/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct urb; struct device; struct completion; struct usb_device; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct inode; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_51 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_52 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_50 { struct __anonstruct____missing_field_name_51 __annonCompField22 ; struct __anonstruct____missing_field_name_52 __annonCompField23 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_50 __annonCompField24 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_53 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_53 mm_context_t; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_54 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_56 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_60 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_59 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_60 __annonCompField27 ; int units ; }; struct __anonstruct____missing_field_name_58 { union __anonunion____missing_field_name_59 __annonCompField28 ; atomic_t _count ; }; union __anonunion____missing_field_name_57 { unsigned long counters ; struct __anonstruct____missing_field_name_58 __annonCompField29 ; unsigned int active ; }; struct __anonstruct____missing_field_name_55 { union __anonunion____missing_field_name_56 __annonCompField26 ; union __anonunion____missing_field_name_57 __annonCompField30 ; }; struct __anonstruct____missing_field_name_62 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_63 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_61 { struct list_head lru ; struct __anonstruct____missing_field_name_62 __annonCompField32 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_63 __annonCompField33 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_64 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_54 __annonCompField25 ; struct __anonstruct____missing_field_name_55 __annonCompField31 ; union __anonunion____missing_field_name_61 __annonCompField34 ; union __anonunion____missing_field_name_64 __annonCompField35 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_65 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_65 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; struct bio_vec; union __anonunion____missing_field_name_67 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_67 __annonCompField36 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; struct pid; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_12080 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_12080 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct sock; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct __anonstruct_nodemask_t_68 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_68 nodemask_t; struct ctl_table; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct dentry; struct user_namespace; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_160 { uid_t val ; }; typedef struct __anonstruct_kuid_t_160 kuid_t; struct __anonstruct_kgid_t_161 { gid_t val ; }; typedef struct __anonstruct_kgid_t_161 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_162 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_162 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_164 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_165 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_166 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_169 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_168 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_169 _addr_bnd ; }; struct __anonstruct__sigpoll_170 { long _band ; int _fd ; }; struct __anonstruct__sigsys_171 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_163 { int _pad[28U] ; struct __anonstruct__kill_164 _kill ; struct __anonstruct__timer_165 _timer ; struct __anonstruct__rt_166 _rt ; struct __anonstruct__sigchld_167 _sigchld ; struct __anonstruct__sigfault_168 _sigfault ; struct __anonstruct__sigpoll_170 _sigpoll ; struct __anonstruct__sigsys_171 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_163 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_175 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_174 { struct __anonstruct____missing_field_name_175 __annonCompField47 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_174 __annonCompField48 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_176 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_177 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_179 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_178 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_179 __annonCompField51 ; }; union __anonunion_type_data_180 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_182 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_181 { union __anonunion_payload_182 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_176 __annonCompField49 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_177 __annonCompField50 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_178 __annonCompField52 ; union __anonunion_type_data_180 type_data ; union __anonunion____missing_field_name_181 __annonCompField53 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct sk_buff; union __anonunion____missing_field_name_187 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_187 __annonCompField57 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_188 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_188 __annonCompField58 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_192 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_191 { u64 v64 ; struct __anonstruct____missing_field_name_192 __annonCompField60 ; }; struct skb_mstamp { union __anonunion____missing_field_name_191 __annonCompField61 ; }; union __anonunion____missing_field_name_195 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_194 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_195 __annonCompField62 ; }; union __anonunion____missing_field_name_193 { struct __anonstruct____missing_field_name_194 __annonCompField63 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_197 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_196 { __wsum csum ; struct __anonstruct____missing_field_name_197 __annonCompField65 ; }; union __anonunion____missing_field_name_198 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_199 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_200 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_193 __annonCompField64 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_196 __annonCompField66 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_198 __annonCompField67 ; __u32 secmark ; union __anonunion____missing_field_name_199 __annonCompField68 ; union __anonunion____missing_field_name_200 __annonCompField69 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_240 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_240 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_242 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_242 sync_serial_settings; struct __anonstruct_te1_settings_243 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_243 te1_settings; struct __anonstruct_raw_hdlc_proto_244 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_244 raw_hdlc_proto; struct __anonstruct_fr_proto_245 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_245 fr_proto; struct __anonstruct_fr_proto_pvc_246 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_246 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_247 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_247 fr_proto_pvc_info; struct __anonstruct_cisco_proto_248 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_248 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_249 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_249 ifs_ifsu ; }; union __anonunion_ifr_ifrn_250 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_251 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_250 ifr_ifrn ; union __anonunion_ifr_ifru_251 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_254 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_253 { struct __anonstruct____missing_field_name_254 __annonCompField71 ; }; struct lockref { union __anonunion____missing_field_name_253 __annonCompField72 ; }; struct vfsmount; struct __anonstruct____missing_field_name_256 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_255 { struct __anonstruct____missing_field_name_256 __annonCompField73 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_255 __annonCompField74 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_257 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_257 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_259 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_258 { struct __anonstruct____missing_field_name_259 __annonCompField75 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_258 __annonCompField76 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct nameidata; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_261 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_261 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_262 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_262 __annonCompField78 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_265 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_266 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_267 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_265 __annonCompField79 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_266 __annonCompField80 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_267 __annonCompField81 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_268 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_268 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_270 { struct list_head link ; int state ; }; union __anonunion_fl_u_269 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_270 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_269 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_27904 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27904 phy_interface_t; enum ldv_27957 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27957 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_303 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_304 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_305 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_303 adj_list ; struct __anonstruct_all_adj_list_304 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_305 __annonCompField87 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NL80211_IFTYPE_OCB = 11, NUM_NL80211_IFTYPES = 12, NL80211_IFTYPE_MAX = 11 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1, NL80211_USER_REG_HINT_INDOOR = 2 } ; enum nl80211_channel_type { NL80211_CHAN_NO_HT = 0, NL80211_CHAN_HT20 = 1, NL80211_CHAN_HT40MINUS = 2, NL80211_CHAN_HT40PLUS = 3 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; enum nl80211_tx_power_setting { NL80211_TX_POWER_AUTOMATIC = 0, NL80211_TX_POWER_LIMITED = 1, NL80211_TX_POWER_FIXED = 2 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; u32 dfs_cac_ms ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[3U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; unsigned int dfs_cac_ms ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; s32 rssi_thold ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 min_rssi_thold ; u32 delay ; u8 mac_addr[6U] ; u8 mac_addr_mask[6U] ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct callback_head callback_head ; u32 owner_nlportid ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 const *ssid ; u8 const *bssid ; struct cfg80211_chan_def chandef ; u8 const *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; struct ieee80211_channel *channel_hint ; u8 const *bssid ; u8 const *bssid_hint ; u8 const *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 const *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 const *mask ; u8 const *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; struct cfg80211_sched_scan_request *nd_config ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; u8 radar_detect_regions ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; int max_nd_match_sets ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u8 ext_features[0U] ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; u16 max_ap_assoc_sta ; u8 max_num_csa_counters ; u8 max_adj_channel_rssi_comp ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_307 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 const *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct cfg80211_chan_def chandef ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; unsigned int cac_time_ms ; u32 owner_nlportid ; struct __anonstruct_wext_307 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; struct ieee80211_vif; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; enum nl80211_tx_power_setting txpower_type ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; unsigned char count : 5 ; unsigned short flags : 11 ; }; struct __anonstruct____missing_field_name_311 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; unsigned char use_rts : 1 ; unsigned char use_cts_prot : 1 ; unsigned char short_preamble : 1 ; unsigned char skip_table : 1 ; }; union __anonunion____missing_field_name_310 { struct __anonstruct____missing_field_name_311 __annonCompField88 ; unsigned long jiffies ; }; struct ieee80211_key_conf; struct __anonstruct_control_309 { union __anonunion____missing_field_name_310 __annonCompField89 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_312 { struct ieee80211_tx_rate rates[4U] ; s32 ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; u16 tx_time ; void *status_driver_data[2U] ; }; struct __anonstruct____missing_field_name_313 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_308 { struct __anonstruct_control_309 control ; struct __anonstruct_status_312 status ; struct __anonstruct____missing_field_name_313 __annonCompField90 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_308 __annonCompField91 ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 vht_flag ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_314 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_314 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; bool tdls ; bool tdls_initiator ; u8 drv_priv[0U] ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; enum intf_type { INTF_PCI = 0, INTF_USB = 1 } ; enum radio_path { RF90_PATH_A = 0, RF90_PATH_B = 1, RF90_PATH_C = 2, RF90_PATH_D = 3 } ; enum rf_pwrstate { ERFON = 0, ERFSLEEP = 1, ERFOFF = 2 } ; struct bb_reg_def { u32 rfintfs ; u32 rfintfi ; u32 rfintfo ; u32 rfintfe ; u32 rf3wire_offset ; u32 rflssi_select ; u32 rftxgain_stage ; u32 rfhssi_para1 ; u32 rfhssi_para2 ; u32 rfsw_ctrl ; u32 rfagc_control1 ; u32 rfagc_control2 ; u32 rfrxiq_imbal ; u32 rfrx_afe ; u32 rftxiq_imbal ; u32 rftx_afe ; u32 rf_rb ; u32 rf_rbpi ; }; enum io_type { IO_CMD_PAUSE_DM_BY_SCAN = 0, IO_CMD_PAUSE_BAND0_DM_BY_SCAN = 0, IO_CMD_PAUSE_BAND1_DM_BY_SCAN = 1, IO_CMD_RESUME_DM_BY_SCAN = 2 } ; enum rt_media_status { RT_MEDIA_DISCONNECT = 0, RT_MEDIA_CONNECT = 1 } ; enum rt_enc_alg { NO_ENCRYPTION = 0, WEP40_ENCRYPTION = 1, TKIP_ENCRYPTION = 2, RSERVED_ENCRYPTION = 3, AESCCMP_ENCRYPTION = 4, WEP104_ENCRYPTION = 5, AESCMAC_ENCRYPTION = 6 } ; enum rt_psmode { EACTIVE = 0, EMAXPS = 1, EFASTPS = 2, EAUTOPS = 3 } ; enum led_ctl_mode { LED_CTL_POWER_ON = 1, LED_CTL_LINK = 2, LED_CTL_NO_LINK = 3, LED_CTL_TX = 4, LED_CTL_RX = 5, LED_CTL_SITE_SURVEY = 6, LED_CTL_POWER_OFF = 7, LED_CTL_START_TO_LINK = 8, LED_CTL_START_WPS = 9, LED_CTL_STOP_WPS = 10 } ; enum macphy_mode { SINGLEMAC_SINGLEPHY = 0, DUALMAC_DUALPHY = 1, DUALMAC_SINGLEPHY = 2 } ; enum band_type { BAND_ON_2_4G = 0, BAND_ON_5G = 1, BAND_ON_BOTH = 2, BANDMAX = 3 } ; enum rtl_link_state { MAC80211_NOLINK = 0, MAC80211_LINKING = 1, MAC80211_LINKED = 2, MAC80211_LINKED_SCANNING = 3 } ; enum rt_polarity_ctl { RT_POLARITY_LOW_ACT = 0, RT_POLARITY_HIGH_ACT = 1 } ; struct rtl_qos_parameters { __le16 cw_min ; __le16 cw_max ; u8 aifs ; u8 flag ; __le16 tx_op ; }; struct rt_smooth_data { u32 elements[100U] ; u32 index ; u32 total_num ; u32 total_val ; }; struct false_alarm_statistics { u32 cnt_parity_fail ; u32 cnt_rate_illegal ; u32 cnt_crc8_fail ; u32 cnt_mcs_fail ; u32 cnt_fast_fsync_fail ; u32 cnt_sb_search_fail ; u32 cnt_ofdm_fail ; u32 cnt_cck_fail ; u32 cnt_all ; u32 cnt_ofdm_cca ; u32 cnt_cck_cca ; u32 cnt_cca_all ; u32 cnt_bw_usc ; u32 cnt_bw_lsc ; }; struct init_gain { u8 xaagccore1 ; u8 xbagccore1 ; u8 xcagccore1 ; u8 xdagccore1 ; u8 cca ; }; struct wireless_stats { unsigned long txbytesunicast ; unsigned long txbytesmulticast ; unsigned long txbytesbroadcast ; unsigned long rxbytesunicast ; long rx_snr_db[4U] ; long recv_signal_power ; long signal_quality ; long last_sigstrength_inpercent ; u32 rssi_calculate_cnt ; u32 pwdb_all_cnt ; long signal_strength ; u8 rx_rssi_percentage[4U] ; u8 rx_evm_dbm[4U] ; u8 rx_evm_percentage[2U] ; u16 rx_cfo_short[4U] ; u16 rx_cfo_tail[4U] ; struct rt_smooth_data ui_rssi ; struct rt_smooth_data ui_link_quality ; }; struct rate_adaptive { u8 rate_adaptive_disabled ; u8 ratr_state ; u16 reserve ; u32 high_rssi_thresh_for_ra ; u32 high2low_rssi_thresh_for_ra ; u8 low2high_rssi_thresh_for_ra40m ; u32 low_rssi_thresh_for_ra40m ; u8 low2high_rssi_thresh_for_ra20m ; u32 low_rssi_thresh_for_ra20m ; u32 upper_rssi_threshold_ratr ; u32 middleupper_rssi_threshold_ratr ; u32 middle_rssi_threshold_ratr ; u32 middlelow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr ; u32 ultralow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr_40m ; u32 low_rssi_threshold_ratr_20m ; u8 ping_rssi_enable ; u32 ping_rssi_ratr ; u32 ping_rssi_thresh_for_ra ; u32 last_ratr ; u8 pre_ratr_state ; u8 ldpc_thres ; bool use_ldpc ; bool lower_rts_rate ; bool is_special_data ; }; struct regd_pair_mapping { u16 reg_dmnenum ; u16 reg_5ghz_ctl ; u16 reg_2ghz_ctl ; }; struct dynamic_primary_cca { u8 pricca_flag ; u8 intf_flag ; u8 intf_type ; u8 dup_rts_flag ; u8 monitor_flag ; u8 ch_offset ; u8 mf_state ; }; struct rtl_regulatory { char alpha2[2U] ; u16 country_code ; u16 max_power_level ; u32 tp_scale ; u16 current_rd ; u16 current_rd_ext ; int16_t power_limit ; struct regd_pair_mapping *regpair ; }; struct rtl_rfkill { bool rfkill_state ; }; enum p2p_ps_state { P2P_PS_DISABLE = 0, P2P_PS_ENABLE = 1, P2P_PS_SCAN = 2, P2P_PS_SCAN_DONE = 3, P2P_PS_ALLSTASLEEP = 4 } ; enum p2p_ps_mode { P2P_PS_NONE = 0, P2P_PS_CTWINDOW = 1, P2P_PS_NOA = 2, P2P_PS_MIX = 3 } ; struct rtl_p2p_ps_info { enum p2p_ps_mode p2p_ps_mode ; enum p2p_ps_state p2p_ps_state ; u8 noa_index ; u8 ctwindow ; u8 opp_ps ; u8 noa_num ; u8 noa_count_type[2U] ; u32 noa_duration[2U] ; u32 noa_interval[2U] ; u32 noa_start_time[2U] ; }; struct p2p_ps_offload_t { unsigned char offload_en : 1 ; unsigned char role : 1 ; unsigned char ctwindow_en : 1 ; unsigned char noa0_en : 1 ; unsigned char noa1_en : 1 ; unsigned char allstasleep : 1 ; unsigned char discovery : 1 ; unsigned char reserved : 1 ; }; struct iqk_matrix_regs { bool iqk_done ; long value[1U][8U] ; }; struct phy_parameters { u16 length ; u32 *pdata ; }; struct rtl_phy { struct bb_reg_def phyreg_def[4U] ; struct init_gain initgain_backup ; enum io_type current_io_type ; u8 rf_mode ; u8 rf_type ; u8 current_chan_bw ; u8 set_bwmode_inprogress ; u8 sw_chnl_inprogress ; u8 sw_chnl_stage ; u8 sw_chnl_step ; u8 current_channel ; u8 h2c_box_num ; u8 set_io_inprogress ; u8 lck_inprogress ; s32 reg_e94 ; s32 reg_e9c ; s32 reg_ea4 ; s32 reg_eac ; s32 reg_eb4 ; s32 reg_ebc ; s32 reg_ec4 ; s32 reg_ecc ; u8 rfpienable ; u8 reserve_0 ; u16 reserve_1 ; u32 reg_c04 ; u32 reg_c08 ; u32 reg_874 ; u32 adda_backup[16U] ; u32 iqk_mac_backup[4U] ; u32 iqk_bb_backup[10U] ; bool iqk_initialized ; bool rfpath_rx_enable[4U] ; u8 reg_837 ; bool need_iqk ; struct iqk_matrix_regs iqk_matrix[46U] ; bool rfpi_enable ; bool iqk_in_progress ; u8 pwrgroup_cnt ; u8 cck_high_power ; u32 mcs_txpwrlevel_origoffset[13U][16U] ; u32 mcs_offset[13U][16U] ; u32 tx_power_by_rate_offset[2U][4U][4U][12U] ; u8 txpwr_by_rate_base_24g[4U][4U][6U] ; u8 txpwr_by_rate_base_5g[4U][4U][5U] ; u8 default_initialgain[4U] ; u8 cur_cck_txpwridx ; u8 cur_ofdm24g_txpwridx ; u8 cur_bw20_txpwridx ; u8 cur_bw40_txpwridx ; char txpwr_limit_2_4g[4U][4U][6U][14U][4U] ; char txpwr_limit_5g[4U][4U][6U][54U][4U] ; u32 rfreg_chnlval[2U] ; bool apk_done ; u32 reg_rf3c[2U] ; u32 backup_rf_0x1a ; u8 framesync ; u32 framesync_c34 ; u8 num_total_rfpath ; struct phy_parameters hwparam_tables[10U] ; u16 rf_pathmap ; u8 hw_rof_enable ; enum rt_polarity_ctl polarity_ctl ; }; struct rtl_ht_agg { u16 txq_id ; u16 wait_for_ba ; u16 start_idx ; u64 bitmap ; u32 rate_n_flags ; u8 agg_state ; u8 rx_agg_state ; }; struct rtl_tid_data { u16 seq_number ; struct rtl_ht_agg agg ; }; struct rtl_priv; struct rtl_io { struct device *dev ; struct mutex bb_mutex ; unsigned long pci_mem_end ; unsigned long pci_mem_start ; unsigned long pci_base_addr ; void (*write8_async)(struct rtl_priv * , u32 , u8 ) ; void (*write16_async)(struct rtl_priv * , u32 , u16 ) ; void (*write32_async)(struct rtl_priv * , u32 , u32 ) ; void (*writeN_sync)(struct rtl_priv * , u32 , void * , u16 ) ; u8 (*read8_sync)(struct rtl_priv * , u32 ) ; u16 (*read16_sync)(struct rtl_priv * , u32 ) ; u32 (*read32_sync)(struct rtl_priv * , u32 ) ; }; struct rtl_mac { u8 mac_addr[6U] ; u8 mac80211_registered ; u8 beacon_enabled ; u32 tx_ss_num ; u32 rx_ss_num ; struct ieee80211_supported_band bands[3U] ; struct ieee80211_hw *hw ; struct ieee80211_vif *vif ; enum nl80211_iftype opmode ; struct rtl_tid_data tids[9U] ; enum rtl_link_state link_state ; int n_channels ; int n_bitrates ; bool offchan_delay ; u8 p2p ; bool p2p_in_use ; u32 rx_conf ; u16 rx_mgt_filter ; u16 rx_ctrl_filter ; u16 rx_data_filter ; bool act_scanning ; u8 cnt_after_linked ; bool skip_scan ; struct sk_buff_head skb_waitq[9U] ; u8 ht_stbc_cap ; u8 ht_cur_stbc ; u8 vht_enable ; u8 bw_80 ; u8 vht_cur_ldpc ; u8 vht_cur_stbc ; u8 vht_stbc_cap ; u8 vht_ldpc_cap ; bool rdg_en ; u8 bssid[6U] ; u32 vendor ; u8 mcs[16U] ; u32 basic_rates ; u8 ht_enable ; u8 sgi_40 ; u8 sgi_20 ; u8 bw_40 ; u16 mode ; u8 slot_time ; u8 short_preamble ; u8 use_cts_protect ; u8 cur_40_prime_sc ; u8 cur_40_prime_sc_bk ; u8 cur_80_prime_sc ; u64 tsf ; u8 retry_short ; u8 retry_long ; u16 assoc_id ; bool hiddenssid ; int beacon_interval ; u8 min_space_cfg ; u8 max_mss_density ; u8 current_ampdu_factor ; u8 current_ampdu_density ; struct ieee80211_tx_queue_params edca_param[5U] ; struct rtl_qos_parameters ac[4U] ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u32 last_bt_edca_ul ; u32 last_bt_edca_dl ; }; struct btdm_8723 { bool all_off ; bool agc_table_en ; bool adc_back_off_on ; bool b2_ant_hid_en ; bool low_penalty_rate_adaptive ; bool rf_rx_lpf_shrink ; bool reject_aggre_pkt ; bool tra_tdma_on ; u8 tra_tdma_nav ; u8 tra_tdma_ant ; bool tdma_on ; u8 tdma_ant ; u8 tdma_nav ; u8 tdma_dac_swing ; u8 fw_dac_swing_lvl ; bool ps_tdma_on ; u8 ps_tdma_byte[5U] ; bool pta_on ; u32 val_0x6c0 ; u32 val_0x6c8 ; u32 val_0x6cc ; bool sw_dac_swing_on ; u32 sw_dac_swing_lvl ; u32 wlan_act_hi ; u32 wlan_act_lo ; u32 bt_retry_index ; bool dec_bt_pwr ; bool ignore_wlan_act ; }; struct bt_coexist_8723 { u32 high_priority_tx ; u32 high_priority_rx ; u32 low_priority_tx ; u32 low_priority_rx ; u8 c2h_bt_info ; bool c2h_bt_info_req_sent ; bool c2h_bt_inquiry_page ; u32 bt_inq_page_start_time ; u8 bt_retry_cnt ; u8 c2h_bt_info_original ; u8 bt_inquiry_page_cnt ; struct btdm_8723 btdm ; }; struct rtl_hal { struct ieee80211_hw *hw ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool bbrf_ready ; bool mac_func_enable ; bool pre_edcca_enable ; struct bt_coexist_8723 hal_coex_8723 ; enum intf_type interface ; u16 hw_type ; u8 ic_class ; u8 oem_id ; u32 version ; u8 state ; u8 board_type ; u8 external_pa ; u8 pa_mode ; u8 pa_type_2g ; u8 pa_type_5g ; u8 lna_type_2g ; u8 lna_type_5g ; u8 external_pa_2g ; u8 external_lna_2g ; u8 external_pa_5g ; u8 external_lna_5g ; u8 rfe_type ; u32 fwsize ; u8 *pfirmware ; u16 fw_version ; u16 fw_subversion ; bool h2c_setinprogress ; u8 last_hmeboxnum ; bool fw_ready ; u8 fw_rsvdpage_startoffset ; u8 h2c_txcmd_seq ; u8 current_ra_rate ; u16 fwcmd_iomap ; u32 fwcmd_ioparam ; bool set_fwcmd_inprogress ; u8 current_fwcmd_io ; struct p2p_ps_offload_t p2p_ps_offload ; bool fw_clk_change_in_progress ; bool allow_sw_to_change_hwclc ; u8 fw_ps_state ; bool driver_going2unload ; u8 minspace_cfg ; enum macphy_mode macphymode ; enum band_type current_bandtype ; enum band_type current_bandtypebackup ; enum band_type bandset ; u32 interfaceindex ; u8 macphyctl_reg ; bool earlymode_enable ; u8 max_earlymode_num ; bool during_mac0init_radiob ; bool during_mac1init_radioa ; bool reloadtxpowerindex ; bool load_imrandiqk_setting_for2g ; bool disable_amsdu_8k ; bool master_of_dmsp ; bool slave_of_dmsp ; u16 rx_tag ; u8 rts_en ; bool wow_enable ; bool enter_pnp_sleep ; bool wake_from_pnp_sleep ; bool wow_enabled ; __kernel_time_t last_suspend_sec ; u32 wowlan_fwsize ; u8 *wowlan_firmware ; u8 hw_rof_enable ; bool real_wow_v2_enable ; bool re_init_llt_table ; }; struct rtl_security { bool use_sw_sec ; bool being_setkey ; bool use_defaultkey ; enum rt_enc_alg pairwise_enc_algorithm ; enum rt_enc_alg group_enc_algorithm ; u32 hwsec_cam_bitmap ; u8 hwsec_cam_sta_addr[32U][6U] ; u8 key_buf[5U][61U] ; u8 key_len[5U] ; u8 *pairwise_key ; }; struct fast_ant_training { u8 bssid[6U] ; u8 antsel_rx_keep_0 ; u8 antsel_rx_keep_1 ; u8 antsel_rx_keep_2 ; u32 ant_sum[7U] ; u32 ant_cnt[7U] ; u32 ant_ave[7U] ; u8 fat_state ; u32 train_idx ; u8 antsel_a[33U] ; u8 antsel_b[33U] ; u8 antsel_c[33U] ; u32 main_ant_sum[33U] ; u32 aux_ant_sum[33U] ; u32 main_ant_cnt[33U] ; u32 aux_ant_cnt[33U] ; u8 rx_idle_ant ; bool becomelinked ; }; struct dm_phy_dbg_info { char rx_snrdb[4U] ; u64 num_qry_phy_status ; u64 num_qry_phy_status_cck ; u64 num_qry_phy_status_ofdm ; u16 num_qry_beacon_pkt ; u16 num_non_be_pkt ; s32 rx_evm[4U] ; }; struct rtl_dm { long entry_min_undec_sm_pwdb ; long undec_sm_cck ; long undec_sm_pwdb ; long entry_max_undec_sm_pwdb ; s32 ofdm_pkt_cnt ; bool dm_initialgain_enable ; bool dynamic_txpower_enable ; bool current_turbo_edca ; bool is_any_nonbepkts ; bool is_cur_rdlstate ; bool txpower_trackinginit ; bool disable_framebursting ; bool cck_inch14 ; bool txpower_tracking ; bool useramask ; bool rfpath_rxenable[4U] ; bool inform_fw_driverctrldm ; bool current_mrc_switch ; u8 txpowercount ; u8 powerindex_backup[6U] ; u8 thermalvalue_rxgain ; u8 thermalvalue_iqk ; u8 thermalvalue_lck ; u8 thermalvalue ; u8 last_dtp_lvl ; u8 thermalvalue_avg[8U] ; u8 thermalvalue_avg_index ; bool done_txpower ; u8 dynamic_txhighpower_lvl ; u8 dm_flag ; u8 dm_flag_tmp ; u8 dm_type ; u8 dm_rssi_sel ; u8 txpower_track_control ; bool interrupt_migration ; bool disable_tx_int ; char ofdm_index[4U] ; u8 default_ofdm_index ; u8 default_cck_index ; char cck_index ; char delta_power_index[4U] ; char delta_power_index_last[4U] ; char power_index_offset[4U] ; char absolute_ofdm_swing_idx[4U] ; char remnant_ofdm_swing_idx[4U] ; char remnant_cck_idx ; bool modify_txagc_flag_path_a ; bool modify_txagc_flag_path_b ; bool one_entry_only ; struct dm_phy_dbg_info dbginfo ; bool atc_status ; bool large_cfo_hit ; bool is_freeze ; int cfo_tail[2U] ; int cfo_ave_pre ; int crystal_cap ; u8 cfo_threshold ; u32 packet_count ; u32 packet_count_pre ; u8 tx_rate ; u8 swing_idx_ofdm[4U] ; u8 swing_idx_ofdm_cur ; u8 swing_idx_ofdm_base[4U] ; bool swing_flag_ofdm ; u8 swing_idx_cck ; u8 swing_idx_cck_cur ; u8 swing_idx_cck_base ; bool swing_flag_cck ; char swing_diff_2g ; char swing_diff_5g ; u8 delta_swing_table_idx_24gccka_p[30U] ; u8 delta_swing_table_idx_24gccka_n[30U] ; u8 delta_swing_table_idx_24gcckb_p[30U] ; u8 delta_swing_table_idx_24gcckb_n[30U] ; u8 delta_swing_table_idx_24ga_p[30U] ; u8 delta_swing_table_idx_24ga_n[30U] ; u8 delta_swing_table_idx_24gb_p[30U] ; u8 delta_swing_table_idx_24gb_n[30U] ; u8 delta_swing_table_idx_5ga_p[3U][30U] ; u8 delta_swing_table_idx_5ga_n[3U][30U] ; u8 delta_swing_table_idx_5gb_p[3U][30U] ; u8 delta_swing_table_idx_5gb_n[3U][30U] ; u8 delta_swing_table_idx_24ga_p_8188e[30U] ; u8 delta_swing_table_idx_24ga_n_8188e[30U] ; bool supp_phymode_switch ; struct fast_ant_training fat_table ; u8 resp_tx_path ; u8 path_sel ; u32 patha_sum ; u32 pathb_sum ; u32 patha_cnt ; u32 pathb_cnt ; u8 pre_channel ; u8 *p_channel ; u8 linked_interval ; u64 last_tx_ok_cnt ; u64 last_rx_ok_cnt ; }; struct rtl_efuse { bool autoLoad_ok ; bool bootfromefuse ; u16 max_physical_size ; u8 efuse_map[2U][512U] ; u16 efuse_usedbytes ; u8 efuse_usedpercentage ; u8 autoload_failflag ; u8 autoload_status ; short epromtype ; u16 eeprom_vid ; u16 eeprom_did ; u16 eeprom_svid ; u16 eeprom_smid ; u8 eeprom_oemid ; u16 eeprom_channelplan ; u8 eeprom_version ; u8 board_type ; u8 external_pa ; u8 dev_addr[6U] ; u8 wowlan_enable ; u8 antenna_div_cfg ; u8 antenna_div_type ; bool txpwr_fromeprom ; u8 eeprom_crystalcap ; u8 eeprom_tssi[2U] ; u8 eeprom_tssi_5g[3U][2U] ; u8 eeprom_pwrlimit_ht20[12U] ; u8 eeprom_pwrlimit_ht40[12U] ; u8 eeprom_chnlarea_txpwr_cck[4U][3U] ; u8 eeprom_chnlarea_txpwr_ht40_1s[4U][12U] ; u8 eprom_chnl_txpwr_ht40_2sdf[4U][12U] ; u8 internal_pa_5g[2U] ; u8 eeprom_c9 ; u8 eeprom_cc ; u8 eeprom_pwrgroup[2U][3U] ; u8 pwrgroup_ht20[2U][59U] ; u8 pwrgroup_ht40[2U][59U] ; u8 txpwrlevel_cck[4U][14U] ; u8 txpwrlevel_ht40_1s[4U][59U] ; u8 txpwrlevel_ht40_2s[4U][59U] ; char txpwr_cckdiff[4U][59U] ; char txpwr_ht20diff[4U][59U] ; char txpwr_ht40diff[4U][59U] ; char txpwr_legacyhtdiff[4U][59U] ; u8 txpwr_5g_bw40base[4U][59U] ; u8 txpwr_5g_bw80base[4U][7U] ; char txpwr_5g_ofdmdiff[4U][4U] ; char txpwr_5g_bw20diff[4U][4U] ; char txpwr_5g_bw40diff[4U][4U] ; char txpwr_5g_bw80diff[4U][4U] ; u8 txpwr_safetyflag ; u16 eeprom_txpowerdiff ; u8 legacy_httxpowerdiff ; u8 antenna_txpwdiff[3U] ; u8 eeprom_regulatory ; u8 eeprom_thermalmeter ; u8 thermalmeter[2U] ; u16 tssi_13dbm ; u8 crystalcap ; u8 delta_iqk ; u8 delta_lck ; u8 legacy_ht_txpowerdiff ; bool apk_thermalmeterignore ; bool b1x1_recvcombine ; bool b1ss_support ; u8 channel_plan ; }; struct rtl_ps_ctl { bool pwrdomain_protect ; bool in_powersavemode ; bool rfchange_inprogress ; bool swrf_processing ; bool hwradiooff ; bool support_aspm ; bool support_backdoor ; enum rt_psmode dot11_psmode ; bool swctrl_lps ; bool leisure_ps ; bool fwctrl_lps ; u8 fwctrl_psmode ; u8 reg_fwctrl_lps ; bool fw_current_inpsmode ; u8 reg_max_lps_awakeintvl ; bool report_linked ; bool low_power_enable ; bool inactiveps ; u32 rfoff_reason ; u32 cur_ps_level ; u32 reg_rfps_level ; u8 const_amdpci_aspm ; bool pwrdown_mode ; enum rf_pwrstate inactive_pwrstate ; enum rf_pwrstate rfpwr_state ; bool sw_ps_enabled ; bool state ; bool state_inap ; bool multi_buffered ; u16 nullfunc_seq ; unsigned int dtim_counter ; unsigned int sleep_ms ; unsigned long last_sleep_jiffies ; unsigned long last_awake_jiffies ; unsigned long last_delaylps_stamp_jiffies ; unsigned long last_dtim ; unsigned long last_beacon ; unsigned long last_action ; unsigned long last_slept ; struct rtl_p2p_ps_info p2p_ps_info ; u8 pwr_mode ; u8 smart_ps ; u8 wo_wlan_mode ; u8 arp_offload_enable ; u8 gtk_offload_enable ; u32 wakeup_reason ; u64 last_wakeup_time ; }; struct rtl_stats { u8 psaddr[6U] ; u32 mac_time[2U] ; s8 rssi ; u8 signal ; u8 noise ; u8 rate ; u8 received_channel ; u8 control ; u8 mask ; u8 freq ; u16 len ; u64 tsf ; u32 beacon_time ; u8 nic_type ; u16 length ; u8 signalquality ; s32 recvsignalpower ; s8 rxpower ; u8 signalstrength ; unsigned char hwerror : 1 ; unsigned char crc : 1 ; unsigned char icv : 1 ; unsigned char shortpreamble : 1 ; unsigned char antenna : 1 ; unsigned char decrypted : 1 ; unsigned char wakeup : 1 ; u32 timestamp_low ; u32 timestamp_high ; bool shift ; u8 rx_drvinfo_size ; u8 rx_bufshift ; bool isampdu ; bool isfirst_ampdu ; bool rx_is40Mhzpacket ; u8 rx_packet_bw ; u32 rx_pwdb_all ; u8 rx_mimo_signalstrength[4U] ; s8 rx_mimo_signalquality[4U] ; u8 rx_mimo_evm_dbm[4U] ; u16 cfo_short[4U] ; u16 cfo_tail[4U] ; s8 rx_mimo_sig_qual[4U] ; u8 rx_pwr[4U] ; u8 rx_snr[4U] ; u8 bandwidth ; u8 bt_coex_pwr_adjust ; bool packet_matchbssid ; bool is_cck ; bool is_ht ; bool packet_toself ; bool packet_beacon ; char cck_adc_pwdb[4U] ; bool is_vht ; bool is_short_gi ; u8 vht_nss ; u8 packet_report_type ; u32 macid ; u8 wake_match ; u32 bt_rx_rssi_percentage ; u32 macid_valid_entry[2U] ; }; struct rt_link_detect { u32 bcn_rx_inperiod ; u32 roam_times ; u32 num_tx_in4period[4U] ; u32 num_rx_in4period[4U] ; u32 num_tx_inperiod ; u32 num_rx_inperiod ; bool busytraffic ; bool tx_busy_traffic ; bool rx_busy_traffic ; bool higher_busytraffic ; bool higher_busyrxtraffic ; u32 tidtx_in4period[9U][4U] ; u32 tidtx_inperiod[9U] ; bool higher_busytxtraffic[9U] ; }; struct rtl_tcb_desc { unsigned char packet_bw : 2 ; unsigned char multicast : 1 ; unsigned char broadcast : 1 ; unsigned char rts_stbc : 1 ; unsigned char rts_enable : 1 ; unsigned char cts_enable : 1 ; unsigned char rts_use_shortpreamble : 1 ; unsigned char rts_use_shortgi : 1 ; unsigned char rts_sc : 1 ; unsigned char rts_bw : 1 ; u8 rts_rate ; unsigned char use_shortgi : 1 ; unsigned char use_shortpreamble : 1 ; unsigned char use_driver_rate : 1 ; unsigned char disable_ratefallback : 1 ; u8 ratr_index ; u8 mac_id ; u8 hw_rate ; unsigned char last_inipkt : 1 ; unsigned char cmd_or_init : 1 ; u8 queue_index ; u8 empkt_num ; u32 empkt_len[10U] ; bool tx_enable_sw_calc_duration ; }; struct rtl_wow_pattern { u8 type ; u16 crc ; u32 mask[4U] ; }; struct rtl8723e_firmware_header; struct rtl_hal_ops { int (*init_sw_vars)(struct ieee80211_hw * ) ; void (*deinit_sw_vars)(struct ieee80211_hw * ) ; void (*read_chip_version)(struct ieee80211_hw * ) ; void (*read_eeprom_info)(struct ieee80211_hw * ) ; void (*interrupt_recognized)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*hw_init)(struct ieee80211_hw * ) ; void (*hw_disable)(struct ieee80211_hw * ) ; void (*hw_suspend)(struct ieee80211_hw * ) ; void (*hw_resume)(struct ieee80211_hw * ) ; void (*enable_interrupt)(struct ieee80211_hw * ) ; void (*disable_interrupt)(struct ieee80211_hw * ) ; int (*set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*set_chk_bssid)(struct ieee80211_hw * , bool ) ; void (*set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; u8 (*switch_channel)(struct ieee80211_hw * ) ; void (*set_qos)(struct ieee80211_hw * , int ) ; void (*set_bcn_reg)(struct ieee80211_hw * ) ; void (*set_bcn_intv)(struct ieee80211_hw * ) ; void (*update_interrupt_mask)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*set_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , u8 ) ; void (*pre_fill_tx_bd_desc)(struct ieee80211_hw * , u8 * , u8 * , u8 , struct sk_buff * , dma_addr_t ) ; void (*update_rate_mask)(struct ieee80211_hw * , u8 ) ; u16 (*rx_desc_buff_remained_cnt)(struct ieee80211_hw * , u8 ) ; void (*rx_check_dma_ok)(struct ieee80211_hw * , u8 * , u8 ) ; void (*fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , u8 * , u8 * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , u8 , struct rtl_tcb_desc * ) ; void (*fill_fake_txdesc)(struct ieee80211_hw * , u8 * , u32 , bool ) ; void (*fill_tx_cmddesc)(struct ieee80211_hw * , u8 * , bool , bool , struct sk_buff * ) ; bool (*query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , u8 * , struct sk_buff * ) ; void (*set_channel_access)(struct ieee80211_hw * ) ; bool (*radio_onoff_checking)(struct ieee80211_hw * , u8 * ) ; void (*dm_watchdog)(struct ieee80211_hw * ) ; void (*scan_operation_backup)(struct ieee80211_hw * , u8 ) ; bool (*set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; void (*set_desc)(struct ieee80211_hw * , u8 * , bool , u8 , u8 * ) ; u32 (*get_desc)(u8 * , bool , u8 ) ; bool (*is_tx_desc_closed)(struct ieee80211_hw * , u8 , u16 ) ; void (*tx_polling)(struct ieee80211_hw * , u8 ) ; void (*enable_hw_sec)(struct ieee80211_hw * ) ; void (*set_key)(struct ieee80211_hw * , u32 , u8 * , bool , u8 , bool , bool ) ; void (*init_sw_leds)(struct ieee80211_hw * ) ; void (*deinit_sw_leds)(struct ieee80211_hw * ) ; u32 (*get_bbreg)(struct ieee80211_hw * , u32 , u32 ) ; void (*set_bbreg)(struct ieee80211_hw * , u32 , u32 , u32 ) ; u32 (*get_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 ) ; void (*set_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 , u32 ) ; void (*linked_set_reg)(struct ieee80211_hw * ) ; void (*chk_switch_dmdp)(struct ieee80211_hw * ) ; void (*dualmac_easy_concurrent)(struct ieee80211_hw * ) ; void (*dualmac_switch_to_dmdp)(struct ieee80211_hw * ) ; bool (*phy_rf6052_config)(struct ieee80211_hw * ) ; void (*phy_rf6052_set_cck_txpower)(struct ieee80211_hw * , u8 * ) ; void (*phy_rf6052_set_ofdm_txpower)(struct ieee80211_hw * , u8 * , u8 ) ; bool (*config_bb_with_headerfile)(struct ieee80211_hw * , u8 ) ; bool (*config_bb_with_pgheaderfile)(struct ieee80211_hw * , u8 ) ; void (*phy_lc_calibrate)(struct ieee80211_hw * , bool ) ; void (*phy_set_bw_mode_callback)(struct ieee80211_hw * ) ; void (*dm_dynamic_txpower)(struct ieee80211_hw * ) ; void (*c2h_command_handle)(struct ieee80211_hw * ) ; void (*bt_wifi_media_status_notify)(struct ieee80211_hw * , bool ) ; void (*bt_coex_off_before_lps)(struct ieee80211_hw * ) ; void (*fill_h2c_cmd)(struct ieee80211_hw * , u8 , u32 , u8 * ) ; bool (*get_btc_status)(void) ; bool (*is_fw_header)(struct rtl8723e_firmware_header * ) ; u32 (*rx_command_packet)(struct ieee80211_hw * , struct rtl_stats , struct sk_buff * ) ; void (*add_wowlan_pattern)(struct ieee80211_hw * , struct rtl_wow_pattern * , u8 ) ; u16 (*get_available_desc)(struct ieee80211_hw * , u8 ) ; }; struct rtl_intf_ops { void (*read_efuse_byte)(struct ieee80211_hw * , u16 , u8 * ) ; int (*adapter_start)(struct ieee80211_hw * ) ; void (*adapter_stop)(struct ieee80211_hw * ) ; bool (*check_buddy_priv)(struct ieee80211_hw * , struct rtl_priv ** ) ; int (*adapter_tx)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; void (*flush)(struct ieee80211_hw * , u32 , bool ) ; int (*reset_trx_ring)(struct ieee80211_hw * ) ; bool (*waitq_insert)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * ) ; void (*disable_aspm)(struct ieee80211_hw * ) ; void (*enable_aspm)(struct ieee80211_hw * ) ; }; struct rtl_mod_params { bool sw_crypto ; int debug ; bool inactiveps ; bool swctrl_lps ; bool fwctrl_lps ; bool msi_support ; bool disable_watchdog ; }; struct rtl_hal_usbint_cfg { u32 in_ep_num ; u32 rx_urb_num ; u32 rx_max_size ; void (*usb_rx_hdl)(struct ieee80211_hw * , struct sk_buff * ) ; void (*usb_rx_segregate_hdl)(struct ieee80211_hw * , struct sk_buff * , struct sk_buff_head * ) ; void (*usb_tx_cleanup)(struct ieee80211_hw * , struct sk_buff * ) ; int (*usb_tx_post_hdl)(struct ieee80211_hw * , struct urb * , struct sk_buff * ) ; struct sk_buff *(*usb_tx_aggregate_hdl)(struct ieee80211_hw * , struct sk_buff_head * ) ; int (*usb_endpoint_mapping)(struct ieee80211_hw * ) ; u16 (*usb_mq_to_hwq)(__le16 , u16 ) ; }; struct rtl_hal_cfg { u8 bar_id ; bool write_readback ; char *name ; char *fw_name ; char *alt_fw_name ; char *wowlan_fw_name ; struct rtl_hal_ops *ops ; struct rtl_mod_params *mod_params ; struct rtl_hal_usbint_cfg *usb_interface_cfg ; u32 maps[90U] ; }; struct rtl_locks { struct mutex conf_mutex ; struct mutex ps_mutex ; spinlock_t ips_lock ; spinlock_t irq_th_lock ; spinlock_t irq_pci_lock ; spinlock_t tx_lock ; spinlock_t h2c_lock ; spinlock_t rf_ps_lock ; spinlock_t rf_lock ; spinlock_t lps_lock ; spinlock_t waitq_lock ; spinlock_t entry_list_lock ; spinlock_t usb_lock ; spinlock_t fw_ps_lock ; spinlock_t cck_and_rw_pagea_lock ; spinlock_t check_sendpkt_lock ; spinlock_t iqk_lock ; }; struct rtl_works { struct ieee80211_hw *hw ; struct timer_list watchdog_timer ; struct timer_list dualmac_easyconcurrent_retrytimer ; struct timer_list fw_clockoff_timer ; struct timer_list fast_antenna_training_timer ; struct tasklet_struct irq_tasklet ; struct tasklet_struct irq_prepare_bcn_tasklet ; struct workqueue_struct *rtl_wq ; struct delayed_work watchdog_wq ; struct delayed_work ips_nic_off_wq ; struct delayed_work ps_work ; struct delayed_work ps_rfon_wq ; struct delayed_work fwevt_wq ; struct work_struct lps_change_work ; struct work_struct fill_h2c_cmd ; }; struct rtl_debug { u32 dbgp_type[19U] ; int global_debuglevel ; u64 global_debugcomponents ; struct proc_dir_entry *proc_dir ; char proc_name[20U] ; }; struct rtl_dualmac_easy_concurrent_ctl { enum band_type currentbandtype_backfordmdp ; bool close_bbandrf_for_dmsp ; bool change_to_dmdp ; bool change_to_dmsp ; bool switch_in_process ; }; struct rtl_dmsp_ctl { bool activescan_for_slaveofdmsp ; bool scan_for_anothermac_fordmsp ; bool scan_for_itself_fordmsp ; bool writedig_for_anothermacofdmsp ; u32 curdigvalue_for_anothermacofdmsp ; bool changecckpdstate_for_anothermacofdmsp ; u8 curcckpdstate_for_anothermacofdmsp ; bool changetxhighpowerlvl_for_anothermacofdmsp ; u8 curtxhighlvl_for_anothermacofdmsp ; long rssivalmin_for_anothermacofdmsp ; }; struct ps_t { u8 pre_ccastate ; u8 cur_ccasate ; u8 pre_rfstate ; u8 cur_rfstate ; u8 initialize ; long rssi_val_min ; }; struct dig_t { u32 rssi_lowthresh ; u32 rssi_highthresh ; u32 fa_lowthresh ; u32 fa_highthresh ; long last_min_undec_pwdb_for_dm ; long rssi_highpower_lowthresh ; long rssi_highpower_highthresh ; u32 recover_cnt ; u32 pre_igvalue ; u32 cur_igvalue ; long rssi_val ; u8 dig_enable_flag ; u8 dig_ext_port_stage ; u8 dig_algorithm ; u8 dig_twoport_algorithm ; u8 dig_dbgmode ; u8 dig_slgorithm_switch ; u8 cursta_cstate ; u8 presta_cstate ; u8 curmultista_cstate ; u8 stop_dig ; char back_val ; char back_range_max ; char back_range_min ; u8 rx_gain_max ; u8 rx_gain_min ; u8 min_undec_pwdb_for_dm ; u8 rssi_val_min ; u8 pre_cck_cca_thres ; u8 cur_cck_cca_thres ; u8 pre_cck_pd_state ; u8 cur_cck_pd_state ; u8 pre_cck_fa_state ; u8 cur_cck_fa_state ; u8 pre_ccastate ; u8 cur_ccasate ; u8 large_fa_hit ; u8 forbidden_igi ; u8 dig_state ; u8 dig_highpwrstate ; u8 cur_sta_cstate ; u8 pre_sta_cstate ; u8 cur_ap_cstate ; u8 pre_ap_cstate ; u8 cur_pd_thstate ; u8 pre_pd_thstate ; u8 cur_cs_ratiostate ; u8 pre_cs_ratiostate ; u8 backoff_enable_flag ; char backoffval_range_max ; char backoffval_range_min ; u8 dig_min_0 ; u8 dig_min_1 ; u8 bt30_cur_igi ; bool media_connect_0 ; bool media_connect_1 ; u32 antdiv_rssi_max ; u32 rssi_max ; }; struct rtl_global_var { struct list_head glb_priv_list ; spinlock_t glb_list_lock ; }; struct rtl_btc_info { u8 bt_type ; u8 btcoexist ; u8 ant_num ; }; struct rtl_btc_ops; struct bt_coexist_info { struct rtl_btc_ops *btc_ops ; struct rtl_btc_info btc_info ; u8 eeprom_bt_coexist ; u8 eeprom_bt_type ; u8 eeprom_bt_ant_num ; u8 eeprom_bt_ant_isol ; u8 eeprom_bt_radio_shared ; u8 bt_coexistence ; u8 bt_ant_num ; u8 bt_coexist_type ; u8 bt_state ; u8 bt_cur_state ; u8 bt_ant_isolation ; u8 bt_pape_ctrl ; u8 bt_service ; u8 bt_radio_shared_type ; u8 bt_rfreg_origin_1e ; u8 bt_rfreg_origin_1f ; u8 bt_rssi_state ; u32 ratio_tx ; u32 ratio_pri ; u32 bt_edca_ul ; u32 bt_edca_dl ; bool init_set ; bool bt_busy_traffic ; bool bt_traffic_mode_set ; bool bt_non_traffic_mode_set ; bool fw_coexist_all_off ; bool sw_coexist_all_off ; bool hw_coexist_all_off ; u32 cstate ; u32 previous_state ; u32 cstate_h ; u32 previous_state_h ; u8 bt_pre_rssi_state ; u8 bt_pre_rssi_state1 ; u8 reg_bt_iso ; u8 reg_bt_sco ; bool balance_on ; u8 bt_active_zero_cnt ; bool cur_bt_disabled ; bool pre_bt_disabled ; u8 bt_profile_case ; u8 bt_profile_action ; bool bt_busy ; bool hold_for_bt_operation ; u8 lps_counter ; }; struct rtl_btc_ops { void (*btc_init_variables)(struct rtl_priv * ) ; void (*btc_init_hal_vars)(struct rtl_priv * ) ; void (*btc_init_hw_config)(struct rtl_priv * ) ; void (*btc_ips_notify)(struct rtl_priv * , u8 ) ; void (*btc_lps_notify)(struct rtl_priv * , u8 ) ; void (*btc_scan_notify)(struct rtl_priv * , u8 ) ; void (*btc_connect_notify)(struct rtl_priv * , u8 ) ; void (*btc_mediastatus_notify)(struct rtl_priv * , enum rt_media_status ) ; void (*btc_periodical)(struct rtl_priv * ) ; void (*btc_halt_notify)(void) ; void (*btc_btinfo_notify)(struct rtl_priv * , u8 * , u8 ) ; bool (*btc_is_limited_dig)(struct rtl_priv * ) ; bool (*btc_is_disable_edca_turbo)(struct rtl_priv * ) ; bool (*btc_is_bt_disabled)(struct rtl_priv * ) ; void (*btc_special_packet_notify)(struct rtl_priv * , u8 ) ; }; struct proxim { bool proxim_on ; void *proximity_priv ; int (*proxim_rx)(struct ieee80211_hw * , struct rtl_stats * , struct sk_buff * ) ; u8 (*proxim_get_var)(struct ieee80211_hw * , u8 ) ; }; struct rtl_rate_priv; struct rtl_priv { struct ieee80211_hw *hw ; struct completion firmware_loading_complete ; struct list_head list ; struct rtl_priv *buddy_priv ; struct rtl_global_var *glb_var ; struct rtl_dualmac_easy_concurrent_ctl easy_concurrent_ctl ; struct rtl_dmsp_ctl dmsp_ctl ; struct rtl_locks locks ; struct rtl_works works ; struct rtl_mac mac80211 ; struct rtl_hal rtlhal ; struct rtl_regulatory regd ; struct rtl_rfkill rfkill ; struct rtl_io io ; struct rtl_phy phy ; struct rtl_dm dm ; struct rtl_security sec ; struct rtl_efuse efuse ; struct rtl_ps_ctl psc ; struct rate_adaptive ra ; struct dynamic_primary_cca primarycca ; struct wireless_stats stats ; struct rt_link_detect link_info ; struct false_alarm_statistics falsealm_cnt ; struct rtl_rate_priv *rate_priv ; struct list_head entry_list ; struct rtl_debug dbg ; int max_fw_size ; struct rtl_hal_cfg *cfg ; struct rtl_intf_ops *intf_ops ; unsigned long status ; struct dig_t dm_digtable ; struct ps_t dm_pstable ; u32 reg_874 ; u32 reg_c70 ; u32 reg_85c ; u32 reg_a74 ; bool reg_init ; bool bt_operation_on ; __le32 *usb_data ; int usb_data_index ; bool initialized ; bool enter_ps ; u8 rate_mask[5U] ; struct proxim proximity ; struct bt_coexist_info btcoexist ; bool use_new_trx_flow ; struct wiphy_wowlan_support wowlan ; u8 priv[0U] ; }; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; enum hrtimer_restart; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pci_bus; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_322 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_322 __annonCompField93 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; enum rtl_led_pin { LED_PIN_GPIO0 = 0, LED_PIN_LED0 = 1, LED_PIN_LED1 = 2, LED_PIN_LED2 = 3 } ; enum acm_method { eAcmWay0_SwAndHw = 0, eAcmWay1_HW = 1, EACMWAY2_SW = 2 } ; struct rtl_led { void *hw ; enum rtl_led_pin ledpin ; bool ledon ; }; struct rtl_led_ctl { bool led_opendrain ; struct rtl_led sw_led0 ; struct rtl_led sw_led1 ; }; struct rtl_tx_buffer_desc { u32 dword[8U] ; }; struct rtl_tx_desc { u32 dword[16U] ; }; struct rtl_rx_buffer_desc { u32 dword[2U] ; }; struct rtl_rx_desc { u32 dword[8U] ; }; struct rtl8192_tx_ring { struct rtl_tx_desc *desc ; dma_addr_t dma ; unsigned int idx ; unsigned int entries ; struct sk_buff_head queue ; struct rtl_tx_buffer_desc *buffer_desc ; dma_addr_t buffer_desc_dma ; u16 avl_desc ; u16 cur_tx_wp ; u16 cur_tx_rp ; }; struct rtl8192_rx_ring { struct rtl_rx_desc *desc ; dma_addr_t dma ; unsigned int idx ; struct sk_buff *rx_buf[512U] ; struct rtl_rx_buffer_desc *buffer_desc ; u16 next_rx_rp ; }; struct rtl_pci { struct pci_dev *pdev ; bool irq_enabled ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool init_ready ; struct rtl8192_tx_ring tx_ring[9U] ; int txringcount[9U] ; u32 transmit_config ; struct rtl8192_rx_ring rx_ring[2U] ; int rxringcount ; u16 rxbuffersize ; u32 receive_config ; u8 irq_alloc ; u32 irq_mask[2U] ; u32 sys_irq_mask ; u32 reg_bcn_ctrl_val ; u8 const_pci_aspm ; u8 const_amdpci_aspm ; u8 const_hwsw_rfoff_d3 ; u8 const_support_pciaspm ; u8 const_hostpci_aspm_setting ; u8 const_devicepci_aspm_setting ; bool support_aspm ; bool support_backdoor ; enum acm_method acm_method ; u16 shortretry_limit ; u16 longretry_limit ; bool msi_support ; bool using_msi ; }; struct mp_adapter { u8 linkctrl_reg ; u8 busnumber ; u8 devnumber ; u8 funcnumber ; u8 pcibridge_busnum ; u8 pcibridge_devnum ; u8 pcibridge_funcnum ; u8 pcibridge_vendor ; u16 pcibridge_vendorid ; u16 pcibridge_deviceid ; u8 num4bytes ; u8 pcibridge_pciehdr_offset ; u8 pcibridge_linkctrlreg ; bool amd_l1_patch ; }; struct rtl_pci_priv { struct rtl_pci dev ; struct mp_adapter ndis_adapter ; struct rtl_led_ctl ledctl ; struct bt_coexist_info bt_coexist ; }; enum version_8192d { VERSION_TEST_CHIP_88C = 0, VERSION_TEST_CHIP_92C = 32, VERSION_TEST_UMC_CHIP_8723 = 129, VERSION_NORMAL_TSMC_CHIP_88C = 8, VERSION_NORMAL_TSMC_CHIP_92C = 40, VERSION_NORMAL_TSMC_CHIP_92C_1T2R = 24, VERSION_NORMAL_UMC_CHIP_88C_A_CUT = 136, VERSION_NORMAL_UMC_CHIP_92C_A_CUT = 168, VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT = 152, VERSION_NORMAL_UMC_CHIP_8723_1T1R_A_CUT = 137, VERSION_NORMAL_UMC_CHIP_8723_1T1R_B_CUT = 4233, VERSION_NORMAL_UMC_CHIP_88C_B_CUT = 4232, VERSION_NORMAL_UMC_CHIP_92C_B_CUT = 4264, VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT = 4240, VERSION_TEST_CHIP_92D_SINGLEPHY = 34, VERSION_TEST_CHIP_92D_DUALPHY = 2, VERSION_NORMAL_CHIP_92D_SINGLEPHY = 42, VERSION_NORMAL_CHIP_92D_DUALPHY = 10, VERSION_NORMAL_CHIP_92D_C_CUT_SINGLEPHY = 8234, VERSION_NORMAL_CHIP_92D_C_CUT_DUALPHY = 8202, VERSION_NORMAL_CHIP_92D_D_CUT_SINGLEPHY = 12330, VERSION_NORMAL_CHIP_92D_D_CUT_DUALPHY = 12298, VERSION_NORMAL_CHIP_92D_E_CUT_SINGLEPHY = 16426, VERSION_NORMAL_CHIP_92D_E_CUT_DUALPHY = 16394 } ; enum hrtimer_restart; struct __anonstruct_f_326 { unsigned char aifsn : 4 ; unsigned char acm : 1 ; unsigned char aci : 2 ; unsigned char reserved : 1 ; }; union aci_aifsn { u8 char_data ; struct __anonstruct_f_326 f ; }; enum wireless_mode { WIRELESS_MODE_UNKNOWN = 0, WIRELESS_MODE_A = 1, WIRELESS_MODE_B = 2, WIRELESS_MODE_G = 4, WIRELESS_MODE_AUTO = 8, WIRELESS_MODE_N_24G = 16, WIRELESS_MODE_N_5G = 32, WIRELESS_MODE_AC_5G = 64, WIRELESS_MODE_AC_24G = 128, WIRELESS_MODE_AC_ONLY = 256, WIRELESS_MODE_MAX = 2048 } ; struct rssi_sta { long undec_sm_pwdb ; long undec_sm_cck ; }; struct rtl_sta_info { struct list_head list ; u8 ratr_index ; u8 wireless_mode ; u8 mimo_ps ; u8 mac_addr[6U] ; struct rtl_tid_data tids[9U] ; struct rssi_sta rssi_stat ; }; struct txpower_info { u8 cck_index[2U][12U] ; u8 ht40_1sindex[2U][12U] ; u8 ht40_2sindexdiff[2U][12U] ; u8 ht20indexdiff[2U][12U] ; u8 ofdmindexdiff[2U][12U] ; u8 ht40maxoffset[2U][12U] ; u8 ht20maxoffset[2U][12U] ; u8 tssi_a[3U] ; u8 tssi_b[3U] ; }; enum hrtimer_restart; enum hrtimer_restart; enum swchnlcmd_id { CMDID_END = 0, CMDID_SET_TXPOWEROWER_LEVEL = 1, CMDID_BBREGWRITE10 = 2, CMDID_WRITEPORT_ULONG = 3, CMDID_WRITEPORT_USHORT = 4, CMDID_WRITEPORT_UCHAR = 5, CMDID_RF_WRITEREG = 6 } ; struct swchnlcmd { enum swchnlcmd_id cmdid ; u32 para1 ; u32 para2 ; u32 msdelay ; }; enum rf_content { radioa_txt = 0, radiob_txt = 1, radioc_txt = 2, radiod_txt = 3 } ; enum hrtimer_restart; typedef short s16; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct ldv_thread; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; enum hrtimer_restart; struct exception_table_entry { int insn ; int fixup ; }; struct pdev_archdata { }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct nl80211_sta_flag_update { __u32 mask ; __u32 set ; }; enum nl80211_mesh_power_mode { NL80211_MESH_POWER_UNKNOWN = 0, NL80211_MESH_POWER_ACTIVE = 1, NL80211_MESH_POWER_LIGHT_SLEEP = 2, NL80211_MESH_POWER_DEEP_SLEEP = 3, __NL80211_MESH_POWER_AFTER_LAST = 4, NL80211_MESH_POWER_MAX = 3 } ; enum nl80211_txrate_gi { NL80211_TXRATE_DEFAULT_GI = 0, NL80211_TXRATE_FORCE_SGI = 1, NL80211_TXRATE_FORCE_LGI = 2 } ; struct survey_info { struct ieee80211_channel *channel ; u64 time ; u64 time_busy ; u64 time_ext_busy ; u64 time_rx ; u64 time_tx ; u64 time_scan ; u32 filled ; s8 noise ; }; struct rate_info { u8 flags ; u8 mcs ; u16 legacy ; u8 nss ; u8 bw ; }; struct sta_bss_parameters { u8 flags ; u8 dtim_period ; u16 beacon_interval ; }; struct cfg80211_tid_stats { u32 filled ; u64 rx_msdu ; u64 tx_msdu ; u64 tx_msdu_retries ; u64 tx_msdu_failed ; }; struct station_info { u32 filled ; u32 connected_time ; u32 inactive_time ; u64 rx_bytes ; u64 tx_bytes ; u16 llid ; u16 plid ; u8 plink_state ; s8 signal ; s8 signal_avg ; u8 chains ; s8 chain_signal[4U] ; s8 chain_signal_avg[4U] ; struct rate_info txrate ; struct rate_info rxrate ; u32 rx_packets ; u32 tx_packets ; u32 tx_retries ; u32 tx_failed ; u32 rx_dropped_misc ; struct sta_bss_parameters bss_param ; struct nl80211_sta_flag_update sta_flags ; int generation ; u8 const *assoc_req_ies ; size_t assoc_req_ies_len ; u32 beacon_loss_count ; s64 t_offset ; enum nl80211_mesh_power_mode local_pm ; enum nl80211_mesh_power_mode peer_pm ; enum nl80211_mesh_power_mode nonpeer_pm ; u32 expected_throughput ; u64 rx_beacon ; u8 rx_beacon_signal_avg ; struct cfg80211_tid_stats pertid[17U] ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; u8 mac_addr[6U] ; u8 mac_addr_mask[6U] ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct __anonstruct_control_306 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; enum nl80211_txrate_gi gi ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_306 control[3U] ; }; struct cfg80211_gtk_rekey_data { u8 const *kek ; u8 const *kck ; u8 const *replay_ctr ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; enum ieee80211_chanctx_switch_mode { CHANCTX_SWMODE_REASSIGN_VIF = 0, CHANCTX_SWMODE_SWAP_CONTEXTS = 1 } ; struct ieee80211_vif_chanctx_switch { struct ieee80211_vif *vif ; struct ieee80211_chanctx_conf *old_ctx ; struct ieee80211_chanctx_conf *new_ctx ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_scan_ies { u8 const *ies[3U] ; size_t len[3U] ; u8 const *common_ies ; size_t common_ie_len ; }; struct ieee80211_channel_switch { u64 timestamp ; u32 device_timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_scan_request { struct ieee80211_scan_ies ies ; struct cfg80211_scan_request req ; }; struct ieee80211_tdls_ch_sw_params { struct ieee80211_sta *sta ; struct cfg80211_chan_def *chandef ; u8 action_code ; u32 status ; u32 timestamp ; u16 switch_time ; u16 switch_timeout ; struct sk_buff *tmpl_skb ; u32 ch_sw_tm_ie ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; enum ieee80211_reconfig_type { IEEE80211_RECONFIG_TYPE_RESTART = 0, IEEE80211_RECONFIG_TYPE_SUSPEND = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_scan_ies * ) ; int (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , u8 const * ) ; void (*sw_scan_complete)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; void (*sta_rate_tbl_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_statistics)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct station_info * ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , s16 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel_switch * ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*mgd_protect_tdls_discover)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; int (*switch_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif_chanctx_switch * , int , enum ieee80211_chanctx_switch_mode ) ; void (*reconfig_complete)(struct ieee80211_hw * , enum ieee80211_reconfig_type ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*pre_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel_switch * ) ; int (*post_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u32 (*get_expected_throughput)(struct ieee80211_sta * ) ; int (*get_txpower)(struct ieee80211_hw * , struct ieee80211_vif * , int * ) ; int (*tdls_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u8 , struct cfg80211_chan_def * , struct sk_buff * , u32 ) ; void (*tdls_cancel_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*tdls_recv_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_tdls_ch_sw_params * ) ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_331 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_331 __annonCompField94 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct ldv_struct_pci_instance_1 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_3 { int signal_pending ; }; typedef int ldv_func_ret_type___1; enum hrtimer_restart; struct phy_sts_cck_8192d { u8 adc_pwdb_X[4U] ; u8 sq_rpt ; u8 cck_agc_rpt ; }; struct rx_fwinfo_92d { u8 gain_trsw[4U] ; u8 pwdb_all ; u8 cfosho[4U] ; u8 cfotail[4U] ; char rxevm[2U] ; char rxsnr[4U] ; u8 pdsnr[2U] ; u8 csi_current[2U] ; u8 csi_target[2U] ; u8 sigevm ; u8 max_ex_pwr ; unsigned char ex_intf_flag : 1 ; unsigned char sgi_en : 1 ; unsigned char rxsc : 2 ; unsigned char reserve : 4 ; }; struct rx_desc_92d { unsigned short length : 14 ; unsigned char crc32 : 1 ; unsigned char icverror : 1 ; unsigned char drv_infosize : 4 ; unsigned char security : 3 ; unsigned char qos : 1 ; unsigned char shift : 2 ; unsigned char phystatus : 1 ; unsigned char swdec : 1 ; unsigned char lastseg : 1 ; unsigned char firstseg : 1 ; unsigned char eor : 1 ; unsigned char own : 1 ; unsigned char macid : 5 ; unsigned char tid : 4 ; unsigned char hwrsvd : 5 ; unsigned char paggr : 1 ; unsigned char faggr : 1 ; unsigned char a1_fit : 4 ; unsigned char a2_fit : 4 ; unsigned char pam : 1 ; unsigned char pwr : 1 ; unsigned char moredata : 1 ; unsigned char morefrag : 1 ; unsigned char type : 2 ; unsigned char mc : 1 ; unsigned char bc : 1 ; unsigned short seq : 12 ; unsigned char frag : 4 ; unsigned short nextpktlen : 14 ; unsigned char nextind : 1 ; unsigned char rsvd : 1 ; unsigned char rxmcs : 6 ; unsigned char rxht : 1 ; unsigned char amsdu : 1 ; unsigned char splcp : 1 ; unsigned char bandwidth : 1 ; unsigned char htc : 1 ; unsigned char tcpchk_rpt : 1 ; unsigned char ipcchk_rpt : 1 ; unsigned char tcpchk_valid : 1 ; unsigned char hwpcerr : 1 ; unsigned char hwpcind : 1 ; unsigned short iv0 ; u32 iv1 ; u32 tsfl ; u32 bufferaddress ; u32 bufferaddress64 ; }; struct rx_desc_92c; struct request; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } extern int printk(char const * , ...) ; extern void __bad_percpu_size(void) ; extern int memcmp(void const * , void const * , size_t ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_cck_and_rw_pagea_lock_of_rtl_locks(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_cck_and_rw_pagea_lock_of_rtl_locks(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7137; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7137; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7137; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7137; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7137: ; return (pfo_ret__ & 2147483647); } } extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static u8 rtl_read_byte(struct rtl_priv *rtlpriv , u32 addr ) { u8 tmp ; { { tmp = (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } return (tmp); } } __inline static void rtl_write_byte(struct rtl_priv *rtlpriv , u32 addr , u8 val8 ) { { { (*(rtlpriv->io.write8_async))(rtlpriv, addr, (int )val8); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } } else { } return; } } __inline static void rtl_write_dword(struct rtl_priv *rtlpriv , u32 addr , u32 val32 ) { { { (*(rtlpriv->io.write32_async))(rtlpriv, addr, val32); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } } else { } return; } } __inline static u32 rtl_get_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_bbreg))(hw, regaddr, bitmask); } return (tmp); } } __inline static void rtl_set_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_bbreg))(hw, regaddr, bitmask, data); } return; } } __inline static u32 rtl_get_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_rfreg))(hw, rfpath, regaddr, bitmask); } return (tmp); } } __inline static void rtl_set_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_rfreg))(hw, rfpath, regaddr, bitmask, data); } return; } } extern void rtl_dm_diginit(struct ieee80211_hw * , u32 ) ; __inline static void rtl92d_acquire_cckandrw_pagea_ctl(struct ieee80211_hw *hw , unsigned long *flag ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if (rtlpriv->rtlhal.interfaceindex == 1U) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(& rtlpriv->locks.cck_and_rw_pagea_lock); } } else { } return; } } __inline static void rtl92d_release_cckandrw_pagea_ctl(struct ieee80211_hw *hw , unsigned long *flag ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if (rtlpriv->rtlhal.interfaceindex == 1U) { { ldv_spin_unlock_irqrestore_122(& rtlpriv->locks.cck_and_rw_pagea_lock, *flag); } } else { } return; } } void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw , u8 channel ) ; void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw ) ; void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw , char delta ) ; void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw ) ; void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw ) ; u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl ) ; void rtl92d_dm_init(struct ieee80211_hw *hw ) ; void rtl92d_dm_watchdog(struct ieee80211_hw *hw ) ; void rtl92d_dm_init_edca_turbo(struct ieee80211_hw *hw ) ; void rtl92d_dm_write_dig(struct ieee80211_hw *hw ) ; void rtl92d_dm_check_txpower_tracking_thermal_meter(struct ieee80211_hw *hw ) ; void rtl92d_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) ; void rtl92d_fill_h2c_cmd(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *cmdbuffer ) ; static u32 const ofdmswing_table[43U] = { 2139095550U, 2021655010U, 1908408775U, 1803551150U, 1698693525U, 1606418815U, 1514144105U, 1430258005U, 1350566210U, 1275068720U, 1203765535U, 1136656655U, 1073742080U, 1015021810U, 956301540U, 901775575U, 851443915U, 805306560U, 759169205U, 717226155U, 679477410U, 637534360U, 603979920U, 570425480U, 536871040U, 507510905U, 478150770U, 452984940U, 427819110U, 402653280U, 381681755U, 360710230U, 339738705U, 318767180U, 301989960U, 285212740U, 268435520U, 251658300U, 239075385U, 226492470U, 213909555U, 201326640U, 188743725U}; static u8 const cckswing_table_ch1ch13[33U][8U] = { { 54U, 53U, 46U, 37U, 28U, 18U, 9U, 4U}, { 51U, 50U, 43U, 35U, 26U, 17U, 8U, 4U}, { 48U, 47U, 41U, 33U, 25U, 16U, 8U, 3U}, { 45U, 45U, 39U, 31U, 24U, 15U, 8U, 3U}, { 43U, 42U, 37U, 30U, 22U, 14U, 7U, 3U}, { 40U, 40U, 34U, 28U, 21U, 13U, 7U, 3U}, { 38U, 37U, 33U, 27U, 20U, 13U, 6U, 3U}, { 36U, 35U, 31U, 25U, 19U, 12U, 6U, 3U}, { 34U, 33U, 29U, 24U, 17U, 11U, 6U, 2U}, { 32U, 32U, 27U, 22U, 17U, 8U, 5U, 2U}, { 31U, 30U, 26U, 21U, 16U, 10U, 5U, 2U}, { 29U, 28U, 24U, 20U, 15U, 10U, 5U, 2U}, { 27U, 26U, 23U, 19U, 14U, 9U, 4U, 2U}, { 26U, 25U, 22U, 18U, 13U, 9U, 4U, 2U}, { 24U, 23U, 21U, 17U, 12U, 8U, 4U, 2U}, { 23U, 22U, 19U, 16U, 12U, 8U, 4U, 2U}, { 22U, 21U, 18U, 15U, 11U, 7U, 4U, 1U}, { 20U, 20U, 17U, 14U, 11U, 7U, 3U, 2U}, { 19U, 19U, 16U, 13U, 10U, 6U, 3U, 1U}, { 18U, 18U, 15U, 12U, 9U, 6U, 3U, 1U}, { 17U, 17U, 15U, 12U, 9U, 6U, 3U, 1U}, { 16U, 16U, 14U, 11U, 8U, 5U, 3U, 1U}, { 15U, 15U, 13U, 11U, 8U, 5U, 3U, 1U}, { 14U, 14U, 12U, 10U, 8U, 5U, 2U, 1U}, { 13U, 13U, 12U, 10U, 7U, 5U, 2U, 1U}, { 13U, 12U, 11U, 9U, 7U, 4U, 2U, 1U}, { 12U, 12U, 10U, 9U, 6U, 4U, 2U, 1U}, { 11U, 11U, 10U, 8U, 6U, 4U, 2U, 1U}, { 11U, 10U, 9U, 8U, 6U, 4U, 2U, 1U}, { 10U, 10U, 9U, 7U, 5U, 3U, 2U, 1U}, { 10U, 9U, 8U, 7U, 5U, 3U, 2U, 1U}, { 9U, 9U, 8U, 6U, 5U, 3U, 1U, 1U}, { 9U, 8U, 7U, 6U, 4U, 3U, 1U, 1U}}; static u8 const cckswing_table_ch14[33U][8U] = { { 54U, 53U, 46U, 27U, 0U, 0U, 0U, 0U}, { 51U, 50U, 43U, 25U, 0U, 0U, 0U, 0U}, { 48U, 47U, 41U, 24U, 0U, 0U, 0U, 0U}, { 45U, 45U, 23U, 23U, 0U, 0U, 0U, 0U}, { 43U, 42U, 37U, 21U, 0U, 0U, 0U, 0U}, { 40U, 40U, 36U, 20U, 0U, 0U, 0U, 0U}, { 38U, 37U, 33U, 19U, 0U, 0U, 0U, 0U}, { 36U, 35U, 31U, 18U, 0U, 0U, 0U, 0U}, { 34U, 33U, 29U, 17U, 0U, 0U, 0U, 0U}, { 32U, 32U, 27U, 16U, 0U, 0U, 0U, 0U}, { 31U, 30U, 26U, 15U, 0U, 0U, 0U, 0U}, { 29U, 28U, 24U, 14U, 0U, 0U, 0U, 0U}, { 27U, 26U, 23U, 14U, 0U, 0U, 0U, 0U}, { 26U, 25U, 22U, 13U, 0U, 0U, 0U, 0U}, { 24U, 23U, 21U, 12U, 0U, 0U, 0U, 0U}, { 23U, 22U, 19U, 11U, 0U, 0U, 0U, 0U}, { 22U, 21U, 18U, 11U, 0U, 0U, 0U, 0U}, { 20U, 20U, 17U, 10U, 0U, 0U, 0U, 0U}, { 19U, 19U, 16U, 10U, 0U, 0U, 0U, 0U}, { 18U, 18U, 15U, 9U, 0U, 0U, 0U, 0U}, { 17U, 17U, 15U, 9U, 0U, 0U, 0U, 0U}, { 16U, 16U, 14U, 8U, 0U, 0U, 0U, 0U}, { 15U, 15U, 13U, 8U, 0U, 0U, 0U, 0U}, { 14U, 14U, 12U, 7U, 0U, 0U, 0U, 0U}, { 13U, 13U, 12U, 7U, 0U, 0U, 0U, 0U}, { 13U, 12U, 11U, 6U, 0U, 0U, 0U, 0U}, { 12U, 12U, 10U, 6U, 0U, 0U, 0U, 0U}, { 11U, 11U, 10U, 6U, 0U, 0U, 0U, 0U}, { 11U, 10U, 9U, 5U, 0U, 0U, 0U, 0U}, { 10U, 10U, 9U, 5U, 0U, 0U, 0U, 0U}, { 10U, 9U, 8U, 5U, 0U, 0U, 0U, 0U}, { 9U, 9U, 8U, 5U, 0U, 0U, 0U, 0U}, { 9U, 8U, 7U, 4U, 0U, 0U, 0U, 0U}}; static void rtl92d_dm_false_alarm_counter_statistics(struct ieee80211_hw *hw ) { u32 ret_value ; struct rtl_priv *rtlpriv ; struct false_alarm_statistics *falsealm_cnt ; unsigned long flag ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; falsealm_cnt = & rtlpriv->falsealm_cnt; flag = 0UL; rtl_set_bbreg(hw, 3072U, 2147483648U, 1U); rtl_set_bbreg(hw, 3328U, 2147483648U, 1U); ret_value = rtl_get_bbreg(hw, 3312U, 4294967295U); falsealm_cnt->cnt_fast_fsync_fail = ret_value & 65535U; falsealm_cnt->cnt_sb_search_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3488U, 4294967295U); falsealm_cnt->cnt_parity_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3492U, 4294967295U); falsealm_cnt->cnt_rate_illegal = ret_value & 65535U; falsealm_cnt->cnt_crc8_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3496U, 4294967295U); falsealm_cnt->cnt_mcs_fail = ret_value & 65535U; falsealm_cnt->cnt_ofdm_fail = ((((falsealm_cnt->cnt_parity_fail + falsealm_cnt->cnt_rate_illegal) + falsealm_cnt->cnt_crc8_fail) + falsealm_cnt->cnt_mcs_fail) + falsealm_cnt->cnt_fast_fsync_fail) + falsealm_cnt->cnt_sb_search_fail; } if ((unsigned int )rtlpriv->rtlhal.current_bandtype != 1U) { { rtl92d_acquire_cckandrw_pagea_ctl(hw, & flag); ret_value = rtl_get_bbreg(hw, 2652U, 255U); falsealm_cnt->cnt_cck_fail = ret_value; ret_value = rtl_get_bbreg(hw, 2648U, 4278190080U); falsealm_cnt->cnt_cck_fail = falsealm_cnt->cnt_cck_fail + ((ret_value << 8) & 65535U); rtl92d_release_cckandrw_pagea_ctl(hw, & flag); } } else { falsealm_cnt->cnt_cck_fail = 0U; } { falsealm_cnt->cnt_all = (((((falsealm_cnt->cnt_fast_fsync_fail + falsealm_cnt->cnt_sb_search_fail) + falsealm_cnt->cnt_parity_fail) + falsealm_cnt->cnt_rate_illegal) + falsealm_cnt->cnt_crc8_fail) + falsealm_cnt->cnt_mcs_fail) + falsealm_cnt->cnt_cck_fail; rtl_set_bbreg(hw, 3328U, 134217728U, 1U); rtl_set_bbreg(hw, 3328U, 134217728U, 0U); rtl_set_bbreg(hw, 3072U, 2147483648U, 0U); rtl_set_bbreg(hw, 3328U, 2147483648U, 0U); } if ((unsigned int )rtlpriv->rtlhal.current_bandtype != 1U) { { rtl92d_acquire_cckandrw_pagea_ctl(hw, & flag); rtl_set_bbreg(hw, 2604U, 49152U, 0U); rtl_set_bbreg(hw, 2604U, 49152U, 2U); rtl92d_release_cckandrw_pagea_ctl(hw, & flag); } } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Cnt_Fast_Fsync_fail = %x, Cnt_SB_Search_fail = %x\n", "rtl92d_dm_false_alarm_counter_statistics", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, falsealm_cnt->cnt_fast_fsync_fail, falsealm_cnt->cnt_sb_search_fail); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Cnt_Parity_Fail = %x, Cnt_Rate_Illegal = %x, Cnt_Crc8_fail = %x, Cnt_Mcs_fail = %x\n", "rtl92d_dm_false_alarm_counter_statistics", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, falsealm_cnt->cnt_parity_fail, falsealm_cnt->cnt_rate_illegal, falsealm_cnt->cnt_crc8_fail, falsealm_cnt->cnt_mcs_fail); } } else { } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Cnt_Ofdm_fail = %x, Cnt_Cck_fail = %x, Cnt_all = %x\n", "rtl92d_dm_false_alarm_counter_statistics", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, falsealm_cnt->cnt_ofdm_fail, falsealm_cnt->cnt_cck_fail, falsealm_cnt->cnt_all); } } else { } } else { } return; } } static void rtl92d_dm_find_minimum_rssi(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *de_digtable ; struct rtl_mac *mac ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; { rtlpriv = (struct rtl_priv *)hw->priv; de_digtable = & rtlpriv->dm_digtable; mac = & rtlpriv->mac80211; if ((unsigned int )mac->link_state <= 1U && rtlpriv->dm.entry_min_undec_sm_pwdb == 0L) { { de_digtable->min_undec_pwdb_for_dm = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Not connected to any\n", "rtl92d_dm_find_minimum_rssi", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } if ((unsigned int )mac->link_state > 1U) { if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { { de_digtable->min_undec_pwdb_for_dm = (u8 )rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> AP Client PWDB = 0x%lx\n", "rtl92d_dm_find_minimum_rssi", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, rtlpriv->dm.entry_min_undec_sm_pwdb); } } else { } } else { } } else { { de_digtable->min_undec_pwdb_for_dm = (u8 )rtlpriv->dm.undec_sm_pwdb; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> STA Default Port PWDB = 0x%x\n", "rtl92d_dm_find_minimum_rssi", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )de_digtable->min_undec_pwdb_for_dm); } } else { } } else { } } } else { { de_digtable->min_undec_pwdb_for_dm = (u8 )rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> AP Ext Port or disconnect PWDB = 0x%x\n", "rtl92d_dm_find_minimum_rssi", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )de_digtable->min_undec_pwdb_for_dm); } } else { } } else { } } { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> MinUndecoratedPWDBForDM =%d\n", "rtl92d_dm_find_minimum_rssi", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (int )de_digtable->min_undec_pwdb_for_dm); } } else { } } else { } return; } } static void rtl92d_dm_cck_packet_detection_thresh(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *de_digtable ; unsigned long flag ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; de_digtable = & rtlpriv->dm_digtable; flag = 0UL; if ((unsigned int )de_digtable->cursta_cstate == 1U) { if ((unsigned int )de_digtable->pre_cck_pd_state == 0U) { if ((unsigned int )de_digtable->min_undec_pwdb_for_dm <= 25U) { de_digtable->cur_cck_pd_state = 0U; } else { de_digtable->cur_cck_pd_state = 1U; } } else if ((unsigned int )de_digtable->min_undec_pwdb_for_dm <= 20U) { de_digtable->cur_cck_pd_state = 0U; } else { de_digtable->cur_cck_pd_state = 1U; } } else { de_digtable->cur_cck_pd_state = 0U; } if ((int )de_digtable->pre_cck_pd_state != (int )de_digtable->cur_cck_pd_state) { if ((unsigned int )de_digtable->cur_cck_pd_state == 0U) { { rtl92d_acquire_cckandrw_pagea_ctl(hw, & flag); rtl_set_bbreg(hw, 2568U, 16711680U, 131U); rtl92d_release_cckandrw_pagea_ctl(hw, & flag); } } else { { rtl92d_acquire_cckandrw_pagea_ctl(hw, & flag); rtl_set_bbreg(hw, 2568U, 16711680U, 205U); rtl92d_release_cckandrw_pagea_ctl(hw, & flag); } } de_digtable->pre_cck_pd_state = de_digtable->cur_cck_pd_state; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> CurSTAConnectState=%s\n", "rtl92d_dm_cck_packet_detection_thresh", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )de_digtable->cursta_cstate == 1U ? (char *)"DIG_STA_CONNECT " : (char *)"DIG_STA_DISCONNECT"); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> CCKPDStage=%s\n", "rtl92d_dm_cck_packet_detection_thresh", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )de_digtable->cur_cck_pd_state == 0U ? (char *)"Low RSSI " : (char *)"High RSSI "); } } else { } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> is92d single phy =%x\n", "rtl92d_dm_cck_packet_detection_thresh", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, ((unsigned long )rtlpriv->rtlhal.version & 119UL) == 34UL); } } else { } } else { } return; } } void rtl92d_dm_write_dig(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *de_digtable ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; de_digtable = & rtlpriv->dm_digtable; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> cur_igvalue = 0x%x, pre_igvalue = 0x%x, back_val = %d\n", "rtl92d_dm_write_dig", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, de_digtable->cur_igvalue, de_digtable->pre_igvalue, (int )de_digtable->back_val); } } else { } } else { } if ((unsigned int )de_digtable->dig_enable_flag == 0U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> DIG is disabled\n", "rtl92d_dm_write_dig", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } de_digtable->pre_igvalue = 23U; return; } else { } if (de_digtable->pre_igvalue != de_digtable->cur_igvalue) { { rtl_set_bbreg(hw, 3152U, 127U, de_digtable->cur_igvalue); rtl_set_bbreg(hw, 3160U, 127U, de_digtable->cur_igvalue); de_digtable->pre_igvalue = de_digtable->cur_igvalue; } } else { } return; } } static void rtl92d_early_mode_enabled(struct rtl_priv *rtlpriv ) { struct dig_t *de_digtable ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u8 tmp___15 ; { de_digtable = & rtlpriv->dm_digtable; if ((unsigned int )rtlpriv->mac80211.link_state > 1U && rtlpriv->mac80211.vendor == 6U) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> IOT_PEER = CISCO\n", "rtl92d_early_mode_enabled", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if (de_digtable->last_min_undec_pwdb_for_dm > 49L && (unsigned int )de_digtable->min_undec_pwdb_for_dm <= 49U) { { rtl_write_byte(rtlpriv, 1232U, 0); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Early Mode Off\n", "rtl92d_early_mode_enabled", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if (de_digtable->last_min_undec_pwdb_for_dm <= 55L && (unsigned int )de_digtable->min_undec_pwdb_for_dm > 55U) { { rtl_write_byte(rtlpriv, 1232U, 15); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Early Mode On\n", "rtl92d_early_mode_enabled", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } } else { { tmp___15 = rtl_read_byte(rtlpriv, 1232U); } if (((int )tmp___15 & 15) == 0) { { rtl_write_byte(rtlpriv, 1232U, 15); tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Early Mode On\n", "rtl92d_early_mode_enabled", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } } return; } } static void rtl92d_dm_dig(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *de_digtable ; u8 value_igi ; struct false_alarm_statistics *falsealm_cnt ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; { { rtlpriv = (struct rtl_priv *)hw->priv; de_digtable = & rtlpriv->dm_digtable; value_igi = (u8 )de_digtable->cur_igvalue; falsealm_cnt = & rtlpriv->falsealm_cnt; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> ==>\n", "rtl92d_dm_dig", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((int )rtlpriv->rtlhal.earlymode_enable) { { rtl92d_early_mode_enabled(rtlpriv); de_digtable->last_min_undec_pwdb_for_dm = (long )de_digtable->min_undec_pwdb_for_dm; } } else { } if (! rtlpriv->dm.dm_initialgain_enable) { return; } else { } if ((unsigned int )rtlpriv->mac80211.opmode != 2U) { return; } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> progress\n", "rtl92d_dm_dig", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )rtlpriv->mac80211.link_state > 1U) { de_digtable->cursta_cstate = 1U; } else { de_digtable->cursta_cstate = 0U; } if (falsealm_cnt->cnt_all <= 255U) { value_igi = (u8 )((int )value_igi - 1); } else if (falsealm_cnt->cnt_all <= 1023U) { value_igi = value_igi; } else if (falsealm_cnt->cnt_all <= 1535U) { value_igi = (u8 )((int )value_igi + 1); } else if (falsealm_cnt->cnt_all > 1535U) { value_igi = (unsigned int )value_igi + 2U; } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> dm_DIG() Before: large_fa_hit=%d, forbidden_igi=%x\n", "rtl92d_dm_dig", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )de_digtable->large_fa_hit, (int )de_digtable->forbidden_igi); } } else { } } else { } { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> dm_DIG() Before: Recover_cnt=%d, rx_gain_min=%x\n", "rtl92d_dm_dig", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, de_digtable->recover_cnt, (int )de_digtable->rx_gain_min); } } else { } } else { } if (falsealm_cnt->cnt_all > 10000U) { { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> dm_DIG(): Abnormally false alarm case\n", "rtl92d_dm_dig", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } de_digtable->large_fa_hit = (u8 )((int )de_digtable->large_fa_hit + 1); if ((u32 )de_digtable->forbidden_igi < de_digtable->cur_igvalue) { de_digtable->forbidden_igi = (u8 )de_digtable->cur_igvalue; de_digtable->large_fa_hit = 1U; } else { } if ((unsigned int )de_digtable->large_fa_hit > 2U) { if ((int )de_digtable->forbidden_igi + 1 > 62) { de_digtable->rx_gain_min = 62U; } else { de_digtable->rx_gain_min = (unsigned int )de_digtable->forbidden_igi + 1U; } de_digtable->recover_cnt = 3600U; } else { } } else if (de_digtable->recover_cnt != 0U) { de_digtable->recover_cnt = de_digtable->recover_cnt - 1U; } else if ((unsigned int )de_digtable->large_fa_hit == 0U) { if ((int )de_digtable->forbidden_igi + -1 <= 31) { de_digtable->forbidden_igi = 32U; de_digtable->rx_gain_min = 32U; } else { de_digtable->forbidden_igi = (u8 )((int )de_digtable->forbidden_igi - 1); de_digtable->rx_gain_min = (unsigned int )de_digtable->forbidden_igi + 1U; } } else if ((unsigned int )de_digtable->large_fa_hit == 3U) { de_digtable->large_fa_hit = 0U; } else { } { tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> dm_DIG() After: large_fa_hit=%d, forbidden_igi=%x\n", "rtl92d_dm_dig", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, (int )de_digtable->large_fa_hit, (int )de_digtable->forbidden_igi); } } else { } } else { } { tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> dm_DIG() After: recover_cnt=%d, rx_gain_min=%x\n", "rtl92d_dm_dig", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, de_digtable->recover_cnt, (int )de_digtable->rx_gain_min); } } else { } } else { } if ((unsigned int )value_igi > 62U) { value_igi = 62U; } else if ((int )value_igi < (int )de_digtable->rx_gain_min) { value_igi = de_digtable->rx_gain_min; } else { } { de_digtable->cur_igvalue = (u32 )value_igi; rtl92d_dm_write_dig(hw); } if ((unsigned int )rtlpriv->rtlhal.current_bandtype != 1U) { { rtl92d_dm_cck_packet_detection_thresh(hw); } } else { } { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> <<==\n", "rtl92d_dm_dig", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void rtl92d_dm_init_dynamic_txpower(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.dynamic_txpower_enable = 1; rtlpriv->dm.last_dtp_lvl = 0U; rtlpriv->dm.dynamic_txhighpower_lvl = 0U; return; } } static void rtl92d_dm_dynamic_txpower(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; long undec_sm_pwdb ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; if (! rtlpriv->dm.dynamic_txpower_enable || ((unsigned long )rtlpriv->dm.dm_flag & 2UL) != 0UL) { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; return; } else { } if ((unsigned int )mac->link_state <= 1U && rtlpriv->dm.entry_min_undec_sm_pwdb == 0L) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Not connected to any\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlpriv->dm.dynamic_txhighpower_lvl = 0U; rtlpriv->dm.last_dtp_lvl = 0U; return; } else { } if ((unsigned int )mac->link_state > 1U) { if ((unsigned int )mac->opmode == 1U) { { undec_sm_pwdb = rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> IBSS Client PWDB = 0x%lx\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } else { { undec_sm_pwdb = rtlpriv->dm.undec_sm_pwdb; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> STA Default Port PWDB = 0x%lx\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } } else { { undec_sm_pwdb = rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> AP Ext Port PWDB = 0x%lx\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } if ((unsigned int )rtlhal->current_bandtype == 1U) { if (undec_sm_pwdb > 50L) { { rtlpriv->dm.dynamic_txhighpower_lvl = 2U; tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32768ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> 5G:TxHighPwrLevel_Level2 (TxPwr=0x0)\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if ((unsigned long )undec_sm_pwdb - 43UL <= 7UL) { { rtlpriv->dm.dynamic_txhighpower_lvl = 1U; tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32768ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> 5G:TxHighPwrLevel_Level1 (TxPwr=0x10)\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if (undec_sm_pwdb <= 42L) { { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32768ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> 5G:TxHighPwrLevel_Normal\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } } else if (undec_sm_pwdb > 73L) { { rtlpriv->dm.dynamic_txhighpower_lvl = 2U; tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> TXHIGHPWRLEVEL_LEVEL1 (TxPwr=0x0)\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if ((unsigned long )undec_sm_pwdb - 67UL <= 3UL) { { rtlpriv->dm.dynamic_txhighpower_lvl = 1U; tmp___33 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count(); tmp___32 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> TXHIGHPWRLEVEL_LEVEL1 (TxPwr=0x10)\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if (undec_sm_pwdb <= 61L) { { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___38 != 0L) { { tmp___35 = preempt_count(); tmp___36 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> TXHIGHPWRLEVEL_NORMAL\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } if ((int )rtlpriv->dm.dynamic_txhighpower_lvl != (int )rtlpriv->dm.last_dtp_lvl) { { tmp___41 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count(); tmp___40 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> PHY_SetTxPowerLevel8192S() Channel = %d\n", "rtl92d_dm_dynamic_txpower", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } } else { } } else { } { rtl92d_phy_set_txpower_level(hw, (int )rtlphy->current_channel); } } else { } rtlpriv->dm.last_dtp_lvl = rtlpriv->dm.dynamic_txhighpower_lvl; return; } } static void rtl92d_dm_pwdb_monitor(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 temp ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )rtlpriv->mac80211.opmode != 2U) { return; } else { } if ((int )rtlpriv->dm.useramask) { { temp = (u32 )rtlpriv->dm.undec_sm_pwdb; temp = temp << 16; temp = temp | 256U; rtl92d_fill_h2c_cmd(hw, 5, 3U, (u8 *)(& temp)); } } else { { rtl_write_byte(rtlpriv, 1278U, (int )((unsigned char )rtlpriv->dm.undec_sm_pwdb)); } } return; } } void rtl92d_dm_init_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.current_turbo_edca = 0; rtlpriv->dm.is_any_nonbepkts = 0; rtlpriv->dm.is_cur_rdlstate = 0; return; } } static void rtl92d_dm_check_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u64 cur_txok_cnt ; u64 cur_rxok_cnt ; u32 edca_be_ul ; u32 edca_be_dl ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; edca_be_ul = 6202411U; edca_be_dl = 6202411U; if ((unsigned int )mac->link_state != 2U) { rtlpriv->dm.current_turbo_edca = 0; goto exit; } else { } if (! rtlpriv->dm.disable_framebursting && (((unsigned int )rtlpriv->sec.pairwise_enc_algorithm == 1U || (unsigned int )rtlpriv->sec.pairwise_enc_algorithm == 5U) || (unsigned int )rtlpriv->sec.pairwise_enc_algorithm == 2U)) { if ((edca_be_ul & 4294901760U) == 0U) { edca_be_ul = edca_be_ul | 6160384U; } else { } if ((edca_be_dl & 4294901760U) == 0U) { edca_be_dl = edca_be_dl | 6160384U; } else { } } else { } if (! rtlpriv->dm.is_any_nonbepkts && ! rtlpriv->dm.disable_framebursting) { cur_txok_cnt = (unsigned long long )rtlpriv->stats.txbytesunicast - last_txok_cnt; cur_rxok_cnt = (unsigned long long )rtlpriv->stats.rxbytesunicast - last_rxok_cnt; if (cur_rxok_cnt > cur_txok_cnt * 4ULL) { if (! rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { { rtl_write_dword(rtlpriv, 1288U, edca_be_dl); rtlpriv->dm.is_cur_rdlstate = 1; } } else { } } else if ((int )rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { { rtl_write_dword(rtlpriv, 1288U, edca_be_ul); rtlpriv->dm.is_cur_rdlstate = 0; } } else { } rtlpriv->dm.current_turbo_edca = 1; } else if ((int )rtlpriv->dm.current_turbo_edca) { { tmp = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 32, & tmp); rtlpriv->dm.current_turbo_edca = 0; } } else { } exit: rtlpriv->dm.is_any_nonbepkts = 0; last_txok_cnt = (u64 )rtlpriv->stats.txbytesunicast; last_rxok_cnt = (u64 )rtlpriv->stats.rxbytesunicast; return; } } static void rtl92d_dm_rxgain_tracking_thermalmeter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 index_mapping[15U] ; int i ; u32 u4tmp ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; index_mapping[0] = 15U; index_mapping[1] = 15U; index_mapping[2] = 13U; index_mapping[3] = 12U; index_mapping[4] = 11U; index_mapping[5] = 10U; index_mapping[6] = 9U; index_mapping[7] = 8U; index_mapping[8] = 7U; index_mapping[9] = 6U; index_mapping[10] = 5U; index_mapping[11] = 4U; index_mapping[12] = 4U; index_mapping[13] = 3U; index_mapping[14] = 2U; u4tmp = (u32 )((int )index_mapping[(int )rtlpriv->efuse.eeprom_thermalmeter - (int )rtlpriv->dm.thermalvalue_rxgain] << 12); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> ===> Rx Gain %x\n", "rtl92d_dm_rxgain_tracking_thermalmeter", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, u4tmp); } } else { } } else { } i = 0; goto ldv_56068; ldv_56067: { rtl_set_rfreg(hw, (enum radio_path )i, 60U, 1048575U, (rtlpriv->phy.reg_rf3c[i] & 4294905855U) | u4tmp); i = i + 1; } ldv_56068: ; if (i < (int )rtlpriv->phy.num_total_rfpath) { goto ldv_56067; } else { } return; } } static void rtl92d_bandtype_2_4G(struct ieee80211_hw *hw , long *temp_cckg , u8 *cck_index_old ) { struct rtl_priv *rtlpriv ; int i ; unsigned long flag ; long temp_cck ; u32 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; int tmp___9 ; { { rtlpriv = (struct rtl_priv *)hw->priv; flag = 0UL; rtl92d_acquire_cckandrw_pagea_ctl(hw, & flag); tmp = rtl_get_bbreg(hw, 2596U, 4294967295U); temp_cck = (long )tmp & 1061109567L; rtl92d_release_cckandrw_pagea_ctl(hw, & flag); i = 0; } goto ldv_56082; ldv_56081: ; if ((int )rtlpriv->dm.cck_inch14) { { tmp___4 = memcmp((void const *)(& temp_cck), (void const *)(& cckswing_table_ch14) + ((unsigned long )i + 2UL), 4UL); } if (tmp___4 == 0) { { *cck_index_old = (unsigned char )i; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Initial reg0x%x = 0x%lx, cck_index=0x%x, ch 14 %d\n", "rtl92d_bandtype_2_4G", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, 2596, temp_cck, (int )*cck_index_old, (int )rtlpriv->dm.cck_inch14); } } else { } } else { } goto ldv_56080; } else { } } else { { tmp___9 = memcmp((void const *)(& temp_cck), (void const *)(& cckswing_table_ch1ch13) + ((unsigned long )i + 2UL), 4UL); } if (tmp___9 == 0) { { *cck_index_old = (unsigned char )i; tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Initial reg0x%x = 0x%lx, cck_index = 0x%x, ch14 %d\n", "rtl92d_bandtype_2_4G", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL, 2596, temp_cck, (int )*cck_index_old, (int )rtlpriv->dm.cck_inch14); } } else { } } else { } goto ldv_56080; } else { } } i = i + 1; ldv_56082: ; if (i <= 32) { goto ldv_56081; } else { } ldv_56080: *temp_cckg = temp_cck; return; } } static void rtl92d_bandtype_5G(struct rtl_hal *rtlhal , u8 *ofdm_index , bool *internal_pa , u8 thermalvalue , u8 delta , u8 rf , struct rtl_efuse *rtlefuse , struct rtl_priv *rtlpriv , struct rtl_phy *rtlphy , u8 (*index_mapping)[13U] , u8 (*index_mapping_pa)[13U] ) { int i ; u8 index ; u8 offset ; { offset = 0U; i = 0; goto ldv_56100; ldv_56099: ; if ((unsigned int )rtlhal->macphymode == 1U && rtlhal->interfaceindex == 1U) { *internal_pa = (unsigned int )rtlefuse->internal_pa_5g[1] != 0U; } else { *internal_pa = (unsigned int )rtlefuse->internal_pa_5g[i] != 0U; } if ((int )*internal_pa) { if (rtlhal->interfaceindex == 1U || i == (int )rf) { offset = 4U; } else { offset = 0U; } if ((unsigned int )rtlphy->current_channel - 100U <= 65U) { offset = (unsigned int )offset + 2U; } else { } } else if (rtlhal->interfaceindex == 1U || i == (int )rf) { offset = 2U; } else { offset = 0U; } if ((int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter) { offset = (u8 )((int )offset + 1); } else { } if ((int )*internal_pa) { if ((unsigned int )delta > 12U) { index = (*(index_mapping_pa + (unsigned long )offset))[12]; } else { index = (*(index_mapping_pa + (unsigned long )offset))[(int )delta]; } } else if ((unsigned int )delta > 12U) { index = (*(index_mapping + (unsigned long )offset))[12]; } else { index = (*(index_mapping + (unsigned long )offset))[(int )delta]; } if ((int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter) { if ((int )*internal_pa && (unsigned int )thermalvalue > 18U) { *(ofdm_index + (unsigned long )i) = (unsigned int )((u8 )rtlpriv->dm.ofdm_index[i]) + ((unsigned int )((u8 )((unsigned int )delta / 2U)) * 253U - ((unsigned int )delta & 1U)); } else { *(ofdm_index + (unsigned long )i) = (int )*(ofdm_index + (unsigned long )i) - (int )index; } } else { *(ofdm_index + (unsigned long )i) = (int )*(ofdm_index + (unsigned long )i) + (int )index; } i = i + 1; ldv_56100: ; if (i < (int )rf) { goto ldv_56099; } else { } return; } } static void rtl92d_dm_txpower_tracking_callback_thermalmeter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 thermalvalue ; u8 delta ; u8 delta_lck ; u8 delta_iqk ; u8 delta_rxgain ; u8 offset ; u8 thermalvalue_avg_count ; u32 thermalvalue_avg ; bool internal_pa ; long ele_a ; long ele_d ; long temp_cck ; long val_x ; long value32 ; long val_y ; long ele_c ; u8 ofdm_index[3U] ; s8 cck_index ; u8 ofdm_index_old[3U] ; s8 cck_index_old ; u8 index ; int i ; bool is2t ; u8 ofdm_min_index ; u8 ofdm_min_index_internal_pa ; u8 rf ; u8 indexforchannel ; u8 tmp ; u8 index_mapping[5U][13U] ; u8 index_mapping_internal_pa[8U][13U] ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; u32 tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; u32 tmp___9 ; int tmp___10 ; int tmp___11 ; long tmp___12 ; long tmp___13 ; u32 tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; int tmp___43 ; int tmp___44 ; long tmp___45 ; long tmp___46 ; int tmp___47 ; int tmp___48 ; long tmp___49 ; long tmp___50 ; u32 tmp___51 ; u32 tmp___52 ; u32 tmp___53 ; int tmp___54 ; int tmp___55 ; long tmp___56 ; long tmp___57 ; int tmp___58 ; int tmp___59 ; long tmp___60 ; long tmp___61 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; thermalvalue_avg_count = 0U; thermalvalue_avg = 0U; internal_pa = 0; ele_a = 0L; ele_c = 0L; cck_index = 0; ofdm_index_old[0] = 0U; ofdm_index_old[1] = 0U; ofdm_index_old[2] = 0U; cck_index_old = 0; is2t = ((unsigned long )rtlhal->version & 119UL) == 34UL; ofdm_min_index = 6U; ofdm_min_index_internal_pa = 3U; tmp = rtl92d_get_rightchnlplace_for_iqk((int )rtlphy->current_channel); indexforchannel = tmp; index_mapping[0][0] = 0U; index_mapping[0][1] = 1U; index_mapping[0][2] = 3U; index_mapping[0][3] = 6U; index_mapping[0][4] = 8U; index_mapping[0][5] = 9U; index_mapping[0][6] = 11U; index_mapping[0][7] = 13U; index_mapping[0][8] = 14U; index_mapping[0][9] = 16U; index_mapping[0][10] = 17U; index_mapping[0][11] = 18U; index_mapping[0][12] = 18U; index_mapping[1][0] = 0U; index_mapping[1][1] = 2U; index_mapping[1][2] = 4U; index_mapping[1][3] = 5U; index_mapping[1][4] = 7U; index_mapping[1][5] = 10U; index_mapping[1][6] = 12U; index_mapping[1][7] = 14U; index_mapping[1][8] = 16U; index_mapping[1][9] = 18U; index_mapping[1][10] = 18U; index_mapping[1][11] = 18U; index_mapping[1][12] = 18U; index_mapping[2][0] = 0U; index_mapping[2][1] = 2U; index_mapping[2][2] = 3U; index_mapping[2][3] = 6U; index_mapping[2][4] = 8U; index_mapping[2][5] = 9U; index_mapping[2][6] = 11U; index_mapping[2][7] = 13U; index_mapping[2][8] = 14U; index_mapping[2][9] = 16U; index_mapping[2][10] = 17U; index_mapping[2][11] = 18U; index_mapping[2][12] = 18U; index_mapping[3][0] = 0U; index_mapping[3][1] = 2U; index_mapping[3][2] = 4U; index_mapping[3][3] = 5U; index_mapping[3][4] = 7U; index_mapping[3][5] = 10U; index_mapping[3][6] = 13U; index_mapping[3][7] = 16U; index_mapping[3][8] = 16U; index_mapping[3][9] = 18U; index_mapping[3][10] = 18U; index_mapping[3][11] = 18U; index_mapping[3][12] = 18U; index_mapping[4][0] = 0U; index_mapping[4][1] = 1U; index_mapping[4][2] = 2U; index_mapping[4][3] = 3U; index_mapping[4][4] = 4U; index_mapping[4][5] = 5U; index_mapping[4][6] = 6U; index_mapping[4][7] = 7U; index_mapping[4][8] = 7U; index_mapping[4][9] = 8U; index_mapping[4][10] = 9U; index_mapping[4][11] = 10U; index_mapping[4][12] = 10U; index_mapping_internal_pa[0][0] = 0U; index_mapping_internal_pa[0][1] = 1U; index_mapping_internal_pa[0][2] = 2U; index_mapping_internal_pa[0][3] = 4U; index_mapping_internal_pa[0][4] = 6U; index_mapping_internal_pa[0][5] = 7U; index_mapping_internal_pa[0][6] = 9U; index_mapping_internal_pa[0][7] = 11U; index_mapping_internal_pa[0][8] = 12U; index_mapping_internal_pa[0][9] = 14U; index_mapping_internal_pa[0][10] = 15U; index_mapping_internal_pa[0][11] = 16U; index_mapping_internal_pa[0][12] = 16U; index_mapping_internal_pa[1][0] = 0U; index_mapping_internal_pa[1][1] = 2U; index_mapping_internal_pa[1][2] = 4U; index_mapping_internal_pa[1][3] = 5U; index_mapping_internal_pa[1][4] = 7U; index_mapping_internal_pa[1][5] = 10U; index_mapping_internal_pa[1][6] = 12U; index_mapping_internal_pa[1][7] = 14U; index_mapping_internal_pa[1][8] = 16U; index_mapping_internal_pa[1][9] = 18U; index_mapping_internal_pa[1][10] = 18U; index_mapping_internal_pa[1][11] = 18U; index_mapping_internal_pa[1][12] = 18U; index_mapping_internal_pa[2][0] = 0U; index_mapping_internal_pa[2][1] = 1U; index_mapping_internal_pa[2][2] = 2U; index_mapping_internal_pa[2][3] = 3U; index_mapping_internal_pa[2][4] = 5U; index_mapping_internal_pa[2][5] = 6U; index_mapping_internal_pa[2][6] = 8U; index_mapping_internal_pa[2][7] = 10U; index_mapping_internal_pa[2][8] = 11U; index_mapping_internal_pa[2][9] = 13U; index_mapping_internal_pa[2][10] = 14U; index_mapping_internal_pa[2][11] = 15U; index_mapping_internal_pa[2][12] = 15U; index_mapping_internal_pa[3][0] = 0U; index_mapping_internal_pa[3][1] = 2U; index_mapping_internal_pa[3][2] = 4U; index_mapping_internal_pa[3][3] = 5U; index_mapping_internal_pa[3][4] = 7U; index_mapping_internal_pa[3][5] = 10U; index_mapping_internal_pa[3][6] = 12U; index_mapping_internal_pa[3][7] = 14U; index_mapping_internal_pa[3][8] = 16U; index_mapping_internal_pa[3][9] = 18U; index_mapping_internal_pa[3][10] = 18U; index_mapping_internal_pa[3][11] = 18U; index_mapping_internal_pa[3][12] = 18U; index_mapping_internal_pa[4][0] = 0U; index_mapping_internal_pa[4][1] = 1U; index_mapping_internal_pa[4][2] = 2U; index_mapping_internal_pa[4][3] = 4U; index_mapping_internal_pa[4][4] = 6U; index_mapping_internal_pa[4][5] = 7U; index_mapping_internal_pa[4][6] = 9U; index_mapping_internal_pa[4][7] = 11U; index_mapping_internal_pa[4][8] = 12U; index_mapping_internal_pa[4][9] = 14U; index_mapping_internal_pa[4][10] = 15U; index_mapping_internal_pa[4][11] = 16U; index_mapping_internal_pa[4][12] = 16U; index_mapping_internal_pa[5][0] = 0U; index_mapping_internal_pa[5][1] = 2U; index_mapping_internal_pa[5][2] = 4U; index_mapping_internal_pa[5][3] = 5U; index_mapping_internal_pa[5][4] = 7U; index_mapping_internal_pa[5][5] = 10U; index_mapping_internal_pa[5][6] = 13U; index_mapping_internal_pa[5][7] = 16U; index_mapping_internal_pa[5][8] = 16U; index_mapping_internal_pa[5][9] = 18U; index_mapping_internal_pa[5][10] = 18U; index_mapping_internal_pa[5][11] = 18U; index_mapping_internal_pa[5][12] = 18U; index_mapping_internal_pa[6][0] = 0U; index_mapping_internal_pa[6][1] = 1U; index_mapping_internal_pa[6][2] = 2U; index_mapping_internal_pa[6][3] = 3U; index_mapping_internal_pa[6][4] = 5U; index_mapping_internal_pa[6][5] = 6U; index_mapping_internal_pa[6][6] = 8U; index_mapping_internal_pa[6][7] = 9U; index_mapping_internal_pa[6][8] = 10U; index_mapping_internal_pa[6][9] = 12U; index_mapping_internal_pa[6][10] = 13U; index_mapping_internal_pa[6][11] = 14U; index_mapping_internal_pa[6][12] = 14U; index_mapping_internal_pa[7][0] = 0U; index_mapping_internal_pa[7][1] = 2U; index_mapping_internal_pa[7][2] = 4U; index_mapping_internal_pa[7][3] = 5U; index_mapping_internal_pa[7][4] = 7U; index_mapping_internal_pa[7][5] = 10U; index_mapping_internal_pa[7][6] = 13U; index_mapping_internal_pa[7][7] = 16U; index_mapping_internal_pa[7][8] = 16U; index_mapping_internal_pa[7][9] = 18U; index_mapping_internal_pa[7][10] = 18U; index_mapping_internal_pa[7][11] = 18U; index_mapping_internal_pa[7][12] = 18U; rtlpriv->dm.txpower_trackinginit = 1; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> \n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___4 = rtl_get_rfreg(hw, 0, 66U, 63488U); thermalvalue = (unsigned char )tmp___4; tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermalmeter 0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtlpriv->dm.thermalvalue, (int )rtlefuse->eeprom_thermalmeter); } } else { } } else { } { rtl92d_phy_ap_calibrate(hw, (int )((char )((int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter))); } if ((int )is2t) { rf = 2U; } else { rf = 1U; } if ((unsigned int )thermalvalue != 0U) { { tmp___9 = rtl_get_bbreg(hw, 3200U, 4294967295U); ele_d = (long )tmp___9 & 4290772992L; i = 0; } goto ldv_56141; ldv_56140: ; if (ele_d == ((long )ofdmswing_table[i] & 4290772992L)) { { ofdm_index_old[0] = (unsigned char )i; tmp___12 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___12 != 0L) { { tmp___13 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___13 != 0L) { { tmp___10 = preempt_count(); tmp___11 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Initial pathA ele_d reg0x%x = 0x%lx, ofdm_index=0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___11 & 2096896UL, ((unsigned long )tmp___10 & 0xffffffffffdfffffUL) != 0UL, 3200, ele_d, (int )ofdm_index_old[0]); } } else { } } else { } goto ldv_56139; } else { } i = i + 1; ldv_56141: ; if (i <= 42) { goto ldv_56140; } else { } ldv_56139: ; if ((int )is2t) { { tmp___14 = rtl_get_bbreg(hw, 3208U, 4294967295U); ele_d = (long )tmp___14 & 4290772992L; i = 0; } goto ldv_56144; ldv_56143: ; if (ele_d == ((long )ofdmswing_table[i] & 4290772992L)) { { ofdm_index_old[1] = (unsigned char )i; tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Initial pathB ele_d reg 0x%x = 0x%lx, ofdm_index = 0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, 3208, ele_d, (int )ofdm_index_old[1]); } } else { } } else { } goto ldv_56142; } else { } i = i + 1; ldv_56144: ; if (i <= 42) { goto ldv_56143; } else { } ldv_56142: ; } else { } if ((unsigned int )rtlhal->current_bandtype == 0U) { { rtl92d_bandtype_2_4G(hw, & temp_cck, (u8 *)(& cck_index_old)); } } else { temp_cck = 151917335L; cck_index_old = 12; } if ((unsigned int )rtlpriv->dm.thermalvalue == 0U) { rtlpriv->dm.thermalvalue = rtlefuse->eeprom_thermalmeter; rtlpriv->dm.thermalvalue_lck = thermalvalue; rtlpriv->dm.thermalvalue_iqk = thermalvalue; rtlpriv->dm.thermalvalue_rxgain = rtlefuse->eeprom_thermalmeter; i = 0; goto ldv_56146; ldv_56145: rtlpriv->dm.ofdm_index[i] = (char )ofdm_index_old[i]; i = i + 1; ldv_56146: ; if (i < (int )rf) { goto ldv_56145; } else { } rtlpriv->dm.cck_index = (char )cck_index_old; } else { } if ((int )rtlhal->reloadtxpowerindex) { i = 0; goto ldv_56149; ldv_56148: rtlpriv->dm.ofdm_index[i] = (char )ofdm_index_old[i]; i = i + 1; ldv_56149: ; if (i < (int )rf) { goto ldv_56148; } else { } { rtlpriv->dm.cck_index = (char )cck_index_old; tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> reload ofdm index for band switch\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } rtlpriv->dm.thermalvalue_avg[(int )rtlpriv->dm.thermalvalue_avg_index] = thermalvalue; rtlpriv->dm.thermalvalue_avg_index = (u8 )((int )rtlpriv->dm.thermalvalue_avg_index + 1); if ((unsigned int )rtlpriv->dm.thermalvalue_avg_index == 8U) { rtlpriv->dm.thermalvalue_avg_index = 0U; } else { } i = 0; goto ldv_56152; ldv_56151: ; if ((unsigned int )rtlpriv->dm.thermalvalue_avg[i] != 0U) { thermalvalue_avg = thermalvalue_avg + (u32 )rtlpriv->dm.thermalvalue_avg[i]; thermalvalue_avg_count = (u8 )((int )thermalvalue_avg_count + 1); } else { } i = i + 1; ldv_56152: ; if (i <= 7) { goto ldv_56151; } else { } if ((unsigned int )thermalvalue_avg_count != 0U) { thermalvalue = (unsigned char )(thermalvalue_avg / (u32 )thermalvalue_avg_count); } else { } if ((int )rtlhal->reloadtxpowerindex) { delta = (int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; rtlhal->reloadtxpowerindex = 0; rtlpriv->dm.done_txpower = 0; } else if ((int )rtlpriv->dm.done_txpower) { delta = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue : (int )rtlpriv->dm.thermalvalue - (int )thermalvalue; } else { delta = (int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; } { delta_lck = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue_lck ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_lck : (int )rtlpriv->dm.thermalvalue_lck - (int )thermalvalue; delta_iqk = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue_iqk ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_iqk : (int )rtlpriv->dm.thermalvalue_iqk - (int )thermalvalue; delta_rxgain = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue_rxgain ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_rxgain : (int )rtlpriv->dm.thermalvalue_rxgain - (int )thermalvalue; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermalmeter 0x%x delta 0x%x delta_lck 0x%x delta_iqk 0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtlpriv->dm.thermalvalue, (int )rtlefuse->eeprom_thermalmeter, (int )delta, (int )delta_lck, (int )delta_iqk); } } else { } } else { } if ((int )delta_lck > (int )rtlefuse->delta_lck && (unsigned int )rtlefuse->delta_lck != 0U) { { rtlpriv->dm.thermalvalue_lck = thermalvalue; rtl92d_phy_lc_calibrate(hw); } } else { } if ((unsigned int )delta != 0U && (unsigned int )rtlpriv->dm.txpower_track_control != 0U) { rtlpriv->dm.done_txpower = 1; delta = (int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; if ((unsigned int )rtlhal->current_bandtype == 0U) { offset = 4U; if ((unsigned int )delta > 12U) { index = index_mapping[(int )offset][12]; } else { index = index_mapping[(int )offset][(int )delta]; } if ((int )thermalvalue > (int )rtlpriv->dm.thermalvalue) { i = 0; goto ldv_56155; ldv_56154: ofdm_index[i] = (int )ofdm_index[i] - (int )delta; i = i + 1; ldv_56155: ; if (i < (int )rf) { goto ldv_56154; } else { } cck_index = (s8 )((int )((unsigned char )cck_index) - (int )delta); } else { i = 0; goto ldv_56158; ldv_56157: ofdm_index[i] = (int )ofdm_index[i] + (int )index; i = i + 1; ldv_56158: ; if (i < (int )rf) { goto ldv_56157; } else { } cck_index = (s8 )((int )((unsigned char )cck_index) + (int )index); } } else if ((unsigned int )rtlhal->current_bandtype == 1U) { { rtl92d_bandtype_5G(rtlhal, (u8 *)(& ofdm_index), & internal_pa, (int )thermalvalue, (int )delta, (int )rf, rtlefuse, rtlpriv, rtlphy, (u8 (*)[13])(& index_mapping), (u8 (*)[13])(& index_mapping_internal_pa)); } } else { } if ((int )is2t) { { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> temp OFDM_A_index=0x%x, OFDM_B_index = 0x%x,cck_index=0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->dm.ofdm_index[0], (int )rtlpriv->dm.ofdm_index[1], (int )rtlpriv->dm.cck_index); } } else { } } else { } } else { { tmp___33 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count(); tmp___32 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> temp OFDM_A_index=0x%x,cck_index = 0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->dm.ofdm_index[0], (int )rtlpriv->dm.cck_index); } } else { } } else { } } i = 0; goto ldv_56161; ldv_56160: ; if ((unsigned int )ofdm_index[i] > 42U) { ofdm_index[i] = 42U; } else if ((int )ofdm_index[i] < (int )ofdm_min_index) { ofdm_index[i] = ofdm_min_index; } else { } i = i + 1; ldv_56161: ; if (i < (int )rf) { goto ldv_56160; } else { } if ((unsigned int )rtlhal->current_bandtype == 0U) { if ((int )cck_index > 32) { cck_index = 32; } else if ((int )internal_pa || (unsigned int )rtlhal->current_bandtype == 0U) { if ((int )ofdm_index[i] < (int )ofdm_min_index_internal_pa) { ofdm_index[i] = ofdm_min_index_internal_pa; } else { } } else if ((int )cck_index < 0) { cck_index = 0; } else { } } else { } if ((int )is2t) { { tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___38 != 0L) { { tmp___35 = preempt_count(); tmp___36 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> new OFDM_A_index=0x%x, OFDM_B_index = 0x%x, cck_index=0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL, (int )ofdm_index[0], (int )ofdm_index[1], (int )cck_index); } } else { } } else { } } else { { tmp___41 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count(); tmp___40 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> new OFDM_A_index=0x%x,cck_index = 0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL, (int )ofdm_index[0], (int )cck_index); } } else { } } else { } } ele_d = (long )((unsigned int )ofdmswing_table[(int )ofdm_index[0]] >> 22); val_x = rtlphy->iqk_matrix[(int )indexforchannel].value[0][0]; val_y = rtlphy->iqk_matrix[(int )indexforchannel].value[0][1]; if (val_x != 0L) { if ((val_x & 512L) != 0L) { val_x = val_x | 4294966272L; } else { } ele_a = (val_x * ele_d >> 8) & 1023L; if ((val_y & 512L) != 0L) { val_y = val_y | 4294966272L; } else { } { ele_c = (val_y * ele_d >> 8) & 1023L; value32 = ((ele_d << 22) | ((ele_c & 63L) << 16)) | ele_a; rtl_set_bbreg(hw, 3200U, 4294967295U, (u32 )value32); value32 = (ele_c & 960L) >> 6; rtl_set_bbreg(hw, 3220U, 4026531840U, (u32 )value32); value32 = (val_x * ele_d >> 7) & 1L; rtl_set_bbreg(hw, 3148U, 16777216U, (u32 )value32); } } else { { rtl_set_bbreg(hw, 3200U, 4294967295U, ofdmswing_table[(int )ofdm_index[0]]); rtl_set_bbreg(hw, 3220U, 4026531840U, 0U); rtl_set_bbreg(hw, 3148U, 16777216U, 0U); } } { tmp___45 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___45 != 0L) { { tmp___46 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___46 != 0L) { { tmp___43 = preempt_count(); tmp___44 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> TxPwrTracking for interface %d path A: X = 0x%lx, Y = 0x%lx ele_A = 0x%lx ele_C = 0x%lx ele_D = 0x%lx 0xe94 = 0x%lx 0xe9c = 0x%lx\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___44 & 2096896UL, ((unsigned long )tmp___43 & 0xffffffffffdfffffUL) != 0UL, rtlhal->interfaceindex, val_x, val_y, ele_a, ele_c, ele_d, val_x, val_y); } } else { } } else { } if ((int )cck_index > 32) { cck_index = 32; } else { } if ((int )cck_index < 0) { cck_index = 0; } else { } if ((unsigned int )rtlhal->current_bandtype == 0U) { if (! rtlpriv->dm.cck_inch14) { { rtl_write_byte(rtlpriv, 2594U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][0]); rtl_write_byte(rtlpriv, 2595U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][1]); rtl_write_byte(rtlpriv, 2596U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][2]); rtl_write_byte(rtlpriv, 2597U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][3]); rtl_write_byte(rtlpriv, 2598U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][4]); rtl_write_byte(rtlpriv, 2599U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][5]); rtl_write_byte(rtlpriv, 2600U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][6]); rtl_write_byte(rtlpriv, 2601U, (int )cckswing_table_ch1ch13[(int )((unsigned char )cck_index)][7]); } } else { { rtl_write_byte(rtlpriv, 2594U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][0]); rtl_write_byte(rtlpriv, 2595U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][1]); rtl_write_byte(rtlpriv, 2596U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][2]); rtl_write_byte(rtlpriv, 2597U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][3]); rtl_write_byte(rtlpriv, 2598U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][4]); rtl_write_byte(rtlpriv, 2599U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][5]); rtl_write_byte(rtlpriv, 2600U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][6]); rtl_write_byte(rtlpriv, 2601U, (int )cckswing_table_ch14[(int )((unsigned char )cck_index)][7]); } } } else { } if ((int )is2t) { ele_d = (long )((unsigned int )ofdmswing_table[(int )ofdm_index[1]] >> 22); val_x = rtlphy->iqk_matrix[(int )indexforchannel].value[0][4]; val_y = rtlphy->iqk_matrix[(int )indexforchannel].value[0][5]; if (val_x != 0L) { if ((val_x & 512L) != 0L) { val_x = val_x | 4294966272L; } else { } ele_a = (val_x * ele_d >> 8) & 1023L; if ((val_y & 512L) != 0L) { val_y = val_y | 4294966272L; } else { } { ele_c = (val_y * ele_d >> 8) & 1023L; value32 = ((ele_d << 22) | ((ele_c & 63L) << 16)) | ele_a; rtl_set_bbreg(hw, 3208U, 4294967295U, (u32 )value32); value32 = (ele_c & 960L) >> 6; rtl_set_bbreg(hw, 3228U, 4026531840U, (u32 )value32); value32 = (val_x * ele_d >> 7) & 1L; rtl_set_bbreg(hw, 3148U, 268435456U, (u32 )value32); } } else { { rtl_set_bbreg(hw, 3208U, 4294967295U, ofdmswing_table[(int )ofdm_index[1]]); rtl_set_bbreg(hw, 3228U, 4026531840U, 0U); rtl_set_bbreg(hw, 3148U, 268435456U, 0U); } } { tmp___49 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___49 != 0L) { { tmp___50 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___50 != 0L) { { tmp___47 = preempt_count(); tmp___48 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> TxPwrTracking path B: X = 0x%lx, Y = 0x%lx ele_A = 0x%lx ele_C = 0x%lx ele_D = 0x%lx 0xeb4 = 0x%lx 0xebc = 0x%lx\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___48 & 2096896UL, ((unsigned long )tmp___47 & 0xffffffffffdfffffUL) != 0UL, val_x, val_y, ele_a, ele_c, ele_d, val_x, val_y); } } else { } } else { } } else { } { tmp___56 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___56 != 0L) { { tmp___57 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___57 != 0L) { { tmp___51 = rtl_get_rfreg(hw, 0, 36U, 1048575U); tmp___52 = rtl_get_bbreg(hw, 3220U, 4294967295U); tmp___53 = rtl_get_bbreg(hw, 3200U, 4294967295U); tmp___54 = preempt_count(); tmp___55 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> TxPwrTracking 0xc80 = 0x%x, 0xc94 = 0x%x RF 0x24 = 0x%x\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___55 & 2096896UL, ((unsigned long )tmp___54 & 0xffffffffffdfffffUL) != 0UL, tmp___53, tmp___52, tmp___51); } } else { } } else { } } else { } if ((int )delta_iqk > (int )rtlefuse->delta_iqk && (unsigned int )rtlefuse->delta_iqk != 0U) { { rtl92d_phy_reset_iqk_result(hw); rtlpriv->dm.thermalvalue_iqk = thermalvalue; rtl92d_phy_iq_calibrate(hw); } } else { } if (((unsigned int )delta_rxgain != 0U && (unsigned int )rtlhal->current_bandtype == 1U) && (int )thermalvalue <= (int )rtlefuse->eeprom_thermalmeter) { { rtlpriv->dm.thermalvalue_rxgain = thermalvalue; rtl92d_dm_rxgain_tracking_thermalmeter(hw); } } else { } if ((unsigned int )rtlpriv->dm.txpower_track_control != 0U) { rtlpriv->dm.thermalvalue = thermalvalue; } else { } } else { } { tmp___60 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___60 != 0L) { { tmp___61 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___61 != 0L) { { tmp___58 = preempt_count(); tmp___59 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> <===\n", "rtl92d_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___59 & 2096896UL, ((unsigned long )tmp___58 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void rtl92d_dm_initialize_txpower_tracking(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.txpower_tracking = 1; rtlpriv->dm.txpower_trackinginit = 0; rtlpriv->dm.txpower_track_control = 1U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> pMgntInfo->txpower_tracking = %d\n", "rtl92d_dm_initialize_txpower_tracking", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->dm.txpower_tracking); } } else { } } else { } return; } } void rtl92d_dm_check_txpower_tracking_thermal_meter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tm_trigger ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; if (! rtlpriv->dm.txpower_tracking) { return; } else { } if ((unsigned int )tm_trigger == 0U) { { rtl_set_rfreg(hw, 0, 66U, 196608U, 3U); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Trigger 92S Thermal Meter!!\n", "rtl92d_dm_check_txpower_tracking_thermal_meter", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } tm_trigger = 1U; return; } else { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Schedule TxPowerTracking direct call!!\n", "rtl92d_dm_check_txpower_tracking_thermal_meter", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl92d_dm_txpower_tracking_callback_thermalmeter(hw); tm_trigger = 0U; } } return; } } void rtl92d_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rate_adaptive *ra ; { rtlpriv = (struct rtl_priv *)hw->priv; ra = & rtlpriv->ra; ra->ratr_state = 0U; ra->pre_ratr_state = 0U; if ((unsigned int )rtlpriv->dm.dm_type == 1U) { rtlpriv->dm.useramask = 1; } else { rtlpriv->dm.useramask = 0; } return; } } void rtl92d_dm_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.dm_type = 1U; rtl_dm_diginit(hw, 32U); rtlpriv->dm_digtable.rx_gain_max = 50U; rtlpriv->dm_digtable.rx_gain_min = 32U; rtl92d_dm_init_dynamic_txpower(hw); rtl92d_dm_init_edca_turbo(hw); rtl92d_dm_init_rate_adaptive_mask(hw); rtl92d_dm_initialize_txpower_tracking(hw); } return; } } void rtl92d_dm_watchdog(struct ieee80211_hw *hw ) { struct rtl_ps_ctl *ppsc ; bool fw_current_inpsmode ; bool fwps_awake ; { ppsc = & ((struct rtl_priv *)hw->priv)->psc; fw_current_inpsmode = 0; fwps_awake = 1; if (((unsigned int )ppsc->rfpwr_state == 0U && (! fw_current_inpsmode && (int )fwps_awake)) && ! ppsc->rfchange_inprogress) { { rtl92d_dm_pwdb_monitor(hw); rtl92d_dm_false_alarm_counter_statistics(hw); rtl92d_dm_find_minimum_rssi(hw); rtl92d_dm_dig(hw); rtl92d_dm_dynamic_txpower(hw); rtl92d_dm_check_edca_turbo(hw); } } else { } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_cck_and_rw_pagea_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_cck_and_rw_pagea_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3514; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3514; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3514; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3514; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3514: ; return (pfo_ret__); } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_124(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_136(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_138(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_fwdownload(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_for_fwdownload(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_h2c_lock_of_rtl_locks(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_h2c_lock_of_rtl_locks(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_irq_th_lock_of_rtl_locks(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_irq_th_lock_of_rtl_locks(void) ; __inline static int preempt_count___0(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7165; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7165; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7165; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7165; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7165: ; return (pfo_ret__ & 2147483647); } } __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_132(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_132(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_132(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_132(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_139(spinlock_t *lock , unsigned long flags ) ; extern void kfree_skb(struct sk_buff * ) ; __inline static struct sk_buff *skb_peek(struct sk_buff_head const *list_ ) { struct sk_buff *skb ; { skb = list_->next; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)list_)) { skb = (struct sk_buff *)0; } else { } return (skb); } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->__annonCompField64.__annonCompField63.next = next; newsk->__annonCompField64.__annonCompField63.prev = prev; tmp = newsk; prev->__annonCompField64.__annonCompField63.next = tmp; next->__annonCompField64.__annonCompField63.prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { { __skb_insert(newsk, next->__annonCompField64.__annonCompField63.prev, next, list); } return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_before(list, (struct sk_buff *)list, newsk); } return; } } __inline static void __skb_unlink(struct sk_buff *skb , struct sk_buff_head *list ) { struct sk_buff *next ; struct sk_buff *prev ; struct sk_buff *tmp ; { list->qlen = list->qlen - 1U; next = skb->__annonCompField64.__annonCompField63.next; prev = skb->__annonCompField64.__annonCompField63.prev; tmp = (struct sk_buff *)0; skb->__annonCompField64.__annonCompField63.prev = tmp; skb->__annonCompField64.__annonCompField63.next = tmp; next->__annonCompField64.__annonCompField63.prev = prev; prev->__annonCompField64.__annonCompField63.next = next; return; } } __inline static struct sk_buff *__skb_dequeue(struct sk_buff_head *list ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = skb_peek((struct sk_buff_head const *)list); skb = tmp; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { __skb_unlink(skb, list); } } else { } return (skb); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; static struct sk_buff *ldv___netdev_alloc_skb_91(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_91(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } extern void __const_udelay(unsigned long ) ; __inline static void ether_addr_copy(u8 *dst , u8 const *src ) { { *((u32 *)dst) = *((u32 const *)src); *((u16 *)dst + 4U) = *((u16 const *)src + 4U); return; } } __inline static u32 rtl_read_dword(struct rtl_priv *rtlpriv , u32 addr ) { u32 tmp ; { { tmp = (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } return (tmp); } } int rtl92d_download_fw(struct ieee80211_hw *hw ) ; void rtl92d_firmware_selfreset(struct ieee80211_hw *hw ) ; void rtl92d_set_fw_rsvdpagepkt(struct ieee80211_hw *hw , bool dl_finished ) ; void rtl92d_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus ) ; spinlock_t globalmutex_for_fwdownload ; static bool _rtl92d_is_fw_downloaded(struct rtl_priv *rtlpriv ) { u32 tmp ; { { tmp = rtl_read_dword(rtlpriv, 128U); } return (((unsigned long )tmp & 2UL) != 0UL); } } static void _rtl92d_enable_fw_download(struct ieee80211_hw *hw , bool enable ) { struct rtl_priv *rtlpriv ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )enable) { { tmp = rtl_read_byte(rtlpriv, 3U); rtl_write_byte(rtlpriv, 3U, (int )((unsigned int )tmp | 4U)); tmp = rtl_read_byte(rtlpriv, 128U); rtl_write_byte(rtlpriv, 128U, (int )((unsigned int )tmp | 1U)); tmp = rtl_read_byte(rtlpriv, 130U); rtl_write_byte(rtlpriv, 130U, (int )tmp & 247); } } else { { tmp = rtl_read_byte(rtlpriv, 128U); rtl_write_byte(rtlpriv, 128U, (int )tmp & 254); } } return; } } static void _rtl92d_fw_block_write(struct ieee80211_hw *hw , u8 const *buffer , u32 size ) { struct rtl_priv *rtlpriv ; u32 blocksize ; u8 *bufferptr ; u32 *pu4BytePtr ; u32 i ; u32 offset ; u32 blockCount ; u32 remainSize ; { rtlpriv = (struct rtl_priv *)hw->priv; blocksize = 4U; bufferptr = (u8 *)buffer; pu4BytePtr = (u32 *)buffer; blockCount = size / blocksize; remainSize = size % blocksize; i = 0U; goto ldv_56039; ldv_56038: { offset = i * blocksize; rtl_write_dword(rtlpriv, offset + 4096U, *(pu4BytePtr + (unsigned long )i)); i = i + 1U; } ldv_56039: ; if (i < blockCount) { goto ldv_56038; } else { } if (remainSize != 0U) { offset = blockCount * blocksize; bufferptr = bufferptr + (unsigned long )offset; i = 0U; goto ldv_56042; ldv_56041: { rtl_write_byte(rtlpriv, (offset + i) + 4096U, (int )*(bufferptr + (unsigned long )i)); i = i + 1U; } ldv_56042: ; if (i < remainSize) { goto ldv_56041; } else { } } else { } return; } } static void _rtl92d_fw_page_write(struct ieee80211_hw *hw , u32 page , u8 const *buffer , u32 size ) { struct rtl_priv *rtlpriv ; u8 value8 ; u8 u8page ; u8 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; u8page = (unsigned int )((unsigned char )page) & 7U; tmp = rtl_read_byte(rtlpriv, 130U); value8 = (u8 )(((int )((signed char )tmp) & -8) | (int )((signed char )u8page)); rtl_write_byte(rtlpriv, 130U, (int )value8); _rtl92d_fw_block_write(hw, buffer, size); } return; } } static void _rtl92d_fill_dummy(u8 *pfwbuf , u32 *pfwlen ) { u32 fwlen ; u8 remain ; { fwlen = *pfwlen; remain = (unsigned int )((unsigned char )fwlen) & 3U; remain = (unsigned int )remain != 0U ? 4U - (unsigned int )remain : 0U; goto ldv_56060; ldv_56059: *(pfwbuf + (unsigned long )fwlen) = 0U; fwlen = fwlen + 1U; remain = (u8 )((int )remain - 1); ldv_56060: ; if ((unsigned int )remain != 0U) { goto ldv_56059; } else { } *pfwlen = fwlen; return; } } static void _rtl92d_write_fw(struct ieee80211_hw *hw , enum version_8192d version , u8 *buffer , u32 size ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 *bufferPtr ; u32 pagenums ; u32 remainSize ; u32 page ; u32 offset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; bufferPtr = buffer; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> FW size is %d bytes,\n", "_rtl92d_write_fw", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, size); } } else { } } else { } if ((unsigned int )rtlhal->hw_type == 6U) { { _rtl92d_fill_dummy(bufferPtr, & size); } } else { } pagenums = size / 4096U; remainSize = size & 4095U; if (pagenums > 8U) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Page numbers should not greater then 8\n", "_rtl92d_write_fw", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } page = 0U; goto ldv_56077; ldv_56076: { offset = page * 4096U; _rtl92d_fw_page_write(hw, page, (u8 const *)bufferPtr + (unsigned long )offset, 4096U); page = page + 1U; } ldv_56077: ; if (page < pagenums) { goto ldv_56076; } else { } if (remainSize != 0U) { { offset = pagenums * 4096U; page = pagenums; _rtl92d_fw_page_write(hw, page, (u8 const *)bufferPtr + (unsigned long )offset, remainSize); } } else { } return; } } static int _rtl92d_fw_free_to_go(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 counter ; u32 value32 ; u32 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; counter = 0U; ldv_56085: { value32 = rtl_read_dword(rtlpriv, 128U); tmp = counter; counter = counter + 1U; } if (tmp <= 999U && ((unsigned long )value32 & 4UL) == 0UL) { goto ldv_56085; } else { } if (counter > 999U) { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___0(); tmp___1 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> chksum report faill ! REG_MCUFWDL:0x%08x\n", "_rtl92d_fw_free_to_go", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, value32); } } else { } } else { } return (-5); } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___0(); tmp___5 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Checksum report OK ! REG_MCUFWDL:0x%08x\n", "_rtl92d_fw_free_to_go", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, value32); } } else { } } else { } { value32 = rtl_read_dword(rtlpriv, 128U); value32 = value32 | 2U; rtl_write_dword(rtlpriv, 128U, value32); } return (0); } } void rtl92d_firmware_selfreset(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 u1b_tmp ; u8 delay ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; delay = 100U; rtl_write_byte(rtlpriv, 463U, 32); u1b_tmp = rtl_read_byte(rtlpriv, 3U); } goto ldv_56096; ldv_56095: delay = (u8 )((int )delay - 1); if ((unsigned int )delay == 0U) { goto ldv_56094; } else { } { __const_udelay(214750UL); u1b_tmp = rtl_read_byte(rtlpriv, 3U); } ldv_56096: ; if (((unsigned long )u1b_tmp & 4UL) != 0UL) { goto ldv_56095; } else { } ldv_56094: ; if ((unsigned int )delay == 0U) { { printk("\017rtl8192de:%s(): 8051 reset failed!\n", "rtl92d_firmware_selfreset"); } } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> =====> 8051 reset success (%d)\n", "rtl92d_firmware_selfreset", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )delay); } } else { } } else { } return; } } static int _rtl92d_fw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 counter ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; u8 tmp___8 ; u8 tmp___9 ; int tmp___10 ; int tmp___11 ; long tmp___12 ; long tmp___13 ; u8 tmp___14 ; u32 tmp___15 ; u8 tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; u8 tmp___21 ; int tmp___22 ; int tmp___23 ; long tmp___24 ; long tmp___25 ; u32 tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> FW already have download\n", "_rtl92d_fw_init", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } counter = 0U; ldv_56105: ; if (rtlhal->interfaceindex == 0U) { { tmp___8 = rtl_read_byte(rtlpriv, 24U); } if ((int )tmp___8 & 1) { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = rtl_read_byte(rtlpriv, 24U); tmp___4 = preempt_count___0(); tmp___5 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Polling FW ready success!! REG_MCUFWDL: 0x%x\n", "_rtl92d_fw_init", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )tmp___3); } } else { } } else { } return (0); } else { } { __const_udelay(21475UL); } } else { { tmp___14 = rtl_read_byte(rtlpriv, 26U); } if ((int )tmp___14 & 1) { { tmp___12 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___12 != 0L) { { tmp___13 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___13 != 0L) { { tmp___9 = rtl_read_byte(rtlpriv, 26U); tmp___10 = preempt_count___0(); tmp___11 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Polling FW ready success!! REG_MCUFWDL: 0x%x\n", "_rtl92d_fw_init", (unsigned long )tmp___11 & 2096896UL, ((unsigned long )tmp___10 & 0xffffffffffdfffffUL) != 0UL, (int )tmp___9); } } else { } } else { } return (0); } else { } { __const_udelay(21475UL); } } tmp___15 = counter; counter = counter + 1U; if (tmp___15 <= 999U) { goto ldv_56105; } else { } if (rtlhal->interfaceindex == 0U) { { tmp___19 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___19 != 0L) { { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___20 != 0L) { { tmp___16 = rtl_read_byte(rtlpriv, 24U); tmp___17 = preempt_count___0(); tmp___18 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Polling FW ready fail!! MAC0 FW init not ready: 0x%x\n", "_rtl92d_fw_init", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL, (int )tmp___16); } } else { } } else { } } else { { tmp___24 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___24 != 0L) { { tmp___25 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___25 != 0L) { { tmp___21 = rtl_read_byte(rtlpriv, 26U); tmp___22 = preempt_count___0(); tmp___23 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Polling FW ready fail!! MAC1 FW init not ready: 0x%x\n", "_rtl92d_fw_init", (unsigned long )tmp___23 & 2096896UL, ((unsigned long )tmp___22 & 0xffffffffffdfffffUL) != 0UL, (int )tmp___21); } } else { } } else { } } { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___30 != 0L) { { tmp___26 = rtl_read_dword(rtlpriv, 128U); tmp___27 = preempt_count___0(); tmp___28 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Polling FW ready fail!! REG_MCUFWDL:0x%08ul\n", "_rtl92d_fw_init", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, tmp___26); } } else { } } else { } return (-1); } } int rtl92d_download_fw(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 *pfwheader ; u8 *pfwdata ; u32 fwsize ; int err ; enum version_8192d version ; u8 value ; u32 count ; bool fw_downloaded ; bool fwdl_in_process ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; u8 tmp___13 ; int tmp___14 ; int tmp___15 ; long tmp___16 ; long tmp___17 ; int tmp___18 ; int tmp___19 ; long tmp___20 ; long tmp___21 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; version = rtlhal->version; fw_downloaded = 0; fwdl_in_process = 0; if (rtlpriv->max_fw_size == 0 || (unsigned long )rtlhal->pfirmware == (unsigned long )((u8 *)0U)) { return (1); } else { } { fwsize = rtlhal->fwsize; pfwheader = rtlhal->pfirmware; pfwdata = rtlhal->pfirmware; rtlhal->fw_version = (unsigned short )*((__le32 *)pfwheader + 4U); rtlhal->fw_subversion = (unsigned int )((unsigned short )(*((__le32 *)pfwheader + 4U) >> 16)) & 255U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> FirmwareVersion(%d), FirmwareSubVersion(%d), Signature(%#x)\n", "rtl92d_download_fw", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->fw_version, (int )rtlhal->fw_subversion, *((__le32 *)pfwheader) & 65535U); } } else { } } else { } if ((((((*((__le32 *)pfwheader) & 65520U) == 37568U || (*((__le32 *)pfwheader) & 65520U) == 35008U) || (*((__le32 *)pfwheader) & 65535U) == 37584U) || (*((__le32 *)pfwheader) & 65535U) == 37585U) || (*((__le32 *)pfwheader) & 65535U) == 37586U) || (*((__le32 *)pfwheader) & 65535U) == 37587U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Shift 32 bytes for FW header!!\n", "rtl92d_download_fw", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } pfwdata = pfwdata + 32UL; fwsize = fwsize - 32U; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___0(& globalmutex_for_fwdownload); fw_downloaded = _rtl92d_is_fw_downloaded(rtlpriv); tmp___7 = rtl_read_byte(rtlpriv, 31U); } if (((unsigned long )tmp___7 & 32UL) != 0UL) { fwdl_in_process = 1; } else { fwdl_in_process = 0; } if ((int )fw_downloaded) { { ldv_spin_unlock_irqrestore_122___0(& globalmutex_for_fwdownload, flags); } goto exit; } else if ((int )fwdl_in_process) { { ldv_spin_unlock_irqrestore_122___0(& globalmutex_for_fwdownload, flags); count = 0U; } goto ldv_56126; ldv_56125: { __const_udelay(2147500UL); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_124(& globalmutex_for_fwdownload); fw_downloaded = _rtl92d_is_fw_downloaded(rtlpriv); tmp___8 = rtl_read_byte(rtlpriv, 31U); } if (((unsigned long )tmp___8 & 32UL) != 0UL) { fwdl_in_process = 1; } else { fwdl_in_process = 0; } { ldv_spin_unlock_irqrestore_122___0(& globalmutex_for_fwdownload, flags); } if ((int )fw_downloaded) { goto exit; } else if (! fwdl_in_process) { goto ldv_56124; } else { { tmp___11 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count___0(); tmp___10 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Wait for another mac download fw\n", "rtl92d_download_fw", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } count = count + 1U; ldv_56126: ; if (count <= 4999U) { goto ldv_56125; } else { } ldv_56124: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(& globalmutex_for_fwdownload); value = rtl_read_byte(rtlpriv, 31U); value = (u8 )((unsigned int )value | 32U); rtl_write_byte(rtlpriv, 31U, (int )value); ldv_spin_unlock_irqrestore_122___0(& globalmutex_for_fwdownload, flags); } } else { { value = rtl_read_byte(rtlpriv, 31U); value = (u8 )((unsigned int )value | 32U); rtl_write_byte(rtlpriv, 31U, (int )value); ldv_spin_unlock_irqrestore_122___0(& globalmutex_for_fwdownload, flags); } } { tmp___13 = rtl_read_byte(rtlpriv, 128U); } if ((int )((signed char )tmp___13) < 0) { { rtl92d_firmware_selfreset(hw); rtl_write_byte(rtlpriv, 128U, 0); } } else { } { _rtl92d_enable_fw_download(hw, 1); _rtl92d_write_fw(hw, version, pfwdata, fwsize); _rtl92d_enable_fw_download(hw, 0); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(& globalmutex_for_fwdownload); err = _rtl92d_fw_free_to_go(hw); value = rtl_read_byte(rtlpriv, 31U); value = (unsigned int )value & 223U; rtl_write_byte(rtlpriv, 31U, (int )value); ldv_spin_unlock_irqrestore_122___0(& globalmutex_for_fwdownload, flags); } if (err != 0) { { tmp___16 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___16 != 0L) { { tmp___17 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___17 != 0L) { { tmp___14 = preempt_count___0(); tmp___15 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> fw is not ready to run!