); rtl8187se_rf_writereg(dev, 4, 0U); rtl8187se_rf_writereg(dev, 0, 0U); usleep_range(1000UL, 5000UL); rtl8180_set_anaparam(priv, 2953137644U); rtl8180_set_anaparam2(priv, 16712902U); } return; } } void rtl8225se_rf_set_channel(struct ieee80211_hw *dev , struct ieee80211_conf *conf ) { int chan ; int tmp ; u32 tmp___0 ; { { tmp = ieee80211_frequency_to_channel((int )(conf->chandef.chan)->center_freq); chan = tmp; rtl8225sez2_rf_set_tx_power(dev, chan); rtl8187se_rf_writereg(dev, 7, rtl8225se_chan[chan + -1]); tmp___0 = rtl8187se_rf_readreg(dev, 7); } if ((tmp___0 & 3968U) != (u32 )rtl8225se_chan[chan + -1]) { { rtl8187se_rf_writereg(dev, 7, rtl8225se_chan[chan + -1]); } } else { } { usleep_range(10000UL, 20000UL); } return; } } static struct rtl818x_rf_ops const rtl8225se_ops = {(char *)"rtl8225-se", & rtl8225se_rf_init, & rtl8225se_rf_stop, & rtl8225se_rf_set_channel, 0}; struct rtl818x_rf_ops const *rtl8187se_detect_rf(struct ieee80211_hw *dev ) { { return (& rtl8225se_ops); } } void ldv_ieee80211_instance_callback_3_34(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl8225se_rf_init(arg1); } return; } } void ldv_ieee80211_instance_callback_3_37(void (*arg0)(struct ieee80211_hw * , struct ieee80211_conf * ) , struct ieee80211_hw *arg1 , struct ieee80211_conf *arg2 ) { { { rtl8225se_rf_set_channel(arg1, arg2); } return; } } void ldv_ieee80211_instance_stop_3_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl8225se_rf_stop(arg1); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_rtl8180_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_rtl8180_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_rtl8180_priv(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_rtl8180_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_rtl8180_priv(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_rtl8180_priv(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_rtl8180_priv(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_rtl8180_priv(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_rtl8180_priv(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_rtl8180_priv == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }