/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct __va_list_tag; typedef struct __va_list_tag __va_list_tag; typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef __builtin_va_list __gnuc_va_list[1U]; typedef __gnuc_va_list va_list[1U]; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct exception_table_entry { int insn ; int fixup ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField73 ; union __anonunion____missing_field_name_215 __annonCompField74 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_216 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_217 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_218 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_220 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_221 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_219 { struct __anonstruct_elv_220 elv ; struct __anonstruct_flush_221 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_216 __annonCompField75 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_217 __annonCompField76 ; union __anonunion____missing_field_name_218 __annonCompField77 ; union __anonunion____missing_field_name_219 __annonCompField78 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_223 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_223 __annonCompField79 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_231 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_231 __annonCompField81 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; enum hrtimer_restart; struct execute_work { struct work_struct work ; }; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pci_bus; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_224 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_224 __annonCompField80 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct scsi_sense_hdr; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; struct scsi_sense_hdr { u8 response_code ; u8 sense_key ; u8 asc ; u8 ascq ; u8 byte4 ; u8 byte5 ; u8 byte6 ; u8 additional_length ; }; struct atto_dev_addr { u64 dev_port ; u64 hba_port ; u8 lun ; u8 flags ; u8 link_speed ; u8 pad[1U] ; }; struct atto_vda_sge { u32 length ; u64 address ; }; union __anonunion____missing_field_name_232 { u8 dev_status ; u8 op_ctrl ; }; union __anonunion____missing_field_name_233 { u16 target_id ; u16 features_mask ; }; struct atto_vda_devinfo { struct atto_dev_addr dev_addr ; u8 vendor_id[8U] ; u8 product_id[16U] ; u8 revision[4U] ; u64 capacity ; u32 block_size ; u8 dev_type ; union __anonunion____missing_field_name_232 __annonCompField82 ; u8 member_state ; u8 operation ; u8 op_status ; u8 progress ; u16 ses_dev_index ; u8 serial_no[32U] ; union __anonunion____missing_field_name_233 __annonCompField83 ; u16 lun ; u16 features ; u8 ses_element_id ; u8 link_speed ; u16 phys_target_id ; u8 reserved[2U] ; }; union __anonunion____missing_field_name_235 { u8 status ; u8 op_ctrl ; }; union __anonunion____missing_field_name_236 { u16 members[32U] ; u16 features_mask ; }; struct atto_vda_grp_info { u8 grp_index ; char grp_name[15U] ; u64 capacity ; u32 block_size ; u32 interleave ; u8 type ; union __anonunion____missing_field_name_235 __annonCompField85 ; u8 rebuild_state ; u8 span_depth ; u8 progress ; u8 mirror_width ; u8 stripe_width ; u8 member_cnt ; union __anonunion____missing_field_name_236 __annonCompField86 ; u16 features ; u8 prefetch ; u8 op_status ; u8 over_provision ; u8 reserved[3U] ; }; struct atto_vdapart_info { u8 part_no ; char grp_name[15U] ; u64 part_size ; u64 start_lba ; u32 block_size ; u16 target_id ; u8 LUN ; char serial_no[41U] ; u8 features ; u8 reserved[7U] ; }; struct atto_vda_dh_info { u8 req_type ; u8 req_qual ; u8 num_smart_attribs ; u8 status ; u32 med_defect_cnt ; u32 info_exc_cnt ; u8 smart_status ; u8 reserved[35U] ; struct atto_vda_sge sge[1U] ; }; struct atto_vda_metrics_info { u8 data_version ; u8 metrics_action ; u8 test_action ; u8 num_dev_indexes ; u16 dev_indexes[32U] ; u8 reserved[12U] ; struct atto_vda_sge sge[1U] ; }; struct atto_vda_schedule_info { u8 schedule_type ; u8 operation ; u8 hour ; u8 minute ; u8 day ; u8 progress ; u8 event_type ; u8 recurrences ; u32 id ; char grp_name[15U] ; u8 reserved[85U] ; }; struct atto_vda_n_vcache_info { u8 super_cap_status ; u8 nvcache_module_status ; u8 protection_mode ; u8 reserved[109U] ; }; struct atto_vda_buzzer_info { u8 status ; u8 reserved[3U] ; u32 duration ; u8 reserved2[104U] ; }; struct atto_vda_ae_hdr { u8 bylength ; u8 byflags ; u8 byversion ; u8 bytype ; }; struct atto_vda_ae_lu_tgt_lun { u16 wtarget_id ; u8 bylun ; u8 byreserved ; }; struct atto_vda_ae_lu_tgt_lun_raid { u16 wtarget_id ; u8 bylun ; u8 byreserved ; u32 dwinterleave ; u32 dwblock_size ; }; union __anonunion_id_237 { struct atto_vda_ae_lu_tgt_lun tgtlun ; struct atto_vda_ae_lu_tgt_lun_raid tgtlun_raid ; }; struct atto_vda_ae_lu { struct atto_vda_ae_hdr hdr ; u32 dwevent ; u8 bystate ; u8 byreserved ; u16 wphys_target_id ; union __anonunion_id_237 id ; }; struct atto_vda_date_and_time { u8 flags ; u8 seconds ; u8 minutes ; u8 hours ; u8 day ; u8 month ; u16 year ; }; struct atto_vda_cfg_init { struct atto_vda_date_and_time date_time ; u32 sgl_page_size ; u32 vda_version ; u32 fw_version ; u32 fw_build ; u32 fw_release ; u32 epoch_time ; u32 ioctl_tunnel ; u32 num_targets_backend ; u8 reserved[72U] ; }; struct atto_physical_region_description { u64 address ; u32 ctl_len ; }; struct __anonstruct____missing_field_name_239 { u64 ppsense_buf ; u16 target_id ; u8 iblk_cnt_prd ; u8 reserved ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField87 ; struct atto_physical_region_description sense_buff_prd ; }; union __anonunion_u_240 { struct atto_vda_sge sge[1U] ; u32 abort_handle ; u32 dwords[245U] ; struct atto_physical_region_description prd[1U] ; }; struct atto_vda_scsi_req { u32 length ; u8 function ; u8 sense_len ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 flags ; u8 cdb[16U] ; union __anonunion____missing_field_name_238 __annonCompField88 ; union __anonunion_u_240 u ; }; struct __anonstruct_file_242 { char file_name[16U] ; struct atto_vda_sge sge[1U] ; }; union __anonunion_data_241 { struct __anonstruct_file_242 file ; struct atto_vda_sge sge[1U] ; struct atto_physical_region_description prde[2U] ; }; struct atto_vda_flash_req { u32 length ; u8 function ; u8 sub_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 flash_addr ; u8 checksum ; u8 rsvd[3U] ; union __anonunion_data_241 data ; }; struct atto_vda_diag_req { u32 length ; u8 function ; u8 sub_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 rsvd ; u64 local_addr ; struct atto_vda_sge sge[1U] ; }; union __anonunion____missing_field_name_243 { struct atto_vda_sge sge[1U] ; struct atto_physical_region_description prde[1U] ; }; struct atto_vda_ae_req { u32 length ; u8 function ; u8 reserved1 ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; union __anonunion____missing_field_name_243 __annonCompField89 ; }; struct atto_vda_cli_req { u32 length ; u8 function ; u8 reserved1 ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 cmd_rsp_len ; struct atto_vda_sge sge[1U] ; }; union __anonunion____missing_field_name_244 { struct atto_vda_sge reserved_sge ; struct atto_physical_region_description reserved_prde ; }; struct __anonstruct_csmi_246 { u32 ctrl_code ; u16 target_id ; u8 lun ; u8 reserved ; }; union __anonunion____missing_field_name_245 { struct __anonstruct_csmi_246 csmi ; }; union __anonunion____missing_field_name_247 { struct atto_vda_sge sge[1U] ; struct atto_physical_region_description prde[1U] ; }; struct atto_vda_ioctl_req { u32 length ; u8 function ; u8 sub_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; union __anonunion____missing_field_name_244 __annonCompField90 ; union __anonunion____missing_field_name_245 __annonCompField91 ; union __anonunion____missing_field_name_247 __annonCompField92 ; }; union __anonunion_data_248 { u8 bytes[116U] ; struct atto_vda_cfg_init init ; struct atto_vda_sge sge ; struct atto_physical_region_description prde ; }; struct atto_vda_cfg_req { u32 length ; u8 function ; u8 sub_func ; u8 rsvd1 ; u8 sg_list_offset ; u32 handle ; union __anonunion_data_248 data ; }; union __anonunion____missing_field_name_249 { struct atto_vda_sge sge[2U] ; struct atto_physical_region_description prde[2U] ; }; struct atto_vda_mgmt_req { u32 length ; u8 function ; u8 mgt_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u8 scan_generation ; u8 payld_sglst_offset ; u16 dev_index ; u32 payld_length ; u32 pad ; union __anonunion____missing_field_name_249 __annonCompField93 ; struct atto_vda_sge payld_sge[1U] ; }; union atto_vda_req { struct atto_vda_scsi_req scsi ; struct atto_vda_flash_req flash ; struct atto_vda_diag_req diag ; struct atto_vda_ae_req ae ; struct atto_vda_cli_req cli ; struct atto_vda_ioctl_req ioctl ; struct atto_vda_cfg_req cfg ; struct atto_vda_mgmt_req mgt ; u8 bytes[1024U] ; }; struct atto_vda_scsi_rsp { u8 scsi_stat ; u8 sense_len ; u8 rsvd[2U] ; u32 residual_length ; }; struct atto_vda_flash_rsp { u32 file_size ; }; struct atto_vda_ae_rsp { u32 length ; }; struct atto_vda_cli_rsp { u32 cmd_rsp_len ; }; struct __anonstruct_csmi_251 { u32 csmi_status ; u16 target_id ; u8 lun ; u8 reserved ; }; union __anonunion____missing_field_name_250 { struct __anonstruct_csmi_251 csmi ; }; struct atto_vda_ioctl_rsp { union __anonunion____missing_field_name_250 __annonCompField94 ; }; struct atto_vda_cfg_rsp { u16 vda_version ; u16 fw_release ; u32 fw_build ; }; struct atto_vda_mgmt_rsp { u32 length ; u16 dev_index ; u8 scan_generation ; }; union atto_vda_func_rsp { struct atto_vda_scsi_rsp scsi_rsp ; struct atto_vda_flash_rsp flash_rsp ; struct atto_vda_ae_rsp ae_rsp ; struct atto_vda_cli_rsp cli_rsp ; struct atto_vda_ioctl_rsp ioctl_rsp ; struct atto_vda_cfg_rsp cfg_rsp ; struct atto_vda_mgmt_rsp mgt_rsp ; u32 dwords[2U] ; }; struct atto_vda_ae_data { u8 event_data[256U] ; }; union __anonunion_data_252 { u8 bytes[112U] ; struct atto_vda_devinfo dev_info ; struct atto_vda_grp_info grp_info ; struct atto_vdapart_info part_info ; struct atto_vda_dh_info dev_health_info ; struct atto_vda_metrics_info metrics_info ; struct atto_vda_schedule_info sched_info ; struct atto_vda_n_vcache_info nvcache_info ; struct atto_vda_buzzer_info buzzer_info ; }; struct atto_vda_mgmt_data { union __anonunion_data_252 data ; }; union atto_vda_rsp_data { struct atto_vda_ae_data ae_data ; struct atto_vda_mgmt_data mgt_data ; u8 sense_data[252U] ; u8 bytes[256U] ; }; struct __anonstruct_pci_257 { u16 vendor_id ; u16 device_id ; u16 ss_vendor_id ; u16 ss_device_id ; u8 class_code[3U] ; u8 rev_id ; u8 bus_num ; u8 dev_num ; u8 func_num ; u8 link_width_max ; u8 link_width_curr ; u8 link_speed_max ; u8 link_speed_curr ; u8 interrupt_mode ; u8 msi_vector_cnt ; u8 reserved[19U] ; }; struct atto_hba_get_adapter_info { struct __anonstruct_pci_257 pci ; u8 adap_type ; u8 adap_flags ; u8 num_ports ; u8 num_phys ; u8 drvr_rev_major ; u8 drvr_rev_minor ; u8 drvr_revsub_minor ; u8 drvr_rev_build ; char drvr_rev_ascii[16U] ; char drvr_name[32U] ; char firmware_rev[16U] ; char flash_rev[16U] ; char model_name_short[16U] ; char model_name[32U] ; u32 num_targets ; u32 num_targsper_bus ; u32 num_lunsper_targ ; u8 num_busses ; u8 num_connectors ; u8 adap_flags2 ; u8 num_temp_sensors ; u32 num_targets_backend ; u32 tunnel_flags ; u8 reserved3[312U] ; }; struct atto_hba_get_adapter_address { u8 addr_type ; u8 port_id ; u16 addr_len ; u8 address[256U] ; }; struct atto_hba_trace { u8 trace_func ; u8 trace_type ; u8 reserved[2U] ; u32 current_offset ; u32 total_length ; u32 trace_mask ; u8 reserved2[48U] ; }; struct atto_hba_scsi_pass_thru { u8 cdb[32U] ; u8 cdb_length ; u8 req_status ; u8 scsi_status ; u8 sense_length ; u32 flags ; u32 timeout ; u32 target_id ; u8 lun[8U] ; u32 residual_length ; u8 sense_data[252U] ; u8 reserved[40U] ; }; struct atto_hba_get_device_address { u8 addr_type ; u8 reserved ; u16 addr_len ; u32 target_id ; u8 address[256U] ; }; struct __anonstruct____missing_field_name_260 { u8 temp_sensor ; u8 temp_state ; short temp_value ; short temp_lower_lim ; short temp_upper_lim ; char temp_desc[32U] ; u8 reserved2[20U] ; }; union __anonunion____missing_field_name_259 { struct __anonstruct____missing_field_name_260 __annonCompField100 ; }; struct atto_hba_adap_ctrl { u8 adap_func ; u8 adap_state ; u8 reserved[2U] ; union __anonunion____missing_field_name_259 __annonCompField101 ; }; struct atto_hba_sas_device_info { u8 phy_id[16U] ; u32 exp_target_id ; u32 sas_port_mask ; u8 sas_level ; u8 slot_num ; u8 dev_type ; u8 ini_flags ; u8 tgt_flags ; u8 link_rate ; u8 loc_flags ; u8 pm_port ; u8 reserved[96U] ; }; union atto_hba_device_info { struct atto_hba_sas_device_info sas_dev_info ; }; struct atto_hba_get_device_info { u32 target_id ; u8 info_type ; u8 reserved[11U] ; union atto_hba_device_info dev_info ; }; union __anonunion_data_261 { u8 byte[1U] ; struct atto_hba_get_adapter_info get_adap_info ; struct atto_hba_get_adapter_address get_adap_addr ; struct atto_hba_scsi_pass_thru scsi_pass_thru ; struct atto_hba_get_device_address get_dev_addr ; struct atto_hba_adap_ctrl adap_ctrl ; struct atto_hba_get_device_info get_dev_info ; struct atto_hba_trace trace ; }; struct atto_ioctl { u8 version ; u8 function ; u8 status ; u8 flags ; u32 data_length ; u8 reserved2[56U] ; union __anonunion_data_261 data ; }; struct esas2r_adapter; struct esas2r_sg_context; struct esas2r_request; struct esas2r_component_header { u8 img_type ; u8 status ; u8 pad[2U] ; u32 version ; u32 length ; u32 image_offset ; }; struct esas2r_flash_img { u8 fi_version ; u8 status ; u8 adap_typ ; u8 action ; u32 length ; u16 checksum ; u16 driver_error ; u16 flags ; u16 num_comps ; u8 rel_version[16U] ; struct esas2r_component_header cmp_hdr[6U] ; u8 scratch_buf[2048U] ; }; struct esas2r_sas_nvram { u8 signature[4U] ; u8 version ; u8 checksum ; u8 max_lun_for_target ; u8 pci_latency ; u8 options1 ; u8 options2 ; u8 int_coalescing ; u8 cmd_throttle ; u8 dev_wait_time ; u8 dev_wait_count ; u8 spin_up_delay ; u8 ssp_align_rate ; u8 sas_addr[8U] ; u8 phy_speed[16U] ; u8 phy_mux[16U] ; u8 phy_flags[16U] ; u8 sort_type ; u8 dpm_reqcmd_lmt ; u8 dpm_stndby_time ; u8 dpm_active_time ; u8 phy_target_id[16U] ; u8 virt_ses_mode ; u8 read_write_mode ; u8 link_down_to ; u8 reserved[161U] ; }; struct __anonstruct_a64_272 { struct atto_vda_sge *curr ; struct atto_vda_sge *last ; struct atto_vda_sge *limit ; struct atto_vda_sge *chain ; }; struct __anonstruct_prd_273 { struct atto_physical_region_description *curr ; struct atto_physical_region_description *chain ; u32 sgl_max_cnt ; u32 sge_cnt ; }; union __anonunion_sge_271 { struct __anonstruct_a64_272 a64 ; struct __anonstruct_prd_273 prd ; }; struct esas2r_sg_context { struct esas2r_adapter *adapter ; struct esas2r_request *first_req ; u32 length ; u8 *cur_offset ; u32 (*get_phys_addr)(struct esas2r_sg_context * , u64 * ) ; union __anonunion_sge_271 sge ; struct scatterlist *cur_sgel ; u8 *exp_offset ; int num_sgel ; int sgel_count ; }; struct esas2r_target { u8 flags ; u8 new_target_state ; u8 target_state ; u8 buffered_target_state ; u32 block_size ; u32 inter_block ; u32 inter_byte ; u16 virt_targ_id ; u16 phys_targ_id ; u8 identifier_len ; u64 sas_addr ; u8 identifier[60U] ; struct atto_vda_ae_lu lu_event ; }; struct esas2r_mem_desc; union __anonunion____missing_field_name_274 { void *data_buf ; union atto_vda_rsp_data *vda_rsp_data ; }; union __anonunion____missing_field_name_275 { struct scsi_cmnd *cmd ; u8 *task_management_status_ptr ; }; struct esas2r_request { struct list_head comp_list ; struct list_head req_list ; union atto_vda_req *vrq ; struct esas2r_mem_desc *vrq_md ; union __anonunion____missing_field_name_274 __annonCompField102 ; u8 *sense_buf ; struct list_head sg_table_head ; struct esas2r_mem_desc *sg_table ; u32 timeout ; u16 target_id ; u8 req_type ; u8 sense_len ; union atto_vda_func_rsp func_rsp ; void (*comp_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; void (*interrupt_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; void *interrupt_cx ; u8 flags ; u8 req_stat ; u16 vda_req_sz ; u64 lba ; void (*aux_req_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; void *aux_req_cx ; u32 blk_len ; u32 max_blk_len ; union __anonunion____missing_field_name_275 __annonCompField103 ; }; struct esas2r_flash_context { struct esas2r_flash_img *fi ; void (*interrupt_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; u8 *sgc_offset ; u8 *scratch ; u32 fi_hdr_len ; u8 task ; u8 func ; u16 num_comps ; u32 cmp_len ; u32 flsh_addr ; u32 curr_len ; u8 comp_typ ; struct esas2r_sg_context sgc ; }; struct esas2r_disc_context { u8 disc_evt ; u8 state ; u16 flags ; u32 interleave ; u32 block_size ; u16 dev_ix ; u8 part_num ; u8 raid_grp_ix ; char raid_grp_name[16U] ; struct esas2r_target *curr_targ ; u16 curr_virt_id ; u16 curr_phys_id ; u8 scan_gen ; u8 dev_addr_type ; u64 sas_addr ; }; struct esas2r_mem_desc { struct list_head next_desc ; void *virt_addr ; u64 phys_addr ; void *pad ; void *esas2r_data ; u32 esas2r_param ; u32 size ; }; enum state { FW_INVALID_ST = 0, FW_STATUS_ST = 1, FW_COMMAND_ST = 2 } ; struct esas2r_firmware { enum state state ; struct esas2r_flash_img header ; u8 *data ; u64 phys ; int orig_len ; void *header_buff ; u64 header_buff_phys ; }; union __anonunion____missing_field_name_276 { u16 prev_dev_cnt ; u32 heartbeat_time ; }; struct esas2r_adapter { struct esas2r_target targetdb[256U] ; struct esas2r_target *targetdb_end ; unsigned char *regs ; unsigned char *data_window ; long flags ; long flags2 ; atomic_t disable_cnt ; atomic_t dis_ints_cnt ; u32 int_stat ; u32 int_mask ; u32 volatile *outbound_copy ; struct list_head avail_request ; spinlock_t request_lock ; spinlock_t sg_list_lock ; spinlock_t queue_lock ; spinlock_t mem_lock ; struct list_head free_sg_list_head ; struct esas2r_mem_desc *sg_list_mds ; struct list_head active_list ; struct list_head defer_list ; struct esas2r_request **req_table ; union __anonunion____missing_field_name_276 __annonCompField104 ; u32 chip_uptime ; u64 uncached_phys ; u8 *uncached ; struct esas2r_sas_nvram *nvram ; struct esas2r_request general_req ; u8 init_msg ; u16 cmd_ref_no ; u32 fw_version ; u32 fw_build ; u32 chip_init_time ; u32 last_tick_time ; u32 window_base ; bool (*build_sgl)(struct esas2r_adapter * , struct esas2r_sg_context * ) ; struct esas2r_request *first_ae_req ; u32 list_size ; u32 last_write ; u32 last_read ; u16 max_vdareq_size ; u16 disc_wait_cnt ; struct esas2r_mem_desc inbound_list_md ; struct esas2r_mem_desc outbound_list_md ; struct esas2r_disc_context disc_ctx ; u8 *disc_buffer ; u32 disc_start_time ; u32 disc_wait_time ; u32 flash_ver ; char flash_rev[16U] ; char fw_rev[16U] ; char image_type[16U] ; struct esas2r_flash_context flash_context ; u32 num_targets_backend ; u32 ioctl_tunnel ; struct tasklet_struct tasklet ; struct pci_dev *pcid ; struct Scsi_Host *host ; unsigned int index ; char name[32U] ; struct timer_list timer ; struct esas2r_firmware firmware ; wait_queue_head_t nvram_waiter ; int nvram_command_done ; wait_queue_head_t fm_api_waiter ; int fm_api_command_done ; wait_queue_head_t vda_waiter ; int vda_command_done ; u8 *vda_buffer ; u64 ppvda_buffer ; wait_queue_head_t fs_api_waiter ; int fs_api_command_done ; u64 ppfs_api_buffer ; u8 *fs_api_buffer ; u32 fs_api_buffer_size ; wait_queue_head_t buffered_ioctl_waiter ; int buffered_ioctl_done ; int uncached_size ; struct workqueue_struct *fw_event_q ; struct list_head fw_event_list ; spinlock_t fw_event_lock ; u8 fw_events_off ; char fw_event_q_name[20U] ; int intr_mode ; struct esas2r_sg_context fm_api_sgc ; u8 *save_offset ; struct list_head vrq_mds_head ; struct esas2r_mem_desc *vrq_mds ; int num_vrqs ; struct semaphore fm_api_semaphore ; struct semaphore fs_api_semaphore ; struct semaphore nvram_semaphore ; struct atto_ioctl *local_atto_ioctl ; u8 fw_coredump_buff[524288U] ; unsigned char sysfs_fw_created : 1 ; unsigned char sysfs_fs_created : 1 ; unsigned char sysfs_vda_created : 1 ; unsigned char sysfs_hw_created : 1 ; unsigned char sysfs_live_nvram_created : 1 ; unsigned char sysfs_default_nvram_created : 1 ; }; enum hrtimer_restart; struct esas2r_boot_header { char signature[4U] ; u16 vendor_id ; u16 device_id ; u16 VPD ; u16 struct_length ; u8 struct_revision ; u8 class_code[3U] ; u16 image_length ; u16 code_revision ; u8 code_type ; u8 indicator ; u8 reserved[2U] ; }; struct esas2r_boot_image { u16 signature ; u8 reserved[22U] ; u16 header_offset ; u16 pnp_offset ; }; struct esas2r_pc_image { u16 signature ; u8 length ; u8 entry_point[3U] ; u8 checksum ; u16 image_end ; u16 min_size ; u8 rom_flags ; u8 reserved[12U] ; u16 header_offset ; u16 pnp_offset ; struct esas2r_boot_header boot_image ; }; struct esas2r_efi_image { u16 signature ; u16 length ; u32 efi_signature ; u16 image_type ; u16 machine_type ; u16 compression ; u8 reserved[8U] ; u16 efi_offset ; u16 header_offset ; u16 reserved2 ; struct esas2r_boot_header boot_image ; }; struct esas2r_ioctlfs_command { u8 command ; u8 checksum ; u8 reserved[2U] ; u32 flash_addr ; u32 length ; u32 image_offset ; }; struct esas2r_ioctl_fs { u8 version ; u8 status ; u8 driver_error ; u8 adap_type ; u8 driver_ver ; u8 reserved[11U] ; struct esas2r_ioctlfs_command command ; u8 data[1U] ; }; typedef __kernel_long_t __kernel_suseconds_t; typedef __u64 uint64_t; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; enum hrtimer_restart; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct esas2r_inbound_list_source_entry { u64 address ; u32 length ; u32 reserved ; }; struct ldv_struct_interrupt_instance_1 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_timer_instance_10 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; enum hrtimer_restart; struct atto_vda_ae_raid { struct atto_vda_ae_hdr hdr ; u32 dwflags ; u8 bygroup_state ; u8 byrebuild_state ; u8 byrebuild_progress ; u8 op_status ; char acname[15U] ; u8 byreserved ; u8 byreserved2[100U] ; }; struct atto_vda_ae_disk { struct atto_vda_ae_hdr hdr ; }; struct atto_vda_ae_log { struct atto_vda_ae_hdr hdr ; char aclog_ascii[64U] ; }; struct atto_vda_ae_timestamp_log { struct atto_vda_ae_hdr hdr ; u32 dwtimestamp ; char aclog_ascii[56U] ; }; struct atto_vda_ae_nvc { struct atto_vda_ae_hdr hdr ; }; struct atto_vda_ae_dev { struct atto_vda_ae_hdr hdr ; struct atto_dev_addr devaddr ; }; union atto_vda_ae { struct atto_vda_ae_hdr hdr ; struct atto_vda_ae_disk disk ; struct atto_vda_ae_lu lu ; struct atto_vda_ae_raid raid ; struct atto_vda_ae_log log ; struct atto_vda_ae_timestamp_log tslog ; struct atto_vda_ae_nvc nvcache ; struct atto_vda_ae_dev dev ; }; struct atto_vda_ob_rsp { u32 handle ; u8 req_stat ; u8 rsvd[3U] ; union atto_vda_func_rsp func_rsp ; }; enum fw_event_type { fw_event_null = 0, fw_event_lun_change = 1, fw_event_present = 2, fw_event_not_present = 3, fw_event_vda_ae = 4 } ; enum hrtimer_restart; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; enum hrtimer_restart; struct __large_struct { unsigned long buf[100U] ; }; struct scsi_lun { __u8 scsi_lun[8U] ; }; struct atto_dev_addr2 { u64 dev_port ; u64 hba_port ; u8 lun ; u8 flags ; u8 link_speed ; u8 pad[5U] ; }; union __anonunion____missing_field_name_234 { u16 target_id ; u16 features_mask ; }; struct atto_vda_devinfo2 { struct atto_dev_addr dev_addr ; u8 vendor_id[8U] ; u8 product_id[16U] ; u8 revision[4U] ; u64 capacity ; u32 block_size ; u8 dev_type ; u8 dev_status ; u8 member_state ; u8 operation ; u8 op_status ; u8 progress ; u16 ses_dev_index ; u8 serial_no[32U] ; union __anonunion____missing_field_name_234 __annonCompField84 ; u16 lun ; u16 features ; u8 ses_element_id ; u8 link_speed ; u16 phys_target_id ; u8 reserved[2U] ; u8 version ; u8 reserved2[3U] ; u32 ss_curr_errors ; u64 ss_curr_scanned ; u32 ss_curr_recvrd ; u32 ss_scan_length ; u32 ss_total_errors ; u32 ss_total_recvrd ; u32 ss_num_scans ; char grp_name[15U] ; u8 reserved3[4U] ; u8 num_dev_addr ; struct atto_dev_addr2 dev_addr_list[8U] ; }; struct atto_vda_adapter_info { u8 version ; u8 reserved ; short utc_offset ; u32 utc_time ; u32 features ; u32 valid_features ; char active_config[33U] ; u8 temp_count ; u8 fan_count ; u8 reserved3[61U] ; }; struct atto_vda_temp_info { u8 temp_index ; u8 max_op_temp ; u8 min_op_temp ; u8 op_temp_warn ; u8 temperature ; u8 type ; u8 reserved[106U] ; }; struct atto_vda_fan_info { u8 fan_index ; u8 status ; u16 crit_pvdafaninfothreshold ; u16 warn_threshold ; u16 speed ; u8 reserved[104U] ; }; struct atto_express_ioctl_header { u8 signature[8U] ; u8 return_code ; u8 channel ; u8 retries ; u8 pad[5U] ; }; struct atto_firmware_rw_request { u8 function ; u8 img_type ; u8 pad[2U] ; u32 img_offset ; u32 img_size ; u8 image[524288U] ; }; struct atto_param_rw_request { u16 code ; char data_buffer[512U] ; }; struct atto_channel_list { u32 num_channels ; u8 channel[256U] ; }; struct atto_channel_info { u8 major_rev ; u8 minor_rev ; u8 IRQ ; u8 revision_id ; u8 pci_bus ; u8 pci_dev_func ; u8 core_rev ; u8 host_no ; u16 device_id ; u16 vendor_id ; u16 ven_dev_id ; u8 pad[3U] ; u32 hbaapi_rev ; }; struct atto_csmi_get_driver_info { char name[81U] ; char description[81U] ; u16 major_rev ; u16 minor_rev ; u16 build_rev ; u16 release_rev ; u16 csmi_major_rev ; u16 csmi_minor_rev ; }; struct atto_csmi_get_pci_bus_addr { u8 bus_num ; u8 device_num ; u8 function_num ; u8 reserved ; }; struct __anonstruct____missing_field_name_253 { u32 base_memaddr_lo ; u32 base_memaddr_hi ; }; union __anonunion____missing_field_name_254 { struct atto_csmi_get_pci_bus_addr pci_addr ; u8 reserved[32U] ; }; struct atto_csmi_get_cntlr_cfg { u32 base_io_addr ; struct __anonstruct____missing_field_name_253 __annonCompField95 ; u32 board_id ; u16 slot_num ; u8 cntlr_class ; u8 io_bus_type ; union __anonunion____missing_field_name_254 __annonCompField96 ; char serial_num[81U] ; u16 major_rev ; u16 minor_rev ; u16 build_rev ; u16 release_rev ; u16 bios_major_rev ; u16 bios_minor_rev ; u16 bios_build_rev ; u16 bios_release_rev ; u32 cntlr_flags ; u16 rrom_major_rev ; u16 rrom_minor_rev ; u16 rrom_build_rev ; u16 rrom_release_rev ; u16 rrom_biosmajor_rev ; u16 rrom_biosminor_rev ; u16 rrom_biosbuild_rev ; u16 rrom_biosrelease_rev ; u8 reserved2[7U] ; }; struct atto_csmi_get_cntlr_sts { u32 status ; u32 offline_reason ; u8 reserved[28U] ; }; struct atto_csmi_fw_download { u32 buffer_len ; u32 download_flags ; u8 reserved[32U] ; u16 status ; u16 severity ; }; struct atto_csmi_get_raid_info { u32 num_raid_sets ; u32 max_drivesper_set ; u8 reserved[92U] ; }; struct atto_csmi_raid_drives { char model[40U] ; char firmware[8U] ; char serial_num[40U] ; u8 sas_addr[8U] ; u8 lun[8U] ; u8 drive_sts ; u8 drive_usage ; u8 reserved[30U] ; }; struct atto_csmi_get_raid_cfg { u32 raid_set_index ; u32 capacity ; u32 stripe_size ; u8 raid_type ; u8 status ; u8 information ; u8 drive_cnt ; u8 reserved[20U] ; struct atto_csmi_raid_drives drives[1U] ; }; struct atto_csmi_phy_entity { u8 ident_frame[28U] ; u8 port_id ; u8 neg_link_rate ; u8 min_link_rate ; u8 max_link_rate ; u8 phy_change_cnt ; u8 auto_discover ; u8 reserved[2U] ; u8 attach_ident_frame[28U] ; }; struct atto_csmi_get_phy_info { u8 number_of_phys ; u8 reserved[3U] ; struct atto_csmi_phy_entity phy[32U] ; }; struct atto_csmi_set_phy_info { u8 phy_id ; u8 neg_link_rate ; u8 prog_minlink_rate ; u8 prog_maxlink_rate ; u8 signal_class ; u8 reserved[3U] ; }; struct atto_csmi_get_link_errors { u8 phy_id ; u8 reset_cnts ; u8 reserved[2U] ; u32 inv_dw_cnt ; u32 disp_err_cnt ; u32 loss_ofdw_sync_cnt ; u32 phy_reseterr_cnt ; u32 crc_err_cnt ; }; struct atto_csmi_smp_passthru { u8 phy_id ; u8 port_id ; u8 conn_rate ; u8 reserved ; u8 dest_sas_addr[8U] ; u32 req_len ; u8 smp_req[1020U] ; u8 conn_sts ; u8 reserved2[3U] ; u32 rsp_len ; u8 smp_rsp[1020U] ; }; struct atto_csmi_ssp_passthru_sts { u8 conn_sts ; u8 reserved[3U] ; u8 data_present ; u8 status ; u16 rsp_length ; u8 rsp[256U] ; u32 data_bytes ; }; struct atto_csmi_ssp_passthru { u8 phy_id ; u8 port_id ; u8 conn_rate ; u8 reserved ; u8 dest_sas_addr[8U] ; u8 lun[8U] ; u8 cdb_len ; u8 add_cdb_len ; u8 reserved2[2U] ; u8 cdb[16U] ; u32 flags ; u8 add_cdb[24U] ; u32 data_len ; struct atto_csmi_ssp_passthru_sts sts ; }; struct atto_csmi_stp_passthru_sts { u8 conn_sts ; u8 reserved[3U] ; u8 sts_fis[20U] ; u32 scr[16U] ; u32 data_bytes ; }; struct atto_csmi_stp_passthru { u8 phy_id ; u8 port_id ; u8 conn_rate ; u8 reserved ; u8 dest_sas_addr[8U] ; u8 reserved2[4U] ; u8 command_fis[20U] ; u32 flags ; u32 data_len ; struct atto_csmi_stp_passthru_sts sts ; }; struct atto_csmi_get_sata_sig { u8 phy_id ; u8 reserved[3U] ; u8 reg_dth_fis[20U] ; }; struct atto_csmi_get_scsi_addr { u8 sas_addr[8U] ; u8 sas_lun[8U] ; u8 host_index ; u8 path_id ; u8 target_id ; u8 lun ; }; struct atto_csmi_get_dev_addr { u8 host_index ; u8 path_id ; u8 target_id ; u8 lun ; u8 sas_addr[8U] ; u8 sas_lun[8U] ; }; struct atto_csmi_task_mgmt { u8 host_index ; u8 path_id ; u8 target_id ; u8 lun ; u32 flags ; u32 queue_tag ; u32 reserved ; u8 task_mgt_func ; u8 reserved2[7U] ; u32 information ; struct atto_csmi_ssp_passthru_sts sts ; }; struct atto_csmi_get_conn_info { u32 pinout ; u8 connector[16U] ; u8 location ; u8 reserved[15U] ; }; struct atto_csmi_character { u8 type_flags ; u8 value ; }; struct atto_csmi_pc_ctrl { u8 type ; u8 rate ; u8 reserved[6U] ; u32 vendor_unique[8U] ; u32 tx_flags ; signed char tx_amplitude ; signed char tx_preemphasis ; signed char tx_slew_rate ; signed char tx_reserved[13U] ; u8 tx_vendor_unique[64U] ; u32 rx_flags ; signed char rx_threshold ; signed char rx_equalization_gain ; signed char rx_reserved[14U] ; u8 rx_vendor_unique[64U] ; u32 pattern_flags ; u8 fixed_pattern ; u8 user_pattern_len ; u8 pattern_reserved[6U] ; struct atto_csmi_character user_pattern_buffer[16U] ; }; struct atto_csmi_phy_ctrl { u32 function ; u8 phy_id ; u16 len_of_cntl ; u8 num_of_cntls ; u8 reserved[4U] ; u32 link_flags ; u8 spinup_rate ; u8 link_reserved[7U] ; u32 vendor_unique[8U] ; struct atto_csmi_pc_ctrl control[1U] ; }; union atto_ioctl_csmi { struct atto_csmi_get_driver_info drvr_info ; struct atto_csmi_get_cntlr_cfg cntlr_cfg ; struct atto_csmi_get_cntlr_sts cntlr_sts ; struct atto_csmi_fw_download fw_dwnld ; struct atto_csmi_get_raid_info raid_info ; struct atto_csmi_get_raid_cfg raid_cfg ; struct atto_csmi_get_phy_info get_phy_info ; struct atto_csmi_set_phy_info set_phy_info ; struct atto_csmi_get_link_errors link_errs ; struct atto_csmi_smp_passthru smp_pass_thru ; struct atto_csmi_ssp_passthru ssp_pass_thru ; struct atto_csmi_stp_passthru stp_pass_thru ; struct atto_csmi_task_mgmt tsk_mgt ; struct atto_csmi_get_sata_sig sata_sig ; struct atto_csmi_get_scsi_addr scsi_addr ; struct atto_csmi_get_dev_addr dev_addr ; struct atto_csmi_get_conn_info conn_info[32U] ; struct atto_csmi_phy_ctrl phy_ctrl ; }; struct atto_csmi { u32 control_code ; u32 status ; union atto_ioctl_csmi data ; }; struct __anonstruct____missing_field_name_256 { u64 node_name ; u64 port_name ; }; union __anonunion____missing_field_name_255 { struct __anonstruct____missing_field_name_256 __annonCompField97 ; u64 sas_addr ; }; struct atto_module_info { void *adapter ; void *pci_dev ; void *scsi_host ; unsigned short host_no ; union __anonunion____missing_field_name_255 __annonCompField98 ; }; struct atto_ioctl_vda_scsi_cmd { u8 cdb[16U] ; u32 flags ; u32 data_length ; u32 residual_length ; u16 target_id ; u8 sense_len ; u8 scsi_stat ; u8 reserved[8U] ; u8 sense_data[80U] ; }; struct __anonstruct_info_263 { u32 flash_size ; u32 page_size ; u8 prod_info[32U] ; }; struct __anonstruct_file_264 { char file_name[16U] ; u32 file_size ; }; union __anonunion_data_262 { struct __anonstruct_info_263 info ; struct __anonstruct_file_264 file ; }; struct atto_ioctl_vda_flash_cmd { u32 flash_addr ; u32 data_length ; u8 sub_func ; u8 reserved[15U] ; union __anonunion_data_262 data ; }; struct atto_ioctl_vda_diag_cmd { u64 local_addr ; u32 data_length ; u8 sub_func ; u8 flags ; u8 reserved[3U] ; }; struct atto_ioctl_vda_cli_cmd { u32 cmd_rsp_len ; }; struct atto_ioctl_vda_smp_cmd { u64 dest ; u32 cmd_rsp_len ; }; union __anonunion_data_265 { u8 bytes[112U] ; struct atto_vda_cfg_init init ; }; struct atto_ioctl_vda_cfg_cmd { u32 data_length ; u8 cfg_func ; u8 reserved[11U] ; union __anonunion_data_265 data ; }; union __anonunion_data_266 { u8 bytes[112U] ; struct atto_vda_devinfo dev_info ; struct atto_vda_grp_info grp_info ; struct atto_vdapart_info part_info ; struct atto_vda_dh_info dh_info ; struct atto_vda_metrics_info metrics_info ; struct atto_vda_schedule_info sched_info ; struct atto_vda_n_vcache_info nvcache_info ; struct atto_vda_buzzer_info buzzer_info ; struct atto_vda_adapter_info adapter_info ; struct atto_vda_temp_info temp_info ; struct atto_vda_fan_info fan_info ; }; struct atto_ioctl_vda_mgt_cmd { u8 mgt_func ; u8 scan_generation ; u16 dev_index ; u32 data_length ; u8 reserved[8U] ; union __anonunion_data_266 data ; }; struct atto_ioctl_vda_gsv_cmd { u8 rsp_len ; u8 reserved[7U] ; u8 version_info[1U] ; }; union __anonunion_cmd_267 { struct atto_ioctl_vda_scsi_cmd scsi ; struct atto_ioctl_vda_flash_cmd flash ; struct atto_ioctl_vda_diag_cmd diag ; struct atto_ioctl_vda_cli_cmd cli ; struct atto_ioctl_vda_smp_cmd smp ; struct atto_ioctl_vda_cfg_cmd cfg ; struct atto_ioctl_vda_mgt_cmd mgt ; struct atto_ioctl_vda_gsv_cmd gsv ; u8 cmd_info[256U] ; }; union __anonunion_data_268 { u8 data[1U] ; struct atto_vda_devinfo2 dev_info2 ; }; struct atto_ioctl_vda { u8 version ; u8 function ; u8 status ; u8 vda_status ; u32 data_length ; u8 reserved[8U] ; union __anonunion_cmd_267 cmd ; union __anonunion_data_268 data ; }; union __anonunion_data_269 { u8 byte[1U] ; u32 dword[1U] ; }; struct atto_ioctl_smp { u8 version ; u8 function ; u8 status ; u8 smp_status ; u16 target_id ; u8 phy_id ; u8 dev_index ; u64 smp_sas_addr ; u64 targ_sas_addr ; u32 req_length ; u32 rsp_length ; u8 flags ; u8 reserved[31U] ; union __anonunion_data_269 data ; }; union __anonunion_data_270 { struct atto_firmware_rw_request fwrw ; struct atto_param_rw_request prw ; struct atto_channel_list chanlist ; struct atto_channel_info chaninfo ; struct atto_ioctl ioctl_hba ; struct atto_module_info modinfo ; struct atto_ioctl_vda ioctl_vda ; struct atto_ioctl_smp ioctl_smp ; struct atto_csmi csmi ; }; struct atto_express_ioctl { struct atto_express_ioctl_header header ; union __anonunion_data_270 data ; }; struct esas2r_buffered_ioctl { struct esas2r_adapter *a ; void *ioctl ; u32 length ; u32 control_code ; u32 offset ; int (*callback)(struct esas2r_adapter * , struct esas2r_request * , struct esas2r_sg_context * , void * ) ; void *context ; void (*done_callback)(struct esas2r_adapter * , struct esas2r_request * , void * ) ; void *done_context ; }; enum hrtimer_restart; enum hrtimer_restart; typedef unsigned int uint; struct ldv_thread; enum hrtimer_restart; struct esas2r_vda_ae { u32 signature ; u8 bus_number ; u8 devfn ; u8 pad[2U] ; union atto_vda_ae vda_ae ; }; struct esas2r_fw_event_work { struct list_head list ; struct delayed_work work ; struct esas2r_adapter *a ; enum fw_event_type type ; u8 data[136U] ; }; struct ldv_struct_EMGentry_23 { int signal_pending ; }; struct ldv_struct_file_operations_instance_0 { struct file_operations *arg0 ; int signal_pending ; }; struct ldv_struct_pci_instance_2 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_scsi_host_template_instance_3 { struct Scsi_Host *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type; typedef struct Scsi_Host *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void ldv__builtin_va_end(__builtin_va_list ) ; void ldv__builtin_va_start(__builtin_va_list ) ; void ldv_assume(int expression ) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } extern int printk(char const * , ...) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int vsnprintf(char * , size_t , char const * , __va_list_tag * ) ; extern void *__memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_event_buffer_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_event_buffer_lock(void) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } int esas2r_log(long const level , char const *format , ...) ; int esas2r_log_dev(long const level , struct device const *dev , char const *format , ...) ; int esas2r_log_hexdump(long const level , void const *buf , size_t len ) ; static long event_log_level = 2L; static char event_buffer[1024U] ; static spinlock_t event_buffer_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "event_buffer_lock", 0, 0UL}}}}; static char const *translate_esas2r_event_level_to_kernel(long const level ) { { { if (level == 1L) { goto case_1; } else { } if (level == 2L) { goto case_2; } else { } if (level == 3L) { goto case_3; } else { } if (level == 4L) { goto case_4; } else { } if (level == 5L) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; return ("\n"); case_2: /* CIL Label */ ; return ("\f"); case_3: /* CIL Label */ ; return ("\016"); case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; switch_default: /* CIL Label */ ; return ("\017"); switch_break: /* CIL Label */ ; } } } static int esas2r_log_master(long const level , struct device const *dev , char const *format , __va_list_tag *args ) { unsigned long flags ; int retval ; char *buffer ; size_t buflen ; char const *fmt_nodev ; char const *fmt_dev ; char const *slevel ; char const *tmp ; char const *tmp___0 ; size_t tmp___1 ; size_t tmp___2 ; { if ((long )level <= event_log_level) { { flags = 0UL; retval = 0; buffer = (char *)(& event_buffer); buflen = 1024UL; fmt_nodev = "%s%s: "; fmt_dev = "%s%s [%s, %s, %s]"; tmp = translate_esas2r_event_level_to_kernel(level); slevel = tmp; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(& event_buffer_lock); } if ((unsigned long )buffer == (unsigned long )((char *)0)) { { ldv_spin_unlock_irqrestore_103(& event_buffer_lock, flags); } return (-1); } else { } { __memset((void *)buffer, 0, buflen); } if ((unsigned long )dev == (unsigned long )((struct device const *)0)) { { snprintf(buffer, buflen, fmt_nodev, slevel, (char *)"esas2r"); } } else { { tmp___0 = dev_name(dev); snprintf(buffer, buflen, fmt_dev, slevel, (char *)"esas2r", (unsigned long )dev->driver != (unsigned long )((struct device_driver */* const */)0) ? (dev->driver)->name : "unknown", (unsigned long )dev->bus != (unsigned long )((struct bus_type */* const */)0) ? (dev->bus)->name : "unknown", tmp___0); } } { tmp___1 = strlen((char const *)(& event_buffer)); buffer = buffer + tmp___1; tmp___2 = strlen((char const *)(& event_buffer)); buflen = buflen - tmp___2; retval = vsnprintf(buffer, buflen, format, args); } if (retval < 0) { { ldv_spin_unlock_irqrestore_103(& event_buffer_lock, flags); } return (-1); } else { } { printk("%s\n", (char *)(& event_buffer)); ldv_spin_unlock_irqrestore_103(& event_buffer_lock, flags); } } else { } return (0); } } int esas2r_log(long const level , char const *format , ...) { int retval ; va_list args ; { { retval = 0; ldv__builtin_va_start((__va_list_tag *)(& args)); retval = esas2r_log_master(level, (struct device const *)0, format, (__va_list_tag *)(& args)); ldv__builtin_va_end((__va_list_tag *)(& args)); } return (retval); } } int esas2r_log_dev(long const level , struct device const *dev , char const *format , ...) { int retval ; va_list args ; { { retval = 0; ldv__builtin_va_start((__va_list_tag *)(& args)); retval = esas2r_log_master(level, dev, format, (__va_list_tag *)(& args)); ldv__builtin_va_end((__va_list_tag *)(& args)); } return (retval); } } int esas2r_log_hexdump(long const level , void const *buf , size_t len ) { char const *tmp ; { if ((long )level <= event_log_level) { { tmp = translate_esas2r_event_level_to_kernel(level); print_hex_dump(tmp, "", 2, 16, 1, buf, len, 1); } } else { } return (1); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_event_buffer_lock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_event_buffer_lock(); spin_unlock_irqrestore(lock, flags); } return; } } long ldv__builtin_expect(long exp , long c ) ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice_tail_init(struct list_head *list , struct list_head *head ) { int tmp ; { { tmp = list_empty((struct list_head const *)list); } if (tmp == 0) { { __list_splice((struct list_head const *)list, head->prev, head); INIT_LIST_HEAD(list); } } else { } return; } } extern void *__memcpy(void * , void const * , size_t ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_120(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_122(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_mem_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_sg_list_lock_of_esas2r_adapter(void) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; void esas2r_complete_request_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_build_mgt_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 scan_gen , u16 dev_index , u32 length , void *data ) ; void esas2r_build_ioctl_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u8 sub_func ) ; void esas2r_wait_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_start_vda_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_polled_interrupt(struct esas2r_adapter *a ) ; struct esas2r_target *esas2r_targ_db_add_raid(struct esas2r_adapter *a , struct esas2r_disc_context *dc ) ; struct esas2r_target *esas2r_targ_db_add_pthru(struct esas2r_adapter *a , struct esas2r_disc_context *dc , u8 *ident , u8 ident_len ) ; void esas2r_targ_db_remove(struct esas2r_adapter *a , struct esas2r_target *t ) ; struct esas2r_target *esas2r_targ_db_find_by_virt_id(struct esas2r_adapter *a , u16 virt_id ) ; u16 esas2r_targ_db_get_tgt_cnt(struct esas2r_adapter *a ) ; void esas2r_disc_initialize(struct esas2r_adapter *a ) ; void esas2r_disc_start_waiting(struct esas2r_adapter *a ) ; void esas2r_disc_check_for_work(struct esas2r_adapter *a ) ; void esas2r_disc_check_complete(struct esas2r_adapter *a ) ; void esas2r_disc_queue_event(struct esas2r_adapter *a , u8 disc_evt ) ; bool esas2r_disc_start_port(struct esas2r_adapter *a ) ; void esas2r_disc_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; __inline static void esas2r_sgc_init(struct esas2r_sg_context *sgc , struct esas2r_adapter *a , struct esas2r_request *rq , struct atto_vda_sge *first ) { struct atto_vda_sge *tmp ; struct atto_vda_sge *tmp___0 ; { sgc->adapter = a; sgc->first_req = rq; sgc->sge.a64.limit = (struct atto_vda_sge *)rq->vrq + 116U; if ((unsigned long )first != (unsigned long )((struct atto_vda_sge *)0)) { tmp = first; sgc->sge.a64.curr = tmp; sgc->sge.a64.last = tmp; (rq->vrq)->scsi.sg_list_offset = (int )((unsigned char )((long )first)) - (int )((unsigned char )((long )rq->vrq)); } else { tmp___0 = (struct atto_vda_sge *)(& (rq->vrq)->scsi.u.sge); sgc->sge.a64.curr = tmp___0; sgc->sge.a64.last = tmp___0; (rq->vrq)->scsi.sg_list_offset = 44U; } sgc->sge.a64.chain = (struct atto_vda_sge *)0; return; } } __inline static void esas2r_rq_init_request(struct esas2r_request *rq , struct esas2r_adapter *a ) { union atto_vda_req *vrq ; u16 tmp ; { { vrq = rq->vrq; INIT_LIST_HEAD(& rq->sg_table_head); rq->__annonCompField102.data_buf = (void *)vrq + 1U; rq->interrupt_cb = (void (*)(struct esas2r_adapter * , struct esas2r_request * ))0; rq->comp_cb = & esas2r_complete_request_cb; rq->flags = 0U; rq->timeout = 0U; rq->req_stat = 254U; rq->req_type = 1U; rq->func_rsp.dwords[0] = 0U; rq->func_rsp.dwords[1] = 0U; rq->vda_req_sz = 0U; *(a->req_table + (unsigned long )((unsigned short )vrq->scsi.handle)) = rq; tmp = a->cmd_ref_no; a->cmd_ref_no = (u16 )((int )a->cmd_ref_no + 1); vrq->scsi.handle = (u32 )(((int )tmp << 16) | (int )((unsigned short )vrq->scsi.handle)); vrq->scsi.function = 0U; vrq->scsi.sense_len = 252U; vrq->scsi.sg_list_offset = 0U; vrq->scsi.chain_offset = 0U; vrq->scsi.flags = 0U; vrq->scsi.__annonCompField88.__annonCompField87.reserved = 0U; vrq->scsi.__annonCompField88.__annonCompField87.ppsense_buf = (rq->vrq_md)->phys_addr + 1024ULL; } return; } } __inline static void esas2r_rq_free_sg_lists(struct esas2r_request *rq , struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; { { tmp = list_empty((struct list_head const *)(& rq->sg_table_head)); } if (tmp != 0) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(& a->sg_list_lock); list_splice_tail_init(& rq->sg_table_head, & a->free_sg_list_head); ldv_spin_unlock_irqrestore_99(& a->sg_list_lock, flags); } return; } } __inline static void esas2r_rq_destroy_request(struct esas2r_request *rq , struct esas2r_adapter *a ) { { { esas2r_rq_free_sg_lists(rq, a); *(a->req_table + (unsigned long )((unsigned short )(rq->vrq)->scsi.handle)) = (struct esas2r_request *)0; rq->__annonCompField102.data_buf = (void *)0; } return; } } __inline static bool esas2r_build_sg_list(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { long tmp ; bool tmp___0 ; { { tmp = ldv__builtin_expect((rq->vrq)->scsi.length == 0U, 0L); } if (tmp != 0L) { return (1); } else { } { tmp___0 = (*(a->build_sgl))(a, sgc); } return (tmp___0); } } __inline static void esas2r_disable_heartbeat(struct esas2r_adapter *a ) { { { clear_bit(17L, (unsigned long volatile *)(& a->flags)); clear_bit(16L, (unsigned long volatile *)(& a->flags)); } return; } } __inline static void esas2r_local_reset_adapter(struct esas2r_adapter *a ) { { { esas2r_disable_heartbeat(a); set_bit(1L, (unsigned long volatile *)(& a->flags)); set_bit(2L, (unsigned long volatile *)(& a->flags)); set_bit(14L, (unsigned long volatile *)(& a->flags)); } return; } } __inline static u16 esas2r_targ_get_id(struct esas2r_target *t , struct esas2r_adapter *a ) { { return ((u16 )(((long )t - (long )(& a->targetdb)) / 120L)); } } static void esas2r_disc_abort(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_continue(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_fix_curr_requests(struct esas2r_adapter *a ) ; static u32 esas2r_disc_get_phys_addr(struct esas2r_sg_context *sgc , u64 *addr ) ; static bool esas2r_disc_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_block_dev_scan(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_block_dev_scan_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_dev_add(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_dev_remove(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_part_info(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_part_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_passthru_dev_info(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_passthru_dev_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_passthru_dev_addr(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_passthru_dev_addr_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_raid_grp_info(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_raid_grp_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_disc_initialize(struct esas2r_adapter *a ) { struct esas2r_sas_nvram *nvr ; int tmp ; int tmp___0 ; { { nvr = a->nvram; clear_bit(22L, (unsigned long volatile *)(& a->flags)); clear_bit(1L, (unsigned long volatile *)(& a->flags2)); clear_bit(2L, (unsigned long volatile *)(& a->flags2)); a->disc_start_time = jiffies_to_msecs(jiffies); a->disc_wait_time = (u32 )((int )nvr->dev_wait_time * 1000); a->disc_wait_cnt = (u16 )nvr->dev_wait_count; } if ((unsigned int )a->disc_wait_cnt > 256U) { a->disc_wait_cnt = 256U; } else { } { a->general_req.interrupt_cx = (void *)0; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { goto _L; } else { { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { _L: /* CIL Label */ if ((unsigned int )a->__annonCompField104.prev_dev_cnt == 0U) { a->disc_wait_time = 0U; } else { a->disc_wait_cnt = a->__annonCompField104.prev_dev_cnt; if (a->disc_wait_time <= 14999U) { a->disc_wait_time = 15000U; } else { } } } else { } } if (a->disc_wait_time == 0U) { { esas2r_disc_check_complete(a); } } else { } return; } } void esas2r_disc_start_waiting(struct esas2r_adapter *a ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___0(& a->mem_lock); } if ((unsigned int )a->disc_ctx.disc_evt != 0U) { { esas2r_disc_start_port(a); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } void esas2r_disc_check_for_work(struct esas2r_adapter *a ) { struct esas2r_request *rq ; { { rq = & a->general_req; esas2r_polled_interrupt(a); esas2r_disc_start_waiting(a); } if ((unsigned long )rq->interrupt_cx == (unsigned long )((void *)0)) { return; } else { } if ((unsigned int )rq->req_stat == 255U && rq->timeout <= 4294967293U) { { esas2r_wait_request(a, rq); } if ((unsigned int )rq->req_stat == 5U) { { esas2r_disc_abort(a, rq); esas2r_local_reset_adapter(a); } return; } else { } } else { } if ((unsigned int )rq->req_stat - 254U <= 1U) { return; } else { } { esas2r_disc_continue(a, rq); } return; } } void esas2r_disc_check_complete(struct esas2r_adapter *a ) { unsigned long flags ; u32 currtime ; unsigned int tmp ; u32 time ; int tmp___0 ; u16 tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { if (a->disc_wait_time != 0U) { { tmp = jiffies_to_msecs(jiffies); currtime = tmp; time = currtime - a->disc_start_time; } if (time < a->disc_wait_time) { { tmp___1 = esas2r_targ_db_get_tgt_cnt(a); } if ((int )tmp___1 < (int )a->disc_wait_cnt || (unsigned int )a->disc_wait_cnt == 0U) { if (time > 2999U) { { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& a->flags2)); } if (tmp___0 == 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(& a->mem_lock); esas2r_disc_queue_event(a, 2); ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } } else { } } else { } return; } else { } } else { } { tmp___2 = test_and_set_bit(2L, (unsigned long volatile *)(& a->flags2)); } if (tmp___2 == 0) { a->disc_wait_time = time + 3000U; } else { } { tmp___3 = test_and_set_bit(1L, (unsigned long volatile *)(& a->flags2)); } if (tmp___3 == 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(& a->mem_lock); esas2r_disc_queue_event(a, 2); ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } else { } if (time < a->disc_wait_time) { return; } else { } } else { { tmp___4 = test_and_set_bit(1L, (unsigned long volatile *)(& a->flags2)); } if (tmp___4 == 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(& a->mem_lock); esas2r_disc_queue_event(a, 2); ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } } else { } } { a->disc_wait_time = 0U; tmp___5 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); } if (tmp___5 != 0) { { tmp___6 = constant_test_bit(22L, (unsigned long const volatile *)(& a->flags)); } if (tmp___6 != 0) { } else { { esas2r_disc_fix_curr_requests(a); clear_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(0L, (unsigned long volatile *)(& a->flags)); } } } else { { esas2r_disc_fix_curr_requests(a); clear_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(0L, (unsigned long volatile *)(& a->flags)); } } return; } } void esas2r_disc_queue_event(struct esas2r_adapter *a , u8 disc_evt ) { struct esas2r_disc_context *dc ; int tmp ; int tmp___0 ; { { dc = & a->disc_ctx; dc->disc_evt = (u8 )((int )dc->disc_evt | (int )disc_evt); tmp = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp == 0) { { tmp___0 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 == 0) { { esas2r_disc_start_port(a); } } else { } } else { } return; } } bool esas2r_disc_start_port(struct esas2r_adapter *a ) { struct esas2r_request *rq ; struct esas2r_disc_context *dc ; bool ret ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { rq = & a->general_req; dc = & a->disc_ctx; tmp = constant_test_bit(22L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return (0); } else { } if ((unsigned int )dc->disc_evt != 0U) { { tmp___0 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0 && a->disc_wait_time == 0U) { return (0); } else { } } else { { set_bit(0L, (unsigned long volatile *)(& a->flags)); } return (0); } { set_bit(22L, (unsigned long volatile *)(& a->flags)); dc->flags = 0U; tmp___1 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { dc->flags = (u16 )((unsigned int )dc->flags | 32768U); } else { } rq->interrupt_cx = (void *)dc; rq->req_stat = 0U; if (((int )dc->disc_evt & 2) != 0) { dc->disc_evt = (unsigned int )dc->disc_evt & 253U; dc->flags = (u16 )((unsigned int )dc->flags | 2U); dc->state = 2U; } else if ((int )dc->disc_evt & 1) { dc->disc_evt = (unsigned int )dc->disc_evt & 254U; dc->flags = (u16 )((unsigned int )dc->flags | 1U); dc->state = 0U; } else { } { tmp___2 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 == 0) { { ret = esas2r_disc_continue(a, rq); } } else { ret = 1; } return (ret); } } static bool esas2r_disc_continue(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; int tmp ; bool tmp___0 ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; goto ldv_40062; ldv_40061: rslt = 0; { if ((int )dc->state == 0) { goto case_0; } else { } if ((int )dc->state == 1) { goto case_1; } else { } if ((int )dc->state == 2) { goto case_2; } else { } if ((int )dc->state == 3) { goto case_3; } else { } if ((int )dc->state == 4) { goto case_4; } else { } if ((int )dc->state == 5) { goto case_5; } else { } if ((int )dc->state == 6) { goto case_6; } else { } if ((int )dc->state == 255) { goto case_255; } else { } goto switch_default; case_0: /* CIL Label */ { rslt = esas2r_disc_dev_remove(a, rq); } goto ldv_40052; case_1: /* CIL Label */ { rslt = esas2r_disc_dev_add(a, rq); } goto ldv_40052; case_2: /* CIL Label */ { rslt = esas2r_disc_block_dev_scan(a, rq); } goto ldv_40052; case_3: /* CIL Label */ { rslt = esas2r_disc_raid_grp_info(a, rq); } goto ldv_40052; case_4: /* CIL Label */ { rslt = esas2r_disc_part_info(a, rq); } goto ldv_40052; case_5: /* CIL Label */ { rslt = esas2r_disc_passthru_dev_info(a, rq); } goto ldv_40052; case_6: /* CIL Label */ { rslt = esas2r_disc_passthru_dev_addr(a, rq); } goto ldv_40052; case_255: /* CIL Label */ dc->flags = (unsigned int )dc->flags & 65532U; goto ldv_40052; switch_default: /* CIL Label */ dc->state = 255U; goto ldv_40052; switch_break: /* CIL Label */ ; } ldv_40052: ; if ((int )rslt) { return (1); } else { } ldv_40062: ; if (((int )dc->flags & 3) != 0) { goto ldv_40061; } else { } { rq->interrupt_cx = (void *)0; tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp == 0) { { esas2r_disc_fix_curr_requests(a); } } else { } { clear_bit(22L, (unsigned long volatile *)(& a->flags)); tmp___0 = esas2r_disc_start_port(a); } return (tmp___0); } } static bool esas2r_disc_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; int tmp ; int tmp___0 ; { if (rq->timeout <= 4999U) { rq->timeout = 5000U; } else { } { rq->req_type = 2U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(& a->queue_lock); tmp = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp == 0) { { tmp___0 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 == 0) { { esas2r_disc_local_start_request(a, rq); } } else { { list_add_tail(& rq->req_list, & a->defer_list); } } } else { { list_add_tail(& rq->req_list, & a->defer_list); } } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return (1); } } void esas2r_disc_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { list_add_tail(& rq->req_list, & a->active_list); esas2r_start_vda_request(a, rq); } return; } } static void esas2r_disc_abort(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; dc->state = 255U; return; } } static bool esas2r_disc_block_dev_scan(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_rq_init_request(rq, a); esas2r_build_mgt_req(a, rq, 0, 0, 0, 0U, (void *)0); rq->comp_cb = & esas2r_disc_block_dev_scan_cb; rq->timeout = 30000U; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); } return (rslt); } } static void esas2r_disc_block_dev_scan_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(& a->mem_lock); } if ((unsigned int )rq->req_stat == 0U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; } else { } { dc->state = 3U; dc->raid_grp_ix = 0U; esas2r_rq_destroy_request(rq, a); } if ((int )((short )dc->flags) >= 0) { { esas2r_disc_continue(a, rq); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } static bool esas2r_disc_raid_grp_info(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_vda_grp_info *grpinfo ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; if ((unsigned int )dc->raid_grp_ix > 31U) { dc->state = 255U; return (0); } else { } { esas2r_rq_init_request(rq, a); grpinfo = & (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.grp_info; __memset((void *)grpinfo, 0, 112UL); esas2r_build_mgt_req(a, rq, 16, (int )dc->scan_gen, 0, 112U, (void *)0); grpinfo->grp_index = dc->raid_grp_ix; rq->comp_cb = & esas2r_disc_raid_grp_info_cb; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); } return (rslt); } } static void esas2r_disc_raid_grp_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; struct atto_vda_grp_info *grpinfo ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(& a->mem_lock); } if ((unsigned int )rq->req_stat == 133U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->raid_grp_ix = 0U; goto done; } else { } if ((unsigned int )rq->req_stat == 0U) { grpinfo = & (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.grp_info; if ((unsigned int )grpinfo->__annonCompField85.status - 3U > 1U) { dc->raid_grp_ix = (u8 )((int )dc->raid_grp_ix + 1); } else { { __memcpy((void *)(& dc->raid_grp_name), (void const *)(& grpinfo->grp_name), 15UL); dc->interleave = grpinfo->interleave; dc->block_size = grpinfo->block_size; dc->state = 4U; dc->part_num = 0U; } } } else { if ((unsigned int )rq->req_stat != 136U) { { esas2r_log(2L, "A request for RAID group info failed - returned with %x", (int )rq->req_stat); } } else { } dc->dev_ix = 0U; dc->state = 5U; } done: { esas2r_rq_destroy_request(rq, a); } if ((int )((short )dc->flags) >= 0) { { esas2r_disc_continue(a, rq); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } static bool esas2r_disc_part_info(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_vdapart_info *partinfo ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; if ((int )((signed char )dc->part_num) < 0) { dc->state = 3U; dc->raid_grp_ix = (u8 )((int )dc->raid_grp_ix + 1); return (0); } else { } { esas2r_rq_init_request(rq, a); partinfo = & (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.part_info; __memset((void *)partinfo, 0, 88UL); esas2r_build_mgt_req(a, rq, 48, (int )dc->scan_gen, 0, 88U, (void *)0); partinfo->part_no = dc->part_num; __memcpy((void *)(& partinfo->grp_name), (void const *)(& dc->raid_grp_name), 15UL); rq->comp_cb = & esas2r_disc_part_info_cb; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); } return (rslt); } } static void esas2r_disc_part_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; struct atto_vdapart_info *partinfo ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(& a->mem_lock); } if ((unsigned int )rq->req_stat == 133U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->raid_grp_ix = 0U; dc->state = 3U; } else if ((unsigned int )rq->req_stat == 0U) { { partinfo = & (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.part_info; dc->part_num = partinfo->part_no; dc->curr_virt_id = partinfo->target_id; esas2r_targ_db_add_raid(a, dc); dc->part_num = (u8 )((int )dc->part_num + 1); } } else { if ((unsigned int )rq->req_stat != 152U) { { esas2r_log(2L, "A request for RAID group partition info failed - status:%d", (int )rq->req_stat); } } else { } dc->state = 3U; dc->raid_grp_ix = (u8 )((int )dc->raid_grp_ix + 1); } { esas2r_rq_destroy_request(rq, a); } if ((int )((short )dc->flags) >= 0) { { esas2r_disc_continue(a, rq); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } static bool esas2r_disc_passthru_dev_info(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_vda_devinfo *devinfo ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_rq_init_request(rq, a); devinfo = & (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.dev_info; __memset((void *)devinfo, 0, 112UL); esas2r_build_mgt_req(a, rq, 5, (int )dc->scan_gen, (int )dc->dev_ix, 112U, (void *)0); rq->comp_cb = & esas2r_disc_passthru_dev_info_cb; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); } return (rslt); } } static void esas2r_disc_passthru_dev_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; struct atto_vda_devinfo *devinfo ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(& a->mem_lock); } if ((unsigned int )rq->req_stat == 133U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->dev_ix = 0U; dc->state = 5U; } else if ((unsigned int )rq->req_stat == 0U) { devinfo = & (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.dev_info; dc->dev_ix = rq->func_rsp.mgt_rsp.dev_index; dc->curr_virt_id = devinfo->__annonCompField83.target_id; if (((int )devinfo->features & 8) != 0) { dc->curr_phys_id = devinfo->phys_target_id; dc->dev_addr_type = 0U; dc->state = 6U; } else { dc->dev_ix = (u16 )((int )dc->dev_ix + 1); } } else { if ((unsigned int )rq->req_stat != 129U) { { esas2r_log(2L, "A request for device information failed - status:%d", (int )rq->req_stat); } } else { } dc->state = 255U; } { esas2r_rq_destroy_request(rq, a); } if ((int )((short )dc->flags) >= 0) { { esas2r_disc_continue(a, rq); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } static bool esas2r_disc_passthru_dev_addr(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_ioctl *hi ; struct esas2r_sg_context sgc ; bool tmp ; int tmp___0 ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_rq_init_request(rq, a); sgc.cur_offset = (u8 *)0U; sgc.get_phys_addr = & esas2r_disc_get_phys_addr; sgc.length = 328U; esas2r_sgc_init(& sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField92.sge)); esas2r_build_ioctl_req(a, rq, sgc.length, 0); tmp = esas2r_build_sg_list(a, rq, & sgc); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { esas2r_rq_destroy_request(rq, a); } return (0); } else { } { rq->comp_cb = & esas2r_disc_passthru_dev_addr_cb; rq->interrupt_cx = (void *)dc; hi = (struct atto_ioctl *)a->disc_buffer; __memset((void *)a->disc_buffer, 0, 512UL); hi->version = 0U; hi->function = 5U; hi->flags = 1U; hi->data.get_dev_addr.target_id = (unsigned int )dc->curr_phys_id; hi->data.get_dev_addr.addr_type = dc->dev_addr_type; rslt = esas2r_disc_start_request(a, rq); } return (rslt); } } static void esas2r_disc_passthru_dev_addr_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; struct esas2r_target *t ; unsigned long flags ; struct atto_ioctl *hi ; u16 addrlen ; { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; t = (struct esas2r_target *)0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_120(& a->mem_lock); hi = (struct atto_ioctl *)a->disc_buffer; } if ((unsigned int )rq->req_stat == 0U && (unsigned int )hi->status == 0U) { addrlen = hi->data.get_dev_addr.addr_len; if ((unsigned int )dc->dev_addr_type == 0U) { if ((unsigned int )addrlen == 8U) { { __memcpy((void *)(& dc->sas_addr), (void const *)(& hi->data.get_dev_addr.address), (size_t )addrlen); } } else { { __memset((void *)(& dc->sas_addr), 0, 8UL); } } dc->dev_addr_type = 4U; goto next_dev_addr; } else if ((unsigned int )((unsigned char )((int )addrlen >> 8)) == 0U) { { t = esas2r_targ_db_add_pthru(a, dc, (u8 *)(& hi->data.get_dev_addr.address), (int )((unsigned char )hi->data.get_dev_addr.addr_len)); } if ((unsigned long )t != (unsigned long )((struct esas2r_target *)0)) { { __memcpy((void *)(& t->sas_addr), (void const *)(& dc->sas_addr), 8UL); } } else { } } else { { esas2r_log(2L, "an error occurred retrieving the back end data (%s:%d)", "esas2r_disc_passthru_dev_addr_cb", 993); } } } else { { esas2r_log(2L, "an error occurred retrieving the back end data - rq->req_stat:%d hi->status:%d", (int )rq->req_stat, (int )hi->status); } } if (((int )dc->flags & 2) != 0) { dc->dev_ix = (u16 )((int )dc->dev_ix + 1); dc->state = 5U; } else if ((int )dc->flags & 1) { dc->curr_targ = dc->curr_targ + 1; dc->state = 1U; } else { } next_dev_addr: { esas2r_rq_destroy_request(rq, a); } if ((int )((short )dc->flags) >= 0) { { esas2r_disc_continue(a, rq); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } static u32 esas2r_disc_get_phys_addr(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; { a = sgc->adapter; *addr = a->uncached_phys + (unsigned long long )((long )a->disc_buffer - (long )a->uncached); return (sgc->length); } } static bool esas2r_disc_dev_remove(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; struct esas2r_target *t ; struct esas2r_target *t2 ; u16 tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; t = (struct esas2r_target *)(& a->targetdb); goto ldv_40166; ldv_40165: ; if ((unsigned int )t->new_target_state != 0U) { goto ldv_40164; } else { } { t->new_target_state = 255U; tmp = esas2r_targ_get_id(t, a); t2 = esas2r_targ_db_find_by_virt_id(a, (int )tmp); } if ((unsigned long )t2 != (unsigned long )((struct esas2r_target *)0)) { { esas2r_targ_db_remove(a, t2); } } else { } ldv_40164: t = t + 1; ldv_40166: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_40165; } else { } dc->state = 1U; dc->curr_targ = (struct esas2r_target *)(& a->targetdb); return (0); } } static bool esas2r_disc_dev_add(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; struct esas2r_target *t ; struct atto_vda_ae_lu *luevt ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; t = dc->curr_targ; if ((unsigned long )t >= (unsigned long )a->targetdb_end) { dc->state = 255U; } else if ((unsigned int )t->new_target_state == 5U) { { luevt = & t->lu_event; t->new_target_state = 255U; dc->curr_virt_id = esas2r_targ_get_id(t, a); } if ((unsigned int )luevt->hdr.bylength > 23U && (luevt->dwevent & 268435456U) == 0U) { dc->block_size = luevt->id.tgtlun_raid.dwblock_size; dc->interleave = luevt->id.tgtlun_raid.dwinterleave; } else { dc->block_size = 0U; dc->interleave = 0U; } if ((luevt->dwevent & 268435456U) != 0U) { if ((luevt->dwevent & 536870912U) != 0U) { dc->state = 6U; dc->dev_addr_type = 0U; dc->curr_phys_id = luevt->wphys_target_id; } else { { esas2r_log(2L, "luevt->dwevent does not have the VDAAE_LU_PHYS_ID bit set (%s:%d)", "esas2r_disc_dev_add", 1127); } } } else { { dc->raid_grp_name[0] = 0; esas2r_targ_db_add_raid(a, dc); } } } else { } if ((unsigned int )dc->state == 1U) { dc->curr_targ = dc->curr_targ + 1; } else { } return (0); } } static void esas2r_disc_fix_curr_requests(struct esas2r_adapter *a ) { unsigned long flags ; struct esas2r_target *t ; struct esas2r_request *rq ; struct list_head *element ; struct list_head const *__mptr ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_122(& a->queue_lock); element = a->defer_list.next; } goto ldv_40186; ldv_40185: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned int )(rq->vrq)->scsi.function == 0U) { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; if ((unsigned int )t->target_state == 5U) { (rq->vrq)->scsi.__annonCompField88.__annonCompField87.target_id = t->virt_targ_id; } else { rq->req_stat = 3U; } } else { } element = element->next; ldv_40186: ; if ((unsigned long )element != (unsigned long )(& a->defer_list)) { goto ldv_40185; } else { } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_sg_list_lock_of_esas2r_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_mem_lock_of_esas2r_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_esas2r_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_120(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_122(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; extern int sprintf(char * , char const * , ...) ; extern char *strcpy(char * , char const * ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_sub_return(int i , atomic_t *v ) { int tmp ; { { tmp = atomic_add_return(- i, v); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___0(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern long schedule_timeout_interruptible(long ) ; extern int down_interruptible(struct semaphore * ) ; extern void up(struct semaphore * ) ; bool esas2r_nvram_write(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *nvram ) ; void esas2r_nvram_get_defaults(struct esas2r_adapter *a , struct esas2r_sas_nvram *nvram ) ; void esas2r_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_build_flash_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 cksum , u32 addr , u32 length ) ; u32 esas2r_map_data_window(struct esas2r_adapter *a , u32 addr_lo ) ; bool esas2r_process_fs_ioctl(struct esas2r_adapter *a , struct esas2r_ioctl_fs *fs , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) ; bool esas2r_read_flash_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) ; bool esas2r_fm_api(struct esas2r_adapter *a , struct esas2r_flash_img *fi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) ; bool esas2r_read_flash_rev(struct esas2r_adapter *a ) ; bool esas2r_read_image_type(struct esas2r_adapter *a ) ; bool esas2r_nvram_read_direct(struct esas2r_adapter *a ) ; bool esas2r_nvram_validate(struct esas2r_adapter *a ) ; void esas2r_nvram_set_defaults(struct esas2r_adapter *a ) ; bool esas2r_print_flash_rev(struct esas2r_adapter *a ) ; __inline static void esas2r_rq_free_sg_lists___0(struct esas2r_request *rq , struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; { { tmp = list_empty((struct list_head const *)(& rq->sg_table_head)); } if (tmp != 0) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___0(& a->sg_list_lock); list_splice_tail_init(& rq->sg_table_head, & a->free_sg_list_head); ldv_spin_unlock_irqrestore_99(& a->sg_list_lock, flags); } return; } } __inline static void esas2r_disable_chip_interrupts(struct esas2r_adapter *a ) { int tmp ; { { tmp = atomic_add_return(1, & a->dis_ints_cnt); } if (tmp == 1) { { writel(0U, (void volatile *)a->regs + 66060U); } } else { } return; } } __inline static void esas2r_enable_chip_interrupts(struct esas2r_adapter *a ) { int tmp ; { { tmp = atomic_sub_return(1, & a->dis_ints_cnt); } if (tmp == 0) { { writel(4112U, (void volatile *)a->regs + 66060U); } } else { } return; } } __inline static void esas2r_enable_heartbeat(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; { { tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp == 0) { { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 == 0) { if (((int )(a->nvram)->options2 & 16) != 0) { { set_bit(17L, (unsigned long volatile *)(& a->flags)); } } else { { clear_bit(17L, (unsigned long volatile *)(& a->flags)); } } } else { { clear_bit(17L, (unsigned long volatile *)(& a->flags)); } } } else { { clear_bit(17L, (unsigned long volatile *)(& a->flags)); } } return; } } static struct esas2r_sas_nvram default_sas_nvram = {{69U, 83U, 65U, 83U}, 0U, 0U, 31U, 248U, 1U, 81U, 0U, 0U, 3U, 1U, 0U, 0U, {80U, 1U, 8U, 96U, 0U, 0U, 0U, 0U}, {0U}, {0U}, {0U}, 0U, 3U, 3U, 0U, {0U}, 0U, 0U, 0U, {0U}}; static u8 cmd_to_fls_func[6U] = { 255U, 1U, 0U, 2U, 3U, 4U}; static u8 esas2r_calc_byte_xor_cksum(u8 *addr , u32 len , u8 seed ) { u32 cksum ; u8 *p ; u32 tmp ; { cksum = (u32 )seed; p = (u8 *)(& cksum); goto ldv_39845; ldv_39844: ; if (((unsigned long )addr & 3UL) == 0UL) { goto ldv_39843; } else { } cksum = cksum ^ (u32 )*addr; addr = addr + 1; len = len - 1U; ldv_39845: ; if (len != 0U) { goto ldv_39844; } else { } ldv_39843: ; goto ldv_39847; ldv_39846: cksum = cksum ^ *((u32 *)addr); addr = addr + 4UL; len = len - 4U; ldv_39847: ; if (len > 3U) { goto ldv_39846; } else { } goto ldv_39850; ldv_39849: cksum = cksum ^ (u32 )*addr; addr = addr + 1; ldv_39850: tmp = len; len = len - 1U; if (tmp != 0U) { goto ldv_39849; } else { } return ((u8 )((((int )*p ^ (int )*(p + 1UL)) ^ (int )*(p + 2UL)) ^ (int )*(p + 3UL))); } } static u8 esas2r_calc_byte_cksum(void *addr , u32 len , u8 seed ) { u8 *p ; u8 cksum ; u32 tmp ; { p = (u8 *)addr; cksum = seed; goto ldv_39860; ldv_39859: cksum = (int )cksum + (int )*(p + (unsigned long )len); ldv_39860: tmp = len; len = len - 1U; if (tmp != 0U) { goto ldv_39859; } else { } return (cksum); } } static void esas2r_fmapi_callback(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_vda_flash_req *vrq ; struct esas2r_flash_context *fc ; { vrq = & (rq->vrq)->flash; fc = (struct esas2r_flash_context *)rq->interrupt_cx; if ((unsigned int )rq->req_stat == 0U) { { if ((int )vrq->sub_func == 0) { goto case_0; } else { } if ((int )vrq->sub_func == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned long )fc->sgc.cur_offset == (unsigned long )((u8 *)0U)) { goto commit; } else { } vrq->sub_func = 2U; rq->req_stat = 254U; goto ldv_39870; case_2: /* CIL Label */ ; commit: vrq->sub_func = 3U; rq->req_stat = 254U; rq->interrupt_cb = fc->interrupt_cb; goto ldv_39870; switch_default: /* CIL Label */ ; goto ldv_39870; switch_break: /* CIL Label */ ; } ldv_39870: ; } else { } if ((unsigned int )rq->req_stat != 254U) { { (*(fc->interrupt_cb))(a, rq); } } else { } return; } } static void build_flash_msg(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_flash_context *fc ; struct esas2r_sg_context *sgc ; u8 cksum ; bool tmp ; int tmp___0 ; { fc = (struct esas2r_flash_context *)rq->interrupt_cx; sgc = & fc->sgc; cksum = 0U; if ((unsigned int )fc->func == 0U) { if ((unsigned long )sgc->cur_offset != (unsigned long )((u8 *)0U)) { { cksum = esas2r_calc_byte_xor_cksum(sgc->cur_offset, sgc->length, 0); } } else { } rq->interrupt_cb = & esas2r_fmapi_callback; } else { rq->interrupt_cb = fc->interrupt_cb; } { esas2r_build_flash_req(a, rq, (int )fc->func, (int )cksum, fc->flsh_addr, sgc->length); esas2r_rq_free_sg_lists___0(rq, a); fc->curr_len = fc->sgc.length; } if ((unsigned long )sgc->cur_offset != (unsigned long )((u8 *)0U)) { { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->flash.data.sge)); tmp = esas2r_build_sg_list(a, rq, sgc); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { rq->req_stat = 2U; return; } else { } } else { fc->sgc.length = 0U; } fc->flsh_addr = fc->flsh_addr + fc->curr_len; return; } } static bool load_image(struct esas2r_adapter *a , struct esas2r_request *rq ) { int tmp ; { { rq->req_stat = 254U; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { } else { { build_flash_msg(a, rq); } } return ((unsigned int )rq->req_stat == 254U); } } static void fix_bios(struct esas2r_adapter *a , struct esas2r_flash_img *fi ) { struct esas2r_component_header *ch ; struct esas2r_pc_image *pi ; struct esas2r_boot_header *bh ; u8 *pnp_header_bytes ; u8 tmp ; u8 tmp___0 ; { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 2UL; pi = (struct esas2r_pc_image *)fi + (unsigned long )ch->image_offset; bh = (struct esas2r_boot_header *)pi + (unsigned long )pi->header_offset; bh->device_id = (a->pcid)->device; if ((unsigned int )pi->pnp_offset != 0U) { { pnp_header_bytes = (u8 *)pi + (unsigned long )pi->pnp_offset; *((u32 *)pnp_header_bytes + 10U) = (unsigned int )(a->pcid)->subsystem_vendor | ((unsigned int )(a->pcid)->subsystem_device << 16); tmp = esas2r_calc_byte_cksum((void *)pnp_header_bytes, 32U, 0); *(pnp_header_bytes + 9UL) = (int )*(pnp_header_bytes + 9UL) - (int )tmp; } } else { } { tmp___0 = esas2r_calc_byte_cksum((void *)pi, ch->length, 0); pi->checksum = (int )pi->checksum - (int )tmp___0; } return; } } static void fix_efi(struct esas2r_adapter *a , struct esas2r_flash_img *fi ) { struct esas2r_component_header *ch ; u32 len ; u32 offset ; struct esas2r_efi_image *ei ; struct esas2r_boot_header *bh ; u32 thislen ; { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 5UL; len = ch->length; offset = ch->image_offset; goto ldv_39904; ldv_39903: ei = (struct esas2r_efi_image *)fi + (unsigned long )offset; bh = (struct esas2r_boot_header *)ei + (unsigned long )ei->header_offset; bh->device_id = (a->pcid)->device; thislen = (unsigned int )bh->image_length * 512U; if (thislen > len) { goto ldv_39902; } else { } len = len - thislen; offset = offset + thislen; ldv_39904: ; if (len != 0U) { goto ldv_39903; } else { } ldv_39902: ; return; } } static bool complete_fmapi_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 fi_stat ) { struct esas2r_flash_context *fc ; struct esas2r_flash_img *fi ; { fc = (struct esas2r_flash_context *)rq->interrupt_cx; fi = fc->fi; fi->status = fi_stat; fi->driver_error = (u16 )rq->req_stat; rq->interrupt_cb = (void (*)(struct esas2r_adapter * , struct esas2r_request * ))0; rq->req_stat = 0U; if ((unsigned int )fi_stat != 8U) { { __memset((void *)fc->scratch, 0, 2048UL); } } else { } { esas2r_enable_heartbeat(a); clear_bit(8L, (unsigned long volatile *)(& a->flags)); } return (0); } } static void fw_download_proc(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_flash_context *fc ; struct esas2r_flash_img *fi ; struct esas2r_component_header *ch ; u32 len ; u8 *p ; u8 *q ; u8 *tmp ; u8 *tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { fc = (struct esas2r_flash_context *)rq->interrupt_cx; fi = fc->fi; if ((unsigned int )rq->req_stat != 0U) { goto error; } else { } if ((unsigned int )fc->func == 1U && fc->cmp_len != 0U) { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + (unsigned long )fc->comp_typ; p = fc->scratch; q = (u8 *)fi + (((unsigned long )ch->image_offset + (unsigned long )ch->length) - (unsigned long )fc->cmp_len); len = fc->curr_len; goto ldv_39924; ldv_39923: tmp = p; p = p + 1; tmp___0 = q; q = q + 1; if ((int )*tmp != (int )*tmp___0) { goto error; } else { } len = len - 1U; ldv_39924: ; if (len != 0U) { goto ldv_39923; } else { } fc->cmp_len = fc->cmp_len - fc->curr_len; if (fc->cmp_len > 2048U) { fc->sgc.length = 2048U; } else { fc->sgc.length = fc->cmp_len; } fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); } else { } goto ldv_39941; ldv_39940: ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + (unsigned long )fc->comp_typ; { if ((int )fc->task == 0) { goto case_0; } else { } if ((int )fc->task == 1) { goto case_1; } else { } if ((int )fc->task == 2) { goto case_2; } else { } if ((int )fc->task == 3) { goto case_3; } else { } if ((int )fc->task == 4) { goto case_4; } else { } if ((int )fc->task == 5) { goto case_5; } else { } if ((int )fc->task == 6) { goto case_6; } else { } if ((int )fc->task == 7) { goto case_7; } else { } if ((int )fc->task == 8) { goto case_8; } else { } goto switch_break; case_0: /* CIL Label */ ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 2UL; if (ch->length == 0U) { goto no_bios; } else { } fc->task = 1U; fc->func = 0U; fc->comp_typ = 2U; fc->flsh_addr = 7340032U; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39928; case_1: /* CIL Label */ fc->task = 2U; fc->func = 1U; fc->flsh_addr = 7340032U; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39928; case_2: /* CIL Label */ ; no_bios: ch->status = 1U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 3UL; if (ch->length == 0U) { goto no_mac; } else { } fc->task = 3U; fc->func = 0U; fc->comp_typ = 3U; fc->flsh_addr = fi->cmp_hdr[2].length + 7340032U; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39928; case_3: /* CIL Label */ fc->task = 4U; fc->func = 1U; fc->flsh_addr = fc->flsh_addr - ch->length; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39928; case_4: /* CIL Label */ ; no_mac: ch->status = 1U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 5UL; if (ch->length == 0U) { goto no_efi; } else { } fc->task = 5U; fc->func = 0U; fc->comp_typ = 5U; fc->flsh_addr = (fi->cmp_hdr[2].length + fi->cmp_hdr[3].length) + 7340032U; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39928; case_5: /* CIL Label */ fc->task = 6U; fc->func = 1U; fc->flsh_addr = fc->flsh_addr - ch->length; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39928; case_6: /* CIL Label */ ; no_efi: ch->status = 1U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 4UL; if (ch->length == 0U) { goto no_cfg; } else { } fc->task = 7U; fc->func = 0U; fc->comp_typ = 4U; fc->flsh_addr = 8126464U - ch->length; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39928; case_7: /* CIL Label */ fc->task = 8U; fc->func = 1U; fc->flsh_addr = 8126464U - ch->length; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39928; case_8: /* CIL Label */ ; no_cfg: { ch->status = 1U; tmp___1 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { { esas2r_local_reset_adapter(a); } } else { } { a->flash_ver = fi->cmp_hdr[2].version; esas2r_print_flash_rev(a); __memcpy((void *)(& a->image_type), (void const *)(& fi->rel_version), 16UL); complete_fmapi_req(a, rq, 0); } return; switch_break: /* CIL Label */ ; } ldv_39928: ; if ((unsigned int )fc->func == 1U && fc->sgc.length > fc->cmp_len) { fc->sgc.length = fc->cmp_len; } else { } ldv_39941: ; if (fc->sgc.length == 0U) { goto ldv_39940; } else { } { tmp___2 = load_image(a, rq); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { error: ; if ((int )((unsigned short )fc->comp_typ) < (int )fi->num_comps) { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + (unsigned long )fc->comp_typ; ch->status = 0U; } else { } { complete_fmapi_req(a, rq, 1); } } else { } return; } } static u8 get_fi_adap_type(struct esas2r_adapter *a ) { u8 type ; { { if ((int )(a->pcid)->device == 44) { goto case_44; } else { } if ((int )(a->pcid)->device == 73) { goto case_73; } else { } if ((int )(a->pcid)->device == 102) { goto case_102; } else { } if ((int )(a->pcid)->device == 103) { goto case_103; } else { } if ((int )(a->pcid)->device == 104) { goto case_104; } else { } goto switch_default; case_44: /* CIL Label */ type = 11U; goto ldv_39948; case_73: /* CIL Label */ ; case_102: /* CIL Label */ ; case_103: /* CIL Label */ ; case_104: /* CIL Label */ type = 15U; goto ldv_39948; switch_default: /* CIL Label */ type = 255U; goto ldv_39948; switch_break: /* CIL Label */ ; } ldv_39948: ; return (type); } } static u32 chk_cfg(u8 *cfg , u32 length , u32 *flash_ver ) { u16 *pw ; u32 sz ; u32 len ; u16 type ; u16 size ; u16 *tmp ; u16 *tmp___0 ; { pw = (u16 *)cfg + 0xffffffffffffffffUL; sz = 0U; len = length; if (len == 0U) { len = 2048U; } else { } if ((unsigned long )flash_ver != (unsigned long )((u32 *)0U)) { *flash_ver = 0U; } else { } ldv_39965: tmp = pw; pw = pw - 1; type = *tmp; tmp___0 = pw; pw = pw - 1; size = *tmp___0; if (((unsigned int )type != 43520U && (unsigned int )type != 43522U) && (unsigned int )type != 43524U) { goto ldv_39964; } else { } if ((unsigned int )type == 43524U && (unsigned long )flash_ver != (unsigned long )((u32 *)0U)) { *flash_ver = *((u32 *)pw + 0xffffffffffffffffUL); } else { } sz = (sz + (u32 )size) + 4U; pw = pw + - ((unsigned long )((unsigned int )size / 2U)); if ((unsigned long )sz > (unsigned long )len - 4UL) { goto ldv_39964; } else { } goto ldv_39965; ldv_39964: ; if (length != 0U && sz != length) { return (0U); } else { } return (sz); } } static u8 chk_boot(u8 *boot_img , u32 length ) { struct esas2r_boot_image *bi ; u16 hdroffset ; struct esas2r_boot_header *bh ; { bi = (struct esas2r_boot_image *)boot_img; hdroffset = bi->header_offset; if ((((unsigned int )bi->signature != 43605U || (unsigned int )hdroffset > 65512U) || (((int )hdroffset & 3) != 0 || (unsigned int )hdroffset <= 27U)) || (unsigned long )hdroffset + 24UL > (unsigned long )length) { return (255U); } else { } bh = (struct esas2r_boot_header *)bi + (unsigned long )hdroffset; if (((((((((int )((signed char )bh->signature[0]) != 80 || (int )((signed char )bh->signature[1]) != 67) || (int )((signed char )bh->signature[2]) != 73) || (int )((signed char )bh->signature[3]) != 82) || (unsigned int )bh->struct_length <= 23U) || (unsigned int )bh->class_code[2] != 1U) || (unsigned int )bh->class_code[1] != 4U) || (unsigned int )bh->class_code[0] != 0U) || ((unsigned int )bh->code_type > 1U && (unsigned int )bh->code_type != 3U)) { return (255U); } else { } return (bh->code_type); } } static u16 calc_fi_checksum(struct esas2r_flash_context *fc ) { struct esas2r_flash_img *fi ; u16 cksum ; u32 len ; u16 *pw ; { fi = fc->fi; len = (fi->length - fc->fi_hdr_len) / 2U; pw = (u16 *)fi + (unsigned long )fc->fi_hdr_len; cksum = 0U; goto ldv_39981; ldv_39980: cksum = (int )cksum + (int )*pw; len = len - 1U; pw = pw + 1; ldv_39981: ; if (len != 0U) { goto ldv_39980; } else { } return (cksum); } } static bool verify_fi(struct esas2r_adapter *a , struct esas2r_flash_context *fc ) { struct esas2r_flash_img *fi ; u8 type ; bool imgerr ; u16 i ; u32 len ; struct esas2r_component_header *ch ; bool cmperr ; u8 tmp ; u32 tmp___0 ; u16 tmp___1 ; { fi = fc->fi; len = fi->length; if ((int )len & 1 || len < fc->fi_hdr_len) { fi->status = 6U; return (0); } else { } { type = get_fi_adap_type(a); } if ((unsigned int )type == 255U || (int )fi->adap_typ != (int )type) { fi->status = 3U; return (0); } else { } imgerr = 0; i = 0U; len = 0U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr); goto ldv_40008; ldv_40007: cmperr = 0; if ((int )i != (int )((unsigned short )ch->img_type)) { imgerr = 1; ch->status = 3U; goto ldv_39994; } else { } { if ((int )ch->img_type == 2) { goto case_2; } else { } if ((int )ch->img_type == 3) { goto case_3; } else { } if ((int )ch->img_type == 5) { goto case_5; } else { } goto switch_break; case_2: /* CIL Label */ type = 0U; goto ldv_39996; case_3: /* CIL Label */ type = 1U; goto ldv_39996; case_5: /* CIL Label */ type = 3U; goto ldv_39996; switch_break: /* CIL Label */ ; } ldv_39996: ; { if ((int )ch->img_type == 0) { goto case_0; } else { } if ((int )ch->img_type == 1) { goto case_1; } else { } if ((int )ch->img_type == 2) { goto case_2___0; } else { } if ((int )ch->img_type == 3) { goto case_3___0; } else { } if ((int )ch->img_type == 5) { goto case_5___0; } else { } if ((int )ch->img_type == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; goto ldv_40001; case_2___0: /* CIL Label */ ; case_3___0: /* CIL Label */ ; case_5___0: /* CIL Label */ ; if ((ch->length & 511U) != 0U) { cmperr = 1; } else { } if (ch->length == 0U) { goto ldv_40001; } else { } { tmp = chk_boot((u8 *)fi + (unsigned long )ch->image_offset, ch->length); } if ((int )tmp != (int )type) { cmperr = 1; } else { } goto ldv_40001; case_4: /* CIL Label */ ; if (ch->length == 0U) { cmperr = 1; goto ldv_40001; } else { } { tmp___0 = chk_cfg((u8 *)fi + ((unsigned long )ch->image_offset + (unsigned long )ch->length), ch->length, (u32 *)0U); } if (tmp___0 == 0U) { cmperr = 1; } else { } goto ldv_40001; switch_default: /* CIL Label */ fi->status = 7U; return (0); switch_break___0: /* CIL Label */ ; } ldv_40001: ; if ((int )cmperr) { imgerr = 1; ch->status = 3U; } else { ch->status = 255U; len = len + ch->length; } ldv_39994: i = (u16 )((int )i + 1); ch = ch + 1; ldv_40008: ; if ((int )i < (int )fi->num_comps) { goto ldv_40007; } else { } if ((int )imgerr) { fi->status = 11U; return (0); } else { } if (len != fi->length - fc->fi_hdr_len) { fi->status = 6U; return (0); } else { } { tmp___1 = calc_fi_checksum(fc); } if ((int )fi->checksum != (int )tmp___1) { fi->status = 5U; return (0); } else { } return (1); } } static void esas2r_complete_fs_ioctl(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_ioctl_fs *fs ; { fs = (struct esas2r_ioctl_fs *)rq->interrupt_cx; if ((unsigned int )(rq->vrq)->flash.sub_func == 3U) { { esas2r_enable_heartbeat(a); } } else { } fs->driver_error = rq->req_stat; if ((unsigned int )fs->driver_error == 0U) { fs->status = 0U; } else { fs->status = 1U; } return; } } bool esas2r_process_fs_ioctl(struct esas2r_adapter *a , struct esas2r_ioctl_fs *fs , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { u8 cmdcnt ; struct esas2r_ioctlfs_command *fsc ; u8 func ; u32 datalen ; int tmp ; bool tmp___0 ; int tmp___1 ; { cmdcnt = 6U; fsc = & fs->command; func = 0U; fs->status = 1U; fs->driver_error = 254U; if ((unsigned int )fs->version != 0U) { fs->status = 2U; return (0); } else { } if ((int )fsc->command >= (int )cmdcnt) { fs->status = 4U; return (0); } else { } func = cmd_to_fls_func[(int )fsc->command]; if ((unsigned int )func == 255U) { fs->status = 4U; return (0); } else { } if ((unsigned int )fsc->command != 5U) { if (((((unsigned int )(a->pcid)->device != 73U || (unsigned int )fs->adap_type != 3U) && ((unsigned int )(a->pcid)->device != 102U || (unsigned int )fs->adap_type != 4U)) && ((unsigned int )(a->pcid)->device != 103U || (unsigned int )fs->adap_type != 5U)) && ((unsigned int )(a->pcid)->device != 104U || (unsigned int )fs->adap_type != 6U)) { fs->status = 6U; return (0); } else { } if ((unsigned int )fs->driver_ver > 2U) { fs->status = 7U; return (0); } else { } } else { } { tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { fs->status = 11U; return (0); } else { } { rq->interrupt_cb = & esas2r_complete_fs_ioctl; rq->interrupt_cx = (void *)fs; datalen = fsc->length; esas2r_build_flash_req(a, rq, (int )func, (int )fsc->checksum, fsc->flash_addr, datalen); } if ((unsigned int )func - 1U <= 1U) { if (datalen == 0U) { fs->status = 4U; return (0); } else { } { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->flash.data.sge)); sgc->length = datalen; tmp___0 = esas2r_build_sg_list(a, rq, sgc); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { fs->status = 3U; return (0); } else { } } else { } if ((unsigned int )func == 3U) { { esas2r_disable_heartbeat(a); } } else { } { esas2r_start_request(a, rq); } return (1); } } static bool esas2r_flash_access(struct esas2r_adapter *a , u32 function ) { u32 starttime ; u32 timeout ; u32 intstat ; u32 doorbell ; int tmp ; int tmp___0 ; unsigned long tmp___1 ; unsigned int tmp___2 ; { if (function == 32U) { { esas2r_disable_chip_interrupts(a); } } else { } { writel(function, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); tmp = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { timeout = 40000U; } else { { tmp___0 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { timeout = 40000U; } else { timeout = 5000U; } } ldv_40036: { intstat = readl((void const volatile *)a->regs + 66048U); } if ((intstat & 4096U) != 0U) { { doorbell = readl((void const volatile *)a->regs + 66688U); writel(doorbell, (void volatile *)a->regs + 66688U); } if ((doorbell & function) != 0U) { goto ldv_40035; } else { } } else { } { tmp___1 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___1); tmp___2 = jiffies_to_msecs(jiffies); } if (tmp___2 - starttime > timeout) { if (function == 32U) { { writel(64U, (void volatile *)a->regs + 66656U); esas2r_enable_chip_interrupts(a); } } else { } return (0); } else { } goto ldv_40036; ldv_40035: ; if (function == 64U) { { esas2r_enable_chip_interrupts(a); } } else { } return (1); } } bool esas2r_read_flash_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) { u8 *end ; bool tmp ; int tmp___0 ; u32 len ; u32 offset ; u32 iatvr ; int tmp___1 ; u8 *tmp___2 ; u32 tmp___3 ; { { end = (u8 *)to; tmp = esas2r_flash_access(a, 32U); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } goto ldv_40051; ldv_40050: { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___1 != 0) { iatvr = (from & 4294836224U) + 3959422976U; } else { iatvr = (from & 4294836224U) + 4227858432U; } { esas2r_map_data_window(a, iatvr); offset = from & 131071U; len = size; } if (len > 131072U - offset) { len = 131072U - offset; } else { } from = from + len; size = size - len; goto ldv_40048; ldv_40047: { tmp___2 = end; end = end + 1; *tmp___2 = readb((void const volatile *)a->data_window + (unsigned long )offset); offset = offset + 1U; } ldv_40048: tmp___3 = len; len = len - 1U; if (tmp___3 != 0U) { goto ldv_40047; } else { } ldv_40051: ; if (size != 0U) { goto ldv_40050; } else { } { esas2r_flash_access(a, 64U); } return (1); } } bool esas2r_read_flash_rev(struct esas2r_adapter *a ) { u8 bytes[256U] ; u16 *pw ; u16 *pwstart ; u16 type ; u16 size ; u32 sz ; bool tmp ; int tmp___0 ; bool tmp___1 ; { { sz = 256U; pw = (u16 *)(& bytes) + (unsigned long )sz; pwstart = (u16 *)(& bytes) + 2UL; tmp = esas2r_read_flash_block(a, (void *)(& bytes), 8126464U - sz, sz); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto invalid_rev; } else { } goto ldv_40063; ldv_40065: pw = pw - 1; type = *pw; pw = pw - 1; size = *pw; pw = pw + - ((unsigned long )((unsigned int )size / 2U)); if (((unsigned int )type == 43520U || (unsigned int )type == 43522U) || (unsigned long )pw < (unsigned long )pwstart) { goto ldv_40063; } else { } if ((unsigned int )type == 43524U) { a->flash_ver = *((u32 *)pw); } else { } goto ldv_40064; ldv_40063: ; if ((unsigned long )pw >= (unsigned long )pwstart) { goto ldv_40065; } else { } ldv_40064: ; invalid_rev: { tmp___1 = esas2r_print_flash_rev(a); } return (tmp___1); } } bool esas2r_print_flash_rev(struct esas2r_adapter *a ) { u16 year ; u8 day ; u8 month ; { year = (unsigned short )a->flash_ver; day = (unsigned char )(a->flash_ver >> 16); month = (unsigned char )((int )((unsigned short )(a->flash_ver >> 16)) >> 8); if ((((unsigned int )day == 0U || (unsigned int )month == 0U) || ((unsigned int )day > 31U || (unsigned int )month > 12U)) || ((unsigned int )year <= 2005U || (unsigned int )year > 9999U)) { { strcpy((char *)(& a->flash_rev), "not found"); a->flash_ver = 0U; } return (0); } else { } { sprintf((char *)(& a->flash_rev), "%02d/%02d/%04d", (int )month, (int )day, (int )year); } return (1); } } bool esas2r_read_image_type(struct esas2r_adapter *a ) { u8 bytes[256U] ; struct esas2r_boot_image *bi ; struct esas2r_boot_header *bh ; u32 sz ; u32 len ; u32 offset ; bool tmp ; int tmp___0 ; struct esas2r_efi_image *ei ; u32 thislen ; { sz = 256U; len = 786432U; offset = 0U; ldv_40090: { tmp = esas2r_read_flash_block(a, (void *)(& bytes), offset + 7340032U, sz); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto invalid_rev; } else { } bi = (struct esas2r_boot_image *)(& bytes); bh = (struct esas2r_boot_header *)bi + (unsigned long )bi->header_offset; if ((unsigned int )bi->signature != 43605U) { goto invalid_rev; } else { } if ((unsigned int )bh->code_type == 0U) { { strcpy((char *)(& a->image_type), "BIOS"); } return (1); } else if ((unsigned int )bh->code_type == 3U) { ei = (struct esas2r_efi_image *)(& bytes); { if ((int )ei->machine_type == 332) { goto case_332; } else { } if ((int )ei->machine_type == 512) { goto case_512; } else { } if ((int )ei->machine_type == 34404) { goto case_34404; } else { } if ((int )ei->machine_type == 3772) { goto case_3772; } else { } goto switch_default; case_332: /* CIL Label */ { strcpy((char *)(& a->image_type), "EFI 32-bit"); } return (1); case_512: /* CIL Label */ { strcpy((char *)(& a->image_type), "EFI itanium"); } return (1); case_34404: /* CIL Label */ { strcpy((char *)(& a->image_type), "EFI 64-bit"); } return (1); case_3772: /* CIL Label */ { strcpy((char *)(& a->image_type), "EFI EBC"); } return (1); switch_default: /* CIL Label */ ; goto invalid_rev; switch_break: /* CIL Label */ ; } } else { thislen = (unsigned int )bh->image_length * 512U; if ((thislen == 0U || thislen + offset > len) || (unsigned int )bh->indicator == 128U) { goto ldv_40089; } else { } offset = offset + thislen; } goto ldv_40090; ldv_40089: ; invalid_rev: { strcpy((char *)(& a->image_type), "no boot images"); } return (0); } } bool esas2r_nvram_read_direct(struct esas2r_adapter *a ) { bool result ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = down_interruptible(& a->nvram_semaphore); } if (tmp != 0) { return (0); } else { } { tmp___0 = esas2r_read_flash_block(a, (void *)a->nvram, 8126464U, 256U); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { result = esas2r_nvram_validate(a); up(& a->nvram_semaphore); } return (result); } } static void esas2r_nvram_callback(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_vda_flash_req *vrq ; { vrq = & (rq->vrq)->flash; if ((unsigned int )rq->req_stat == 0U) { { if ((int )vrq->sub_func == 0) { goto case_0; } else { } if ((int )vrq->sub_func == 2) { goto case_2; } else { } if ((int )vrq->sub_func == 1) { goto case_1; } else { } if ((int )vrq->sub_func == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ vrq->sub_func = 2U; rq->req_stat = 254U; goto ldv_40101; case_2: /* CIL Label */ vrq->sub_func = 3U; rq->req_stat = 254U; goto ldv_40101; case_1: /* CIL Label */ { esas2r_nvram_validate(a); } goto ldv_40101; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_40101; switch_break: /* CIL Label */ ; } ldv_40101: ; } else { } if ((unsigned int )rq->req_stat != 254U) { if ((unsigned int )rq->req_stat == 0U) { { set_bit(12L, (unsigned long volatile *)(& a->flags)); } } else { { clear_bit(12L, (unsigned long volatile *)(& a->flags)); } } { esas2r_enable_heartbeat(a); up(& a->nvram_semaphore); } } else { } return; } } bool esas2r_nvram_write(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *nvram ) { struct esas2r_sas_nvram *n ; u8 sas_address_bytes[8U] ; u32 *sas_address_dwords ; struct atto_vda_flash_req *vrq ; int tmp ; int tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; int tmp___3 ; { { n = nvram; sas_address_dwords = (u32 *)(& sas_address_bytes); vrq = & (rq->vrq)->flash; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return (0); } else { } { tmp___0 = down_interruptible(& a->nvram_semaphore); } if (tmp___0 != 0) { return (0); } else { } if ((unsigned long )n == (unsigned long )((struct esas2r_sas_nvram *)0)) { n = a->nvram; } else { } if ((unsigned int )n->version != 0U) { { up(& a->nvram_semaphore); } return (0); } else { } { __memcpy((void *)(& sas_address_bytes), (void const *)(& n->sas_addr), 8UL); } if (((((unsigned int )sas_address_bytes[0] != 80U || (unsigned int )sas_address_bytes[1] != 1U) || (unsigned int )sas_address_bytes[2] != 8U) || ((int )sas_address_bytes[3] & 240) != 96) || (((u32 )sas_address_bytes[3] & 15U) | *(sas_address_dwords + 1UL)) == 0U) { { up(& a->nvram_semaphore); } return (0); } else { } if ((unsigned int )n->spin_up_delay > 20U) { n->spin_up_delay = 20U; } else { } { n->version = 0U; tmp___1 = esas2r_calc_byte_cksum((void *)n, 256U, 90); n->checksum = (int )n->checksum - (int )tmp___1; __memcpy((void *)a->nvram, (void const *)n, 256UL); n = a->nvram; esas2r_disable_heartbeat(a); tmp___2 = esas2r_calc_byte_xor_cksum((u8 *)n, 256U, 0); esas2r_build_flash_req(a, rq, 0, (int )tmp___2, 8126464U, 256U); tmp___3 = constant_test_bit(24L, (unsigned long const volatile *)(& a->flags)); } if (tmp___3 != 0) { vrq->data.sge[0].length = 16777472U; vrq->data.sge[0].address = a->uncached_phys + (unsigned long long )((long )n - (long )a->uncached); } else { vrq->data.prde[0].ctl_len = 256U; vrq->data.prde[0].address = a->uncached_phys + (unsigned long long )((long )n - (long )a->uncached); } { rq->interrupt_cb = & esas2r_nvram_callback; esas2r_start_request(a, rq); } return (1); } } bool esas2r_nvram_validate(struct esas2r_adapter *a ) { struct esas2r_sas_nvram *n ; bool rslt ; u8 tmp ; { n = a->nvram; rslt = 0; if ((((unsigned int )n->signature[0] != 69U || (unsigned int )n->signature[1] != 83U) || (unsigned int )n->signature[2] != 65U) || (unsigned int )n->signature[3] != 83U) { } else { { tmp = esas2r_calc_byte_cksum((void *)n, 256U, 90); } if ((unsigned int )tmp != 0U) { } else if ((unsigned int )n->version != 0U) { } else { { set_bit(12L, (unsigned long volatile *)(& a->flags)); rslt = 1; } } } if (! rslt) { { esas2r_nvram_set_defaults(a); } } else { } return (rslt); } } void esas2r_nvram_set_defaults(struct esas2r_adapter *a ) { struct esas2r_sas_nvram *n ; u32 time ; unsigned int tmp ; { { n = a->nvram; tmp = jiffies_to_msecs(jiffies); time = tmp; clear_bit(12L, (unsigned long volatile *)(& a->flags)); *n = default_sas_nvram; n->sas_addr[3] = (u8 )((unsigned int )n->sas_addr[3] | 15U); n->sas_addr[4] = (unsigned char )((int )((unsigned short )time) >> 8); n->sas_addr[5] = (unsigned char )time; n->sas_addr[6] = ((a->pcid)->bus)->number; n->sas_addr[7] = (u8 )(a->pcid)->devfn; } return; } } void esas2r_nvram_get_defaults(struct esas2r_adapter *a , struct esas2r_sas_nvram *nvram ) { u8 sas_addr[8U] ; { { __memcpy((void *)(& sas_addr), (void const *)(& (a->nvram)->sas_addr), 8UL); *nvram = default_sas_nvram; __memcpy((void *)(& nvram->sas_addr), (void const *)(& sas_addr), 8UL); } return; } } bool esas2r_fm_api(struct esas2r_adapter *a , struct esas2r_flash_img *fi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { struct esas2r_flash_context *fc ; u8 j ; struct esas2r_component_header *ch ; int tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; int tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u8 tmp___9 ; u8 tmp___10 ; u8 tmp___11 ; bool tmp___12 ; bool tmp___13 ; bool tmp___14 ; bool tmp___15 ; int tmp___16 ; { { fc = & a->flash_context; tmp = test_and_set_bit(8L, (unsigned long volatile *)(& a->flags)); } if (tmp != 0) { fi->status = 9U; return (0); } else { } { __memcpy((void *)(& fc->sgc), (void const *)sgc, 96UL); sgc = & fc->sgc; fc->fi = fi; fc->sgc_offset = sgc->cur_offset; rq->req_stat = 0U; rq->interrupt_cx = (void *)fc; } { if ((int )fi->fi_version == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ fc->scratch = (u8 *)(& fi->scratch_buf); fc->num_comps = 6U; fc->fi_hdr_len = 2176U; goto ldv_40140; switch_default: /* CIL Label */ { tmp___0 = complete_fmapi_req(a, rq, 8); } return (tmp___0); switch_break: /* CIL Label */ ; } ldv_40140: { tmp___2 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 != 0) { { tmp___1 = complete_fmapi_req(a, rq, 15); } return (tmp___1); } else { } { if ((int )fi->action == 0) { goto case_0; } else { } if ((int )fi->action == 2) { goto case_2; } else { } if ((int )fi->action == 1) { goto case_1___0; } else { } goto switch_default___0; case_0: /* CIL Label */ { tmp___4 = verify_fi(a, fc); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { tmp___3 = complete_fmapi_req(a, rq, (int )fi->status); } return (tmp___3); } else { } ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 2UL; if (ch->length != 0U) { { fix_bios(a, fi); } } else { } ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 5UL; if (ch->length != 0U) { { fix_efi(a, fi); } } else { } { fi->checksum = calc_fi_checksum(fc); esas2r_disable_heartbeat(a); fc->task = 0U; fc->func = 0U; fc->comp_typ = 4U; fc->flsh_addr = 7340032U; fc->sgc.length = 786432U; fc->sgc.cur_offset = (u8 *)0U; fc->interrupt_cb = & fw_download_proc; } goto ldv_40143; case_2: /* CIL Label */ { fi->adap_typ = get_fi_adap_type(a); fi->flags = 0U; fi->num_comps = fc->num_comps; fi->length = fc->fi_hdr_len; __memcpy((void *)(& fi->rel_version), (void const *)(& a->image_type), 16UL); j = 0U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr); } goto ldv_40146; ldv_40145: ch->img_type = j; ch->status = 255U; ch->length = 0U; ch->version = 4294967295U; ch->image_offset = 0U; ch->pad[0] = 0U; ch->pad[1] = 0U; j = (u8 )((int )j + 1); ch = ch + 1; ldv_40146: ; if ((int )((unsigned short )j) < (int )fi->num_comps) { goto ldv_40145; } else { } if (a->flash_ver != 0U) { { tmp___8 = a->flash_ver; fi->cmp_hdr[4].version = tmp___8; tmp___7 = tmp___8; fi->cmp_hdr[5].version = tmp___7; tmp___6 = tmp___7; fi->cmp_hdr[3].version = tmp___6; fi->cmp_hdr[2].version = tmp___6; tmp___11 = 1U; fi->cmp_hdr[4].status = tmp___11; tmp___10 = tmp___11; fi->cmp_hdr[5].status = tmp___10; tmp___9 = tmp___10; fi->cmp_hdr[3].status = tmp___9; fi->cmp_hdr[2].status = tmp___9; tmp___12 = complete_fmapi_req(a, rq, 0); } return (tmp___12); } else { } case_1___0: /* CIL Label */ ; switch_default___0: /* CIL Label */ { tmp___13 = complete_fmapi_req(a, rq, 4); } return (tmp___13); switch_break___0: /* CIL Label */ ; } ldv_40143: { tmp___15 = load_image(a, rq); } if (tmp___15) { tmp___16 = 0; } else { tmp___16 = 1; } if (tmp___16) { { tmp___14 = complete_fmapi_req(a, rq, 1); } return (tmp___14); } else { } { esas2r_start_request(a, rq); } return (1); } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; void *ldv_xmalloc(size_t size ) ; extern struct pv_irq_ops pv_irq_ops ; __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void list_del(struct list_head * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_sub_return___0(int i , atomic_t *v ) { int tmp ; { { tmp = atomic_add_return(- i, v); } return (tmp); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___1(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110___0(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_fw_event_lock_of_esas2r_adapter(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_108(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void sysfs_remove_bin_file(struct kobject * , struct bin_attribute const * ) ; extern void do_gettimeofday(struct timeval * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_105(struct timer_list *ldv_func_arg1 ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_102(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_103(void volatile *ldv_func_arg1 ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_region(struct pci_dev * , int , char const * ) ; extern void pci_release_region(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; } if (rc < 0) { return (rc); } else { } return (0); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } extern u64 dma_get_required_mask(struct device * ) ; __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern void scsi_remove_host(struct Scsi_Host * ) ; static void ldv_scsi_remove_host_109(struct Scsi_Host *ldv_func_arg1 ) ; extern void scsi_host_put(struct Scsi_Host * ) ; extern void __const_udelay(unsigned long ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_104(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_106(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_hi_schedule(struct tasklet_struct * ) ; __inline static void tasklet_hi_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_hi_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; struct esas2r_adapter *esas2r_adapters[32U] ; u8 *esas2r_buffered_ioctl ; dma_addr_t esas2r_buffered_ioctl_addr ; u32 esas2r_buffered_ioctl_size ; struct pci_dev *esas2r_buffered_ioctl_pcid ; int sgl_page_size ; int num_sg_lists ; int num_requests ; int num_ae_requests ; int interrupt_mode ; int esas2r_init_adapter(struct Scsi_Host *host , struct pci_dev *pcid , int index ) ; int esas2r_cleanup(struct Scsi_Host *host ) ; void esas2r_adapter_tasklet(unsigned long context ) ; irqreturn_t esas2r_interrupt(int irq , void *dev_id ) ; irqreturn_t esas2r_msi_interrupt(int irq , void *dev_id ) ; void esas2r_kickoff_timer(struct esas2r_adapter *a ) ; int esas2r_suspend(struct pci_dev *pdev , pm_message_t state ) ; int esas2r_resume(struct pci_dev *pdev ) ; void esas2r_fw_event_off(struct esas2r_adapter *a ) ; void esas2r_kill_adapter(int i ) ; u32 esas2r_get_uncached_size(struct esas2r_adapter *a ) ; bool esas2r_init_adapter_struct(struct esas2r_adapter *a , void **uncached_area ) ; bool esas2r_check_adapter(struct esas2r_adapter *a ) ; bool esas2r_init_adapter_hw(struct esas2r_adapter *a , bool init_poll ) ; void esas2r_do_tasklet_tasks(struct esas2r_adapter *a ) ; void esas2r_do_deferred_processes(struct esas2r_adapter *a ) ; void esas2r_reset_adapter(struct esas2r_adapter *a ) ; void esas2r_timer_tick(struct esas2r_adapter *a ) ; char const *esas2r_get_model_name(struct esas2r_adapter *a ) ; char const *esas2r_get_model_name_short(struct esas2r_adapter *a ) ; void esas2r_build_ae_req(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_build_cfg_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u32 length , void *data ) ; void esas2r_power_down(struct esas2r_adapter *a ) ; bool esas2r_power_up(struct esas2r_adapter *a , bool init_poll ) ; bool esas2r_read_mem_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) ; void esas2r_force_interrupt(struct esas2r_adapter *a ) ; void esas2r_process_adapter_reset(struct esas2r_adapter *a ) ; void esas2r_dummy_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_ae_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_send_reset_ae(struct esas2r_adapter *a , bool pwr_mgt ) ; bool esas2r_init_msgs(struct esas2r_adapter *a ) ; bool esas2r_is_adapter_present(struct esas2r_adapter *a ) ; void esas2r_reset_chip(struct esas2r_adapter *a ) ; bool esas2r_build_sg_list_sge(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) ; bool esas2r_build_sg_list_prd(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) ; void esas2r_targ_db_initialize(struct esas2r_adapter *a ) ; void esas2r_targ_db_remove_all(struct esas2r_adapter *a , bool notify ) ; void esas2r_targ_db_report_changes(struct esas2r_adapter *a ) ; bool esas2r_set_degraded_mode(struct esas2r_adapter *a , char *error_str ) ; __inline static void esas2r_rq_free_sg_lists___1(struct esas2r_request *rq , struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; { { tmp = list_empty((struct list_head const *)(& rq->sg_table_head)); } if (tmp != 0) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___1(& a->sg_list_lock); list_splice_tail_init(& rq->sg_table_head, & a->free_sg_list_head); ldv_spin_unlock_irqrestore_99(& a->sg_list_lock, flags); } return; } } __inline static void esas2r_rq_destroy_request___0(struct esas2r_request *rq , struct esas2r_adapter *a ) { { { esas2r_rq_free_sg_lists___1(rq, a); *(a->req_table + (unsigned long )((unsigned short )(rq->vrq)->scsi.handle)) = (struct esas2r_request *)0; rq->__annonCompField102.data_buf = (void *)0; } return; } } __inline static bool esas2r_is_tasklet_pending(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { tmp___4 = 1; } else { { tmp___0 = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { tmp___4 = 1; } else { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { tmp___4 = 1; } else { { tmp___2 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 != 0) { tmp___4 = 1; } else { { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& a->flags)); } if (tmp___3 != 0) { tmp___4 = 1; } else { tmp___4 = 0; } } } } } return ((bool )tmp___4); } } __inline static void esas2r_disable_chip_interrupts___0(struct esas2r_adapter *a ) { int tmp ; { { tmp = atomic_add_return(1, & a->dis_ints_cnt); } if (tmp == 1) { { writel(0U, (void volatile *)a->regs + 66060U); } } else { } return; } } __inline static void esas2r_enable_chip_interrupts___0(struct esas2r_adapter *a ) { int tmp ; { { tmp = atomic_sub_return___0(1, & a->dis_ints_cnt); } if (tmp == 0) { { writel(4112U, (void volatile *)a->regs + 66060U); } } else { } return; } } __inline static void esas2r_schedule_tasklet(struct esas2r_adapter *a ) { int tmp ; { { tmp = test_and_set_bit(15L, (unsigned long volatile *)(& a->flags)); } if (tmp == 0) { { tasklet_hi_schedule(& a->tasklet); } } else { } return; } } __inline static void esas2r_start_ae_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; { { esas2r_build_ae_req(a, rq); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(& a->queue_lock); esas2r_start_vda_request(a, rq); ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return; } } struct bin_attribute bin_attr_fw ; struct bin_attribute bin_attr_fs ; struct bin_attribute bin_attr_vda ; struct bin_attribute bin_attr_hw ; struct bin_attribute bin_attr_live_nvram ; struct bin_attribute bin_attr_default_nvram ; static bool esas2r_initmem_alloc(struct esas2r_adapter *a , struct esas2r_mem_desc *mem_desc , u32 align ) { { { mem_desc->esas2r_param = mem_desc->size + align; mem_desc->virt_addr = (void *)0; mem_desc->phys_addr = 0ULL; mem_desc->esas2r_data = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )mem_desc->esas2r_param, & mem_desc->phys_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem_desc->esas2r_data == (unsigned long )((void *)0)) { { esas2r_log(1L, "failed to allocate %lu bytes of consistent memory!", (unsigned long )mem_desc->esas2r_param); } return (0); } else { } { mem_desc->virt_addr = (void *)((((unsigned long )mem_desc->esas2r_data + (unsigned long )align) - 1UL) & - ((unsigned long )align)); mem_desc->phys_addr = ((mem_desc->phys_addr + (unsigned long long )align) - 1ULL) & - ((unsigned long long )align); __memset(mem_desc->virt_addr, 0, (size_t )mem_desc->size); } return (1); } } static void esas2r_initmem_free(struct esas2r_adapter *a , struct esas2r_mem_desc *mem_desc ) { int unalign ; { if ((unsigned long )mem_desc->virt_addr == (unsigned long )((void *)0)) { return; } else { } if (mem_desc->phys_addr != 0ULL) { { unalign = (int )((unsigned int )((long )mem_desc->virt_addr) - (unsigned int )((long )mem_desc->esas2r_data)); dma_free_attrs(& (a->pcid)->dev, (unsigned long )mem_desc->esas2r_param, mem_desc->esas2r_data, mem_desc->phys_addr - (u64 )unalign, (struct dma_attrs *)0); } } else { { kfree((void const *)mem_desc->esas2r_data); } } mem_desc->virt_addr = (void *)0; return; } } static bool alloc_vda_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_mem_desc *memdesc ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = kzalloc(56UL, 208U); memdesc = (struct esas2r_mem_desc *)tmp; } if ((unsigned long )memdesc == (unsigned long )((struct esas2r_mem_desc *)0)) { return (0); } else { } { memdesc->size = 1280U; tmp___0 = esas2r_initmem_alloc(a, memdesc, 256U); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { kfree((void const *)memdesc); } return (0); } else { } { a->num_vrqs = a->num_vrqs + 1; list_add(& memdesc->next_desc, & a->vrq_mds_head); rq->vrq_md = memdesc; rq->vrq = (union atto_vda_req *)memdesc->virt_addr; (rq->vrq)->scsi.handle = (u32 )a->num_vrqs; } return (1); } } static void esas2r_unmap_regions(struct esas2r_adapter *a ) { { if ((unsigned long )a->regs != (unsigned long )((unsigned char *)0U)) { { ldv_iounmap_102((void volatile *)a->regs); } } else { } { a->regs = (unsigned char *)0U; pci_release_region(a->pcid, 2); } if ((unsigned long )a->data_window != (unsigned long )((unsigned char *)0U)) { { ldv_iounmap_103((void volatile *)a->data_window); } } else { } { a->data_window = (unsigned char *)0U; pci_release_region(a->pcid, 0); } return; } } static int esas2r_map_regions(struct esas2r_adapter *a ) { int error ; void *tmp ; void *tmp___0 ; { { a->regs = (unsigned char *)0U; a->data_window = (unsigned char *)0U; error = pci_request_region(a->pcid, 2, (char const *)(& a->name)); } if (error != 0) { { esas2r_log(1L, "pci_request_region(2) failed, error %d", error); } return (error); } else { } { tmp = ioremap((a->pcid)->resource[2].start, (a->pcid)->resource[2].start != 0ULL || (a->pcid)->resource[2].end != (a->pcid)->resource[2].start ? (unsigned long )(((a->pcid)->resource[2].end - (a->pcid)->resource[2].start) + 1ULL) : 0UL); a->regs = (unsigned char *)tmp; } if ((unsigned long )a->regs == (unsigned long )((unsigned char *)0U)) { { esas2r_log(1L, "ioremap failed for regs mem region\n"); pci_release_region(a->pcid, 2); } return (-14); } else { } { error = pci_request_region(a->pcid, 0, (char const *)(& a->name)); } if (error != 0) { { esas2r_log(1L, "pci_request_region(2) failed, error %d", error); esas2r_unmap_regions(a); } return (error); } else { } { tmp___0 = ioremap((a->pcid)->resource[0].start, (a->pcid)->resource[0].start != 0ULL || (a->pcid)->resource[0].end != (a->pcid)->resource[0].start ? (unsigned long )(((a->pcid)->resource[0].end - (a->pcid)->resource[0].start) + 1ULL) : 0UL); a->data_window = (unsigned char *)tmp___0; } if ((unsigned long )a->data_window == (unsigned long )((unsigned char *)0U)) { { esas2r_log(1L, "ioremap failed for data_window mem region\n"); esas2r_unmap_regions(a); } return (-14); } else { } return (0); } } static void esas2r_setup_interrupts(struct esas2r_adapter *a , int intr_mode ) { int i ; { { if (intr_mode == 0) { goto case_0; } else { } if (intr_mode == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; use_legacy_interrupts: a->intr_mode = 0; goto ldv_39930; case_1: /* CIL Label */ { i = pci_enable_msi_exact(a->pcid, 1); } if (i != 0) { { esas2r_log(2L, "failed to enable MSI for adapter %d, falling back to legacy interrupts (err=%d)", a->index, i); } goto use_legacy_interrupts; } else { } { a->intr_mode = 1; set_bit(12L, (unsigned long volatile *)(& a->flags2)); } goto ldv_39930; switch_default: /* CIL Label */ { esas2r_log(2L, "unknown interrupt_mode %d requested, falling back to legacy interrupt", interrupt_mode); } goto use_legacy_interrupts; switch_break: /* CIL Label */ ; } ldv_39930: ; return; } } static void esas2r_claim_interrupts(struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; { flags = 0UL; if (a->intr_mode == 0) { flags = flags | 128UL; } else { } { esas2r_log(3L, "esas2r_claim_interrupts irq=%d (%p, %s, %x)", (a->pcid)->irq, a, (char *)(& a->name), flags); tmp = ldv_request_irq_104((a->pcid)->irq, a->intr_mode == 0 ? & esas2r_interrupt : & esas2r_msi_interrupt, flags, (char const *)(& a->name), (void *)a); } if (tmp != 0) { { esas2r_log(1L, "unable to request IRQ %02X", (a->pcid)->irq); } return; } else { } { set_bit(11L, (unsigned long volatile *)(& a->flags2)); esas2r_log(3L, "claimed IRQ %d flags: 0x%lx", (a->pcid)->irq, flags); } return; } } int esas2r_init_adapter(struct Scsi_Host *host , struct pci_dev *pcid , int index ) { struct esas2r_adapter *a ; u64 bus_addr ; int i ; void *next_uncached ; struct esas2r_request *first_request ; struct esas2r_request *last_request ; uint64_t required_mask ; u64 tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; char const *__lock_name ; struct workqueue_struct *tmp___6 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; struct lock_class_key __key___6 ; bool tmp___7 ; int tmp___8 ; int tmp___9 ; u32 tmp___10 ; void *tmp___11 ; bool tmp___12 ; int tmp___13 ; bool tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; { bus_addr = 0ULL; if (index > 31) { { esas2r_log(1L, "tried to init invalid adapter index %u!", index); } return (0); } else { } if ((unsigned long )esas2r_adapters[index] != (unsigned long )((struct esas2r_adapter *)0)) { { esas2r_log(1L, "tried to init existing adapter index %u!", index); } return (0); } else { } { a = (struct esas2r_adapter *)(& host->hostdata); __memset((void *)a, 0, 559640UL); a->pcid = pcid; a->host = host; tmp = dma_get_required_mask(& pcid->dev); required_mask = tmp; } if (required_mask > 4294967295ULL) { { tmp___2 = pci_set_dma_mask(pcid, 0xffffffffffffffffULL); } if (tmp___2 == 0) { { tmp___3 = pci_set_consistent_dma_mask(pcid, 0xffffffffffffffffULL); } if (tmp___3 == 0) { { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "64-bit PCI addressing enabled\n"); } } else { goto _L___0; } } else { goto _L___0; } } else { _L___0: /* CIL Label */ { tmp___0 = pci_set_dma_mask(pcid, 4294967295ULL); } if (tmp___0 == 0) { { tmp___1 = pci_set_consistent_dma_mask(pcid, 4294967295ULL); } if (tmp___1 == 0) { { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "32-bit PCI addressing enabled\n"); } } else { { esas2r_log(1L, "failed to set DMA mask"); esas2r_kill_adapter(index); } return (0); } } else { { esas2r_log(1L, "failed to set DMA mask"); esas2r_kill_adapter(index); } return (0); } } { esas2r_adapters[index] = a; sprintf((char *)(& a->name), "esas2r_%02d", index); spinlock_check(& a->request_lock); __raw_spin_lock_init(& a->request_lock.