\n", "rtl92d_download_fw", (unsigned long )tmp___15 & 2096896UL, ((unsigned long )tmp___14 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto exit; } else { { tmp___20 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___20 != 0L) { { tmp___21 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___21 != 0L) { { tmp___18 = preempt_count___0(); tmp___19 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> fw is ready to run!\n", "rtl92d_download_fw", (unsigned long )tmp___19 & 2096896UL, ((unsigned long )tmp___18 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } exit: { err = _rtl92d_fw_init(hw); } return (err); } } static bool _rtl92d_check_fw_read_last_h2c(struct ieee80211_hw *hw , u8 boxnum ) { struct rtl_priv *rtlpriv ; u8 val_hmetfr ; bool result ; { { rtlpriv = (struct rtl_priv *)hw->priv; result = 0; val_hmetfr = rtl_read_byte(rtlpriv, 460U); } if (((unsigned long )((int )val_hmetfr >> (int )boxnum) & 1UL) == 0UL) { result = 1; } else { } return (result); } } static void _rtl92d_fill_h2c_command(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *cmdbuffer ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_ps_ctl *ppsc ; u8 boxnum ; u16 box_reg ; u16 box_extreg ; u8 u1b_tmp ; bool isfw_read ; u8 buf_index ; bool bwrite_success ; u8 wait_h2c_limmit ; u8 wait_writeh2c_limmit ; u8 boxcontent[4U] ; u8 boxextcontent[2U] ; u32 h2c_waitcounter ; unsigned long flag ; u8 idx ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; int tmp___43 ; int tmp___44 ; long tmp___45 ; long tmp___46 ; int tmp___47 ; int tmp___48 ; long tmp___49 ; long tmp___50 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; ppsc = & ((struct rtl_priv *)hw->priv)->psc; box_reg = 0U; box_extreg = 0U; isfw_read = 0; buf_index = 0U; bwrite_success = 0; wait_h2c_limmit = 100U; wait_writeh2c_limmit = 100U; h2c_waitcounter = 0U; if ((unsigned int )ppsc->rfpwr_state == 2U || (unsigned int )ppsc->inactive_pwrstate == 2U) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Return as RF is off!!!\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> come in\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } ldv_56162: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(& rtlpriv->locks.h2c_lock); } if ((int )rtlhal->h2c_setinprogress) { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___0(); tmp___8 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> H2C set in progress! Wait to set..element_id(%d)\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )element_id); } } else { } } else { } goto ldv_56159; ldv_56158: { ldv_spin_unlock_irqrestore_132(& rtlpriv->locks.h2c_lock, flag); h2c_waitcounter = h2c_waitcounter + 1U; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___0(); tmp___12 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Wait 100 us (%d times)...\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, h2c_waitcounter); } } else { } } else { } { __const_udelay(429500UL); } if (h2c_waitcounter > 1000U) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(& rtlpriv->locks.h2c_lock); } ldv_56159: ; if ((int )rtlhal->h2c_setinprogress) { goto ldv_56158; } else { } { ldv_spin_unlock_irqrestore_132(& rtlpriv->locks.h2c_lock, flag); } } else { { rtlhal->h2c_setinprogress = 1; ldv_spin_unlock_irqrestore_132(& rtlpriv->locks.h2c_lock, flag); } goto ldv_56161; } goto ldv_56162; ldv_56161: ; goto ldv_56202; ldv_56201: wait_writeh2c_limmit = (u8 )((int )wait_writeh2c_limmit - 1); if ((unsigned int )wait_writeh2c_limmit == 0U) { { tmp___17 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___0(); tmp___16 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Write H2C fail because no trigger for FW INT!\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56163; } else { } boxnum = rtlhal->last_hmeboxnum; { if ((int )boxnum == 0) { goto case_0; } else { } if ((int )boxnum == 1) { goto case_1; } else { } if ((int )boxnum == 2) { goto case_2; } else { } if ((int )boxnum == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ box_reg = 464U; box_extreg = 136U; goto ldv_56165; case_1: /* CIL Label */ box_reg = 468U; box_extreg = 138U; goto ldv_56165; case_2: /* CIL Label */ box_reg = 472U; box_extreg = 140U; goto ldv_56165; case_3: /* CIL Label */ box_reg = 476U; box_extreg = 142U; goto ldv_56165; switch_default: /* CIL Label */ { tmp___21 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___0(); tmp___20 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56165; switch_break: /* CIL Label */ ; } ldv_56165: { isfw_read = _rtl92d_check_fw_read_last_h2c(hw, (int )boxnum); } goto ldv_56172; ldv_56171: wait_h2c_limmit = (u8 )((int )wait_h2c_limmit - 1); if ((unsigned int )wait_h2c_limmit == 0U) { { tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count___0(); tmp___24 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Waiting too long for FW read clear HMEBox(%d)!\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum); } } else { } } else { } goto ldv_56170; } else { } { __const_udelay(42950UL); isfw_read = _rtl92d_check_fw_read_last_h2c(hw, (int )boxnum); u1b_tmp = rtl_read_byte(rtlpriv, 447U); tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count___0(); tmp___28 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Waiting for FW read clear HMEBox(%d)!!! 0x1BF = %2x\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum, (int )u1b_tmp); } } else { } } else { } ldv_56172: ; if (! isfw_read) { goto ldv_56171; } else { } ldv_56170: ; if (! isfw_read) { { tmp___33 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count___0(); tmp___32 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Write H2C register BOX[%d] fail!!!!! Fw do not read.\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum); } } else { } } else { } goto ldv_56163; } else { } { __memset((void *)(& boxcontent), 0, 4UL); __memset((void *)(& boxextcontent), 0, 2UL); boxcontent[0] = element_id; tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___38 != 0L) { { tmp___35 = preempt_count___0(); tmp___36 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Write element_id box_reg(%4x) = %2x\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL, (int )box_reg, (int )element_id); } } else { } } else { } { if (cmd_len == 1U) { goto case_1___0; } else { } if (cmd_len == 2U) { goto case_2___0; } else { } if (cmd_len == 3U) { goto case_3___0; } else { } if (cmd_len == 4U) { goto case_4; } else { } if (cmd_len == 5U) { goto case_5; } else { } goto switch_default___0; case_1___0: /* CIL Label */ { boxcontent[0] = (unsigned int )boxcontent[0] & 127U; __memcpy((void *)(& boxcontent) + 1U, (void const *)cmdbuffer + (unsigned long )buf_index, 1UL); idx = 0U; } goto ldv_56175; ldv_56174: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56175: ; if ((unsigned int )idx <= 3U) { goto ldv_56174; } else { } goto ldv_56177; case_2___0: /* CIL Label */ { boxcontent[0] = (unsigned int )boxcontent[0] & 127U; __memcpy((void *)(& boxcontent) + 1U, (void const *)cmdbuffer + (unsigned long )buf_index, 2UL); idx = 0U; } goto ldv_56180; ldv_56179: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56180: ; if ((unsigned int )idx <= 3U) { goto ldv_56179; } else { } goto ldv_56177; case_3___0: /* CIL Label */ { boxcontent[0] = (unsigned int )boxcontent[0] & 127U; __memcpy((void *)(& boxcontent) + 1U, (void const *)cmdbuffer + (unsigned long )buf_index, 3UL); idx = 0U; } goto ldv_56184; ldv_56183: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56184: ; if ((unsigned int )idx <= 3U) { goto ldv_56183; } else { } goto ldv_56177; case_4: /* CIL Label */ { boxcontent[0] = (u8 )((unsigned int )boxcontent[0] | 128U); __memcpy((void *)(& boxextcontent), (void const *)cmdbuffer + (unsigned long )buf_index, 2UL); __memcpy((void *)(& boxcontent) + 1U, (void const *)(cmdbuffer + ((unsigned long )buf_index + 2UL)), 2UL); idx = 0U; } goto ldv_56188; ldv_56187: { rtl_write_byte(rtlpriv, (u32 )((int )box_extreg + (int )idx), (int )boxextcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56188: ; if ((unsigned int )idx <= 1U) { goto ldv_56187; } else { } idx = 0U; goto ldv_56191; ldv_56190: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56191: ; if ((unsigned int )idx <= 3U) { goto ldv_56190; } else { } goto ldv_56177; case_5: /* CIL Label */ { boxcontent[0] = (u8 )((unsigned int )boxcontent[0] | 128U); __memcpy((void *)(& boxextcontent), (void const *)cmdbuffer + (unsigned long )buf_index, 2UL); __memcpy((void *)(& boxcontent) + 1U, (void const *)(cmdbuffer + ((unsigned long )buf_index + 2UL)), 3UL); idx = 0U; } goto ldv_56195; ldv_56194: { rtl_write_byte(rtlpriv, (u32 )((int )box_extreg + (int )idx), (int )boxextcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56195: ; if ((unsigned int )idx <= 1U) { goto ldv_56194; } else { } idx = 0U; goto ldv_56198; ldv_56197: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_56198: ; if ((unsigned int )idx <= 3U) { goto ldv_56197; } else { } goto ldv_56177; switch_default___0: /* CIL Label */ { tmp___41 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count___0(); tmp___40 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56177; switch_break___0: /* CIL Label */ ; } ldv_56177: bwrite_success = 1; rtlhal->last_hmeboxnum = (unsigned int )boxnum + 1U; if ((unsigned int )rtlhal->last_hmeboxnum == 4U) { rtlhal->last_hmeboxnum = 0U; } else { } { tmp___45 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___45 != 0L) { { tmp___46 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___46 != 0L) { { tmp___43 = preempt_count___0(); tmp___44 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> pHalData->last_hmeboxnum = %d\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___44 & 2096896UL, ((unsigned long )tmp___43 & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->last_hmeboxnum); } } else { } } else { } ldv_56202: ; if (! bwrite_success) { goto ldv_56201; } else { } ldv_56163: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_136(& rtlpriv->locks.h2c_lock); rtlhal->h2c_setinprogress = 0; ldv_spin_unlock_irqrestore_132(& rtlpriv->locks.h2c_lock, flag); tmp___49 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___49 != 0L) { { tmp___50 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___50 != 0L) { { tmp___47 = preempt_count___0(); tmp___48 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> go out\n", "_rtl92d_fill_h2c_command", (unsigned long )tmp___48 & 2096896UL, ((unsigned long )tmp___47 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl92d_fill_h2c_cmd(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *cmdbuffer ) { u32 tmp_cmdbuf[2U] ; { { __memset((void *)(& tmp_cmdbuf), 0, 8UL); __memcpy((void *)(& tmp_cmdbuf), (void const *)cmdbuffer, (size_t )cmd_len); _rtl92d_fill_h2c_command(hw, (int )element_id, cmd_len, (u8 *)(& tmp_cmdbuf)); } return; } } static bool _rtl92d_cmd_send_packet(struct ieee80211_hw *hw , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; struct rtl_tx_desc *pdesc ; u8 idx ; unsigned long flags ; struct sk_buff *pskb ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; idx = 0U; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + 4UL; pskb = __skb_dequeue(& ring->queue); kfree_skb(pskb); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_138(& rtlpriv->locks.irq_th_lock); pdesc = ring->desc + (unsigned long )idx; (*(((rtlpriv->cfg)->ops)->get_desc))((u8 *)pdesc, 1, 0); (*(((rtlpriv->cfg)->ops)->fill_tx_cmddesc))(hw, (u8 *)pdesc, 1, 1, skb); __skb_queue_tail(& ring->queue, skb); ldv_spin_unlock_irqrestore_139(& rtlpriv->locks.irq_th_lock, flags); (*(((rtlpriv->cfg)->ops)->tx_polling))(hw, 4); } return (1); } } static u8 reserved_page_packet[768U] = { 128U, 0U, 0U, 0U, 255U, 255U, 255U, 255U, 255U, 255U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 80U, 8U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 100U, 0U, 0U, 4U, 0U, 12U, 108U, 105U, 110U, 107U, 115U, 121U, 115U, 95U, 119U, 108U, 97U, 110U, 1U, 4U, 130U, 132U, 139U, 150U, 3U, 1U, 1U, 6U, 2U, 0U, 0U, 42U, 1U, 0U, 50U, 8U, 36U, 48U, 72U, 108U, 12U, 18U, 24U, 96U, 45U, 26U, 108U, 24U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 61U, 0U, 221U, 6U, 0U, 224U, 76U, 2U, 1U, 112U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 16U, 0U, 32U, 140U, 0U, 18U, 16U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 164U, 16U, 1U, 192U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 24U, 0U, 32U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 128U, 128U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 72U, 1U, 0U, 0U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 114U, 0U, 32U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 128U, 128U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 80U, 0U, 0U, 0U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 0U, 158U, 70U, 21U, 50U, 39U, 242U, 45U, 0U, 100U, 0U, 0U, 4U, 0U, 12U, 108U, 105U, 110U, 107U, 115U, 121U, 115U, 95U, 119U, 108U, 97U, 110U, 1U, 4U, 130U, 132U, 139U, 150U, 3U, 1U, 1U, 6U, 2U, 0U, 0U, 42U, 1U, 0U, 50U, 8U, 36U, 48U, 72U, 108U, 12U, 18U, 24U, 96U, 45U, 26U, 108U, 24U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 61U, 0U, 221U, 6U, 0U, 224U, 76U, 2U, 1U, 112U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; void rtl92d_set_fw_rsvdpagepkt(struct ieee80211_hw *hw , bool dl_finished ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct sk_buff *skb ; u32 totalpacketlen ; bool rtstatus ; u8 u1RsvdPageLoc[3U] ; unsigned int tmp ; bool dlok ; u8 *beacon ; u8 *p_pspoll ; u8 *nullfunc ; u8 *p_probersp ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; long tmp___3 ; long tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; struct _ddebug descriptor___0 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; unsigned char *tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; struct task_struct *tmp___15 ; struct task_struct *tmp___16 ; struct _ddebug descriptor___1 ; long tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; skb = (struct sk_buff *)0; u1RsvdPageLoc[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 3U) { goto while_break; } else { } u1RsvdPageLoc[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { dlok = 0; beacon = (u8 *)(& reserved_page_packet); *(beacon + 10UL) = *((u8 *)(& mac->mac_addr)); *(beacon + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(beacon + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(beacon + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(beacon + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(beacon + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(beacon + 16UL) = *((u8 *)(& mac->bssid)); *(beacon + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(beacon + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(beacon + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(beacon + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(beacon + 21U) = *((u8 *)(& mac->bssid) + 5UL); p_pspoll = (u8 *)(& reserved_page_packet) + 256UL; *((u16 *)p_pspoll + 2U) = (u16 )((unsigned int )mac->assoc_id | 49152U); ether_addr_copy(p_pspoll + 4UL, (u8 const *)(& mac->bssid)); ether_addr_copy(p_pspoll + 10UL, (u8 const *)(& mac->mac_addr)); *((u8 *)(& u1RsvdPageLoc) + 1UL) = 2U; nullfunc = (u8 *)(& reserved_page_packet) + 384UL; *(nullfunc + 4UL) = *((u8 *)(& mac->bssid)); *(nullfunc + 5U) = *((u8 *)(& mac->bssid) + 1UL); *(nullfunc + 6U) = *((u8 *)(& mac->bssid) + 2UL); *(nullfunc + 7U) = *((u8 *)(& mac->bssid) + 3UL); *(nullfunc + 8U) = *((u8 *)(& mac->bssid) + 4UL); *(nullfunc + 9U) = *((u8 *)(& mac->bssid) + 5UL); *(nullfunc + 10UL) = *((u8 *)(& mac->mac_addr)); *(nullfunc + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(nullfunc + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(nullfunc + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(nullfunc + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(nullfunc + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(nullfunc + 16UL) = *((u8 *)(& mac->bssid)); *(nullfunc + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(nullfunc + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(nullfunc + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(nullfunc + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(nullfunc + 21U) = *((u8 *)(& mac->bssid) + 5UL); *((u8 *)(& u1RsvdPageLoc) + 2UL) = 3U; p_probersp = (u8 *)(& reserved_page_packet) + 512UL; *(p_probersp + 4UL) = *((u8 *)(& mac->bssid)); *(p_probersp + 5U) = *((u8 *)(& mac->bssid) + 1UL); *(p_probersp + 6U) = *((u8 *)(& mac->bssid) + 2UL); *(p_probersp + 7U) = *((u8 *)(& mac->bssid) + 3UL); *(p_probersp + 8U) = *((u8 *)(& mac->bssid) + 4UL); *(p_probersp + 9U) = *((u8 *)(& mac->bssid) + 5UL); *(p_probersp + 10UL) = *((u8 *)(& mac->mac_addr)); *(p_probersp + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(p_probersp + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(p_probersp + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(p_probersp + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(p_probersp + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(p_probersp + 16UL) = *((u8 *)(& mac->bssid)); *(p_probersp + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(p_probersp + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(p_probersp + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(p_probersp + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(p_probersp + 21U) = *((u8 *)(& mac->bssid) + 5UL); *((u8 *)(& u1RsvdPageLoc)) = 4U; totalpacketlen = 768U; tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___4 != 0L) { { tmp___0 = get_current(); tmp___1 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192de", (char *)(& tmp___1->comm), tmp___0->pid, (char *)"rtl92d_set_fw_rsvdpagepkt(): HW_VAR_SET_TX_CMD: ALL"); descriptor.modname = "rtl8192de"; descriptor.function = "rtl92d_set_fw_rsvdpagepkt"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8192de/fw.c"; descriptor.format = ""; descriptor.lineno = 730U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& reserved_page_packet), (size_t )totalpacketlen, 1); } } else { } } else { } } else { } { tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___9 != 0L) { { tmp___5 = get_current(); tmp___6 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192de", (char *)(& tmp___6->comm), tmp___5->pid, (char *)"rtl92d_set_fw_rsvdpagepkt(): HW_VAR_SET_TX_CMD: ALL"); descriptor___0.modname = "rtl8192de"; descriptor___0.function = "rtl92d_set_fw_rsvdpagepkt"; descriptor___0.filename = "drivers/net/wireless/rtlwifi/rtl8192de/fw.c"; descriptor___0.format = ""; descriptor___0.lineno = 733U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___7 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1RsvdPageLoc), 3UL, 1); } } else { } } else { } } else { } { skb = dev_alloc_skb(totalpacketlen); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { dlok = 0; } else { { tmp___10 = skb_put(skb, totalpacketlen); __memcpy((void *)tmp___10, (void const *)(& reserved_page_packet), (size_t )totalpacketlen); rtstatus = _rtl92d_cmd_send_packet(hw, skb); } if ((int )rtstatus) { dlok = 1; } else { } } if ((int )dlok) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___0(); tmp___12 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Set RSVD page location to Fw\n", "rtl92d_set_fw_rsvdpagepkt", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___19 != 0L) { { tmp___15 = get_current(); tmp___16 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192de", (char *)(& tmp___16->comm), tmp___15->pid, (char *)"H2C_RSVDPAGE"); descriptor___1.modname = "rtl8192de"; descriptor___1.function = "rtl92d_set_fw_rsvdpagepkt"; descriptor___1.filename = "drivers/net/wireless/rtlwifi/rtl8192de/fw.c"; descriptor___1.format = ""; descriptor___1.lineno = 749U; descriptor___1.flags = 0U; tmp___17 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___17 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1RsvdPageLoc), 3UL, 1); } } else { } } else { } } else { } { rtl92d_fill_h2c_cmd(hw, 3, 3U, (u8 *)(& u1RsvdPageLoc)); } } else { { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count___0(); tmp___21 = preempt_count___0(); printk("\017rtl8192de:%s():<%lx-%x> Set RSVD page location to Fw FAIL!!!!!!\n", "rtl92d_set_fw_rsvdpagepkt", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return; } } void rtl92d_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus ) { u8 u1_joinbssrpt_parm[1U] ; { { u1_joinbssrpt_parm[0] = 0U; *((u8 *)(& u1_joinbssrpt_parm)) = mstatus; rtl92d_fill_h2c_cmd(hw, 2, 1U, (u8 *)(& u1_joinbssrpt_parm)); } return; } } static struct sk_buff *ldv___netdev_alloc_skb_91(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_fwdownload(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_for_fwdownload(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_124(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_fwdownload(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_fwdownload(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_fwdownload(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_h2c_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_132(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_h2c_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_h2c_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_136(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_h2c_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_138(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_th_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_139(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_irq_th_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_128(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_130(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_power_and_efuse(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_for_power_and_efuse(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_power(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_power(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_rf_ps_lock_of_rtl_locks(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_rf_ps_lock_of_rtl_locks(void) ; __inline static int preempt_count___1(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7161; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7161; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7161; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7161; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7161: ; return (pfo_ret__ & 2147483647); } } __inline static void ldv_spin_unlock_irqrestore_124(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_124(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_127___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_124(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; extern void synchronize_irq(unsigned int ) ; __inline static u16 rtl_read_word(struct rtl_priv *rtlpriv , u32 addr ) { u16 tmp ; { { tmp = (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } return (tmp); } } __inline static void rtl_write_word(struct rtl_priv *rtlpriv , u32 addr , u16 val16 ) { { { (*(rtlpriv->io.write16_async))(rtlpriv, addr, (int )val16); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } } else { } return; } } __inline static u8 get_rf_type(struct rtl_phy *rtlphy ) { { return (rtlphy->rf_type); } } extern void rtl_efuse_shadow_map_update(struct ieee80211_hw * ) ; extern void rtl_cam_reset_all_entry(struct ieee80211_hw * ) ; extern u8 rtl_cam_add_one_entry(struct ieee80211_hw * , u8 * , u32 , u32 , u32 , u32 , u8 * ) ; extern int rtl_cam_delete_one_entry(struct ieee80211_hw * , u8 * , u32 ) ; extern void rtl_cam_mark_invalid(struct ieee80211_hw * , u8 ) ; extern void rtl_cam_empty_entry(struct ieee80211_hw * , u8 ) ; extern u8 rtl_cam_get_free_entry(struct ieee80211_hw * , u8 * ) ; extern void rtl_cam_del_entry(struct ieee80211_hw * , u8 * ) ; bool rtl92d_phy_mac_config(struct ieee80211_hw *hw ) ; bool rtl92d_phy_bb_config(struct ieee80211_hw *hw ) ; bool rtl92d_phy_rf_config(struct ieee80211_hw *hw ) ; void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) ; bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw , enum io_type iotype ) ; void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw ) ; void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw ) ; u8 rtl92d_get_chnlgroup_fromarray(u8 chnl ) ; void rtl92d_phy_set_poweron(struct ieee80211_hw *hw ) ; void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw ) ; bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw ) ; void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw ) ; void rtl92de_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl92de_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) ; spinlock_t globalmutex_power ; spinlock_t globalmutex_for_power_and_efuse ; void rtl92de_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl92de_read_eeprom_info(struct ieee80211_hw *hw ) ; void rtl92de_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) ; int rtl92de_hw_init(struct ieee80211_hw *hw ) ; void rtl92de_card_disable(struct ieee80211_hw *hw ) ; void rtl92de_enable_interrupt(struct ieee80211_hw *hw ) ; void rtl92de_disable_interrupt(struct ieee80211_hw *hw ) ; int rtl92de_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) ; void rtl92de_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) ; void rtl92de_set_qos(struct ieee80211_hw *hw , int aci ) ; void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw ) ; void rtl92de_set_beacon_interval(struct ieee80211_hw *hw ) ; void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) ; void rtl92de_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) ; void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw ) ; bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) ; void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw ) ; void rtl92de_set_key(struct ieee80211_hw *hw , u32 key_index , u8 *p_macaddr , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) ; void rtl92de_write_dword_dbi(struct ieee80211_hw *hw , u16 offset , u32 value , u8 direct ) ; u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw , u16 offset , u8 direct ) ; void rtl92de_suspend(struct ieee80211_hw *hw ) ; void rtl92de_resume(struct ieee80211_hw *hw ) ; void rtl92d_linked_set_reg(struct ieee80211_hw *hw ) ; u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw , u16 offset , u8 direct ) { struct rtl_priv *rtlpriv ; u32 value ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_word(rtlpriv, 848U, (int )offset & 4092); rtl_write_byte(rtlpriv, 850U, (int )((unsigned int )direct | 2U)); __const_udelay(42950UL); value = rtl_read_dword(rtlpriv, 844U); } return (value); } } void rtl92de_write_dword_dbi(struct ieee80211_hw *hw , u16 offset , u32 value , u8 direct ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_word(rtlpriv, 848U, (int )((u16 )(((int )((short )offset) & 4092) | -4096))); rtl_write_dword(rtlpriv, 840U, value); rtl_write_byte(rtlpriv, 850U, (int )((unsigned int )direct | 1U)); } return; } } static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw , u8 set_bits , u8 clear_bits ) { struct rtl_pci *rtlpci ; struct rtl_priv *rtlpriv ; { { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpriv = (struct rtl_priv *)hw->priv; rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val | (u32 )set_bits; rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val & (u32 )(~ ((int )clear_bits)); rtl_write_byte(rtlpriv, 1360U, (int )((unsigned char )rtlpci->reg_bcn_ctrl_val)); } return; } } static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tmp1byte ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp1byte = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )tmp1byte & 191); rtl_write_byte(rtlpriv, 1373U, 255); rtl_write_byte(rtlpriv, 1345U, 100); tmp1byte = rtl_read_byte(rtlpriv, 1346U); tmp1byte = (unsigned int )tmp1byte & 254U; rtl_write_byte(rtlpriv, 1346U, (int )tmp1byte); } return; } } static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tmp1byte ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp1byte = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )((unsigned int )tmp1byte | 64U)); rtl_write_byte(rtlpriv, 1373U, 10); rtl_write_byte(rtlpriv, 1345U, 255); tmp1byte = rtl_read_byte(rtlpriv, 1346U); tmp1byte = (u8 )((unsigned int )tmp1byte | 1U); rtl_write_byte(rtlpriv, 1346U, (int )tmp1byte); } return; } } static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw ) { { { _rtl92de_set_bcn_ctrl_reg(hw, 0, 2); } return; } } static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw ) { { { _rtl92de_set_bcn_ctrl_reg(hw, 2, 0); } return; } } void rtl92de_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; enum rf_pwrstate rfState ; u32 val_rcr ; u64 tsf ; u32 *ptsf_low ; u32 *ptsf_high ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; { if ((int )variable == 44) { goto case_44; } else { } if ((int )variable == 40) { goto case_40; } else { } if ((int )variable == 86) { goto case_86; } else { } if ((int )variable == 65) { goto case_65; } else { } if ((int )variable == 84) { goto case_84; } else { } if ((int )variable == 89) { goto case_89; } else { } if ((int )variable == 90) { goto case_90; } else { } goto switch_default; case_44: /* CIL Label */ *((u32 *)val) = rtlpci->receive_config; goto ldv_56465; case_40: /* CIL Label */ *((enum rf_pwrstate *)val) = ppsc->rfpwr_state; goto ldv_56465; case_86: /* CIL Label */ { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 40, (u8 *)(& rfState)); } if ((unsigned int )rfState == 2U) { *((bool *)val) = 1; } else { { val_rcr = rtl_read_dword(rtlpriv, 1544U); val_rcr = val_rcr & 458752U; } if (val_rcr != 0U) { *((bool *)val) = 0; } else { *((bool *)val) = 1; } } goto ldv_56465; case_65: /* CIL Label */ *((bool *)val) = ppsc->fw_current_inpsmode; goto ldv_56465; case_84: /* CIL Label */ { ptsf_low = (u32 *)(& tsf); ptsf_high = (u32 *)(& tsf) + 1UL; *ptsf_high = rtl_read_dword(rtlpriv, 1380U); *ptsf_low = rtl_read_dword(rtlpriv, 1376U); *((u64 *)val) = tsf; } goto ldv_56465; case_89: /* CIL Label */ *((bool *)val) = rtlpriv->dm.interrupt_migration; goto ldv_56465; case_90: /* CIL Label */ *((bool *)val) = rtlpriv->dm.disable_tx_int; goto ldv_56465; switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92de_get_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56465; switch_break: /* CIL Label */ ; } ldv_56465: ; return; } } void rtl92de_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; struct rtl_ps_ctl *ppsc ; u8 idx ; u16 rate_cfg ; u8 rate_index ; u8 e_aci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 reg_tmp ; u8 short_preamble ; u8 min_spacing_to_set ; u8 sec_min_space ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 density_to_set ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 factor_toset ; u32 regtoSet ; u8 *ptmp_byte ; u8 index ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u8 e_aci___0 ; u8 e_aci___1 ; union aci_aifsn *p_aci_aifsn ; u8 acm ; u8 acm_ctrl ; u8 tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; u8 retry_limit ; u8 mstatus ; u8 tmp_regcr ; u8 tmp_reg422 ; bool recover ; u16 u2btmp ; u8 btype_ibss ; bool int_migration ; bool disable_ac_int ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; ppsc = & ((struct rtl_priv *)hw->priv)->psc; { if ((int )variable == 0) { goto case_0; } else { } if ((int )variable == 2) { goto case_2; } else { } if ((int )variable == 3) { goto case_3; } else { } if ((int )variable == 14) { goto case_14; } else { } if ((int )variable == 18) { goto case_18; } else { } if ((int )variable == 19) { goto case_19; } else { } if ((int )variable == 28) { goto case_28; } else { } if ((int )variable == 29) { goto case_29; } else { } if ((int )variable == 30) { goto case_30; } else { } if ((int )variable == 32) { goto case_32; } else { } if ((int )variable == 33) { goto case_33; } else { } if ((int )variable == 44) { goto case_44; } else { } if ((int )variable == 53) { goto case_53; } else { } if ((int )variable == 87) { goto case_87; } else { } if ((int )variable == 57) { goto case_57; } else { } if ((int )variable == 56) { goto case_56; } else { } if ((int )variable == 72) { goto case_72; } else { } if ((int )variable == 27) { goto case_27; } else { } if ((int )variable == 60) { goto case_60; } else { } if ((int )variable == 61) { goto case_61; } else { } if ((int )variable == 65) { goto case_65; } else { } if ((int )variable == 62) { goto case_62; } else { } if ((int )variable == 82) { goto case_82; } else { } if ((int )variable == 84) { goto case_84; } else { } if ((int )variable == 89) { goto case_89; } else { } if ((int )variable == 90) { goto case_90; } else { } goto switch_default___1; case_0: /* CIL Label */ idx = 0U; goto ldv_56493; ldv_56492: { rtl_write_byte(rtlpriv, (u32 )((int )idx + 1552), (int )*(val + (unsigned long )idx)); idx = (u8 )((int )idx + 1); } ldv_56493: ; if ((unsigned int )idx <= 5U) { goto ldv_56492; } else { } goto ldv_56495; case_2: /* CIL Label */ rate_cfg = *((u16 *)val); rate_index = 0U; rate_cfg = (unsigned int )rate_cfg & 351U; if (mac->vendor == 6U && ((int )rate_cfg & 336) == 0) { rate_cfg = (u16 )((unsigned int )rate_cfg | 1U); } else { } { rtl_write_byte(rtlpriv, 1088U, (int )((u8 )rate_cfg)); rtl_write_byte(rtlpriv, 1089U, (int )((u8 )((int )rate_cfg >> 8))); } goto ldv_56500; ldv_56499: rate_cfg = (u16 )((int )rate_cfg >> 1); rate_index = (u8 )((int )rate_index + 1); ldv_56500: ; if ((unsigned int )rate_cfg > 1U) { goto ldv_56499; } else { } if ((unsigned int )rtlhal->fw_version > 14U) { { rtl_write_byte(rtlpriv, 1152U, (int )rate_index); } } else { } goto ldv_56495; case_3: /* CIL Label */ idx = 0U; goto ldv_56504; ldv_56503: { rtl_write_byte(rtlpriv, (u32 )((int )idx + 1560), (int )*(val + (unsigned long )idx)); idx = (u8 )((int )idx + 1); } ldv_56504: ; if ((unsigned int )idx <= 5U) { goto ldv_56503; } else { } goto ldv_56495; case_14: /* CIL Label */ { rtl_write_byte(rtlpriv, 1301U, (int )*val); rtl_write_byte(rtlpriv, 1303U, (int )*(val + 1UL)); rtl_write_byte(rtlpriv, 1065U, (int )*val); rtl_write_byte(rtlpriv, 1595U, (int )*val); } if ((unsigned int )mac->ht_enable == 0U) { { rtl_write_word(rtlpriv, 1598U, 3598); } } else { { rtl_write_word(rtlpriv, 1598U, (int )*((u16 *)val)); } } goto ldv_56495; case_18: /* CIL Label */ { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> HW_VAR_SLOT_TIME %x\n", "rtl92de_set_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )*val); } } else { } } else { } { rtl_write_byte(rtlpriv, 1307U, (int )*val); e_aci = 0U; } goto ldv_56511; ldv_56510: { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 32, & e_aci); e_aci = (u8 )((int )e_aci + 1); } ldv_56511: ; if ((unsigned int )e_aci <= 3U) { goto ldv_56510; } else { } goto ldv_56495; case_19: /* CIL Label */ short_preamble = (unsigned int )*val != 0U; reg_tmp = (int )mac->cur_40_prime_sc << 5U; if ((unsigned int )short_preamble != 0U) { reg_tmp = (u8 )((unsigned int )reg_tmp | 128U); } else { } { rtl_write_byte(rtlpriv, 1090U, (int )reg_tmp); } goto ldv_56495; case_28: /* CIL Label */ min_spacing_to_set = *val; if ((unsigned int )min_spacing_to_set <= 7U) { sec_min_space = 0U; if ((int )min_spacing_to_set < (int )sec_min_space) { min_spacing_to_set = sec_min_space; } else { } { mac->min_space_cfg = (u8 )(((int )((signed char )mac->min_space_cfg) & -8) | (int )((signed char )min_spacing_to_set)); *val = min_spacing_to_set; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", "rtl92de_set_hw_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } } else { } } else { } { rtl_write_byte(rtlpriv, 1116U, (int )mac->min_space_cfg); } } else { } goto ldv_56495; case_29: /* CIL Label */ { density_to_set = *val; mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; mac->min_space_cfg = (u8 )((int )((signed char )mac->min_space_cfg) | (int )((signed char )((int )density_to_set << 3))); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___1(); tmp___8 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set HW_VAR_SHORTGI_DENSITY: %#x\n", "rtl92de_set_hw_reg", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } } else { } } else { } { rtl_write_byte(rtlpriv, 1116U, (int )mac->min_space_cfg); } goto ldv_56495; case_30: /* CIL Label */ ptmp_byte = (u8 *)0U; if ((unsigned int )rtlhal->macphymode == 1U) { regtoSet = 3111282241U; } else if ((unsigned int )rtlhal->macphymode == 2U) { regtoSet = 1717724737U; } else { regtoSet = 3111299137U; } factor_toset = *val; if ((unsigned int )factor_toset <= 3U) { factor_toset = (u8 )(1 << ((int )factor_toset + 2)); if ((unsigned int )factor_toset > 15U) { factor_toset = 15U; } else { } index = 0U; goto ldv_56527; ldv_56526: ptmp_byte = (u8 *)(& regtoSet) + (unsigned long )index; if (((int )*ptmp_byte & 240) > (int )factor_toset << 4) { *ptmp_byte = (u8 )(((int )((signed char )*ptmp_byte) & 15) | (int )((signed char )((int )factor_toset << 4))); } else { } if (((int )*ptmp_byte & 15) > (int )factor_toset) { *ptmp_byte = (u8 )(((int )((signed char )*ptmp_byte) & -16) | (int )((signed char )factor_toset)); } else { } index = (u8 )((int )index + 1); ldv_56527: ; if ((unsigned int )index <= 3U) { goto ldv_56526; } else { } { rtl_write_dword(rtlpriv, 1112U, regtoSet); tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___1(); tmp___12 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set HW_VAR_AMPDU_FACTOR: %#x\n", "rtl92de_set_hw_reg", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )factor_toset); } } else { } } else { } } else { } goto ldv_56495; case_32: /* CIL Label */ { e_aci___0 = *val; rtl92d_dm_init_edca_turbo(hw); } if ((unsigned int )rtlpci->acm_method != 2U) { { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 33, & e_aci___0); } } else { } goto ldv_56495; case_33: /* CIL Label */ { e_aci___1 = *val; p_aci_aifsn = (union aci_aifsn *)(& mac->ac[0].aifs); acm = p_aci_aifsn->f.acm; tmp___15 = rtl_read_byte(rtlpriv, 1472U); acm_ctrl = tmp___15; acm_ctrl = (u8 )((int )((signed char )acm_ctrl) | ((unsigned int )rtlpci->acm_method != 2U)); } if ((unsigned int )acm != 0U) { { if ((int )e_aci___1 == 0) { goto case_0___0; } else { } if ((int )e_aci___1 == 2) { goto case_2___0; } else { } if ((int )e_aci___1 == 3) { goto case_3___0; } else { } goto switch_default; case_0___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 2U); goto ldv_56537; case_2___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 4U); goto ldv_56537; case_3___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 8U); goto ldv_56537; switch_default: /* CIL Label */ { tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count___1(); tmp___17 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", "rtl92de_set_hw_reg", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )acm); } } else { } } else { } goto ldv_56537; switch_break___0: /* CIL Label */ ; } ldv_56537: ; } else { { if ((int )e_aci___1 == 0) { goto case_0___1; } else { } if ((int )e_aci___1 == 2) { goto case_2___1; } else { } if ((int )e_aci___1 == 3) { goto case_3___1; } else { } goto switch_default___0; case_0___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_56542; case_2___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 251U; goto ldv_56542; case_3___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 247U; goto ldv_56542; switch_default___0: /* CIL Label */ { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count___1(); tmp___21 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92de_set_hw_reg", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56542; switch_break___1: /* CIL Label */ ; } ldv_56542: ; } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 33554432ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count___1(); tmp___25 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", "rtl92de_set_hw_reg", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )acm_ctrl); } } else { } } else { } { rtl_write_byte(rtlpriv, 1472U, (int )acm_ctrl); } goto ldv_56495; case_44: /* CIL Label */ { rtl_write_dword(rtlpriv, 1544U, *((u32 *)val)); rtlpci->receive_config = *((u32 *)val); } goto ldv_56495; case_53: /* CIL Label */ { retry_limit = *val; rtl_write_word(rtlpriv, 1066U, (int )((u16 )((int )((short )((int )retry_limit << 8)) | (int )((short )retry_limit)))); } goto ldv_56495; case_87: /* CIL Label */ { rtl_write_byte(rtlpriv, 1363U, 3); } goto ldv_56495; case_57: /* CIL Label */ rtlefuse->efuse_usedbytes = *((u16 *)val); goto ldv_56495; case_56: /* CIL Label */ rtlefuse->efuse_usedpercentage = *val; goto ldv_56495; case_72: /* CIL Label */ { rtl92d_phy_set_io_cmd(hw, *((enum io_type *)val)); } goto ldv_56495; case_27: /* CIL Label */ { rtl_write_byte(rtlpriv, 1664U, (int )*val); } goto ldv_56495; case_60: /* CIL Label */ { rtl92d_fill_h2c_cmd(hw, 15, 1U, val); } goto ldv_56495; case_61: /* CIL Label */ ; goto ldv_56495; case_65: /* CIL Label */ ppsc->fw_current_inpsmode = *((bool *)val); goto ldv_56495; case_62: /* CIL Label */ mstatus = *val; recover = 0; if ((unsigned int )mstatus == 1U) { { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 82, (u8 *)0U); tmp_regcr = rtl_read_byte(rtlpriv, 257U); rtl_write_byte(rtlpriv, 257U, (int )((unsigned int )tmp_regcr | 1U)); _rtl92de_set_bcn_ctrl_reg(hw, 0, 8); _rtl92de_set_bcn_ctrl_reg(hw, 16, 0); tmp_reg422 = rtl_read_byte(rtlpriv, 1058U); } if (((unsigned long )tmp_reg422 & 64UL) != 0UL) { recover = 1; } else { } { rtl_write_byte(rtlpriv, 1058U, (int )tmp_reg422 & 191); rtl92d_set_fw_rsvdpagepkt(hw, 0); _rtl92de_set_bcn_ctrl_reg(hw, 8, 0); _rtl92de_set_bcn_ctrl_reg(hw, 0, 16); } if ((int )recover) { { rtl_write_byte(rtlpriv, 1058U, (int )tmp_reg422); } } else { } { rtl_write_byte(rtlpriv, 257U, (int )tmp_regcr & 254); } } else { } { rtl92d_set_fw_joinbss_report_cmd(hw, (int )*val); } goto ldv_56495; case_82: /* CIL Label */ { u2btmp = rtl_read_word(rtlpriv, 1704U); u2btmp = (unsigned int )u2btmp & 49152U; rtl_write_word(rtlpriv, 1704U, (int )u2btmp | (int )mac->assoc_id); } goto ldv_56495; case_84: /* CIL Label */ btype_ibss = *val; if ((unsigned int )btype_ibss != 0U) { { _rtl92de_stop_tx_beacon(hw); } } else { } { _rtl92de_set_bcn_ctrl_reg(hw, 0, 8); rtl_write_dword(rtlpriv, 1376U, (unsigned int )mac->tsf); rtl_write_dword(rtlpriv, 1380U, (unsigned int )(mac->tsf >> 32)); _rtl92de_set_bcn_ctrl_reg(hw, 8, 0); } if ((unsigned int )btype_ibss != 0U) { { _rtl92de_resume_tx_beacon(hw); } } else { } goto ldv_56495; case_89: /* CIL Label */ int_migration = *((bool *)val); if ((int )int_migration) { { rtl_write_dword(rtlpriv, 772U, 4261416864U); rtlpriv->dm.interrupt_migration = int_migration; } } else { { rtl_write_dword(rtlpriv, 772U, 0U); rtlpriv->dm.interrupt_migration = int_migration; } } goto ldv_56495; case_90: /* CIL Label */ disable_ac_int = *((bool *)val); if ((int )disable_ac_int) { { (*(((rtlpriv->cfg)->ops)->update_interrupt_mask))(hw, 0U, 30U); rtlpriv->dm.disable_tx_int = disable_ac_int; } } else { { (*(((rtlpriv->cfg)->ops)->update_interrupt_mask))(hw, 30U, 0U); rtlpriv->dm.disable_tx_int = disable_ac_int; } } goto ldv_56495; switch_default___1: /* CIL Label */ { tmp___30 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count___1(); tmp___29 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92de_set_hw_reg", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56495; switch_break: /* CIL Label */ ; } ldv_56495: ; return; } } static bool _rtl92de_llt_write(struct ieee80211_hw *hw , u32 address , u32 data ) { struct rtl_priv *rtlpriv ; bool status ; long count ; u32 value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; status = 1; count = 0L; value = (((address << 8) & 65535U) | (data & 255U)) | 1073741824U; rtl_write_dword(rtlpriv, 480U, value); } ldv_56582: { value = rtl_read_dword(rtlpriv, 480U); } if (value >> 30 == 0U) { goto ldv_56580; } else { } if (count > 20L) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Failed to polling write LLT done at address %d!\n", "_rtl92de_llt_write", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, address); } } else { } } else { } status = 0; goto ldv_56580; } else { } count = count + 1L; if (count != 0L) { goto ldv_56582; } else { } ldv_56580: ; return (status); } } static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; unsigned short i ; u8 txpktbuf_bndy ; u8 maxPage ; bool status ; u32 value32 ; u8 value8 ; u16 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )rtlpriv->rtlhal.macphymode == 0U) { maxPage = 255U; txpktbuf_bndy = 246U; value8 = 0U; value32 = 2160004393U; } else { maxPage = 127U; txpktbuf_bndy = 123U; value8 = 0U; value32 = 2155151365U; } { rtl_write_byte(rtlpriv, 532U, (int )value8); rtl_write_dword(rtlpriv, 512U, value32); tmp = rtl_read_word(rtlpriv, 278U); rtl_write_dword(rtlpriv, 276U, (u32 )(((int )tmp << 16) | (int )txpktbuf_bndy)); rtl_write_byte(rtlpriv, 521U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1060U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1061U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1117U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 260U, 17); rtl_write_byte(rtlpriv, 1551U, 4); i = 0U; } goto ldv_56594; ldv_56593: { status = _rtl92de_llt_write(hw, (u32 )i, (u32 )((int )i + 1)); } if (! status) { return (status); } else { } i = (unsigned short )((int )i + 1); ldv_56594: ; if ((int )i < (int )txpktbuf_bndy + -1) { goto ldv_56593; } else { } { status = _rtl92de_llt_write(hw, (u32 )((int )txpktbuf_bndy + -1), 255U); } if (! status) { return (status); } else { } i = (unsigned short )txpktbuf_bndy; goto ldv_56597; ldv_56596: { status = _rtl92de_llt_write(hw, (u32 )i, (u32 )((int )i + 1)); } if (! status) { return (status); } else { } i = (unsigned short )((int )i + 1); ldv_56597: ; if ((int )i < (int )((unsigned short )maxPage)) { goto ldv_56596; } else { } { status = _rtl92de_llt_write(hw, (u32 )maxPage, (u32 )txpktbuf_bndy); } if (! status) { return (status); } else { } return (1); } } static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw ) { struct rtl_pci_priv *pcipriv ; struct rtl_pci *rtlpci ; struct rtl_ps_ctl *ppsc ; struct rtl_led *pLed0 ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ppsc = & ((struct rtl_priv *)hw->priv)->psc; pLed0 = & pcipriv->ledctl.sw_led0; if ((int )rtlpci->up_first_time) { return; } else { } if (ppsc->rfoff_reason == 268435456U) { { rtl92de_sw_led_on(hw, pLed0); } } else if (ppsc->rfoff_reason == 0U) { { rtl92de_sw_led_on(hw, pLed0); } } else { { rtl92de_sw_led_off(hw, pLed0); } } return; } } static bool _rtl92de_init_mac(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; unsigned char bytetmp ; unsigned short wordtmp ; u16 retry ; u8 tmp ; bool tmp___0 ; int tmp___1 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl92d_phy_set_poweron(hw); rtl_write_byte(rtlpriv, 28U, 0); rtl_write_byte(rtlpriv, 32U, 5); rtl_write_byte(rtlpriv, 17U, 43); rtl_write_byte(rtlpriv, 36U, 15); tmp = rtl_read_byte(rtlpriv, 5U); bytetmp = (unsigned int )tmp | 1U; __const_udelay(8590UL); rtl_write_byte(rtlpriv, 5U, (int )bytetmp); __const_udelay(8590UL); bytetmp = rtl_read_byte(rtlpriv, 5U); __const_udelay(214750UL); retry = 0U; } goto ldv_56615; ldv_56614: { retry = (u16 )((int )retry + 1); bytetmp = rtl_read_byte(rtlpriv, 5U); __const_udelay(214750UL); } ldv_56615: ; if (((int )bytetmp & 1) != 0 && (unsigned int )retry <= 999U) { goto ldv_56614; } else { } { rtl_write_word(rtlpriv, 4U, 4114); rtl_write_byte(rtlpriv, 1U, 130); __const_udelay(8590UL); rtl_write_word(rtlpriv, 256U, 0); rtl_write_word(rtlpriv, 256U, 767); rtl_write_byte(rtlpriv, 769U, 0); tmp___0 = _rtl92de_llt_table_init(hw); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { rtl_write_dword(rtlpriv, 292U, 4294967295U); rtl_write_byte(rtlpriv, 300U, 255); rtl92d_phy_config_maccoexist_rfpage(hw); wordtmp = rtl_read_word(rtlpriv, 268U); wordtmp = (unsigned int )wordtmp & 15U; wordtmp = (unsigned int )wordtmp | 63345U; rtl_write_word(rtlpriv, 268U, (int )wordtmp); rtl_write_byte(rtlpriv, 1057U, 31); rtl_write_dword(rtlpriv, 1544U, rtlpci->receive_config); rtl_write_dword(rtlpriv, 1540U, rtlpci->transmit_config); rtl_write_byte(rtlpriv, 1232U, 0); rtl_write_dword(rtlpriv, 776U, (u32 )rtlpci->tx_ring[4].dma); rtl_write_dword(rtlpriv, 792U, (u32 )rtlpci->tx_ring[6].dma); rtl_write_dword(rtlpriv, 800U, (u32 )rtlpci->tx_ring[3].dma); rtl_write_dword(rtlpriv, 808U, (u32 )rtlpci->tx_ring[2].dma); rtl_write_dword(rtlpriv, 816U, (u32 )rtlpci->tx_ring[1].dma); rtl_write_dword(rtlpriv, 824U, (u32 )rtlpci->tx_ring[0].dma); rtl_write_dword(rtlpriv, 784U, (u32 )rtlpci->tx_ring[7].dma); rtl_write_dword(rtlpriv, 832U, (u32 )rtlpci->rx_ring[0].dma); rtl_write_byte(rtlpriv, 771U, 51); rtl_write_dword(rtlpriv, 772U, 0U); bytetmp = rtl_read_byte(rtlpriv, 1536U); rtl_write_byte(rtlpriv, 1536U, (int )bytetmp & 191); } ldv_56617: { retry = (u16 )((int )retry + 1); bytetmp = rtl_read_byte(rtlpriv, 1536U); } if ((unsigned int )retry <= 199U && (int )((signed char )bytetmp) >= 0) { goto ldv_56617; } else { } { _rtl92de_gen_refresh_led_state(hw); rtl_write_dword(rtlpriv, 448U, 0U); } return (1); } } static void _rtl92de_hw_configure(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 reg_bw_opmode ; u32 reg_rrsr ; { { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; reg_bw_opmode = 4U; reg_rrsr = 4095U; rtl_write_byte(rtlpriv, 1152U, 8); rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); rtl_write_dword(rtlpriv, 1088U, reg_rrsr); rtl_write_byte(rtlpriv, 1307U, 9); rtl_write_byte(rtlpriv, 1116U, 0); rtl_write_word(rtlpriv, 1056U, 8064); rtl_write_word(rtlpriv, 1066U, 1799); rtl_write_dword(rtlpriv, 1228U, 33630210U); rtl_write_byte(rtlpriv, 1059U, 255); rtl_write_dword(rtlpriv, 1072U, 16777216U); rtl_write_dword(rtlpriv, 1076U, 117835012U); rtl_write_dword(rtlpriv, 1080U, 16777216U); rtl_write_dword(rtlpriv, 1084U, 117835012U); } if ((unsigned int )rtlhal->macphymode == 1U) { { rtl_write_dword(rtlpriv, 1112U, 3111282241U); } } else if ((unsigned int )rtlhal->macphymode == 2U) { { rtl_write_dword(rtlpriv, 1112U, 1717724737U); } } else { { rtl_write_dword(rtlpriv, 1112U, 3111299137U); } } { rtl_write_byte(rtlpriv, 1370U, 2); rtl_write_byte(rtlpriv, 1373U, 10); rtlpci->reg_bcn_ctrl_val = 31U; rtl_write_byte(rtlpriv, 1360U, (int )((u8 )rtlpci->reg_bcn_ctrl_val)); rtl_write_byte(rtlpriv, 1345U, 255); rtl_write_byte(rtlpriv, 1298U, 28); rtl_write_byte(rtlpriv, 1306U, 22); rtl_write_word(rtlpriv, 1350U, 32); rtl_write_word(rtlpriv, 1120U, 26214); rtl_write_byte(rtlpriv, 1600U, 64); rtl_write_word(rtlpriv, 1064U, 4112); rtl_write_word(rtlpriv, 1594U, 4112); rtl_write_word(rtlpriv, 1300U, 4112); rtl_write_word(rtlpriv, 1302U, 4112); rtl_write_dword(rtlpriv, 1568U, 4294967295U); rtl_write_dword(rtlpriv, 1572U, 4294967295U); } { if ((int )rtlpriv->phy.rf_type == 1) { goto case_1; } else { } if ((int )rtlpriv->phy.rf_type == 0) { goto case_0; } else { } if ((int )rtlpriv->phy.rf_type == 2) { goto case_2; } else { } if ((int )rtlpriv->phy.rf_type == 3) { goto case_3; } else { } goto switch_break; case_1: /* CIL Label */ ; case_0: /* CIL Label */ rtlhal->minspace_cfg = 80U; goto ldv_56629; case_2: /* CIL Label */ ; case_3: /* CIL Label */ rtlhal->minspace_cfg = 152U; goto ldv_56629; switch_break: /* CIL Label */ ; } ldv_56629: ; return; } } static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; { { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtl_write_byte(rtlpriv, 843U, 147); rtl_write_word(rtlpriv, 848U, 34572); rtl_write_byte(rtlpriv, 850U, 1); } if ((int )ppsc->support_backdoor) { { rtl_write_byte(rtlpriv, 841U, 27); } } else { { rtl_write_byte(rtlpriv, 841U, 3); } } { rtl_write_word(rtlpriv, 848U, 10008); rtl_write_byte(rtlpriv, 850U, 1); } return; } } void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 sec_reg_value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", "rtl92de_enable_hw_security_config", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlpriv->sec.pairwise_enc_algorithm, (unsigned int )rtlpriv->sec.group_enc_algorithm); } } else { } } else { } if ((int )((rtlpriv->cfg)->mod_params)->sw_crypto || (int )rtlpriv->sec.use_sw_sec) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> not open hw encryption\n", "rtl92de_enable_hw_security_config", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } sec_reg_value = 12U; if ((int )rtlpriv->sec.use_defaultkey) { sec_reg_value = (u8 )((unsigned int )sec_reg_value | 1U); sec_reg_value = (u8 )((unsigned int )sec_reg_value | 2U); } else { } { sec_reg_value = (u8 )((unsigned int )sec_reg_value | 192U); rtl_write_byte(rtlpriv, 257U, 2); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___1(); tmp___8 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> The SECR-value %x\n", "rtl92de_enable_hw_security_config", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )sec_reg_value); } } else { } } else { } { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 27, & sec_reg_value); } return; } } int rtl92de_hw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; struct rtl_phy *rtlphy ; struct rtl_pci *rtlpci ; struct rtl_ps_ctl *ppsc ; bool rtstatus ; u8 tmp_u1b ; int i ; int err ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u32 tmp_rega ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlphy = & rtlpriv->phy; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtstatus = 1; rtlpci->being_init_adapter = 1; rtlpci->init_ready = 0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(& globalmutex_for_power_and_efuse); rtl92d_phy_reset_iqk_result(hw); rtstatus = _rtl92de_init_mac(hw); } if (! rtstatus) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Init MAC failed\n", "rtl92de_hw_init", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { err = 1; ldv_spin_unlock_irqrestore_124(& globalmutex_for_power_and_efuse, flags); } return (err); } else { } { err = rtl92d_download_fw(hw); ldv_spin_unlock_irqrestore_124(& globalmutex_for_power_and_efuse, flags); } if (err != 0) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Failed to download FW. Init HW without FW..\n", "rtl92de_hw_init", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } { rtlhal->last_hmeboxnum = 0U; rtlpriv->psc.fw_current_inpsmode = 0; tmp_u1b = rtl_read_byte(rtlpriv, 1541U); tmp_u1b = (u8 )((unsigned int )tmp_u1b | 48U); rtl_write_byte(rtlpriv, 1541U, (int )tmp_u1b); } if ((int )rtlhal->earlymode_enable) { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___1(); tmp___8 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EarlyMode Enabled!!!\n", "rtl92de_hw_init", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp_u1b = rtl_read_byte(rtlpriv, 1232U); tmp_u1b = (u8 )((unsigned int )tmp_u1b | 31U); rtl_write_byte(rtlpriv, 1232U, (int )tmp_u1b); rtl_write_byte(rtlpriv, 1235U, 128); tmp_u1b = rtl_read_byte(rtlpriv, 1541U); tmp_u1b = (u8 )((unsigned int )tmp_u1b | 64U); rtl_write_byte(rtlpriv, 1541U, (int )tmp_u1b); } } else { } if ((int )mac->rdg_en) { { rtl_write_byte(rtlpriv, 1316U, 255); rtl_write_word(rtlpriv, 1348U, 512); rtl_write_byte(rtlpriv, 1123U, 5); } } else { } { rtl92d_phy_mac_config(hw); rtlpci->receive_config = rtl_read_dword(rtlpriv, 1544U); rtlpci->receive_config = rtlpci->receive_config & 4294966527U; rtl92d_phy_bb_config(hw); rtlphy->rf_mode = 0U; rtl_set_bbreg(hw, 2188U, 15728640U, 15U); rtl92d_phy_rf_config(hw); rtl92d_update_bbrf_configuration(hw); rtl_set_bbreg(hw, 2188U, 15728640U, 0U); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, 0, 24U, 1048575U); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, 1, 24U, 1048575U); } if ((unsigned int )rtlhal->current_bandtype == 0U) { { rtl_set_bbreg(hw, 2048U, 16777216U, 1U); } } else { } { rtl_set_bbreg(hw, 2048U, 33554432U, 1U); } if (rtlhal->interfaceindex == 0U) { { rtl_set_bbreg(hw, 2180U, 3072U, 3U); } } else { { rtl_set_bbreg(hw, 2180U, 3072U, 3U); } } { _rtl92de_hw_configure(hw); rtl_cam_reset_all_entry(hw); rtl92de_enable_hw_security_config(hw); rtl92d_phy_get_hw_reg_originalvalue(hw); rtl92d_phy_set_txpower_level(hw, (int )rtlphy->current_channel); ppsc->rfpwr_state = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 0, (u8 *)(& mac->mac_addr)); _rtl92de_enable_aspm_back_door(hw); rtl92d_dm_init(hw); rtlpci->being_init_adapter = 0; } if ((unsigned int )ppsc->rfpwr_state == 0U) { { rtl92d_phy_lc_calibrate(hw); } if ((unsigned int )rtlhal->macphymode == 1U) { i = 0; goto ldv_56661; ldv_56660: { __const_udelay(214750UL); tmp_rega = rtl_get_rfreg(hw, 0, 42U, 4294967295U); } if (((unsigned long )tmp_rega & 2048UL) != 0UL) { goto ldv_56659; } else { } i = i + 1; ldv_56661: ; if (i <= 9999) { goto ldv_56660; } else { } ldv_56659: ; if (i == 10000) { rtlpci->init_ready = 0; return (1); } else { } } else { } } else { } rtlpci->init_ready = 1; return (err); } } static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; enum version_8192d version ; u32 value32 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; version = 42; value32 = rtl_read_dword(rtlpriv, 240U); } if ((value32 & 983040U) == 0U) { { version = 34; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> TEST CHIP!!!\n", "_rtl92de_read_chip_version", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { { version = 42; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Normal CHIP!!!\n", "_rtl92de_read_chip_version", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return (version); } } static int _rtl92de_set_media_status(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; u8 bt_msr ; u8 tmp ; enum led_ctl_mode ledaction ; u8 bcnfunc_enable ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = rtl_read_byte(rtlpriv, 258U); bt_msr = tmp; ledaction = 3; bt_msr = (unsigned int )bt_msr & 252U; } if ((unsigned int )type == 0U || (unsigned int )type == 2U) { { _rtl92de_stop_tx_beacon(hw); _rtl92de_enable_bcn_sub_func(hw); } } else if ((unsigned int )type == 1U || (unsigned int )type == 3U) { { _rtl92de_resume_tx_beacon(hw); _rtl92de_disable_bcn_sub_func(hw); } } else { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___1(); tmp___1 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n", "_rtl92de_set_media_status", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } } else { } } else { } } { bcnfunc_enable = rtl_read_byte(rtlpriv, 1360U); } { if ((unsigned int )type == 0U) { goto case_0; } else { } if ((unsigned int )type == 1U) { goto case_1; } else { } if ((unsigned int )type == 2U) { goto case_2; } else { } if ((unsigned int )type == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { bt_msr = bt_msr; ledaction = 2; bcnfunc_enable = (unsigned int )bcnfunc_enable & 247U; tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___1(); tmp___5 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set Network type to NO LINK!\n", "_rtl92de_set_media_status", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56679; case_1: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 1U); bcnfunc_enable = (u8 )((unsigned int )bcnfunc_enable | 8U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___1(); tmp___9 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set Network type to Ad Hoc!\n", "_rtl92de_set_media_status", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56679; case_2: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 2U); ledaction = 2; bcnfunc_enable = (unsigned int )bcnfunc_enable & 247U; tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___1(); tmp___13 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set Network type to STA!\n", "_rtl92de_set_media_status", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56679; case_3: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 3U); bcnfunc_enable = (u8 )((unsigned int )bcnfunc_enable | 8U); tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count___1(); tmp___17 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Set Network type to AP!\n", "_rtl92de_set_media_status", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56679; switch_default: /* CIL Label */ { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count___1(); tmp___21 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Network type %d not supported!\n", "_rtl92de_set_media_status", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } } else { } } else { } return (1); switch_break: /* CIL Label */ ; } ldv_56679: { rtl_write_byte(rtlpriv, 258U, (int )bt_msr); (*(((rtlpriv->cfg)->ops)->led_control))(hw, ledaction); } if (((int )bt_msr & 3) == 3) { { rtl_write_byte(rtlpriv, 1297U, 0); } } else { { rtl_write_byte(rtlpriv, 1297U, 102); } } return (0); } } void rtl92de_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) { struct rtl_priv *rtlpriv ; u32 reg_rcr ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )rtlpriv->psc.rfpwr_state != 0U) { return; } else { } { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 44, (u8 *)(& reg_rcr)); } if ((int )check_bssid) { { reg_rcr = reg_rcr | 192U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 44, (u8 *)(& reg_rcr)); _rtl92de_set_bcn_ctrl_reg(hw, 0, 16); } } else if (! check_bssid) { { reg_rcr = reg_rcr & 4294967103U; _rtl92de_set_bcn_ctrl_reg(hw, 16, 0); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 44, (u8 *)(& reg_rcr)); } } else { } return; } } int rtl92de_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; int tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = _rtl92de_set_media_status(hw, type); } if (tmp != 0) { return (-95); } else { } if ((unsigned int )rtlpriv->mac80211.link_state == 2U) { if ((unsigned int )type != 3U) { { rtl92de_set_check_bssid(hw, 1); } } else { } } else { { rtl92de_set_check_bssid(hw, 0); } } return (0); } } void rtl92d_linked_set_reg(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 indexforchannel ; u8 channel ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; channel = rtlphy->current_channel; indexforchannel = rtl92d_get_rightchnlplace_for_iqk((int )channel); } if (! rtlphy->iqk_matrix[(int )indexforchannel].iqk_done) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 68ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Do IQK for channel:%d\n", "rtl92d_linked_set_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )channel); } } else { } } else { } { rtl92d_phy_iq_calibrate(hw); } } else { } return; } } void rtl92de_set_qos(struct ieee80211_hw *hw , int aci ) { { { rtl92d_dm_init_edca_turbo(hw); } return; } } void rtl92de_enable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 288U, rtlpci->irq_mask[0]); rtl_write_dword(rtlpriv, 296U, rtlpci->irq_mask[1]); } return; } } void rtl92de_disable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 288U, 0U); rtl_write_dword(rtlpriv, 296U, 0U); synchronize_irq((rtlpci->pdev)->irq); } return; } } static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 u1b_tmp ; unsigned long flags ; u8 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*((rtlpriv->intf_ops)->enable_aspm))(hw); rtl_write_byte(rtlpriv, 31U, 0); rtl_set_bbreg(hw, 2172U, 8U, 0U); rtl_set_bbreg(hw, 2172U, 32768U, 0U); rtl_write_byte(rtlpriv, 32U, 4); rtl92d_firmware_selfreset(hw); rtl_write_byte(rtlpriv, 3U, 81); rtl_write_byte(rtlpriv, 128U, 0); rtl_write_dword(rtlpriv, 68U, 0U); u1b_tmp = rtl_read_byte(rtlpriv, 68U); rtl_write_dword(rtlpriv, 68U, (u32 )(((int )u1b_tmp << 8) | 16711680)); rtl_write_word(rtlpriv, 66U, 1936); rtl_write_word(rtlpriv, 76U, 32896); rtl_write_byte(rtlpriv, 40U, 128); rtl_write_byte(rtlpriv, 17U, 35); rtl_write_byte(rtlpriv, 36U, 14); rtl_write_byte(rtlpriv, 28U, 14); rtl_write_byte(rtlpriv, 5U, 16); tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp = rtl_read_byte(rtlpriv, 17U); tmp___0 = preempt_count___1(); tmp___1 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> In PowerOff,reg0x%x=%X\n", "_rtl92de_poweroff_adapter", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, 17, (int )tmp); } } else { } } else { } if ((unsigned int )rtlpriv->rtlhal.macphymode != 0U) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126___0(& globalmutex_power); u1b_tmp = rtl_read_byte(rtlpriv, 23U); u1b_tmp = (unsigned int )u1b_tmp & 127U; rtl_write_byte(rtlpriv, 23U, (int )u1b_tmp); ldv_spin_unlock_irqrestore_127___0(& globalmutex_power, flags); } } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___1(); tmp___5 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> <=======\n", "_rtl92de_poweroff_adapter", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl92de_card_disable(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; struct rtl_mac *mac ; enum nl80211_iftype opmode ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; { { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; mac = & ((struct rtl_priv *)hw->priv)->mac80211; mac->link_state = 0; opmode = 0; _rtl92de_set_media_status(hw, opmode); } if ((int )rtlpci->driver_is_goingto_unload || ppsc->rfoff_reason > 536870912U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } } else { } { ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; rtl_write_byte(rtlpriv, 769U, 254); __const_udelay(214750UL); rtl_set_bbreg(hw, 2188U, 15728640U, 15U); rtl_set_rfreg(hw, 0, 0U, 1048575U, 0U); rtl_write_byte(rtlpriv, 1536U, 64); rtl_set_bbreg(hw, 3076U, 255U, 0U); rtl_set_bbreg(hw, 3332U, 15U, 0U); rtl_write_byte(rtlpriv, 2U, 226); } if (rtlpriv->rtlhal.interfaceindex == 1U) { { rtl_write_byte(rtlpriv, 2U, 224); } } else { } { __const_udelay(214750UL); rtl_write_byte(rtlpriv, 769U, 255); __const_udelay(214750UL); rtl_write_byte(rtlpriv, 256U, 0); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> ==> Do power off.......\n", "rtl92de_card_disable", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___3 = rtl92d_phy_check_poweroff(hw); } if ((int )tmp___3) { { _rtl92de_poweroff_adapter(hw); } } else { } return; } } void rtl92de_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp = rtl_read_dword(rtlpriv, 292U); *p_inta = tmp & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, 292U, *p_inta); } return; } } void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcn_interval ; u16 atim_window ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcn_interval = (u16 )mac->beacon_interval; atim_window = 2U; rtl_write_word(rtlpriv, 1370U, (int )atim_window); rtl_write_word(rtlpriv, 1364U, (int )bcn_interval); rtl_write_word(rtlpriv, 1296U, 26127); rtl_write_byte(rtlpriv, 1374U, 32); } if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 1U) { { rtl_write_byte(rtlpriv, 1375U, 48); } } else { { rtl_write_byte(rtlpriv, 1375U, 32); } } { rtl_write_byte(rtlpriv, 1542U, 48); } return; } } void rtl92de_set_beacon_interval(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcn_interval ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcn_interval = (u16 )mac->beacon_interval; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1024ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> beacon_interval:%d\n", "rtl92de_set_beacon_interval", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )bcn_interval); } } else { } } else { } { rtl_write_word(rtlpriv, 1364U, (int )bcn_interval); } return; } } void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> add_msr:%x, rm_msr:%x\n", "rtl92de_update_interrupt_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, add_msr, rm_msr); } } else { } } else { } if (add_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] | add_msr; } else { } if (rm_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] & ~ rm_msr; } else { } { rtl92de_disable_interrupt(hw); rtl92de_enable_interrupt(hw); } return; } } static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo , u8 *rom_content , bool autoLoadfail ) { u32 rfpath ; u32 eeaddr ; u32 group ; u32 offset1 ; u32 offset2 ; u8 i ; int base1 ; { { __memset((void *)pwrinfo, 0, 174UL); } if ((int )autoLoadfail) { group = 0U; goto ldv_56777; ldv_56776: rfpath = 0U; goto ldv_56774; ldv_56773: ; if (group <= 2U) { pwrinfo->cck_index[rfpath][group] = 44U; pwrinfo->ht40_1sindex[rfpath][group] = 44U; } else { pwrinfo->ht40_1sindex[rfpath][group] = 34U; } pwrinfo->ht40_2sindexdiff[rfpath][group] = 0U; pwrinfo->ht20indexdiff[rfpath][group] = 2U; pwrinfo->ofdmindexdiff[rfpath][group] = 4U; pwrinfo->ht40maxoffset[rfpath][group] = 0U; pwrinfo->ht20maxoffset[rfpath][group] = 0U; rfpath = rfpath + 1U; ldv_56774: ; if (rfpath <= 1U) { goto ldv_56773; } else { } group = group + 1U; ldv_56777: ; if (group <= 11U) { goto ldv_56776; } else { } i = 0U; goto ldv_56780; ldv_56779: pwrinfo->tssi_a[(int )i] = 0U; pwrinfo->tssi_b[(int )i] = 0U; i = (u8 )((int )i + 1); ldv_56780: ; if ((unsigned int )i <= 2U) { goto ldv_56779; } else { } return; } else { } rfpath = 0U; goto ldv_56786; ldv_56785: group = 0U; goto ldv_56783; ldv_56782: eeaddr = (rfpath * 3U + group) + 97U; pwrinfo->cck_index[rfpath][group] = (unsigned int )*(rom_content + (unsigned long )eeaddr) == 255U ? (eeaddr > 123U ? 34U : 44U) : *(rom_content + (unsigned long )eeaddr); group = group + 1U; ldv_56783: ; if (group <= 2U) { goto ldv_56782; } else { } rfpath = rfpath + 1U; ldv_56786: ; if (rfpath <= 1U) { goto ldv_56785; } else { } rfpath = 0U; goto ldv_56792; ldv_56791: group = 0U; goto ldv_56789; ldv_56788: offset1 = group / 3U; offset2 = group % 3U; eeaddr = ((rfpath * 3U + offset2) + offset1 * 21U) + 103U; pwrinfo->ht40_1sindex[rfpath][group] = (unsigned int )*(rom_content + (unsigned long )eeaddr) == 255U ? (eeaddr > 123U ? 34U : 44U) : *(rom_content + (unsigned long )eeaddr); group = group + 1U; ldv_56789: ; if (group <= 11U) { goto ldv_56788; } else { } rfpath = rfpath + 1U; ldv_56792: ; if (rfpath <= 1U) { goto ldv_56791; } else { } group = 0U; goto ldv_56799; ldv_56798: rfpath = 0U; goto ldv_56796; ldv_56795: base1 = 109; offset1 = group / 3U; offset2 = group % 3U; if ((unsigned int )*(rom_content + (unsigned long )(((u32 )base1 + offset2) + offset1 * 21U)) != 255U) { pwrinfo->ht40_2sindexdiff[rfpath][group] = (unsigned int )((u8 )((int )*(rom_content + (unsigned long )(((u32 )base1 + offset2) + offset1 * 21U)) >> (int )(rfpath * 4U))) & 15U; } else { pwrinfo->ht40_2sindexdiff[rfpath][group] = 0U; } if ((unsigned int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 112U)) != 255U) { pwrinfo->ht20indexdiff[rfpath][group] = (unsigned int )((u8 )((int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 112U)) >> (int )(rfpath * 4U))) & 15U; } else { pwrinfo->ht20indexdiff[rfpath][group] = 2U; } if ((unsigned int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 115U)) != 255U) { pwrinfo->ofdmindexdiff[rfpath][group] = (unsigned int )((u8 )((int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 115U)) >> (int )(rfpath * 4U))) & 15U; } else { pwrinfo->ofdmindexdiff[rfpath][group] = 4U; } if ((unsigned int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 118U)) != 255U) { pwrinfo->ht40maxoffset[rfpath][group] = (unsigned int )((u8 )((int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 118U)) >> (int )(rfpath * 4U))) & 15U; } else { pwrinfo->ht40maxoffset[rfpath][group] = 0U; } if ((unsigned int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 121U)) != 255U) { pwrinfo->ht20maxoffset[rfpath][group] = (unsigned int )((u8 )((int )*(rom_content + (unsigned long )((offset2 + offset1 * 21U) + 121U)) >> (int )(rfpath * 4U))) & 15U; } else { pwrinfo->ht20maxoffset[rfpath][group] = 0U; } rfpath = rfpath + 1U; ldv_56796: ; if (rfpath <= 1U) { goto ldv_56795; } else { } group = group + 1U; ldv_56799: ; if (group <= 11U) { goto ldv_56798; } else { } if ((unsigned int )*(rom_content + 190UL) != 255U) { pwrinfo->tssi_a[0] = (unsigned int )*(rom_content + 190UL) & 63U; pwrinfo->tssi_b[0] = (unsigned int )*(rom_content + 191UL) & 63U; pwrinfo->tssi_a[1] = (unsigned int )*(rom_content + 192UL) & 63U; pwrinfo->tssi_b[1] = (u8 )((int )((signed char )((int )*(rom_content + 192UL) >> 6)) | (int )((signed char )(((int )*(rom_content + 193UL) & 15) << 2))); pwrinfo->tssi_a[2] = (u8 )((int )((signed char )((int )*(rom_content + 193UL) >> 4)) | (int )((signed char )(((int )*(rom_content + 194UL) & 3) << 4))); pwrinfo->tssi_b[2] = (int )*(rom_content + 194UL) >> 2; } else { i = 0U; goto ldv_56802; ldv_56801: pwrinfo->tssi_a[(int )i] = 0U; pwrinfo->tssi_b[(int )i] = 0U; i = (u8 )((int )i + 1); ldv_56802: ; if ((unsigned int )i <= 2U) { goto ldv_56801; } else { } } return; } } static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw , bool autoload_fail , u8 *hwinfo ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct txpower_info pwrinfo ; u8 tempval[2U] ; u8 i ; u8 pwr ; u8 diff ; u32 ch ; u32 rfPath ; u32 group ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; u8 tmp___19 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; _rtl92de_readpowervalue_fromprom(& pwrinfo, hwinfo, (int )autoload_fail); } if (! autoload_fail) { rtlefuse->eeprom_regulatory = (unsigned int )*(hwinfo + 196UL) & 7U; rtlefuse->eeprom_thermalmeter = (unsigned int )*(hwinfo + 195UL) & 31U; rtlefuse->crystalcap = *(hwinfo + 189UL); tempval[0] = (unsigned int )*(hwinfo + 188UL) & 3U; tempval[1] = (u8 )(((int )*(hwinfo + 188UL) & 12) >> 2); rtlefuse->txpwr_fromeprom = 1; if (((unsigned long )rtlpriv->rtlhal.version & 61447UL) == 12290UL || ((unsigned long )rtlpriv->rtlhal.version & 61447UL) == 16386UL) { { rtlefuse->internal_pa_5g[0] = ((unsigned long )*(hwinfo + 190UL) & 64UL) >> 6 == 0UL; rtlefuse->internal_pa_5g[1] = ((unsigned long )*(hwinfo + 191UL) & 64UL) >> 6 == 0UL; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Is D cut,Internal PA0 %d Internal PA1 %d\n", "_rtl92de_read_txpower_info", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->internal_pa_5g[0], (int )rtlefuse->internal_pa_5g[1]); } } else { } } else { } } else { } rtlefuse->eeprom_c9 = *(hwinfo + 201UL); rtlefuse->eeprom_cc = *(hwinfo + 204UL); } else { rtlefuse->eeprom_regulatory = 0U; rtlefuse->eeprom_thermalmeter = 18U; rtlefuse->crystalcap = 0U; tempval[1] = 3U; tempval[0] = tempval[1]; } if ((unsigned int )rtlefuse->eeprom_thermalmeter - 6U > 22U) { rtlefuse->eeprom_thermalmeter = 18U; } else { } rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; if ((unsigned int )rtlefuse->crystalcap == 255U) { rtlefuse->crystalcap = 0U; } else { } if ((unsigned int )rtlefuse->eeprom_regulatory > 3U) { rtlefuse->eeprom_regulatory = 0U; } else { } i = 0U; goto ldv_56827; ldv_56826: ; { if ((int )tempval[(int )i] == 0) { goto case_0; } else { } if ((int )tempval[(int )i] == 1) { goto case_1; } else { } if ((int )tempval[(int )i] == 2) { goto case_2; } else { } if ((int )tempval[(int )i] == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ tempval[(int )i] = 5U; goto ldv_56821; case_1: /* CIL Label */ tempval[(int )i] = 4U; goto ldv_56821; case_2: /* CIL Label */ tempval[(int )i] = 3U; goto ldv_56821; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ tempval[(int )i] = 0U; goto ldv_56821; switch_break: /* CIL Label */ ; } ldv_56821: i = (u8 )((int )i + 1); ldv_56827: ; if ((unsigned int )i <= 1U) { goto ldv_56826; } else { } rtlefuse->delta_iqk = tempval[0]; if ((unsigned int )tempval[1] != 0U) { rtlefuse->delta_lck = (unsigned int )tempval[1] + 255U; } else { } if ((unsigned int )rtlefuse->eeprom_c9 == 255U) { rtlefuse->eeprom_c9 = 0U; } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROMRegulatory = 0x%x\n", "_rtl92de_read_txpower_info", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_regulatory); } } else { } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___1(); tmp___8 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> ThermalMeter = 0x%x\n", "_rtl92de_read_txpower_info", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_thermalmeter); } } else { } } else { } { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___1(); tmp___12 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> CrystalCap = 0x%x\n", "_rtl92de_read_txpower_info", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->crystalcap); } } else { } } else { } { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___1(); tmp___16 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Delta_IQK = 0x%x Delta_LCK = 0x%x\n", "_rtl92de_read_txpower_info", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->delta_iqk, (int )rtlefuse->delta_lck); } } else { } } else { } rfPath = 0U; goto ldv_56833; ldv_56832: ch = 0U; goto ldv_56830; ldv_56829: { tmp___19 = rtl92d_get_chnlgroup_fromarray((int )((unsigned char )ch)); group = (u32 )tmp___19; } if (ch <= 13U) { rtlefuse->txpwrlevel_cck[rfPath][ch] = pwrinfo.cck_index[rfPath][group]; } else { } rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] = pwrinfo.ht40_1sindex[rfPath][group]; rtlefuse->txpwr_ht20diff[rfPath][ch] = (char )pwrinfo.ht20indexdiff[rfPath][group]; rtlefuse->txpwr_legacyhtdiff[rfPath][ch] = (char )pwrinfo.ofdmindexdiff[rfPath][group]; rtlefuse->pwrgroup_ht20[rfPath][ch] = pwrinfo.ht20maxoffset[rfPath][group]; rtlefuse->pwrgroup_ht40[rfPath][ch] = pwrinfo.ht40maxoffset[rfPath][group]; pwr = pwrinfo.ht40_1sindex[rfPath][group]; diff = pwrinfo.ht40_2sindexdiff[rfPath][group]; rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] = (int )pwr > (int )diff ? (int )pwr - (int )diff : 0U; ch = ch + 1U; ldv_56830: ; if (ch <= 58U) { goto ldv_56829; } else { } rfPath = rfPath + 1U; ldv_56833: ; if (rfPath <= 1U) { goto ldv_56832; } else { } return; } } static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw , u8 *content ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 macphy_crvalue ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; macphy_crvalue = *(content + 8UL); if (((unsigned long )macphy_crvalue & 8UL) != 0UL) { { rtlhal->macphymode = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> MacPhyMode SINGLEMAC_SINGLEPHY\n", "_rtl92de_read_macphymode_from_prom", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { { rtlhal->macphymode = 1; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> MacPhyMode DUALMAC_DUALPHY\n", "_rtl92de_read_macphymode_from_prom", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return; } } static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw , u8 *content ) { { { _rtl92de_read_macphymode_from_prom(hw, content); rtl92d_phy_config_macphymode(hw); rtl92d_phy_config_macphymode_info(hw); } return; } } static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; enum version_8192d chipver ; u8 cutvalue[2U] ; u16 chipvalue ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; { { rtlpriv = (struct rtl_priv *)hw->priv; chipver = rtlpriv->rtlhal.version; (*((rtlpriv->intf_ops)->read_efuse_byte))(hw, 1022, (u8 *)(& cutvalue) + 1UL); (*((rtlpriv->intf_ops)->read_efuse_byte))(hw, 1023, (u8 *)(& cutvalue)); chipvalue = (u16 )((int )((short )((int )cutvalue[1] << 8)) | (int )((short )cutvalue[0])); } { if ((int )chipvalue == 43605) { goto case_43605; } else { } if ((int )chipvalue == 39270) { goto case_39270; } else { } if ((int )chipvalue == 52275) { goto case_52275; } else { } goto switch_default; case_43605: /* CIL Label */ { chipver = (unsigned int )chipver | 8192U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> C-CUT!!!\n", "_rtl92de_efuse_update_chip_version", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56856; case_39270: /* CIL Label */ { chipver = (unsigned int )chipver | 12288U; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> D-CUT!!!\n", "_rtl92de_efuse_update_chip_version", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56856; case_52275: /* CIL Label */ { chipver = (unsigned int )chipver | 16384U; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___1(); tmp___8 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> E-CUT!!!\n", "_rtl92de_efuse_update_chip_version", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56856; switch_default: /* CIL Label */ { chipver = (unsigned int )chipver | 12288U; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___1(); tmp___12 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Unknown CUT!\n", "_rtl92de_efuse_update_chip_version", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56856; switch_break: /* CIL Label */ ; } ldv_56856: rtlpriv->rtlhal.version = (u32 )chipver; return; } } static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_hal *rtlhal ; u16 i ; u16 usvalue ; u8 hwinfo[256U] ; u16 eeprom_id ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; struct _ddebug descriptor ; long tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; int tmp___36 ; int tmp___37 ; long tmp___38 ; long tmp___39 ; int tmp___40 ; int tmp___41 ; long tmp___42 ; long tmp___43 ; int tmp___44 ; int tmp___45 ; long tmp___46 ; long tmp___47 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if ((int )rtlefuse->epromtype == 2) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_128(& globalmutex_for_power_and_efuse); rtl_efuse_shadow_map_update(hw); _rtl92de_efuse_update_chip_version(hw); ldv_spin_unlock_irqrestore_124(& globalmutex_for_power_and_efuse, flags); __memcpy((void *)(& hwinfo), (void const *)(& rtlefuse->efuse_map), 256UL); } } else if ((int )rtlefuse->epromtype == 0) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> RTL819X Not boot from eeprom, check it !!\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = get_current(); tmp___4 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192de", (char *)(& tmp___4->comm), tmp___3->pid, (char *)"MAP"); descriptor.modname = "rtl8192de"; descriptor.function = "_rtl92de_read_adapter_info"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8192de/hw.c"; descriptor.format = ""; descriptor.lineno = 1765U; descriptor.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___5 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& hwinfo), 256UL, 1); } } else { } } else { } } else { } eeprom_id = *((u16 *)(& hwinfo)); if ((unsigned int )eeprom_id != 33065U) { { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___1(); tmp___9 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROM ID(%#x) is invalid!!\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } } else { } } else { } rtlefuse->autoload_failflag = 1U; } else { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___1(); tmp___13 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Autoload OK\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->autoload_failflag = 0U; } if ((unsigned int )rtlefuse->autoload_failflag != 0U) { { tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count___1(); tmp___17 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> RTL819X Not boot from eeprom, check it !!\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { rtlefuse->eeprom_oemid = hwinfo[203]; _rtl92de_read_macphymode_and_bandtype(hw, (u8 *)(& hwinfo)); rtlefuse->eeprom_vid = *((u16 *)(& hwinfo) + 40U); rtlefuse->eeprom_did = *((u16 *)(& hwinfo) + 42U); rtlefuse->eeprom_svid = *((u16 *)(& hwinfo) + 44U); rtlefuse->eeprom_smid = *((u16 *)(& hwinfo) + 46U); tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count___1(); tmp___21 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROMId = 0x%4x\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } } else { } } else { } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count___1(); tmp___25 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROM VID = 0x%4x\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_vid); } } else { } } else { } { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count___1(); tmp___29 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROM DID = 0x%4x\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_did); } } else { } } else { } { tmp___34 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___34 != 0L) { { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___35 != 0L) { { tmp___32 = preempt_count___1(); tmp___33 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROM SVID = 0x%4x\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_svid); } } else { } } else { } { tmp___38 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___38 != 0L) { { tmp___39 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___39 != 0L) { { tmp___36 = preempt_count___1(); tmp___37 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROM SMID = 0x%4x\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___37 & 2096896UL, ((unsigned long )tmp___36 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_smid); } } else { } } else { } if (rtlhal->interfaceindex == 0U) { i = 0U; goto ldv_56874; ldv_56873: usvalue = *((u16 *)(& hwinfo) + (unsigned long )((int )i + 85)); *((u16 *)(& rtlefuse->dev_addr) + (unsigned long )i) = usvalue; i = (unsigned int )i + 2U; ldv_56874: ; if ((unsigned int )i <= 5U) { goto ldv_56873; } else { } } else { i = 0U; goto ldv_56877; ldv_56876: usvalue = *((u16 *)(& hwinfo) + (unsigned long )((int )i + 91)); *((u16 *)(& rtlefuse->dev_addr) + (unsigned long )i) = usvalue; i = (unsigned int )i + 2U; ldv_56877: ; if ((unsigned int )i <= 5U) { goto ldv_56876; } else { } } { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 0, (u8 *)(& rtlefuse->dev_addr)); tmp___42 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___42 != 0L) { { tmp___43 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___43 != 0L) { { tmp___40 = preempt_count___1(); tmp___41 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> %pM\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___41 & 2096896UL, ((unsigned long )tmp___40 & 0xffffffffffdfffffUL) != 0UL, (u8 *)(& rtlefuse->dev_addr)); } } else { } } else { } { _rtl92de_read_txpower_info(hw, (unsigned int )rtlefuse->autoload_failflag != 0U, (u8 *)(& hwinfo)); } { if ((unsigned int )rtlhal->bandset == 0U) { goto case_0; } else { } if ((unsigned int )rtlhal->bandset == 1U) { goto case_1; } else { } if ((unsigned int )rtlhal->bandset == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ rtlefuse->channel_plan = 8U; goto ldv_56880; case_1: /* CIL Label */ rtlefuse->channel_plan = 0U; goto ldv_56880; case_2: /* CIL Label */ rtlefuse->channel_plan = 0U; goto ldv_56880; switch_default: /* CIL Label */ rtlefuse->channel_plan = 0U; goto ldv_56880; switch_break: /* CIL Label */ ; } ldv_56880: { rtlefuse->eeprom_version = (u8 )*((u16 *)(& hwinfo) + 202U); rtlefuse->txpwr_fromeprom = 1; tmp___46 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___46 != 0L) { { tmp___47 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___47 != 0L) { { tmp___44 = preempt_count___1(); tmp___45 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> EEPROM Customer ID: 0x%2x\n", "_rtl92de_read_adapter_info", (unsigned long )tmp___45 & 2096896UL, ((unsigned long )tmp___44 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_oemid); } } else { } } else { } return; } } void rtl92de_read_eeprom_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_hal *rtlhal ; u8 tmp_u1b ; enum version_8192d tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp = _rtl92de_read_chip_version(hw); rtlhal->version = (u32 )tmp; tmp_u1b = rtl_read_byte(rtlpriv, 10U); rtlefuse->autoload_status = tmp_u1b; } if (((unsigned long )tmp_u1b & 16UL) != 0UL) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___1(); tmp___1 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Boot from EEPROM\n", "rtl92de_read_eeprom_info", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->epromtype = 0; } else { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___1(); tmp___5 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Boot from EFUSE\n", "rtl92de_read_eeprom_info", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->epromtype = 2; } if (((unsigned long )tmp_u1b & 32UL) != 0UL) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___1(); tmp___9 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Autoload OK\n", "rtl92de_read_eeprom_info", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtlefuse->autoload_failflag = 0U; _rtl92de_read_adapter_info(hw); } } else { { tmp___14 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___1(); tmp___13 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Autoload ERR!!\n", "rtl92de_read_eeprom_info", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return; } } static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw , struct ieee80211_sta *sta ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; u32 ratr_value ; u8 ratr_index ; u8 nmode ; u8 mimo_ps ; u16 shortgi_rate ; u32 tmp_ratr_value ; u8 curtxbw_40mhz ; u8 curshortgi_40mhz ; u8 curshortgi_20mhz ; enum wireless_mode wirelessmode ; u32 ratr_mask ; u8 tmp ; u8 tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; ratr_index = 0U; nmode = mac->ht_enable; mimo_ps = 1U; curtxbw_40mhz = mac->bw_40; curshortgi_40mhz = ((int )sta->ht_cap.cap & 64) != 0; curshortgi_20mhz = ((int )sta->ht_cap.cap & 32) != 0; wirelessmode = (enum wireless_mode )mac->mode; if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_value = sta->supp_rates[1] << 4; } else { ratr_value = sta->supp_rates[0]; } ratr_value = ratr_value | (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)); { if ((unsigned int )wirelessmode == 1U) { goto case_1; } else { } if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } if ((unsigned int )wirelessmode == 32U) { goto case_32; } else { } goto switch_default; case_1: /* CIL Label */ ratr_value = ratr_value & 4080U; goto ldv_56911; case_2: /* CIL Label */ ; if ((ratr_value & 12U) != 0U) { ratr_value = ratr_value & 13U; } else { ratr_value = ratr_value & 15U; } goto ldv_56911; case_4: /* CIL Label */ ratr_value = ratr_value & 4085U; goto ldv_56911; case_16: /* CIL Label */ ; case_32: /* CIL Label */ nmode = 1U; if ((unsigned int )mimo_ps == 2U) { ratr_value = ratr_value & 520197U; } else { { tmp = get_rf_type(rtlphy); } if ((unsigned int )tmp == 1U) { ratr_mask = 1044485U; } else { { tmp___0 = get_rf_type(rtlphy); } if ((unsigned int )tmp___0 == 0U) { ratr_mask = 1044485U; } else { ratr_mask = 252702725U; } } ratr_value = ratr_value & ratr_mask; } goto ldv_56911; switch_default: /* CIL Label */ ; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_value = ratr_value & 1044735U; } else { ratr_value = ratr_value & 252702975U; } goto ldv_56911; switch_break: /* CIL Label */ ; } ldv_56911: ratr_value = ratr_value & 268435455U; if ((unsigned int )nmode != 0U && (((unsigned int )curtxbw_40mhz != 0U && (unsigned int )curshortgi_40mhz != 0U) || ((unsigned int )curtxbw_40mhz == 0U && (unsigned int )curshortgi_20mhz != 0U))) { ratr_value = ratr_value | 268435456U; tmp_ratr_value = ratr_value >> 12; shortgi_rate = 15U; goto ldv_56920; ldv_56919: ; if (((u32 )(1 << (int )shortgi_rate) & tmp_ratr_value) != 0U) { goto ldv_56918; } else { } shortgi_rate = (u16 )((int )shortgi_rate - 1); ldv_56920: ; if ((unsigned int )shortgi_rate != 0U) { goto ldv_56919; } else { } ldv_56918: shortgi_rate = (u16 )((((int )((short )((int )shortgi_rate << 12)) | (int )((short )((int )shortgi_rate << 8))) | (int )((short )((int )shortgi_rate << 4))) | (int )((short )shortgi_rate)); } else { } { rtl_write_dword(rtlpriv, (u32 )(((int )ratr_index + 273) * 4), ratr_value); tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___5 != 0L) { { tmp___1 = rtl_read_dword(rtlpriv, 1092U); tmp___2 = preempt_count___1(); tmp___3 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> %x\n", "rtl92de_update_hal_rate_table", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL, tmp___1); } } else { } } else { } return; } } static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; struct rtl_sta_info *sta_entry ; u32 ratr_bitmap ; u8 ratr_index ; u8 curtxbw_40mhz ; u8 curshortgi_40mhz ; u8 curshortgi_20mhz ; enum wireless_mode wirelessmode ; bool shortgi ; u32 value[2U] ; u8 macid ; u8 mimo_ps ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; sta_entry = (struct rtl_sta_info *)0; curtxbw_40mhz = (unsigned int )sta->bandwidth != 0U; curshortgi_40mhz = ((int )sta->ht_cap.cap & 64) != 0; curshortgi_20mhz = ((int )sta->ht_cap.cap & 32) != 0; wirelessmode = 0; shortgi = 0; macid = 0U; mimo_ps = 1U; sta_entry = (struct rtl_sta_info *)(& sta->drv_priv); mimo_ps = sta_entry->mimo_ps; wirelessmode = (enum wireless_mode )sta_entry->wireless_mode; if ((unsigned int )mac->opmode == 2U) { curtxbw_40mhz = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { macid = (unsigned int )((u8 )sta->aid) + 1U; } else { } if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_bitmap = sta->supp_rates[1] << 4; } else { ratr_bitmap = sta->supp_rates[0]; } ratr_bitmap = ratr_bitmap | (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)); { if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 1U) { goto case_1; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } if ((unsigned int )wirelessmode == 32U) { goto case_32; } else { } goto switch_default; case_2: /* CIL Label */ ratr_index = 6U; if ((ratr_bitmap & 12U) != 0U) { ratr_bitmap = ratr_bitmap & 13U; } else { ratr_bitmap = ratr_bitmap & 15U; } goto ldv_56943; case_4: /* CIL Label */ ratr_index = 4U; if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 3840U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 4080U; } else { ratr_bitmap = ratr_bitmap & 4085U; } goto ldv_56943; case_1: /* CIL Label */ ratr_index = 5U; ratr_bitmap = ratr_bitmap & 4080U; goto ldv_56943; case_16: /* CIL Label */ ; case_32: /* CIL Label */ ; if ((unsigned int )wirelessmode == 16U) { ratr_index = 0U; } else { ratr_index = 1U; } if ((unsigned int )mimo_ps == 2U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 458752U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 520192U; } else { ratr_bitmap = ratr_bitmap & 520197U; } } else if ((unsigned int )rtlphy->rf_type <= 1U) { if ((unsigned int )curtxbw_40mhz != 0U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 1044480U; } else { ratr_bitmap = ratr_bitmap & 1044501U; } } else if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 1044480U; } else { ratr_bitmap = ratr_bitmap & 1044485U; } } else if ((unsigned int )curtxbw_40mhz != 0U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 252641280U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 252702720U; } else { ratr_bitmap = ratr_bitmap & 252702741U; } } else if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 252641280U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 252702720U; } else { ratr_bitmap = ratr_bitmap & 252702725U; } if (((unsigned int )curtxbw_40mhz != 0U && (unsigned int )curshortgi_40mhz != 0U) || ((unsigned int )curtxbw_40mhz == 0U && (unsigned int )curshortgi_20mhz != 0U)) { if ((unsigned int )macid == 0U) { shortgi = 1; } else if ((unsigned int )macid == 1U) { shortgi = 0; } else { } } else { } goto ldv_56943; switch_default: /* CIL Label */ ratr_index = 0U; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_bitmap = ratr_bitmap & 1044735U; } else { ratr_bitmap = ratr_bitmap & 252702975U; } goto ldv_56943; switch_break: /* CIL Label */ ; } ldv_56943: { value[0] = (ratr_bitmap & 268435455U) | (u32 )((int )ratr_index << 28); value[1] = (u32 )(((int )macid | ((int )shortgi ? 32 : 0)) | 128); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> ratr_bitmap :%x value0:%x value1:%x\n", "rtl92de_update_hal_rate_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, ratr_bitmap, value[0], value[1]); } } else { } } else { } { rtl92d_fill_h2c_cmd(hw, 6, 5U, (u8 *)(& value)); } if ((unsigned int )macid != 0U) { sta_entry->ratr_index = ratr_index; } else { } return; } } void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )rtlpriv->dm.useramask) { { rtl92de_update_hal_rate_mask(hw, sta, (int )rssi_level); } } else { { rtl92de_update_hal_rate_table(hw, sta); } } return; } } void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 sifs_timer ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 18, & mac->slot_time); } if ((unsigned int )mac->ht_enable == 0U) { sifs_timer = 2570U; } else { sifs_timer = 4112U; } { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 14, (u8 *)(& sifs_timer)); } return; } } bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; enum rf_pwrstate e_rfpowerstate_toset ; u8 u1tmp ; bool actuallyset ; unsigned long flag ; u8 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; actuallyset = 0; if ((int )rtlpci->being_init_adapter) { return (0); } else { } if ((int )ppsc->swrf_processing) { return (0); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_130(& rtlpriv->locks.rf_ps_lock); } if ((int )ppsc->rfchange_inprogress) { { ldv_spin_unlock_irqrestore_131(& rtlpriv->locks.rf_ps_lock, flag); } return (0); } else { { ppsc->rfchange_inprogress = 1; ldv_spin_unlock_irqrestore_131(& rtlpriv->locks.rf_ps_lock, flag); } } { tmp = rtl_read_byte(rtlpriv, 67U); rtl_write_byte(rtlpriv, 67U, (int )tmp & 247); u1tmp = rtl_read_byte(rtlpriv, 66U); e_rfpowerstate_toset = ((unsigned long )u1tmp & 8UL) != 0UL ? 0 : 2; } if ((int )ppsc->hwradiooff && (unsigned int )e_rfpowerstate_toset == 0U) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___1(); tmp___1 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> GPIOChangeRF - HW Radio ON, RF ON\n", "rtl92de_gpio_radio_on_off_checking", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } e_rfpowerstate_toset = 0; ppsc->hwradiooff = 0; actuallyset = 1; } else if (! ppsc->hwradiooff && (unsigned int )e_rfpowerstate_toset == 2U) { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___1(); tmp___5 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> GPIOChangeRF - HW Radio OFF, RF OFF\n", "rtl92de_gpio_radio_on_off_checking", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } e_rfpowerstate_toset = 2; ppsc->hwradiooff = 1; actuallyset = 1; } else { } if ((int )actuallyset) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133___0(& rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = 0; ldv_spin_unlock_irqrestore_131(& rtlpriv->locks.rf_ps_lock, flag); } } else { if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(& rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = 0; ldv_spin_unlock_irqrestore_131(& rtlpriv->locks.rf_ps_lock, flag); } } *valid = 1U; return ((bool )(! ((int )ppsc->hwradiooff != 0))); } } void rtl92de_set_key(struct ieee80211_hw *hw , u32 key_index , u8 *p_macaddr , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u8 *macaddr ; u32 entry_id ; bool is_pairwise ; u8 cam_const_addr[4U][6U] ; u8 cam_const_broad[6U] ; u8 idx ; u8 cam_offset ; u8 clear_number ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; struct task_struct *tmp___28 ; struct task_struct *tmp___29 ; struct _ddebug descriptor ; long tmp___30 ; long tmp___31 ; long tmp___32 ; int tmp___33 ; int tmp___34 ; long tmp___35 ; long tmp___36 ; int tmp___37 ; int tmp___38 ; long tmp___39 ; long tmp___40 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; macaddr = p_macaddr; is_pairwise = 0; cam_const_addr[0][0] = 0U; cam_const_addr[0][1] = 0U; cam_const_addr[0][2] = 0U; cam_const_addr[0][3] = 0U; cam_const_addr[0][4] = 0U; cam_const_addr[0][5] = 0U; cam_const_addr[1][0] = 0U; cam_const_addr[1][1] = 0U; cam_const_addr[1][2] = 0U; cam_const_addr[1][3] = 0U; cam_const_addr[1][4] = 0U; cam_const_addr[1][5] = 1U; cam_const_addr[2][0] = 0U; cam_const_addr[2][1] = 0U; cam_const_addr[2][2] = 0U; cam_const_addr[2][3] = 0U; cam_const_addr[2][4] = 0U; cam_const_addr[2][5] = 2U; cam_const_addr[3][0] = 0U; cam_const_addr[3][1] = 0U; cam_const_addr[3][2] = 0U; cam_const_addr[3][3] = 0U; cam_const_addr[3][4] = 0U; cam_const_addr[3][5] = 3U; cam_const_broad[0] = 255U; cam_const_broad[1] = 255U; cam_const_broad[2] = 255U; cam_const_broad[3] = 255U; cam_const_broad[4] = 255U; cam_const_broad[5] = 255U; if ((int )clear_all) { { cam_offset = 0U; clear_number = 5U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___1(); tmp___0 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> clear_all\n", "rtl92de_set_key", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } idx = 0U; goto ldv_56996; ldv_56995: { rtl_cam_mark_invalid(hw, (int )cam_offset + (int )idx); rtl_cam_empty_entry(hw, (int )cam_offset + (int )idx); } if ((unsigned int )idx <= 4U) { { __memset((void *)(& rtlpriv->sec.key_buf) + (unsigned long )idx, 0, 61UL); rtlpriv->sec.key_len[(int )idx] = 0U; } } else { } idx = (u8 )((int )idx + 1); ldv_56996: ; if ((int )idx < (int )clear_number) { goto ldv_56995; } else { } } else { { if ((int )enc_algo == 1) { goto case_1; } else { } if ((int )enc_algo == 5) { goto case_5; } else { } if ((int )enc_algo == 2) { goto case_2; } else { } if ((int )enc_algo == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ enc_algo = 1U; goto ldv_56999; case_5: /* CIL Label */ enc_algo = 5U; goto ldv_56999; case_2: /* CIL Label */ enc_algo = 2U; goto ldv_56999; case_4: /* CIL Label */ enc_algo = 4U; goto ldv_56999; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___1(); tmp___4 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92de_set_key", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } enc_algo = 2U; goto ldv_56999; switch_break: /* CIL Label */ ; } ldv_56999: ; if ((int )is_wepkey || (int )rtlpriv->sec.use_defaultkey) { macaddr = (u8 *)(& cam_const_addr) + (unsigned long )key_index; entry_id = key_index; } else if ((int )is_group) { macaddr = (u8 *)(& cam_const_broad); entry_id = key_index; } else { if ((unsigned int )mac->opmode == 3U) { { tmp___7 = rtl_cam_get_free_entry(hw, p_macaddr); entry_id = (u32 )tmp___7; } if (entry_id > 31U) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___1(); tmp___9 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> Can not find free hw security cam entry\n", "rtl92de_set_key", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } } else { entry_id = 4U; } key_index = 0U; is_pairwise = 1; } if ((unsigned int )rtlpriv->sec.key_len[key_index] == 0U) { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___1(); tmp___13 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> delete one entry, entry_id is %d\n", "rtl92de_set_key", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, entry_id); } } else { } } else { } if ((unsigned int )mac->opmode == 3U) { { rtl_cam_del_entry(hw, p_macaddr); } } else { } { rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } } else { { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count___1(); tmp___17 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> The insert KEY length is %d\n", "rtl92de_set_key", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->sec.key_len[0]); } } else { } } else { } { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count___1(); tmp___21 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> The insert KEY is %x %x\n", "rtl92de_set_key", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->sec.key_buf[0][0], (int )rtlpriv->sec.key_buf[0][1]); } } else { } } else { } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count___1(); tmp___25 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> add one entry\n", "rtl92de_set_key", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((int )is_pairwise) { { tmp___31 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___31 != 0L) { { tmp___32 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___32 != 0L) { { tmp___28 = get_current(); tmp___29 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192de", (char *)(& tmp___29->comm), tmp___28->pid, (char *)"Pairwise Key content"); descriptor.modname = "rtl8192de"; descriptor.function = "rtl92de_set_key"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8192de/hw.c"; descriptor.format = ""; descriptor.lineno = 2264U; descriptor.flags = 0U; tmp___30 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___30 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)rtlpriv->sec.pairwise_key, (size_t )rtlpriv->sec.key_len[0], 1); } } else { } } else { } } else { } { tmp___35 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___35 != 0L) { { tmp___36 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___36 != 0L) { { tmp___33 = preempt_count___1(); tmp___34 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> set Pairwise key\n", "rtl92de_set_key", (unsigned long )tmp___34 & 2096896UL, ((unsigned long )tmp___33 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )key_index); } } else { { tmp___39 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___39 != 0L) { { tmp___40 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___40 != 0L) { { tmp___37 = preempt_count___1(); tmp___38 = preempt_count___1(); printk("\017rtl8192de:%s():<%lx-%x> set group key\n", "rtl92de_set_key", (unsigned long )tmp___38 & 2096896UL, ((unsigned long )tmp___37 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )mac->opmode == 1U) { { rtl_cam_add_one_entry(hw, (u8 *)(& rtlefuse->dev_addr), 0U, 4U, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )entry_id); } } else { } { rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )entry_id); } } } } return; } } void rtl92de_suspend(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv, 248U); } return; } } void rtl92de_resume(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_byte(rtlpriv, 248U, (int )rtlpriv->rtlhal.macphyctl_reg); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_power_and_efuse(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_124(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_for_power_and_efuse(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_power(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_127___0(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_power(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_128(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_power_and_efuse(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_130(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rf_ps_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_rf_ps_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rf_ps_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rf_ps_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static int preempt_count___2(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7133; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7133; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7133; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7133; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7133: ; return (pfo_ret__ & 2147483647); } } void rtl92de_init_sw_leds(struct ieee80211_hw *hw ) ; void rtl92de_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) ; static void _rtl92ce_init_led(struct ieee80211_hw *hw , struct rtl_led *pled , enum rtl_led_pin ledpin ) { { pled->hw = (void *)hw; pled->ledpin = ledpin; pled->ledon = 0; return; } } void rtl92de_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) { u8 ledcfg ; struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___2(); tmp___0 = preempt_count___2(); printk("\017rtl8192de:%s():<%lx-%x> LedAddr:%X ledpin=%d\n", "rtl92de_sw_led_on", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 78, (unsigned int )pled->ledpin); } } else { } } else { } { if ((unsigned int )pled->ledpin == 0U) { goto case_0; } else { } if ((unsigned int )pled->ledpin == 1U) { goto case_1; } else { } if ((unsigned int )pled->ledpin == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_55717; case_1: /* CIL Label */ { ledcfg = rtl_read_byte(rtlpriv, 78U); } if ((unsigned int )rtlpriv->efuse.eeprom_did == 33142U || (unsigned int )rtlpriv->efuse.eeprom_did == 33171U) { { rtl_write_byte(rtlpriv, 78U, (int )(((unsigned int )ledcfg & 16U) | 224U)); } } else { { rtl_write_byte(rtlpriv, 78U, (int )(((unsigned int )ledcfg & 80U) | 160U)); } } goto ldv_55717; case_2: /* CIL Label */ { ledcfg = rtl_read_byte(rtlpriv, 77U); rtl_write_byte(rtlpriv, 78U, (int )(((unsigned int )ledcfg & 15U) | 32U)); } goto ldv_55717; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___2(); tmp___4 = preempt_count___2(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92de_sw_led_on", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_55717; switch_break: /* CIL Label */ ; } ldv_55717: pled->ledon = 1; return; } } void rtl92de_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; u8 ledcfg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___2(); tmp___0 = preempt_count___2(); printk("\017rtl8192de:%s():<%lx-%x> LedAddr:%X ledpin=%d\n", "rtl92de_sw_led_off", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 78, (unsigned int )pled->ledpin); } } else { } } else { } { ledcfg = rtl_read_byte(rtlpriv, 78U); } { if ((unsigned int )pled->ledpin == 0U) { goto case_0; } else { } if ((unsigned int )pled->ledpin == 1U) { goto case_1; } else { } if ((unsigned int )pled->ledpin == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_55730; case_1: /* CIL Label */ ledcfg = (unsigned int )ledcfg & 240U; if ((int )pcipriv->ledctl.led_opendrain) { { rtl_write_byte(rtlpriv, 78U, (int )((unsigned int )ledcfg | 98U)); } } else { { rtl_write_byte(rtlpriv, 78U, (int )((unsigned int )ledcfg | 104U)); } } goto ldv_55730; case_2: /* CIL Label */ { ledcfg = (unsigned int )ledcfg & 15U; rtl_write_byte(rtlpriv, 78U, (int )((unsigned int )ledcfg | 8U)); } goto ldv_55730; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___2(); tmp___4 = preempt_count___2(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92de_sw_led_off", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_55730; switch_break: /* CIL Label */ ; } ldv_55730: pled->ledon = 0; return; } } void rtl92de_init_sw_leds(struct ieee80211_hw *hw ) { struct rtl_pci_priv *pcipriv ; { { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); _rtl92ce_init_led(hw, & pcipriv->ledctl.sw_led0, 1); _rtl92ce_init_led(hw, & pcipriv->ledctl.sw_led1, 2); } return; } } static void _rtl92ce_sw_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_pci_priv *pcipriv ; struct rtl_led *pLed0 ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); pLed0 = & pcipriv->ledctl.sw_led0; { if ((unsigned int )ledaction == 1U) { goto case_1; } else { } if ((unsigned int )ledaction == 2U) { goto case_2; } else { } if ((unsigned int )ledaction == 3U) { goto case_3; } else { } if ((unsigned int )ledaction == 7U) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { rtl92de_sw_led_on(hw, pLed0); } goto ldv_55747; case_7: /* CIL Label */ { rtl92de_sw_led_off(hw, pLed0); } goto ldv_55747; switch_default: /* CIL Label */ ; goto ldv_55747; switch_break: /* CIL Label */ ; } ldv_55747: ; return; } } void rtl92de_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; if (ppsc->rfoff_reason > 536870912U && ((((unsigned int )ledaction - 4U <= 2U || (unsigned int )ledaction == 2U) || ((unsigned int )ledaction == 3U || (unsigned int )ledaction == 8U)) || (unsigned int )ledaction == 1U)) { return; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___2(); tmp___0 = preempt_count___2(); printk("\017rtl8192de:%s():<%lx-%x> ledaction %d,\n", "rtl92de_led_control", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )ledaction); } } else { } } else { } { _rtl92ce_sw_led_control(hw, ledaction); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___1(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131___0(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_rf_lock_of_rtl_locks(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_rf_lock_of_rtl_locks(void) ; __inline static int preempt_count___3(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7157: ; return (pfo_ret__ & 2147483647); } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_124___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_124___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_127___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_127___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_127___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_127___0(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static bool is_hal_stop(struct rtl_hal *rtlhal ) { { return ((unsigned int )rtlhal->state == 0U); } } extern bool rtl_ps_enable_nic(struct ieee80211_hw * ) ; extern bool rtl_ps_disable_nic(struct ieee80211_hw * ) ; extern void rtl_addr_delay(u32 ) ; extern void rtl_rfreg_delay(struct ieee80211_hw * , enum radio_path , u32 , u32 , u32 ) ; __inline static void rtl92d_acquire_cckandrw_pagea_ctl___0(struct ieee80211_hw *hw , unsigned long *flag ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if (rtlpriv->rtlhal.interfaceindex == 1U) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___1(& rtlpriv->locks.cck_and_rw_pagea_lock); } } else { } return; } } __inline static void rtl92d_release_cckandrw_pagea_ctl___0(struct ieee80211_hw *hw , unsigned long *flag ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if (rtlpriv->rtlhal.interfaceindex == 1U) { { ldv_spin_unlock_irqrestore_122(& rtlpriv->locks.cck_and_rw_pagea_lock, *flag); } } else { } return; } } u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) ; void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) ; u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) ; void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) ; void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) ; u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw ) ; bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw , enum rf_content content , enum radio_path rfpath ) ; bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) ; void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw , u8 channel ) ; void rtl92d_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) ; void rtl92d_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel ) ; void rtl92d_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel , u8 channel ) ; bool rtl92d_phy_rf6052_config(struct ieee80211_hw *hw ) ; bool rtl92d_phy_enable_anotherphy(struct ieee80211_hw *hw , bool bmac0 ) ; void rtl92d_phy_powerdown_anotherphy(struct ieee80211_hw *hw , bool bmac0 ) ; u32 rtl8192de_phy_reg_2tarray[380U] ; u32 rtl8192de_phy_reg_array_pg[624U] ; u32 rtl8192de_radioa_2tarray[378U] ; u32 rtl8192de_radiob_2tarray[384U] ; u32 rtl8192de_radioa_2t_int_paarray[378U] ; u32 rtl8192de_radiob_2t_int_paarray[384U] ; u32 rtl8192de_mac_2tarray[160U] ; u32 rtl8192de_agctab_array[386U] ; u32 rtl8192de_agctab_5garray[194U] ; u32 rtl8192de_agctab_2garray[194U] ; static u32 rf_reg_for_5g_swchnl_normal[13U] = { 0U, 47U, 48U, 49U, 50U, 51U, 52U, 53U, 54U, 55U, 56U, 57U, 0U}; static u8 rf_reg_for_c_cut_5g[6U] = { 37U, 38U, 39U, 40U, 41U, 42U}; static u8 rf_reg_for_c_cut_2g[5U] = { 37U, 38U, 39U, 43U, 44U}; static u8 rf_for_c_cut_5g_internal_pa[7U] = { 11U, 72U, 73U, 75U, 3U, 4U, 14U}; static u32 rf_reg_mask_for_c_cut_2g[5U] = { 933890U, 1536U, 458754U, 6U, 63488U}; static u8 rf_chnl_5g[19U] = { 36U, 40U, 44U, 48U, 52U, 56U, 60U, 64U, 100U, 104U, 108U, 112U, 116U, 120U, 124U, 128U, 132U, 136U, 140U}; static u8 rf_chnl_5g_40m[17U] = { 38U, 42U, 46U, 50U, 54U, 58U, 62U, 102U, 106U, 110U, 114U, 118U, 122U, 126U, 130U, 134U, 138U}; static u32 rf_reg_pram_c_5g[5U][6U] = { { 934846U, 1033784U, 490506U, 910449U, 880912U, 584452U}, { 934846U, 1032312U, 1014810U, 920689U, 882000U, 715524U}, { 934847U, 1044536U, 1014794U, 910449U, 939344U, 715524U}, { 934847U, 1044601U, 1014810U, 910449U, 939344U, 715524U}, { 934847U, 1044536U, 1014810U, 910449U, 882000U, 715524U}}; static u32 rf_reg_param_for_c_cut_2g[3U][5U] = { { 410556U, 1032248U, 490522U, 266889U, 6208U}, { 410556U, 1032248U, 31770U, 266889U, 6208U}, { 148412U, 1033272U, 31770U, 266891U, 64577U}}; static u32 rf_syn_g4_for_c_cut_2g = 1073U; static u32 rf_pram_c_5g_int_pa[3U][7U] = { { 6656U, 263235U, 3765U, 564204U, 608786U, 608786U, 608786U}, { 6144U, 787523U, 1840U, 562926U, 608850U, 608850U, 608850U}, { 6144U, 787523U, 1840U, 562926U, 608786U, 608786U, 608786U}}; static u32 rf_imr_param_normal[1U][3U][13U] = { { { 458752U, 4080U, 278543U, 4080U, 0U, 0U, 0U, 0U, 0U, 411784U, 927340U, 144U, 143359U}, { 458752U, 141440U, 280335U, 350336U, 112U, 557056U, 0U, 557184U, 458752U, 412290U, 935532U, 144U, 208026U}, { 458752U, 280704U, 280447U, 489600U, 112U, 557056U, 0U, 557232U, 0U, 412546U, 935532U, 144U, 208026U}}}; static u32 curveindex_5g[221U] = { 0U}; static u32 curveindex_2g[14U] = { 0U}; static u32 targetchnl_5g[221U] = { 25141U, 25116U, 25091U, 25066U, 25041U, 25016U, 24991U, 24966U, 24941U, 24917U, 24892U, 24867U, 24843U, 24818U, 24794U, 24770U, 24765U, 24721U, 24697U, 24672U, 24648U, 24624U, 24600U, 24576U, 24552U, 24528U, 24504U, 24480U, 24457U, 24433U, 24409U, 24385U, 24362U, 24338U, 24315U, 24291U, 24268U, 24245U, 24221U, 24198U, 24175U, 24151U, 24128U, 24105U, 24082U, 24059U, 24036U, 24013U, 23990U, 23967U, 23945U, 23922U, 23899U, 23876U, 23854U, 23831U, 23809U, 23786U, 23764U, 23741U, 23719U, 23697U, 23674U, 23652U, 23630U, 23608U, 23586U, 23564U, 23541U, 23519U, 23498U, 23476U, 23454U, 23432U, 23410U, 23388U, 23367U, 23345U, 23323U, 23302U, 23280U, 23259U, 23237U, 23216U, 23194U, 23173U, 23152U, 23130U, 23109U, 23088U, 23067U, 23046U, 23025U, 23003U, 22982U, 22962U, 22941U, 22920U, 22899U, 22878U, 22857U, 22837U, 22816U, 22795U, 22775U, 22754U, 22733U, 22713U, 22692U, 22672U, 22652U, 22631U, 22611U, 22591U, 22570U, 22550U, 22530U, 22510U, 22490U, 22469U, 22449U, 22429U, 22409U, 22390U, 22370U, 22350U, 22336U, 22310U, 22290U, 22271U, 22251U, 22231U, 22212U, 22192U, 22173U, 22153U, 22134U, 22114U, 22095U, 22075U, 22056U, 22037U, 22017U, 21998U, 21979U, 21960U, 21941U, 21921U, 21902U, 21883U, 21864U, 21845U, 21826U, 21807U, 21789U, 21770U, 21751U, 21732U, 21713U, 21695U, 21676U, 21657U, 21639U, 21620U, 21602U, 21583U, 21565U, 21546U, 21528U, 21509U, 21491U, 21473U, 21454U, 21436U, 21418U, 21400U, 21381U, 21363U, 21345U, 21327U, 21309U, 21291U, 21273U, 21255U, 21237U, 21219U, 21201U, 21183U, 21166U, 21148U, 21130U, 21112U, 21095U, 21077U, 21059U, 21042U, 21024U, 21007U, 20989U, 20972U, 25679U, 25653U, 25627U, 25601U, 25575U, 25549U, 25523U, 25497U, 25471U, 25446U, 25420U, 25394U, 25369U, 25343U, 25318U, 25292U, 25267U, 25242U, 25216U, 25191U, 25166U}; static u32 targetchnl_2g[14U] = { 26084U, 26030U, 25976U, 25923U, 25869U, 25816U, 25764U, 25711U, 25658U, 25606U, 25554U, 25502U, 25451U, 25328U}; static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask ) { u32 i ; { i = 0U; goto ldv_56218; ldv_56217: ; if ((int )(bitmask >> (int )i) & 1) { goto ldv_56216; } else { } i = i + 1U; ldv_56218: ; if (i <= 31U) { goto ldv_56217; } else { } ldv_56216: ; return (i); } } u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 returnvalue ; u32 originalvalue ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 dbi_direct ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), bitmask(%#x)\n", "rtl92d_phy_query_bb_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask); } } else { } } else { } if ((int )rtlhal->during_mac1init_radioa || (int )rtlhal->during_mac0init_radiob) { dbi_direct = 0U; if ((int )rtlhal->during_mac1init_radioa) { dbi_direct = 8U; } else if ((int )rtlhal->during_mac0init_radiob) { dbi_direct = 12U; } else { } { originalvalue = rtl92de_read_dword_dbi(hw, (int )((unsigned short )regaddr), (int )dbi_direct); } } else { { originalvalue = rtl_read_dword(rtlpriv, regaddr); } } { bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); returnvalue = (originalvalue & bitmask) >> (int )bitshift; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> BBR MASK=0x%x Addr[0x%x]=0x%x\n", "rtl92d_phy_query_bb_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, bitmask, regaddr, originalvalue); } } else { } } else { } return (returnvalue); } } void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 dbi_direct ; u32 originalvalue ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; dbi_direct = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x)\n", "rtl92d_phy_set_bb_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data); } } else { } } else { } if ((int )rtlhal->during_mac1init_radioa) { dbi_direct = 8U; } else if ((int )rtlhal->during_mac0init_radiob) { dbi_direct = 12U; } else { } if (bitmask != 4294967295U) { if ((int )rtlhal->during_mac1init_radioa || (int )rtlhal->during_mac0init_radiob) { { originalvalue = rtl92de_read_dword_dbi(hw, (int )((unsigned short )regaddr), (int )dbi_direct); } } else { { originalvalue = rtl_read_dword(rtlpriv, regaddr); } } { bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); data = (originalvalue & ~ bitmask) | (data << (int )bitshift); } } else { } if ((int )rtlhal->during_mac1init_radioa || (int )rtlhal->during_mac0init_radiob) { { rtl92de_write_dword_dbi(hw, (int )((unsigned short )regaddr), data, (int )dbi_direct); } } else { { rtl_write_dword(rtlpriv, regaddr, data); } } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x)\n", "rtl92d_phy_set_bb_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data); } } else { } } else { } return; } } static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw , enum radio_path rfpath , u32 offset ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; u32 newoffset ; u32 tmplong ; u32 tmplong2 ; u8 rfpi_enable ; u32 retvalue ; u32 tmp ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; rfpi_enable = 0U; newoffset = offset; tmplong = rtl_get_bbreg(hw, 2084U, 4294967295U); } if ((unsigned int )rfpath == 0U) { tmplong2 = tmplong; } else { { tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, 4294967295U); } } { tmplong2 = ((tmplong2 & 2155872255U) | (newoffset << 23)) | 2147483648U; rtl_set_bbreg(hw, 2084U, 4294967295U, tmplong & 2147483647U); __const_udelay(42950UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 4294967295U, tmplong2); __const_udelay(214750UL); __const_udelay(214750UL); rtl_set_bbreg(hw, 2084U, 4294967295U, tmplong | 2147483648U); __const_udelay(42950UL); } if ((unsigned int )rfpath == 0U) { { tmp = rtl_get_bbreg(hw, 2080U, 256U); rfpi_enable = (unsigned char )tmp; } } else if ((unsigned int )rfpath == 1U) { { tmp___0 = rtl_get_bbreg(hw, 2088U, 256U); rfpi_enable = (unsigned char )tmp___0; } } else { } if ((unsigned int )rfpi_enable != 0U) { { retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi, 1048575U); } } else { { retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb, 1048575U); } } { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count___3(); tmp___2 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> RFR-%d Addr[0x%x] = 0x%x\n", "_rtl92d_phy_rf_serial_read", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath, pphyreg->rf_rb, retvalue); } } else { } } else { } return (retvalue); } } static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw , enum radio_path rfpath , u32 offset , u32 data ) { u32 data_and_addr ; u32 newoffset ; struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; newoffset = offset; data_and_addr = ((newoffset << 20) | (data & 1048575U)) & 268435455U; rtl_set_bbreg(hw, pphyreg->rf3wire_offset, 4294967295U, data_and_addr); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> RFW-%d Addr[0x%x]=0x%x\n", "_rtl92d_phy_rf_serial_write", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath, pphyreg->rf3wire_offset, data_and_addr); } } else { } } else { } return; } } u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 original_value ; u32 readback_value ; u32 bitshift ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", "rtl92d_phy_query_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask); } } else { } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123___0(& rtlpriv->locks.rf_lock); original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); readback_value = (original_value & bitmask) >> (int )bitshift; ldv_spin_unlock_irqrestore_124___0(& rtlpriv->locks.rf_lock, flags); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", "rtl92d_phy_query_rf_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask, original_value); } } else { } } else { } return (readback_value); } } void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 original_value ; u32 bitshift ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl92d_phy_set_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )rfpath); } } else { } } else { } if (bitmask == 0U) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(& rtlpriv->locks.rf_lock); } if ((unsigned int )rtlphy->rf_mode != 1U) { if (bitmask != 1048575U) { { original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); data = (original_value & ~ bitmask) | (data << (int )bitshift); } } else { } { _rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data); } } else { } { ldv_spin_unlock_irqrestore_124___0(& rtlpriv->locks.rf_lock, flags); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl92d_phy_set_rf_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )rfpath); } } else { } } else { } return; } } bool rtl92d_phy_mac_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 i ; u32 arraylength ; u32 *ptrarray ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Read Rtl819XMACPHY_Array\n", "rtl92d_phy_mac_config", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { arraylength = 160U; ptrarray = (u32 *)(& rtl8192de_mac_2tarray); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Img:Rtl819XMAC_Array\n", "rtl92d_phy_mac_config", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } i = 0U; goto ldv_56303; ldv_56302: { rtl_write_byte(rtlpriv, *(ptrarray + (unsigned long )i), (int )((unsigned char )*(ptrarray + (unsigned long )(i + 1U)))); i = i + 2U; } ldv_56303: ; if (i < arraylength) { goto ldv_56302; } else { } if ((unsigned int )rtlpriv->rtlhal.macphymode == 0U) { { rtl_write_byte(rtlpriv, 1226U, 11); } } else { { rtl_write_byte(rtlpriv, 1226U, 7); } } return (1); } } static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlphy->phyreg_def[0].rfintfs = 2160U; rtlphy->phyreg_def[1].rfintfs = 2160U; rtlphy->phyreg_def[2].rfintfs = 2164U; rtlphy->phyreg_def[3].rfintfs = 2164U; rtlphy->phyreg_def[0].rfintfi = 2272U; rtlphy->phyreg_def[1].rfintfi = 2272U; rtlphy->phyreg_def[2].rfintfi = 2276U; rtlphy->phyreg_def[3].rfintfi = 2276U; rtlphy->phyreg_def[0].rfintfo = 2144U; rtlphy->phyreg_def[1].rfintfo = 2148U; rtlphy->phyreg_def[0].rfintfe = 2144U; rtlphy->phyreg_def[1].rfintfe = 2148U; rtlphy->phyreg_def[0].rf3wire_offset = 2112U; rtlphy->phyreg_def[1].rf3wire_offset = 2116U; rtlphy->phyreg_def[0].rflssi_select = 2168U; rtlphy->phyreg_def[1].rflssi_select = 2168U; rtlphy->phyreg_def[2].rflssi_select = 2172U; rtlphy->phyreg_def[3].rflssi_select = 2172U; rtlphy->phyreg_def[0].rftxgain_stage = 2060U; rtlphy->phyreg_def[1].rftxgain_stage = 2060U; rtlphy->phyreg_def[2].rftxgain_stage = 2060U; rtlphy->phyreg_def[3].rftxgain_stage = 2060U; rtlphy->phyreg_def[0].rfhssi_para1 = 2080U; rtlphy->phyreg_def[1].rfhssi_para1 = 2088U; rtlphy->phyreg_def[0].rfhssi_para2 = 2084U; rtlphy->phyreg_def[1].rfhssi_para2 = 2092U; rtlphy->phyreg_def[0].rfsw_ctrl = 2136U; rtlphy->phyreg_def[1].rfsw_ctrl = 2136U; rtlphy->phyreg_def[2].rfsw_ctrl = 2140U; rtlphy->phyreg_def[3].rfsw_ctrl = 2140U; rtlphy->phyreg_def[0].rfagc_control1 = 3152U; rtlphy->phyreg_def[1].rfagc_control1 = 3160U; rtlphy->phyreg_def[2].rfagc_control1 = 3168U; rtlphy->phyreg_def[3].rfagc_control1 = 3176U; rtlphy->phyreg_def[0].rfagc_control2 = 3156U; rtlphy->phyreg_def[1].rfagc_control2 = 3164U; rtlphy->phyreg_def[2].rfagc_control2 = 3172U; rtlphy->phyreg_def[3].rfagc_control2 = 3180U; rtlphy->phyreg_def[0].rfrxiq_imbal = 3092U; rtlphy->phyreg_def[1].rfrxiq_imbal = 3100U; rtlphy->phyreg_def[2].rfrxiq_imbal = 3108U; rtlphy->phyreg_def[3].rfrxiq_imbal = 3116U; rtlphy->phyreg_def[0].rfrx_afe = 3088U; rtlphy->phyreg_def[1].rfrx_afe = 3096U; rtlphy->phyreg_def[2].rfrx_afe = 3104U; rtlphy->phyreg_def[3].rfrx_afe = 3112U; rtlphy->phyreg_def[0].rftxiq_imbal = 3200U; rtlphy->phyreg_def[1].rftxiq_imbal = 3208U; rtlphy->phyreg_def[2].rftxiq_imbal = 3216U; rtlphy->phyreg_def[3].rftxiq_imbal = 3224U; rtlphy->phyreg_def[0].rftx_afe = 3204U; rtlphy->phyreg_def[1].rftx_afe = 3212U; rtlphy->phyreg_def[2].rftx_afe = 3220U; rtlphy->phyreg_def[3].rftx_afe = 3228U; rtlphy->phyreg_def[0].rf_rb = 2208U; rtlphy->phyreg_def[1].rf_rb = 2212U; rtlphy->phyreg_def[2].rf_rb = 2216U; rtlphy->phyreg_def[3].rf_rb = 2220U; rtlphy->phyreg_def[0].rf_rbpi = 2232U; rtlphy->phyreg_def[1].rf_rbpi = 2236U; return; } } static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw , u8 configtype ) { int i ; u32 *phy_regarray_table ; u32 *agctab_array_table ; u32 *agctab_5garray_table ; u16 phy_reg_arraylen ; u16 agctab_arraylen ; u16 agctab_5garraylen ; struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; { agctab_array_table = (u32 *)0U; agctab_arraylen = 0U; rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if (rtlhal->interfaceindex == 0U) { { agctab_arraylen = 386U; agctab_array_table = (u32 *)(& rtl8192de_agctab_array); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ===> phy:MAC0, Rtl819XAGCTAB_Array\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if ((unsigned int )rtlhal->current_bandtype == 0U) { { agctab_arraylen = 194U; agctab_array_table = (u32 *)(& rtl8192de_agctab_2garray); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { { agctab_5garraylen = 194U; agctab_5garray_table = (u32 *)(& rtl8192de_agctab_5garray); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } { phy_reg_arraylen = 380U; phy_regarray_table = (u32 *)(& rtl8192de_phy_reg_2tarray); tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ===> phy:Rtl819XPHY_REG_Array_PG\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )configtype == 0U) { i = 0; goto ldv_56325; ldv_56324: { rtl_addr_delay(*(phy_regarray_table + (unsigned long )i)); rtl_set_bbreg(hw, *(phy_regarray_table + (unsigned long )i), 4294967295U, *(phy_regarray_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, *(phy_regarray_table + (unsigned long )i), *(phy_regarray_table + ((unsigned long )i + 1UL))); } } else { } } else { } i = i + 2; ldv_56325: ; if (i < (int )phy_reg_arraylen) { goto ldv_56324; } else { } } else if ((unsigned int )configtype == 1U) { if (rtlhal->interfaceindex == 0U) { i = 0; goto ldv_56328; ldv_56327: { rtl_set_bbreg(hw, *(agctab_array_table + (unsigned long )i), 4294967295U, *(agctab_array_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___3(); tmp___20 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, *(agctab_array_table + (unsigned long )i), *(agctab_array_table + ((unsigned long )i + 1UL))); } } else { } } else { } i = i + 2; ldv_56328: ; if (i < (int )agctab_arraylen) { goto ldv_56327; } else { } { tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count___3(); tmp___24 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if ((unsigned int )rtlhal->current_bandtype == 0U) { i = 0; goto ldv_56331; ldv_56330: { rtl_set_bbreg(hw, *(agctab_array_table + (unsigned long )i), 4294967295U, *(agctab_array_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count___3(); tmp___28 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, *(agctab_array_table + (unsigned long )i), *(agctab_array_table + ((unsigned long )i + 1UL))); } } else { } } else { } i = i + 2; ldv_56331: ; if (i < (int )agctab_arraylen) { goto ldv_56330; } else { } { tmp___33 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count___3(); tmp___32 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Load Rtl819XAGCTAB_2GArray\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { i = 0; goto ldv_56334; ldv_56333: { rtl_set_bbreg(hw, *(agctab_5garray_table + (unsigned long )i), 4294967295U, *(agctab_5garray_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___38 != 0L) { { tmp___35 = preempt_count___3(); tmp___36 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL, *(agctab_5garray_table + (unsigned long )i), *(agctab_5garray_table + ((unsigned long )i + 1UL))); } } else { } } else { } i = i + 2; ldv_56334: ; if (i < (int )agctab_5garraylen) { goto ldv_56333; } else { } { tmp___41 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count___3(); tmp___40 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Load Rtl819XAGCTAB_5GArray\n", "_rtl92d_phy_config_bb_with_headerfile", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } } else { } return (1); } } static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int index ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if (regaddr == 3584U) { index = 0; } else if (regaddr == 3588U) { index = 1; } else if (regaddr == 3592U) { index = 6; } else if (regaddr == 2156U && bitmask == 4294967040U) { index = 7; } else if (regaddr == 3600U) { index = 2; } else if (regaddr == 3604U) { index = 3; } else if (regaddr == 3608U) { index = 4; } else if (regaddr == 3612U) { index = 5; } else if (regaddr == 2096U) { index = 8; } else if (regaddr == 2100U) { index = 9; } else if (regaddr == 2104U) { index = 14; } else if (regaddr == 2156U && bitmask == 255U) { index = 15; } else if (regaddr == 2108U) { index = 10; } else if (regaddr == 2120U) { index = 11; } else if (regaddr == 2124U) { index = 12; } else if (regaddr == 2152U) { index = 13; } else { return; } { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][index] = data; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n", "_rtl92d_store_pwrindex_diffrate_offset", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, index, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][index]); } } else { } } else { } if (index == 13) { rtlphy->pwrgroup_cnt = (u8 )((int )rtlphy->pwrgroup_cnt + 1); } else { } return; } } static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw , u8 configtype ) { struct rtl_priv *rtlpriv ; int i ; u32 *phy_regarray_table_pg ; u16 phy_regarray_pg_len ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; phy_regarray_pg_len = 624U; phy_regarray_table_pg = (u32 *)(& rtl8192de_phy_reg_array_pg); if ((unsigned int )configtype == 0U) { i = 0; goto ldv_56355; ldv_56354: { rtl_addr_delay(*(phy_regarray_table_pg + (unsigned long )i)); _rtl92d_store_pwrindex_diffrate_offset(hw, *(phy_regarray_table_pg + (unsigned long )i), *(phy_regarray_table_pg + ((unsigned long )i + 1UL)), *(phy_regarray_table_pg + ((unsigned long )i + 2UL))); i = i + 3; } ldv_56355: ; if (i < (int )phy_regarray_pg_len) { goto ldv_56354; } else { } } else { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> configtype != BaseBand_Config_PHY_REG\n", "_rtl92d_phy_config_bb_with_pgheaderfile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return (1); } } static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u32 tmp___15 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtstatus = 1; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ==>\n", "_rtl92d_phy_bb_config", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw, 0); } if (! rtstatus) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Write BB Reg Fail!!