__annonCompField18.rlock, "&(&a->request_lock)->rlock", & __key); spinlock_check(& a->fw_event_lock); __raw_spin_lock_init(& a->fw_event_lock.__annonCompField18.rlock, "&(&a->fw_event_lock)->rlock", & __key___0); sema_init(& a->fm_api_semaphore, 1); sema_init(& a->fs_api_semaphore, 1); sema_init(& a->nvram_semaphore, 1); esas2r_fw_event_off(a); snprintf((char *)(& a->fw_event_q_name), 20UL, "esas2r/%d", a->index); __lock_name = "\"%s\"a->fw_event_q_name"; tmp___6 = __alloc_workqueue_key("%s", 131082U, 1, & __key___1, __lock_name, (char *)(& a->fw_event_q_name)); a->fw_event_q = tmp___6; __init_waitqueue_head(& a->buffered_ioctl_waiter, "&a->buffered_ioctl_waiter", & __key___2); __init_waitqueue_head(& a->nvram_waiter, "&a->nvram_waiter", & __key___3); __init_waitqueue_head(& a->fm_api_waiter, "&a->fm_api_waiter", & __key___4); __init_waitqueue_head(& a->fs_api_waiter, "&a->fs_api_waiter", & __key___5); __init_waitqueue_head(& a->vda_waiter, "&a->vda_waiter", & __key___6); INIT_LIST_HEAD(& a->general_req.req_list); INIT_LIST_HEAD(& a->active_list); INIT_LIST_HEAD(& a->defer_list); INIT_LIST_HEAD(& a->free_sg_list_head); INIT_LIST_HEAD(& a->avail_request); INIT_LIST_HEAD(& a->vrq_mds_head); INIT_LIST_HEAD(& a->fw_event_list); first_request = (struct esas2r_request *)a + 1U; last_request = first_request; i = 1; } goto ldv_39960; ldv_39959: { INIT_LIST_HEAD(& last_request->req_list); list_add_tail(& last_request->comp_list, & a->avail_request); tmp___7 = alloc_vda_req(a, last_request); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { { esas2r_log(1L, "failed to allocate a VDA request!"); esas2r_kill_adapter(index); } return (0); } else { } last_request = last_request + 1; i = i + 1; ldv_39960: ; if (i < num_requests) { goto ldv_39959; } else { } { tmp___9 = esas2r_map_regions(a); } if (tmp___9 != 0) { { esas2r_log(1L, "could not map PCI regions!"); esas2r_kill_adapter(index); } return (0); } else { } { a->index = (unsigned int )index; atomic_inc(& a->dis_ints_cnt); atomic_inc(& a->disable_cnt); set_bit(2L, (unsigned long volatile *)(& a->flags)); set_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(20L, (unsigned long volatile *)(& a->flags)); set_bit(24L, (unsigned long volatile *)(& a->flags)); a->init_msg = 1U; a->max_vdareq_size = 128U; a->build_sgl = & esas2r_build_sg_list_sge; esas2r_setup_interrupts(a, interrupt_mode); tmp___10 = esas2r_get_uncached_size(a); a->uncached_size = (int )tmp___10; tmp___11 = dma_alloc_attrs(& pcid->dev, (unsigned long )a->uncached_size, & bus_addr, 208U, (struct dma_attrs *)0); a->uncached = (u8 *)tmp___11; } if ((unsigned long )a->uncached == (unsigned long )((u8 *)0U)) { { esas2r_log(1L, "failed to allocate %d bytes of consistent memory!", a->uncached_size); esas2r_kill_adapter(index); } return (0); } else { } { a->uncached_phys = bus_addr; __memset((void *)a->uncached, 0, (size_t )a->uncached_size); next_uncached = (void *)a->uncached; tmp___12 = esas2r_init_adapter_struct(a, & next_uncached); } if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { { esas2r_log(1L, "failed to initialize adapter structure (2)!"); esas2r_kill_adapter(index); } return (0); } else { } { tasklet_init(& a->tasklet, & esas2r_adapter_tasklet, (unsigned long )a); esas2r_disable_chip_interrupts___0(a); esas2r_check_adapter(a); tmp___14 = esas2r_init_adapter_hw(a, 1); } if (tmp___14) { tmp___15 = 0; } else { tmp___15 = 1; } if (tmp___15) { { esas2r_log(1L, "failed to initialize hardware!"); } } else { } { esas2r_claim_interrupts(a); tmp___16 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___16 != 0) { { esas2r_enable_chip_interrupts___0(a); } } else { } { set_bit(8L, (unsigned long volatile *)(& a->flags2)); tmp___17 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___17 == 0) { { esas2r_kickoff_timer(a); } } else { } return (1); } } static void esas2r_adapter_power_down(struct esas2r_adapter *a , int power_management ) { struct esas2r_mem_desc *memdesc ; struct esas2r_mem_desc *next ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { { tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___0 != 0) { { tmp___1 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 == 0) { if (power_management == 0) { { ldv_del_timer_sync_105(& a->timer); tasklet_kill(& a->tasklet); } } else { } { esas2r_power_down(a); __ms = 500UL; } goto ldv_39970; ldv_39969: { __const_udelay(4295000UL); } ldv_39970: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39969; } else { } } else { } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fw)); a->sysfs_fw_created = 0U; } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fs)); a->sysfs_fs_created = 0U; } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_vda)); a->sysfs_vda_created = 0U; } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_hw)); a->sysfs_hw_created = 0U; } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_live_nvram)); a->sysfs_live_nvram_created = 0U; } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_default_nvram)); a->sysfs_default_nvram_created = 0U; } } else { } { tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___2 != 0) { { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "free_irq(%d) called", (a->pcid)->irq); ldv_free_irq_106((a->pcid)->irq, (void *)a); clear_bit(11L, (unsigned long volatile *)(& a->flags2)); } } else { } { tmp___3 = constant_test_bit(12L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___3 != 0) { { pci_disable_msi(a->pcid); clear_bit(12L, (unsigned long volatile *)(& a->flags2)); } } else { } if ((unsigned long )a->inbound_list_md.virt_addr != (unsigned long )((void *)0)) { { esas2r_initmem_free(a, & a->inbound_list_md); } } else { } if ((unsigned long )a->outbound_list_md.virt_addr != (unsigned long )((void *)0)) { { esas2r_initmem_free(a, & a->outbound_list_md); } } else { } __mptr = (struct list_head const *)a->free_sg_list_head.next; memdesc = (struct esas2r_mem_desc *)__mptr; __mptr___0 = (struct list_head const *)memdesc->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___0; goto ldv_39979; ldv_39978: { esas2r_initmem_free(a, memdesc); memdesc = next; __mptr___1 = (struct list_head const *)next->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___1; } ldv_39979: ; if ((unsigned long )(& memdesc->next_desc) != (unsigned long )(& a->free_sg_list_head)) { goto ldv_39978; } else { } __mptr___2 = (struct list_head const *)a->vrq_mds_head.next; memdesc = (struct esas2r_mem_desc *)__mptr___2; __mptr___3 = (struct list_head const *)memdesc->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___3; goto ldv_39988; ldv_39987: { esas2r_initmem_free(a, memdesc); list_del(& memdesc->next_desc); kfree((void const *)memdesc); memdesc = next; __mptr___4 = (struct list_head const *)next->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___4; } ldv_39988: ; if ((unsigned long )(& memdesc->next_desc) != (unsigned long )(& a->vrq_mds_head)) { goto ldv_39987; } else { } { kfree((void const *)a->first_ae_req); a->first_ae_req = (struct esas2r_request *)0; kfree((void const *)a->sg_list_mds); a->sg_list_mds = (struct esas2r_mem_desc *)0; kfree((void const *)a->req_table); a->req_table = (struct esas2r_request **)0; } if ((unsigned long )a->regs != (unsigned long )((unsigned char *)0U)) { { esas2r_unmap_regions(a); a->regs = (unsigned char *)0U; a->data_window = (unsigned char *)0U; } } else { } return; } } void esas2r_kill_adapter(int i ) { struct esas2r_adapter *a ; unsigned long flags ; struct workqueue_struct *wq ; int tmp ; { a = esas2r_adapters[i]; if ((unsigned long )a != (unsigned long )((struct esas2r_adapter *)0)) { { esas2r_fw_event_off(a); esas2r_adapter_power_down(a, 0); } if ((unsigned long )esas2r_buffered_ioctl != (unsigned long )((u8 *)0U) && (unsigned long )a->pcid == (unsigned long )esas2r_buffered_ioctl_pcid) { { dma_free_attrs(& (a->pcid)->dev, (unsigned long )esas2r_buffered_ioctl_size, (void *)esas2r_buffered_ioctl, esas2r_buffered_ioctl_addr, (struct dma_attrs *)0); esas2r_buffered_ioctl = (u8 *)0U; } } else { } if ((unsigned long )a->vda_buffer != (unsigned long )((u8 *)0U)) { { dma_free_attrs(& (a->pcid)->dev, 262416UL, (void *)a->vda_buffer, a->ppvda_buffer, (struct dma_attrs *)0); a->vda_buffer = (u8 *)0U; } } else { } if ((unsigned long )a->fs_api_buffer != (unsigned long )((u8 *)0U)) { { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->fs_api_buffer_size, (void *)a->fs_api_buffer, a->ppfs_api_buffer, (struct dma_attrs *)0); a->fs_api_buffer = (u8 *)0U; } } else { } { kfree((void const *)a->local_atto_ioctl); a->local_atto_ioctl = (struct atto_ioctl *)0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(& a->fw_event_lock); wq = a->fw_event_q; a->fw_event_q = (struct workqueue_struct *)0; ldv_spin_unlock_irqrestore_108(& a->fw_event_lock, flags); } if ((unsigned long )wq != (unsigned long )((struct workqueue_struct *)0)) { { destroy_workqueue(wq); } } else { } if ((unsigned long )a->uncached != (unsigned long )((u8 *)0U)) { { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->uncached_size, (void *)a->uncached, a->uncached_phys, (struct dma_attrs *)0); a->uncached = (u8 *)0U; } } else { } { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "pci_disable_device() called. msix_enabled: %d msi_enabled: %d irq: %d pin: %d", (int )(a->pcid)->msix_enabled, (int )(a->pcid)->msi_enabled, (a->pcid)->irq, (int )(a->pcid)->pin); esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "before pci_disable_device() enable_cnt: %d", (a->pcid)->enable_cnt.counter); pci_disable_device(a->pcid); esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "after pci_disable_device() enable_cnt: %d", (a->pcid)->enable_cnt.counter); esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "pci_set_drv_data(%p, NULL) called", a->pcid); pci_set_drvdata(a->pcid, (void *)0); esas2r_adapters[i] = (struct esas2r_adapter *)0; tmp = constant_test_bit(8L, (unsigned long const volatile *)(& a->flags2)); } if (tmp != 0) { { clear_bit(8L, (unsigned long volatile *)(& a->flags2)); set_bit(13L, (unsigned long volatile *)(& a->flags)); esas2r_log_dev(3L, (struct device const *)(& (a->host)->shost_gendev), "scsi_remove_host() called"); ldv_scsi_remove_host_109(a->host); esas2r_log_dev(3L, (struct device const *)(& (a->host)->shost_gendev), "scsi_host_put() called"); scsi_host_put(a->host); } } else { } } else { } return; } } int esas2r_cleanup(struct Scsi_Host *host ) { struct esas2r_adapter *a ; int index ; int i ; { if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { i = 0; goto ldv_40003; ldv_40002: { esas2r_kill_adapter(i); i = i + 1; } ldv_40003: ; if (i <= 31) { goto ldv_40002; } else { } return (-1); } else { } { a = (struct esas2r_adapter *)(& host->hostdata); index = (int )a->index; esas2r_kill_adapter(index); } return (index); } } int esas2r_suspend(struct pci_dev *pdev , pm_message_t state ) { struct Scsi_Host *host ; void *tmp ; u32 device_state ; struct esas2r_adapter *a ; pci_power_t tmp___0 ; { { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; a = (struct esas2r_adapter *)(& host->hostdata); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "suspending adapter()"); } if ((unsigned long )a == (unsigned long )((struct esas2r_adapter *)0)) { return (-19); } else { } { esas2r_adapter_power_down(a, 1); tmp___0 = pci_choose_state(pdev, state); device_state = (u32 )tmp___0; esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_save_state() called"); pci_save_state(pdev); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_disable_device() called"); pci_disable_device(pdev); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_set_power_state() called"); pci_set_power_state(pdev, (pci_power_t )device_state); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "esas2r_suspend(): 0"); } return (0); } } int esas2r_resume(struct pci_dev *pdev ) { struct Scsi_Host *host ; void *tmp ; struct esas2r_adapter *a ; int rez ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; a = (struct esas2r_adapter *)(& host->hostdata); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "resuming adapter()"); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_set_power_state(PCI_D0) called"); pci_set_power_state(pdev, 0); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_enable_wake(PCI_D0, 0) called"); pci_enable_wake(pdev, 0, 0); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_restore_state() called"); pci_restore_state(pdev); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_enable_device() called"); rez = pci_enable_device(pdev); pci_set_master(pdev); } if ((unsigned long )a == (unsigned long )((struct esas2r_adapter *)0)) { rez = -19; goto error_exit; } else { } { tmp___0 = esas2r_map_regions(a); } if (tmp___0 != 0) { { esas2r_log(1L, "could not re-map PCI regions!"); rez = -12; } goto error_exit; } else { } { esas2r_setup_interrupts(a, a->intr_mode); esas2r_disable_chip_interrupts___0(a); tmp___1 = esas2r_power_up(a, 1); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { rez = -12; goto error_exit; } else { } { esas2r_claim_interrupts(a); tmp___3 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___3 != 0) { { esas2r_enable_chip_interrupts___0(a); esas2r_kickoff_timer(a); } } else { { esas2r_log(1L, "could not re-claim IRQ!"); rez = -12; } goto error_exit; } error_exit: { esas2r_log_dev(1L, (struct device const *)(& pdev->dev), "esas2r_resume(): %d", rez); } return (rez); } } bool esas2r_set_degraded_mode(struct esas2r_adapter *a , char *error_str ) { { { set_bit(13L, (unsigned long volatile *)(& a->flags)); esas2r_log(1L, "setting adapter to degraded mode: %s\n", error_str); } return (0); } } u32 esas2r_get_uncached_size(struct esas2r_adapter *a ) { { return ((((u32 )(num_sg_lists * (int )((unsigned short )sgl_page_size)) + (((u32 )((unsigned long )((num_requests + num_ae_requests) + 3)) * 16U + 7U) & 4294967288U)) + (((u32 )((unsigned long )((num_requests + num_ae_requests) + 3)) * 16U + 7U) & 4294967288U)) + 1040U); } } static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a ) { int pcie_cap_reg ; u16 devcontrol ; { { pcie_cap_reg = pci_find_capability(a->pcid, 16); } if (pcie_cap_reg != 0) { { pci_read_config_word((struct pci_dev const *)a->pcid, pcie_cap_reg + 8, & devcontrol); } if (((int )devcontrol & 28672) > 8192) { { esas2r_log(3L, "max read request size > 512B"); devcontrol = (unsigned int )devcontrol & 36863U; devcontrol = (u16 )((unsigned int )devcontrol | 8192U); pci_write_config_word((struct pci_dev const *)a->pcid, pcie_cap_reg + 8, (int )devcontrol); } } else { } } else { } return; } } bool esas2r_init_adapter_struct(struct esas2r_adapter *a , void **uncached_area ) { u32 i ; u8 *high ; struct esas2r_inbound_list_source_entry *element ; struct esas2r_request *rq ; struct esas2r_mem_desc *sgl ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; bool tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; bool tmp___7 ; int tmp___8 ; bool tmp___9 ; int tmp___10 ; int tmp___11 ; bool tmp___12 ; int tmp___13 ; int tmp___14 ; { { spinlock_check(& a->sg_list_lock); __raw_spin_lock_init(& a->sg_list_lock.__annonCompField18.rlock, "&(&a->sg_list_lock)->rlock", & __key); spinlock_check(& a->mem_lock); __raw_spin_lock_init(& a->mem_lock.__annonCompField18.rlock, "&(&a->mem_lock)->rlock", & __key___0); spinlock_check(& a->queue_lock); __raw_spin_lock_init(& a->queue_lock.__annonCompField18.rlock, "&(&a->queue_lock)->rlock", & __key___1); a->targetdb_end = (struct esas2r_target *)(& a->targetdb) + 256UL; tmp = alloc_vda_req(a, & a->general_req); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } { tmp___1 = kzalloc((unsigned long )num_ae_requests * 176UL, 208U); a->first_ae_req = (struct esas2r_request *)tmp___1; } if ((unsigned long )a->first_ae_req == (unsigned long )((struct esas2r_request *)0)) { { esas2r_log(1L, "failed to allocate memory for asynchronous events"); } return (0); } else { } { tmp___2 = kzalloc((unsigned long )num_sg_lists * 56UL, 208U); a->sg_list_mds = (struct esas2r_mem_desc *)tmp___2; } if ((unsigned long )a->sg_list_mds == (unsigned long )((struct esas2r_mem_desc *)0)) { { esas2r_log(1L, "failed to allocate memory for s/g list descriptors"); } return (0); } else { } { tmp___3 = kzalloc((unsigned long )((num_requests + num_ae_requests) + 1) * 8UL, 208U); a->req_table = (struct esas2r_request **)tmp___3; } if ((unsigned long )a->req_table == (unsigned long )((struct esas2r_request **)0)) { { esas2r_log(1L, "failed to allocate memory for the request table"); } return (0); } else { } { esas2r_init_pci_cfg_space(a); } if ((unsigned int )(a->pcid)->subsystem_vendor == 4476U && ((int )(a->pcid)->subsystem_device & 16384) != 0) { a->flags2 = a->flags2 | 7L; } else { } { tmp___4 = constant_test_bit(7L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___4 != 0) { a->flags2 = a->flags2; } else { } if ((unsigned int )(a->pcid)->subsystem_device == 16488U) { a->flags2 = a->flags2 | 6L; } else { } high = (u8 *)*uncached_area; i = 0U; sgl = a->sg_list_mds; goto ldv_40045; ldv_40044: { sgl->size = (u32 )sgl_page_size; list_add_tail(& sgl->next_desc, & a->free_sg_list_head); tmp___5 = esas2r_initmem_alloc(a, sgl, 16U); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { if (i <= 7U) { return (0); } else { } goto ldv_40043; } else { } i = i + 1U; sgl = sgl + 1; ldv_40045: ; if (i < (u32 )num_sg_lists) { goto ldv_40044; } else { } ldv_40043: { a->list_size = (u32 )(num_requests + 2); a->inbound_list_md.size = a->list_size * 16U; tmp___7 = esas2r_initmem_alloc(a, & a->inbound_list_md, 16U); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { return (0); } else { } { a->outbound_list_md.size = a->list_size * 16U; tmp___9 = esas2r_initmem_alloc(a, & a->outbound_list_md, 16U); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { return (0); } else { } { a->nvram = (struct esas2r_sas_nvram *)high; high = high + 256UL; a->disc_buffer = high; high = high + 512UL; high = (u8 *)(((unsigned long )high + 7UL) & 0xfffffffffffffff8UL); a->outbound_copy = (u32 volatile *)high; high = high + 4UL; tmp___11 = constant_test_bit(12L, (unsigned long const volatile *)(& a->flags)); } if (tmp___11 == 0) { { esas2r_nvram_set_defaults(a); } } else { } { *uncached_area = (void *)high; tmp___14 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___14 != 0) { { __memset((void *)a->req_table, 0, (unsigned long )((num_requests + num_ae_requests) + 1) * 8UL); esas2r_targ_db_initialize(a); element = (struct esas2r_inbound_list_source_entry *)a->inbound_list_md.virt_addr; i = 0U; } goto ldv_40047; ldv_40046: element->address = 0ULL; element->reserved = 0U; element->length = 256U; element = element + 1; i = i + 1U; ldv_40047: ; if (i < a->list_size) { goto ldv_40046; } else { } rq = a->first_ae_req; i = 0U; goto ldv_40050; ldv_40049: { INIT_LIST_HEAD(& rq->req_list); tmp___12 = alloc_vda_req(a, rq); } if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { return (0); } else { } { esas2r_rq_init_request(rq, a); rq->comp_cb = & esas2r_ae_complete; rq = rq + 1; i = i + 1U; } ldv_40050: ; if (i < (u32 )num_ae_requests) { goto ldv_40049; } else { } } else { } return (1); } } bool esas2r_check_adapter(struct esas2r_adapter *a ) { u32 starttime ; u32 doorbell ; u64 ppaddr ; u32 dw ; int tmp ; bool tmp___0 ; unsigned int tmp___1 ; u32 ver ; bool tmp___2 ; unsigned long tmp___3 ; bool tmp___4 ; unsigned int tmp___5 ; unsigned long tmp___6 ; unsigned int tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; unsigned long tmp___10 ; bool tmp___11 ; unsigned int tmp___12 ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { goto skip_chip_reset; } else { } { writel(0U, (void volatile *)a->regs + 66060U); readl((void const volatile *)a->regs + 66060U); starttime = jiffies_to_msecs(jiffies); } ldv_40062: { esas2r_force_interrupt(a); doorbell = readl((void const volatile *)a->regs + 66688U); } if (doorbell == 4294967295U) { { tmp___1 = jiffies_to_msecs(jiffies); } if (tmp___1 - starttime > 2000U) { { tmp___0 = esas2r_set_degraded_mode(a, (char *)"unable to access registers"); } return (tmp___0); } else { } } else if ((doorbell & 128U) != 0U) { { ver = doorbell & 458752U; writel(doorbell, (void volatile *)a->regs + 66688U); } if (ver == 0U) { { set_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 128U; a->build_sgl = & esas2r_build_sg_list_sge; } } else if (ver == 65536U) { { clear_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 1024U; a->build_sgl = & esas2r_build_sg_list_prd; } } else { { tmp___2 = esas2r_set_degraded_mode(a, (char *)"unknown firmware version"); } return (tmp___2); } goto ldv_40061; } else { } { tmp___3 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___3); tmp___5 = jiffies_to_msecs(jiffies); } if (tmp___5 - starttime > 180000U) { { tmp___4 = esas2r_set_degraded_mode(a, (char *)"firmware start has timed out"); } return (tmp___4); } else { } goto ldv_40062; ldv_40061: { writel(16U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); } ldv_40064: { doorbell = readl((void const volatile *)a->regs + 66688U); } if ((doorbell & 16U) != 0U) { { writel(doorbell, (void volatile *)a->regs + 66688U); } goto ldv_40063; } else { } { tmp___6 = msecs_to_jiffies(50U); schedule_timeout_interruptible((long )tmp___6); tmp___7 = jiffies_to_msecs(jiffies); } if (tmp___7 - starttime > 3000U) { goto ldv_40063; } else { } goto ldv_40064; ldv_40063: ; skip_chip_reset: { dw = readl((void const volatile *)a->regs + 16428U); dw = dw & 4294967294U; writel(dw, (void volatile *)a->regs + 16428U); dw = readl((void const volatile *)a->regs + 16508U); dw = dw & 4294967294U; writel(dw, (void volatile *)a->regs + 16508U); ppaddr = a->inbound_list_md.phys_addr; writel((unsigned int )ppaddr, (void volatile *)a->regs + 16384U); writel((unsigned int )(ppaddr >> 32ULL), (void volatile *)a->regs + 16388U); ppaddr = a->outbound_list_md.phys_addr; writel((unsigned int )ppaddr, (void volatile *)a->regs + 16464U); writel((unsigned int )(ppaddr >> 32ULL), (void volatile *)a->regs + 16468U); ppaddr = a->uncached_phys + (unsigned long long )((long )a->outbound_copy - (long )a->uncached); writel((unsigned int )ppaddr, (void volatile *)a->regs + 16472U); writel((unsigned int )(ppaddr >> 32ULL), (void volatile *)a->regs + 16476U); tmp___9 = a->list_size - 1U; a->last_read = tmp___9; tmp___8 = tmp___9; a->last_write = tmp___8; *(a->outbound_copy) = tmp___8; set_bit(23L, (unsigned long volatile *)(& a->flags)); writel(a->last_write | 16384U, (void volatile *)a->regs + 16408U); writel(a->last_write | 16384U, (void volatile *)a->regs + 16492U); writel(a->last_write | 16384U, (void volatile *)a->regs + 16412U); writel(a->last_write | 16384U, (void volatile *)a->regs + 16488U); dw = readl((void const volatile *)a->regs + 16424U); dw = dw & 4294963440U; writel(dw | 512U, (void volatile *)a->regs + 16424U); dw = readl((void const volatile *)a->regs + 16504U); dw = dw & 4294963440U; writel(dw | 512U, (void volatile *)a->regs + 16504U); dw = readl((void const volatile *)a->regs + 16428U); dw = dw & 2147548943U; dw = (dw | (a->list_size << 16)) | 32800U; writel(dw, (void volatile *)a->regs + 16428U); dw = readl((void const volatile *)a->regs + 16508U); dw = dw & 2147548943U; dw = (dw | (a->list_size << 16)) | 32U; writel(dw, (void volatile *)a->regs + 16508U); writel(256U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); } ldv_40066: { doorbell = readl((void const volatile *)a->regs + 66688U); } if ((doorbell & 256U) != 0U) { { writel(doorbell, (void volatile *)a->regs + 66688U); } goto ldv_40065; } else { } { tmp___10 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___10); tmp___12 = jiffies_to_msecs(jiffies); } if (tmp___12 - starttime > 3000U) { { tmp___11 = esas2r_set_degraded_mode(a, (char *)"timeout waiting for communication list init"); } return (tmp___11); } else { } goto ldv_40066; ldv_40065: { doorbell = readl((void const volatile *)a->regs + 66660U); } if ((doorbell & 512U) != 0U) { { set_bit(5L, (unsigned long volatile *)(& a->flags2)); } } else { { clear_bit(5L, (unsigned long volatile *)(& a->flags2)); } } { writel(1U, (void volatile *)a->regs + 16524U); writel(16253951U, (void volatile *)a->regs + 66692U); } return (1); } } static bool esas2r_format_init_msg(struct esas2r_adapter *a , struct esas2r_request *rq ) { u32 msg ; struct atto_vda_cfg_init *ci ; struct timeval now ; u32 major ; u32 minor ; u16 fw_release ; int tmp ; __u32 tmp___0 ; { msg = (u32 )a->init_msg; a->init_msg = 0U; { if (msg == 1U) { goto case_1; } else { } if (msg == 4U) { goto case_4; } else { } if (msg == 2U) { goto case_2; } else { } if (msg == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_4: /* CIL Label */ { do_gettimeofday(& now); esas2r_build_cfg_req(a, rq, 0, 0U, (void *)0); ci = & (rq->vrq)->cfg.data.init; ci->sgl_page_size = (unsigned int )sgl_page_size; ci->epoch_time = (unsigned int )now.tv_sec; rq->flags = (u8 )((unsigned int )rq->flags | 8U); a->init_msg = 2U; } goto ldv_40076; case_2: /* CIL Label */ ; if ((unsigned int )rq->req_stat == 0U) { a->fw_version = (u32 )rq->func_rsp.cfg_rsp.vda_version; a->fw_build = rq->func_rsp.cfg_rsp.fw_build; fw_release = rq->func_rsp.cfg_rsp.fw_release; major = (u32 )((unsigned char )fw_release); minor = (u32 )((unsigned char )((int )fw_release >> 8)); a->fw_version = a->fw_version + ((major << 16) + (minor << 24)); } else { } { tmp = constant_test_bit(7L, (unsigned long const volatile *)(& a->flags2)); } if (tmp != 0) { goto _L; } else { { tmp___0 = __fswab32(a->fw_version); } if (tmp___0 > 5392130U) { _L: /* CIL Label */ { esas2r_build_cfg_req(a, rq, 2, 112U, (void *)0); (rq->vrq)->cfg.sg_list_offset = 12U; (rq->vrq)->cfg.data.prde.ctl_len = 112U; (rq->vrq)->cfg.data.prde.address = (rq->vrq_md)->phys_addr + 1024ULL; rq->flags = (u8 )((unsigned int )rq->flags | 8U); a->init_msg = 3U; } goto ldv_40076; } else { } } case_3: /* CIL Label */ ; if (msg == 3U) { ci = (struct atto_vda_cfg_init *)rq->__annonCompField102.data_buf; if ((unsigned int )rq->req_stat == 0U) { a->num_targets_backend = ci->num_targets_backend; a->ioctl_tunnel = ci->ioctl_tunnel; } else { } } else { } switch_default: /* CIL Label */ rq->req_stat = 0U; return (0); switch_break: /* CIL Label */ ; } ldv_40076: ; return (1); } } bool esas2r_init_msgs(struct esas2r_adapter *a ) { bool success ; struct esas2r_request *rq ; unsigned long flags ; bool tmp ; { { success = 1; rq = & a->general_req; esas2r_rq_init_request(rq, a); rq->comp_cb = & esas2r_dummy_complete; } if ((unsigned int )a->init_msg == 0U) { a->init_msg = 4U; } else { } goto ldv_40091; ldv_40093: { tmp = esas2r_format_init_msg(a, rq); } if ((int )tmp) { ldv_40090: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110___0(& a->queue_lock); esas2r_start_vda_request(a, rq); ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); esas2r_wait_request(a, rq); } if ((unsigned int )rq->req_stat != 254U) { goto ldv_40089; } else { } goto ldv_40090; ldv_40089: ; } else { } if ((unsigned int )rq->req_stat == 0U || (((int )rq->flags & 8) != 0 && (unsigned int )rq->req_stat != 5U)) { goto ldv_40091; } else { } { esas2r_log(1L, "init message %x failed (%x, %x)", (int )a->init_msg, (int )rq->req_stat, (int )rq->flags); a->init_msg = 1U; success = 0; } goto ldv_40092; ldv_40091: ; if ((unsigned int )a->init_msg != 0U) { goto ldv_40093; } else { } ldv_40092: { esas2r_rq_destroy_request___0(rq, a); } return (success); } } bool esas2r_init_adapter_hw(struct esas2r_adapter *a , bool init_poll ) { bool rslt ; struct esas2r_request *rq ; u32 i ; int tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u32 currtime ; u32 nexttick ; u32 deltatime ; int tmp___7 ; unsigned long tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; bool tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; { { rslt = 0; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { goto exit; } else { } { tmp___2 = constant_test_bit(12L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 == 0) { { tmp___0 = esas2r_nvram_read_direct(a); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { esas2r_log(2L, "invalid/missing NVRAM parameters"); } } else { } } else { } { tmp___3 = esas2r_init_msgs(a); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { esas2r_set_degraded_mode(a, (char *)"init messages failed"); } goto exit; } else { } { clear_bit(13L, (unsigned long volatile *)(& a->flags)); clear_bit(2L, (unsigned long volatile *)(& a->flags)); i = 0U; rq = a->first_ae_req; } goto ldv_40103; ldv_40102: { esas2r_start_ae_request(a, rq); i = i + 1U; rq = rq + 1; } ldv_40103: ; if (i < (u32 )num_ae_requests) { goto ldv_40102; } else { } if ((int )((signed char )a->flash_rev[0]) == 0) { { esas2r_read_flash_rev(a); } } else { } if ((int )((signed char )a->image_type[0]) == 0) { { esas2r_read_image_type(a); } } else { } if (a->fw_version == 0U) { a->fw_rev[0] = 0; } else { { sprintf((char *)(& a->fw_rev), "%1d.