\n", "_rtl92d_phy_bb_config", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } if ((unsigned int )rtlefuse->autoload_failflag == 0U) { { rtlphy->pwrgroup_cnt = 0U; rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw, 0); } } else { } if (! rtstatus) { { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> BB_PG Reg Fail!!\n", "_rtl92d_phy_bb_config", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } { rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw, 1); } if (! rtstatus) { { tmp___13 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> AGC Table Fail\n", "_rtl92d_phy_bb_config", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } { tmp___15 = rtl_get_bbreg(hw, 2084U, 512U); rtlphy->cck_high_power = tmp___15 != 0U; } return (1); } } bool rtl92d_phy_bb_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u16 regval ; u32 regvaldw ; u8 value ; bool tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; _rtl92d_phy_init_bb_rf_register_definition(hw); regval = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )regval | 8195U)); rtl_write_byte(rtlpriv, 40U, 131); rtl_write_byte(rtlpriv, 41U, 219); value = rtl_read_byte(rtlpriv, 31U); rtl_write_byte(rtlpriv, 31U, (int )((unsigned int )value | 7U)); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 37U, 128); } if (((unsigned long )rtlpriv->rtlhal.version & 119UL) != 34UL) { { regvaldw = rtl_read_dword(rtlpriv, 76U); rtl_write_dword(rtlpriv, 76U, regvaldw | 8388608U); } } else { } { tmp = _rtl92d_phy_bb_config(hw); } return (tmp); } } bool rtl92d_phy_rf_config(struct ieee80211_hw *hw ) { bool tmp ; { { tmp = rtl92d_phy_rf6052_config(hw); } return (tmp); } } bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw , enum rf_content content , enum radio_path rfpath ) { int i ; u32 *radioa_array_table ; u32 *radiob_array_table ; u16 radioa_arraylen ; u16 radiob_arraylen ; struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; { rtlpriv = (struct rtl_priv *)hw->priv; radioa_arraylen = 378U; radioa_array_table = (u32 *)(& rtl8192de_radioa_2tarray); radiob_arraylen = 384U; radiob_array_table = (u32 *)(& rtl8192de_radiob_2tarray); if ((unsigned int )rtlpriv->efuse.internal_pa_5g[0] != 0U) { radioa_arraylen = 378U; radioa_array_table = (u32 *)(& rtl8192de_radioa_2t_int_paarray); } else { } if ((unsigned int )rtlpriv->efuse.internal_pa_5g[1] != 0U) { radiob_arraylen = 384U; radiob_array_table = (u32 *)(& rtl8192de_radiob_2t_int_paarray); } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n", "rtl92d_phy_config_rf_with_headerfile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n", "rtl92d_phy_config_rf_with_headerfile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Radio No %x\n", "rtl92d_phy_config_rf_with_headerfile", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath); } } else { } } else { } if ((unsigned int )content == 1U && (unsigned int )rfpath == 0U) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ===> althougth Path A, we load radiob.txt\n", "rtl92d_phy_config_rf_with_headerfile", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } radioa_arraylen = radiob_arraylen; radioa_array_table = radiob_array_table; } else { } { if ((unsigned int )rfpath == 0U) { goto case_0; } else { } if ((unsigned int )rfpath == 1U) { goto case_1; } else { } if ((unsigned int )rfpath == 2U) { goto case_2; } else { } if ((unsigned int )rfpath == 3U) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ i = 0; goto ldv_56390; ldv_56389: { rtl_rfreg_delay(hw, rfpath, *(radioa_array_table + (unsigned long )i), 1048575U, *(radioa_array_table + ((unsigned long )i + 1UL))); i = i + 2; } ldv_56390: ; if (i < (int )radioa_arraylen) { goto ldv_56389; } else { } goto ldv_56392; case_1: /* CIL Label */ i = 0; goto ldv_56395; ldv_56394: { rtl_rfreg_delay(hw, rfpath, *(radiob_array_table + (unsigned long )i), 1048575U, *(radiob_array_table + ((unsigned long )i + 1UL))); i = i + 2; } ldv_56395: ; if (i < (int )radiob_arraylen) { goto ldv_56394; } else { } goto ldv_56392; case_2: /* CIL Label */ { tmp___17 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92d_phy_config_rf_with_headerfile", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56392; case_3: /* CIL Label */ { tmp___21 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___3(); tmp___20 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92d_phy_config_rf_with_headerfile", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_56392; switch_break: /* CIL Label */ ; } ldv_56392: ; return (1); } } void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp = rtl_get_bbreg(hw, 3152U, 255U); rtlphy->default_initialgain[0] = (unsigned char )tmp; tmp___0 = rtl_get_bbreg(hw, 3160U, 255U); rtlphy->default_initialgain[1] = (unsigned char )tmp___0; tmp___1 = rtl_get_bbreg(hw, 3168U, 255U); rtlphy->default_initialgain[2] = (unsigned char )tmp___1; tmp___2 = rtl_get_bbreg(hw, 3176U, 255U); rtlphy->default_initialgain[3] = (unsigned char )tmp___2; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n", "rtl92d_phy_get_hw_reg_originalvalue", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->default_initialgain[0], (int )rtlphy->default_initialgain[1], (int )rtlphy->default_initialgain[2], (int )rtlphy->default_initialgain[3]); } } else { } } else { } { tmp___7 = rtl_get_bbreg(hw, 3128U, 255U); rtlphy->framesync = (unsigned char )tmp___7; rtlphy->framesync_c34 = rtl_get_bbreg(hw, 3124U, 4294967295U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___3(); tmp___9 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Default framesync (0x%x) = 0x%x\n", "rtl92d_phy_get_hw_reg_originalvalue", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, 3128, (int )rtlphy->framesync); } } else { } } else { } return; } } static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw , u8 channel , u8 *cckpowerlevel , u8 *ofdmpowerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; u8 index ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; index = (unsigned int )channel + 255U; if ((unsigned int )rtlhal->current_bandtype == 0U) { *cckpowerlevel = rtlefuse->txpwrlevel_cck[0][(int )index]; *(cckpowerlevel + 1UL) = rtlefuse->txpwrlevel_cck[1][(int )index]; } else { *cckpowerlevel = 0U; *(cckpowerlevel + 1UL) = 0U; } if ((unsigned int )rtlphy->rf_type <= 1U) { *ofdmpowerlevel = rtlefuse->txpwrlevel_ht40_1s[0][(int )index]; *(ofdmpowerlevel + 1UL) = rtlefuse->txpwrlevel_ht40_1s[1][(int )index]; } else if ((unsigned int )rtlphy->rf_type == 2U) { *ofdmpowerlevel = rtlefuse->txpwrlevel_ht40_2s[0][(int )index]; *(ofdmpowerlevel + 1UL) = rtlefuse->txpwrlevel_ht40_2s[1][(int )index]; } else { } return; } } static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw , u8 channel , u8 *cckpowerlevel , u8 *ofdmpowerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlphy->cur_cck_txpwridx = *cckpowerlevel; rtlphy->cur_ofdm24g_txpwridx = *ofdmpowerlevel; return; } } static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl ) { u8 channel_5g[59U] ; u8 place ; { channel_5g[0] = 1U; channel_5g[1] = 2U; channel_5g[2] = 3U; channel_5g[3] = 4U; channel_5g[4] = 5U; channel_5g[5] = 6U; channel_5g[6] = 7U; channel_5g[7] = 8U; channel_5g[8] = 9U; channel_5g[9] = 10U; channel_5g[10] = 11U; channel_5g[11] = 12U; channel_5g[12] = 13U; channel_5g[13] = 14U; channel_5g[14] = 36U; channel_5g[15] = 38U; channel_5g[16] = 40U; channel_5g[17] = 42U; channel_5g[18] = 44U; channel_5g[19] = 46U; channel_5g[20] = 48U; channel_5g[21] = 50U; channel_5g[22] = 52U; channel_5g[23] = 54U; channel_5g[24] = 56U; channel_5g[25] = 58U; channel_5g[26] = 60U; channel_5g[27] = 62U; channel_5g[28] = 64U; channel_5g[29] = 100U; channel_5g[30] = 102U; channel_5g[31] = 104U; channel_5g[32] = 106U; channel_5g[33] = 108U; channel_5g[34] = 110U; channel_5g[35] = 112U; channel_5g[36] = 114U; channel_5g[37] = 116U; channel_5g[38] = 118U; channel_5g[39] = 120U; channel_5g[40] = 122U; channel_5g[41] = 124U; channel_5g[42] = 126U; channel_5g[43] = 128U; channel_5g[44] = 130U; channel_5g[45] = 132U; channel_5g[46] = 134U; channel_5g[47] = 136U; channel_5g[48] = 138U; channel_5g[49] = 140U; channel_5g[50] = 149U; channel_5g[51] = 151U; channel_5g[52] = 153U; channel_5g[53] = 155U; channel_5g[54] = 157U; channel_5g[55] = 159U; channel_5g[56] = 161U; channel_5g[57] = 163U; channel_5g[58] = 165U; place = chnl; if ((unsigned int )chnl > 14U) { place = 14U; goto ldv_56431; ldv_56430: ; if ((int )channel_5g[(int )place] == (int )chnl) { place = (u8 )((int )place + 1); goto ldv_56429; } else { } place = (u8 )((int )place + 1); ldv_56431: ; if ((unsigned int )place <= 58U) { goto ldv_56430; } else { } ldv_56429: ; } else { } return (place); } } void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw , u8 channel ) { struct rtl_efuse *rtlefuse ; struct rtl_priv *rtlpriv ; u8 cckpowerlevel[2U] ; u8 ofdmpowerlevel[2U] ; { rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlpriv = (struct rtl_priv *)hw->priv; if (! rtlefuse->txpwr_fromeprom) { return; } else { } { channel = _rtl92c_phy_get_rightchnlplace((int )channel); _rtl92d_get_txpower_index(hw, (int )channel, (u8 *)(& cckpowerlevel), (u8 *)(& ofdmpowerlevel)); } if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 0U) { { _rtl92d_ccxpower_index_check(hw, (int )channel, (u8 *)(& cckpowerlevel), (u8 *)(& ofdmpowerlevel)); } } else { } if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 0U) { { rtl92d_phy_rf6052_set_cck_txpower(hw, (u8 *)(& cckpowerlevel)); } } else { } { rtl92d_phy_rf6052_set_ofdm_txpower(hw, (u8 *)(& ofdmpowerlevel), (int )channel); } return; } } void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; unsigned long flag ; u8 reg_prsr_rsc ; u8 reg_bw_opmode ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; flag = 0UL; if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return; } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> FALSE driver sleep or unload\n", "rtl92d_phy_set_bw_mode", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { rtlphy->set_bwmode_inprogress = 1U; tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Switch to %s bandwidth\n", "rtl92d_phy_set_bw_mode", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_chan_bw == 0U ? (char *)"20MHz" : (char *)"40MHz"); } } else { } } else { } { reg_bw_opmode = rtl_read_byte(rtlpriv, 1539U); reg_prsr_rsc = rtl_read_byte(rtlpriv, 1090U); } { if ((int )rtlphy->current_chan_bw == 0) { goto case_0; } else { } if ((int )rtlphy->current_chan_bw == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { reg_bw_opmode = (u8 )((unsigned int )reg_bw_opmode | 4U); rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); } goto ldv_56453; case_1: /* CIL Label */ { reg_bw_opmode = (unsigned int )reg_bw_opmode & 251U; rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); reg_prsr_rsc = (u8 )(((int )((signed char )reg_prsr_rsc) & -112) | (int )((signed char )((int )mac->cur_40_prime_sc << 5))); rtl_write_byte(rtlpriv, 1090U, (int )reg_prsr_rsc); } goto ldv_56453; switch_default: /* CIL Label */ { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___3(); tmp___9 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl92d_phy_set_bw_mode", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } } else { } } else { } goto ldv_56453; switch_break: /* CIL Label */ ; } ldv_56453: ; { if ((int )rtlphy->current_chan_bw == 0) { goto case_0___0; } else { } if ((int )rtlphy->current_chan_bw == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ { rtl_set_bbreg(hw, 2048U, 1U, 0U); rtl_set_bbreg(hw, 2304U, 1U, 0U); rtl_set_bbreg(hw, 2180U, 3072U, 3U); } goto ldv_56457; case_1___0: /* CIL Label */ { rtl_set_bbreg(hw, 2048U, 1U, 1U); rtl_set_bbreg(hw, 2304U, 1U, 1U); } if ((unsigned int )rtlhal->current_bandtype == 0U) { { rtl92d_acquire_cckandrw_pagea_ctl___0(hw, & flag); rtl_set_bbreg(hw, 2560U, 16U, (u32 )((int )mac->cur_40_prime_sc >> 1)); rtl92d_release_cckandrw_pagea_ctl___0(hw, & flag); } } else { } { rtl_set_bbreg(hw, 3328U, 3072U, (u32 )mac->cur_40_prime_sc); rtl_set_bbreg(hw, 2180U, 3072U, 0U); rtl_set_bbreg(hw, 2072U, 201326592U, (unsigned int )mac->cur_40_prime_sc == 1U ? 2U : 1U); } goto ldv_56457; switch_default___0: /* CIL Label */ { tmp___14 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl92d_phy_set_bw_mode", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } } else { } } else { } goto ldv_56457; switch_break___0: /* CIL Label */ ; } ldv_56457: { rtl92d_phy_rf6052_set_bandwidth(hw, (int )rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = 0U; tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count___3(); tmp___17 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <==\n", "rtl92d_phy_set_bw_mode", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw ) { { { rtl_set_bbreg(hw, 2048U, 16777216U, 0U); rtl_set_bbreg(hw, 2048U, 33554432U, 0U); rtl_set_bbreg(hw, 3076U, 255U, 0U); rtl_set_bbreg(hw, 3332U, 15U, 0U); } return; } } static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw , u8 band ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 value8 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; unsigned long __ms ; unsigned long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ==>\n", "rtl92d_phy_switch_wirelessband", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlhal->bandset = (enum band_type )band; rtlhal->current_bandtype = (enum band_type )band; if (((unsigned long )rtlhal->version & 119UL) == 34UL) { rtlhal->bandset = 2; } else { } { _rtl92d_phy_stop_trx_before_changeband(hw); } if ((unsigned int )rtlhal->current_bandtype == 0U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>2.4G\n", "rtl92d_phy_switch_wirelessband", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if (rtlhal->interfaceindex == 1U) { { _rtl92d_phy_config_bb_with_headerfile(hw, 1); } } else { } } else { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>5G\n", "rtl92d_phy_switch_wirelessband", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if (rtlhal->interfaceindex == 1U) { { _rtl92d_phy_config_bb_with_headerfile(hw, 1); } } else { } } { rtl92d_update_bbrf_configuration(hw); } if ((unsigned int )rtlhal->current_bandtype == 0U) { { rtl_set_bbreg(hw, 2048U, 16777216U, 1U); } } else { } { rtl_set_bbreg(hw, 2048U, 33554432U, 1U); rtlhal->reloadtxpowerindex = 1; } if ((unsigned int )rtlhal->current_bandtype == 0U) { { value8 = rtl_read_byte(rtlpriv, rtlhal->interfaceindex == 0U ? 129U : 83U); value8 = (u8 )((unsigned int )value8 | 2U); rtl_write_byte(rtlpriv, rtlhal->interfaceindex == 0U ? 129U : 83U, (int )value8); } } else { { value8 = rtl_read_byte(rtlpriv, rtlhal->interfaceindex == 0U ? 129U : 83U); value8 = (unsigned int )value8 & 253U; rtl_write_byte(rtlpriv, rtlhal->interfaceindex == 0U ? 129U : 83U, (int )value8); } } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_56473; ldv_56472: { __const_udelay(4295000UL); } ldv_56473: tmp___11 = __ms; __ms = __ms - 1UL; if (tmp___11 != 0UL) { goto ldv_56472; } else { } } { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <==Switch Band OK\n", "rtl92d_phy_switch_wirelessband", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw , u8 channel , u8 rfpath ) { struct rtl_priv *rtlpriv ; u32 imr_num ; u32 rfmask ; u8 group ; u8 i ; unsigned long flag ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; { { rtlpriv = (struct rtl_priv *)hw->priv; imr_num = 12U; rfmask = 1048575U; flag = 0UL; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>path %d\n", "_rtl92d_phy_reload_imr_setting", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rfpath); } } else { } } else { } if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 1U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>5G\n", "_rtl92d_phy_reload_imr_setting", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_set_bbreg(hw, 2048U, 50331648U, 0U); rtl_set_bbreg(hw, 2188U, 15728640U, 15U); } if ((unsigned int )channel > 99U) { { rtl_set_bbreg(hw, 3372U, 24576U, 2U); } } else { { rtl_set_bbreg(hw, 3372U, 24576U, 1U); } } group = (unsigned int )channel <= 64U ? 1U : 2U; imr_num = 13U; i = 0U; goto ldv_56488; ldv_56487: { rtl_set_rfreg(hw, (enum radio_path )rfpath, rf_reg_for_5g_swchnl_normal[(int )i], rfmask, rf_imr_param_normal[0][(int )group][(int )i]); i = (u8 )((int )i + 1); } ldv_56488: ; if ((u32 )i < imr_num) { goto ldv_56487; } else { } { rtl_set_bbreg(hw, 2188U, 15728640U, 0U); rtl_set_bbreg(hw, 2048U, 33554432U, 1U); } } else { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Load RF IMR parameters for G band. IMR already setting %d\n", "_rtl92d_phy_reload_imr_setting", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->rtlhal.load_imrandiqk_setting_for2g); } } else { } } else { } { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>2.4G\n", "_rtl92d_phy_reload_imr_setting", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if (! rtlpriv->rtlhal.load_imrandiqk_setting_for2g) { { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Load RF IMR parameters for G band. %d\n", "_rtl92d_phy_reload_imr_setting", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (int )rfpath); } } else { } } else { } { rtl92d_acquire_cckandrw_pagea_ctl___0(hw, & flag); rtl_set_bbreg(hw, 2048U, 50331648U, 0U); rtl_set_bbreg(hw, 2188U, 15728640U, 15U); imr_num = 13U; i = 0U; } goto ldv_56491; ldv_56490: { rtl_set_rfreg(hw, (enum radio_path )rfpath, rf_reg_for_5g_swchnl_normal[(int )i], 1048575U, rf_imr_param_normal[0][0][(int )i]); i = (u8 )((int )i + 1); } ldv_56491: ; if ((u32 )i < imr_num) { goto ldv_56490; } else { } { rtl_set_bbreg(hw, 2188U, 15728640U, 0U); rtl_set_bbreg(hw, 2048U, 50331648U, 3U); rtl92d_release_cckandrw_pagea_ctl___0(hw, & flag); } } else { } } { tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___3(); tmp___20 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <====\n", "_rtl92d_phy_reload_imr_setting", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw , u8 rfpath , u32 *pu4_regval ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>\n", "_rtl92d_phy_enable_rf_env", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { if ((int )rfpath == 0) { goto case_0; } else { } if ((int )rfpath == 2) { goto case_2; } else { } if ((int )rfpath == 1) { goto case_1; } else { } if ((int )rfpath == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; case_2: /* CIL Label */ { *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, 16U); } goto ldv_56504; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, 1048576U); } goto ldv_56504; switch_break: /* CIL Label */ ; } ldv_56504: { rtl_set_bbreg(hw, pphyreg->rfintfe, 1048576U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfintfo, 16U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 1024U, 0U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 2048U, 0U); __const_udelay(4295UL); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <====\n", "_rtl92d_phy_enable_rf_env", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw , u8 rfpath , u32 *pu4_regval ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> =====>\n", "_rtl92d_phy_restore_rf_env", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { if ((int )rfpath == 0) { goto case_0; } else { } if ((int )rfpath == 2) { goto case_2; } else { } if ((int )rfpath == 1) { goto case_1; } else { } if ((int )rfpath == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; case_2: /* CIL Label */ { rtl_set_bbreg(hw, pphyreg->rfintfs, 16U, *pu4_regval); } goto ldv_56518; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { rtl_set_bbreg(hw, pphyreg->rfintfs, 1048576U, *pu4_regval); } goto ldv_56518; switch_break: /* CIL Label */ ; } ldv_56518: { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <=====\n", "_rtl92d_phy_restore_rf_env", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw , u8 channel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 path ; u8 index ; u8 i ; u8 rfpath ; bool need_pwr_down ; bool internal_pa ; u32 u4regvalue ; u32 mask ; u32 value ; u32 u4tmp ; u32 u4tmp2 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; u32 tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; long tmp___21 ; u32 tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; path = (unsigned int )rtlhal->current_bandtype != 1U; index = 0U; i = 0U; rfpath = 0U; need_pwr_down = 0; internal_pa = 0; mask = 114688U; value = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )rtlhal->current_bandtype == 1U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>5G\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { u4tmp = curveindex_5g[(int )channel + -1]; tmp___7 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___7 != 0L) { { printk("\017rtl8192de: ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp); } } else { } i = 0U; goto ldv_56541; ldv_56540: ; if ((int )channel == (int )rf_chnl_5g[(int )i] && (unsigned int )channel <= 140U) { index = 0U; } else { } i = (u8 )((int )i + 1); ldv_56541: ; if ((unsigned int )i <= 18U) { goto ldv_56540; } else { } i = 0U; goto ldv_56544; ldv_56543: ; if ((int )channel == (int )rf_chnl_5g_40m[(int )i] && (unsigned int )channel <= 140U) { index = 1U; } else { } i = (u8 )((int )i + 1); ldv_56544: ; if ((unsigned int )i <= 16U) { goto ldv_56543; } else { } if (((unsigned int )channel == 149U || (unsigned int )channel == 155U) || (unsigned int )channel == 161U) { index = 2U; } else if (((unsigned int )channel == 151U || (unsigned int )channel == 153U) || ((unsigned int )channel == 163U || (unsigned int )channel == 165U)) { index = 3U; } else if ((unsigned int )channel == 157U || (unsigned int )channel == 159U) { index = 4U; } else { } if ((unsigned int )rtlhal->macphymode == 1U && rtlhal->interfaceindex == 1U) { { need_pwr_down = rtl92d_phy_enable_anotherphy(hw, 0); rtlhal->during_mac1init_radioa = 1; } if ((int )need_pwr_down) { { _rtl92d_phy_enable_rf_env(hw, (int )path, & u4regvalue); } } else { } } else { } i = 0U; goto ldv_56547; ldv_56546: ; if ((unsigned int )i == 0U && (unsigned int )rtlhal->macphymode == 1U) { { rtl_set_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_5g[(int )i], 1048575U, 934813U); } } else if ((unsigned int )rf_reg_for_c_cut_5g[(int )i] == 40U) { u4tmp2 = (rf_reg_pram_c_5g[(int )index][(int )i] & 2047U) | (u4tmp << 11); if ((unsigned int )channel == 36U) { u4tmp2 = u4tmp2 & 4294967103U; } else { } { rtl_set_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_5g[(int )i], 1048575U, u4tmp2); } } else { { rtl_set_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_5g[(int )i], 1048575U, rf_reg_pram_c_5g[(int )index][(int )i]); } } { tmp___11 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___12 != 0L) { { tmp___8 = rtl_get_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_5g[(int )i], 1048575U); tmp___9 = preempt_count___3(); tmp___10 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> offset 0x%x value 0x%x path %d index %d readback 0x%x\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL, (int )rf_reg_for_c_cut_5g[(int )i], rf_reg_pram_c_5g[(int )index][(int )i], (int )path, (int )index, tmp___8); } } else { } } else { } i = (u8 )((int )i + 1); ldv_56547: ; if ((unsigned int )i <= 5U) { goto ldv_56546; } else { } if ((int )need_pwr_down) { { _rtl92d_phy_restore_rf_env(hw, (int )path, & u4regvalue); } } else { } if ((int )rtlhal->during_mac1init_radioa) { { rtl92d_phy_powerdown_anotherphy(hw, 0); } } else { } if ((unsigned int )channel <= 148U) { value = 7U; } else if ((unsigned int )channel > 148U) { value = 2U; } else { } if ((unsigned int )channel - 36U <= 28U) { index = 0U; } else if ((unsigned int )channel - 100U <= 40U) { index = 1U; } else { index = 2U; } rfpath = 0U; goto ldv_56553; ldv_56552: ; if ((unsigned int )rtlhal->macphymode == 1U && rtlhal->interfaceindex == 1U) { internal_pa = (unsigned int )rtlpriv->efuse.internal_pa_5g[1] != 0U; } else { internal_pa = (unsigned int )rtlpriv->efuse.internal_pa_5g[(int )rfpath] != 0U; } if ((int )internal_pa) { i = 0U; goto ldv_56550; ldv_56549: { rtl_set_rfreg(hw, (enum radio_path )rfpath, (u32 )rf_for_c_cut_5g_internal_pa[(int )i], 1048575U, rf_pram_c_5g_int_pa[(int )index][(int )i]); tmp___15 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___15 != 0L) { { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___16 != 0L) { { tmp___13 = preempt_count___3(); tmp___14 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> offset 0x%x value 0x%x path %d index %d\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL, (int )rf_for_c_cut_5g_internal_pa[(int )i], rf_pram_c_5g_int_pa[(int )index][(int )i], (int )rfpath, (int )index); } } else { } } else { } i = (u8 )((int )i + 1); ldv_56550: ; if ((unsigned int )i <= 6U) { goto ldv_56549; } else { } } else { { rtl_set_rfreg(hw, (enum radio_path )rfpath, 11U, mask, value); } } rfpath = (u8 )((int )rfpath + 1); ldv_56553: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_56552; } else { } } else if ((unsigned int )rtlhal->current_bandtype == 0U) { { tmp___19 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___19 != 0L) { { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___20 != 0L) { { tmp___17 = preempt_count___3(); tmp___18 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ====>2.4G\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { u4tmp = curveindex_2g[(int )channel + -1]; tmp___21 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___21 != 0L) { { printk("\017rtl8192de: ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp); } } else { } if ((((unsigned int )channel - 1U <= 1U || (unsigned int )channel == 4U) || ((unsigned int )channel == 9U || (unsigned int )channel == 10U)) || ((unsigned int )channel == 11U || (unsigned int )channel == 12U)) { index = 0U; } else if (((unsigned int )channel == 3U || (unsigned int )channel == 13U) || (unsigned int )channel == 14U) { index = 1U; } else if ((unsigned int )channel - 5U <= 3U) { index = 2U; } else { } if ((unsigned int )rtlhal->macphymode == 1U) { path = 0U; if (rtlhal->interfaceindex == 0U) { { need_pwr_down = rtl92d_phy_enable_anotherphy(hw, 1); rtlhal->during_mac0init_radiob = 1; } if ((int )need_pwr_down) { { _rtl92d_phy_enable_rf_env(hw, (int )path, & u4regvalue); } } else { } } else { } } else { } i = 0U; goto ldv_56556; ldv_56555: ; if ((unsigned int )rf_reg_for_c_cut_2g[(int )i] == 43U) { { rtl_set_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_2g[(int )i], 1048575U, rf_reg_param_for_c_cut_2g[(int )index][(int )i] | 131072U); } } else { { rtl_set_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_2g[(int )i], 1048575U, rf_reg_param_for_c_cut_2g[(int )index][(int )i]); } } { tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___26 != 0L) { { tmp___22 = rtl_get_rfreg(hw, (enum radio_path )path, (u32 )rf_reg_for_c_cut_2g[(int )i], 1048575U); tmp___23 = preempt_count___3(); tmp___24 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, (int )rf_reg_for_c_cut_2g[(int )i], rf_reg_param_for_c_cut_2g[(int )index][(int )i], rf_reg_mask_for_c_cut_2g[(int )i], (int )path, (int )index, tmp___22); } } else { } } else { } i = (u8 )((int )i + 1); ldv_56556: ; if ((unsigned int )i <= 4U) { goto ldv_56555; } else { } { tmp___27 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___27 != 0L) { { printk("\017rtl8192de: cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", rf_syn_g4_for_c_cut_2g | (u4tmp << 11)); } } else { } { rtl_set_rfreg(hw, (enum radio_path )path, 40U, 1048575U, rf_syn_g4_for_c_cut_2g | (u4tmp << 11)); } if ((int )need_pwr_down) { { _rtl92d_phy_restore_rf_env(hw, (int )path, & u4regvalue); } } else { } if ((int )rtlhal->during_mac0init_radiob) { { rtl92d_phy_powerdown_anotherphy(hw, 1); } } else { } } else { } { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count___3(); tmp___29 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <====\n", "_rtl92d_phy_switch_rf_setting", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl ) { u8 channel_all[59U] ; u8 place ; { channel_all[0] = 1U; channel_all[1] = 2U; channel_all[2] = 3U; channel_all[3] = 4U; channel_all[4] = 5U; channel_all[5] = 6U; channel_all[6] = 7U; channel_all[7] = 8U; channel_all[8] = 9U; channel_all[9] = 10U; channel_all[10] = 11U; channel_all[11] = 12U; channel_all[12] = 13U; channel_all[13] = 14U; channel_all[14] = 36U; channel_all[15] = 38U; channel_all[16] = 40U; channel_all[17] = 42U; channel_all[18] = 44U; channel_all[19] = 46U; channel_all[20] = 48U; channel_all[21] = 50U; channel_all[22] = 52U; channel_all[23] = 54U; channel_all[24] = 56U; channel_all[25] = 58U; channel_all[26] = 60U; channel_all[27] = 62U; channel_all[28] = 64U; channel_all[29] = 100U; channel_all[30] = 102U; channel_all[31] = 104U; channel_all[32] = 106U; channel_all[33] = 108U; channel_all[34] = 110U; channel_all[35] = 112U; channel_all[36] = 114U; channel_all[37] = 116U; channel_all[38] = 118U; channel_all[39] = 120U; channel_all[40] = 122U; channel_all[41] = 124U; channel_all[42] = 126U; channel_all[43] = 128U; channel_all[44] = 130U; channel_all[45] = 132U; channel_all[46] = 134U; channel_all[47] = 136U; channel_all[48] = 138U; channel_all[49] = 140U; channel_all[50] = 149U; channel_all[51] = 151U; channel_all[52] = 153U; channel_all[53] = 155U; channel_all[54] = 157U; channel_all[55] = 159U; channel_all[56] = 161U; channel_all[57] = 163U; channel_all[58] = 165U; place = chnl; if ((unsigned int )chnl > 14U) { place = 14U; goto ldv_56564; ldv_56563: ; if ((int )channel_all[(int )place] == (int )chnl) { return ((unsigned int )place + 243U); } else { } place = (u8 )((int )place + 1); ldv_56564: ; if ((unsigned int )place <= 58U) { goto ldv_56563; } else { } } else { } return (0U); } } static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw , bool configpathb ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 regeac ; u32 rege94 ; u32 rege9c ; u32 regea4 ; u8 result ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; result = 0U; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path A IQK!\n"); } } else { } { tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: Path-A IQK setting!\n"); } } else { } if (rtlhal->interfaceindex == 0U) { { rtl_set_bbreg(hw, 3632U, 4294967295U, 268471327U); rtl_set_bbreg(hw, 3636U, 4294967295U, 268471327U); } } else { { rtl_set_bbreg(hw, 3632U, 4294967295U, 268471330U); rtl_set_bbreg(hw, 3636U, 4294967295U, 268471330U); } } { rtl_set_bbreg(hw, 3640U, 4294967295U, 2182349058U); rtl_set_bbreg(hw, 3644U, 4294967295U, 672530950U); } if ((int )configpathb) { { rtl_set_bbreg(hw, 3664U, 4294967295U, 268471330U); rtl_set_bbreg(hw, 3668U, 4294967295U, 268471330U); rtl_set_bbreg(hw, 3672U, 4294967295U, 2182349058U); rtl_set_bbreg(hw, 3676U, 4294967295U, 672530950U); } } else { } { tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: LO calibration setting!\n"); } } else { } { rtl_set_bbreg(hw, 3660U, 4294967295U, 4598033U); tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: One shot, path A LOK & IQK!\n"); } } else { } { rtl_set_bbreg(hw, 3656U, 4294967295U, 4177526784U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: Delay %d ms for One shot, path A LOK & IQK\n", 1); } } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_56579; ldv_56578: { __const_udelay(4295000UL); } ldv_56579: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_56578; } else { } } { regeac = rtl_get_bbreg(hw, 3756U, 4294967295U); tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: 0xeac = 0x%x\n", regeac); } } else { } { rege94 = rtl_get_bbreg(hw, 3732U, 4294967295U); tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8192de: 0xe94 = 0x%x\n", rege94); } } else { } { rege9c = rtl_get_bbreg(hw, 3740U, 4294967295U); tmp___7 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___7 != 0L) { { printk("\017rtl8192de: 0xe9c = 0x%x\n", rege9c); } } else { } { regea4 = rtl_get_bbreg(hw, 3748U, 4294967295U); tmp___8 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___8 != 0L) { { printk("\017rtl8192de: 0xea4 = 0x%x\n", regea4); } } else { } if ((((unsigned long )regeac & 268435456UL) == 0UL && (rege94 & 67043328U) >> 16 != 322U) && (rege9c & 67043328U) >> 16 != 66U) { result = (u8 )((unsigned int )result | 1U); } else { return (result); } if ((((unsigned long )regeac & 134217728UL) == 0UL && (regea4 & 67043328U) >> 16 != 306U) && (regeac & 67043328U) >> 16 != 54U) { result = (u8 )((unsigned int )result | 2U); } else { { tmp___9 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___9 != 0L) { { printk("\017rtl8192de: Path A Rx IQK fail!!\n"); } } else { } } return (result); } } static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw , bool configpathb ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; u32 regeac ; u32 rege94 ; u32 rege9c ; u32 regea4 ; u8 result ; u8 i ; u8 retrycount ; u32 TxOKBit ; u32 RxOKBit ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; result = 0U; retrycount = 2U; TxOKBit = 268435456U; RxOKBit = 134217728U; if (rtlhal->interfaceindex == 1U) { TxOKBit = 2147483648U; RxOKBit = 1073741824U; } else { } { tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path A IQK!\n"); } } else { } { tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: Path-A IQK setting!\n"); } } else { } { rtl_set_bbreg(hw, 3632U, 4294967295U, 402689055U); rtl_set_bbreg(hw, 3636U, 4294967295U, 402689055U); rtl_set_bbreg(hw, 3640U, 4294967295U, 2182349575U); rtl_set_bbreg(hw, 3644U, 4294967295U, 1746274656U); } if ((int )configpathb) { { rtl_set_bbreg(hw, 3664U, 4294967295U, 402689071U); rtl_set_bbreg(hw, 3668U, 4294967295U, 402689071U); rtl_set_bbreg(hw, 3672U, 4294967295U, 2182152192U); rtl_set_bbreg(hw, 3676U, 4294967295U, 1745944576U); } } else { } { tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: LO calibration setting!\n"); } } else { } { rtl_set_bbreg(hw, 3660U, 4294967295U, 4598033U); rtl_set_bbreg(hw, 2160U, 4294967295U, 117444448U); rtl_set_bbreg(hw, 2144U, 4294967295U, 1726352944U); i = 0U; } goto ldv_56604; ldv_56603: { tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: One shot, path A LOK & IQK!\n"); } } else { } { rtl_set_bbreg(hw, 3656U, 4294967295U, 4177526784U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: Delay %d ms for One shot, path A LOK & IQK.\n", 1); } } else { } __ms = 10UL; goto ldv_56599; ldv_56598: { __const_udelay(4295000UL); } ldv_56599: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_56598; } else { } { regeac = rtl_get_bbreg(hw, 3756U, 4294967295U); tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: 0xeac = 0x%x\n", regeac); } } else { } { rege94 = rtl_get_bbreg(hw, 3732U, 4294967295U); tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8192de: 0xe94 = 0x%x\n", rege94); } } else { } { rege9c = rtl_get_bbreg(hw, 3740U, 4294967295U); tmp___7 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___7 != 0L) { { printk("\017rtl8192de: 0xe9c = 0x%x\n", rege9c); } } else { } { regea4 = rtl_get_bbreg(hw, 3748U, 4294967295U); tmp___8 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___8 != 0L) { { printk("\017rtl8192de: 0xea4 = 0x%x\n", regea4); } } else { } if ((regeac & TxOKBit) == 0U && (rege94 & 67043328U) >> 16 != 322U) { result = (u8 )((unsigned int )result | 1U); } else { { tmp___9 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___9 != 0L) { { printk("\017rtl8192de: Path A Tx IQK fail!!\n"); } } else { } goto ldv_56601; } if ((regeac & RxOKBit) == 0U && (regea4 & 67043328U) >> 16 != 306U) { result = (u8 )((unsigned int )result | 2U); goto ldv_56602; } else { { tmp___10 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___10 != 0L) { { printk("\017rtl8192de: Path A Rx IQK fail!!\n"); } } else { } } ldv_56601: i = (u8 )((int )i + 1); ldv_56604: ; if ((int )i < (int )retrycount) { goto ldv_56603; } else { } ldv_56602: { rtl_set_bbreg(hw, 2160U, 4294967295U, rtlphy->iqk_bb_backup[0]); rtl_set_bbreg(hw, 2144U, 4294967295U, rtlphy->iqk_bb_backup[1]); } return (result); } } static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 regeac ; u32 regeb4 ; u32 regebc ; u32 regec4 ; u32 regecc ; u8 result ; long tmp ; long tmp___0 ; long tmp___1 ; unsigned long __ms ; unsigned long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; { { rtlpriv = (struct rtl_priv *)hw->priv; result = 0U; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path B IQK!\n"); } } else { } { tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: One shot, path A LOK & IQK!\n"); } } else { } { rtl_set_bbreg(hw, 3680U, 4294967295U, 2U); rtl_set_bbreg(hw, 3680U, 4294967295U, 0U); tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: Delay %d ms for One shot, path B LOK & IQK\n", 1); } } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_56617; ldv_56616: { __const_udelay(4295000UL); } ldv_56617: tmp___2 = __ms; __ms = __ms - 1UL; if (tmp___2 != 0UL) { goto ldv_56616; } else { } } { regeac = rtl_get_bbreg(hw, 3756U, 4294967295U); tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: 0xeac = 0x%x\n", regeac); } } else { } { regeb4 = rtl_get_bbreg(hw, 3764U, 4294967295U); tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8192de: 0xeb4 = 0x%x\n", regeb4); } } else { } { regebc = rtl_get_bbreg(hw, 3772U, 4294967295U); tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: 0xebc = 0x%x\n", regebc); } } else { } { regec4 = rtl_get_bbreg(hw, 3780U, 4294967295U); tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8192de: 0xec4 = 0x%x\n", regec4); } } else { } { regecc = rtl_get_bbreg(hw, 3788U, 4294967295U); tmp___7 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___7 != 0L) { { printk("\017rtl8192de: 0xecc = 0x%x\n", regecc); } } else { } if (((int )regeac >= 0 && (regeb4 & 67043328U) >> 16 != 322U) && (regebc & 67043328U) >> 16 != 66U) { result = (u8 )((unsigned int )result | 1U); } else { return (result); } if ((((unsigned long )regeac & 1073741824UL) == 0UL && (regec4 & 67043328U) >> 16 != 306U) && (regecc & 67043328U) >> 16 != 54U) { result = (u8 )((unsigned int )result | 2U); } else { { tmp___8 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___8 != 0L) { { printk("\017rtl8192de: Path B Rx IQK fail!!\n"); } } else { } } return (result); } } static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 regeac ; u32 regeb4 ; u32 regebc ; u32 regec4 ; u32 regecc ; u8 result ; u8 i ; u8 retrycount ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; result = 0U; retrycount = 2U; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path B IQK!\n"); } } else { } { tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: Path-A IQK setting!\n"); } } else { } { rtl_set_bbreg(hw, 3632U, 4294967295U, 402689055U); rtl_set_bbreg(hw, 3636U, 4294967295U, 402689055U); rtl_set_bbreg(hw, 3640U, 4294967295U, 2182152192U); rtl_set_bbreg(hw, 3644U, 4294967295U, 1745944576U); rtl_set_bbreg(hw, 3664U, 4294967295U, 402689071U); rtl_set_bbreg(hw, 3668U, 4294967295U, 402689071U); rtl_set_bbreg(hw, 3672U, 4294967295U, 2182349575U); rtl_set_bbreg(hw, 3676U, 4294967295U, 1746274656U); tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: LO calibration setting!\n"); } } else { } { rtl_set_bbreg(hw, 3660U, 4294967295U, 4598033U); rtl_set_bbreg(hw, 2160U, 4294967295U, 257951488U); rtl_set_bbreg(hw, 2148U, 4294967295U, 102698288U); i = 0U; } goto ldv_56639; ldv_56638: { tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: One shot, path A LOK & IQK!\n"); } } else { } { rtl_set_bbreg(hw, 3656U, 4294967295U, 4194304000U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: Delay %d ms for One shot, path B LOK & IQK.\n", 10); } } else { } __ms = 10UL; goto ldv_56634; ldv_56633: { __const_udelay(4295000UL); } ldv_56634: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_56633; } else { } { regeac = rtl_get_bbreg(hw, 3756U, 4294967295U); tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: 0xeac = 0x%x\n", regeac); } } else { } { regeb4 = rtl_get_bbreg(hw, 3764U, 4294967295U); tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8192de: 0xeb4 = 0x%x\n", regeb4); } } else { } { regebc = rtl_get_bbreg(hw, 3772U, 4294967295U); tmp___7 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___7 != 0L) { { printk("\017rtl8192de: 0xebc = 0x%x\n", regebc); } } else { } { regec4 = rtl_get_bbreg(hw, 3780U, 4294967295U); tmp___8 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___8 != 0L) { { printk("\017rtl8192de: 0xec4 = 0x%x\n", regec4); } } else { } { regecc = rtl_get_bbreg(hw, 3788U, 4294967295U); tmp___9 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___9 != 0L) { { printk("\017rtl8192de: 0xecc = 0x%x\n", regecc); } } else { } if ((int )regeac >= 0 && (regeb4 & 67043328U) >> 16 != 322U) { result = (u8 )((unsigned int )result | 1U); } else { goto ldv_56636; } if (((unsigned long )regeac & 1073741824UL) == 0UL && (regec4 & 67043328U) >> 16 != 306U) { result = (u8 )((unsigned int )result | 2U); goto ldv_56637; } else { { tmp___10 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___10 != 0L) { { printk("\017rtl8192de: Path B Rx IQK fail!!\n"); } } else { } } ldv_56636: i = (u8 )((int )i + 1); ldv_56639: ; if ((int )i < (int )retrycount) { goto ldv_56638; } else { } ldv_56637: { rtl_set_bbreg(hw, 2160U, 4294967295U, rtlphy->iqk_bb_backup[0]); rtl_set_bbreg(hw, 2148U, 4294967295U, rtlphy->iqk_bb_backup[2]); } return (result); } } static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw , u32 *adda_reg , u32 *adda_backup , u32 regnum ) { struct rtl_priv *rtlpriv ; u32 i ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Save ADDA parameters.\n"); } } else { } i = 0U; goto ldv_56649; ldv_56648: { *(adda_backup + (unsigned long )i) = rtl_get_bbreg(hw, *(adda_reg + (unsigned long )i), 4294967295U); i = i + 1U; } ldv_56649: ; if (i < regnum) { goto ldv_56648; } else { } return; } } static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw , u32 *macreg , u32 *macbackup ) { struct rtl_priv *rtlpriv ; u32 i ; long tmp ; u8 tmp___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Save MAC parameters.\n"); } } else { } i = 0U; goto ldv_56659; ldv_56658: { tmp___0 = rtl_read_byte(rtlpriv, *(macreg + (unsigned long )i)); *(macbackup + (unsigned long )i) = (u32 )tmp___0; i = i + 1U; } ldv_56659: ; if (i <= 2U) { goto ldv_56658; } else { } { *(macbackup + (unsigned long )i) = rtl_read_dword(rtlpriv, *(macreg + (unsigned long )i)); } return; } } static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw , u32 *adda_reg , u32 *adda_backup , u32 regnum ) { struct rtl_priv *rtlpriv ; u32 i ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Reload ADDA power saving parameters !\n"); } } else { } i = 0U; goto ldv_56670; ldv_56669: { rtl_set_bbreg(hw, *(adda_reg + (unsigned long )i), 4294967295U, *(adda_backup + (unsigned long )i)); i = i + 1U; } ldv_56670: ; if (i < regnum) { goto ldv_56669; } else { } return; } } static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw , u32 *macreg , u32 *macbackup ) { struct rtl_priv *rtlpriv ; u32 i ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Reload MAC parameters !\n"); } } else { } i = 0U; goto ldv_56680; ldv_56679: { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((unsigned char )*(macbackup + (unsigned long )i))); i = i + 1U; } ldv_56680: ; if (i <= 2U) { goto ldv_56679; } else { } { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((u8 )*(macbackup + (unsigned long )i))); } return; } } static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw , u32 *adda_reg , bool patha_on , bool is2t ) { struct rtl_priv *rtlpriv ; u32 pathon ; u32 i ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: ADDA ON.\n"); } } else { } pathon = (int )patha_on ? 81470884U : 186328484U; if ((int )patha_on) { pathon = rtlpriv->rtlhal.interfaceindex == 0U ? 81470884U : 186328484U; } else { } i = 0U; goto ldv_56692; ldv_56691: { rtl_set_bbreg(hw, *(adda_reg + (unsigned long )i), 4294967295U, pathon); i = i + 1U; } ldv_56692: ; if (i <= 15U) { goto ldv_56691; } else { } return; } } static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw , u32 *macreg , u32 *macbackup ) { struct rtl_priv *rtlpriv ; u32 i ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: MAC settings for Calibration.\n"); } } else { } { rtl_write_byte(rtlpriv, *macreg, 63); i = 1U; } goto ldv_56702; ldv_56701: { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((unsigned char )*(macbackup + (unsigned long )i)) & 247); i = i + 1U; } ldv_56702: ; if (i <= 2U) { goto ldv_56701; } else { } { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((unsigned char )*(macbackup + (unsigned long )i)) & 223); } return; } } static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path-A standby mode!\n"); } } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); rtl_set_bbreg(hw, 2112U, 4294967295U, 65536U); rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); } return; } } static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw , bool pi_mode ) { struct rtl_priv *rtlpriv ; u32 mode ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: BB Switch to %s mode!\n", (int )pi_mode ? (char *)"PI" : (char *)"SI"); } } else { } { mode = (int )pi_mode ? 16777472U : 16777216U; rtl_set_bbreg(hw, 2080U, 4294967295U, mode); rtl_set_bbreg(hw, 2088U, 4294967295U, mode); } return; } } static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw , long (*result)[8U] , u8 t , bool is2t ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 i ; u8 patha_ok ; u8 pathb_ok ; u32 adda_reg[16U] ; u32 iqk_mac_reg[4U] ; u32 iqk_bb_reg[10U] ; u32 retrycount ; u32 bbvalue ; long tmp ; long tmp___0 ; long tmp___1 ; u32 tmp___2 ; long tmp___3 ; long tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; long tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; long tmp___12 ; long tmp___13 ; u32 tmp___14 ; u32 tmp___15 ; u32 tmp___16 ; u32 tmp___17 ; long tmp___18 ; u32 tmp___19 ; u32 tmp___20 ; long tmp___21 ; long tmp___22 ; long tmp___23 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; adda_reg[0] = 2140U; adda_reg[1] = 3692U; adda_reg[2] = 3696U; adda_reg[3] = 3700U; adda_reg[4] = 3704U; adda_reg[5] = 3708U; adda_reg[6] = 3712U; adda_reg[7] = 3716U; adda_reg[8] = 3720U; adda_reg[9] = 3724U; adda_reg[10] = 3792U; adda_reg[11] = 3796U; adda_reg[12] = 3800U; adda_reg[13] = 3804U; adda_reg[14] = 3808U; adda_reg[15] = 3820U; iqk_mac_reg[0] = 1314U; iqk_mac_reg[1] = 1360U; iqk_mac_reg[2] = 1361U; iqk_mac_reg[3] = 64U; iqk_bb_reg[0] = 2160U; iqk_bb_reg[1] = 2144U; iqk_bb_reg[2] = 2148U; iqk_bb_reg[3] = 3080U; iqk_bb_reg[4] = 2164U; iqk_bb_reg[5] = 3076U; iqk_bb_reg[6] = 2048U; iqk_bb_reg[7] = 2188U; iqk_bb_reg[8] = 3152U; iqk_bb_reg[9] = 3160U; retrycount = 2U; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: IQK for 2.4G :Start!!!\n"); } } else { } if ((unsigned int )t == 0U) { { bbvalue = rtl_get_bbreg(hw, 2048U, 4294967295U); tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: ==>0x%08x\n", bbvalue); } } else { } { tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: IQ Calibration for %s\n", (int )is2t ? (char *)"2T2R" : (char *)"1T1R"); } } else { } { _rtl92d_phy_save_adda_registers(hw, (u32 *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); _rtl92d_phy_save_mac_registers(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); _rtl92d_phy_save_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 10U); } } else { } { _rtl92d_phy_path_adda_on(hw, (u32 *)(& adda_reg), 1, (int )is2t); } if ((unsigned int )t == 0U) { { tmp___2 = rtl_get_bbreg(hw, 2080U, 256U); rtlphy->rfpi_enable = (unsigned int )((unsigned char )tmp___2) != 0U; } } else { } if (! rtlphy->rfpi_enable) { { _rtl92d_phy_pimode_switch(hw, 1); } } else { } { rtl_set_bbreg(hw, 2048U, 16777216U, 0U); rtl_set_bbreg(hw, 3076U, 4294967295U, 60839424U); rtl_set_bbreg(hw, 3080U, 4294967295U, 524516U); rtl_set_bbreg(hw, 2164U, 4294967295U, 572538880U); rtl_set_bbreg(hw, 2188U, 15728640U, 15U); } if ((int )is2t) { { rtl_set_bbreg(hw, 2112U, 4294967295U, 65536U); rtl_set_bbreg(hw, 2116U, 4294967295U, 65536U); } } else { } { _rtl92d_phy_mac_setting_calibration(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); rtl_set_bbreg(hw, 2920U, 4294967295U, 257949696U); } if ((int )is2t) { { rtl_set_bbreg(hw, 2924U, 4294967295U, 257949696U); } } else { } { tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: IQK setting!\n"); } } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); rtl_set_bbreg(hw, 3648U, 4294967295U, 16808960U); rtl_set_bbreg(hw, 3652U, 4294967295U, 16795648U); i = 0U; } goto ldv_56732; ldv_56731: { patha_ok = _rtl92d_phy_patha_iqk(hw, (int )is2t); } if ((unsigned int )patha_ok == 3U) { { tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8192de: Path A IQK Success!!\n"); } } else { } { tmp___5 = rtl_get_bbreg(hw, 3732U, 4294967295U); (*(result + (unsigned long )t))[0] = (long )((tmp___5 & 67043328U) >> 16); tmp___6 = rtl_get_bbreg(hw, 3740U, 4294967295U); (*(result + (unsigned long )t))[1] = (long )((tmp___6 & 67043328U) >> 16); tmp___7 = rtl_get_bbreg(hw, 3748U, 4294967295U); (*(result + (unsigned long )t))[2] = (long )((tmp___7 & 67043328U) >> 16); tmp___8 = rtl_get_bbreg(hw, 3756U, 4294967295U); (*(result + (unsigned long )t))[3] = (long )((tmp___8 & 67043328U) >> 16); } goto ldv_56730; } else if (i == 1U && (unsigned int )patha_ok == 1U) { { tmp___9 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___9 != 0L) { { printk("\017rtl8192de: Path A IQK Only Tx Success!!\n"); } } else { } { tmp___10 = rtl_get_bbreg(hw, 3732U, 4294967295U); (*(result + (unsigned long )t))[0] = (long )((tmp___10 & 67043328U) >> 16); tmp___11 = rtl_get_bbreg(hw, 3740U, 4294967295U); (*(result + (unsigned long )t))[1] = (long )((tmp___11 & 67043328U) >> 16); } } else { } i = i + 1U; ldv_56732: ; if (i <= 1U) { goto ldv_56731; } else { } ldv_56730: ; if ((unsigned int )patha_ok == 0U) { { tmp___12 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___12 != 0L) { { printk("\017rtl8192de: Path A IQK failed!!\n"); } } else { } } else { } if ((int )is2t) { { _rtl92d_phy_patha_standby(hw); _rtl92d_phy_path_adda_on(hw, (u32 *)(& adda_reg), 0, (int )is2t); i = 0U; } goto ldv_56735; ldv_56734: { pathb_ok = _rtl92d_phy_pathb_iqk(hw); } if ((unsigned int )pathb_ok == 3U) { { tmp___13 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___13 != 0L) { { printk("\017rtl8192de: Path B IQK Success!!\n"); } } else { } { tmp___14 = rtl_get_bbreg(hw, 3764U, 4294967295U); (*(result + (unsigned long )t))[4] = (long )((tmp___14 & 67043328U) >> 16); tmp___15 = rtl_get_bbreg(hw, 3772U, 4294967295U); (*(result + (unsigned long )t))[5] = (long )((tmp___15 & 67043328U) >> 16); tmp___16 = rtl_get_bbreg(hw, 3780U, 4294967295U); (*(result + (unsigned long )t))[6] = (long )((tmp___16 & 67043328U) >> 16); tmp___17 = rtl_get_bbreg(hw, 3788U, 4294967295U); (*(result + (unsigned long )t))[7] = (long )((tmp___17 & 67043328U) >> 16); } goto ldv_56733; } else if (i == 1U && (unsigned int )pathb_ok == 1U) { { tmp___18 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___18 != 0L) { { printk("\017rtl8192de: Path B Only Tx IQK Success!!\n"); } } else { } { tmp___19 = rtl_get_bbreg(hw, 3764U, 4294967295U); (*(result + (unsigned long )t))[4] = (long )((tmp___19 & 67043328U) >> 16); tmp___20 = rtl_get_bbreg(hw, 3772U, 4294967295U); (*(result + (unsigned long )t))[5] = (long )((tmp___20 & 67043328U) >> 16); } } else { } i = i + 1U; ldv_56735: ; if (i <= 1U) { goto ldv_56734; } else { } ldv_56733: ; if ((unsigned int )pathb_ok == 0U) { { tmp___21 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___21 != 0L) { { printk("\017rtl8192de: Path B IQK failed!!\n"); } } else { } } else { } } else { } { tmp___22 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___22 != 0L) { { printk("\017rtl8192de: IQK:Back to BB mode, load original value!\n"); } } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); } if ((unsigned int )t != 0U) { if (! rtlphy->rfpi_enable) { { _rtl92d_phy_pimode_switch(hw, 0); } } else { } { _rtl92d_phy_reload_adda_registers(hw, (u32 *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); _rtl92d_phy_reload_mac_registers(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); } if ((int )is2t) { { _rtl92d_phy_reload_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 10U); } } else { { _rtl92d_phy_reload_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } } { rtl_set_bbreg(hw, 3632U, 4294967295U, 16813056U); rtl_set_bbreg(hw, 3636U, 4294967295U, 16813056U); } } else { } { tmp___23 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___23 != 0L) { { printk("\017rtl8192de: <==\n"); } } else { } return; } } static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw , long (*result)[8U] , u8 t ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 patha_ok ; u8 pathb_ok ; u32 adda_reg[16U] ; u32 iqk_mac_reg[4U] ; u32 iqk_bb_reg[10U] ; u32 bbvalue ; bool is2t ; long tmp ; unsigned long __ms ; unsigned long tmp___0 ; long tmp___1 ; long tmp___2 ; u32 tmp___3 ; long tmp___4 ; long tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; long tmp___10 ; u32 tmp___11 ; u32 tmp___12 ; long tmp___13 ; long tmp___14 ; u32 tmp___15 ; u32 tmp___16 ; u32 tmp___17 ; u32 tmp___18 ; long tmp___19 ; u32 tmp___20 ; u32 tmp___21 ; long tmp___22 ; long tmp___23 ; long tmp___24 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; adda_reg[0] = 2140U; adda_reg[1] = 3692U; adda_reg[2] = 3696U; adda_reg[3] = 3700U; adda_reg[4] = 3704U; adda_reg[5] = 3708U; adda_reg[6] = 3712U; adda_reg[7] = 3716U; adda_reg[8] = 3720U; adda_reg[9] = 3724U; adda_reg[10] = 3792U; adda_reg[11] = 3796U; adda_reg[12] = 3800U; adda_reg[13] = 3804U; adda_reg[14] = 3808U; adda_reg[15] = 3820U; iqk_mac_reg[0] = 1314U; iqk_mac_reg[1] = 1360U; iqk_mac_reg[2] = 1361U; iqk_mac_reg[3] = 64U; iqk_bb_reg[0] = 2160U; iqk_bb_reg[1] = 2144U; iqk_bb_reg[2] = 2148U; iqk_bb_reg[3] = 3080U; iqk_bb_reg[4] = 2164U; iqk_bb_reg[5] = 3076U; iqk_bb_reg[6] = 2048U; iqk_bb_reg[7] = 2188U; iqk_bb_reg[8] = 3152U; iqk_bb_reg[9] = 3160U; is2t = ((unsigned long )rtlhal->version & 119UL) == 34UL; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: IQK for 5G NORMAL:Start!!!\n"); } } else { } __ms = 20UL; goto ldv_56753; ldv_56752: { __const_udelay(4295000UL); } ldv_56753: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_56752; } else { } if ((unsigned int )t == 0U) { { bbvalue = rtl_get_bbreg(hw, 2048U, 4294967295U); tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: ==>0x%08x\n", bbvalue); } } else { } { tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: IQ Calibration for %s\n", (int )is2t ? (char *)"2T2R" : (char *)"1T1R"); } } else { } { _rtl92d_phy_save_adda_registers(hw, (u32 *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); _rtl92d_phy_save_mac_registers(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); } if ((int )is2t) { { _rtl92d_phy_save_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 10U); } } else { { _rtl92d_phy_save_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } } } else { } { _rtl92d_phy_path_adda_on(hw, (u32 *)(& adda_reg), 1, (int )is2t); _rtl92d_phy_mac_setting_calibration(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); } if ((unsigned int )t == 0U) { { tmp___3 = rtl_get_bbreg(hw, 2080U, 256U); rtlphy->rfpi_enable = (unsigned int )((unsigned char )tmp___3) != 0U; } } else { } if (! rtlphy->rfpi_enable) { { _rtl92d_phy_pimode_switch(hw, 1); } } else { } { rtl_set_bbreg(hw, 2048U, 16777216U, 0U); rtl_set_bbreg(hw, 3076U, 4294967295U, 60839424U); rtl_set_bbreg(hw, 3080U, 4294967295U, 524516U); rtl_set_bbreg(hw, 2164U, 4294967295U, 572555264U); rtl_set_bbreg(hw, 2188U, 15728640U, 15U); rtl_set_bbreg(hw, 2920U, 4294967295U, 257949696U); } if ((int )is2t) { { rtl_set_bbreg(hw, 2924U, 4294967295U, 257949696U); } } else { } { tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8192de: IQK setting!\n"); } } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); rtl_set_bbreg(hw, 3648U, 4294967295U, 268467200U); rtl_set_bbreg(hw, 3652U, 4294967295U, 16795648U); patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, (int )is2t); } if ((unsigned int )patha_ok == 3U) { { tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: Path A IQK Success!!\n"); } } else { } { tmp___6 = rtl_get_bbreg(hw, 3732U, 4294967295U); (*(result + (unsigned long )t))[0] = (long )((tmp___6 & 67043328U) >> 16); tmp___7 = rtl_get_bbreg(hw, 3740U, 4294967295U); (*(result + (unsigned long )t))[1] = (long )((tmp___7 & 67043328U) >> 16); tmp___8 = rtl_get_bbreg(hw, 3748U, 4294967295U); (*(result + (unsigned long )t))[2] = (long )((tmp___8 & 67043328U) >> 16); tmp___9 = rtl_get_bbreg(hw, 3756U, 4294967295U); (*(result + (unsigned long )t))[3] = (long )((tmp___9 & 67043328U) >> 16); } } else if ((unsigned int )patha_ok == 1U) { { tmp___10 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___10 != 0L) { { printk("\017rtl8192de: Path A IQK Only Tx Success!!\n"); } } else { } { tmp___11 = rtl_get_bbreg(hw, 3732U, 4294967295U); (*(result + (unsigned long )t))[0] = (long )((tmp___11 & 67043328U) >> 16); tmp___12 = rtl_get_bbreg(hw, 3740U, 4294967295U); (*(result + (unsigned long )t))[1] = (long )((tmp___12 & 67043328U) >> 16); } } else { { tmp___13 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___13 != 0L) { { printk("\017rtl8192de: Path A IQK Fail!!\n"); } } else { } } if ((int )is2t) { { _rtl92d_phy_path_adda_on(hw, (u32 *)(& adda_reg), 0, (int )is2t); pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw); } if ((unsigned int )pathb_ok == 3U) { { tmp___14 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___14 != 0L) { { printk("\017rtl8192de: Path B IQK Success!!\n"); } } else { } { tmp___15 = rtl_get_bbreg(hw, 3764U, 4294967295U); (*(result + (unsigned long )t))[4] = (long )((tmp___15 & 67043328U) >> 16); tmp___16 = rtl_get_bbreg(hw, 3772U, 4294967295U); (*(result + (unsigned long )t))[5] = (long )((tmp___16 & 67043328U) >> 16); tmp___17 = rtl_get_bbreg(hw, 3780U, 4294967295U); (*(result + (unsigned long )t))[6] = (long )((tmp___17 & 67043328U) >> 16); tmp___18 = rtl_get_bbreg(hw, 3788U, 4294967295U); (*(result + (unsigned long )t))[7] = (long )((tmp___18 & 67043328U) >> 16); } } else if ((unsigned int )pathb_ok == 1U) { { tmp___19 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___19 != 0L) { { printk("\017rtl8192de: Path B Only Tx IQK Success!!\n"); } } else { } { tmp___20 = rtl_get_bbreg(hw, 3764U, 4294967295U); (*(result + (unsigned long )t))[4] = (long )((tmp___20 & 67043328U) >> 16); tmp___21 = rtl_get_bbreg(hw, 3772U, 4294967295U); (*(result + (unsigned long )t))[5] = (long )((tmp___21 & 67043328U) >> 16); } } else { { tmp___22 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___22 != 0L) { { printk("\017rtl8192de: Path B IQK failed!!\n"); } } else { } } } else { } { tmp___23 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___23 != 0L) { { printk("\017rtl8192de: IQK:Back to BB mode, load original value!\n"); } } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); } if ((unsigned int )t != 0U) { if ((int )is2t) { { _rtl92d_phy_reload_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 10U); } } else { { _rtl92d_phy_reload_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } } { _rtl92d_phy_reload_mac_registers(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); } if (! rtlphy->rfpi_enable) { { _rtl92d_phy_pimode_switch(hw, 0); } } else { } { _rtl92d_phy_reload_adda_registers(hw, (u32 *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); } } else { } { tmp___24 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___24 != 0L) { { printk("\017rtl8192de: <==\n"); } } else { } return; } } static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw , long (*result)[8U] , u8 c1 , u8 c2 ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 i ; u32 j ; u32 diff ; u32 sim_bitmap ; u32 bound ; u8 final_candidate[2U] ; bool bresult ; bool is2t ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; final_candidate[0] = 255U; final_candidate[1] = 255U; bresult = 1; is2t = ((unsigned long )rtlhal->version & 119UL) == 34UL; if ((int )is2t) { bound = 8U; } else { bound = 4U; } sim_bitmap = 0U; i = 0U; goto ldv_56772; ldv_56771: diff = (*(result + (unsigned long )c1))[i] > (*(result + (unsigned long )c2))[i] ? (u32 )(*(result + (unsigned long )c1))[i] - (u32 )(*(result + (unsigned long )c2))[i] : (u32 )(*(result + (unsigned long )c2))[i] - (u32 )(*(result + (unsigned long )c1))[i]; if (diff > 3U) { if ((i == 2U || i == 6U) && sim_bitmap == 0U) { if ((*(result + (unsigned long )c1))[i] + (*(result + (unsigned long )c1))[i + 1U] == 0L) { final_candidate[i / 4U] = c2; } else if ((*(result + (unsigned long )c2))[i] + (*(result + (unsigned long )c2))[i + 1U] == 0L) { final_candidate[i / 4U] = c1; } else { sim_bitmap = sim_bitmap | (u32 )(1 << (int )i); } } else { sim_bitmap = sim_bitmap | (u32 )(1 << (int )i); } } else { } i = i + 1U; ldv_56772: ; if (i < bound) { goto ldv_56771; } else { } if (sim_bitmap == 0U) { i = 0U; goto ldv_56778; ldv_56777: ; if ((unsigned int )final_candidate[i] != 255U) { j = i * 4U; goto ldv_56775; ldv_56774: (*(result + 3UL))[j] = (*(result + (unsigned long )final_candidate[i]))[j]; j = j + 1U; ldv_56775: ; if (j < (i + 1U) * 4U - 2U) { goto ldv_56774; } else { } bresult = 0; } else { } i = i + 1U; ldv_56778: ; if (i < bound / 4U) { goto ldv_56777; } else { } return (bresult); } else { } if ((sim_bitmap & 15U) == 0U) { i = 0U; goto ldv_56781; ldv_56780: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_56781: ; if (i <= 3U) { goto ldv_56780; } else { } } else if ((sim_bitmap & 3U) == 0U) { i = 0U; goto ldv_56784; ldv_56783: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_56784: ; if (i <= 1U) { goto ldv_56783; } else { } } else { } if ((sim_bitmap & 240U) == 0U && (int )is2t) { i = 4U; goto ldv_56787; ldv_56786: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_56787: ; if (i <= 7U) { goto ldv_56786; } else { } } else if ((sim_bitmap & 48U) == 0U) { i = 4U; goto ldv_56790; ldv_56789: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_56790: ; if (i <= 5U) { goto ldv_56789; } else { } } else { } return (0); } } static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw , bool iqk_ok , long (*result)[8U] , u8 final_candidate , bool txonly ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 oldval_0 ; u32 val_x ; u32 tx0_a ; u32 reg ; long val_y ; long tx0_c ; bool is2t ; long tmp ; u32 tmp___0 ; long tmp___1 ; long tmp___2 ; u32 tmp___3 ; long tmp___4 ; long tmp___5 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; is2t = (bool )(((unsigned long )rtlhal->version & 119UL) == 34UL || (unsigned int )rtlhal->macphymode == 1U); tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path A IQ Calibration %s !\n", (int )iqk_ok ? (char *)"Success" : (char *)"Failed"); } } else { } if ((unsigned int )final_candidate == 255U) { return; } else if ((int )iqk_ok) { { tmp___0 = rtl_get_bbreg(hw, 3200U, 4294967295U); oldval_0 = tmp___0 >> 22; val_x = (u32 )(*(result + (unsigned long )final_candidate))[0]; } if ((val_x & 512U) != 0U) { val_x = val_x | 4294966272U; } else { } { tx0_a = val_x * oldval_0 >> 8; tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n", val_x, tx0_a, oldval_0); } } else { } { rtl_set_bbreg(hw, 3200U, 1023U, tx0_a); rtl_set_bbreg(hw, 3148U, 16777216U, (val_x * oldval_0 >> 7) & 1U); val_y = (*(result + (unsigned long )final_candidate))[1]; } if ((val_y & 512L) != 0L) { val_y = val_y | 4294966272L; } else { } if (rtlhal->interfaceindex == 1U && (unsigned int )rtlhal->current_bandtype == 1U) { val_y = val_y + 3L; } else { } { tx0_c = val_y * (long )oldval_0 >> 8; tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: Y = 0x%lx, tx0_c = 0x%lx\n", val_y, tx0_c); } } else { } { rtl_set_bbreg(hw, 3220U, 4026531840U, (u32 )((tx0_c & 960L) >> 6)); rtl_set_bbreg(hw, 3200U, 4128768U, (u32 )tx0_c & 63U); } if ((int )is2t) { { rtl_set_bbreg(hw, 3148U, 67108864U, (u32 )(val_y * (long )oldval_0 >> 7) & 1U); } } else { } { tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___4 != 0L) { { tmp___3 = rtl_get_bbreg(hw, 3200U, 4294967295U); printk("\017rtl8192de: 0xC80 = 0x%x\n", tmp___3); } } else { } if ((int )txonly) { { tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: only Tx OK\n"); } } else { } return; } else { } { reg = (u32 )(*(result + (unsigned long )final_candidate))[2]; rtl_set_bbreg(hw, 3092U, 1023U, reg); reg = (u32 )(*(result + (unsigned long )final_candidate))[3] & 63U; rtl_set_bbreg(hw, 3092U, 64512U, reg); reg = (u32 )((*(result + (unsigned long )final_candidate))[3] >> 6) & 15U; rtl_set_bbreg(hw, 3232U, 4026531840U, reg); } } else { } return; } } static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw , bool iqk_ok , long (*result)[8U] , u8 final_candidate , bool txonly ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 oldval_1 ; u32 val_x ; u32 tx1_a ; u32 reg ; long val_y ; long tx1_c ; long tmp ; u32 tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Path B IQ Calibration %s !\n", (int )iqk_ok ? (char *)"Success" : (char *)"Failed"); } } else { } if ((unsigned int )final_candidate == 255U) { return; } else if ((int )iqk_ok) { { tmp___0 = rtl_get_bbreg(hw, 3208U, 4294967295U); oldval_1 = tmp___0 >> 22; val_x = (u32 )(*(result + (unsigned long )final_candidate))[4]; } if ((val_x & 512U) != 0U) { val_x = val_x | 4294966272U; } else { } { tx1_a = val_x * oldval_1 >> 8; tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: X = 0x%x, tx1_a = 0x%x\n", val_x, tx1_a); } } else { } { rtl_set_bbreg(hw, 3208U, 1023U, tx1_a); rtl_set_bbreg(hw, 3148U, 268435456U, (val_x * oldval_1 >> 7) & 1U); val_y = (*(result + (unsigned long )final_candidate))[5]; } if ((val_y & 512L) != 0L) { val_y = val_y | 4294966272L; } else { } if ((unsigned int )rtlhal->current_bandtype == 1U) { val_y = val_y + 3L; } else { } { tx1_c = val_y * (long )oldval_1 >> 8; tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: Y = 0x%lx, tx1_c = 0x%lx\n", val_y, tx1_c); } } else { } { rtl_set_bbreg(hw, 3228U, 4026531840U, (u32 )((tx1_c & 960L) >> 6)); rtl_set_bbreg(hw, 3208U, 4128768U, (u32 )tx1_c & 63U); rtl_set_bbreg(hw, 3148U, 1073741824U, (u32 )(val_y * (long )oldval_1 >> 7) & 1U); } if ((int )txonly) { return; } else { } { reg = (u32 )(*(result + (unsigned long )final_candidate))[6]; rtl_set_bbreg(hw, 3100U, 1023U, reg); reg = (u32 )(*(result + (unsigned long )final_candidate))[7] & 63U; rtl_set_bbreg(hw, 3100U, 64512U, reg); reg = (u32 )((*(result + (unsigned long )final_candidate))[7] >> 6) & 15U; rtl_set_bbreg(hw, 3192U, 61440U, reg); } } else { } return; } } void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; long result[4U][8U] ; u8 i ; u8 final_candidate ; u8 indexforchannel ; bool patha_ok ; bool pathb_ok ; long rege94 ; long rege9c ; long regea4 ; long regeac ; long regeb4 ; long regebc ; long regec4 ; long regecc ; long regtmp ; bool is12simular ; bool is13simular ; bool is23simular ; unsigned long flag ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; s32 tmp___4 ; s32 tmp___5 ; int tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; regtmp = 0L; flag = 0UL; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: IQK:Start!!!channel %d\n", (int )rtlphy->current_channel); } } else { } i = 0U; goto ldv_56849; ldv_56848: result[0][(int )i] = 0L; result[1][(int )i] = 0L; result[2][(int )i] = 0L; result[3][(int )i] = 0L; i = (u8 )((int )i + 1); ldv_56849: ; if ((unsigned int )i <= 7U) { goto ldv_56848; } else { } { final_candidate = 255U; patha_ok = 0; pathb_ok = 0; is12simular = 0; is23simular = 0; is13simular = 0; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: IQK !!!currentband %d\n", (unsigned int )rtlhal->current_bandtype); } } else { } { rtl92d_acquire_cckandrw_pagea_ctl___0(hw, & flag); i = 0U; } goto ldv_56856; ldv_56855: ; if ((unsigned int )rtlhal->current_bandtype == 1U) { { _rtl92d_phy_iq_calibrate_5g_normal(hw, (long (*)[8])(& result), (int )i); } } else if ((unsigned int )rtlhal->current_bandtype == 0U) { if (((unsigned long )rtlhal->version & 119UL) == 34UL) { { _rtl92d_phy_iq_calibrate(hw, (long (*)[8])(& result), (int )i, 1); } } else { { _rtl92d_phy_iq_calibrate(hw, (long (*)[8])(& result), (int )i, 0); } } } else { } if ((unsigned int )i == 1U) { { is12simular = _rtl92d_phy_simularity_compare(hw, (long (*)[8])(& result), 0, 1); } if ((int )is12simular) { final_candidate = 0U; goto ldv_56851; } else { } } else { } if ((unsigned int )i == 2U) { { is13simular = _rtl92d_phy_simularity_compare(hw, (long (*)[8])(& result), 0, 2); } if ((int )is13simular) { final_candidate = 0U; goto ldv_56851; } else { } { is23simular = _rtl92d_phy_simularity_compare(hw, (long (*)[8])(& result), 1, 2); } if ((int )is23simular) { final_candidate = 1U; } else { i = 0U; goto ldv_56853; ldv_56852: regtmp = regtmp + result[3][(int )i]; i = (u8 )((int )i + 1); ldv_56853: ; if ((unsigned int )i <= 7U) { goto ldv_56852; } else { } if (regtmp != 0L) { final_candidate = 3U; } else { final_candidate = 255U; } } } else { } i = (u8 )((int )i + 1); ldv_56856: ; if ((unsigned int )i <= 2U) { goto ldv_56855; } else { } ldv_56851: { rtl92d_release_cckandrw_pagea_ctl___0(hw, & flag); i = 0U; } goto ldv_56858; ldv_56857: { rege94 = result[(int )i][0]; rege9c = result[(int )i][1]; regea4 = result[(int )i][2]; regeac = result[(int )i][3]; regeb4 = result[(int )i][4]; regebc = result[(int )i][5]; regec4 = result[(int )i][6]; regecc = result[(int )i][7]; tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n", rege94, rege9c, regea4, regeac, regeb4, regebc, regec4, regecc); } } else { } i = (u8 )((int )i + 1); ldv_56858: ; if ((unsigned int )i <= 3U) { goto ldv_56857; } else { } if ((unsigned int )final_candidate != 255U) { { rege94 = result[(int )final_candidate][0]; rtlphy->reg_e94 = (s32 )rege94; rege9c = result[(int )final_candidate][1]; rtlphy->reg_e9c = (s32 )rege9c; regea4 = result[(int )final_candidate][2]; regeac = result[(int )final_candidate][3]; regeb4 = result[(int )final_candidate][4]; rtlphy->reg_eb4 = (s32 )regeb4; regebc = result[(int )final_candidate][5]; rtlphy->reg_ebc = (s32 )regebc; regec4 = result[(int )final_candidate][6]; regecc = result[(int )final_candidate][7]; tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: IQK: final_candidate is %x\n", (int )final_candidate); } } else { } { tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n", rege94, rege9c, regea4, regeac, regeb4, regebc, regec4, regecc); } } else { } pathb_ok = 1; patha_ok = pathb_ok; } else { tmp___4 = 256; rtlphy->reg_eb4 = tmp___4; rtlphy->reg_e94 = tmp___4; tmp___5 = 0; rtlphy->reg_ebc = tmp___5; rtlphy->reg_e9c = tmp___5; } if (rege94 != 0L) { { _rtl92d_phy_patha_fill_iqk_matrix(hw, (int )patha_ok, (long (*)[8])(& result), (int )final_candidate, regea4 == 0L); } } else { } if (((unsigned long )rtlhal->version & 119UL) == 34UL) { if (regeb4 != 0L) { { _rtl92d_phy_pathb_fill_iqk_matrix(hw, (int )pathb_ok, (long (*)[8])(& result), (int )final_candidate, regec4 == 0L); } } else { } } else { } if ((unsigned int )final_candidate != 255U) { { indexforchannel = rtl92d_get_rightchnlplace_for_iqk((int )rtlphy->current_channel); i = 0U; } goto ldv_56861; ldv_56860: rtlphy->iqk_matrix[(int )indexforchannel].value[0][(int )i] = result[(int )final_candidate][(int )i]; i = (u8 )((int )i + 1); ldv_56861: ; if ((unsigned int )i <= 7U) { goto ldv_56860; } else { } { rtlphy->iqk_matrix[(int )indexforchannel].iqk_done = 1; tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 96ULL) != 0ULL, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___9 != 0L) { { tmp___6 = preempt_count___3(); tmp___7 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> IQK OK indexforchannel %d\n", "rtl92d_phy_iq_calibrate", (unsigned long )tmp___7 & 2096896UL, ((unsigned long )tmp___6 & 0xffffffffffdfffffUL) != 0UL, (int )indexforchannel); } } else { } } else { } } else { } return; } } void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw , u8 channel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 indexforchannel ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> channel %d\n", "rtl92d_phy_reload_iqk_setting", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )channel); } } else { } } else { } { indexforchannel = rtl92d_get_rightchnlplace_for_iqk((int )channel); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> indexforchannel %d done %d\n", "rtl92d_phy_reload_iqk_setting", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )indexforchannel, (int )rtlphy->iqk_matrix[(int )indexforchannel].iqk_done); } } else { } } else { } if (! rtlhal->load_imrandiqk_setting_for2g || (unsigned int )indexforchannel != 0U) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Just Read IQK Matrix reg for channel:%d....\n", "rtl92d_phy_reload_iqk_setting", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )channel); } } else { } } else { } if ((unsigned long )((long *)(& rtlphy->iqk_matrix[(int )indexforchannel].value)) != (unsigned long )((long *)0L)) { { _rtl92d_phy_patha_fill_iqk_matrix(hw, 1, (long (*)[8])(& rtlphy->iqk_matrix[(int )indexforchannel].value), 0, rtlphy->iqk_matrix[(int )indexforchannel].value[0][2] == 0L); } } else { } if (((unsigned long )rtlhal->version & 119UL) == 34UL) { if (rtlphy->iqk_matrix[(int )indexforchannel].value[0][4] != 0L) { { _rtl92d_phy_pathb_fill_iqk_matrix(hw, 1, (long (*)[8])(& rtlphy->iqk_matrix[(int )indexforchannel].value), 0, rtlphy->iqk_matrix[(int )indexforchannel].value[0][6] == 0L); } } else { } } else { } } else { } { rtlphy->need_iqk = 0; tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <====\n", "rtl92d_phy_reload_iqk_setting", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static u32 _rtl92d_phy_get_abs(u32 val1 , u32 val2 ) { u32 ret ; { if (val1 >= val2) { ret = val1 - val2; } else { ret = val2 - val1; } return (ret); } } static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw , u8 channel ) { int i ; u8 channel_5g[45U] ; { channel_5g[0] = 36U; channel_5g[1] = 38U; channel_5g[2] = 40U; channel_5g[3] = 42U; channel_5g[4] = 44U; channel_5g[5] = 46U; channel_5g[6] = 48U; channel_5g[7] = 50U; channel_5g[8] = 52U; channel_5g[9] = 54U; channel_5g[10] = 56U; channel_5g[11] = 58U; channel_5g[12] = 60U; channel_5g[13] = 62U; channel_5g[14] = 64U; channel_5g[15] = 100U; channel_5g[16] = 102U; channel_5g[17] = 104U; channel_5g[18] = 106U; channel_5g[19] = 108U; channel_5g[20] = 110U; channel_5g[21] = 112U; channel_5g[22] = 114U; channel_5g[23] = 116U; channel_5g[24] = 118U; channel_5g[25] = 120U; channel_5g[26] = 122U; channel_5g[27] = 124U; channel_5g[28] = 126U; channel_5g[29] = 128U; channel_5g[30] = 130U; channel_5g[31] = 132U; channel_5g[32] = 134U; channel_5g[33] = 136U; channel_5g[34] = 138U; channel_5g[35] = 140U; channel_5g[36] = 149U; channel_5g[37] = 151U; channel_5g[38] = 153U; channel_5g[39] = 155U; channel_5g[40] = 157U; channel_5g[41] = 159U; channel_5g[42] = 161U; channel_5g[43] = 163U; channel_5g[44] = 165U; i = 0; goto ldv_56885; ldv_56884: ; if ((int )channel == (int )channel_5g[i]) { return (1); } else { } i = i + 1; ldv_56885: ; if ((unsigned int )i <= 44U) { goto ldv_56884; } else { } return (0); } } static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw , u32 *targetchnl , u32 *curvecount_val , bool is5g , u32 *curveindex ) { struct rtl_priv *rtlpriv ; u32 smallest_abs_val ; u32 u4tmp ; u8 i ; u8 j ; u8 chnl_num ; bool tmp ; int tmp___0 ; long tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; smallest_abs_val = 4294967295U; chnl_num = (int )is5g ? 221U : 14U; i = 0U; goto ldv_56905; ldv_56904: ; if ((int )is5g) { { tmp = _rtl92d_is_legal_5g_channel(hw, (int )((unsigned int )i + 1U)); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto ldv_56900; } else { } } else { } *(curveindex + (unsigned long )i) = 0U; j = 0U; goto ldv_56902; ldv_56901: { u4tmp = _rtl92d_phy_get_abs(*(targetchnl + (unsigned long )i), *(curvecount_val + (unsigned long )j)); } if (u4tmp < smallest_abs_val) { *(curveindex + (unsigned long )i) = (u32 )j; smallest_abs_val = u4tmp; } else { } j = (u8 )((int )j + 1); ldv_56902: ; if ((int )((signed char )j) >= 0) { goto ldv_56901; } else { } { smallest_abs_val = 4294967295U; tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: curveindex[%d] = %x\n", (int )i, *(curveindex + (unsigned long )i)); } } else { } ldv_56900: i = (u8 )((int )i + 1); ldv_56905: ; if ((int )i < (int )chnl_num) { goto ldv_56904; } else { } return; } } static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw , u8 channel ) { struct rtl_priv *rtlpriv ; u8 erfpath ; u32 u4tmp ; u32 u4regvalue ; bool bneed_powerdown_radio ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; long tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; { { rtlpriv = (struct rtl_priv *)hw->priv; erfpath = (u8 )((unsigned int )rtlpriv->rtlhal.current_bandtype != 1U && ((unsigned long )rtlpriv->rtlhal.version & 119UL) == 34UL); u4tmp = 0U; u4regvalue = 0U; bneed_powerdown_radio = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> path %d\n", "_rtl92d_phy_reload_lck_setting", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )erfpath); } } else { } } else { } { tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: band type = %d\n", (unsigned int )rtlpriv->rtlhal.current_bandtype); } } else { } { tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8192de: channel = %d\n", (int )channel); } } else { } if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 1U) { { u4tmp = curveindex_5g[(int )channel + -1]; tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: ver 1 set RF-A, 5G,\t0x28 = 0x%x !!\n", u4tmp); } } else { } if ((unsigned int )rtlpriv->rtlhal.macphymode == 1U && rtlpriv->rtlhal.interfaceindex == 1U) { { bneed_powerdown_radio = rtl92d_phy_enable_anotherphy(hw, 0); rtlpriv->rtlhal.during_mac1init_radioa = 1; } if ((int )bneed_powerdown_radio) { { _rtl92d_phy_enable_rf_env(hw, (int )erfpath, & u4regvalue); } } else { } } else { } { rtl_set_rfreg(hw, (enum radio_path )erfpath, 40U, 260096U, u4tmp); } if ((int )bneed_powerdown_radio) { { _rtl92d_phy_restore_rf_env(hw, (int )erfpath, & u4regvalue); } } else { } if ((int )rtlpriv->rtlhal.during_mac1init_radioa) { { rtl92d_phy_powerdown_anotherphy(hw, 0); } } else { } } else if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 0U) { { u4tmp = curveindex_2g[(int )channel + -1]; tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8192de: ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp); } } else { } if ((unsigned int )rtlpriv->rtlhal.macphymode == 1U && rtlpriv->rtlhal.interfaceindex == 0U) { { bneed_powerdown_radio = rtl92d_phy_enable_anotherphy(hw, 1); rtlpriv->rtlhal.during_mac0init_radiob = 1; } if ((int )bneed_powerdown_radio) { { _rtl92d_phy_enable_rf_env(hw, (int )erfpath, & u4regvalue); } } else { } } else { } { rtl_set_rfreg(hw, (enum radio_path )erfpath, 40U, 260096U, u4tmp); tmp___8 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___8 != 0L) { { tmp___7 = rtl_get_rfreg(hw, (enum radio_path )erfpath, 40U, 260096U); printk("\017rtl8192de: ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", tmp___7); } } else { } if ((int )bneed_powerdown_radio) { { _rtl92d_phy_restore_rf_env(hw, (int )erfpath, & u4regvalue); } } else { } if ((int )rtlpriv->rtlhal.during_mac0init_radiob) { { rtl92d_phy_powerdown_anotherphy(hw, 1); } } else { } } else { } { tmp___11 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count___3(); tmp___10 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <====\n", "_rtl92d_phy_reload_lck_setting", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw , bool is2t ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_pci *rtlpci ; u8 tmpreg ; u8 index ; u8 rf_mode[2U] ; u8 path ; u8 i ; u32 u4tmp ; u32 offset ; u32 curvecount_val[128U] ; unsigned int tmp ; u16 timeout ; u16 timecount ; unsigned long __ms ; unsigned long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; u32 readval ; u32 readval2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; path = (int )is2t ? 2U : 1U; curvecount_val[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 128U) { goto while_break; } else { } curvecount_val[tmp] = 0U; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { timeout = 800U; timecount = 0U; tmpreg = rtl_read_byte(rtlpriv, 3331U); } if (((int )tmpreg & 112) != 0) { { rtl_write_byte(rtlpriv, 3331U, (int )tmpreg & 143); } } else { { rtl_write_byte(rtlpriv, 1314U, 255); } } { rtl_set_bbreg(hw, 2188U, 15728640U, 15U); index = 0U; } goto ldv_56947; ldv_56946: { offset = (unsigned int )index == 0U ? 3152U : 3160U; rf_mode[(int )index] = rtl_read_byte(rtlpriv, offset); rtl_set_rfreg(hw, (enum radio_path )index, 0U, 1048575U, 65536U); } if ((int )rtlpci->init_ready) { { rtl_set_rfreg(hw, (enum radio_path )index, 43U, 131072U, 0U); rtl_set_rfreg(hw, (enum radio_path )index, 24U, 32768U, 1U); } } else { } { u4tmp = rtl_get_rfreg(hw, (enum radio_path )index, 42U, 1048575U); } goto ldv_56939; ldv_56938: __ms = 50UL; goto ldv_56936; ldv_56935: { __const_udelay(4295000UL); } ldv_56936: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_56935; } else { } { timecount = (unsigned int )timecount + 50U; u4tmp = rtl_get_rfreg(hw, (enum radio_path )index, 42U, 1048575U); } ldv_56939: ; if (((unsigned long )u4tmp & 2048UL) == 0UL && (int )timecount <= (int )timeout) { goto ldv_56938; } else { } { tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: PHY_LCK finish delay for %d ms=2\n", (int )timecount); } } else { } { u4tmp = rtl_get_rfreg(hw, (enum radio_path )index, 40U, 1048575U); } if ((unsigned int )index == 0U && rtlhal->interfaceindex == 0U) { { tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: path-A / 5G LCK\n"); } } else { } } else { { tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: path-B / 2.4G LCK\n"); } } else { } } { __memset((void *)(& curvecount_val), 0, 128UL); rtl_set_rfreg(hw, (enum radio_path )index, 24U, 32768U, 0U); tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8192de: set RF 0x18[15] = 0\n"); } } else { } i = 0U; goto ldv_56944; ldv_56943: { readval = 0U; readval2 = 0U; rtl_set_rfreg(hw, (enum radio_path )index, 63U, 127U, (u32 )i); rtl_set_rfreg(hw, (enum radio_path )index, 77U, 1048575U, 0U); readval = rtl_get_rfreg(hw, (enum radio_path )index, 79U, 1048575U); curvecount_val[(int )i * 2 + 1] = (readval & 1048544U) >> 5; readval2 = rtl_get_rfreg(hw, (enum radio_path )index, 80U, 1047552U); curvecount_val[(int )i * 2] = ((readval & 31U) << 10) | readval2; i = (u8 )((int )i + 1); } ldv_56944: ; if ((unsigned int )i <= 63U) { goto ldv_56943; } else { } if ((unsigned int )index == 0U && rtlhal->interfaceindex == 0U) { { _rtl92d_phy_calc_curvindex(hw, (u32 *)(& targetchnl_5g), (u32 *)(& curvecount_val), 1, (u32 *)(& curveindex_5g)); } } else { { _rtl92d_phy_calc_curvindex(hw, (u32 *)(& targetchnl_2g), (u32 *)(& curvecount_val), 0, (u32 *)(& curveindex_2g)); } } { rtl_set_rfreg(hw, (enum radio_path )index, 43U, 131072U, 1U); index = (u8 )((int )index + 1); } ldv_56947: ; if ((int )index < (int )path) { goto ldv_56946; } else { } index = 0U; goto ldv_56950; ldv_56949: { offset = (unsigned int )index == 0U ? 3152U : 3160U; rtl_write_byte(rtlpriv, offset, 80); rtl_write_byte(rtlpriv, offset, (int )rf_mode[(int )index]); index = (u8 )((int )index + 1); } ldv_56950: ; if ((int )index < (int )path) { goto ldv_56949; } else { } if (((int )tmpreg & 112) != 0) { { rtl_write_byte(rtlpriv, 3331U, (int )tmpreg); } } else { { rtl_write_byte(rtlpriv, 1314U, 0); } } { rtl_set_bbreg(hw, 2188U, 15728640U, 0U); _rtl92d_phy_reload_lck_setting(hw, (int )rtlpriv->phy.current_channel); } return; } } static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw , bool is2t ) { struct rtl_priv *rtlpriv ; long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: cosa PHY_LCK ver=2\n"); } } else { } { _rtl92d_phy_lc_calibrate_sw(hw, (int )is2t); } return; } } void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u32 timeout ; u32 timecount ; long tmp ; long tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; timeout = 2000U; timecount = 0U; goto ldv_56966; ldv_56965: { __const_udelay(214750UL); timecount = timecount + 50U; } ldv_56966: ; if ((int )rtlpriv->mac80211.act_scanning && timecount < timeout) { goto ldv_56965; } else { } { rtlphy->lck_inprogress = 1U; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: LCK:Start!!! currentband %x delay %d ms\n", (unsigned int )rtlhal->current_bandtype, timecount); } } else { } if (((unsigned long )rtlhal->version & 119UL) == 34UL) { { _rtl92d_phy_lc_calibrate(hw, 1); } } else { { _rtl92d_phy_lc_calibrate(hw, 0); } } { rtlphy->lck_inprogress = 0U; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: LCK:Finish!!!\n"); } } else { } return; } } void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw , char delta ) { { return; } } static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable , u32 cmdtableidx , u32 cmdtablesz , enum swchnlcmd_id cmdid , u32 para1 , u32 para2 , u32 msdelay ) { struct swchnlcmd *pcmd ; { if ((unsigned long )cmdtable == (unsigned long )((struct swchnlcmd *)0)) { { printk("\017rtl8192de:%s(): cmdtable cannot be NULL\n", "_rtl92d_phy_set_sw_chnl_cmdarray"); } return (0); } else { } if (cmdtableidx >= cmdtablesz) { return (0); } else { } pcmd = cmdtable + (unsigned long )cmdtableidx; pcmd->cmdid = cmdid; pcmd->para1 = para1; pcmd->para2 = para2; pcmd->msdelay = msdelay; return (1); } } void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 i ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> settings regs %d default regs %d\n", "rtl92d_phy_reset_iqk_result", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 46, 8); } } else { } } else { } i = 0U; goto ldv_56991; ldv_56990: rtlphy->iqk_matrix[(int )i].value[0][0] = 256L; rtlphy->iqk_matrix[(int )i].value[0][2] = 256L; rtlphy->iqk_matrix[(int )i].value[0][4] = 256L; rtlphy->iqk_matrix[(int )i].value[0][6] = 256L; rtlphy->iqk_matrix[(int )i].value[0][1] = 0L; rtlphy->iqk_matrix[(int )i].value[0][3] = 0L; rtlphy->iqk_matrix[(int )i].value[0][5] = 0L; rtlphy->iqk_matrix[(int )i].value[0][7] = 0L; rtlphy->iqk_matrix[(int )i].iqk_done = 0; i = (u8 )((int )i + 1); ldv_56991: ; if ((unsigned int )i <= 45U) { goto ldv_56990; } else { } return; } } static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw , u8 channel , u8 *stage , u8 *step , u32 *delay ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct swchnlcmd precommoncmd[16U] ; u32 precommoncmdcnt ; struct swchnlcmd postcommoncmd[16U] ; u32 postcommoncmdcnt ; struct swchnlcmd rfdependcmd[16U] ; u32 rfdependcmdcnt ; struct swchnlcmd *currentcmd ; u8 rfpath ; u8 num_total_rfpath ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; currentcmd = (struct swchnlcmd *)0; num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0U; tmp = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; _rtl92d_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp, 16U, 1, 0U, 0U, 0U); tmp___0 = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; _rtl92d_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp___0, 16U, 0, 0U, 0U, 0U); postcommoncmdcnt = 0U; tmp___1 = postcommoncmdcnt; postcommoncmdcnt = postcommoncmdcnt + 1U; _rtl92d_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& postcommoncmd), tmp___1, 16U, 0, 0U, 0U, 0U); rfdependcmdcnt = 0U; tmp___2 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; _rtl92d_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___2, 16U, 6, 24U, (u32 )channel, 0U); tmp___3 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; _rtl92d_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___3, 16U, 0, 0U, 0U, 0U); } ldv_57028: ; { if ((int )*stage == 0) { goto case_0; } else { } if ((int )*stage == 1) { goto case_1; } else { } if ((int )*stage == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& precommoncmd) + (unsigned long )*step; goto ldv_57012; case_1: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& rfdependcmd) + (unsigned long )*step; goto ldv_57012; case_2: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& postcommoncmd) + (unsigned long )*step; goto ldv_57012; switch_break: /* CIL Label */ ; } ldv_57012: ; if ((unsigned int )currentcmd->cmdid == 0U) { if ((unsigned int )*stage == 2U) { return (1); } else { *stage = (u8 )((int )*stage + 1); *step = 0U; goto ldv_57015; } } else { } { if ((unsigned int )currentcmd->cmdid == 1U) { goto case_1___0; } else { } if ((unsigned int )currentcmd->cmdid == 3U) { goto case_3; } else { } if ((unsigned int )currentcmd->cmdid == 4U) { goto case_4; } else { } if ((unsigned int )currentcmd->cmdid == 5U) { goto case_5; } else { } if ((unsigned int )currentcmd->cmdid == 6U) { goto case_6; } else { } goto switch_default; case_1___0: /* CIL Label */ { rtl92d_phy_set_txpower_level(hw, (int )channel); } goto ldv_57017; case_3: /* CIL Label */ { rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); } goto ldv_57017; case_4: /* CIL Label */ { rtl_write_word(rtlpriv, currentcmd->para1, (int )((unsigned short )currentcmd->para2)); } goto ldv_57017; case_5: /* CIL Label */ { rtl_write_byte(rtlpriv, currentcmd->para1, (int )((unsigned char )currentcmd->para2)); } goto ldv_57017; case_6: /* CIL Label */ rfpath = 0U; goto ldv_57023; ldv_57022: rtlphy->rfreg_chnlval[(int )rfpath] = (rtlphy->rfreg_chnlval[(int )rfpath] & 4294967040U) | currentcmd->para2; if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 1U) { if (currentcmd->para2 > 99U) { rtlphy->rfreg_chnlval[(int )rfpath] = rtlphy->rfreg_chnlval[(int )rfpath] | 262144U; } else { rtlphy->rfreg_chnlval[(int )rfpath] = rtlphy->rfreg_chnlval[(int )rfpath] & 4294705151U; } rtlphy->rfreg_chnlval[(int )rfpath] = rtlphy->rfreg_chnlval[(int )rfpath] | 65792U; } else { rtlphy->rfreg_chnlval[(int )rfpath] = rtlphy->rfreg_chnlval[(int )rfpath] & 4294639359U; } { rtl_set_rfreg(hw, (enum radio_path )rfpath, currentcmd->para1, 1048575U, rtlphy->rfreg_chnlval[(int )rfpath]); _rtl92d_phy_reload_imr_setting(hw, (int )channel, (int )rfpath); rfpath = (u8 )((int )rfpath + 1); } ldv_57023: ; if ((int )rfpath < (int )num_total_rfpath) { goto ldv_57022; } else { } { _rtl92d_phy_switch_rf_setting(hw, (int )channel); rtl92d_phy_reload_iqk_setting(hw, (int )channel); } goto ldv_57017; switch_default: /* CIL Label */ { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "_rtl92d_phy_sw_chnl_step_by_step", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_57017; switch_break___0: /* CIL Label */ ; } ldv_57017: ; goto ldv_57027; ldv_57015: ; goto ldv_57028; ldv_57027: *delay = currentcmd->msdelay; *step = (u8 )((int )*step + 1); return (0); } } u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u32 delay ; u32 timeout ; u32 timecount ; u8 channel ; u32 ret_value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; unsigned long __ms___0 ; unsigned long tmp___9 ; bool tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; timeout = 1000U; timecount = 0U; channel = rtlphy->current_channel; if ((unsigned int )rtlphy->sw_chnl_inprogress != 0U) { return (0U); } else { } if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return (0U); } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 268435456ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> sw_chnl_inprogress false driver sleep or unload\n", "rtl92d_phy_sw_chnl", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0U); } else { } goto ldv_57046; ldv_57045: __ms = 50UL; goto ldv_57043; ldv_57042: { __const_udelay(4295000UL); } ldv_57043: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_57042; } else { } timecount = timecount + 50U; ldv_57046: ; if ((unsigned int )rtlphy->lck_inprogress != 0U && timecount < timeout) { goto ldv_57045; } else { } if ((unsigned int )rtlhal->macphymode == 0U && (unsigned int )rtlhal->bandset == 2U) { { ret_value = rtl_get_bbreg(hw, 2168U, 4294967295U); } if ((unsigned int )rtlphy->current_channel > 14U && ((unsigned long )ret_value & 1UL) == 0UL) { { rtl92d_phy_switch_wirelessband(hw, 1); } } else if ((unsigned int )rtlphy->current_channel <= 14U && (int )ret_value & 1) { { rtl92d_phy_switch_wirelessband(hw, 0); } } else { } } else { } { if ((unsigned int )rtlhal->current_bandtype == 1U) { goto case_1; } else { } if ((unsigned int )rtlhal->current_bandtype == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )channel <= 14U) { return (0U); } else { } if ((unsigned int )channel <= 14U) { { printk("\017rtl8192de:%s(): 5G but channel<=14\n", "rtl92d_phy_sw_chnl"); } } else { } goto ldv_57049; case_0: /* CIL Label */ ; if ((unsigned int )channel > 14U) { return (0U); } else { } if ((unsigned int )channel > 14U) { { printk("\017rtl8192de:%s(): 2G but channel>14\n", "rtl92d_phy_sw_chnl"); } } else { } goto ldv_57049; switch_default: /* CIL Label */ { printk("\017rtl8192de:%s(): Invalid WirelessMode(%#x)!!\n", "rtl92d_phy_sw_chnl", (int )rtlpriv->mac80211.mode); } goto ldv_57049; switch_break: /* CIL Label */ ; } ldv_57049: rtlphy->sw_chnl_inprogress = 1U; if ((unsigned int )channel == 0U) { channel = 1U; } else { } { rtlphy->sw_chnl_stage = 0U; rtlphy->sw_chnl_step = 0U; tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count___3(); tmp___6 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch to channel%d\n", "rtl92d_phy_sw_chnl", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } } else { } } else { } ldv_57058: ; if ((unsigned int )rtlphy->sw_chnl_inprogress == 0U) { goto ldv_57052; } else { } { tmp___10 = _rtl92d_phy_sw_chnl_step_by_step(hw, (int )rtlphy->current_channel, & rtlphy->sw_chnl_stage, & rtlphy->sw_chnl_step, & delay); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { if (delay != 0U) { __ms___0 = (unsigned long )delay; goto ldv_57055; ldv_57054: { __const_udelay(4295000UL); } ldv_57055: tmp___9 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___9 != 0UL) { goto ldv_57054; } else { } } else { goto ldv_57057; } } else { rtlphy->sw_chnl_inprogress = 0U; } goto ldv_57052; ldv_57057: ; goto ldv_57058; ldv_57052: { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <==\n", "rtl92d_phy_sw_chnl", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlphy->sw_chnl_inprogress = 0U; return (1U); } } static void rtl92d_phy_set_io(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *de_digtable ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; de_digtable = & rtlpriv->dm_digtable; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> --->Cmd(%#x), set_io_inprogress(%d)\n", "rtl92d_phy_set_io", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_io_type, (int )rtlphy->set_io_inprogress); } } else { } } else { } { if ((unsigned int )rtlphy->current_io_type == 2U) { goto case_2; } else { } if ((unsigned int )rtlphy->current_io_type == 0U) { goto case_0; } else { } goto switch_default; case_2: /* CIL Label */ { de_digtable->cur_igvalue = (u32 )rtlphy->initgain_backup.xaagccore1; rtl92d_dm_write_dig(hw); rtl92d_phy_set_txpower_level(hw, (int )rtlphy->current_channel); } goto ldv_57067; case_0: /* CIL Label */ { rtlphy->initgain_backup.xaagccore1 = (u8 )de_digtable->cur_igvalue; de_digtable->cur_igvalue = 55U; rtl92d_dm_write_dig(hw); } goto ldv_57067; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92d_phy_set_io", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_57067; switch_break: /* CIL Label */ ; } ldv_57067: { rtlphy->set_io_inprogress = 0U; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <---(%#x)\n", "rtl92d_phy_set_io", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_io_type); } } else { } } else { } return; } } bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw , enum io_type iotype ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool postprocessing ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; postprocessing = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> -->IO Cmd(%#x), set_io_inprogress(%d)\n", "rtl92d_phy_set_io_cmd", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )iotype, (int )rtlphy->set_io_inprogress); } } else { } } else { } { if ((unsigned int )iotype == 2U) { goto case_2; } else { } if ((unsigned int )iotype == 0U) { goto case_0; } else { } goto switch_default; case_2: /* CIL Label */ { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> [IO CMD] Resume DM after scan\n", "rtl92d_phy_set_io_cmd", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } postprocessing = 1; goto ldv_57079; case_0: /* CIL Label */ { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> [IO CMD] Pause DM before scan\n", "rtl92d_phy_set_io_cmd", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } postprocessing = 1; goto ldv_57079; switch_default: /* CIL Label */ { tmp___13 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92d_phy_set_io_cmd", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_57079; switch_break: /* CIL Label */ ; } ldv_57079: ; if ((int )postprocessing && (unsigned int )rtlphy->set_io_inprogress == 0U) { rtlphy->set_io_inprogress = 1U; rtlphy->current_io_type = iotype; } else { return (0); } { rtl92d_phy_set_io(hw); tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <--IO Type(%#x)\n", "rtl92d_phy_set_io_cmd", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )iotype); } } else { } } else { } return (1); } } static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )rtlpriv->rtlhal.macphymode == 0U) { { rtl_write_byte(rtlpriv, 17U, 43); } } else { } { rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 1536U, 0); rtl_write_byte(rtlpriv, 2U, 226); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 1314U, 0); } return; } } static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 u4btmp ; u8 delay ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; delay = 5U; rtl_write_byte(rtlpriv, 1314U, 255); rtl_set_rfreg(hw, 0, 0U, 1048575U, 0U); rtl_write_byte(rtlpriv, 1536U, 64); u4btmp = rtl_get_rfreg(hw, 0, 0U, 1048575U); } goto ldv_57093; ldv_57092: { rtl_write_byte(rtlpriv, 1536U, 0); rtl_set_rfreg(hw, 0, 0U, 1048575U, 0U); rtl_write_byte(rtlpriv, 1536U, 64); u4btmp = rtl_get_rfreg(hw, 0, 0U, 1048575U); delay = (u8 )((int )delay - 1); } ldv_57093: ; if (u4btmp != 0U && (unsigned int )delay != 0U) { goto ldv_57092; } else { } if ((unsigned int )delay == 0U) { { rtl_write_byte(rtlpriv, 1536U, 0); rtl_write_byte(rtlpriv, 2U, 226); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 1314U, 0); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Fail !!! Switch RF timeout\n", "_rtl92d_phy_set_rfsleep", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { rtl_write_byte(rtlpriv, 2U, 226); } if ((unsigned int )rtlpriv->rtlhal.macphymode == 0U) { { rtl_write_byte(rtlpriv, 17U, 34); } } else { } return; } } bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) { bool bresult ; struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_mac *mac ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; u8 i ; u8 queue_id ; struct rtl8192_tx_ring *ring ; bool rtstatus ; u32 InitializeCount ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; __u32 tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; __u32 tmp___21 ; __u32 tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; unsigned int tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; unsigned int tmp___32 ; int tmp___33 ; int tmp___34 ; long tmp___35 ; long tmp___36 ; int tmp___37 ; int tmp___38 ; long tmp___39 ; long tmp___40 ; { bresult = 1; rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); mac = & ((struct rtl_priv *)hw->priv)->mac80211; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ring = (struct rtl8192_tx_ring *)0; if ((unsigned int )rfpwr_state == (unsigned int )ppsc->rfpwr_state) { return (0); } else { } { if ((unsigned int )rfpwr_state == 0U) { goto case_0; } else { } if ((unsigned int )rfpwr_state == 2U) { goto case_2; } else { } if ((unsigned int )rfpwr_state == 1U) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )ppsc->rfpwr_state == 2U && ((unsigned long )ppsc->cur_ps_level & 8UL) != 0UL) { InitializeCount = 0U; ldv_57113: { InitializeCount = InitializeCount + 1U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> IPS Set eRf nic enable\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtstatus = rtl_ps_enable_nic(hw); } if (! rtstatus && InitializeCount <= 9U) { goto ldv_57113; } else { } ppsc->cur_ps_level = ppsc->cur_ps_level & 4294967287U; } else { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_sleep_jiffies); tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> awake, sleeped:%d ms state_inap:%x\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, tmp___3, (int )rtlpriv->psc.state_inap); } } else { } } else { } { ppsc->last_awake_jiffies = jiffies; _rtl92d_phy_set_rfon(hw); } } if ((unsigned int )mac->link_state == 2U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 2); } } else { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } } goto ldv_57115; case_2: /* CIL Label */ ; if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___3(); tmp___9 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> IPS Set eRf nic disable\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_ps_disable_nic(hw); ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } } else if (ppsc->rfoff_reason == 268435456U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } } else { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } } goto ldv_57115; case_1: /* CIL Label */ ; if ((unsigned int )ppsc->rfpwr_state == 2U) { return (0); } else { } queue_id = 0U; i = 0U; goto ldv_57118; ldv_57120: { ring = (struct rtl8192_tx_ring *)(& pcipriv->dev.tx_ring) + (unsigned long )queue_id; tmp___21 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___21 == 0U || (unsigned int )queue_id == 4U) { queue_id = (u8 )((int )queue_id + 1); goto ldv_57118; } else if ((rtlpci->pdev)->current_state != 0) { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id); } } else { } } else { } goto ldv_57119; } else { { tmp___19 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___19 != 0L) { { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___20 != 0L) { { tmp___16 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___17 = preempt_count___3(); tmp___18 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id, tmp___16); } } else { } } else { } { __const_udelay(42950UL); i = (u8 )((int )i + 1); } } if ((unsigned int )i > 63U) { { tmp___25 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___26 != 0L) { { tmp___22 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___23 = preempt_count___3(); tmp___24 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ERFOFF: %d times TcbBusyQueue[%d] = %d !\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, 64, (int )queue_id, tmp___22); } } else { } } else { } goto ldv_57119; } else { } ldv_57118: ; if ((unsigned int )queue_id <= 8U) { goto ldv_57120; } else { } ldv_57119: { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___31 != 0L) { { tmp___27 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_awake_jiffies); tmp___28 = preempt_count___3(); tmp___29 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> Set rfsleep awaked:%d ms\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, tmp___27); } } else { } } else { } { tmp___35 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___35 != 0L) { { tmp___36 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___36 != 0L) { { tmp___32 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_awake_jiffies); tmp___33 = preempt_count___3(); tmp___34 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> sleep awaked:%d ms state_inap:%x\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___34 & 2096896UL, ((unsigned long )tmp___33 & 0xffffffffffdfffffUL) != 0UL, tmp___32, (int )rtlpriv->psc.state_inap); } } else { } } else { } { ppsc->last_sleep_jiffies = jiffies; _rtl92d_phy_set_rfsleep(hw); } goto ldv_57115; switch_default: /* CIL Label */ { tmp___39 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___39 != 0L) { { tmp___40 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___40 != 0L) { { tmp___37 = preempt_count___3(); tmp___38 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> switch case not processed\n", "rtl92d_phy_set_rf_power_state", (unsigned long )tmp___38 & 2096896UL, ((unsigned long )tmp___37 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } bresult = 0; goto ldv_57115; switch_break: /* CIL Label */ ; } ldv_57115: ; if ((int )bresult) { ppsc->rfpwr_state = rfpwr_state; } else { } return (bresult); } } void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 offset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; offset = 248U; { if ((unsigned int )rtlhal->macphymode == 1U) { goto case_1; } else { } if ((unsigned int )rtlhal->macphymode == 0U) { goto case_0; } else { } if ((unsigned int )rtlhal->macphymode == 2U) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> MacPhyMode: DUALMAC_DUALPHY\n", "rtl92d_phy_config_macphymode", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_byte(rtlpriv, (u32 )offset, 243); } goto ldv_57130; case_0: /* CIL Label */ { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> MacPhyMode: SINGLEMAC_SINGLEPHY\n", "rtl92d_phy_config_macphymode", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_byte(rtlpriv, (u32 )offset, 244); } goto ldv_57130; case_2: /* CIL Label */ { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> MacPhyMode: DUALMAC_SINGLEPHY\n", "rtl92d_phy_config_macphymode", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_byte(rtlpriv, (u32 )offset, 241); } goto ldv_57130; switch_break: /* CIL Label */ ; } ldv_57130: ; return; } } void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; { if ((unsigned int )rtlhal->macphymode == 2U) { goto case_2; } else { } if ((unsigned int )rtlhal->macphymode == 0U) { goto case_0; } else { } if ((unsigned int )rtlhal->macphymode == 1U) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ rtlphy->rf_type = 2U; rtlhal->version = rtlhal->version | 32U; rtlhal->bandset = 2; rtlhal->current_bandtype = 0; goto ldv_57140; case_0: /* CIL Label */ rtlphy->rf_type = 2U; rtlhal->version = rtlhal->version | 32U; rtlhal->bandset = 2; rtlhal->current_bandtype = 0; goto ldv_57140; case_1: /* CIL Label */ rtlphy->rf_type = 0U; rtlhal->version = rtlhal->version & 4294967183U; if (rtlhal->interfaceindex == 0U) { rtlhal->bandset = 1; rtlhal->current_bandtype = 1; } else { rtlhal->bandset = 0; rtlhal->current_bandtype = 0; } goto ldv_57140; switch_default: /* CIL Label */ ; goto ldv_57140; switch_break: /* CIL Label */ ; } ldv_57140: ; return; } } u8 rtl92d_get_chnlgroup_fromarray(u8 chnl ) { u8 group ; u8 channel_info[59U] ; { channel_info[0] = 1U; channel_info[1] = 2U; channel_info[2] = 3U; channel_info[3] = 4U; channel_info[4] = 5U; channel_info[5] = 6U; channel_info[6] = 7U; channel_info[7] = 8U; channel_info[8] = 9U; channel_info[9] = 10U; channel_info[10] = 11U; channel_info[11] = 12U; channel_info[12] = 13U; channel_info[13] = 14U; channel_info[14] = 36U; channel_info[15] = 38U; channel_info[16] = 40U; channel_info[17] = 42U; channel_info[18] = 44U; channel_info[19] = 46U; channel_info[20] = 48U; channel_info[21] = 50U; channel_info[22] = 52U; channel_info[23] = 54U; channel_info[24] = 56U; channel_info[25] = 58U; channel_info[26] = 60U; channel_info[27] = 62U; channel_info[28] = 64U; channel_info[29] = 100U; channel_info[30] = 102U; channel_info[31] = 104U; channel_info[32] = 106U; channel_info[33] = 108U; channel_info[34] = 110U; channel_info[35] = 112U; channel_info[36] = 114U; channel_info[37] = 116U; channel_info[38] = 118U; channel_info[39] = 120U; channel_info[40] = 122U; channel_info[41] = 124U; channel_info[42] = 126U; channel_info[43] = 128U; channel_info[44] = 130U; channel_info[45] = 132U; channel_info[46] = 134U; channel_info[47] = 136U; channel_info[48] = 138U; channel_info[49] = 140U; channel_info[50] = 149U; channel_info[51] = 151U; channel_info[52] = 153U; channel_info[53] = 155U; channel_info[54] = 157U; channel_info[55] = 159U; channel_info[56] = 161U; channel_info[57] = 163U; channel_info[58] = 165U; if ((unsigned int )channel_info[(int )chnl] <= 3U) { group = 0U; } else if ((unsigned int )channel_info[(int )chnl] <= 9U) { group = 1U; } else if ((unsigned int )channel_info[(int )chnl] <= 14U) { group = 2U; } else if ((unsigned int )channel_info[(int )chnl] <= 44U) { group = 3U; } else if ((unsigned int )channel_info[(int )chnl] <= 54U) { group = 4U; } else if ((unsigned int )channel_info[(int )chnl] <= 64U) { group = 5U; } else if ((unsigned int )channel_info[(int )chnl] <= 112U) { group = 6U; } else if ((unsigned int )channel_info[(int )chnl] <= 126U) { group = 7U; } else if ((unsigned int )channel_info[(int )chnl] <= 140U) { group = 8U; } else if ((unsigned int )channel_info[(int )chnl] <= 153U) { group = 9U; } else if ((unsigned int )channel_info[(int )chnl] <= 159U) { group = 10U; } else { group = 11U; } return (group); } } void rtl92d_phy_set_poweron(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; unsigned long flags ; u8 value8 ; u16 i ; u32 mac_reg ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac_reg = rtlhal->interfaceindex == 0U ? 129U : 83U; if ((unsigned int )rtlhal->current_bandtype == 0U) { { value8 = rtl_read_byte(rtlpriv, mac_reg); value8 = (u8 )((unsigned int )value8 | 2U); rtl_write_byte(rtlpriv, mac_reg, (int )value8); } } else { { value8 = rtl_read_byte(rtlpriv, mac_reg); value8 = (unsigned int )value8 & 253U; rtl_write_byte(rtlpriv, mac_reg, (int )value8); } } if ((unsigned int )rtlhal->macphymode == 0U) { { value8 = rtl_read_byte(rtlpriv, 129U); rtl_write_byte(rtlpriv, 129U, (int )((unsigned int )value8 | 128U)); } } else { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(& globalmutex_power); } if (rtlhal->interfaceindex == 0U) { { value8 = rtl_read_byte(rtlpriv, 129U); rtl_write_byte(rtlpriv, 129U, (int )((unsigned int )value8 | 128U)); } } else { { value8 = rtl_read_byte(rtlpriv, 83U); rtl_write_byte(rtlpriv, 83U, (int )((unsigned int )value8 | 1U)); } } { value8 = rtl_read_byte(rtlpriv, 23U); ldv_spin_unlock_irqrestore_127___0(& globalmutex_power, flags); i = 0U; } goto ldv_57160; ldv_57159: ; if ((int )((signed char )value8) >= 0) { goto ldv_57158; } else { { __const_udelay(2147500UL); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129___0(& globalmutex_power); value8 = rtl_read_byte(rtlpriv, 23U); ldv_spin_unlock_irqrestore_127___0(& globalmutex_power, flags); } } i = (u16 )((int )i + 1); ldv_57160: ; if ((unsigned int )i <= 199U) { goto ldv_57159; } else { } ldv_57158: ; if ((unsigned int )i == 200U) { { printk("\017rtl8192de:%s(): Another mac power off over time\n", "rtl92d_phy_set_poweron"); } } else { } } return; } } void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; { if ((unsigned int )rtlpriv->rtlhal.macphymode == 1U) { goto case_1; } else { } if ((unsigned int )rtlpriv->rtlhal.macphymode == 2U) { goto case_2; } else { } if ((unsigned int )rtlpriv->rtlhal.macphymode == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { rtl_write_byte(rtlpriv, 1520U, 0); rtl_write_byte(rtlpriv, 1548U, 8); rtl_write_word(rtlpriv, 278U, 5119); } goto ldv_57167; case_2: /* CIL Label */ { rtl_write_byte(rtlpriv, 1520U, 248); rtl_write_byte(rtlpriv, 1548U, 8); rtl_write_word(rtlpriv, 278U, 5119); } goto ldv_57167; case_0: /* CIL Label */ { rtl_write_byte(rtlpriv, 1520U, 0); rtl_write_byte(rtlpriv, 1548U, 16); rtl_write_word(rtlpriv, 278U, 10239); } goto ldv_57167; switch_default: /* CIL Label */ ; goto ldv_57167; switch_break: /* CIL Label */ ; } ldv_57167: ; return; } } void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 rfpath ; u8 i ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> ==>\n", "rtl92d_update_bbrf_configuration", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )rtlhal->current_bandtype == 0U) { { rtl_set_bbreg(hw, 2168U, 1U, 0U); rtl_set_bbreg(hw, 2168U, 32768U, 0U); } if ((unsigned int )rtlhal->macphymode != 1U) { { rtl_set_bbreg(hw, 2168U, 65536U, 0U); rtl_set_bbreg(hw, 2168U, 2147483648U, 0U); } } else { } { rtl_set_bbreg(hw, 3192U, 192U, 0U); rtl_set_bbreg(hw, 3372U, 24576U, 0U); rtl_set_bbreg(hw, 2864U, 15728640U, 10U); rtl_set_bbreg(hw, 3200U, 4294967295U, 1073742080U); rtl_set_bbreg(hw, 3208U, 4294967295U, 1073742080U); } if ((unsigned int )rtlhal->macphymode == 1U) { { rtl_set_bbreg(hw, 2160U, 1120U, ((u32 )(((unsigned long )rtlefuse->eeprom_c9 & 8UL) >> 3) | ((u32 )rtlefuse->eeprom_c9 & 2U)) | (((u32 )rtlefuse->eeprom_cc & 2U) << 4U)); rtl_set_bbreg(hw, 2144U, 1120U, ((u32 )(((unsigned long )rtlefuse->eeprom_c9 & 4UL) >> 2) | (((u32 )rtlefuse->eeprom_c9 & 1U) << 1U)) | (((u32 )rtlefuse->eeprom_cc & 1U) << 5U)); rtl_set_bbreg(hw, 2168U, 32768U, 0U); } } else { { rtl_set_bbreg(hw, 2160U, 73401440U, (((((u32 )(((unsigned long )rtlefuse->eeprom_c9 & 8UL) >> 3) | ((u32 )rtlefuse->eeprom_c9 & 2U)) | (((u32 )rtlefuse->eeprom_cc & 2U) << 4U)) | (((u32 )rtlefuse->eeprom_c9 & 128U) << 9U)) | (((u32 )rtlefuse->eeprom_c9 & 32U) << 12U)) | (((u32 )rtlefuse->eeprom_cc & 8U) << 18U)); rtl_set_bbreg(hw, 2144U, 1120U, ((u32 )(((unsigned long )rtlefuse->eeprom_c9 & 4UL) >> 2) | (((u32 )rtlefuse->eeprom_c9 & 1U) << 1U)) | (((u32 )rtlefuse->eeprom_cc & 1U) << 5U)); rtl_set_bbreg(hw, 2148U, 1120U, ((u32 )(((unsigned long )rtlefuse->eeprom_c9 & 64UL) >> 6) | (u32 )(((unsigned long )rtlefuse->eeprom_c9 & 16UL) >> 3)) | (((u32 )rtlefuse->eeprom_cc & 4U) << 3U)); rtl_set_bbreg(hw, 2168U, 2147516416U, 0U); } } } else { { rtl_set_bbreg(hw, 2168U, 1U, 1U); rtl_set_bbreg(hw, 2168U, 32768U, 1U); } if ((unsigned int )rtlhal->macphymode != 1U) { { rtl_set_bbreg(hw, 2168U, 65536U, 1U); rtl_set_bbreg(hw, 2168U, 2147483648U, 1U); } } else { } { rtl_set_bbreg(hw, 3192U, 192U, 1U); rtl_set_bbreg(hw, 3372U, 24576U, 1U); rtl_set_bbreg(hw, 2864U, 15728640U, 0U); } if ((unsigned int )rtlefuse->internal_pa_5g[0] != 0U) { { rtl_set_bbreg(hw, 3200U, 4294967295U, 759169205U); } } else { { rtl_set_bbreg(hw, 3200U, 4294967295U, 536871040U); } } if ((unsigned int )rtlefuse->internal_pa_5g[1] != 0U) { { rtl_set_bbreg(hw, 3208U, 4294967295U, 759169205U); } } else { { rtl_set_bbreg(hw, 3208U, 4294967295U, 536871040U); } } if ((unsigned int )rtlhal->macphymode == 1U) { { rtl_set_bbreg(hw, 2160U, 1120U, (u32 )rtlefuse->eeprom_cc & 32U); rtl_set_bbreg(hw, 2144U, 1024U, (u32 )(((unsigned long )rtlefuse->eeprom_cc & 16UL) >> 4)); rtl_set_bbreg(hw, 2168U, 32768U, (u32 )(((unsigned long )rtlefuse->eeprom_cc & 16UL) >> 4)); } } else { { rtl_set_bbreg(hw, 2160U, 73401440U, ((u32 )rtlefuse->eeprom_cc & 32U) | (((u32 )rtlefuse->eeprom_cc & 128U) << 14U)); rtl_set_bbreg(hw, 2144U, 1024U, (u32 )(((unsigned long )rtlefuse->eeprom_cc & 16UL) >> 4)); rtl_set_bbreg(hw, 2148U, 1024U, (u32 )(((unsigned long )rtlefuse->eeprom_cc & 64UL) >> 6)); rtl_set_bbreg(hw, 2168U, 2147516416U, (u32 )(((unsigned long )rtlefuse->eeprom_cc & 16UL) >> 4) | (((u32 )rtlefuse->eeprom_cc & 64U) << 10U)); } } } { rtl_set_bbreg(hw, 3092U, 4294967295U, 1073742080U); rtl_set_bbreg(hw, 3100U, 4294967295U, 1073742080U); rtl_set_bbreg(hw, 3220U, 4026531840U, 0U); rtl_set_bbreg(hw, 3148U, 1426063360U, 0U); rtl_set_bbreg(hw, 3228U, 4026531840U, 0U); rtl_set_bbreg(hw, 3232U, 4026531840U, 0U); rtl_set_bbreg(hw, 3192U, 61440U, 0U); rfpath = 0U; } goto ldv_57182; ldv_57181: ; if ((unsigned int )rtlhal->current_bandtype == 0U) { { rtl_set_rfreg(hw, (enum radio_path )rfpath, 24U, 327936U, 0U); rtl_set_rfreg(hw, (enum radio_path )rfpath, 11U, 114688U, 7U); } } else { { rtl_set_rfreg(hw, (enum radio_path )rfpath, 24U, 327936U, 257U); } } rfpath = (u8 )((int )rfpath + 1); ldv_57182: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_57181; } else { } if ((unsigned int )rtlphy->rf_type == 0U) { { rtl_set_bbreg(hw, 3076U, 255U, 17U); rtl_set_bbreg(hw, 3332U, 15U, 1U); } if (rtlhal->interfaceindex == 0U) { { rtl_set_bbreg(hw, 2184U, 12288U, 3U); } } else { { rtl92d_phy_enable_anotherphy(hw, 0); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> MAC1 use DBI to update 0x888\n", "rtl92d_update_bbrf_configuration", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___7 = rtl92de_read_dword_dbi(hw, 2184, 8); rtl92de_write_dword_dbi(hw, 2184, tmp___7 | 12288U, 8); rtl92d_phy_powerdown_anotherphy(hw, 0); } } } else { { rtl_set_bbreg(hw, 3076U, 255U, 51U); rtl_set_bbreg(hw, 3332U, 15U, 3U); rtl_set_bbreg(hw, 2184U, 12288U, 0U); } } rfpath = 0U; goto ldv_57185; ldv_57184: { rtlphy->rfreg_chnlval[(int )rfpath] = rtl_get_rfreg(hw, (enum radio_path )rfpath, 24U, 1048575U); rtlphy->reg_rf3c[(int )rfpath] = rtl_get_rfreg(hw, (enum radio_path )rfpath, 60U, 1048575U); rfpath = (u8 )((int )rfpath + 1); } ldv_57185: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_57184; } else { } i = 0U; goto ldv_57188; ldv_57187: { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___3(); tmp___9 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> RF 0x18 = 0x%x\n", "rtl92d_update_bbrf_configuration", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, rtlphy->rfreg_chnlval[(int )i]); } } else { } } else { } i = (u8 )((int )i + 1); ldv_57188: ; if ((unsigned int )i <= 1U) { goto ldv_57187; } else { } { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8192de:%s():<%lx-%x> <==\n", "rtl92d_update_bbrf_configuration", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 u1btmp ; unsigned long flags ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if ((unsigned int )rtlhal->macphymode == 0U) { { u1btmp = rtl_read_byte(rtlpriv, 129U); rtl_write_byte(rtlpriv, 129U, (int )u1btmp & 127); } return (1); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131___0(& globalmutex_power); } if (rtlhal->interfaceindex == 0U) { { u1btmp = rtl_read_byte(rtlpriv, 129U); rtl_write_byte(rtlpriv, 129U, (int )u1btmp & 127); u1btmp = rtl_read_byte(rtlpriv, 83U); u1btmp = (unsigned int )u1btmp & 1U; } } else { { u1btmp = rtl_read_byte(rtlpriv, 83U); rtl_write_byte(rtlpriv, 83U, (int )u1btmp & 254); u1btmp = rtl_read_byte(rtlpriv, 129U); u1btmp = (unsigned int )u1btmp & 128U; } } if ((unsigned int )u1btmp != 0U) { { ldv_spin_unlock_irqrestore_127___0(& globalmutex_power, flags); } return (0); } else { } { u1btmp = rtl_read_byte(rtlpriv, 23U); u1btmp = (u8 )((unsigned int )u1btmp | 128U); rtl_write_byte(rtlpriv, 23U, (int )u1btmp); ldv_spin_unlock_irqrestore_127___0(& globalmutex_power, flags); } return (1); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___1(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_cck_and_rw_pagea_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rf_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_124___0(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_rf_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rf_lock_of_rtl_locks(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_power(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_power(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_power(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } void rtl92d_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 rfpath ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; { if ((int )bandwidth == 0) { goto case_0; } else { } if ((int )bandwidth == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ rfpath = 0U; goto ldv_55900; ldv_55899: { rtlphy->rfreg_chnlval[(int )rfpath] = (rtlphy->rfreg_chnlval[(int )rfpath] & 4294964223U) | 1024U; rtl_set_rfreg(hw, (enum radio_path )rfpath, 24U, 3072U, 1U); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> 20M RF 0x18 = 0x%x\n", "rtl92d_phy_rf6052_set_bandwidth", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, rtlphy->rfreg_chnlval[(int )rfpath]); } } else { } } else { } rfpath = (u8 )((int )rfpath + 1); ldv_55900: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_55899; } else { } goto ldv_55902; case_1: /* CIL Label */ rfpath = 0U; goto ldv_55905; ldv_55904: { rtlphy->rfreg_chnlval[(int )rfpath] = rtlphy->rfreg_chnlval[(int )rfpath] & 4294964223U; rtl_set_rfreg(hw, (enum radio_path )rfpath, 24U, 3072U, 0U); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> 40M RF 0x18 = 0x%x\n", "rtl92d_phy_rf6052_set_bandwidth", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, rtlphy->rfreg_chnlval[(int )rfpath]); } } else { } } else { } rfpath = (u8 )((int )rfpath + 1); ldv_55905: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_55904; } else { } goto ldv_55902; switch_default: /* CIL Label */ { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl92d_phy_rf6052_set_bandwidth", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )bandwidth); } } else { } } else { } goto ldv_55902; switch_break: /* CIL Label */ ; } ldv_55902: ; return; } } void rtl92d_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u32 tx_agc[2U] ; u32 tmpval ; bool turbo_scanoff ; u8 idx1 ; u8 idx2 ; u8 *ptr ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tx_agc[0] = 0U; tx_agc[1] = 0U; turbo_scanoff = 0; if ((unsigned int )rtlefuse->eeprom_regulatory != 0U) { turbo_scanoff = 1; } else { } if ((int )mac->act_scanning) { tx_agc[0] = 1061109567U; tx_agc[1] = 1061109567U; if ((int )turbo_scanoff) { idx1 = 0U; goto ldv_55923; ldv_55922: tx_agc[(int )idx1] = (u32 )((((int )*(ppowerlevel + (unsigned long )idx1) | ((int )*(ppowerlevel + (unsigned long )idx1) << 8)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 16)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 24)); idx1 = (u8 )((int )idx1 + 1); ldv_55923: ; if ((unsigned int )idx1 <= 1U) { goto ldv_55922; } else { } } else { } } else { idx1 = 0U; goto ldv_55926; ldv_55925: tx_agc[(int )idx1] = (u32 )((((int )*(ppowerlevel + (unsigned long )idx1) | ((int )*(ppowerlevel + (unsigned long )idx1) << 8)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 16)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 24)); idx1 = (u8 )((int )idx1 + 1); ldv_55926: ; if ((unsigned int )idx1 <= 1U) { goto ldv_55925; } else { } if ((unsigned int )rtlefuse->eeprom_regulatory == 0U) { tmpval = rtlphy->mcs_offset[0][6] + (rtlphy->mcs_offset[0][7] << 8); tx_agc[0] = tx_agc[0] + tmpval; tmpval = rtlphy->mcs_offset[0][14] + (rtlphy->mcs_offset[0][15] << 24); tx_agc[1] = tx_agc[1] + tmpval; } else { } } idx1 = 0U; goto ldv_55932; ldv_55931: ptr = (u8 *)(& tx_agc) + (unsigned long )idx1; idx2 = 0U; goto ldv_55929; ldv_55928: ; if ((unsigned int )*ptr > 63U) { *ptr = 63U; } else { } ptr = ptr + 1; idx2 = (u8 )((int )idx2 + 1); ldv_55929: ; if ((unsigned int )idx2 <= 3U) { goto ldv_55928; } else { } idx1 = (u8 )((int )idx1 + 1); ldv_55932: ; if ((unsigned int )idx1 <= 1U) { goto ldv_55931; } else { } { tmpval = tx_agc[0] & 255U; rtl_set_bbreg(hw, 3592U, 65280U, tmpval); tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, 3592); } } else { } { tmpval = tx_agc[0] >> 8; rtl_set_bbreg(hw, 2156U, 4294967040U, tmpval); tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, 2156); } } else { } { tmpval = tx_agc[1] >> 24; rtl_set_bbreg(hw, 2156U, 255U, tmpval); tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", tmpval, 2156); } } else { } { tmpval = tx_agc[1] & 16777215U; rtl_set_bbreg(hw, 2104U, 4294967040U, tmpval); tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n", tmpval, 2104); } } else { } return; } } static void _rtl92d_phy_get_power_base(struct ieee80211_hw *hw , u8 *ppowerlevel , u8 channel , u32 *ofdmbase , u32 *mcsbase ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u32 powerbase0 ; u32 powerbase1 ; u8 legacy_pwrdiff ; u8 ht20_pwrdiff ; u8 i ; u8 powerlevel[2U] ; long tmp ; long tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; i = 0U; goto ldv_55951; ldv_55950: { powerlevel[(int )i] = *(ppowerlevel + (unsigned long )i); legacy_pwrdiff = (u8 )rtlefuse->txpwr_legacyhtdiff[(int )i][(int )channel + -1]; powerbase0 = (u32 )((int )powerlevel[(int )i] + (int )legacy_pwrdiff); powerbase0 = (((powerbase0 << 24) | (powerbase0 << 16)) | (powerbase0 << 8)) | powerbase0; *(ofdmbase + (unsigned long )i) = powerbase0; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: [OFDM power base index rf(%c) = 0x%x]\n", (unsigned int )i == 0U ? 65 : 66, *(ofdmbase + (unsigned long )i)); } } else { } i = (u8 )((int )i + 1); ldv_55951: ; if ((unsigned int )i <= 1U) { goto ldv_55950; } else { } i = 0U; goto ldv_55954; ldv_55953: ; if ((unsigned int )rtlphy->current_chan_bw == 0U) { ht20_pwrdiff = (u8 )rtlefuse->txpwr_ht20diff[(int )i][(int )channel + -1]; powerlevel[(int )i] = (int )powerlevel[(int )i] + (int )ht20_pwrdiff; } else { } { powerbase1 = (u32 )powerlevel[(int )i]; powerbase1 = (((powerbase1 << 24) | (powerbase1 << 16)) | (powerbase1 << 8)) | powerbase1; *(mcsbase + (unsigned long )i) = powerbase1; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: [MCS power base index rf(%c) = 0x%x]\n", (unsigned int )i == 0U ? 