%02d", (int )((unsigned char )(a->fw_version >> 16)), (int )((unsigned char )((int )((unsigned short )(a->fw_version >> 16)) >> 8))); } } { tmp___5 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp___5 != 0) { { tmp___6 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___6 != 0) { { esas2r_enable_chip_interrupts___0(a); } return (1); } else { } } else { } { esas2r_disc_initialize(a); } if ((int )init_poll) { { currtime = a->disc_start_time; nexttick = 100U; set_bit(15L, (unsigned long volatile *)(& a->flags)); set_bit(25L, (unsigned long volatile *)(& a->flags)); tmp___7 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___7 != 0) { { atomic_dec(& a->disable_cnt); } } else { } goto ldv_40109; ldv_40108: { tmp___8 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___8); tmp___9 = jiffies_to_msecs(jiffies); deltatime = tmp___9 - currtime; currtime = currtime + deltatime; tmp___10 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___10 == 0) { { esas2r_disc_check_for_work(a); } } else { } if (nexttick <= deltatime) { { nexttick = nexttick + 100U; esas2r_timer_tick(a); } } else { } if (nexttick > deltatime) { nexttick = nexttick - deltatime; } else { } { tmp___11 = esas2r_is_tasklet_pending(a); } if ((int )tmp___11) { { esas2r_do_tasklet_tasks(a); } } else { } ldv_40109: { tmp___12 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp___12 != 0) { goto ldv_40108; } else { } { tmp___13 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___13 != 0) { { atomic_inc(& a->disable_cnt); } } else { } { clear_bit(25L, (unsigned long volatile *)(& a->flags)); clear_bit(15L, (unsigned long volatile *)(& a->flags)); } } else { } { esas2r_targ_db_report_changes(a); esas2r_disc_start_waiting(a); a->int_mask = 4112U; esas2r_enable_chip_interrupts___0(a); esas2r_enable_heartbeat(a); rslt = 1; } exit: { tmp___16 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp___16 != 0) { { tmp___17 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___17 != 0) { if (! rslt) { { clear_bit(2L, (unsigned long volatile *)(& a->flags)); } } else { } } else { goto _L; } } else { _L: /* CIL Label */ if (! rslt) { { clear_bit(2L, (unsigned long volatile *)(& a->flags)); clear_bit(14L, (unsigned long volatile *)(& a->flags)); } } else { } { tmp___15 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___15 != 0) { { clear_bit(20L, (unsigned long volatile *)(& a->flags)); tmp___14 = atomic_sub_return___0(1, & a->disable_cnt); } if (tmp___14 == 0) { { esas2r_do_deferred_processes(a); } } else { } } else { } } return (rslt); } } void esas2r_reset_adapter(struct esas2r_adapter *a ) { { { set_bit(9L, (unsigned long volatile *)(& a->flags)); esas2r_local_reset_adapter(a); esas2r_schedule_tasklet(a); } return; } } void esas2r_reset_chip(struct esas2r_adapter *a ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; { { tmp = esas2r_is_adapter_present(a); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { tmp___1 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___1 != 0) { { tmp___2 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___2 == 0) { { esas2r_read_mem_block(a, (void *)(& a->fw_coredump_buff), 4094164992U, 524288U); set_bit(4L, (unsigned long volatile *)(& a->flags2)); } } else { } } else { } { clear_bit(3L, (unsigned long volatile *)(& a->flags2)); } if ((unsigned int )(a->pcid)->revision == 178U) { { writel(2147483648U, (void volatile *)a->regs + 65840U); } } else { { writel(32U, (void volatile *)a->regs + 65800U); } } __ms = 10UL; goto ldv_40119; ldv_40118: { __const_udelay(4295000UL); } ldv_40119: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_40118; } else { } return; } } static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a ) { u32 starttime ; u32 doorbell ; unsigned long tmp ; unsigned int tmp___0 ; { { writel(512U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); } ldv_40127: { doorbell = readl((void const volatile *)a->regs + 66688U); } if ((doorbell & 512U) != 0U) { { writel(doorbell, (void volatile *)a->regs + 66688U); } goto ldv_40126; } else { } { tmp = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp); tmp___0 = jiffies_to_msecs(jiffies); } if (tmp___0 - starttime > 30000U) { goto ldv_40126; } else { } goto ldv_40127; ldv_40126: ; return; } } void esas2r_power_down(struct esas2r_adapter *a ) { u32 starttime ; u32 doorbell ; unsigned long tmp ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; { { set_bit(11L, (unsigned long volatile *)(& a->flags)); set_bit(21L, (unsigned long volatile *)(& a->flags)); tmp___2 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 == 0) { { esas2r_disable_chip_interrupts___0(a); esas2r_disable_heartbeat(a); writel(16U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); } ldv_40134: { doorbell = readl((void const volatile *)a->regs + 66688U); } if ((doorbell & 16U) != 0U) { { writel(doorbell, (void volatile *)a->regs + 66688U); } goto ldv_40133; } else { } { tmp = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp); tmp___0 = jiffies_to_msecs(jiffies); } if (tmp___0 - starttime > 3000U) { goto ldv_40133; } else { } goto ldv_40134; ldv_40133: { tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___1 != 0) { { esas2r_power_down_notify_firmware(a); } } else { } } else { } { set_bit(9L, (unsigned long volatile *)(& a->flags)); set_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(2L, (unsigned long volatile *)(& a->flags)); esas2r_process_adapter_reset(a); a->__annonCompField104.prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); esas2r_targ_db_remove_all(a, 0); } return; } } bool esas2r_power_up(struct esas2r_adapter *a , bool init_poll ) { bool ret ; bool tmp ; int tmp___0 ; { { clear_bit(21L, (unsigned long volatile *)(& a->flags)); esas2r_init_pci_cfg_space(a); set_bit(20L, (unsigned long volatile *)(& a->flags)); atomic_inc(& a->disable_cnt); ret = esas2r_check_adapter(a); tmp = esas2r_init_adapter_hw(a, (int )init_poll); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { ret = 0; } else { } { esas2r_send_reset_ae(a, 1); clear_bit(11L, (unsigned long volatile *)(& a->flags)); } return (ret); } } bool esas2r_is_adapter_present(struct esas2r_adapter *a ) { int tmp ; unsigned int tmp___0 ; { { tmp = constant_test_bit(18L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return (0); } else { } { tmp___0 = readl((void const volatile *)a->regs + 66688U); } if (tmp___0 == 4294967295U) { { set_bit(18L, (unsigned long volatile *)(& a->flags)); } return (0); } else { } return (1); } } char const *esas2r_get_model_name(struct esas2r_adapter *a ) { { { if ((int )(a->pcid)->subsystem_device == 73) { goto case_73; } else { } if ((int )(a->pcid)->subsystem_device == 74) { goto case_74; } else { } if ((int )(a->pcid)->subsystem_device == 75) { goto case_75; } else { } if ((int )(a->pcid)->subsystem_device == 76) { goto case_76; } else { } if ((int )(a->pcid)->subsystem_device == 77) { goto case_77; } else { } if ((int )(a->pcid)->subsystem_device == 78) { goto case_78; } else { } if ((int )(a->pcid)->subsystem_device == 16486) { goto case_16486; } else { } if ((int )(a->pcid)->subsystem_device == 16487) { goto case_16487; } else { } if ((int )(a->pcid)->subsystem_device == 16488) { goto case_16488; } else { } goto switch_break; case_73: /* CIL Label */ ; return ("ATTO ExpressSAS R680"); case_74: /* CIL Label */ ; return ("ATTO ExpressSAS R608"); case_75: /* CIL Label */ ; return ("ATTO ExpressSAS R60F"); case_76: /* CIL Label */ ; return ("ATTO ExpressSAS R6F0"); case_77: /* CIL Label */ ; return ("ATTO ExpressSAS R644"); case_78: /* CIL Label */ ; return ("ATTO ExpressSAS R648"); case_16486: /* CIL Label */ ; return ("ATTO ThunderStream SC 3808D"); case_16487: /* CIL Label */ ; return ("ATTO ThunderStream SC 3808E"); case_16488: /* CIL Label */ ; return ("ATTO ThunderLink SH 1068"); switch_break: /* CIL Label */ ; } return ("ATTO SAS Controller"); } } char const *esas2r_get_model_name_short(struct esas2r_adapter *a ) { { { if ((int )(a->pcid)->subsystem_device == 73) { goto case_73; } else { } if ((int )(a->pcid)->subsystem_device == 74) { goto case_74; } else { } if ((int )(a->pcid)->subsystem_device == 75) { goto case_75; } else { } if ((int )(a->pcid)->subsystem_device == 76) { goto case_76; } else { } if ((int )(a->pcid)->subsystem_device == 77) { goto case_77; } else { } if ((int )(a->pcid)->subsystem_device == 78) { goto case_78; } else { } if ((int )(a->pcid)->subsystem_device == 16486) { goto case_16486; } else { } if ((int )(a->pcid)->subsystem_device == 16487) { goto case_16487; } else { } if ((int )(a->pcid)->subsystem_device == 16488) { goto case_16488; } else { } goto switch_break; case_73: /* CIL Label */ ; return ("R680"); case_74: /* CIL Label */ ; return ("R608"); case_75: /* CIL Label */ ; return ("R60F"); case_76: /* CIL Label */ ; return ("R6F0"); case_77: /* CIL Label */ ; return ("R644"); case_78: /* CIL Label */ ; return ("R648"); case_16486: /* CIL Label */ ; return ("SC 3808D"); case_16487: /* CIL Label */ ; return ("SC 3808E"); case_16488: /* CIL Label */ ; return ("SH 1068"); switch_break: /* CIL Label */ ; } return ("unknown"); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_instance_deregister_12_1(struct timer_list *arg0 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; extern void ldv_free_irq(void * , int , void * ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; extern void ldv_scsi_remove_host(void * , struct Scsi_Host * ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_12_timer_list_timer_list ; { { ldv_12_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_12_1(ldv_12_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_instance_deregister_12_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_1 *)tmp; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_14_callback_handler)(int , void * ) ; void *ldv_14_data_data ; int ldv_14_line_line ; enum irqreturn (*ldv_14_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_line_line = (int )arg1; ldv_14_callback_handler = arg2; ldv_14_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_14_data_data = arg5; ldv_dispatch_irq_register_14_2(ldv_14_line_line, ldv_14_callback_handler, ldv_14_thread_thread, ldv_14_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___1(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_iounmap_102(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_103(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } __inline static int ldv_request_irq_104(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_105(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_106(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_108(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_fw_event_lock_of_esas2r_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv_scsi_remove_host_109(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_sub_return___1(int i , atomic_t *v ) { int tmp ; { { tmp = atomic_add_return(- i, v); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___1(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110___1(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112___0(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; extern void scsi_report_bus_reset(struct Scsi_Host * , int ) ; void esas2r_target_state_changed(struct esas2r_adapter *a , u16 targ_id , u8 state ) ; void esas2r_adapter_interrupt(struct esas2r_adapter *a ) ; void esas2r_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_complete_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_nuxi_ae_data(union atto_vda_ae *ae ) ; void esas2r_log_request_failure(struct esas2r_adapter *a , struct esas2r_request *rq ) ; bool esas2r_ioreq_aborted(struct esas2r_adapter *a , struct esas2r_request *rq , u8 status ) ; void esas2r_queue_fw_event(struct esas2r_adapter *a , enum fw_event_type type , void *data , int data_sz ) ; __inline static void esas2r_disable_chip_interrupts___1(struct esas2r_adapter *a ) { int tmp ; { { tmp = atomic_add_return(1, & a->dis_ints_cnt); } if (tmp == 1) { { writel(0U, (void volatile *)a->regs + 66060U); } } else { } return; } } __inline static void esas2r_enable_chip_interrupts___1(struct esas2r_adapter *a ) { int tmp ; { { tmp = atomic_sub_return___1(1, & a->dis_ints_cnt); } if (tmp == 0) { { writel(4112U, (void volatile *)a->regs + 66060U); } } else { } return; } } __inline static bool esas2r_adapter_interrupt_pending(struct esas2r_adapter *a ) { u32 intstat ; { if (a->int_mask == 0U) { return (0); } else { } { intstat = readl((void const volatile *)a->regs + 66048U); } if ((intstat & a->int_mask) == 0U) { return (0); } else { } { esas2r_disable_chip_interrupts___1(a); a->int_stat = intstat; a->int_mask = 0U; } return (1); } } __inline static void esas2r_start_ae_request___0(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; { { esas2r_build_ae_req(a, rq); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100___0(& a->queue_lock); esas2r_start_vda_request(a, rq); ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return; } } __inline static void esas2r_comp_list_drain(struct esas2r_adapter *a , struct list_head *comp_list ) { struct esas2r_request *rq ; struct list_head *element ; struct list_head *next ; struct list_head const *__mptr ; { element = comp_list->next; next = element->next; goto ldv_39902; ldv_39901: { __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr; list_del_init(element); esas2r_complete_request(a, rq); element = next; next = element->next; } ldv_39902: ; if ((unsigned long )element != (unsigned long )comp_list) { goto ldv_39901; } else { } return; } } static void esas2r_doorbell_interrupt(struct esas2r_adapter *a , u32 doorbell ) ; static void esas2r_get_outbound_responses(struct esas2r_adapter *a ) ; static void esas2r_process_bus_reset(struct esas2r_adapter *a ) ; void esas2r_polled_interrupt(struct esas2r_adapter *a ) { u32 intstat ; u32 doorbell ; int tmp ; { { esas2r_disable_chip_interrupts___1(a); intstat = readl((void const volatile *)a->regs + 66048U); } if ((intstat & 16U) != 0U) { { writel(1U, (void volatile *)a->regs + 16520U); readl((void const volatile *)a->regs + 16520U); esas2r_get_outbound_responses(a); } } else { } if ((intstat & 4096U) != 0U) { { doorbell = readl((void const volatile *)a->regs + 66688U); } if (doorbell != 0U) { { esas2r_doorbell_interrupt(a, doorbell); } } else { } } else { } { esas2r_enable_chip_interrupts___1(a); tmp = atomic_read((atomic_t const *)(& a->disable_cnt)); } if (tmp == 0) { { esas2r_do_deferred_processes(a); } } else { } return; } } irqreturn_t esas2r_interrupt(int irq , void *dev_id ) { struct esas2r_adapter *a ; bool tmp ; int tmp___0 ; { { a = (struct esas2r_adapter *)dev_id; tmp = esas2r_adapter_interrupt_pending(a); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } { set_bit(9L, (unsigned long volatile *)(& a->flags2)); esas2r_schedule_tasklet(a); } return (1); } } void esas2r_adapter_interrupt(struct esas2r_adapter *a ) { u32 doorbell ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = ldv__builtin_expect((a->int_stat & 16U) != 0U, 1L); } if (tmp != 0L) { { writel(1U, (void volatile *)a->regs + 16520U); readl((void const volatile *)a->regs + 16520U); esas2r_get_outbound_responses(a); } } else { } { tmp___0 = ldv__builtin_expect((a->int_stat & 4096U) != 0U, 0L); } if (tmp___0 != 0L) { { doorbell = readl((void const volatile *)a->regs + 66688U); } if (doorbell != 0U) { { esas2r_doorbell_interrupt(a, doorbell); } } else { } } else { } { a->int_mask = 4112U; esas2r_enable_chip_interrupts___1(a); tmp___1 = atomic_read((atomic_t const *)(& a->disable_cnt)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 1L); } if (tmp___2 != 0L) { { esas2r_do_deferred_processes(a); } } else { } return; } } irqreturn_t esas2r_msi_interrupt(int irq , void *dev_id ) { struct esas2r_adapter *a ; u32 intstat ; u32 doorbell ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { a = (struct esas2r_adapter *)dev_id; intstat = readl((void const volatile *)a->regs + 66048U); tmp = ldv__builtin_expect((intstat & 16U) != 0U, 1L); } if (tmp != 0L) { { writel(1U, (void volatile *)a->regs + 16520U); readl((void const volatile *)a->regs + 16520U); esas2r_get_outbound_responses(a); } } else { } { tmp___0 = ldv__builtin_expect((intstat & 4096U) != 0U, 0L); } if (tmp___0 != 0L) { { doorbell = readl((void const volatile *)a->regs + 66688U); } if (doorbell != 0U) { { esas2r_doorbell_interrupt(a, doorbell); } } else { } } else { } { esas2r_disable_chip_interrupts___1(a); esas2r_enable_chip_interrupts___1(a); tmp___1 = atomic_read((atomic_t const *)(& a->disable_cnt)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 1L); } if (tmp___2 != 0L) { { esas2r_do_deferred_processes(a); } } else { } { esas2r_do_tasklet_tasks(a); } return (1); } } static void esas2r_handle_outbound_rsp_err(struct esas2r_adapter *a , struct esas2r_request *rq , struct atto_vda_ob_rsp *rsp ) { u8 scsistatus ; long tmp ; { { tmp = ldv__builtin_expect((unsigned int )rq->req_stat != 0U, 0L); } if (tmp != 0L) { { __memcpy((void *)(& rq->func_rsp), (void const *)(& rsp->func_rsp), 8UL); } if ((unsigned int )rq->req_stat == 10U) { if (rq->timeout > 4294967293U) { rq->req_stat = 5U; } else { } } else if ((unsigned int )rq->req_stat == 8U) { scsistatus = rq->func_rsp.scsi_rsp.scsi_stat; if (((unsigned int )scsistatus == 0U || (unsigned int )scsistatus == 4U) || ((unsigned int )scsistatus == 16U || (unsigned int )scsistatus == 20U)) { rq->req_stat = 0U; rq->func_rsp.scsi_rsp.scsi_stat = 0U; } else { } } else { } } else { } return; } } static void esas2r_get_outbound_responses(struct esas2r_adapter *a ) { struct atto_vda_ob_rsp *rsp ; u32 rspput_ptr ; u32 rspget_ptr ; struct esas2r_request *rq ; u32 handle ; unsigned long flags ; struct list_head comp_list ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { { comp_list.next = & comp_list; comp_list.prev = & comp_list; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___1(& a->queue_lock); rspput_ptr = (unsigned int )*(a->outbound_copy) & 16383U; rspget_ptr = a->last_read; tmp = ldv__builtin_expect(rspget_ptr == rspput_ptr, 0L); } if (tmp != 0L) { { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return; } else { } { tmp___0 = ldv__builtin_expect(rspput_ptr >= a->list_size, 0L); } if (tmp___0 != 0L) { { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); esas2r_local_reset_adapter(a); } return; } else { } ldv_39955: rspget_ptr = rspget_ptr + 1U; if (rspget_ptr >= a->list_size) { rspget_ptr = 0U; } else { } { rsp = (struct atto_vda_ob_rsp *)a->outbound_list_md.virt_addr + (unsigned long )rspget_ptr; handle = rsp->handle; tmp___1 = ldv__builtin_expect((unsigned int )((unsigned short )handle) == 0U, 0L); } if (tmp___1 != 0L) { goto ldv_39954; } else { { tmp___2 = ldv__builtin_expect((int )((unsigned short )handle) > (num_requests + num_ae_requests) + 1, 0L); } if (tmp___2 != 0L) { goto ldv_39954; } else { } } { rq = *(a->req_table + (unsigned long )((unsigned short )handle)); tmp___3 = ldv__builtin_expect((unsigned long )rq == (unsigned long )((struct esas2r_request *)0), 0L); } if (tmp___3 != 0L) { goto ldv_39954; } else { { tmp___4 = ldv__builtin_expect((rq->vrq)->scsi.handle != handle, 0L); } if (tmp___4 != 0L) { goto ldv_39954; } else { } } { list_del(& rq->req_list); rq->req_stat = rsp->req_stat; tmp___5 = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 0U, 1L); } if (tmp___5 != 0L) { { esas2r_handle_outbound_rsp_err(a, rq, rsp); } } else { { __memcpy((void *)(& rq->func_rsp), (void const *)(& rsp->func_rsp), 8UL); } } { list_add_tail(& rq->comp_list, & comp_list); } ldv_39954: ; if (rspget_ptr != rspput_ptr) { goto ldv_39955; } else { } { a->last_read = rspget_ptr; ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); } return; } } void esas2r_do_deferred_processes(struct esas2r_adapter *a ) { int startreqs ; struct esas2r_request *rq ; unsigned long flags ; int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; struct list_head comp_list ; struct list_head *element ; struct list_head *next ; struct list_head const *__mptr ; int tmp___3 ; int tmp___4 ; { { startreqs = 2; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { startreqs = 0; } else { { tmp___1 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { startreqs = 0; } else { { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { startreqs = 1; } else { } } } { atomic_inc(& a->disable_cnt); tmp___2 = esas2r_is_tasklet_pending(a); } if ((int )tmp___2) { { esas2r_schedule_tasklet(a); startreqs = 0; } } else { } if (startreqs != 0) { { tmp___4 = list_empty((struct list_head const *)(& a->defer_list)); } if (tmp___4 == 0) { { comp_list.next = & comp_list; comp_list.prev = & comp_list; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106___0(& a->queue_lock); element = a->defer_list.next; next = element->next; } goto ldv_39970; ldv_39969: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned int )rq->req_stat != 254U) { { list_del(element); list_add_tail(& rq->comp_list, & comp_list); } } else if ((unsigned int )rq->req_type == 2U) { { list_del(element); esas2r_disc_local_start_request(a, rq); } } else if (startreqs == 2) { { list_del(element); esas2r_local_start_request(a, rq); tmp___3 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); } if (tmp___3 != 0) { goto ldv_39968; } else { } } else { } element = next; next = element->next; ldv_39970: ; if ((unsigned long )element != (unsigned long )(& a->defer_list)) { goto ldv_39969; } else { } ldv_39968: { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); } } else { } } else { } { atomic_dec(& a->disable_cnt); } return; } } void esas2r_process_adapter_reset(struct esas2r_adapter *a ) { struct esas2r_request *rq ; unsigned long flags ; struct esas2r_disc_context *dc ; struct list_head comp_list ; struct list_head *element ; u32 tmp ; u32 tmp___0 ; struct list_head const *__mptr ; bool tmp___1 ; { { rq = & a->general_req; comp_list.next = & comp_list; comp_list.prev = & comp_list; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108___0(& a->queue_lock); } if ((unsigned long )rq->interrupt_cx != (unsigned long )((void *)0)) { { dc = (struct esas2r_disc_context *)rq->interrupt_cx; dc->disc_evt = 0U; clear_bit(22L, (unsigned long volatile *)(& a->flags)); } } else { } { rq->interrupt_cx = (void *)0; rq->interrupt_cb = (void (*)(struct esas2r_adapter * , struct esas2r_request * ))0; rq->comp_cb = & esas2r_dummy_complete; tmp___0 = a->list_size - 1U; a->last_read = tmp___0; tmp = tmp___0; a->last_write = tmp; *(a->outbound_copy) = tmp; set_bit(23L, (unsigned long volatile *)(& a->flags)); element = a->defer_list.next; } goto ldv_39982; ldv_39981: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned int )rq->req_stat == 255U) { { tmp___1 = esas2r_ioreq_aborted(a, rq, 10); } if ((int )tmp___1) { { list_add_tail(& rq->comp_list, & comp_list); } } else { } } else { } element = element->next; ldv_39982: ; if ((unsigned long )element != (unsigned long )(& a->defer_list)) { goto ldv_39981; } else { } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); esas2r_process_bus_reset(a); } return; } } static void esas2r_process_bus_reset(struct esas2r_adapter *a ) { struct esas2r_request *rq ; struct list_head *element ; unsigned long flags ; struct list_head comp_list ; struct list_head const *__mptr ; bool tmp ; int tmp___0 ; { { comp_list.next = & comp_list; comp_list.prev = & comp_list; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110___1(& a->queue_lock); element = a->defer_list.next; } goto ldv_39994; ldv_39993: { __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; tmp = esas2r_ioreq_aborted(a, rq, 10); } if ((int )tmp) { { list_add_tail(& rq->comp_list, & comp_list); } } else { } element = element->next; ldv_39994: ; if ((unsigned long )element != (unsigned long )(& a->defer_list)) { goto ldv_39993; } else { } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); tmp___0 = atomic_read((atomic_t const *)(& a->disable_cnt)); } if (tmp___0 == 0) { { esas2r_do_deferred_processes(a); } } else { } { clear_bit(9L, (unsigned long volatile *)(& a->flags)); } return; } } static void esas2r_chip_rst_needed_during_tasklet(struct esas2r_adapter *a ) { bool alrdyrst ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; { { clear_bit(1L, (unsigned long volatile *)(& a->flags)); clear_bit(4L, (unsigned long volatile *)(& a->flags)); clear_bit(6L, (unsigned long volatile *)(& a->flags)); clear_bit(5L, (unsigned long volatile *)(& a->flags)); tmp___3 = esas2r_is_adapter_present(a); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4 || a->chip_uptime > 59999U) { { set_bit(13L, (unsigned long volatile *)(& a->flags)); set_bit(7L, (unsigned long volatile *)(& a->flags)); clear_bit(2L, (unsigned long volatile *)(& a->flags)); clear_bit(14L, (unsigned long volatile *)(& a->flags)); esas2r_disable_chip_interrupts___1(a); a->int_mask = 0U; esas2r_process_adapter_reset(a); esas2r_log(1L, "Adapter disabled because of hardware failure"); } } else { { tmp = test_and_set_bit(19L, (unsigned long volatile *)(& a->flags)); alrdyrst = tmp != 0; } if (! alrdyrst) { { esas2r_disable_chip_interrupts___1(a); } } else { } { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { { tmp___1 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 == 0) { if (! alrdyrst) { } else { { esas2r_reset_chip(a); } } } else { { esas2r_reset_chip(a); } } } else { { esas2r_reset_chip(a); } } { a->chip_uptime = a->chip_uptime + 20000U; a->chip_init_time = jiffies_to_msecs(jiffies); tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 == 0) { { esas2r_process_adapter_reset(a); } if (! alrdyrst) { { a->__annonCompField104.prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); esas2r_targ_db_remove_all(a, 0); } } else { } } else { } a->int_mask = 0U; } return; } } static void esas2r_handle_chip_rst_during_tasklet(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { goto ldv_40005; ldv_40004: { tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp == 0) { { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 == 0) { { esas2r_disable_chip_interrupts___1(a); } } else { } } else { } { esas2r_check_adapter(a); esas2r_init_adapter_hw(a, 0); tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { goto ldv_40003; } else { } { tmp___4 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); } if (tmp___4 != 0) { { tmp___2 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 != 0) { { esas2r_log(1L, "The firmware was reset during a normal power-up sequence"); } } else { { clear_bit(11L, (unsigned long volatile *)(& a->flags)); esas2r_send_reset_ae(a, 1); } } } else { { tmp___3 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); } if (tmp___3 != 0) { } else { { esas2r_send_reset_ae(a, 0); } } { esas2r_log(1L, "Recovering from a chip reset while the chip was online"); } } { clear_bit(19L, (unsigned long volatile *)(& a->flags)); esas2r_enable_chip_interrupts___1(a); clear_bit(3L, (unsigned long volatile *)(& a->flags)); } ldv_40005: { tmp___5 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp___5 != 0) { goto ldv_40004; } else { } ldv_40003: ; return; } } void esas2r_do_tasklet_tasks(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { goto _L; } else { { tmp___1 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { _L: /* CIL Label */ { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { { esas2r_chip_rst_needed_during_tasklet(a); } } else { } { esas2r_handle_chip_rst_during_tasklet(a); } } else { } } { tmp___3 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags)); } if (tmp___3 != 0) { { clear_bit(4L, (unsigned long volatile *)(& a->flags)); tmp___2 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 != 0) { { set_bit(6L, (unsigned long volatile *)(& a->flags)); } } else { { writel(2U, (void volatile *)a->regs + 66656U); } } } else { } { tmp___4 = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags)); } if (tmp___4 != 0) { { esas2r_process_bus_reset(a); esas2r_log_dev(2L, (struct device const *)(& (a->host)->shost_gendev), "scsi_report_bus_reset() called"); scsi_report_bus_reset(a->host, 0); clear_bit(6L, (unsigned long volatile *)(& a->flags)); clear_bit(5L, (unsigned long volatile *)(& a->flags)); esas2r_log(2L, "Bus reset complete"); } } else { } { tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& a->flags)); } if (tmp___5 != 0) { { clear_bit(0L, (unsigned long volatile *)(& a->flags)); esas2r_targ_db_report_changes(a); } } else { } { tmp___6 = atomic_read((atomic_t const *)(& a->disable_cnt)); } if (tmp___6 == 0) { { esas2r_do_deferred_processes(a); } } else { } return; } } static void esas2r_doorbell_interrupt(struct esas2r_adapter *a , u32 doorbell ) { { { writel(doorbell, (void volatile *)a->regs + 66688U); } if ((doorbell & 2U) != 0U) { { set_bit(6L, (unsigned long volatile *)(& a->flags)); } } else { } if ((doorbell & 128U) != 0U) { { clear_bit(16L, (unsigned long volatile *)(& a->flags)); } } else { } if ((doorbell & 15728640U) != 0U) { { esas2r_log(1L, "The firmware has panicked"); } } else { } if ((doorbell & 524288U) != 0U) { { set_bit(3L, (unsigned long volatile *)(& a->flags2)); esas2r_local_reset_adapter(a); } } else { } return; } } void esas2r_force_interrupt(struct esas2r_adapter *a ) { { { writel(65664U, (void volatile *)a->regs + 66656U); } return; } } static void esas2r_lun_event(struct esas2r_adapter *a , union atto_vda_ae *ae , u16 target , u32 length ) { struct esas2r_target *t ; u32 cplen ; unsigned long flags ; { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )target; cplen = length; if (cplen > 24U) { cplen = 24U; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112___0(& a->mem_lock); t->new_target_state = 255U; } if ((ae->lu.dwevent & 2U) != 0U) { t->new_target_state = 0U; } else { { if ((int )ae->lu.bystate == 1) { goto case_1; } else { } if ((int )ae->lu.bystate == 2) { goto case_2; } else { } if ((int )ae->lu.bystate == 6) { goto case_6; } else { } if ((int )ae->lu.bystate == 5) { goto case_5; } else { } if ((int )ae->lu.bystate == 3) { goto case_3; } else { } if ((int )ae->lu.bystate == 4) { goto case_4; } else { } goto switch_break; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_6: /* CIL Label */ ; case_5: /* CIL Label */ t->new_target_state = 0U; goto ldv_40029; case_3: /* CIL Label */ ; case_4: /* CIL Label */ t->new_target_state = 5U; goto ldv_40029; switch_break: /* CIL Label */ ; } ldv_40029: ; } if ((unsigned int )t->new_target_state != 255U) { { __memcpy((void *)(& t->lu_event), (void const *)(& ae->lu), (size_t )cplen); esas2r_disc_queue_event(a, 1); } } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return; } } void esas2r_ae_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) { union atto_vda_ae *ae ; u32 length ; union atto_vda_ae *last ; u16 target ; { ae = (union atto_vda_ae *)(& (rq->__annonCompField102.vda_rsp_data)->ae_data.event_data); length = rq->func_rsp.ae_rsp.length; last = (union atto_vda_ae *)(& (rq->__annonCompField102.vda_rsp_data)->ae_data.event_data) + (unsigned long )length; if (length > 256U || ((length & 3U) != 0U || length == 0U)) { { esas2r_log(2L, "The AE request response length (%p) is too long: %d", rq, length); last = ae; } } else { } goto ldv_40047; ldv_40046: length = (u32 )ae->hdr.bylength; if (length > (unsigned int )((long )last) - (unsigned int )((long )ae) || ((length & 3U) != 0U || length == 0U)) { { esas2r_log(1L, "the async event length is invalid (%p): %d", ae, length); } goto ldv_40040; } else { } { esas2r_nuxi_ae_data(ae); esas2r_queue_fw_event(a, 4, (void *)ae, 128); } { if ((int )ae->hdr.bytype == 1) { goto case_1; } else { } if ((int )ae->hdr.bytype == 2) { goto case_2; } else { } if ((int )ae->hdr.bytype == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((ae->raid.dwflags & 27U) != 0U) { { esas2r_log(3L, "RAID event received - name:%s rebuild_state:%d group_state:%d", (char *)(& ae->raid.acname), (int )ae->raid.byrebuild_state, (int )ae->raid.bygroup_state); } } else { } goto ldv_40042; case_2: /* CIL Label */ { esas2r_log(3L, "LUN event received: event:%d target_id:%d LUN:%d state:%d", ae->lu.dwevent, (int )ae->lu.id.tgtlun.wtarget_id, (int )ae->lu.id.tgtlun.bylun, (int )ae->lu.bystate); target = ae->lu.id.tgtlun.wtarget_id; } if ((unsigned int )target <= 255U) { { esas2r_lun_event(a, ae, (int )target, length); } } else { } goto ldv_40042; case_3: /* CIL Label */ { esas2r_log(3L, "Disk event received"); } goto ldv_40042; switch_default: /* CIL Label */ ; goto ldv_40042; switch_break: /* CIL Label */ ; } ldv_40042: ae = ae + (unsigned long )length; ldv_40047: ; if ((unsigned long )ae < (unsigned long )last) { goto ldv_40046; } else { } ldv_40040: { esas2r_start_ae_request___0(a, rq); } return; } } void esas2r_send_reset_ae(struct esas2r_adapter *a , bool pwr_mgt ) { struct atto_vda_ae_hdr ae ; { if ((int )pwr_mgt) { ae.bytype = 13U; } else { ae.bytype = 4U; } { ae.byversion = 0U; ae.byflags = 0U; ae.bylength = 4U; esas2r_queue_fw_event(a, 4, (void *)(& ae), 128); } return; } } void esas2r_dummy_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) { { return; } } static void esas2r_check_req_rsp_sense(struct esas2r_adapter *a , struct esas2r_request *rq ) { u8 snslen ; u8 snslen2 ; u8 *s ; { snslen2 = rq->func_rsp.scsi_rsp.sense_len; snslen = snslen2; if ((int )snslen > (int )rq->sense_len) { snslen = rq->sense_len; } else { } if ((unsigned int )snslen != 0U) { if ((unsigned long )rq->sense_buf != (unsigned long )((u8 *)0U)) { { __memcpy((void *)rq->sense_buf, (void const *)rq->__annonCompField102.data_buf, (size_t )snslen); } } else { rq->sense_buf = (u8 *)rq->__annonCompField102.data_buf; } if ((unsigned int )snslen2 > 12U) { s = (u8 *)rq->__annonCompField102.data_buf; if ((unsigned int )*(s + 12UL) == 63U && (unsigned int )*(s + 13UL) == 14U) { { esas2r_target_state_changed(a, (int )rq->target_id, 6); } } else { } } else { } } else { } rq->sense_len = snslen; return; } } void esas2r_complete_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { long tmp ; long tmp___0 ; { if ((unsigned int )(rq->vrq)->scsi.function == 1U && (unsigned int )(rq->vrq)->flash.sub_func == 3U) { { clear_bit(10L, (unsigned long volatile *)(& a->flags)); } } else { } if ((unsigned long )rq->interrupt_cb != (unsigned long )((void (*)(struct esas2r_adapter * , struct esas2r_request * ))0)) { { (*(rq->interrupt_cb))(a, rq); } if ((unsigned int )rq->req_stat == 254U) { { esas2r_start_request(a, rq); } return; } else { } } else { } { tmp = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 0U, 1L); } if (tmp != 0L) { { tmp___0 = ldv__builtin_expect((unsigned int )rq->req_stat != 0U, 0L); } if (tmp___0 != 0L) { { esas2r_check_req_rsp_sense(a, rq); esas2r_log_request_failure(a, rq); } } else { } } else { } { (*(rq->comp_cb))(a, rq); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___1(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110___1(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___2(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104___0(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; bool esas2r_send_task_mgmt(struct esas2r_adapter *a , struct esas2r_request *rqaux , u8 task_mgt_func ) ; void esas2r_reset_bus(struct esas2r_adapter *a ) ; __inline static struct esas2r_mem_desc *esas2r_alloc_sgl(struct esas2r_adapter *a ) { unsigned long flags ; struct list_head *sgl ; struct esas2r_mem_desc *result ; struct list_head const *__mptr ; int tmp ; long tmp___0 ; { { result = (struct esas2r_mem_desc *)0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(& a->sg_list_lock); tmp = list_empty((struct list_head const *)(& a->free_sg_list_head)); tmp___0 = ldv__builtin_expect(tmp == 0, 1L); } if (tmp___0 != 0L) { { sgl = a->free_sg_list_head.next; __mptr = (struct list_head const *)sgl; result = (struct esas2r_mem_desc *)__mptr; list_del_init(sgl); } } else { } { ldv_spin_unlock_irqrestore_99(& a->sg_list_lock, flags); } return (result); } } __inline static void esas2r_comp_list_drain___0(struct esas2r_adapter *a , struct list_head *comp_list ) { struct esas2r_request *rq ; struct list_head *element ; struct list_head *next ; struct list_head const *__mptr ; { element = comp_list->next; next = element->next; goto ldv_39850; ldv_39849: { __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr; list_del_init(element); esas2r_complete_request(a, rq); element = next; next = element->next; } ldv_39850: ; if ((unsigned long )element != (unsigned long )comp_list) { goto ldv_39849; } else { } return; } } void esas2r_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_target *t ; struct esas2r_request *startrq ; unsigned long flags ; long tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; int tmp___10 ; long tmp___11 ; int tmp___12 ; long tmp___13 ; int tmp___14 ; int tmp___15 ; long tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; { { t = (struct esas2r_target *)0; startrq = rq; tmp___5 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); tmp___6 = ldv__builtin_expect(tmp___5 != 0, 0L); } if (tmp___6 != 0L) { goto _L; } else { { tmp___7 = constant_test_bit(21L, (unsigned long const volatile *)(& a->flags)); tmp___8 = ldv__builtin_expect(tmp___7 != 0, 0L); } if (tmp___8 != 0L) { _L: /* CIL Label */ if ((unsigned int )(rq->vrq)->scsi.function == 0U) { rq->req_stat = 112U; } else { rq->req_stat = 251U; } } else { { tmp___4 = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 0U, 1L); } if (tmp___4 != 0L) { { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; tmp___2 = ldv__builtin_expect((unsigned long )t >= (unsigned long )a->targetdb_end, 0L); } if (tmp___2 != 0L) { rq->req_stat = 3U; } else { { tmp___3 = ldv__builtin_expect(((int )t->flags & 2) == 0, 0L); } if (tmp___3 != 0L) { rq->req_stat = 3U; } else { { (rq->vrq)->scsi.__annonCompField88.__annonCompField87.target_id = t->virt_targ_id; tmp = ldv__builtin_expect((unsigned int )t->target_state != 5U, 0L); } if (tmp != 0L) { { tmp___0 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { rq->req_stat = 3U; } else { } } else { } } } } else { } } } { tmp___9 = ldv__builtin_expect((unsigned int )rq->req_stat != 254U, 0L); } if (tmp___9 != 0L) { { esas2r_complete_request(a, rq); } return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___2(& a->queue_lock); tmp___10 = list_empty((struct list_head const *)(& a->defer_list)); tmp___11 = ldv__builtin_expect(tmp___10 != 0, 1L); } if (tmp___11 != 0L) { { tmp___12 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); tmp___13 = ldv__builtin_expect(tmp___12 == 0, 1L); } if (tmp___13 != 0L) { tmp___14 = 1; } else { tmp___14 = 0; } } else { tmp___14 = 0; } if (tmp___14 != 0) { { tmp___15 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); tmp___16 = ldv__builtin_expect(tmp___15 == 0, 1L); } if (tmp___16 != 0L) { tmp___17 = 1; } else { tmp___17 = 0; } } else { tmp___17 = 0; } if (tmp___17 != 0) { { tmp___18 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); tmp___19 = ldv__builtin_expect(tmp___18 == 0, 1L); } if (tmp___19 != 0L) { { esas2r_local_start_request(a, startrq); } } else { { list_add_tail(& startrq->req_list, & a->defer_list); } } } else { { list_add_tail(& startrq->req_list, & a->defer_list); } } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return; } } void esas2r_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 1U, 0L); } if (tmp != 0L) { { tmp___0 = ldv__builtin_expect((unsigned int )(rq->vrq)->flash.sub_func == 3U, 0L); } if (tmp___0 != 0L) { { set_bit(10L, (unsigned long volatile *)(& a->flags)); } } else { } } else { } { list_add_tail(& rq->req_list, & a->active_list); esas2r_start_vda_request(a, rq); } return; } } void esas2r_start_vda_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_inbound_list_source_entry *element ; u32 dw ; int tmp ; int tmp___0 ; { rq->req_stat = 255U; a->last_write = a->last_write + 1U; if (a->last_write >= a->list_size) { { a->last_write = 0U; tmp = constant_test_bit(23L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { { clear_bit(23L, (unsigned long volatile *)(& a->flags)); } } else { { set_bit(23L, (unsigned long volatile *)(& a->flags)); } } } else { } element = (struct esas2r_inbound_list_source_entry *)a->inbound_list_md.virt_addr + (unsigned long )a->last_write; if ((unsigned int )rq->vda_req_sz == 0U) { rq->vda_req_sz = (unsigned int )a->max_vdareq_size / 4U; } else { } { element->address = (rq->vrq_md)->phys_addr; element->length = (unsigned int )rq->vda_req_sz; dw = a->last_write; tmp___0 = constant_test_bit(23L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { dw = dw | 16384U; } else { } { writel(dw, (void volatile *)a->regs + 16408U); } return; } } bool esas2r_build_sg_list_sge(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) { struct esas2r_request *rq ; union atto_vda_req *vrq ; u32 rem ; u64 addr ; u32 len ; long tmp ; long tmp___0 ; u8 sgelen ; struct esas2r_mem_desc *sgl ; long tmp___1 ; long tmp___2 ; u16 reqsize ; { rq = sgc->first_req; vrq = rq->vrq; goto ldv_39888; ldv_39887: { rem = 0U; len = (*(sgc->get_phys_addr))(sgc, & addr); tmp = ldv__builtin_expect(len == 0U, 0L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = ldv__builtin_expect(len > sgc->length, 0L); } if (tmp___0 != 0L) { len = sgc->length; } else { } another_entry: ; if (len > 4190208U) { rem = len - 4190208U; len = 4190208U; } else { } { tmp___2 = ldv__builtin_expect((unsigned long )sgc->sge.a64.curr > (unsigned long )sgc->sge.a64.limit, 0L); } if (tmp___2 != 0L) { { sgl = esas2r_alloc_sgl(a); tmp___1 = ldv__builtin_expect((unsigned long )sgl == (unsigned long )((struct esas2r_mem_desc *)0), 0L); } if (tmp___1 != 0L) { return (0); } else { } { sgelen = (int )((unsigned char )((long )sgc->sge.a64.curr)) - (int )((unsigned char )((long )sgc->sge.a64.last)); __memcpy(sgl->virt_addr, (void const *)sgc->sge.a64.last, (size_t )sgelen); sgc->sge.a64.curr = (struct atto_vda_sge *)sgl->virt_addr + (unsigned long )sgelen; sgc->sge.a64.limit = (struct atto_vda_sge *)sgl->virt_addr + ((unsigned long )sgl_page_size + 0xfffffffffffffff4UL); (sgc->sge.a64.last)->length = 2214592512U; (sgc->sge.a64.last)->address = sgl->phys_addr; } if ((unsigned long )sgc->sge.a64.chain != (unsigned long )((struct atto_vda_sge *)0)) { (sgc->sge.a64.chain)->length = (sgc->sge.a64.chain)->length | (((unsigned int )((long )((u8 *)sgc->sge.a64.last + 1U)) - (unsigned int )((long )(rq->sg_table)->virt_addr)) + 786432U); } else { vrq->scsi.chain_offset = (int )((unsigned char )((long )sgc->sge.a64.last)) - (int )((unsigned char )((long )vrq)); rq->vda_req_sz = (u16 )(((unsigned long )vrq->scsi.chain_offset + 15UL) / 4UL); } { sgc->sge.a64.chain = sgc->sge.a64.last; list_add(& sgl->next_desc, & rq->sg_table_head); } } else { } sgc->sge.a64.last = sgc->sge.a64.curr; (sgc->sge.a64.curr)->length = len | 67108864U; (sgc->sge.a64.curr)->address = (u64 )((unsigned int )addr); sgc->sge.a64.curr = sgc->sge.a64.curr + 1; sgc->cur_offset = sgc->cur_offset + (unsigned long )len; sgc->length = sgc->length - len; if (rem != 0U) { addr = addr + (u64 )len; len = rem; rem = 0U; goto another_entry; } else { } ldv_39888: ; if (sgc->length != 0U) { goto ldv_39887; } else { } (sgc->sge.a64.last)->length = (sgc->sge.a64.last)->length | 16777216U; if ((unsigned long )sgc->sge.a64.chain != (unsigned long )((struct atto_vda_sge *)0)) { (sgc->sge.a64.chain)->length = (sgc->sge.a64.chain)->length | ((unsigned int )((long )sgc->sge.a64.curr) - (unsigned int )((long )(rq->sg_table)->virt_addr)); } else { reqsize = (u16 )(((unsigned long )((int )((unsigned short )((long )sgc->sge.a64.last)) - (int )((unsigned short )((long )vrq))) + 15UL) / 4UL); if ((int )reqsize > (int )rq->vda_req_sz) { rq->vda_req_sz = reqsize; } else { } } return (1); } } static bool esas2r_build_prd_iblk(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) { struct esas2r_request *rq ; u64 addr ; u32 len ; struct esas2r_mem_desc *sgl ; u32 numchain ; u32 rem ; long tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; { rq = sgc->first_req; numchain = 1U; rem = 0U; goto ldv_39904; ldv_39903: { len = (*(sgc->get_phys_addr))(sgc, & addr); tmp = ldv__builtin_expect(len == 0U, 0L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = ldv__builtin_expect(len > sgc->length, 0L); } if (tmp___0 != 0L) { len = sgc->length; } else { } another_entry: ; if (len > 4190208U) { rem = len - 4190208U; len = 4190208U; } else { } if (sgc->sge.prd.sge_cnt == 0U) { if (len == sgc->length) { (sgc->sge.prd.curr)->ctl_len = len; (sgc->sge.prd.curr)->address = addr; sgc->cur_offset = sgc->cur_offset + (unsigned long )len; sgc->length = sgc->length - len; numchain = 0U; goto ldv_39902; } else { } if ((unsigned long )sgc->sge.prd.chain != (unsigned long )((struct atto_physical_region_description *)0)) { (sgc->sge.prd.chain)->ctl_len = (sgc->sge.prd.chain)->ctl_len | sgc->sge.prd.sgl_max_cnt; } else { } { sgl = esas2r_alloc_sgl(a); tmp___1 = ldv__builtin_expect((unsigned long )sgl == (unsigned long )((struct esas2r_mem_desc *)0), 0L); } if (tmp___1 != 0L) { return (0); } else { } { list_add(& sgl->next_desc, & rq->sg_table_head); sgc->sge.prd.chain = sgc->sge.prd.curr; (sgc->sge.prd.chain)->ctl_len = 16777216U; (sgc->sge.prd.chain)->address = sgl->phys_addr; sgc->sge.prd.curr = (struct atto_physical_region_description *)sgl->virt_addr; sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1U; } } else { } sgc->sge.prd.sge_cnt = sgc->sge.prd.sge_cnt - 1U; (sgc->sge.prd.curr)->ctl_len = len; (sgc->sge.prd.curr)->address = addr; sgc->sge.prd.curr = sgc->sge.prd.curr + 1; sgc->cur_offset = sgc->cur_offset + (unsigned long )len; sgc->length = sgc->length - len; if (rem != 0U) { addr = addr + (u64 )len; len = rem; rem = 0U; goto another_entry; } else { } ldv_39904: ; if (sgc->length != 0U) { goto ldv_39903; } else { } ldv_39902: { tmp___2 = list_empty((struct list_head const *)(& rq->sg_table_head)); } if (tmp___2 == 0) { if ((unsigned long )sgc->sge.prd.chain != (unsigned long )((struct atto_physical_region_description *)0)) { (sgc->sge.prd.chain)->ctl_len = (sgc->sge.prd.chain)->ctl_len | ((sgc->sge.prd.sgl_max_cnt - sgc->sge.prd.sge_cnt) - numchain); } else { } } else { } return (1); } } bool esas2r_build_sg_list_prd(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) { struct esas2r_request *rq ; u32 len ; struct esas2r_target *t ; u8 is_i_o ; u16 reqsize ; struct atto_physical_region_description *curr_iblk_chn ; u8 *cdb ; u32 lbalo ; u32 startlba ; bool tmp ; int tmp___0 ; long tmp___1 ; { rq = sgc->first_req; len = sgc->length; t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; is_i_o = 0U; cdb = (u8 *)(& (rq->vrq)->scsi.cdb); if (((unsigned int )(rq->vrq)->scsi.function == 0U && (unsigned int )t->target_state == 5U) && ((int )t->flags & 1) == 0) { lbalo = 0U; { if ((int )(rq->vrq)->scsi.cdb[0] == 136) { goto case_136; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 138) { goto case_138; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 168) { goto case_168; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 170) { goto case_170; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 40) { goto case_40; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 42) { goto case_42; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 8) { goto case_8; } else { } if ((int )(rq->vrq)->scsi.cdb[0] == 10) { goto case_10; } else { } goto switch_default; case_136: /* CIL Label */ ; case_138: /* CIL Label */ lbalo = (unsigned int )((unsigned short )((int )((short )*(cdb + 9UL)) | (int )((short )((int )*(cdb + 8UL) << 8)))) | ((unsigned int )((unsigned short )((int )((short )*(cdb + 7UL)) | (int )((short )((int )*(cdb + 6UL) << 8)))) << 16); is_i_o = 1U; goto ldv_39919; case_168: /* CIL Label */ ; case_170: /* CIL Label */ ; case_40: /* CIL Label */ ; case_42: /* CIL Label */ lbalo = (unsigned int )((unsigned short )((int )((short )*(cdb + 5UL)) | (int )((short )((int )*(cdb + 4UL) << 8)))) | ((unsigned int )((unsigned short )((int )((short )*(cdb + 3UL)) | (int )((short )((int )*(cdb + 2UL) << 8)))) << 16); is_i_o = 1U; goto ldv_39919; case_8: /* CIL Label */ ; case_10: /* CIL Label */ lbalo = (unsigned int )((unsigned short )((int )((short )*(cdb + 3UL)) | (int )((short )((int )*(cdb + 2UL) << 8)))) | (((unsigned int )*(cdb + 1UL) & 31U) << 16); is_i_o = 1U; goto ldv_39919; switch_default: /* CIL Label */ ; goto ldv_39919; switch_break: /* CIL Label */ ; } ldv_39919: ; if ((unsigned int )is_i_o != 0U) { (rq->vrq)->scsi.__annonCompField88.__annonCompField87.iblk_cnt_prd = 0U; startlba = t->inter_block - (lbalo & (t->inter_block - 1U)); sgc->length = startlba * t->block_size; if ((lbalo & (t->inter_block - 1U)) == 0U) { rq->flags = (u8 )((unsigned int )rq->flags | 4U); } else { } if (sgc->length > len) { sgc->length = len; } else { } } else { sgc->length = len; } } else { sgc->length = len; } curr_iblk_chn = (struct atto_physical_region_description *)sgc->sge.a64.curr; sgc->sge.prd.sgl_max_cnt = (u32 )((unsigned long )sgl_page_size / 12UL); goto ldv_39929; ldv_39928: { sgc->sge.prd.sge_cnt = 0U; sgc->sge.prd.chain = (struct atto_physical_region_description *)0; sgc->sge.prd.curr = curr_iblk_chn; len = len - sgc->length; tmp = esas2r_build_prd_iblk(a, sgc); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); } if (tmp___1 != 0L) { return (0); } else { } curr_iblk_chn = curr_iblk_chn + 1; if ((unsigned int )is_i_o != 0U) { (rq->vrq)->scsi.__annonCompField88.__annonCompField87.iblk_cnt_prd = (u8 )((int )(rq->vrq)->scsi.__annonCompField88.__annonCompField87.iblk_cnt_prd + 1); if (len > t->inter_byte) { sgc->length = t->inter_byte; } else { sgc->length = len; } } else { } ldv_39929: ; if (len != 0U) { goto ldv_39928; } else { } reqsize = (u16 )((unsigned int )((int )((unsigned short )((long )curr_iblk_chn)) - (int )((unsigned short )((long )rq->vrq))) / 4U); if ((int )reqsize > (int )rq->vda_req_sz) { rq->vda_req_sz = reqsize; } else { } return (1); } } static void esas2r_handle_pending_reset(struct esas2r_adapter *a , u32 currtime ) { u32 delta ; u32 doorbell ; u32 ver ; { delta = currtime - a->chip_init_time; if (delta <= 2000U) { } else if (delta > 179999U) { { esas2r_local_reset_adapter(a); } } else { { doorbell = readl((void const volatile *)a->regs + 66688U); } if (doorbell == 4294967295U || (doorbell & 128U) == 0U) { { esas2r_force_interrupt(a); } } else { { ver = doorbell & 458752U; writel(doorbell, (void volatile *)a->regs + 66688U); } if (ver == 0U) { { set_bit(3L, (unsigned long volatile *)(& a->flags)); set_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 128U; a->build_sgl = & esas2r_build_sg_list_sge; } } else if (ver == 65536U) { { set_bit(3L, (unsigned long volatile *)(& a->flags)); clear_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 1024U; a->build_sgl = & esas2r_build_sg_list_prd; } } else { { esas2r_local_reset_adapter(a); } } } } return; } } void esas2r_timer_tick(struct esas2r_adapter *a ) { u32 currtime ; unsigned int tmp ; u32 deltatime ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = jiffies_to_msecs(jiffies); currtime = tmp; deltatime = currtime - a->last_tick_time; a->last_tick_time = currtime; } if (a->chip_uptime != 0U) { { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 == 0) { { tmp___1 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 == 0) { if (deltatime >= a->chip_uptime) { a->chip_uptime = 0U; } else { a->chip_uptime = a->chip_uptime - deltatime; } } else { } } else { } } else { } { tmp___7 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___7 != 0) { { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 == 0) { { tmp___3 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); } if (tmp___3 == 0) { { esas2r_handle_pending_reset(a, currtime); } } else { } } else { } } else { { tmp___4 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp___4 != 0) { { esas2r_disc_check_complete(a); } } else { } { tmp___6 = constant_test_bit(17L, (unsigned long const volatile *)(& a->flags)); } if (tmp___6 != 0) { { tmp___5 = constant_test_bit(16L, (unsigned long const volatile *)(& a->flags)); } if (tmp___5 != 0) { if (currtime - a->__annonCompField104.heartbeat_time > 2999U) { { clear_bit(16L, (unsigned long volatile *)(& a->flags)); esas2r_log(1L, "heartbeat failed"); esas2r_local_reset_adapter(a); } } else { } } else { { set_bit(16L, (unsigned long volatile *)(& a->flags)); a->__annonCompField104.heartbeat_time = currtime; esas2r_force_interrupt(a); } } } else { } } { tmp___8 = atomic_read((atomic_t const *)(& a->disable_cnt)); } if (tmp___8 == 0) { { esas2r_do_deferred_processes(a); } } else { } return; } } bool esas2r_send_task_mgmt(struct esas2r_adapter *a , struct esas2r_request *rqaux , u8 task_mgt_func ) { u16 targetid ; u8 lun ; bool ret ; struct esas2r_request *rq ; struct list_head *next ; struct list_head *element ; unsigned long flags ; struct list_head comp_list ; struct list_head const *__mptr ; bool tmp ; struct list_head const *__mptr___0 ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { targetid = rqaux->target_id; lun = (unsigned char )(rqaux->vrq)->scsi.flags; ret = 0; comp_list.next = & comp_list; comp_list.prev = & comp_list; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104___0(& a->queue_lock); element = a->defer_list.next; next = element->next; } goto ldv_39959; ldv_39958: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if (((unsigned int )(rq->vrq)->scsi.function == 0U && (int )rq->target_id == (int )targetid) && ((int )((unsigned char )(rq->vrq)->scsi.flags) == (int )lun || (unsigned int )task_mgt_func == 32U)) { if ((unsigned int )rq->req_stat == 254U) { { tmp = esas2r_ioreq_aborted(a, rq, 10); } if ((int )tmp) { { list_add_tail(& rq->comp_list, & comp_list); } } else { } } else { } } else { } element = next; next = element->next; ldv_39959: ; if ((unsigned long )element != (unsigned long )(& a->defer_list)) { goto ldv_39958; } else { } { rqaux->sense_len = 0U; (rqaux->vrq)->scsi.length = 0U; rqaux->target_id = targetid; (rqaux->vrq)->scsi.flags = (rqaux->vrq)->scsi.flags | (u32 )lun; __memset((void *)(& (rqaux->vrq)->scsi.cdb), 0, 16UL); (rqaux->vrq)->scsi.flags = (rqaux->vrq)->scsi.flags; tmp___0 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { rqaux->req_stat = 0U; element = a->active_list.next; next = element->next; goto ldv_39964; ldv_39963: __mptr___0 = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr___0 + 0xfffffffffffffff0UL; if (((unsigned int )(rq->vrq)->scsi.function == 0U && (int )rq->target_id == (int )targetid) && ((int )((unsigned char )(rq->vrq)->scsi.flags) == (int )lun || (unsigned int )task_mgt_func == 32U)) { rqaux->req_stat = 2U; } else { } element = next; next = element->next; ldv_39964: ; if ((unsigned long )element != (unsigned long )(& a->active_list)) { goto ldv_39963; } else { } ret = 1; } else { } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); tmp___1 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 == 0) { { esas2r_start_request(a, rqaux); } } else { } { esas2r_comp_list_drain___0(a, & comp_list); tmp___2 = atomic_read((atomic_t const *)(& a->disable_cnt)); } if (tmp___2 == 0) { { esas2r_do_deferred_processes(a); } } else { } return (ret); } } void esas2r_reset_bus(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; { { esas2r_log(3L, "performing a bus reset"); tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp == 0) { { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 == 0) { { tmp___1 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 == 0) { { set_bit(4L, (unsigned long volatile *)(& a->flags)); set_bit(5L, (unsigned long volatile *)(& a->flags)); set_bit(9L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } } else { } } else { } } else { } return; } } bool esas2r_ioreq_aborted(struct esas2r_adapter *a , struct esas2r_request *rq , u8 status ) { { { list_del_init(& rq->req_list); } if (rq->timeout > 4294967293U) { rq->req_stat = 2U; return (1); } else { } rq->req_stat = status; return (1); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___2(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } extern void __might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern void __bad_percpu_size(void) ; extern int memcmp(void const * , void const * , size_t ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___3(spinlock_t *ldv_func_arg1 ) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7070; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7070; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7070; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7070; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7070: ti = (struct thread_info *)(pfo_ret__ - 32728UL); return (ti); } } __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern void schedule(void) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static bool __chk_range_not_ok(unsigned long addr , unsigned long size , unsigned long limit ) { { addr = addr + size; if (addr < size) { return (1); } else { } return (addr > limit); } } extern unsigned long copy_user_enhanced_fast_string(void * , void const * , unsigned int ) ; extern unsigned long copy_user_generic_string(void * , void const * , unsigned int ) ; extern unsigned long copy_user_generic_unrolled(void * , void const * , unsigned int ) ; __inline static unsigned long copy_user_generic(void *to , void const *from , unsigned int len ) { unsigned int ret ; { __asm__ volatile ("661:\n\tcall %P4\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 3*32+16)\n .byte 662b-661b\n .byte 6641f-6631f\n .long 661b - .\n .long 6632f - .\n .word ( 9*32+ 9)\n .byte 662b-661b\n .byte 6642f-6632f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n .byte 0xff + (6642f-6632f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\tcall %P5\n6641:\n\t6632:\n\tcall %P6\n6642:\n\t.popsection": "=a" (ret), "=D" (to), "=S" (from), "=d" (len): [old] "i" (& copy_user_generic_unrolled), [new1] "i" (& copy_user_generic_string), [new2] "i" (& copy_user_enhanced_fast_string), "1" (to), "2" (from), "3" (len): "memory", "rcx", "r8", "r9", "r10", "r11"); return ((unsigned long )ret); } } __inline static int __copy_from_user_nocheck(void *dst , void const *src , unsigned int size ) { int ret ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { { ret = 0; tmp = copy_user_generic(dst, src, size); } return ((int )tmp); { if (size == 1U) { goto case_1; } else { } if (size == 2U) { goto case_2; } else { } if (size == 4U) { goto case_4; } else { } if (size == 8U) { goto case_8; } else { } if (size == 10U) { goto case_10; } else { } if (size == 16U) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovb %2,%b1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorb %b1,%b1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=q" (*((u8 *)dst)): "m" (*((struct __large_struct *)src)), "i" (1), "0" (ret)); return (ret); case_2: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %2,%w1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorw %w1,%w1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u16 *)dst)): "m" (*((struct __large_struct *)src)), "i" (2), "0" (ret)); return (ret); case_4: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovl %2,%k1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorl %k1,%k1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u32 *)dst)): "m" (*((struct __large_struct *)src)), "i" (4), "0" (ret)); return (ret); case_8: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (8), "0" (ret)); return (ret); case_10: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (10), "0" (ret)); tmp___0 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___0 != 0L) { return (ret); } else { } __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %2,%w1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorw %w1,%w1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u16 *)dst + 8U)): "m" (*((struct __large_struct *)src + 8U)), "i" (2), "0" (ret)); return (ret); case_16: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (16), "0" (ret)); tmp___1 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___1 != 0L) { return (ret); } else { } __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst + 8U)): "m" (*((struct __large_struct *)src + 8U)), "i" (8), "0" (ret)); return (ret); switch_default: /* CIL Label */ { tmp___2 = copy_user_generic(dst, src, size); } return ((int )tmp___2); switch_break: /* CIL Label */ ; } } } __inline static int __copy_from_user(void *dst , void const *src , unsigned int size ) { int tmp ; { { might_fault(); tmp = __copy_from_user_nocheck(dst, src, size); } return (tmp); } } __inline static int __copy_to_user_nocheck(void *dst , void const *src , unsigned int size ) { int ret ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { { ret = 0; tmp = copy_user_generic(dst, src, size); } return ((int )tmp); { if (size == 1U) { goto case_1; } else { } if (size == 2U) { goto case_2; } else { } if (size == 4U) { goto case_4; } else { } if (size == 8U) { goto case_8; } else { } if (size == 10U) { goto case_10; } else { } if (size == 16U) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovb %b1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "iq" (*((u8 *)src)), "m" (*((struct __large_struct *)dst)), "i" (1), "0" (ret)); return (ret); case_2: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %w1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u16 *)src)), "m" (*((struct __large_struct *)dst)), "i" (2), "0" (ret)); return (ret); case_4: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovl %k1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u32 *)src)), "m" (*((struct __large_struct *)dst)), "i" (4), "0" (ret)); return (ret); case_8: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (8), "0" (ret)); return (ret); case_10: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (10), "0" (ret)); tmp___0 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___0 != 0L) { return (ret); } else { } __asm__ volatile ("": : : "memory"); __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %w1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u16 *)src + 4UL)), "m" (*((struct __large_struct *)dst + 4U)), "i" (2), "0" (ret)); return (ret); case_16: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (16), "0" (ret)); tmp___1 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___1 != 0L) { return (ret); } else { } __asm__ volatile ("": : : "memory"); __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src + 1UL)), "m" (*((struct __large_struct *)dst + 1U)), "i" (8), "0" (ret)); return (ret); switch_default: /* CIL Label */ { tmp___2 = copy_user_generic(dst, src, size); } return ((int )tmp___2); switch_break: /* CIL Label */ ; } } } __inline static int __copy_to_user(void *dst , void const *src , unsigned int size ) { int tmp ; { { might_fault(); tmp = __copy_to_user_nocheck(dst, src, size); } return (tmp); } } u8 *esas2r_buffered_ioctl ; dma_addr_t esas2r_buffered_ioctl_addr ; u32 esas2r_buffered_ioctl_size ; struct pci_dev *esas2r_buffered_ioctl_pcid ; int esas2r_write_params(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *data ) ; int esas2r_ioctl_handler(void *hostdata , int cmd , void *arg ) ; int esas2r_ioctl(struct scsi_device *sd , int cmd , void *arg ) ; u8 handle_hba_ioctl(struct esas2r_adapter *a , struct atto_ioctl *ioctl_hba ) ; int esas2r_read_fw(struct esas2r_adapter *a , char *buf , long off , int count ) ; int esas2r_write_fw(struct esas2r_adapter *a , char const *buf , long off , int count ) ; int esas2r_read_vda(struct esas2r_adapter *a , char *buf , long off , int count ) ; int esas2r_write_vda(struct esas2r_adapter *a , char const *buf , long off , int count ) ; int esas2r_read_fs(struct esas2r_adapter *a , char *buf , long off , int count ) ; int esas2r_write_fs(struct esas2r_adapter *a , char const *buf , long off , int count ) ; void esas2r_free_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; struct esas2r_request *esas2r_alloc_request(struct esas2r_adapter *a ) ; struct esas2r_target *esas2r_targ_db_find_by_sas_addr(struct esas2r_adapter *a , u64 *sas_addr ) ; u16 esas2r_targ_db_find_next_present(struct esas2r_adapter *a , u16 target_id ) ; bool esas2r_process_vda_ioctl(struct esas2r_adapter *a , struct atto_ioctl_vda *vi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) ; static struct semaphore buffered_ioctl_semaphore = {{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "(buffered_ioctl_semaphore).lock", 0, 0UL}}, 1U, {& buffered_ioctl_semaphore.wait_list, & buffered_ioctl_semaphore.wait_list}}; static void complete_fm_api_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { a->fm_api_command_done = 1; __wake_up(& a->fm_api_waiter, 1U, 1, (void *)0); } return; } } static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; int offset ; { a = sgc->adapter; offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )a->save_offset)); *addr = a->firmware.phys + (u64 )offset; return ((u32 )(a->firmware.orig_len - offset)); } } static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; int offset ; { a = sgc->adapter; offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )a->save_offset)); *addr = a->firmware.header_buff_phys + (u64 )offset; return (2176U - (u32 )offset); } } static void do_fm_api(struct esas2r_adapter *a , struct esas2r_flash_img *fi ) { struct esas2r_request *rq ; int tmp ; bool tmp___0 ; int tmp___1 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___2 ; { { tmp = down_interruptible(& a->fm_api_semaphore); } if (tmp != 0) { fi->status = 9U; return; } else { } { rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { fi->status = 9U; goto free_sem; } else { } if ((unsigned long )fi == (unsigned long )(& a->firmware.header)) { { a->firmware.header_buff = dma_alloc_attrs(& (a->pcid)->dev, 2176UL, & a->firmware.header_buff_phys, 208U, (struct dma_attrs *)0); } if ((unsigned long )a->firmware.header_buff == (unsigned long )((void *)0)) { fi->status = 9U; goto free_req; } else { } { __memcpy(a->firmware.header_buff, (void const *)fi, 2176UL); a->save_offset = (u8 *)a->firmware.header_buff; a->fm_api_sgc.get_phys_addr = & get_physaddr_fm_api_header; } } else { a->save_offset = (u8 *)fi; a->fm_api_sgc.get_phys_addr = & get_physaddr_fm_api; } { rq->comp_cb = & complete_fm_api_req; a->fm_api_command_done = 0; a->fm_api_sgc.cur_offset = a->save_offset; tmp___0 = esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, & a->fm_api_sgc); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { goto all_done; } else { } goto ldv_39905; ldv_39904: { __ret = 0; __might_sleep("drivers/scsi/esas2r/esas2r_ioctl.c", 162, 0); } if (a->fm_api_command_done == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_39901: { tmp___2 = prepare_to_wait_event(& a->fm_api_waiter, & __wait, 1); __int = tmp___2; } if (a->fm_api_command_done != 0) { goto ldv_39900; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39900; } else { } { schedule(); } goto ldv_39901; ldv_39900: { finish_wait(& a->fm_api_waiter, & __wait); } __ret = (int )__ret___0; } else { } ldv_39905: ; if (a->fm_api_command_done == 0) { goto ldv_39904; } else { } all_done: ; if ((unsigned long )fi == (unsigned long )(& a->firmware.header)) { { __memcpy((void *)fi, (void const *)a->firmware.header_buff, 2176UL); dma_free_attrs(& (a->pcid)->dev, 2176UL, a->firmware.header_buff, a->firmware.header_buff_phys, (struct dma_attrs *)0); } } else { } free_req: { esas2r_free_request(a, rq); } free_sem: { up(& a->fm_api_semaphore); } return; } } static void complete_nvr_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { a->nvram_command_done = 1; __wake_up(& a->nvram_waiter, 1U, 1, (void *)0); } return; } } static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc , u64 *addr ) { int offset ; { offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )esas2r_buffered_ioctl)); *addr = esas2r_buffered_ioctl_addr + (dma_addr_t )offset; return (esas2r_buffered_ioctl_size - (u32 )offset); } } static void complete_buffered_ioctl_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { a->buffered_ioctl_done = 1; __wake_up(& a->buffered_ioctl_waiter, 1U, 1, (void *)0); } return; } } static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi ) { struct esas2r_adapter *a ; struct esas2r_request *rq ; struct esas2r_sg_context sgc ; u8 result ; int tmp ; void *tmp___0 ; int tmp___1 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___2 ; { { a = bi->a; result = 0U; tmp = down_interruptible(& buffered_ioctl_semaphore); } if (tmp != 0) { return (108U); } else { } if ((unsigned long )esas2r_buffered_ioctl != (unsigned long )((u8 *)0U)) { if (esas2r_buffered_ioctl_size < bi->length) { { dma_free_attrs(& (a->pcid)->dev, (unsigned long )esas2r_buffered_ioctl_size, (void *)esas2r_buffered_ioctl, esas2r_buffered_ioctl_addr, (struct dma_attrs *)0); } goto allocate_buffer; } else { } } else { allocate_buffer: { esas2r_buffered_ioctl_size = bi->length; esas2r_buffered_ioctl_pcid = a->pcid; tmp___0 = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )esas2r_buffered_ioctl_size, & esas2r_buffered_ioctl_addr, 208U, (struct dma_attrs *)0); esas2r_buffered_ioctl = (u8 *)tmp___0; } } if ((unsigned long )esas2r_buffered_ioctl == (unsigned long )((u8 *)0U)) { { esas2r_log(1L, "could not allocate %d bytes of consistent memory for a buffered ioctl!", bi->length); result = 108U; } goto exit_cleanly; } else { } { __memcpy((void *)esas2r_buffered_ioctl, (void const *)bi->ioctl, (size_t )bi->length); rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { { esas2r_log(1L, "could not allocate an internal request"); result = 108U; } goto exit_cleanly; } else { } { a->buffered_ioctl_done = 0; rq->comp_cb = & complete_buffered_ioctl_req; sgc.cur_offset = esas2r_buffered_ioctl + (unsigned long )bi->offset; sgc.get_phys_addr = & get_physaddr_buffered_ioctl; sgc.length = esas2r_buffered_ioctl_size; tmp___1 = (*(bi->callback))(a, rq, & sgc, bi->context); } if (tmp___1 == 0) { a->buffered_ioctl_done = 0; goto free_andexit_cleanly; } else { } goto ldv_39940; ldv_39939: { __ret = 0; __might_sleep("drivers/scsi/esas2r/esas2r_ioctl.c", 276, 0); } if (a->buffered_ioctl_done == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_39936: { tmp___2 = prepare_to_wait_event(& a->buffered_ioctl_waiter, & __wait, 1); __int = tmp___2; } if (a->buffered_ioctl_done != 0) { goto ldv_39935; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39935; } else { } { schedule(); } goto ldv_39936; ldv_39935: { finish_wait(& a->buffered_ioctl_waiter, & __wait); } __ret = (int )__ret___0; } else { } ldv_39940: ; if (a->buffered_ioctl_done == 0) { goto ldv_39939; } else { } free_andexit_cleanly: ; if ((unsigned int )result == 0U && (unsigned long )bi->done_callback != (unsigned long )((void (*)(struct esas2r_adapter * , struct esas2r_request * , void * ))0)) { { (*(bi->done_callback))(a, rq, bi->done_context); } } else { } { esas2r_free_request(a, rq); } exit_cleanly: ; if ((unsigned int )result == 0U) { { __memcpy(bi->ioctl, (void const *)esas2r_buffered_ioctl, (size_t )bi->length); } } else { } { up(& buffered_ioctl_semaphore); } return (result); } } static int smp_ioctl_callback(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc , void *context ) { struct atto_ioctl_smp *si ; bool tmp ; int tmp___0 ; { { si = (struct atto_ioctl_smp *)esas2r_buffered_ioctl; esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField92.sge)); esas2r_build_ioctl_req(a, rq, sgc->length, 2); tmp = esas2r_build_sg_list(a, rq, sgc); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { si->status = 3U; return (0); } else { } { esas2r_start_request(a, rq); } return (1); } } static u8 handle_smp_ioctl(struct esas2r_adapter *a , struct atto_ioctl_smp *si ) { struct esas2r_buffered_ioctl bi ; u8 tmp ; { { __memset((void *)(& bi), 0, 64UL); bi.a = a; bi.ioctl = (void *)si; bi.length = (si->req_length + si->rsp_length) + 68U; bi.offset = 0U; bi.callback = & smp_ioctl_callback; tmp = handle_buffered_ioctl(& bi); } return (tmp); } } static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { rq->target_id = rq->func_rsp.ioctl_rsp.__annonCompField94.csmi.target_id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )rq->func_rsp.ioctl_rsp.__annonCompField94.csmi.lun; (*(rq->aux_req_cb))(a, rq); } return; } } static bool csmi_ioctl_tunnel(struct esas2r_adapter *a , union atto_ioctl_csmi *ci , struct esas2r_request *rq , struct esas2r_sg_context *sgc , u32 ctrl_code , u16 target_id ) { struct atto_vda_ioctl_req *ioctl ; int tmp ; bool tmp___0 ; int tmp___1 ; { { ioctl = & (rq->vrq)->ioctl; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return (0); } else { } { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField92.sge)); esas2r_build_ioctl_req(a, rq, sgc->length, 1); ioctl->__annonCompField91.csmi.ctrl_code = ctrl_code; ioctl->__annonCompField91.csmi.target_id = target_id; ioctl->__annonCompField91.csmi.lun = (unsigned char )(rq->vrq)->scsi.flags; rq->aux_req_cx = (void *)ci; rq->aux_req_cb = rq->comp_cb; rq->comp_cb = & esas2r_csmi_ioctl_tunnel_comp_cb; tmp___0 = esas2r_build_sg_list(a, rq, sgc); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { esas2r_start_request(a, rq); } return (1); } } static bool check_lun(struct scsi_lun lun ) { bool result ; { result = (bool )(((((((unsigned int )lun.scsi_lun[7] == 0U && (unsigned int )lun.scsi_lun[6] == 0U) && (unsigned int )lun.scsi_lun[5] == 0U) && (unsigned int )lun.scsi_lun[4] == 0U) && (unsigned int )lun.scsi_lun[3] == 0U) && (unsigned int )lun.scsi_lun[2] == 0U) && (unsigned int )lun.scsi_lun[0] == 0U); return (result); } } static int csmi_ioctl_callback(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc , void *context ) { struct atto_csmi *ci ; union atto_ioctl_csmi *ioctl_csmi ; u8 path ; u8 tid ; u8 lun ; u32 sts ; struct esas2r_target *t ; unsigned long flags ; struct atto_csmi_get_dev_addr *gda ; struct atto_csmi_task_mgmt *tm ; struct atto_csmi_get_driver_info *gdi ; char const *tmp ; struct atto_csmi_get_cntlr_cfg *gcc ; int tmp___0 ; struct atto_csmi_get_cntlr_sts *gcs ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; struct atto_csmi_get_scsi_addr *gsa ; struct scsi_lun lun___0 ; bool tmp___4 ; int tmp___5 ; struct atto_csmi_get_dev_addr *gda___0 ; bool tmp___6 ; int tmp___7 ; { ci = (struct atto_csmi *)context; ioctl_csmi = (union atto_ioctl_csmi *)esas2r_buffered_ioctl; path = 0U; tid = 0U; lun = 0U; sts = 0U; if (ci->control_code == 28U) { gda = & ci->data.dev_addr; path = gda->path_id; tid = gda->target_id; lun = gda->lun; } else if (ci->control_code == 29U) { tm = & ci->data.tsk_mgt; path = tm->path_id; tid = tm->target_id; lun = tm->lun; } else { } if ((unsigned int )path != 0U) { rq->func_rsp.ioctl_rsp.__annonCompField94.csmi.csmi_status = 3U; return (0); } else { } rq->target_id = (u16 )tid; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )lun; { if (ci->control_code == 1U) { goto case_1; } else { } if (ci->control_code == 2U) { goto case_2; } else { } if (ci->control_code == 3U) { goto case_3; } else { } if (ci->control_code == 4U) { goto case_4; } else { } if (ci->control_code == 10U) { goto case_10; } else { } if (ci->control_code == 11U) { goto case_11; } else { } if (ci->control_code == 23U) { goto case_23; } else { } if (ci->control_code == 24U) { goto case_24; } else { } if (ci->control_code == 25U) { goto case_25; } else { } if (ci->control_code == 20U) { goto case_20; } else { } if (ci->control_code == 21U) { goto case_21; } else { } if (ci->control_code == 22U) { goto case_22; } else { } if (ci->control_code == 26U) { goto case_26; } else { } if (ci->control_code == 30U) { goto case_30; } else { } if (ci->control_code == 60U) { goto case_60; } else { } if (ci->control_code == 27U) { goto case_27; } else { } if (ci->control_code == 28U) { goto case_28; } else { } if (ci->control_code == 29U) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ { gdi = & ioctl_csmi->drvr_info; tmp = esas2r_get_model_name(a); strcpy((char *)(& gdi->description), tmp); gdi->csmi_major_rev = 0U; gdi->csmi_minor_rev = 81U; } goto ldv_39989; case_2: /* CIL Label */ { gcc = & ioctl_csmi->cntlr_cfg; gcc->base_io_addr = 0U; pci_read_config_dword((struct pci_dev const *)a->pcid, 24, & gcc->__annonCompField95.base_memaddr_lo); pci_read_config_dword((struct pci_dev const *)a->pcid, 28, & gcc->__annonCompField95.base_memaddr_hi); gcc->board_id = (unsigned int )(a->pcid)->subsystem_device | ((unsigned int )(a->pcid)->subsystem_vendor << 16); gcc->slot_num = 65535U; gcc->cntlr_class = 5U; gcc->io_bus_type = 3U; gcc->__annonCompField96.pci_addr.bus_num = ((a->pcid)->bus)->number; gcc->__annonCompField96.pci_addr.device_num = (unsigned int )((u8 )((a->pcid)->devfn >> 3)) & 31U; gcc->__annonCompField96.pci_addr.function_num = (unsigned int )((u8 )(a->pcid)->devfn) & 7U; __memset((void *)(& gcc->serial_num), 0, 81UL); gcc->major_rev = (u16 )((unsigned char )a->fw_version); gcc->minor_rev = (u16 )((unsigned char )((int )((unsigned short )a->fw_version) >> 8)); gcc->build_rev = (u16 )((unsigned char )(a->fw_version >> 16)); gcc->release_rev = (u16 )((unsigned char )((int )((unsigned short )(a->fw_version >> 16)) >> 8)); gcc->bios_major_rev = (u16 )((unsigned char )((int )((unsigned short )(a->flash_ver >> 16)) >> 8)); gcc->bios_minor_rev = (u16 )((unsigned char )(a->flash_ver >> 16)); gcc->bios_build_rev = (unsigned short )a->flash_ver; tmp___0 = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___0 != 0) { gcc->cntlr_flags = 5U; } else { gcc->cntlr_flags = 10U; } gcc->rrom_major_rev = 0U; gcc->rrom_minor_rev = 0U; gcc->rrom_build_rev = 0U; gcc->rrom_release_rev = 0U; gcc->rrom_biosmajor_rev = 0U; gcc->rrom_biosminor_rev = 0U; gcc->rrom_biosbuild_rev = 0U; gcc->rrom_biosrelease_rev = 0U; goto ldv_39989; case_3: /* CIL Label */ { gcs = & ioctl_csmi->cntlr_sts; tmp___1 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { gcs->status = 2U; } else { gcs->status = 1U; } gcs->offline_reason = 0U; goto ldv_39989; case_4: /* CIL Label */ ; case_10: /* CIL Label */ ; case_11: /* CIL Label */ sts = 2U; goto ldv_39989; case_23: /* CIL Label */ ; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_26: /* CIL Label */ ; case_30: /* CIL Label */ ; case_60: /* CIL Label */ { tmp___2 = csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, ci->control_code, 65535); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { sts = 1U; goto ldv_39989; } else { } return (1); case_27: /* CIL Label */ { gsa = & ioctl_csmi->scsi_addr; __memcpy((void *)(& lun___0), (void const *)(& gsa->sas_lun), 8UL); tmp___4 = check_lun(lun___0); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { sts = 2013U; goto ldv_39989; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___3(& a->mem_lock); t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)(& gsa->sas_addr)); ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } if ((unsigned long )t == (unsigned long )((struct esas2r_target *)0)) { sts = 2013U; goto ldv_39989; } else { } { gsa->host_index = 255U; gsa->lun = gsa->sas_lun[1]; rq->target_id = esas2r_targ_get_id(t, a); } goto ldv_39989; case_28: /* CIL Label */ gda___0 = & ioctl_csmi->dev_addr; t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; if (((unsigned long )t >= (unsigned long )a->targetdb_end || (unsigned int )t->target_state != 5U) || t->sas_addr == 0ULL) { sts = 2014U; goto ldv_39989; } else { } { *((u64 *)(& gda___0->sas_addr)) = t->sas_addr; __memset((void *)(& gda___0->sas_lun), 0, 8UL); gda___0->sas_lun[1] = (unsigned char )(rq->vrq)->scsi.flags; } goto ldv_39989; case_29: /* CIL Label */ t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; if (((unsigned long )t >= (unsigned long )a->targetdb_end || (unsigned int )t->target_state != 5U) || ((int )t->flags & 1) == 0) { sts = 2014U; goto ldv_39989; } else { } { tmp___6 = csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, ci->control_code, (int )t->phys_targ_id); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { sts = 1U; goto ldv_39989; } else { } return (1); switch_default: /* CIL Label */ sts = 2U; goto ldv_39989; switch_break: /* CIL Label */ ; } ldv_39989: rq->func_rsp.ioctl_rsp.__annonCompField94.csmi.csmi_status = sts; return (0); } } static void csmi_ioctl_done_callback(struct esas2r_adapter *a , struct esas2r_request *rq , void *context ) { struct atto_csmi *ci ; union atto_ioctl_csmi *ioctl_csmi ; struct atto_csmi_get_driver_info *gdi ; struct atto_csmi_get_scsi_addr *gsa ; { ci = (struct atto_csmi *)context; ioctl_csmi = (union atto_ioctl_csmi *)esas2r_buffered_ioctl; { if (ci->control_code == 1U) { goto case_1; } else { } if (ci->control_code == 27U) { goto case_27; } else { } goto switch_break; case_1: /* CIL Label */ { gdi = & ioctl_csmi->drvr_info; strcpy((char *)(& gdi->name), "1.00"); gdi->major_rev = 1U; gdi->minor_rev = 0U; gdi->build_rev = 0U; gdi->release_rev = 0U; } goto ldv_40022; case_27: /* CIL Label */ gsa = & ioctl_csmi->scsi_addr; if (rq->func_rsp.ioctl_rsp.__annonCompField94.csmi.csmi_status == 0U) { gsa->target_id = (u8 )rq->target_id; gsa->path_id = 0U; } else { } goto ldv_40022; switch_break: /* CIL Label */ ; } ldv_40022: ci->status = rq->func_rsp.ioctl_rsp.__annonCompField94.csmi.csmi_status; return; } } static u8 handle_csmi_ioctl(struct esas2r_adapter *a , struct atto_csmi *ci ) { struct esas2r_buffered_ioctl bi ; u8 tmp ; { { __memset((void *)(& bi), 0, 64UL); bi.a = a; bi.ioctl = (void *)(& ci->data); bi.length = 2064U; bi.offset = 0U; bi.callback = & csmi_ioctl_callback; bi.context = (void *)ci; bi.done_callback = & csmi_ioctl_done_callback; bi.done_context = (void *)ci; tmp = handle_buffered_ioctl(& bi); } return (tmp); } } static bool hba_ioctl_tunnel(struct esas2r_adapter *a , struct atto_ioctl *hi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { bool tmp ; int tmp___0 ; { { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField92.sge)); esas2r_build_ioctl_req(a, rq, sgc->length, 0); tmp = esas2r_build_sg_list(a, rq, sgc); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { hi->status = 3U; return (0); } else { } { esas2r_start_request(a, rq); } return (1); } } static void scsi_passthru_comp_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_ioctl *hi ; struct atto_hba_scsi_pass_thru *spt ; u8 sts ; u16 tmp ; { hi = (struct atto_ioctl *)rq->aux_req_cx; spt = & hi->data.scsi_pass_thru; sts = 1U; spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; spt->sense_length = rq->sense_len; spt->residual_length = rq->func_rsp.scsi_rsp.residual_length; { if ((int )rq->req_stat == 0) { goto case_0; } else { } if ((int )rq->req_stat == 8) { goto case_8; } else { } if ((int )rq->req_stat == 7) { goto case_7; } else { } if ((int )rq->req_stat == 6) { goto case_6; } else { } if ((int )rq->req_stat == 3) { goto case_3; } else { } if ((int )rq->req_stat == 112) { goto case_112; } else { } if ((int )rq->req_stat == 4) { goto case_4; } else { } if ((int )rq->req_stat == 5) { goto case_5; } else { } if ((int )rq->req_stat == 251) { goto case_251; } else { } if ((int )rq->req_stat == 2) { goto case_2; } else { } if ((int )rq->req_stat == 10) { goto case_10; } else { } if ((int )rq->req_stat == 13) { goto case_13; } else { } goto switch_break; case_0: /* CIL Label */ ; case_8: /* CIL Label */ sts = 0U; goto ldv_40045; case_7: /* CIL Label */ sts = 3U; goto ldv_40045; case_6: /* CIL Label */ sts = 2U; goto ldv_40045; case_3: /* CIL Label */ ; case_112: /* CIL Label */ sts = 4U; goto ldv_40045; case_4: /* CIL Label */ sts = 5U; goto ldv_40045; case_5: /* CIL Label */ sts = 6U; goto ldv_40045; case_251: /* CIL Label */ sts = 10U; goto ldv_40045; case_2: /* CIL Label */ sts = 9U; goto ldv_40045; case_10: /* CIL Label */ sts = 8U; goto ldv_40045; case_13: /* CIL Label */ sts = 7U; goto ldv_40045; switch_break: /* CIL Label */ ; } ldv_40045: { spt->req_status = sts; tmp = esas2r_targ_db_find_next_present(a, (int )((unsigned short )spt->target_id)); spt->target_id = (u32 )tmp; (*(rq->aux_req_cb))(a, rq); } return; } } static int hba_ioctl_callback(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc , void *context ) { struct atto_ioctl *hi ; u8 *class_code ; struct atto_hba_get_adapter_info *