65 : 66, *(mcsbase + (unsigned long )i)); } } else { } i = (u8 )((int )i + 1); ldv_55954: ; if ((unsigned int )i <= 1U) { goto ldv_55953; } else { } return; } } static u8 _rtl92d_phy_get_chnlgroup_bypg(u8 chnlindex ) { u8 group ; u8 channel_info[59U] ; { channel_info[0] = 1U; channel_info[1] = 2U; channel_info[2] = 3U; channel_info[3] = 4U; channel_info[4] = 5U; channel_info[5] = 6U; channel_info[6] = 7U; channel_info[7] = 8U; channel_info[8] = 9U; channel_info[9] = 10U; channel_info[10] = 11U; channel_info[11] = 12U; channel_info[12] = 13U; channel_info[13] = 14U; channel_info[14] = 36U; channel_info[15] = 38U; channel_info[16] = 40U; channel_info[17] = 42U; channel_info[18] = 44U; channel_info[19] = 46U; channel_info[20] = 48U; channel_info[21] = 50U; channel_info[22] = 52U; channel_info[23] = 54U; channel_info[24] = 56U; channel_info[25] = 58U; channel_info[26] = 60U; channel_info[27] = 62U; channel_info[28] = 64U; channel_info[29] = 100U; channel_info[30] = 102U; channel_info[31] = 104U; channel_info[32] = 106U; channel_info[33] = 108U; channel_info[34] = 110U; channel_info[35] = 112U; channel_info[36] = 114U; channel_info[37] = 116U; channel_info[38] = 118U; channel_info[39] = 120U; channel_info[40] = 122U; channel_info[41] = 124U; channel_info[42] = 126U; channel_info[43] = 128U; channel_info[44] = 130U; channel_info[45] = 132U; channel_info[46] = 134U; channel_info[47] = 136U; channel_info[48] = 138U; channel_info[49] = 140U; channel_info[50] = 149U; channel_info[51] = 151U; channel_info[52] = 153U; channel_info[53] = 155U; channel_info[54] = 157U; channel_info[55] = 159U; channel_info[56] = 161U; channel_info[57] = 163U; channel_info[58] = 165U; if ((unsigned int )channel_info[(int )chnlindex] <= 3U) { group = 0U; } else if ((unsigned int )channel_info[(int )chnlindex] <= 9U) { group = 1U; } else if ((unsigned int )channel_info[(int )chnlindex] <= 14U) { group = 2U; } else if ((unsigned int )channel_info[(int )chnlindex] <= 64U) { group = 6U; } else if ((unsigned int )channel_info[(int )chnlindex] <= 140U) { group = 7U; } else { group = 8U; } return (group); } } static void _rtl92d_get_txpower_writeval_by_regulatory(struct ieee80211_hw *hw , u8 channel , u8 index , u32 *powerbase0 , u32 *powerbase1 , u32 *p_outwriteval ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 i ; u8 chnlgroup ; u8 pwr_diff_limit[4U] ; u32 writeval ; u32 customer_limit ; u32 rf ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; chnlgroup = 0U; writeval = 0U; rf = 0U; goto ldv_55988; ldv_55987: ; { if ((int )rtlefuse->eeprom_regulatory == 0) { goto case_0; } else { } if ((int )rtlefuse->eeprom_regulatory == 1) { goto case_1; } else { } if ((int )rtlefuse->eeprom_regulatory == 2) { goto case_2; } else { } if ((int )rtlefuse->eeprom_regulatory == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { chnlgroup = 0U; writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: RTK better performance, writeval(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_55979; case_1: /* CIL Label */ ; if ((unsigned int )rtlphy->pwrgroup_cnt == 1U) { chnlgroup = 0U; } else { } if ((unsigned int )rtlphy->pwrgroup_cnt > 12U) { { chnlgroup = _rtl92d_phy_get_chnlgroup_bypg((int )((unsigned int )channel + 255U)); } if ((unsigned int )rtlphy->current_chan_bw == 0U) { chnlgroup = (u8 )((int )chnlgroup + 1); } else { chnlgroup = (unsigned int )chnlgroup + 4U; } { writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8192de: Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } } else { } goto ldv_55979; case_2: /* CIL Label */ { writeval = (unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf); tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8192de: Better regulatory, writeval(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_55979; case_3: /* CIL Label */ chnlgroup = 0U; if ((unsigned int )rtlphy->current_chan_bw == 1U) { { tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8192de: customer\'s limit, 40MHz rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, (int )rtlefuse->pwrgroup_ht40[rf][(int )channel + -1]); } } else { } } else { { tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8192de: customer\'s limit, 20MHz rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, (int )rtlefuse->pwrgroup_ht20[rf][(int )channel + -1]); } } else { } } i = 0U; goto ldv_55984; ldv_55983: pwr_diff_limit[(int )i] = (unsigned char )((rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((unsigned int )rtlphy->current_chan_bw == 1U) { if ((int )pwr_diff_limit[(int )i] > (int )rtlefuse->pwrgroup_ht40[rf][(int )channel + -1]) { pwr_diff_limit[(int )i] = rtlefuse->pwrgroup_ht40[rf][(int )channel + -1]; } else { } } else if ((int )pwr_diff_limit[(int )i] > (int )rtlefuse->pwrgroup_ht20[rf][(int )channel + -1]) { pwr_diff_limit[(int )i] = rtlefuse->pwrgroup_ht20[rf][(int )channel + -1]; } else { } i = (u8 )((int )i + 1); ldv_55984: ; if ((unsigned int )i <= 3U) { goto ldv_55983; } else { } { customer_limit = (u32 )(((((int )pwr_diff_limit[3] << 24) | ((int )pwr_diff_limit[2] << 16)) | ((int )pwr_diff_limit[1] << 8)) | (int )pwr_diff_limit[0]); tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8192de: Customer\'s limit rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, customer_limit); } } else { } { writeval = customer_limit + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8192de: Customer, writeval rf(%c)= 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_55979; switch_default: /* CIL Label */ { chnlgroup = 0U; writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8192de: RTK better performance, writeval rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_55979; switch_break: /* CIL Label */ ; } ldv_55979: *(p_outwriteval + (unsigned long )rf) = writeval; rf = rf + 1U; ldv_55988: ; if (rf <= 1U) { goto ldv_55987; } else { } return; } } static void _rtl92d_write_ofdm_power_reg(struct ieee80211_hw *hw , u8 index , u32 *pvalue ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u16 regoffset_a[6U] ; u16 regoffset_b[6U] ; u8 i ; u8 rf ; u8 pwr_val[4U] ; u32 writeval ; u16 regoffset ; long tmp ; u8 tmp___0 ; u8 tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; regoffset_a[0] = 3584U; regoffset_a[1] = 3588U; regoffset_a[2] = 3600U; regoffset_a[3] = 3604U; regoffset_a[4] = 3608U; regoffset_a[5] = 3612U; regoffset_b[0] = 2096U; regoffset_b[1] = 2100U; regoffset_b[2] = 2108U; regoffset_b[3] = 2120U; regoffset_b[4] = 2124U; regoffset_b[5] = 2152U; rf = 0U; goto ldv_56011; ldv_56010: writeval = *(pvalue + (unsigned long )rf); i = 0U; goto ldv_56005; ldv_56004: pwr_val[(int )i] = (unsigned char )((writeval & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((unsigned int )pwr_val[(int )i] > 63U) { pwr_val[(int )i] = 63U; } else { } i = (u8 )((int )i + 1); ldv_56005: ; if ((unsigned int )i <= 3U) { goto ldv_56004; } else { } writeval = (u32 )(((((int )pwr_val[3] << 24) | ((int )pwr_val[2] << 16)) | ((int )pwr_val[1] << 8)) | (int )pwr_val[0]); if ((unsigned int )rf == 0U) { regoffset = regoffset_a[(int )index]; } else { regoffset = regoffset_b[(int )index]; } { rtl_set_bbreg(hw, (u32 )regoffset, 4294967295U, writeval); tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8192de: Set 0x%x = %08x\n", (int )regoffset, writeval); } } else { } { tmp___0 = get_rf_type(rtlphy); } if ((unsigned int )tmp___0 == 2U && ((unsigned int )regoffset == 3612U || (unsigned int )regoffset == 2152U)) { goto _L; } else { { tmp___1 = get_rf_type(rtlphy); } if ((unsigned int )tmp___1 != 2U && ((unsigned int )regoffset == 3604U || (unsigned int )regoffset == 2120U)) { _L: /* CIL Label */ writeval = (u32 )pwr_val[3]; if ((unsigned int )regoffset == 3612U || (unsigned int )regoffset == 3604U) { regoffset = 3216U; } else { } if ((unsigned int )regoffset == 2152U || (unsigned int )regoffset == 2120U) { regoffset = 3224U; } else { } i = 0U; goto ldv_56008; ldv_56007: ; if ((unsigned int )i != 2U) { writeval = writeval > 8U ? writeval - 8U : 0U; } else { writeval = writeval > 6U ? writeval - 6U : 0U; } { rtl_write_byte(rtlpriv, (unsigned int )((int )regoffset + (int )i), (int )((unsigned char )writeval)); i = (u8 )((int )i + 1); } ldv_56008: ; if ((unsigned int )i <= 2U) { goto ldv_56007; } else { } } else { } } rf = (u8 )((int )rf + 1); ldv_56011: ; if ((unsigned int )rf <= 1U) { goto ldv_56010; } else { } return; } } void rtl92d_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel , u8 channel ) { u32 writeval[2U] ; u32 powerbase0[2U] ; u32 powerbase1[2U] ; u8 index ; { { _rtl92d_phy_get_power_base(hw, ppowerlevel, (int )channel, (u32 *)(& powerbase0), (u32 *)(& powerbase1)); index = 0U; } goto ldv_56023; ldv_56022: { _rtl92d_get_txpower_writeval_by_regulatory(hw, (int )channel, (int )index, (u32 *)(& powerbase0), (u32 *)(& powerbase1), (u32 *)(& writeval)); _rtl92d_write_ofdm_power_reg(hw, (int )index, (u32 *)(& writeval)); index = (u8 )((int )index + 1); } ldv_56023: ; if ((unsigned int )index <= 5U) { goto ldv_56022; } else { } return; } } bool rtl92d_phy_enable_anotherphy(struct ieee80211_hw *hw , bool bmac0 ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 u1btmp ; u8 direct ; u8 mac_reg ; u8 mac_on_bit ; bool bresult ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; direct = (int )bmac0 ? 12U : 8U; mac_reg = (int )bmac0 ? 83U : 129U; mac_on_bit = (int )bmac0 ? 1U : 128U; bresult = 1; rtlhal->during_mac0init_radiob = 0; rtlhal->during_mac1init_radioa = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> ===>\n", "rtl92d_phy_enable_anotherphy", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { u1btmp = rtl_read_byte(rtlpriv, (u32 )mac_reg); } if ((unsigned int )((int )u1btmp & (int )mac_on_bit) == 0U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> enable BB & RF\n", "rtl92d_phy_enable_anotherphy", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___7 = rtl92de_read_dword_dbi(hw, 0, (int )direct); rtl92de_write_dword_dbi(hw, 0, tmp___7 | 537067520U, (int )direct); } } else { bresult = 0; } { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> <===\n", "rtl92d_phy_enable_anotherphy", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (bresult); } } void rtl92d_phy_powerdown_anotherphy(struct ieee80211_hw *hw , bool bmac0 ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 u1btmp ; u8 direct ; u8 mac_reg ; u8 mac_on_bit ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & rtlpriv->rtlhal; direct = (int )bmac0 ? 12U : 8U; mac_reg = (int )bmac0 ? 83U : 129U; mac_on_bit = (int )bmac0 ? 1U : 128U; rtlhal->during_mac0init_radiob = 0; rtlhal->during_mac1init_radioa = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> ====>\n", "rtl92d_phy_powerdown_anotherphy", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { u1btmp = rtl_read_byte(rtlpriv, (u32 )mac_reg); } if ((unsigned int )((int )u1btmp & (int )mac_on_bit) == 0U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> power down\n", "rtl92d_phy_powerdown_anotherphy", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl92de_write_dword_dbi(hw, 2112, 0U, (int )direct); } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> <====\n", "rtl92d_phy_powerdown_anotherphy", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } bool rtl92d_phy_rf6052_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool rtstatus ; struct rtl_hal *rtlhal ; u32 u4_regvalue ; u8 rfpath ; struct bb_reg_def *pphyreg ; bool mac1_initradioa_first ; bool mac0_initradiob_first ; bool need_pwrdown_radioa ; bool need_pwrdown_radiob ; bool true_bpath ; bool tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtstatus = 1; rtlhal = & rtlpriv->rtlhal; u4_regvalue = 0U; mac1_initradioa_first = 0; mac0_initradiob_first = 0; need_pwrdown_radioa = 0; need_pwrdown_radiob = 0; true_bpath = 0; if ((unsigned int )rtlphy->rf_type == 0U) { rtlphy->num_total_rfpath = 1U; } else { rtlphy->num_total_rfpath = 2U; } if ((unsigned int )rtlhal->macphymode == 1U) { if ((unsigned int )rtlhal->current_bandtype == 0U && rtlhal->interfaceindex == 0U) { { tmp = rtl92d_phy_enable_anotherphy(hw, 1); } if ((int )tmp) { rtlphy->num_total_rfpath = 2U; mac0_initradiob_first = 1; } else { return (rtstatus); } } else if ((unsigned int )rtlhal->current_bandtype == 1U && rtlhal->interfaceindex == 1U) { { tmp___0 = rtl92d_phy_enable_anotherphy(hw, 0); } if ((int )tmp___0) { rtlphy->num_total_rfpath = 2U; mac1_initradioa_first = 1; } else { return (rtstatus); } } else if (rtlhal->interfaceindex == 1U) { true_bpath = 1; } else { } } else { } rfpath = 0U; goto ldv_56081; ldv_56080: ; if ((int )mac1_initradioa_first) { if ((unsigned int )rfpath == 0U) { rtlhal->during_mac1init_radioa = 1; need_pwrdown_radioa = 1; } else if ((unsigned int )rfpath == 1U) { rtlhal->during_mac1init_radioa = 0; mac1_initradioa_first = 0; rfpath = 0U; true_bpath = 1; rtlphy->num_total_rfpath = 1U; } else { } } else if ((int )mac0_initradiob_first) { if ((unsigned int )rfpath == 0U) { rtlhal->during_mac0init_radiob = 0; } else { } if ((unsigned int )rfpath == 1U) { rtlhal->during_mac0init_radiob = 1; mac0_initradiob_first = 0; need_pwrdown_radiob = 1; rfpath = 0U; true_bpath = 1; rtlphy->num_total_rfpath = 1U; } else { } } else { } pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; { if ((int )rfpath == 0) { goto case_0; } else { } if ((int )rfpath == 2) { goto case_2; } else { } if ((int )rfpath == 1) { goto case_1; } else { } if ((int )rfpath == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; case_2: /* CIL Label */ { u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs, 16U); } goto ldv_56065; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs, 1048576U); } goto ldv_56065; switch_break: /* CIL Label */ ; } ldv_56065: { rtl_set_bbreg(hw, pphyreg->rfintfe, 1048576U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfintfo, 16U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 1024U, 0U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 2048U, 0U); __const_udelay(4295UL); } { if ((int )rfpath == 0) { goto case_0___0; } else { } if ((int )rfpath == 1) { goto case_1___0; } else { } if ((int )rfpath == 2) { goto case_2___0; } else { } if ((int )rfpath == 3) { goto case_3___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ ; if ((int )true_bpath) { { rtstatus = rtl92d_phy_config_rf_with_headerfile(hw, 1, (enum radio_path )rfpath); } } else { { rtstatus = rtl92d_phy_config_rf_with_headerfile(hw, 0, (enum radio_path )rfpath); } } goto ldv_56069; case_1___0: /* CIL Label */ { rtstatus = rtl92d_phy_config_rf_with_headerfile(hw, 1, (enum radio_path )rfpath); } goto ldv_56069; case_2___0: /* CIL Label */ ; goto ldv_56069; case_3___0: /* CIL Label */ ; goto ldv_56069; switch_break___0: /* CIL Label */ ; } ldv_56069: ; { if ((int )rfpath == 0) { goto case_0___1; } else { } if ((int )rfpath == 2) { goto case_2___1; } else { } if ((int )rfpath == 1) { goto case_1___1; } else { } if ((int )rfpath == 3) { goto case_3___1; } else { } goto switch_break___1; case_0___1: /* CIL Label */ ; case_2___1: /* CIL Label */ { rtl_set_bbreg(hw, pphyreg->rfintfs, 16U, u4_regvalue); } goto ldv_56075; case_1___1: /* CIL Label */ ; case_3___1: /* CIL Label */ { rtl_set_bbreg(hw, pphyreg->rfintfs, 1048576U, u4_regvalue); } goto ldv_56075; switch_break___1: /* CIL Label */ ; } ldv_56075: ; if (! rtstatus) { { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count(); tmp___2 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Radio[%d] Fail!!", "rtl92d_phy_rf6052_config", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL, (int )rfpath); } } else { } } else { } goto phy_rf_cfg_fail; } else { } rfpath = (u8 )((int )rfpath + 1); ldv_56081: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_56080; } else { } if ((int )need_pwrdown_radioa) { { rtl92d_phy_powerdown_anotherphy(hw, 0); } } else if ((int )need_pwrdown_radiob) { { rtl92d_phy_powerdown_anotherphy(hw, 1); } } else { } { tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> <---\n", "rtl92d_phy_rf6052_config", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (rtstatus); phy_rf_cfg_fail: ; return (rtstatus); } } void ldv_stop(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_129(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_126(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_134(void) ; static void ldv_ldv_pre_probe_136(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_135(int retval ) ; static int ldv_ldv_post_probe_137(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_127(void) ; static void ldv_ldv_check_final_state_128(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; extern struct module __this_module ; __inline static int preempt_count___5(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7169; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7169; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7169; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7169; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7169: ; return (pfo_ret__ & 2147483647); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } static void *ldv_vzalloc_123(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField18.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } extern void skb_queue_purge(struct sk_buff_head * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_124(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_125(struct pci_driver *ldv_func_arg1 ) ; extern void rtnl_lock(void) ; static void ldv_rtnl_lock_130(void) ; static void ldv_rtnl_lock_132(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_131(void) ; static void ldv_rtnl_unlock_133(void) ; extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void rtl_fw_cb(struct firmware const * , void * ) ; extern bool rtl_btc_status_false(void) ; extern int rtl_pci_probe(struct pci_dev * , struct pci_device_id const * ) ; extern void rtl_pci_disconnect(struct pci_dev * ) ; extern int rtl_pci_suspend(struct device * ) ; extern int rtl_pci_resume(struct device * ) ; extern void rtl_phy_scan_operation_backup(struct ieee80211_hw * , u8 ) ; spinlock_t globalmutex_power ; spinlock_t globalmutex_for_fwdownload ; spinlock_t globalmutex_for_power_and_efuse ; void rtl92de_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , u8 *pbd_desc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) ; bool rtl92de_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *stats , struct ieee80211_rx_status *rx_status , u8 *p_desc , struct sk_buff *skb ) ; void rtl92de_set_desc(struct ieee80211_hw *hw , u8 *pdesc , bool istx , u8 desc_name , u8 *val ) ; u32 rtl92de_get_desc(u8 *p_desc , bool istx , u8 desc_name ) ; void rtl92de_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) ; void rtl92de_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool firstseg , bool lastseg , struct sk_buff *skb ) ; static void rtl92d_init_aspm_vars(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpci->const_amdpci_aspm = 0U; rtlpci->const_pci_aspm = 3U; rtlpci->const_devicepci_aspm_setting = 3U; rtlpci->const_hostpci_aspm_setting = 2U; rtlpci->const_hwsw_rfoff_d3 = 0U; rtlpci->const_support_pciaspm = 1U; return; } } static int rtl92d_init_sw_vars(struct ieee80211_hw *hw ) { int err ; u8 tid ; struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; void *tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpriv->dm.dm_initialgain_enable = 1; rtlpriv->dm.dm_flag = 0U; rtlpriv->dm.disable_framebursting = 0; rtlpriv->dm.thermalvalue = 0U; rtlpriv->dm.useramask = 1; if ((unsigned int )rtlpriv->rtlhal.current_bandtype == 1U) { rtlpriv->phy.current_channel = 36U; } else { rtlpriv->phy.current_channel = 1U; } if ((unsigned int )rtlpriv->rtlhal.macphymode != 0U) { rtlpriv->rtlhal.disable_amsdu_8k = 1; rtlpci->rxbuffersize = 4096U; } else { } rtlpci->transmit_config = 12800U; rtlpci->receive_config = 4026559246U; rtlpci->irq_mask[0] = 7007U; rtlpci->irq_mask[1] = 768U; rtlpriv->dbg.global_debuglevel = ((rtlpriv->cfg)->mod_params)->debug; rtlpriv->psc.inactiveps = ((rtlpriv->cfg)->mod_params)->inactiveps; rtlpriv->psc.swctrl_lps = ((rtlpriv->cfg)->mod_params)->swctrl_lps; rtlpriv->psc.fwctrl_lps = ((rtlpriv->cfg)->mod_params)->fwctrl_lps; if (! rtlpriv->psc.inactiveps) { { printk("\016rtl8192de: Power Save off (module option)\n"); } } else { } if (! rtlpriv->psc.fwctrl_lps) { { printk("\016rtl8192de: FW Power Save off (module option)\n"); } } else { } { rtlpriv->psc.reg_fwctrl_lps = 3U; rtlpriv->psc.reg_max_lps_awakeintvl = 5U; rtl92d_init_aspm_vars(hw); } if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 1U) { rtlpriv->psc.fwctrl_psmode = 1U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 2U) { rtlpriv->psc.fwctrl_psmode = 2U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 3U) { rtlpriv->psc.fwctrl_psmode = 3U; } else { } rtlpriv->rtlhal.earlymode_enable = 0; tid = 0U; goto ldv_57209; ldv_57208: { skb_queue_head_init((struct sk_buff_head *)(& rtlpriv->mac80211.skb_waitq) + (unsigned long )tid); tid = (u8 )((int )tid + 1); } ldv_57209: ; if ((unsigned int )tid <= 7U) { goto ldv_57208; } else { } { tmp = ldv_vzalloc_123(32768UL); rtlpriv->rtlhal.pfirmware = (u8 *)tmp; } if ((unsigned long )rtlpriv->rtlhal.pfirmware == (unsigned long )((u8 *)0U)) { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___5(); tmp___1 = preempt_count___5(); printk("\017rtl8192de:%s():<%lx-%x> Can\'t alloc buffer for fw\n", "rtl92d_init_sw_vars", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } { rtlpriv->max_fw_size = 32768; printk("\016rtl8192de: Driver for Realtek RTL8192DE WLAN interface\n"); printk("\016rtl8192de: Loading firmware file %s\n", (rtlpriv->cfg)->fw_name); err = request_firmware_nowait(& __this_module, 1, (char const *)(rtlpriv->cfg)->fw_name, rtlpriv->io.dev, 208U, (void *)hw, & rtl_fw_cb); } if (err != 0) { { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___5(); tmp___5 = preempt_count___5(); printk("\017rtl8192de:%s():<%lx-%x> Failed to request firmware!\n", "rtl92d_init_sw_vars", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } return (0); } } static void rtl92d_deinit_sw_vars(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tid ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned long )rtlpriv->rtlhal.pfirmware != (unsigned long )((u8 *)0U)) { { vfree((void const *)rtlpriv->rtlhal.pfirmware); rtlpriv->rtlhal.pfirmware = (u8 *)0U; } } else { } tid = 0U; goto ldv_57218; ldv_57217: { skb_queue_purge((struct sk_buff_head *)(& rtlpriv->mac80211.skb_waitq) + (unsigned long )tid); tid = (u8 )((int )tid + 1); } ldv_57218: ; if ((unsigned int )tid <= 7U) { goto ldv_57217; } else { } return; } } static struct rtl_hal_ops rtl8192de_hal_ops = {& rtl92d_init_sw_vars, & rtl92d_deinit_sw_vars, 0, & rtl92de_read_eeprom_info, & rtl92de_interrupt_recognized, & rtl92de_hw_init, & rtl92de_card_disable, & rtl92de_suspend, & rtl92de_resume, & rtl92de_enable_interrupt, & rtl92de_disable_interrupt, & rtl92de_set_network_type, & rtl92de_set_check_bssid, & rtl92d_phy_set_bw_mode, & rtl92d_phy_sw_chnl, & rtl92de_set_qos, & rtl92de_set_beacon_related_registers, & rtl92de_set_beacon_interval, & rtl92de_update_interrupt_mask, & rtl92de_get_hw_reg, & rtl92de_set_hw_reg, & rtl92de_update_hal_rate_tbl, 0, 0, 0, 0, & rtl92de_tx_fill_desc, 0, & rtl92de_tx_fill_cmddesc, & rtl92de_rx_query_desc, & rtl92de_update_channel_access_setting, & rtl92de_gpio_radio_on_off_checking, & rtl92d_dm_watchdog, & rtl_phy_scan_operation_backup, & rtl92d_phy_set_rf_power_state, & rtl92de_led_control, & rtl92de_set_desc, & rtl92de_get_desc, 0, & rtl92de_tx_polling, & rtl92de_enable_hw_security_config, & rtl92de_set_key, & rtl92de_init_sw_leds, 0, & rtl92d_phy_query_bb_reg, & rtl92d_phy_set_bb_reg, & rtl92d_phy_query_rf_reg, & rtl92d_phy_set_rf_reg, & rtl92d_linked_set_reg, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl_btc_status_false, 0, 0, 0, 0}; static struct rtl_mod_params rtl92de_mod_params = {0, 0, 1, 1, 0, (_Bool)0, (_Bool)0}; static struct rtl_hal_cfg rtl92de_hal_cfg = {2U, 1, (char *)"rtl8192de", (char *)"rtlwifi/rtl8192defw.bin", 0, 0, & rtl8192de_hal_ops, & rtl92de_mod_params, 0, {0U, 2U, 8U, 4U, 8U, 256U, 4096U, 1U, 0U, 0U, 0U, 52U, 48U, 0U, 48U, 32768U, 4096U, 32U, 0U, 256U, 32U, 512U, 0U, 0U, 1648U, 1652U, 1656U, 1660U, 1664U, 0U, 1U, 2U, 4U, 5U, 2147483648U, 1073741824U, 536870912U, 268435456U, 134217728U, 67108864U, 33554432U, 16777216U, 8388608U, 4194304U, 2097152U, 1048576U, 524288U, 262144U, 131072U, 65536U, 32768U, 16384U, 8192U, 4096U, 2048U, 1024U, 512U, 256U, 0U, 128U, 64U, 32U, 16U, 8U, 4U, 2U, 1U, 0U, 8352U, 0U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 19U, 27U}}; static struct pci_device_id rtl92de_pci_ids[3U] = { {4332U, 33171U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92de_hal_cfg)}, {4332U, 43U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92de_hal_cfg)}}; struct pci_device_id const __mod_pci__rtl92de_pci_ids_device_table[3U] ; static struct dev_pm_ops const rtlwifi_pm_ops = {0, 0, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver rtl92de_driver = {{0, 0}, "rtl8192de", (struct pci_device_id const *)(& rtl92de_pci_ids), & rtl_pci_probe, & rtl_pci_disconnect, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & rtlwifi_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rtl92de_module_init(void) { int ret ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; { { ret = 0; spinlock_check(& globalmutex_power); __raw_spin_lock_init(& globalmutex_power.__annonCompField18.rlock, "&(&globalmutex_power)->rlock", & __key); spinlock_check(& globalmutex_for_fwdownload); __raw_spin_lock_init(& globalmutex_for_fwdownload.__annonCompField18.rlock, "&(&globalmutex_for_fwdownload)->rlock", & __key___0); spinlock_check(& globalmutex_for_power_and_efuse); __raw_spin_lock_init(& globalmutex_for_power_and_efuse.__annonCompField18.rlock, "&(&globalmutex_for_power_and_efuse)->rlock", & __key___1); ret = ldv___pci_register_driver_124(& rtl92de_driver, & __this_module, "rtl8192de"); } if (ret != 0) { { printk("\017rtl8192de:%s(): No device found\n", "rtl92de_module_init"); } } else { } return (ret); } } static void rtl92de_module_exit(void) { { { ldv_pci_unregister_driver_125(& rtl92de_driver); } return; } } void ldv_EMGentry_exit_rtl92de_module_exit_6_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_rtl92de_module_init_6_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_4_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_ieee80211_instance_1_6_4(void) ; void ldv_dispatch_deregister_platform_instance_6_6_5(void) ; void ldv_dispatch_pm_deregister_3_5(void) ; void ldv_dispatch_pm_register_3_6(void) ; void ldv_dispatch_register_5_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_ieee80211_instance_1_6_6(void) ; void ldv_dispatch_register_platform_instance_6_6_7(void) ; void ldv_entry_EMGentry_6(void *arg0 ) ; int main(void) ; void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) ; void ldv_ieee80211_instance_callback_0_10(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_19(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_20(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_21(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_22(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , _Bool arg4 , struct sk_buff *arg5 ) ; void ldv_ieee80211_instance_callback_0_25(void (*arg0)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) , struct ieee80211_hw *arg1 , struct ieee80211_hdr *arg2 , unsigned char *arg3 , unsigned char *arg4 , struct ieee80211_tx_info *arg5 , struct ieee80211_sta *arg6 , struct sk_buff *arg7 , unsigned char arg8 , struct rtl_tcb_desc *arg9 ) ; void ldv_ieee80211_instance_callback_0_28(unsigned int (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_ieee80211_instance_callback_0_31(_Bool (*arg0)(void) ) ; void ldv_ieee80211_instance_callback_0_32(unsigned int (*arg0)(unsigned char * , _Bool , unsigned char ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 ) ; void ldv_ieee80211_instance_callback_0_35(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_ieee80211_instance_callback_0_38(unsigned int (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_41(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_42(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_43(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_44(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_45(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_46(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_47(void (*arg0)(struct ieee80211_hw * , unsigned int * , unsigned int * ) , struct ieee80211_hw *arg1 , unsigned int *arg2 , unsigned int *arg3 ) ; void ldv_ieee80211_instance_callback_0_50(void (*arg0)(struct ieee80211_hw * , enum led_ctl_mode ) , struct ieee80211_hw *arg1 , enum led_ctl_mode arg2 ) ; void ldv_ieee80211_instance_callback_0_51(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_52(_Bool (*arg0)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct rtl_stats *arg2 , struct ieee80211_rx_status *arg3 , unsigned char *arg4 , struct sk_buff *arg5 ) ; void ldv_ieee80211_instance_callback_0_55(_Bool (*arg0)(struct ieee80211_hw * , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 ) ; void ldv_ieee80211_instance_callback_0_58(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_59(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_62(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_65(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_66(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_67(void (*arg0)(struct ieee80211_hw * , enum nl80211_channel_type ) , struct ieee80211_hw *arg1 , enum nl80211_channel_type arg2 ) ; void ldv_ieee80211_instance_callback_0_68(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_69(void (*arg0)(struct ieee80211_hw * , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 ) ; void ldv_ieee80211_instance_callback_0_72(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , unsigned char arg4 , unsigned char *arg5 ) ; void ldv_ieee80211_instance_callback_0_75(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_ieee80211_instance_callback_0_78(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , _Bool arg4 , unsigned char arg5 , _Bool arg6 , _Bool arg7 ) ; void ldv_ieee80211_instance_callback_0_81(int (*arg0)(struct ieee80211_hw * , enum nl80211_iftype ) , struct ieee80211_hw *arg1 , enum nl80211_iftype arg2 ) ; void ldv_ieee80211_instance_callback_0_82(void (*arg0)(struct ieee80211_hw * , int ) , struct ieee80211_hw *arg1 , int arg2 ) ; void ldv_ieee80211_instance_callback_0_85(_Bool (*arg0)(struct ieee80211_hw * , enum rf_pwrstate ) , struct ieee80211_hw *arg1 , enum rf_pwrstate arg2 ) ; void ldv_ieee80211_instance_callback_0_86(void (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) ; void ldv_ieee80211_instance_callback_0_89(unsigned char (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_90(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_93(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_ieee80211_instance_callback_0_96(void (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , unsigned char arg3 ) ; void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_3(void *arg0 ) ; void ldv_pm_pm_ops_instance_2(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_6 ; void ldv_EMGentry_exit_rtl92de_module_exit_6_2(void (*arg0)(void) ) { { { rtl92de_module_exit(); } return; } } int ldv_EMGentry_init_rtl92de_module_init_6_11(int (*arg0)(void) ) { int tmp ; { { tmp = rtl92de_module_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_5_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_5_pci_driver_pci_driver = arg1; ldv_dispatch_register_5_2(ldv_5_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_4_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_ieee80211_instance_1_6_4(void) { { return; } } void ldv_dispatch_deregister_platform_instance_6_6_5(void) { { return; } } void ldv_dispatch_pm_deregister_3_5(void) { { return; } } void ldv_dispatch_pm_register_3_6(void) { struct ldv_struct_platform_instance_3 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pm_pm_ops_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_5_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_pci_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_pci_pci_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_ieee80211_instance_1_6_6(void) { struct ldv_struct_platform_instance_3 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_ieee80211_ieee80211_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_platform_instance_6_6_7(void) { struct ldv_struct_platform_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pm_platform_instance_3((void *)cf_arg_3); } return; } } void ldv_entry_EMGentry_6(void *arg0 ) { void (*ldv_6_exit_rtl92de_module_exit_default)(void) ; int (*ldv_6_init_rtl92de_module_init_default)(void) ; int ldv_6_ret_default ; int tmp ; int tmp___0 ; { { ldv_6_ret_default = ldv_EMGentry_init_rtl92de_module_init_6_11(ldv_6_init_rtl92de_module_init_default); ldv_6_ret_default = ldv_ldv_post_init_126(ldv_6_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_6_ret_default != 0); ldv_ldv_check_final_state_127(); ldv_stop(); } return; } else { { ldv_assume(ldv_6_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_6_6_7(); ldv_dispatch_register_ieee80211_instance_1_6_6(); ldv_dispatch_deregister_platform_instance_6_6_5(); ldv_dispatch_deregister_ieee80211_instance_1_6_4(); } } else { } { ldv_EMGentry_exit_rtl92de_module_exit_6_2(ldv_6_exit_rtl92de_module_exit_default); ldv_ldv_check_final_state_128(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_129(); ldv_entry_EMGentry_6((void *)0); } return 0; } } void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) { void (*ldv_0_callback_deinit_sw_vars)(struct ieee80211_hw * ) ; void (*ldv_0_callback_disable_interrupt)(struct ieee80211_hw * ) ; void (*ldv_0_callback_dm_watchdog)(struct ieee80211_hw * ) ; void (*ldv_0_callback_enable_hw_sec)(struct ieee80211_hw * ) ; void (*ldv_0_callback_enable_interrupt)(struct ieee80211_hw * ) ; void (*ldv_0_callback_fill_tx_cmddesc)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) ; void (*ldv_0_callback_fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) ; unsigned int (*ldv_0_callback_get_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int ) ; _Bool (*ldv_0_callback_get_btc_status)(void) ; unsigned int (*ldv_0_callback_get_desc)(unsigned char * , _Bool , unsigned char ) ; void (*ldv_0_callback_get_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) ; unsigned int (*ldv_0_callback_get_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) ; void (*ldv_0_callback_hw_disable)(struct ieee80211_hw * ) ; int (*ldv_0_callback_hw_init)(struct ieee80211_hw * ) ; void (*ldv_0_callback_hw_resume)(struct ieee80211_hw * ) ; void (*ldv_0_callback_hw_suspend)(struct ieee80211_hw * ) ; void (*ldv_0_callback_init_sw_leds)(struct ieee80211_hw * ) ; int (*ldv_0_callback_init_sw_vars)(struct ieee80211_hw * ) ; void (*ldv_0_callback_interrupt_recognized)(struct ieee80211_hw * , unsigned int * , unsigned int * ) ; void (*ldv_0_callback_led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; void (*ldv_0_callback_linked_set_reg)(struct ieee80211_hw * ) ; _Bool (*ldv_0_callback_query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) ; _Bool (*ldv_0_callback_radio_onoff_checking)(struct ieee80211_hw * , unsigned char * ) ; void (*ldv_0_callback_read_eeprom_info)(struct ieee80211_hw * ) ; void (*ldv_0_callback_scan_operation_backup)(struct ieee80211_hw * , unsigned char ) ; void (*ldv_0_callback_set_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) ; void (*ldv_0_callback_set_bcn_intv)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_bcn_reg)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; void (*ldv_0_callback_set_channel_access)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_chk_bssid)(struct ieee80211_hw * , _Bool ) ; void (*ldv_0_callback_set_desc)(struct ieee80211_hw * , unsigned char * , _Bool , unsigned char , unsigned char * ) ; void (*ldv_0_callback_set_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) ; void (*ldv_0_callback_set_key)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) ; int (*ldv_0_callback_set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*ldv_0_callback_set_qos)(struct ieee80211_hw * , int ) ; _Bool (*ldv_0_callback_set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*ldv_0_callback_set_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) ; unsigned char (*ldv_0_callback_switch_channel)(struct ieee80211_hw * ) ; void (*ldv_0_callback_tx_polling)(struct ieee80211_hw * , unsigned char ) ; void (*ldv_0_callback_update_interrupt_mask)(struct ieee80211_hw * , unsigned int , unsigned int ) ; void (*ldv_0_callback_update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) ; struct ieee80211_ops *ldv_0_container_ieee80211_ops ; unsigned char *ldv_0_ldv_param_22_1_default ; _Bool ldv_0_ldv_param_22_2_default ; _Bool ldv_0_ldv_param_22_3_default ; unsigned char *ldv_0_ldv_param_25_2_default ; unsigned char *ldv_0_ldv_param_25_3_default ; unsigned char ldv_0_ldv_param_25_7_default ; unsigned int ldv_0_ldv_param_28_1_default ; unsigned int ldv_0_ldv_param_28_2_default ; unsigned char *ldv_0_ldv_param_32_0_default ; _Bool ldv_0_ldv_param_32_1_default ; unsigned char ldv_0_ldv_param_32_2_default ; unsigned char ldv_0_ldv_param_35_1_default ; unsigned char *ldv_0_ldv_param_35_2_default ; unsigned int ldv_0_ldv_param_38_2_default ; unsigned int ldv_0_ldv_param_38_3_default ; unsigned int *ldv_0_ldv_param_47_1_default ; unsigned int *ldv_0_ldv_param_47_2_default ; unsigned char *ldv_0_ldv_param_52_3_default ; unsigned char *ldv_0_ldv_param_55_1_default ; unsigned char ldv_0_ldv_param_59_1_default ; unsigned int ldv_0_ldv_param_62_1_default ; unsigned int ldv_0_ldv_param_62_2_default ; unsigned int ldv_0_ldv_param_62_3_default ; _Bool ldv_0_ldv_param_69_1_default ; unsigned char *ldv_0_ldv_param_72_1_default ; _Bool ldv_0_ldv_param_72_2_default ; unsigned char ldv_0_ldv_param_72_3_default ; unsigned char *ldv_0_ldv_param_72_4_default ; unsigned char ldv_0_ldv_param_75_1_default ; unsigned char *ldv_0_ldv_param_75_2_default ; unsigned int ldv_0_ldv_param_78_1_default ; unsigned char *ldv_0_ldv_param_78_2_default ; _Bool ldv_0_ldv_param_78_3_default ; unsigned char ldv_0_ldv_param_78_4_default ; _Bool ldv_0_ldv_param_78_5_default ; _Bool ldv_0_ldv_param_78_6_default ; int ldv_0_ldv_param_82_1_default ; unsigned int ldv_0_ldv_param_86_2_default ; unsigned int ldv_0_ldv_param_86_3_default ; unsigned int ldv_0_ldv_param_86_4_default ; unsigned char ldv_0_ldv_param_90_1_default ; unsigned int ldv_0_ldv_param_93_1_default ; unsigned int ldv_0_ldv_param_93_2_default ; unsigned char ldv_0_ldv_param_96_2_default ; enum led_ctl_mode ldv_0_resource_enum_led_ctl_mode ; enum nl80211_channel_type ldv_0_resource_enum_nl80211_channel_type ; enum nl80211_iftype ldv_0_resource_enum_nl80211_iftype ; enum radio_path ldv_0_resource_enum_radio_path ; enum rf_pwrstate ldv_0_resource_enum_rf_pwrstate ; struct ieee80211_hw *ldv_0_resource_ieee80211_hw ; struct ieee80211_hdr *ldv_0_resource_struct_ieee80211_hdr_ptr ; struct ieee80211_rx_status *ldv_0_resource_struct_ieee80211_rx_status_ptr ; struct ieee80211_sta *ldv_0_resource_struct_ieee80211_sta_ptr ; struct ieee80211_tx_info *ldv_0_resource_struct_ieee80211_tx_info_ptr ; struct rtl_stats *ldv_0_resource_struct_rtl_stats_ptr ; struct rtl_tcb_desc *ldv_0_resource_struct_rtl_tcb_desc_ptr ; struct sk_buff *ldv_0_resource_struct_sk_buff_ptr ; int ldv_0_ret_default ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; { goto ldv_main_0; return; ldv_main_0: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_130(); } if ((unsigned long )ldv_0_container_ieee80211_ops->start != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_0_ret_default = ldv_ieee80211_instance_start_0_6(ldv_0_container_ieee80211_ops->start, ldv_0_resource_ieee80211_hw); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); ldv_rtnl_unlock_131(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_started_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { return; } return; ldv_started_0: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } if (tmp___1 == 15) { goto case_15; } else { } if (tmp___1 == 16) { goto case_16; } else { } if (tmp___1 == 17) { goto case_17; } else { } if (tmp___1 == 18) { goto case_18; } else { } if (tmp___1 == 19) { goto case_19; } else { } if (tmp___1 == 20) { goto case_20; } else { } if (tmp___1 == 21) { goto case_21; } else { } if (tmp___1 == 22) { goto case_22; } else { } if (tmp___1 == 23) { goto case_23; } else { } if (tmp___1 == 24) { goto case_24; } else { } if (tmp___1 == 25) { goto case_25; } else { } if (tmp___1 == 26) { goto case_26; } else { } if (tmp___1 == 27) { goto case_27; } else { } if (tmp___1 == 28) { goto case_28; } else { } if (tmp___1 == 29) { goto case_29; } else { } if (tmp___1 == 30) { goto case_30; } else { } if (tmp___1 == 31) { goto case_31; } else { } if (tmp___1 == 32) { goto case_32; } else { } if (tmp___1 == 33) { goto case_33; } else { } if (tmp___1 == 34) { goto case_34; } else { } if (tmp___1 == 35) { goto case_35; } else { } if (tmp___1 == 36) { goto case_36; } else { } if (tmp___1 == 37) { goto case_37; } else { } if (tmp___1 == 38) { goto case_38; } else { } if (tmp___1 == 39) { goto case_39; } else { } if (tmp___1 == 40) { goto case_40; } else { } if (tmp___1 == 41) { goto case_41; } else { } if (tmp___1 == 42) { goto case_42; } else { } if (tmp___1 == 43) { goto case_43; } else { } if (tmp___1 == 44) { goto case_44; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_0_96(ldv_0_callback_update_rate_tbl, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_sta_ptr, (int )ldv_0_ldv_param_96_2_default); } goto ldv_started_0; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_0_93(ldv_0_callback_update_interrupt_mask, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_93_1_default, ldv_0_ldv_param_93_2_default); } goto ldv_started_0; goto ldv_started_0; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_0_90(ldv_0_callback_tx_polling, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_90_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_0_89(ldv_0_callback_switch_channel, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_0_86(ldv_0_callback_set_rfreg, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_radio_path, ldv_0_ldv_param_86_2_default, ldv_0_ldv_param_86_3_default, ldv_0_ldv_param_86_4_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_0_85(ldv_0_callback_set_rf_power_state, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_rf_pwrstate); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_7: /* CIL Label */ { ldv_ieee80211_instance_callback_0_82(ldv_0_callback_set_qos, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_82_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_0_81(ldv_0_callback_set_network_type, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_nl80211_iftype); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_9: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_0_ldv_param_78_2_default = (unsigned char *)tmp___2; ldv_ieee80211_instance_callback_0_78(ldv_0_callback_set_key, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_78_1_default, ldv_0_ldv_param_78_2_default, (int )ldv_0_ldv_param_78_3_default, (int )ldv_0_ldv_param_78_4_default, (int )ldv_0_ldv_param_78_5_default, (int )ldv_0_ldv_param_78_6_default); ldv_free((void *)ldv_0_ldv_param_78_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_0_ldv_param_75_2_default = (unsigned char *)tmp___3; ldv_ieee80211_instance_callback_0_75(ldv_0_callback_set_hw_reg, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_75_1_default, ldv_0_ldv_param_75_2_default); ldv_free((void *)ldv_0_ldv_param_75_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_11: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_0_ldv_param_72_1_default = (unsigned char *)tmp___4; tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_72_4_default = (unsigned char *)tmp___5; ldv_ieee80211_instance_callback_0_72(ldv_0_callback_set_desc, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_72_1_default, (int )ldv_0_ldv_param_72_2_default, (int )ldv_0_ldv_param_72_3_default, ldv_0_ldv_param_72_4_default); ldv_free((void *)ldv_0_ldv_param_72_1_default); ldv_free((void *)ldv_0_ldv_param_72_4_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_12: /* CIL Label */ { ldv_ieee80211_instance_callback_0_69(ldv_0_callback_set_chk_bssid, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_69_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_0_68(ldv_0_callback_set_channel_access, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_14: /* CIL Label */ { ldv_ieee80211_instance_callback_0_67(ldv_0_callback_set_bw_mode, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_nl80211_channel_type); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_15: /* CIL Label */ { ldv_ieee80211_instance_callback_0_66(ldv_0_callback_set_bcn_reg, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_16: /* CIL Label */ { ldv_ieee80211_instance_callback_0_65(ldv_0_callback_set_bcn_intv, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_17: /* CIL Label */ { ldv_ieee80211_instance_callback_0_62(ldv_0_callback_set_bbreg, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_62_1_default, ldv_0_ldv_param_62_2_default, ldv_0_ldv_param_62_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_18: /* CIL Label */ { ldv_ieee80211_instance_callback_0_59(ldv_0_callback_scan_operation_backup, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_59_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_19: /* CIL Label */ { ldv_ieee80211_instance_callback_0_58(ldv_0_callback_read_eeprom_info, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_20: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_55_1_default = (unsigned char *)tmp___6; ldv_ieee80211_instance_callback_0_55(ldv_0_callback_radio_onoff_checking, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_55_1_default); ldv_free((void *)ldv_0_ldv_param_55_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_21: /* CIL Label */ { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_52_3_default = (unsigned char *)tmp___7; ldv_ieee80211_instance_callback_0_52(ldv_0_callback_query_rx_desc, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_rtl_stats_ptr, ldv_0_resource_struct_ieee80211_rx_status_ptr, ldv_0_ldv_param_52_3_default, ldv_0_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_0_ldv_param_52_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_22: /* CIL Label */ { ldv_ieee80211_instance_callback_0_51(ldv_0_callback_linked_set_reg, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_23: /* CIL Label */ { ldv_ieee80211_instance_callback_0_50(ldv_0_callback_led_control, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_led_ctl_mode); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_24: /* CIL Label */ { tmp___8 = ldv_xmalloc(4UL); ldv_0_ldv_param_47_1_default = (unsigned int *)tmp___8; tmp___9 = ldv_xmalloc(4UL); ldv_0_ldv_param_47_2_default = (unsigned int *)tmp___9; ldv_ieee80211_instance_callback_0_47(ldv_0_callback_interrupt_recognized, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_47_1_default, ldv_0_ldv_param_47_2_default); ldv_free((void *)ldv_0_ldv_param_47_1_default); ldv_free((void *)ldv_0_ldv_param_47_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_25: /* CIL Label */ { ldv_ieee80211_instance_callback_0_46(ldv_0_callback_init_sw_vars, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_26: /* CIL Label */ { ldv_ieee80211_instance_callback_0_45(ldv_0_callback_init_sw_leds, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_27: /* CIL Label */ { ldv_ieee80211_instance_callback_0_44(ldv_0_callback_hw_suspend, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_28: /* CIL Label */ { ldv_ieee80211_instance_callback_0_43(ldv_0_callback_hw_resume, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_29: /* CIL Label */ { ldv_ieee80211_instance_callback_0_42(ldv_0_callback_hw_init, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_30: /* CIL Label */ { ldv_ieee80211_instance_callback_0_41(ldv_0_callback_hw_disable, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_31: /* CIL Label */ { ldv_ieee80211_instance_callback_0_38(ldv_0_callback_get_rfreg, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_radio_path, ldv_0_ldv_param_38_2_default, ldv_0_ldv_param_38_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_32: /* CIL Label */ { tmp___10 = ldv_xmalloc(1UL); ldv_0_ldv_param_35_2_default = (unsigned char *)tmp___10; ldv_ieee80211_instance_callback_0_35(ldv_0_callback_get_hw_reg, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_35_1_default, ldv_0_ldv_param_35_2_default); ldv_free((void *)ldv_0_ldv_param_35_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_33: /* CIL Label */ { tmp___11 = ldv_xmalloc(1UL); ldv_0_ldv_param_32_0_default = (unsigned char *)tmp___11; ldv_ieee80211_instance_callback_0_32(ldv_0_callback_get_desc, ldv_0_ldv_param_32_0_default, (int )ldv_0_ldv_param_32_1_default, (int )ldv_0_ldv_param_32_2_default); ldv_free((void *)ldv_0_ldv_param_32_0_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_34: /* CIL Label */ { ldv_ieee80211_instance_callback_0_31(ldv_0_callback_get_btc_status); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_35: /* CIL Label */ { ldv_ieee80211_instance_callback_0_28(ldv_0_callback_get_bbreg, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_28_1_default, ldv_0_ldv_param_28_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_36: /* CIL Label */ { tmp___12 = ldv_xmalloc(1UL); ldv_0_ldv_param_25_2_default = (unsigned char *)tmp___12; tmp___13 = ldv_xmalloc(1UL); ldv_0_ldv_param_25_3_default = (unsigned char *)tmp___13; ldv_ieee80211_instance_callback_0_25(ldv_0_callback_fill_tx_desc, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_hdr_ptr, ldv_0_ldv_param_25_2_default, ldv_0_ldv_param_25_3_default, ldv_0_resource_struct_ieee80211_tx_info_ptr, ldv_0_resource_struct_ieee80211_sta_ptr, ldv_0_resource_struct_sk_buff_ptr, (int )ldv_0_ldv_param_25_7_default, ldv_0_resource_struct_rtl_tcb_desc_ptr); ldv_free((void *)ldv_0_ldv_param_25_2_default); ldv_free((void *)ldv_0_ldv_param_25_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_37: /* CIL Label */ { tmp___14 = ldv_xmalloc(1UL); ldv_0_ldv_param_22_1_default = (unsigned char *)tmp___14; ldv_ieee80211_instance_callback_0_22(ldv_0_callback_fill_tx_cmddesc, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_22_1_default, (int )ldv_0_ldv_param_22_2_default, (int )ldv_0_ldv_param_22_3_default, ldv_0_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_0_ldv_param_22_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_38: /* CIL Label */ { ldv_ieee80211_instance_callback_0_21(ldv_0_callback_enable_interrupt, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_39: /* CIL Label */ { ldv_ieee80211_instance_callback_0_20(ldv_0_callback_enable_hw_sec, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_40: /* CIL Label */ { ldv_ieee80211_instance_callback_0_19(ldv_0_callback_dm_watchdog, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_41: /* CIL Label */ { ldv_ieee80211_instance_callback_0_18(ldv_0_callback_disable_interrupt, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_42: /* CIL Label */ ; if ((unsigned long )ldv_0_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_0_12(ldv_0_container_ieee80211_ops->resume, ldv_0_resource_ieee80211_hw); } } else { } goto ldv_started_0; case_43: /* CIL Label */ { ldv_ieee80211_instance_callback_0_10(ldv_0_callback_deinit_sw_vars, ldv_0_resource_ieee80211_hw); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_44: /* CIL Label */ { ldv_rtnl_lock_132(); } if ((unsigned long )ldv_0_container_ieee80211_ops->stop != (unsigned long )((void (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_stop_0_8(ldv_0_container_ieee80211_ops->stop, ldv_0_resource_ieee80211_hw); } } else { } { ldv_rtnl_unlock_133(); } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_instance_callback_0_10(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92d_deinit_sw_vars(arg1); } return; } } void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_disable_interrupt(arg1); } return; } } void ldv_ieee80211_instance_callback_0_19(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92d_dm_watchdog(arg1); } return; } } void ldv_ieee80211_instance_callback_0_20(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_enable_hw_security_config(arg1); } return; } } void ldv_ieee80211_instance_callback_0_21(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_enable_interrupt(arg1); } return; } } void ldv_ieee80211_instance_callback_0_22(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , _Bool arg4 , struct sk_buff *arg5 ) { { { rtl92de_tx_fill_cmddesc(arg1, arg2, (int )arg3, (int )arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_25(void (*arg0)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) , struct ieee80211_hw *arg1 , struct ieee80211_hdr *arg2 , unsigned char *arg3 , unsigned char *arg4 , struct ieee80211_tx_info *arg5 , struct ieee80211_sta *arg6 , struct sk_buff *arg7 , unsigned char arg8 , struct rtl_tcb_desc *arg9 ) { { { rtl92de_tx_fill_desc(arg1, arg2, arg3, arg4, arg5, arg6, arg7, (int )arg8, arg9); } return; } } void ldv_ieee80211_instance_callback_0_28(unsigned int (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { rtl92d_phy_query_bb_reg(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_31(_Bool (*arg0)(void) ) { { { rtl_btc_status_false(); } return; } } void ldv_ieee80211_instance_callback_0_32(unsigned int (*arg0)(unsigned char * , _Bool , unsigned char ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 ) { { { rtl92de_get_desc(arg1, (int )arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_callback_0_35(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { rtl92de_get_hw_reg(arg1, (int )arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_38(unsigned int (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 ) { { { rtl92d_phy_query_rf_reg(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_41(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_card_disable(arg1); } return; } } void ldv_ieee80211_instance_callback_0_42(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_hw_init(arg1); } return; } } void ldv_ieee80211_instance_callback_0_43(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_resume(arg1); } return; } } void ldv_ieee80211_instance_callback_0_44(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_suspend(arg1); } return; } } void ldv_ieee80211_instance_callback_0_45(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_init_sw_leds(arg1); } return; } } void ldv_ieee80211_instance_callback_0_46(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92d_init_sw_vars(arg1); } return; } } void ldv_ieee80211_instance_callback_0_47(void (*arg0)(struct ieee80211_hw * , unsigned int * , unsigned int * ) , struct ieee80211_hw *arg1 , unsigned int *arg2 , unsigned int *arg3 ) { { { rtl92de_interrupt_recognized(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_50(void (*arg0)(struct ieee80211_hw * , enum led_ctl_mode ) , struct ieee80211_hw *arg1 , enum led_ctl_mode arg2 ) { { { rtl92de_led_control(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_51(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92d_linked_set_reg(arg1); } return; } } void ldv_ieee80211_instance_callback_0_52(_Bool (*arg0)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct rtl_stats *arg2 , struct ieee80211_rx_status *arg3 , unsigned char *arg4 , struct sk_buff *arg5 ) { { { rtl92de_rx_query_desc(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_55(_Bool (*arg0)(struct ieee80211_hw * , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 ) { { { rtl92de_gpio_radio_on_off_checking(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_58(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_read_eeprom_info(arg1); } return; } } void ldv_ieee80211_instance_callback_0_59(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) { { { rtl_phy_scan_operation_backup(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_62(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) { { { rtl92d_phy_set_bb_reg(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_65(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_set_beacon_interval(arg1); } return; } } void ldv_ieee80211_instance_callback_0_66(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_set_beacon_related_registers(arg1); } return; } } void ldv_ieee80211_instance_callback_0_67(void (*arg0)(struct ieee80211_hw * , enum nl80211_channel_type ) , struct ieee80211_hw *arg1 , enum nl80211_channel_type arg2 ) { { { rtl92d_phy_set_bw_mode(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_68(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92de_update_channel_access_setting(arg1); } return; } } void ldv_ieee80211_instance_callback_0_69(void (*arg0)(struct ieee80211_hw * , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 ) { { { rtl92de_set_check_bssid(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_72(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , unsigned char arg4 , unsigned char *arg5 ) { { { rtl92de_set_desc(arg1, arg2, (int )arg3, (int )arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_75(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { rtl92de_set_hw_reg(arg1, (int )arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_78(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , _Bool arg4 , unsigned char arg5 , _Bool arg6 , _Bool arg7 ) { { { rtl92de_set_key(arg1, arg2, arg3, (int )arg4, (int )arg5, (int )arg6, (int )arg7); } return; } } void ldv_ieee80211_instance_callback_0_81(int (*arg0)(struct ieee80211_hw * , enum nl80211_iftype ) , struct ieee80211_hw *arg1 , enum nl80211_iftype arg2 ) { { { rtl92de_set_network_type(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_82(void (*arg0)(struct ieee80211_hw * , int ) , struct ieee80211_hw *arg1 , int arg2 ) { { { rtl92de_set_qos(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_85(_Bool (*arg0)(struct ieee80211_hw * , enum rf_pwrstate ) , struct ieee80211_hw *arg1 , enum rf_pwrstate arg2 ) { { { rtl92d_phy_set_rf_power_state(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_86(void (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) { { { rtl92d_phy_set_rf_reg(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_89(unsigned char (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92d_phy_sw_chnl(arg1); } return; } } void ldv_ieee80211_instance_callback_0_90(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) { { { rtl92de_tx_polling(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_93(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { rtl92de_update_interrupt_mask(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_96(void (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , unsigned char arg3 ) { { { rtl92de_update_hal_rate_tbl(arg1, arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = rtl_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl_pci_disconnect(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; struct ldv_struct_pci_instance_1 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_1 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_1 *)0)) { { ldv_1_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_1_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_134(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_ldv_post_probe_135(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } goto ldv_call_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_4_pci_driver_pci_driver ; { { ldv_4_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_4_1(ldv_4_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_3(void *arg0 ) { struct platform_driver *ldv_3_container_platform_driver ; struct platform_device *ldv_3_ldv_param_14_0_default ; struct platform_device *ldv_3_ldv_param_3_0_default ; int ldv_3_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_3_probed_default = 1; goto ldv_main_3; return; ldv_main_3: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1464UL); ldv_3_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_ldv_pre_probe_136(); } if ((unsigned long )ldv_3_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_3_probed_default = ldv_platform_instance_probe_3_14(ldv_3_container_platform_driver->probe, ldv_3_ldv_param_14_0_default); } } else { } { ldv_3_probed_default = ldv_ldv_post_probe_137(ldv_3_probed_default); ldv_free((void *)ldv_3_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_3_probed_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_probed_default != 0); } goto ldv_main_3; } } else { return; } return; ldv_call_3: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1464UL); ldv_3_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_3_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_3_3(ldv_3_container_platform_driver->remove, ldv_3_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_3_0_default); ldv_3_probed_default = 1; } goto ldv_main_3; case_2: /* CIL Label */ ; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dispatch_pm_register_3_6(); ldv_dispatch_pm_deregister_3_5(); } goto ldv_call_3; goto ldv_call_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_2(void *arg0 ) { struct device *ldv_2_device_device ; struct dev_pm_ops *ldv_2_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_2; return; ldv_do_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_2_27(ldv_2_pm_ops_dev_pm_ops->runtime_idle, ldv_2_device_device); } } else { } goto ldv_do_2; case_2: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_2_25(ldv_2_pm_ops_dev_pm_ops->runtime_suspend, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_2_24(ldv_2_pm_ops_dev_pm_ops->runtime_resume, ldv_2_device_device); } } else { } goto ldv_do_2; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_2_22(ldv_2_pm_ops_dev_pm_ops->prepare, ldv_2_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_2_21(ldv_2_pm_ops_dev_pm_ops->suspend, ldv_2_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_2_20(ldv_2_pm_ops_dev_pm_ops->suspend_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_2_19(ldv_2_pm_ops_dev_pm_ops->resume_noirq, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_2_18(ldv_2_pm_ops_dev_pm_ops->suspend_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_2_17(ldv_2_pm_ops_dev_pm_ops->resume_early, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_resume_2_16(ldv_2_pm_ops_dev_pm_ops->resume, ldv_2_device_device); } goto ldv_58687; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_2_15(ldv_2_pm_ops_dev_pm_ops->freeze, ldv_2_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_2_14(ldv_2_pm_ops_dev_pm_ops->freeze_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_2_13(ldv_2_pm_ops_dev_pm_ops->thaw_early, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_2_12(ldv_2_pm_ops_dev_pm_ops->freeze_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_2_11(ldv_2_pm_ops_dev_pm_ops->thaw_noirq, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_thaw_2_10(ldv_2_pm_ops_dev_pm_ops->thaw, ldv_2_device_device); } goto ldv_58687; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_2_9(ldv_2_pm_ops_dev_pm_ops->poweroff, ldv_2_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_2_8(ldv_2_pm_ops_dev_pm_ops->poweroff_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_2_7(ldv_2_pm_ops_dev_pm_ops->restore_early, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_2_6(ldv_2_pm_ops_dev_pm_ops->poweroff_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_2_5(ldv_2_pm_ops_dev_pm_ops->restore_noirq, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_restore_2_4(ldv_2_pm_ops_dev_pm_ops->restore, ldv_2_device_device); } goto ldv_58687; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_58687: ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_2_3(ldv_2_pm_ops_dev_pm_ops->complete, ldv_2_device_device); } } else { } goto ldv_do_2; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } static void *ldv_vzalloc_123(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static int ldv___pci_register_driver_124(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_125(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_126(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_127(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_128(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_129(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_rtnl_lock_130(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_131(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_132(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_133(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_ldv_pre_probe_134(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_135(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_136(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_137(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } u32 rtl8192de_phy_reg_2tarray[380U] = { 36U, 1146893U, 40U, 16767875U, 20U, 143370581U, 16U, 1224878851U, 2048U, 2147745794U, 2052U, 3U, 2056U, 64512U, 2060U, 10U, 2064U, 2154849160U, 2068U, 34356496U, 2072U, 35652485U, 2076U, 0U, 2080U, 16777472U, 2084U, 3735556U, 2088U, 16777472U, 2092U, 3735556U, 2096U, 656877351U, 2100U, 656877351U, 2104U, 656877351U, 2108U, 656877351U, 2112U, 65536U, 2116U, 65536U, 2120U, 656877351U, 2124U, 656877351U, 2128U, 0U, 2132U, 0U, 2136U, 1452955290U, 2140U, 203105700U, 2144U, 1726349872U, 2148U, 102695216U, 2152U, 656877351U, 2156U, 657140523U, 2160U, 117442304U, 2164U, 572030976U, 2168U, 134744072U, 2172U, 32760U, 2176U, 3221762160U, 2180U, 3285U, 2184U, 0U, 2188U, 3422552256U, 2192U, 2048U, 2196U, 4294967294U, 2200U, 1076895760U, 2204U, 7364688U, 2304U, 0U, 2308U, 35U, 2312U, 0U, 2316U, 2165445395U, 2560U, 13649864U, 2564U, 2164195340U, 2568U, 2357428992U, 2572U, 778572303U, 2576U, 2499853176U, 2580U, 286539816U, 2584U, 8917271U, 2588U, 2299793152U, 2592U, 437977088U, 2596U, 151917335U, 2600U, 516U, 2604U, 13828096U, 2672U, 270515968U, 2676U, 7U, 3072U, 1074208064U, 3076U, 60839475U, 3080U, 1048804U, 3084U, 1819044972U, 3088U, 142606336U, 3092U, 1073742080U, 3096U, 142606336U, 3100U, 1073742080U, 3104U, 0U, 3108U, 0U, 3112U, 0U, 3116U, 0U, 3120U, 1776921668U, 3124U, 1184256719U, 3128U, 1232689556U, 3132U, 177706776U, 3136U, 528236607U, 3140U, 65719U, 3144U, 3959554311U, 3148U, 8323967U, 3152U, 1767126048U, 3156U, 1136394398U, 3160U, 1767126048U, 3164U, 1128005800U, 3168U, 0U, 3172U, 1360430219U, 3176U, 1203768319U, 3180U, 54U, 3184U, 746520589U, 3188U, 92672219U, 3192U, 31U, 3196U, 1085888018U, 3200U, 1073742080U, 3204U, 552992768U, 3208U, 1073742080U, 3212U, 551550976U, 3216U, 1185824U, 3220U, 7U, 3224U, 1185824U, 3228U, 32639U, 3232U, 0U, 3236U, 128U, 3240U, 0U, 3244U, 0U, 3248U, 0U, 3252U, 0U, 3256U, 0U, 3260U, 671088640U, 3264U, 0U, 3268U, 0U, 3272U, 0U, 3276U, 0U, 3280U, 0U, 3284U, 0U, 3288U, 1689329184U, 3292U, 3900077363U, 3296U, 2236962U, 3300U, 0U, 3304U, 929317634U, 3308U, 798479372U, 3328U, 526144U, 3332U, 132099U, 3336U, 36991U, 3340U, 536936961U, 3344U, 2690855731U, 3348U, 859028547U, 3352U, 2056215403U, 3372U, 3432487285U, 3376U, 0U, 3380U, 2153808900U, 3384U, 0U, 3388U, 160403U, 3392U, 0U, 3396U, 0U, 3400U, 0U, 3404U, 0U, 3408U, 1681331210U, 3412U, 0U, 3416U, 0U, 3420U, 805511268U, 3424U, 1179901544U, 3428U, 72452668U, 3432U, 8449U, 3436U, 706747414U, 3440U, 403846702U, 3444U, 841753120U, 3448U, 932900U, 3584U, 707406378U, 3588U, 707406378U, 3592U, 59779626U, 3600U, 707406378U, 3604U, 707406378U, 3608U, 707406378U, 3612U, 707406378U, 3624U, 0U, 3632U, 268491807U, 3636U, 268471327U, 3640U, 34865410U, 3644U, 1746273474U, 3648U, 16808960U, 3652U, 16795648U, 3656U, 4211081216U, 3660U, 10449U, 3664U, 268491807U, 3668U, 268471327U, 3672U, 34865410U, 3676U, 672533765U, 3680U, 16U, 3688U, 1779108U, 3692U, 1675306404U, 3696U, 1675306404U, 3700U, 202534308U, 3704U, 202534308U, 3708U, 202534308U, 3712U, 202534308U, 3716U, 1675306404U, 3720U, 202534308U, 3724U, 1675306404U, 3792U, 1675306404U, 3796U, 1675306404U, 3800U, 1675306404U, 3804U, 1779108U, 3808U, 1779108U, 3820U, 1876632996U, 3860U, 3U, 3868U, 100U, 3916U, 4U, 3840U, 768U}; u32 rtl8192de_phy_reg_array_pg[624U] = { 3584U, 4294967295U, 118033420U, 3588U, 4294967295U, 16909317U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 185338894U, 3604U, 4294967295U, 16975110U, 3608U, 4294967295U, 185339150U, 3612U, 4294967295U, 16975113U, 2096U, 4294967295U, 118033420U, 2100U, 4294967295U, 16909317U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 185338894U, 2120U, 4294967295U, 16975110U, 2124U, 4294967295U, 185339150U, 2152U, 4294967295U, 16975113U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 0U, 2100U, 4294967295U, 0U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 0U, 2120U, 4294967295U, 0U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 101058054U, 3604U, 4294967295U, 132102U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 101058054U, 2120U, 4294967295U, 132102U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 0U, 2100U, 4294967295U, 0U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 0U, 2120U, 4294967295U, 0U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 0U, 2100U, 4294967295U, 0U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 0U, 2120U, 4294967295U, 0U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 0U, 2120U, 4294967295U, 0U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 0U, 2100U, 4294967295U, 0U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 0U, 2120U, 4294967295U, 0U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 134744072U, 3604U, 4294967295U, 263176U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 134744072U, 2120U, 4294967295U, 263176U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 134744072U, 3604U, 4294967295U, 263176U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 134744072U, 2120U, 4294967295U, 263176U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 134744072U, 3604U, 4294967295U, 263176U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 134744072U, 2120U, 4294967295U, 263176U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 134744072U, 3604U, 4294967295U, 263176U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 134744072U, 2120U, 4294967295U, 263176U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 134744072U, 3604U, 4294967295U, 263176U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 134744072U, 2120U, 4294967295U, 263176U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 134744072U, 3604U, 4294967295U, 263176U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 2096U, 4294967295U, 67372036U, 2100U, 4294967295U, 131588U, 2104U, 4294967040U, 0U, 2156U, 255U, 0U, 2108U, 4294967295U, 134744072U, 2120U, 4294967295U, 263176U, 2124U, 4294967295U, 0U, 2152U, 4294967295U, 0U}; u32 rtl8192de_radioa_2tarray[378U] = { 0U, 196608U, 1U, 196608U, 2U, 0U, 3U, 101475U, 4U, 101475U, 8U, 540672U, 11U, 114688U, 14U, 101479U, 15U, 2129U, 20U, 136256U, 24U, 95524U, 25U, 0U, 29U, 660112U, 35U, 5464U, 26U, 199321U, 27U, 264960U, 28U, 1033017U, 58U, 677867U, 59U, 131072U, 60U, 1045588U, 32U, 43602U, 33U, 344064U, 64U, 43602U, 65U, 81920U, 37U, 525246U, 38U, 1033784U, 39U, 490520U, 40U, 910449U, 41U, 880912U, 42U, 576260U, 43U, 266891U, 44U, 6208U, 67U, 148559U, 68U, 110000U, 69U, 353383U, 70U, 563500U, 71U, 17708U, 72U, 1023043U, 73U, 11788U, 74U, 345835U, 75U, 562796U, 76U, 56809U, 24U, 29697U, 0U, 458752U, 18U, 901120U, 18U, 589824U, 18U, 331776U, 18U, 73728U, 19U, 165815U, 19U, 149419U, 19U, 133023U, 19U, 116627U, 19U, 99227U, 19U, 82834U, 19U, 65946U, 19U, 49553U, 19U, 33172U, 19U, 16544U, 19U, 24U, 21U, 62500U, 21U, 324644U, 21U, 586788U, 22U, 922416U, 22U, 660272U, 22U, 398128U, 22U, 135984U, 24U, 95524U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165820U, 19U, 149424U, 19U, 132020U, 19U, 115624U, 19U, 98740U, 19U, 82344U, 19U, 65712U, 19U, 49316U, 19U, 45100U, 19U, 16416U, 19U, 20U, 21U, 62659U, 21U, 324803U, 21U, 586947U, 22U, 919647U, 22U, 657503U, 22U, 395359U, 22U, 133215U, 24U, 226596U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165820U, 19U, 149424U, 19U, 132020U, 19U, 115624U, 19U, 98740U, 19U, 82344U, 19U, 65712U, 19U, 49316U, 19U, 45100U, 19U, 16416U, 19U, 20U, 21U, 62659U, 21U, 324803U, 21U, 586947U, 22U, 919647U, 22U, 657503U, 22U, 395359U, 22U, 133215U, 24U, 357736U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165820U, 19U, 149424U, 19U, 132020U, 19U, 115624U, 19U, 98740U, 19U, 82344U, 19U, 65712U, 19U, 49316U, 19U, 45100U, 19U, 16416U, 19U, 20U, 21U, 62659U, 21U, 324803U, 21U, 586947U, 22U, 919647U, 22U, 657503U, 22U, 395359U, 22U, 133215U, 48U, 280335U, 49U, 282608U, 50U, 112U, 51U, 906368U, 52U, 1047232U, 53U, 753856U, 54U, 487424U, 55U, 413682U, 56U, 947809U, 57U, 3728U, 0U, 196608U, 24U, 62465U, 254U, 0U, 254U, 0U, 30U, 557065U, 31U, 524291U, 254U, 0U, 30U, 557057U, 31U, 524288U, 254U, 0U, 24U, 619812U, 254U, 0U, 254U, 0U, 254U, 0U, 254U, 0U, 43U, 266889U, 254U, 0U, 45U, 436906U, 46U, 740609U, 45U, 524288U, 46U, 19714U, 45U, 611669U, 46U, 347395U, 45U, 699050U, 46U, 740612U, 45U, 786432U, 46U, 19717U, 45U, 873813U, 46U, 347398U, 45U, 961194U, 46U, 740615U, 45U, 0U, 46U, 20744U, 45U, 87381U, 46U, 348425U, 45U, 174762U, 46U, 741642U, 45U, 262144U, 46U, 20747U, 45U, 349525U, 46U, 348428U}; u32 rtl8192de_radiob_2tarray[384U] = { 0U, 196608U, 1U, 196608U, 2U, 0U, 3U, 101475U, 4U, 101475U, 8U, 540672U, 11U, 114688U, 14U, 101479U, 15U, 2129U, 20U, 136256U, 24U, 29697U, 25U, 96U, 29U, 660112U, 35U, 5464U, 26U, 199321U, 27U, 264960U, 28U, 1033017U, 58U, 677867U, 59U, 131072U, 60U, 1045588U, 32U, 43602U, 33U, 344064U, 64U, 43602U, 65U, 81920U, 37U, 525246U, 38U, 1033784U, 39U, 490520U, 40U, 859185U, 41U, 880912U, 42U, 715524U, 43U, 266891U, 44U, 6208U, 67U, 148559U, 68U, 110000U, 69U, 353383U, 70U, 563500U, 71U, 17708U, 72U, 1023043U, 73U, 11788U, 74U, 345835U, 75U, 562796U, 76U, 56809U, 24U, 29697U, 0U, 458752U, 18U, 901120U, 18U, 589824U, 18U, 331776U, 18U, 73728U, 19U, 165815U, 19U, 149419U, 19U, 133023U, 19U, 116627U, 19U, 99227U, 19U, 82834U, 19U, 65946U, 19U, 49553U, 19U, 33172U, 19U, 16544U, 19U, 24U, 21U, 62500U, 21U, 324644U, 21U, 586788U, 22U, 922416U, 22U, 660272U, 22U, 398128U, 22U, 135984U, 24U, 95524U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165820U, 19U, 149424U, 19U, 132020U, 19U, 115624U, 19U, 98740U, 19U, 82344U, 19U, 65712U, 19U, 49316U, 19U, 45100U, 19U, 16416U, 19U, 20U, 21U, 62659U, 21U, 324803U, 21U, 586947U, 22U, 919647U, 22U, 657503U, 22U, 395359U, 22U, 133215U, 24U, 226596U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165820U, 19U, 149424U, 19U, 132020U, 19U, 115624U, 19U, 98740U, 19U, 82344U, 19U, 65712U, 19U, 49316U, 19U, 45100U, 19U, 16416U, 19U, 20U, 21U, 62659U, 21U, 324803U, 21U, 586947U, 22U, 919647U, 22U, 657503U, 22U, 395359U, 22U, 133215U, 24U, 357668U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165820U, 19U, 149424U, 19U, 132020U, 19U, 115624U, 19U, 98740U, 19U, 82344U, 19U, 65712U, 19U, 49316U, 19U, 45100U, 19U, 16416U, 19U, 20U, 21U, 62659U, 21U, 324803U, 21U, 586947U, 22U, 919647U, 22U, 657503U, 22U, 395359U, 22U, 133215U, 48U, 280335U, 49U, 282608U, 50U, 112U, 51U, 906368U, 52U, 1047232U, 53U, 753856U, 54U, 487424U, 55U, 413682U, 56U, 947809U, 57U, 3728U, 0U, 196608U, 24U, 62465U, 254U, 0U, 254U, 0U, 30U, 557065U, 31U, 524291U, 254U, 0U, 30U, 557057U, 31U, 524288U, 254U, 0U, 24U, 553985U, 254U, 0U, 254U, 0U, 254U, 0U, 43U, 266889U, 254U, 0U, 45U, 419430U, 46U, 409601U, 45U, 594193U, 46U, 81922U, 45U, 768955U, 46U, 737283U, 45U, 943718U, 46U, 409604U, 45U, 559240U, 46U, 540677U, 45U, 646621U, 46U, 868358U, 45U, 734003U, 46U, 212999U, 45U, 297096U, 46U, 541704U, 45U, 768955U, 46U, 738313U, 45U, 943718U, 46U, 410634U, 45U, 69905U, 46U, 83979U, 45U, 244667U, 46U, 739340U, 45U, 419430U, 46U, 411661U, 45U, 838860U, 46U, 804878U}; u32 rtl8192de_radioa_2t_int_paarray[378U] = { 0U, 196608U, 1U, 196608U, 2U, 0U, 3U, 101475U, 4U, 101475U, 8U, 540672U, 11U, 114688U, 14U, 101479U, 15U, 2129U, 20U, 136256U, 24U, 95524U, 25U, 0U, 29U, 660112U, 35U, 5464U, 26U, 199321U, 27U, 264960U, 28U, 1033017U, 58U, 677867U, 59U, 131072U, 60U, 1045588U, 32U, 43602U, 33U, 344064U, 64U, 43602U, 65U, 81920U, 37U, 525246U, 38U, 1033784U, 39U, 490520U, 40U, 910449U, 41U, 880912U, 42U, 584452U, 43U, 266891U, 44U, 6208U, 67U, 148559U, 68U, 110000U, 69U, 353383U, 70U, 563500U, 71U, 17708U, 72U, 787523U, 73U, 1840U, 74U, 331535U, 75U, 562926U, 76U, 56814U, 24U, 29697U, 0U, 458752U, 18U, 901120U, 18U, 589824U, 18U, 331776U, 18U, 73728U, 19U, 165815U, 19U, 149419U, 19U, 133023U, 19U, 116627U, 19U, 99227U, 19U, 82834U, 19U, 65946U, 19U, 49553U, 19U, 33172U, 19U, 16544U, 19U, 24U, 21U, 62500U, 21U, 324644U, 21U, 586788U, 22U, 922416U, 22U, 660272U, 22U, 398128U, 22U, 135984U, 24U, 95524U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165823U, 19U, 149427U, 19U, 133031U, 19U, 116635U, 19U, 99231U, 19U, 82835U, 19U, 66457U, 19U, 50061U, 19U, 33177U, 19U, 16781U, 19U, 153U, 21U, 62613U, 21U, 324757U, 21U, 586901U, 22U, 923764U, 22U, 661620U, 22U, 399476U, 22U, 137332U, 24U, 226660U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165823U, 19U, 149427U, 19U, 133031U, 19U, 116635U, 19U, 99231U, 19U, 82835U, 19U, 66457U, 19U, 50061U, 19U, 33177U, 19U, 16781U, 19U, 153U, 21U, 62613U, 21U, 324757U, 21U, 586901U, 22U, 923764U, 22U, 661620U, 22U, 399476U, 22U, 137332U, 24U, 357781U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165823U, 19U, 149427U, 19U, 133031U, 19U, 116635U, 19U, 99231U, 19U, 82835U, 19U, 66457U, 19U, 50061U, 19U, 33177U, 19U, 16781U, 19U, 153U, 21U, 62613U, 21U, 324757U, 21U, 586901U, 22U, 923764U, 22U, 661620U, 22U, 399476U, 22U, 137332U, 48U, 280335U, 49U, 282608U, 50U, 112U, 51U, 906368U, 52U, 1047232U, 53U, 753856U, 54U, 487424U, 55U, 413682U, 56U, 947809U, 57U, 3728U, 0U, 196608U, 24U, 62465U, 254U, 0U, 254U, 0U, 30U, 557065U, 31U, 524291U, 254U, 0U, 30U, 557057U, 31U, 524288U, 254U, 0U, 24U, 619812U, 254U, 0U, 254U, 0U, 254U, 0U, 254U, 0U, 43U, 266889U, 254U, 0U, 45U, 436906U, 46U, 740609U, 45U, 524288U, 46U, 19714U, 45U, 611669U, 46U, 347395U, 45U, 699050U, 46U, 740612U, 45U, 786432U, 46U, 19717U, 45U, 873813U, 46U, 347398U, 45U, 961194U, 46U, 740615U, 45U, 0U, 46U, 20744U, 45U, 87381U, 46U, 348425U, 45U, 174762U, 46U, 741642U, 45U, 262144U, 46U, 20747U, 45U, 349525U, 46U, 348428U}; u32 rtl8192de_radiob_2t_int_paarray[384U] = { 0U, 196608U, 1U, 196608U, 2U, 0U, 3U, 101475U, 4U, 101475U, 8U, 540672U, 11U, 114688U, 14U, 101479U, 15U, 2129U, 20U, 136256U, 24U, 29697U, 25U, 96U, 29U, 660112U, 35U, 5464U, 26U, 199321U, 27U, 264960U, 28U, 1033017U, 58U, 677867U, 59U, 131072U, 60U, 1045588U, 32U, 43602U, 33U, 344064U, 64U, 43602U, 65U, 81920U, 37U, 525246U, 38U, 1033784U, 39U, 490520U, 40U, 859185U, 41U, 880912U, 42U, 715524U, 43U, 266891U, 44U, 6208U, 67U, 148559U, 68U, 110000U, 69U, 353383U, 70U, 563500U, 71U, 17708U, 72U, 787523U, 73U, 1840U, 74U, 331535U, 75U, 562926U, 76U, 56814U, 24U, 29697U, 0U, 458752U, 18U, 901120U, 18U, 589824U, 18U, 331776U, 18U, 73728U, 19U, 165815U, 19U, 149419U, 19U, 133023U, 19U, 116627U, 19U, 99227U, 19U, 82834U, 19U, 65946U, 19U, 49553U, 19U, 33172U, 19U, 16544U, 19U, 24U, 21U, 62500U, 21U, 324644U, 21U, 586788U, 22U, 922416U, 22U, 660272U, 22U, 398128U, 22U, 135984U, 24U, 95524U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165823U, 19U, 149427U, 19U, 133031U, 19U, 116635U, 19U, 99231U, 19U, 82835U, 19U, 66457U, 19U, 50061U, 19U, 33177U, 19U, 16781U, 19U, 153U, 21U, 62613U, 21U, 324757U, 21U, 586901U, 22U, 923764U, 22U, 661620U, 22U, 399476U, 22U, 137332U, 24U, 226660U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165823U, 19U, 149427U, 19U, 133031U, 19U, 116635U, 19U, 99231U, 19U, 82835U, 19U, 66457U, 19U, 50061U, 19U, 33177U, 19U, 16781U, 19U, 153U, 21U, 62613U, 21U, 324757U, 21U, 586901U, 22U, 923764U, 22U, 661620U, 22U, 399476U, 22U, 137332U, 24U, 357781U, 0U, 458752U, 18U, 847872U, 18U, 770048U, 18U, 491520U, 18U, 0U, 19U, 165823U, 19U, 149427U, 19U, 133031U, 19U, 116635U, 19U, 99231U, 19U, 82835U, 19U, 66457U, 19U, 50061U, 19U, 33177U, 19U, 16781U, 19U, 153U, 21U, 62613U, 21U, 324757U, 21U, 586901U, 22U, 923764U, 22U, 661620U, 22U, 399476U, 22U, 137332U, 48U, 280335U, 49U, 282608U, 50U, 112U, 51U, 906368U, 52U, 1047232U, 53U, 753856U, 54U, 487424U, 55U, 413682U, 56U, 947809U, 57U, 3728U, 0U, 196608U, 24U, 62465U, 254U, 0U, 254U, 0U, 30U, 557065U, 31U, 524291U, 254U, 0U, 30U, 557057U, 31U, 524288U, 254U, 0U, 24U, 553985U, 254U, 0U, 254U, 0U, 254U, 0U, 43U, 266889U, 254U, 0U, 45U, 419430U, 46U, 409601U, 45U, 594193U, 46U, 81922U, 45U, 768955U, 46U, 737283U, 45U, 943718U, 46U, 409604U, 45U, 559240U, 46U, 540677U, 45U, 646621U, 46U, 868358U, 45U, 734003U, 46U, 212999U, 45U, 297096U, 46U, 541704U, 45U, 768955U, 46U, 738313U, 45U, 943718U, 46U, 410634U, 45U, 69905U, 46U, 83979U, 45U, 244667U, 46U, 739340U, 45U, 419430U, 46U, 411661U, 45U, 838860U, 46U, 804878U}; u32 rtl8192de_mac_2tarray[160U] = { 1056U, 128U, 1059U, 0U, 1072U, 0U, 1073U, 0U, 1074U, 0U, 1075U, 1U, 1076U, 4U, 1077U, 5U, 1078U, 6U, 1079U, 7U, 1080U, 0U, 1081U, 0U, 1082U, 0U, 1083U, 1U, 1084U, 4U, 1085U, 5U, 1086U, 6U, 1087U, 7U, 1088U, 80U, 1089U, 1U, 1090U, 0U, 1092U, 21U, 1093U, 240U, 1094U, 15U, 1095U, 0U, 1122U, 8U, 1123U, 3U, 1224U, 255U, 1225U, 8U, 1228U, 255U, 1229U, 255U, 1230U, 1U, 1280U, 38U, 1281U, 162U, 1282U, 47U, 1283U, 0U, 1284U, 40U, 1285U, 163U, 1286U, 94U, 1287U, 0U, 1288U, 43U, 1289U, 164U, 1290U, 94U, 1291U, 0U, 1292U, 79U, 1293U, 164U, 1294U, 0U, 1295U, 0U, 1298U, 28U, 1300U, 10U, 1301U, 16U, 1302U, 10U, 1303U, 16U, 1306U, 22U, 1316U, 15U, 1317U, 79U, 1350U, 64U, 1351U, 0U, 1360U, 16U, 1361U, 16U, 1369U, 2U, 1370U, 2U, 1373U, 255U, 1541U, 48U, 1544U, 14U, 1545U, 42U, 1618U, 32U, 1596U, 10U, 1597U, 10U, 1598U, 14U, 1599U, 14U, 1646U, 5U, 1792U, 33U, 1793U, 67U, 1794U, 101U, 1795U, 135U, 1800U, 33U, 1801U, 67U, 1802U, 101U, 1803U, 135U}; u32 rtl8192de_agctab_array[386U] = { 3192U, 2063597569U, 3192U, 2063663105U, 3192U, 2063728641U, 3192U, 2063794177U, 3192U, 2063859713U, 3192U, 2063925249U, 3192U, 2063990785U, 3192U, 2047279105U, 3192U, 2030567425U, 3192U, 2013855745U, 3192U, 1997144065U, 3192U, 1980432385U, 3192U, 1963720705U, 3192U, 1947009025U, 3192U, 1930297345U, 3192U, 1913585665U, 3192U, 1896873985U, 3192U, 1880162305U, 3192U, 1863450625U, 3192U, 1846738945U, 3192U, 1830027265U, 3192U, 1813315585U, 3192U, 1796603905U, 3192U, 1779892225U, 3192U, 1763180545U, 3192U, 1746468865U, 3192U, 1729757185U, 3192U, 1713045505U, 3192U, 1696333825U, 3192U, 1679622145U, 3192U, 1662910465U, 3192U, 1646198785U, 3192U, 1629487105U, 3192U, 1612775425U, 3192U, 1226964993U, 3192U, 1210253313U, 3192U, 1193541633U, 3192U, 1176829953U, 3192U, 1160118273U, 3192U, 1143406593U, 3192U, 1126694913U, 3192U, 1109983233U, 3192U, 1093271553U, 3192U, 1076559873U, 3192U, 640417793U, 3192U, 623706113U, 3192U, 606994433U, 3192U, 590282753U, 3192U, 573571073U, 3192U, 556859393U, 3192U, 540147713U, 3192U, 104005633U, 3192U, 87293953U, 3192U, 70582273U, 3192U, 53870593U, 3192U, 37158913U, 3192U, 20447233U, 3192U, 3735553U, 3192U, 3801089U, 3192U, 3866625U, 3192U, 3932161U, 3192U, 3997697U, 3192U, 4063233U, 3192U, 4128769U, 3192U, 2067791873U, 3192U, 2067857409U, 3192U, 2051145729U, 3192U, 2034434049U, 3192U, 2017722369U, 3192U, 2001010689U, 3192U, 1984299009U, 3192U, 1967587329U, 3192U, 1950875649U, 3192U, 1934163969U, 3192U, 1917452289U, 3192U, 1900740609U, 3192U, 1884028929U, 3192U, 1867317249U, 3192U, 1850605569U, 3192U, 1833893889U, 3192U, 1817182209U, 3192U, 1800470529U, 3192U, 1783758849U, 3192U, 1767047169U, 3192U, 1750335489U, 3192U, 1733623809U, 3192U, 1716912129U, 3192U, 1700200449U, 3192U, 1683488769U, 3192U, 1666777089U, 3192U, 1650065409U, 3192U, 1633353729U, 3192U, 1616642049U, 3192U, 1214054401U, 3192U, 1197342721U, 3192U, 1180631041U, 3192U, 1163919361U, 3192U, 1147207681U, 3192U, 1130496001U, 3192U, 1113784321U, 3192U, 1097072641U, 3192U, 1080360961U, 3192U, 660996097U, 3192U, 644284417U, 3192U, 627572737U, 3192U, 610861057U, 3192U, 594149377U, 3192U, 577437697U, 3192U, 560726017U, 3192U, 544014337U, 3192U, 544079873U, 3192U, 544145409U, 3192U, 544210945U, 3192U, 544276481U, 3192U, 544342017U, 3192U, 544407553U, 3192U, 544473089U, 3192U, 544538625U, 3192U, 544604161U, 3192U, 544669697U, 3192U, 544735233U, 3192U, 544800769U, 3192U, 544866305U, 3192U, 544931841U, 3192U, 544997377U, 3192U, 545062913U, 3192U, 545128449U, 3192U, 545193985U, 3192U, 939524098U, 3192U, 939589634U, 3192U, 939655170U, 3192U, 939720706U, 3192U, 939786242U, 3192U, 939851778U, 3192U, 939917314U, 3192U, 939982850U, 3192U, 940048386U, 3192U, 1007222786U, 3192U, 1040842754U, 3192U, 1074462722U, 3192U, 1141637122U, 3192U, 1208811522U, 3192U, 1275985922U, 3192U, 1343160322U, 3192U, 1376780290U, 3192U, 1443954690U, 3192U, 1511129090U, 3192U, 1578303490U, 3192U, 1611923458U, 3192U, 1611988994U, 3192U, 1612054530U, 3192U, 1645674498U, 3192U, 1645740034U, 3192U, 1645805570U, 3192U, 1645871106U, 3192U, 1645936642U, 3192U, 1646002178U, 3192U, 1646067714U, 3192U, 1646133250U, 3192U, 1646198786U, 3192U, 838860868U, 3192U, 838926404U, 3192U, 838991940U, 3192U, 839057476U, 3192U, 839123012U, 3192U, 839188548U, 3192U, 839254084U, 3192U, 839319620U, 3192U, 839385156U, 3192U, 873005124U, 3192U, 889847876U, 3192U, 906690628U, 3192U, 923533380U, 3192U, 940376132U, 3192U, 957218884U, 3192U, 974061636U, 3192U, 1041236036U, 3192U, 1108410436U, 3192U, 1142030404U, 3192U, 1175650372U, 3192U, 1242824772U, 3192U, 1309999172U, 3192U, 1343619140U, 3192U, 1427570756U, 3192U, 1511522372U, 3192U, 1578696772U, 3192U, 1679425604U, 3192U, 1847263300U, 3192U, 1847328836U, 3192U, 1847394372U, 3192U, 1847459908U, 3192U, 1847525444U, 3192U, 1847525376U}; u32 rtl8192de_agctab_5garray[194U] = { 3192U, 2063597569U, 3192U, 2063663105U, 3192U, 2046951425U, 3192U, 2030239745U, 3192U, 2013528065U, 3192U, 1996816385U, 3192U, 1980104705U, 3192U, 1963393025U, 3192U, 1946681345U, 3192U, 1929969665U, 3192U, 1913257985U, 3192U, 1896546305U, 3192U, 1879834625U, 3192U, 1863122945U, 3192U, 1846411265U, 3192U, 1829699585U, 3192U, 1812987905U, 3192U, 1796276225U, 3192U, 1779564545U, 3192U, 1762852865U, 3192U, 1746141185U, 3192U, 1729429505U, 3192U, 1712717825U, 3192U, 1696006145U, 3192U, 1679294465U, 3192U, 1662582785U, 3192U, 1645871105U, 3192U, 1629159425U, 3192U, 1612447745U, 3192U, 1209860097U, 3192U, 1193148417U, 3192U, 1176436737U, 3192U, 1159725057U, 3192U, 1143013377U, 3192U, 1126301697U, 3192U, 1109590017U, 3192U, 1092878337U, 3192U, 1076166657U, 3192U, 656801793U, 3192U, 640090113U, 3192U, 623378433U, 3192U, 606666753U, 3192U, 589955073U, 3192U, 573243393U, 3192U, 556531713U, 3192U, 539820033U, 3192U, 539885569U, 3192U, 539951105U, 3192U, 540016641U, 3192U, 540082177U, 3192U, 540147713U, 3192U, 540213249U, 3192U, 540278785U, 3192U, 540344321U, 3192U, 540409857U, 3192U, 540475393U, 3192U, 540540929U, 3192U, 540606465U, 3192U, 540672001U, 3192U, 540737537U, 3192U, 540803073U, 3192U, 540868609U, 3192U, 540934145U, 3192U, 540999681U, 3192U, 838860868U, 3192U, 838926404U, 3192U, 838991940U, 3192U, 839057476U, 3192U, 839123012U, 3192U, 839188548U, 3192U, 839254084U, 3192U, 839319620U, 3192U, 839385156U, 3192U, 873005124U, 3192U, 889847876U, 3192U, 906690628U, 3192U, 923533380U, 3192U, 940376132U, 3192U, 957218884U, 3192U, 974061636U, 3192U, 1041236036U, 3192U, 1108410436U, 3192U, 1142030404U, 3192U, 1175650372U, 3192U, 1242824772U, 3192U, 1309999172U, 3192U, 1343619140U, 3192U, 1427570756U, 3192U, 1511522372U, 3192U, 1578696772U, 3192U, 1679425604U, 3192U, 1847263300U, 3192U, 1847328836U, 3192U, 1847394372U, 3192U, 1847459908U, 3192U, 1847525444U, 3192U, 1847525376U}; u32 rtl8192de_agctab_2garray[194U] = { 3192U, 2063597569U, 3192U, 2063663105U, 3192U, 2063728641U, 3192U, 2063794177U, 3192U, 2063859713U, 3192U, 2063925249U, 3192U, 2063990785U, 3192U, 2047279105U, 3192U, 2030567425U, 3192U, 2013855745U, 3192U, 1997144065U, 3192U, 1980432385U, 3192U, 1963720705U, 3192U, 1947009025U, 3192U, 1930297345U, 3192U, 1913585665U, 3192U, 1896873985U, 3192U, 1880162305U, 3192U, 1863450625U, 3192U, 1846738945U, 3192U, 1830027265U, 3192U, 1813315585U, 3192U, 1796603905U, 3192U, 1779892225U, 3192U, 1763180545U, 3192U, 1746468865U, 3192U, 1729757185U, 3192U, 1713045505U, 3192U, 1696333825U, 3192U, 1679622145U, 3192U, 1662910465U, 3192U, 1646198785U, 3192U, 1629487105U, 3192U, 1612775425U, 3192U, 1226964993U, 3192U, 1210253313U, 3192U, 1193541633U, 3192U, 1176829953U, 3192U, 1160118273U, 3192U, 1143406593U, 3192U, 1126694913U, 3192U, 1109983233U, 3192U, 1093271553U, 3192U, 1076559873U, 3192U, 640417793U, 3192U, 623706113U, 3192U, 606994433U, 3192U, 590282753U, 3192U, 573571073U, 3192U, 556859393U, 3192U, 540147713U, 3192U, 104005633U, 3192U, 87293953U, 3192U, 70582273U, 3192U, 53870593U, 3192U, 37158913U, 3192U, 20447233U, 3192U, 3735553U, 3192U, 3801089U, 3192U, 3866625U, 3192U, 3932161U, 3192U, 3997697U, 3192U, 4063233U, 3192U, 4128769U, 3192U, 939524098U, 3192U, 939589634U, 3192U, 939655170U, 3192U, 939720706U, 3192U, 939786242U, 3192U, 939851778U, 3192U, 939917314U, 3192U, 939982850U, 3192U, 940048386U, 3192U, 1007222786U, 3192U, 1040842754U, 3192U, 1074462722U, 3192U, 1141637122U, 3192U, 1208811522U, 3192U, 1275985922U, 3192U, 1343160322U, 3192U, 1376780290U, 3192U, 1443954690U, 3192U, 1511129090U, 3192U, 1578303490U, 3192U, 1611923458U, 3192U, 1611988994U, 3192U, 1612054530U, 3192U, 1645674498U, 3192U, 1645740034U, 3192U, 1645805570U, 3192U, 1645871106U, 3192U, 1645936642U, 3192U, 1646002178U, 3192U, 1646067714U, 3192U, 1646133250U, 3192U, 1646198786U, 3192U, 1847525376U}; extern unsigned long __phys_addr(unsigned long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; __inline static int ieee80211_is_mgmt(__le16 fc ) { { return (((int )fc & 12) == 0); } } __inline static int ieee80211_is_ctl(__le16 fc ) { { return (((int )fc & 12) == 4); } } __inline static int ieee80211_is_data_qos(__le16 fc ) { { return (((int )fc & 140) == 136); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } __inline static int ieee80211_is_nullfunc(__le16 fc ) { { return (((int )fc & 252) == 72); } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } __inline static struct ieee80211_hdr *rtl_get_hdr(struct sk_buff *skb ) { { return ((struct ieee80211_hdr *)skb->data); } } __inline static __le16 rtl_get_fc(struct sk_buff *skb ) { struct ieee80211_hdr *tmp ; { { tmp = rtl_get_hdr(skb); } return (tmp->frame_control); } } extern int rtlwifi_rate_mapping(struct ieee80211_hw * , bool , bool , u8 ) ; extern void rtl_get_tcb_desc(struct ieee80211_hw * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; static u8 _rtl92de_map_hwqueue_to_fwqueue(struct sk_buff *skb , u8 hw_queue ) { __le16 fc ; __le16 tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; { { tmp = rtl_get_fc(skb); fc = tmp; tmp___0 = ieee80211_is_beacon((int )fc); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (16U); } else { } { tmp___2 = ieee80211_is_mgmt((int )fc); } if (tmp___2 != 0) { return (18U); } else { } return ((u8 )skb->priority); } } static u8 _rtl92d_query_rxpwrpercentage(char antpower ) { { if ((unsigned int )((unsigned char )antpower) - 157U > 118U) { return (0U); } else if ((int )((signed char )antpower) >= 0) { return (100U); } else { return ((unsigned int )((u8 )antpower) + 100U); } } } static u8 _rtl92d_evm_db_to_percentage(char value ) { char ret_val ; { ret_val = value; if ((int )((signed char )ret_val) >= 0) { ret_val = 0; } else { } if ((int )((signed char )ret_val) < -32) { ret_val = -33; } else { } ret_val = (char )(- ((int )((unsigned char )ret_val))); ret_val = (char )((unsigned int )((unsigned char )ret_val) * 3U); if ((int )((signed char )ret_val) == 99) { ret_val = 100; } else { } return ((u8 )ret_val); } } static long _rtl92de_translate_todbm(struct ieee80211_hw *hw , u8 signal_strength_index ) { long signal_power ; { signal_power = (long )(((int )signal_strength_index + 1) >> 1); signal_power = signal_power + -95L; return (signal_power); } } static long _rtl92de_signal_scale_mapping(struct ieee80211_hw *hw , long currsig ) { long retsig ; { if ((unsigned long )currsig - 61UL <= 39UL) { retsig = (currsig + -60L) / 4L + 90L; } else if ((unsigned long )currsig - 41UL <= 19UL) { retsig = (currsig + -40L) / 2L + 78L; } else if ((unsigned long )currsig - 31UL <= 9UL) { retsig = currsig + 36L; } else if ((unsigned long )currsig - 21UL <= 9UL) { retsig = currsig + 34L; } else if ((unsigned long )currsig - 5UL <= 15UL) { retsig = ((currsig + -5L) * 2L) / 3L + 42L; } else if (currsig == 4L) { retsig = 36L; } else if (currsig == 3L) { retsig = 27L; } else if (currsig == 2L) { retsig = 18L; } else if (currsig == 1L) { retsig = 9L; } else { retsig = currsig; } return (retsig); } } static void _rtl92de_query_rxphystatus(struct ieee80211_hw *hw , struct rtl_stats *pstats , struct rx_desc_92d *pdesc , struct rx_fwinfo_92d *p_drvinfo , bool packet_match_bssid , bool packet_toself , bool packet_beacon ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct phy_sts_cck_8192d *cck_buf ; s8 rx_pwr_all ; s8 rx_pwr[4U] ; u8 rf_rx_num ; u8 evm ; u8 pwdb_all ; u8 i ; u8 max_spatial_stream ; u32 rssi ; u32 total_rssi ; bool is_cck_rate ; u8 report ; u8 cck_highpwr ; u32 tmp ; u8 cck_agc_rpt ; u8 cck_agc_rpt___0 ; u8 sq ; u8 tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & rtlpriv->psc; rf_rx_num = 0U; total_rssi = 0U; is_cck_rate = (unsigned int )*((unsigned char *)pdesc + 12UL) <= 3U; pstats->packet_matchbssid = packet_match_bssid; pstats->packet_toself = packet_toself; pstats->packet_beacon = packet_beacon; pstats->is_cck = is_cck_rate; pstats->rx_mimo_sig_qual[0] = -1; pstats->rx_mimo_sig_qual[1] = -1; if ((int )is_cck_rate) { cck_buf = (struct phy_sts_cck_8192d *)p_drvinfo; if ((unsigned int )ppsc->rfpwr_state == 0U) { { tmp = rtl_get_bbreg(hw, 2084U, 512U); cck_highpwr = (unsigned char )tmp; } } else { cck_highpwr = 0U; } if ((unsigned int )cck_highpwr == 0U) { cck_agc_rpt = cck_buf->cck_agc_rpt; report = (unsigned int )cck_buf->cck_agc_rpt & 192U; report = (u8 )((int )report >> 6); { if ((int )report == 3) { goto case_3; } else { } if ((int )report == 2) { goto case_2; } else { } if ((int )report == 1) { goto case_1; } else { } if ((int )report == 0) { goto case_0; } else { } goto switch_break; case_3: /* CIL Label */ rx_pwr_all = (s8 )(210U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_56241; case_2: /* CIL Label */ rx_pwr_all = (s8 )(230U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_56241; case_1: /* CIL Label */ rx_pwr_all = (s8 )(244U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_56241; case_0: /* CIL Label */ rx_pwr_all = (s8 )(16U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_56241; switch_break: /* CIL Label */ ; } ldv_56241: ; } else { cck_agc_rpt___0 = cck_buf->cck_agc_rpt; report = (unsigned int )p_drvinfo->cfosho[0] & 96U; report = (u8 )((int )report >> 5); { if ((int )report == 3) { goto case_3___0; } else { } if ((int )report == 2) { goto case_2___0; } else { } if ((int )report == 1) { goto case_1___0; } else { } if ((int )report == 0) { goto case_0___0; } else { } goto switch_break___0; case_3___0: /* CIL Label */ rx_pwr_all = (s8 )(210U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_56247; case_2___0: /* CIL Label */ rx_pwr_all = (s8 )(230U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_56247; case_1___0: /* CIL Label */ rx_pwr_all = (s8 )(244U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_56247; case_0___0: /* CIL Label */ rx_pwr_all = (s8 )(16U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_56247; switch_break___0: /* CIL Label */ ; } ldv_56247: ; } { pwdb_all = _rtl92d_query_rxpwrpercentage((int )rx_pwr_all); pwdb_all = (unsigned int )pwdb_all + 6U; } if ((unsigned int )pwdb_all > 100U) { pwdb_all = 100U; } else { } if ((unsigned int )pwdb_all - 35U <= 7U) { pwdb_all = (unsigned int )pwdb_all + 254U; } else if ((unsigned int )pwdb_all - 27U <= 7U) { pwdb_all = (unsigned int )pwdb_all + 250U; } else if ((unsigned int )pwdb_all - 15U <= 11U) { pwdb_all = (unsigned int )pwdb_all + 248U; } else if ((unsigned int )pwdb_all - 5U <= 9U) { pwdb_all = (unsigned int )pwdb_all + 252U; } else { } pstats->rx_pwdb_all = (u32 )pwdb_all; pstats->recvsignalpower = (s32 )rx_pwr_all; if ((int )packet_match_bssid) { if (pstats->rx_pwdb_all > 40U) { sq = 100U; } else { sq = cck_buf->sq_rpt; if ((unsigned int )sq > 64U) { sq = 0U; } else if ((unsigned int )sq <= 19U) { sq = 100U; } else { sq = (u8 )(((int )sq * -100 + 6400) / 44); } } pstats->signalquality = sq; pstats->rx_mimo_sig_qual[0] = (s8 )sq; pstats->rx_mimo_sig_qual[1] = -1; } else { } } else { rtlpriv->dm.rfpath_rxenable[0] = 1; rtlpriv->dm.rfpath_rxenable[1] = 1; i = 0U; goto ldv_56253; ldv_56252: ; if ((int )rtlpriv->dm.rfpath_rxenable[(int )i]) { rf_rx_num = (u8 )((int )rf_rx_num + 1); } else { } { rx_pwr[(int )i] = (s8 )((unsigned int )((unsigned char )(((int )p_drvinfo->gain_trsw[(int )i] & 63) + -55)) * 2U); tmp___0 = _rtl92d_query_rxpwrpercentage((int )rx_pwr[(int )i]); rssi = (u32 )tmp___0; total_rssi = total_rssi + rssi; rtlpriv->stats.rx_snr_db[(int )i] = (long )((int )((signed char )p_drvinfo->rxsnr[(int )i]) / 2); } if ((int )packet_match_bssid) { pstats->rx_mimo_signalstrength[(int )i] = (unsigned char )rssi; } else { } i = (u8 )((int )i + 1); ldv_56253: ; if ((unsigned int )i <= 1U) { goto ldv_56252; } else { } { rx_pwr_all = (s8 )((unsigned int )((int )p_drvinfo->pwdb_all >> 1) + 150U); pwdb_all = _rtl92d_query_rxpwrpercentage((int )rx_pwr_all); pstats->rx_pwdb_all = (u32 )pwdb_all; pstats->rxpower = rx_pwr_all; pstats->recvsignalpower = (s32 )rx_pwr_all; } if (((unsigned int )*((unsigned char *)pdesc + 12UL) != 0U && (int )pdesc->rxmcs > 19) && (int )pdesc->rxmcs <= 27) { max_spatial_stream = 2U; } else { max_spatial_stream = 1U; } i = 0U; goto ldv_56256; ldv_56255: { evm = _rtl92d_evm_db_to_percentage((int )p_drvinfo->rxevm[(int )i]); } if ((int )packet_match_bssid) { if ((unsigned int )i == 0U) { pstats->signalquality = evm; } else { } pstats->rx_mimo_sig_qual[(int )i] = (s8 )evm; } else { } i = (u8 )((int )i + 1); ldv_56256: ; if ((int )i < (int )max_spatial_stream) { goto ldv_56255; } else { } } if ((int )is_cck_rate) { { tmp___1 = _rtl92de_signal_scale_mapping(hw, (long )pwdb_all); pstats->signalstrength = (unsigned char )tmp___1; } } else if ((unsigned int )rf_rx_num != 0U) { { total_rssi = total_rssi / (u32 )rf_rx_num; tmp___2 = _rtl92de_signal_scale_mapping(hw, (long )total_rssi); pstats->signalstrength = (unsigned char )tmp___2; } } else { } return; } } static void rtl92d_loop_over_paths(struct ieee80211_hw *hw , struct rtl_stats *pstats ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 rfpath ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rfpath = 0U; goto ldv_56266; ldv_56265: ; if ((unsigned int )rtlpriv->stats.rx_rssi_percentage[(int )rfpath] == 0U) { rtlpriv->stats.rx_rssi_percentage[(int )rfpath] = pstats->rx_mimo_signalstrength[(int )rfpath]; } else { } if ((int )pstats->rx_mimo_signalstrength[(int )rfpath] > (int )rtlpriv->stats.rx_rssi_percentage[(int )rfpath]) { rtlpriv->stats.rx_rssi_percentage[(int )rfpath] = (u8 )(((int )rtlpriv->stats.rx_rssi_percentage[(int )rfpath] * 19 + (int )pstats->rx_mimo_signalstrength[(int )rfpath]) / 20); rtlpriv->stats.rx_rssi_percentage[(int )rfpath] = (unsigned int )rtlpriv->stats.rx_rssi_percentage[(int )rfpath] + 1U; } else { rtlpriv->stats.rx_rssi_percentage[(int )rfpath] = (u8 )(((int )rtlpriv->stats.rx_rssi_percentage[(int )rfpath] * 19 + (int )pstats->rx_mimo_signalstrength[(int )rfpath]) / 20); } rfpath = (u8 )((int )rfpath + 1); ldv_56266: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_56265; } else { } return; } } static void _rtl92de_process_ui_rssi(struct ieee80211_hw *hw , struct rtl_stats *pstats ) { struct rtl_priv *rtlpriv ; u32 last_rssi ; u32 tmpval ; u32 tmp ; u32 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )pstats->packet_toself || (int )pstats->packet_beacon) { rtlpriv->stats.rssi_calculate_cnt = rtlpriv->stats.rssi_calculate_cnt + 1U; tmp = rtlpriv->stats.ui_rssi.total_num; rtlpriv->stats.ui_rssi.total_num = rtlpriv->stats.ui_rssi.total_num + 1U; if (tmp > 99U) { rtlpriv->stats.ui_rssi.total_num = 100U; last_rssi = rtlpriv->stats.ui_rssi.elements[rtlpriv->stats.ui_rssi.index]; rtlpriv->stats.ui_rssi.total_val = rtlpriv->stats.ui_rssi.total_val - last_rssi; } else { } rtlpriv->stats.ui_rssi.total_val = rtlpriv->stats.ui_rssi.total_val + (u32 )pstats->signalstrength; tmp___0 = rtlpriv->stats.ui_rssi.index; rtlpriv->stats.ui_rssi.index = rtlpriv->stats.ui_rssi.index + 1U; rtlpriv->stats.ui_rssi.elements[tmp___0] = (u32 )pstats->signalstrength; if (rtlpriv->stats.ui_rssi.index > 99U) { rtlpriv->stats.ui_rssi.index = 0U; } else { } { tmpval = rtlpriv->stats.ui_rssi.total_val / rtlpriv->stats.ui_rssi.total_num; rtlpriv->stats.signal_strength = _rtl92de_translate_todbm(hw, (int )((unsigned char )tmpval)); pstats->rssi = (s8 )rtlpriv->stats.signal_strength; } } else { } if (! pstats->is_cck && (int )pstats->packet_toself) { { rtl92d_loop_over_paths(hw, pstats); } } else { } return; } } static void _rtl92de_update_rxsignalstatistics(struct ieee80211_hw *hw , struct rtl_stats *pstats ) { struct rtl_priv *rtlpriv ; int weighting ; { rtlpriv = (struct rtl_priv *)hw->priv; weighting = 0; if (rtlpriv->stats.recv_signal_power == 0L) { rtlpriv->stats.recv_signal_power = (long )pstats->recvsignalpower; } else { } if ((long )pstats->recvsignalpower > rtlpriv->stats.recv_signal_power) { weighting = 5; } else if ((long )pstats->recvsignalpower < rtlpriv->stats.recv_signal_power) { weighting = -5; } else { } rtlpriv->stats.recv_signal_power = ((rtlpriv->stats.recv_signal_power * 5L + (long )pstats->recvsignalpower) + (long )weighting) / 6L; return; } } static void _rtl92de_process_pwdb(struct ieee80211_hw *hw , struct rtl_stats *pstats ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; long undec_sm_pwdb ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; if ((unsigned int )mac->opmode == 1U || (unsigned int )mac->opmode == 3U) { return; } else { undec_sm_pwdb = rtlpriv->dm.undec_sm_pwdb; } if ((int )pstats->packet_toself || (int )pstats->packet_beacon) { if (undec_sm_pwdb < 0L) { undec_sm_pwdb = (long )pstats->rx_pwdb_all; } else { } if (pstats->rx_pwdb_all > (u32 )undec_sm_pwdb) { undec_sm_pwdb = (undec_sm_pwdb * 19L + (long )pstats->rx_pwdb_all) / 20L; undec_sm_pwdb = undec_sm_pwdb + 1L; } else { undec_sm_pwdb = (undec_sm_pwdb * 19L + (long )pstats->rx_pwdb_all) / 20L; } { rtlpriv->dm.undec_sm_pwdb = undec_sm_pwdb; _rtl92de_update_rxsignalstatistics(hw, pstats); } } else { } return; } } static void rtl92d_loop_over_streams(struct ieee80211_hw *hw , struct rtl_stats *pstats ) { struct rtl_priv *rtlpriv ; int stream ; { rtlpriv = (struct rtl_priv *)hw->priv; stream = 0; goto ldv_56295; ldv_56294: ; if ((int )pstats->rx_mimo_sig_qual[stream] != -1) { if ((unsigned int )rtlpriv->stats.rx_evm_percentage[stream] == 0U) { rtlpriv->stats.rx_evm_percentage[stream] = (u8 )pstats->rx_mimo_sig_qual[stream]; } else { } rtlpriv->stats.rx_evm_percentage[stream] = (u8 )(((int )rtlpriv->stats.rx_evm_percentage[stream] * 19 + (int )pstats->rx_mimo_sig_qual[stream]) / 20); } else { } stream = stream + 1; ldv_56295: ; if (stream <= 1) { goto ldv_56294; } else { } return; } } static void _rtl92de_process_ui_link_quality(struct ieee80211_hw *hw , struct rtl_stats *pstats ) { struct rtl_priv *rtlpriv ; u32 last_evm ; u32 tmpval ; u32 tmp ; u32 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )pstats->signalquality == 0U) { return; } else { } if ((int )pstats->packet_toself || (int )pstats->packet_beacon) { tmp = rtlpriv->stats.ui_link_quality.total_num; rtlpriv->stats.ui_link_quality.total_num = rtlpriv->stats.ui_link_quality.total_num + 1U; if (tmp > 19U) { rtlpriv->stats.ui_link_quality.total_num = 20U; last_evm = rtlpriv->stats.ui_link_quality.elements[rtlpriv->stats.ui_link_quality.index]; rtlpriv->stats.ui_link_quality.total_val = rtlpriv->stats.ui_link_quality.total_val - last_evm; } else { } rtlpriv->stats.ui_link_quality.total_val = rtlpriv->stats.ui_link_quality.total_val + (u32 )pstats->signalquality; tmp___0 = rtlpriv->stats.ui_link_quality.index; rtlpriv->stats.ui_link_quality.index = rtlpriv->stats.ui_link_quality.index + 1U; rtlpriv->stats.ui_link_quality.elements[tmp___0] = (u32 )pstats->signalquality; if (rtlpriv->stats.ui_link_quality.index > 19U) { rtlpriv->stats.ui_link_quality.index = 0U; } else { } { tmpval = rtlpriv->stats.ui_link_quality.total_val / rtlpriv->stats.ui_link_quality.total_num; rtlpriv->stats.signal_quality = (long )tmpval; rtlpriv->stats.last_sigstrength_inpercent = (long )tmpval; rtl92d_loop_over_streams(hw, pstats); } } else { } return; } } static void _rtl92de_process_phyinfo(struct ieee80211_hw *hw , u8 *buffer , struct rtl_stats *pcurrent_stats ) { { if (! pcurrent_stats->packet_matchbssid && ! pcurrent_stats->packet_beacon) { return; } else { } { _rtl92de_process_ui_rssi(hw, pcurrent_stats); _rtl92de_process_pwdb(hw, pcurrent_stats); _rtl92de_process_ui_link_quality(hw, pcurrent_stats); } return; } } static void _rtl92de_translate_rx_signal_stuff(struct ieee80211_hw *hw , struct sk_buff *skb , struct rtl_stats *pstats , struct rx_desc_92d *pdesc , struct rx_fwinfo_92d *p_drvinfo ) { struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct ieee80211_hdr *hdr ; u8 *tmp_buf ; u8 *praddr ; u16 type ; u16 cfc ; __le16 fc ; bool packet_matchbssid ; bool packet_toself ; bool packet_beacon ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; packet_beacon = 0; tmp_buf = skb->data + ((unsigned long )pstats->rx_drvinfo_size + (unsigned long )pstats->rx_bufshift); hdr = (struct ieee80211_hdr *)tmp_buf; fc = hdr->frame_control; cfc = fc; type = (unsigned int )fc & 12U; praddr = (u8 *)(& hdr->addr1); if ((unsigned int )type != 4U) { { tmp = ether_addr_equal((u8 const *)(& mac->bssid), (u8 const *)(((int )cfc & 256) != 0 ? & hdr->addr1 : (((int )cfc & 512) != 0 ? & hdr->addr2 : & hdr->addr3))); } if ((int )tmp) { if ((unsigned int )*((unsigned char *)pstats + 58UL) == 0U) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } } else { tmp___0 = 0; } packet_matchbssid = (bool )tmp___0; if ((int )packet_matchbssid) { { tmp___1 = ether_addr_equal((u8 const *)praddr, (u8 const *)(& rtlefuse->dev_addr)); } if ((int )tmp___1) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } { packet_toself = (bool )tmp___2; tmp___3 = ieee80211_is_beacon((int )fc); } if (tmp___3 != 0) { packet_beacon = 1; } else { } { _rtl92de_query_rxphystatus(hw, pstats, pdesc, p_drvinfo, (int )packet_matchbssid, (int )packet_toself, (int )packet_beacon); _rtl92de_process_phyinfo(hw, tmp_buf, pstats); } return; } } bool rtl92de_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *stats , struct ieee80211_rx_status *rx_status , u8 *p_desc , struct sk_buff *skb ) { struct rx_fwinfo_92d *p_drvinfo ; struct rx_desc_92d *pdesc ; u32 phystatus ; int tmp ; { pdesc = (struct rx_desc_92d *)p_desc; phystatus = (*((__le32 *)pdesc) >> 26) & 1U; stats->length = (unsigned int )((unsigned short )*((__le32 *)pdesc)) & 16383U; stats->rx_drvinfo_size = ((unsigned int )((u8 )(*((__le32 *)pdesc) >> 16)) & 15U) * 8U; stats->rx_bufshift = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 24)) & 3U; stats->icv = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 15)) & 1U; stats->crc = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 14)) & 1U; stats->hwerror = (unsigned char )((int )stats->crc | (int )stats->icv); stats->decrypted = (*((__le32 *)pdesc) & 134217728U) == 0U; stats->rate = (unsigned int )((unsigned char )*((__le32 *)pdesc + 12U)) & 63U; stats->shortpreamble = (unsigned int )((unsigned char )(*((__le32 *)pdesc + 12U) >> 8)) & 1U; stats->isampdu = (*((__le32 *)pdesc + 4U) & 16384U) != 0U; stats->isfirst_ampdu = (*((__le32 *)pdesc + 4U) & 49152U) == 49152U; stats->timestamp_low = *((__le32 *)pdesc + 20U); stats->rx_is40Mhzpacket = (*((__le32 *)pdesc + 12U) & 512U) != 0U; stats->is_ht = (*((__le32 *)pdesc + 12U) & 64U) != 0U; rx_status->freq = (hw->conf.chandef.chan)->center_freq; rx_status->band = (u8 )(hw->conf.chandef.chan)->band; if ((*((__le32 *)pdesc) & 16384U) != 0U) { rx_status->flag = rx_status->flag | 32U; } else { } if ((*((__le32 *)pdesc) & 134217728U) == 0U) { rx_status->flag = rx_status->flag | 2U; } else { } if ((*((__le32 *)pdesc + 12U) & 512U) != 0U) { rx_status->flag = rx_status->flag | 1024U; } else { } if ((*((__le32 *)pdesc + 12U) & 64U) != 0U) { rx_status->flag = rx_status->flag | 512U; } else { } rx_status->flag = rx_status->flag | 128U; if ((unsigned int )*((unsigned char *)stats + 58UL) != 0U) { rx_status->flag = rx_status->flag | 2U; } else { } { tmp = rtlwifi_rate_mapping(hw, (int )stats->is_ht, 0, (int )stats->rate); rx_status->rate_idx = (u8 )tmp; rx_status->mactime = (u64 )*((__le32 *)pdesc + 20U); } if (phystatus != 0U) { { p_drvinfo = (struct rx_fwinfo_92d *)skb->data + (unsigned long )stats->rx_bufshift; _rtl92de_translate_rx_signal_stuff(hw, skb, stats, pdesc, p_drvinfo); } } else { } rx_status->signal = (s8 )((unsigned int )((unsigned char )stats->recvsignalpower) + 10U); return (1); } } static void _rtl92de_insert_emcontent(struct rtl_tcb_desc *ptcb_desc , u8 *virtualaddress ) { { { __memset((void *)virtualaddress, 0, 8UL); *((__le32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4294967288U) | ((__le32 )ptcb_desc->empkt_num & 7U); *((__le32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4294901775U) | ((ptcb_desc->empkt_len[0] << 4) & 65535U); *((__le32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4026597375U) | ((ptcb_desc->empkt_len[1] & 4095U) << 16); *((__le32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 268435455U) | (ptcb_desc->empkt_len[2] << 28); *((__le32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 4294967040U) | ((ptcb_desc->empkt_len[2] >> 4) & 255U); *((__le32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 4293918975U) | ((ptcb_desc->empkt_len[3] & 4095U) << 8); *((__le32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 1048575U) | (ptcb_desc->empkt_len[4] << 20); } return; } } void rtl92de_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , u8 *pbd_desc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_pci *rtlpci ; struct rtl_hal *rtlhal ; struct rtl_ps_ctl *ppsc ; u8 *pdesc ; u16 seq_number ; __le16 fc ; unsigned int buf_len ; unsigned int skb_len ; u8 fw_qsel ; u8 tmp ; bool firstseg ; bool lastseg ; dma_addr_t mapping ; u8 bw_40 ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; size_t __min1 ; size_t __min2 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 ampdu_density ; struct ieee80211_key_conf *keyconf ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; long tmp___20 ; long tmp___21 ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlhal = & rtlpriv->rtlhal; ppsc = & ((struct rtl_priv *)hw->priv)->psc; pdesc = pdesc_tx; fc = hdr->frame_control; buf_len = 0U; skb_len = skb->len; tmp = _rtl92de_map_hwqueue_to_fwqueue(skb, (int )hw_queue); fw_qsel = tmp; firstseg = ((int )hdr->seq_ctrl & 15) == 0; lastseg = ((int )hdr->frame_control & 1024) == 0; bw_40 = 0U; } if ((unsigned int )mac->opmode == 2U) { bw_40 = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { bw_40 = (unsigned int )sta->bandwidth != 0U; } else { } } else { } { seq_number = (u16 )((int )hdr->seq_ctrl >> 4); rtl_get_tcb_desc(hw, info, sta, skb, ptcb_desc); } if ((int )rtlhal->earlymode_enable) { { skb_push(skb, 8U); __memset((void *)skb->data, 0, 8UL); } } else { } { buf_len = skb->len; mapping = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); } if (tmp___4 != 0) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> DMA mapping error", "rtl92de_tx_fill_desc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { __min1 = 64UL; __min2 = 40UL; __memset((void *)pdesc, 0, __min1 < __min2 ? __min1 : __min2); tmp___5 = ieee80211_is_nullfunc((int )fc); } if (tmp___5 != 0) { firstseg = 1; lastseg = 1; } else { { tmp___6 = ieee80211_is_ctl((int )fc); } if (tmp___6 != 0) { firstseg = 1; lastseg = 1; } else { } } if ((int )firstseg) { if ((int )rtlhal->earlymode_enable) { *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 67108863U) | 67108864U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2621440U; if ((unsigned int )ptcb_desc->empkt_num != 0U) { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Insert 8 byte.pTcb->EMPktNum:%d\n", "rtl92de_tx_fill_desc", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )ptcb_desc->empkt_num); } } else { } } else { } { _rtl92de_insert_emcontent(ptcb_desc, skb->data); } } else { } } else { *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; } if ((unsigned int )rtlhal->current_bandtype == 1U) { if ((unsigned int )ptcb_desc->hw_rate <= 3U) { ptcb_desc->hw_rate = 4U; } else { } } else { } *((__le32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967232U) | ((__le32 )ptcb_desc->hw_rate & 63U); if ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U) { *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 64U; } else { } if ((unsigned int )rtlhal->macphymode == 1U && (unsigned int )ptcb_desc->hw_rate == 19U) { *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 64U; } else { } if ((info->flags & 64U) != 0U) { *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 32U; *((__le32 *)pdesc + 24U) = (*((__le32 *)pdesc + 24U) & 4294903807U) | 40960U; } else { } *((__le32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4026597375U) | (((unsigned int )seq_number & 4095U) << 16); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294963199U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) == 32U ? 4096U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294959103U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 8192U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294965247U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 2048U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 1073741823U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 1073741824U : 0U); if ((unsigned int )rtlhal->current_bandtype == 1U) { if ((unsigned int )ptcb_desc->rts_rate <= 3U) { ptcb_desc->rts_rate = 4U; } else { } } else { } *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967264U) | ((__le32 )ptcb_desc->rts_rate & 31U); *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4160749567U; *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 3489660927U) | ((unsigned int )ptcb_desc->rts_sc << 28); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4227858431U) | ((unsigned int )ptcb_desc->rts_rate <= 11U ? ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 67108864U : 0U) : ((unsigned int )*((unsigned char *)ptcb_desc + 1UL) & 1U) << 26); if ((unsigned int )bw_40 != 0U) { if ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U) { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 33554432U; *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 3145728U; } else { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4261412863U; *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4291821567U) | (((unsigned int )mac->cur_40_prime_sc & 3U) << 20); } } else { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4261412863U; *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4291821567U; } *((__le32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb_len); if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { ampdu_density = sta->ht_cap.ampdu_density; *((__le32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4287627263U) | (((unsigned int )ampdu_density & 7U) << 20); } else { } if ((unsigned long )info->__annonCompField91.control.hw_key != (unsigned long )((struct ieee80211_key_conf *)0)) { keyconf = info->__annonCompField91.control.hw_key; { if (keyconf->cipher == 1027073U) { goto case_1027073; } else { } if (keyconf->cipher == 1027077U) { goto case_1027077; } else { } if (keyconf->cipher == 1027074U) { goto case_1027074; } else { } if (keyconf->cipher == 1027076U) { goto case_1027076; } else { } goto switch_default; case_1027073: /* CIL Label */ ; case_1027077: /* CIL Label */ ; case_1027074: /* CIL Label */ *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4282384383U) | 4194304U; goto ldv_56376; case_1027076: /* CIL Label */ *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 12582912U; goto ldv_56376; switch_default: /* CIL Label */ *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4282384383U; goto ldv_56376; switch_break: /* CIL Label */ ; } ldv_56376: ; } else { } *((__le32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) & 268435455U; *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_qsel & 31U) << 8); *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 7936U; *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 122880U; *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294966271U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 1024U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967039U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 256U : 0U); if ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) == 0U) { *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967264U) | 8U; } else { } { tmp___15 = ieee80211_is_data_qos((int )fc); } if (tmp___15 != 0) { if ((int )mac->rdg_en) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> Enable RDG function\n", "rtl92de_tx_fill_desc", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 128U; *((__le32 *)pdesc) = *((__le32 *)pdesc) | 33554432U; } else { } } else { } } else { } *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4160749567U) | ((int )firstseg ? 134217728U : 0U); *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4227858431U) | ((int )lastseg ? 67108864U : 0U); *((__le32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )buf_len); *((__le32 *)pdesc + 32U) = (__le32 )mapping; if ((int )rtlpriv->dm.useramask) { *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4293984255U) | (((unsigned int )ptcb_desc->ratr_index & 15U) << 16); *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294967264U) | ((__le32 )ptcb_desc->mac_id & 31U); } else { *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4293984255U) | (((unsigned int )((int )ptcb_desc->ratr_index + 12) & 15U) << 16); *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294967264U) | ((__le32 )ptcb_desc->ratr_index & 31U); } { tmp___16 = ieee80211_is_data_qos((int )fc); } if (tmp___16 != 0) { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 64U; } else { } { tmp___17 = ieee80211_is_data_qos((int )fc); } if (tmp___17 == 0 && (int )ppsc->fwctrl_lps) { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 128U; *((__le32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 268435455U) | 2147483648U; } else { } { *((__le32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4294836223U) | ((unsigned int )(! lastseg) << 17); tmp___20 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___20 != 0L) { { tmp___21 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___21 != 0L) { { tmp___18 = preempt_count(); tmp___19 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> \n", "rtl92de_tx_fill_desc", (unsigned long )tmp___19 & 2096896UL, ((unsigned long )tmp___18 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl92de_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool firstseg , bool lastseg , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_ps_ctl *ppsc ; struct rtl_hal *rtlhal ; u8 fw_queue ; dma_addr_t mapping ; dma_addr_t tmp ; struct ieee80211_hdr *hdr ; __le16 fc ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; size_t __min1 ; size_t __min2 ; int tmp___5 ; struct task_struct *tmp___6 ; struct task_struct *tmp___7 ; struct _ddebug descriptor ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ppsc = & rtlpriv->psc; rtlhal = & rtlpriv->rtlhal; fw_queue = 16U; tmp = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); mapping = tmp; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); } if (tmp___4 != 0) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192de:%s():<%lx-%x> DMA mapping error", "rtl92de_tx_fill_cmddesc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { __min1 = 64UL; __min2 = 40UL; __memset((void *)pdesc, 0, __min1 < __min2 ? __min1 : __min2); } if ((int )firstseg) { *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; } else { } if ((unsigned int )rtlhal->current_bandtype == 1U) { *((__le32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967232U) | 4U; } else { *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) & 4294967232U; } { *((__le32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) & 4026597375U; *((__le32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_queue & 31U) << 8); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((__le32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((__le32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 32U) = (__le32 )mapping; *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4293984255U) | 458752U; *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4294967264U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((__le32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 256U; tmp___5 = ieee80211_is_data_qos((int )fc); } if (tmp___5 == 0 && (int )ppsc->fwctrl_lps) { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 128U; *((__le32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 268435455U) | 2147483648U; } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___6 = get_current(); tmp___7 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192de", (char *)(& tmp___7->comm), tmp___6->pid, (char *)"H2C Tx Cmd Content"); descriptor.modname = "rtl8192de"; descriptor.function = "rtl92de_tx_fill_cmddesc"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8192de/trx.c"; descriptor.format = ""; descriptor.lineno = 783U; descriptor.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___8 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)pdesc, 64UL, 1); } } else { } } else { } } else { } __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; return; } } void rtl92de_set_desc(struct ieee80211_hw *hw , u8 *pdesc , bool istx , u8 desc_name , u8 *val ) { { if ((int )istx) { { if ((int )desc_name == 0) { goto case_0; } else { } if ((int )desc_name == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_56407; case_2: /* CIL Label */ *((__le32 *)pdesc + 40U) = *((u32 *)val); goto ldv_56407; switch_default: /* CIL Label */ { printk("\017rtl8192de:%s(): ERR txdesc :%d not process\n", "rtl92de_set_desc", (int )desc_name); } goto ldv_56407; switch_break: /* CIL Label */ ; } ldv_56407: ; } else { { if ((int )desc_name == 1) { goto case_1; } else { } if ((int )desc_name == 4) { goto case_4; } else { } if ((int )desc_name == 5) { goto case_5; } else { } if ((int )desc_name == 6) { goto case_6; } else { } goto switch_default___0; case_1: /* CIL Label */ __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_56412; case_4: /* CIL Label */ *((__le32 *)pdesc + 24U) = *((u32 *)val); goto ldv_56412; case_5: /* CIL Label */ *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294950912U) | (*((u32 *)val) & 16383U); goto ldv_56412; case_6: /* CIL Label */ *((__le32 *)pdesc) = *((__le32 *)pdesc) | 1073741824U; goto ldv_56412; switch_default___0: /* CIL Label */ { printk("\017rtl8192de:%s(): ERR rxdesc :%d not process\n", "rtl92de_set_desc", (int )desc_name); } goto ldv_56412; switch_break___0: /* CIL Label */ ; } ldv_56412: ; } return; } } u32 rtl92de_get_desc(u8 *p_desc , bool istx , u8 desc_name ) { u32 ret ; struct rx_desc_92c *pdesc ; { ret = 0U; if ((int )istx) { { if ((int )desc_name == 0) { goto case_0; } else { } if ((int )desc_name == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ret = *((__le32 *)p_desc) >> 31; goto ldv_56424; case_3: /* CIL Label */ ret = *((__le32 *)p_desc + 32U); goto ldv_56424; switch_default: /* CIL Label */ { printk("\017rtl8192de:%s(): ERR txdesc :%d not process\n", "rtl92de_get_desc", (int )desc_name); } goto ldv_56424; switch_break: /* CIL Label */ ; } ldv_56424: ; } else { pdesc = (struct rx_desc_92c *)p_desc; { if ((int )desc_name == 0) { goto case_0___0; } else { } if ((int )desc_name == 5) { goto case_5; } else { } goto switch_default___0; case_0___0: /* CIL Label */ ret = *((__le32 *)pdesc) >> 31; goto ldv_56431; case_5: /* CIL Label */ ret = *((__le32 *)pdesc) & 16383U; goto ldv_56431; switch_default___0: /* CIL Label */ { printk("\017rtl8192de:%s(): ERR rxdesc :%d not process\n", "rtl92de_get_desc", (int )desc_name); } goto ldv_56431; switch_break___0: /* CIL Label */ ; } ldv_56431: ; } return (ret); } } void rtl92de_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )hw_queue == 4U) { { rtl_write_word(rtlpriv, 768U, 16); } } else { { rtl_write_word(rtlpriv, 768U, (int )((u16 )(1UL << (int )hw_queue))); } } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_cck_and_rw_pagea_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_cck_and_rw_pagea_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 2); ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_cck_and_rw_pagea_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_cck_and_rw_pagea_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_cck_and_rw_pagea_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_cck_and_rw_pagea_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_cck_and_rw_pagea_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_cck_and_rw_pagea_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_cck_and_rw_pagea_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_fwdownload(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_for_fwdownload(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 2); ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_globalmutex_for_fwdownload(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_globalmutex_for_fwdownload(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_globalmutex_for_fwdownload(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_globalmutex_for_fwdownload(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_globalmutex_for_fwdownload(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_globalmutex_for_fwdownload(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_globalmutex_for_fwdownload(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_for_power_and_efuse(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_for_power_and_efuse(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 2); ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_globalmutex_for_power_and_efuse(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_globalmutex_for_power_and_efuse(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_globalmutex_for_power_and_efuse(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_globalmutex_for_power_and_efuse(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_globalmutex_for_power_and_efuse(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_globalmutex_for_power_and_efuse(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_globalmutex_for_power_and_efuse(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_globalmutex_power = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_globalmutex_power(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); ldv_linux_kernel_locking_spinlock_spin_globalmutex_power = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_globalmutex_power(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 2); ldv_linux_kernel_locking_spinlock_spin_globalmutex_power = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_globalmutex_power(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_globalmutex_power = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_globalmutex_power(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_globalmutex_power(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_globalmutex_power(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_globalmutex_power(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_globalmutex_power(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_globalmutex_power(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_globalmutex_power = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_h2c_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_h2c_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 2); ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_h2c_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_h2c_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_h2c_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_h2c_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_h2c_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_h2c_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_h2c_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_irq_th_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_irq_th_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 2); ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_irq_th_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_irq_th_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_irq_th_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_irq_th_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_irq_th_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_irq_th_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_irq_th_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_rf_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_rf_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 2); ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_rf_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_rf_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_rf_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_rf_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_rf_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_rf_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_rf_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_rf_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_rf_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 2); ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_rf_ps_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_rf_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_rf_ps_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_rf_ps_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_rf_ps_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_rf_ps_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_rf_ps_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_cck_and_rw_pagea_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_fwdownload == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_globalmutex_for_power_and_efuse == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_globalmutex_power == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_h2c_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_irq_th_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_rf_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_rf_ps_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }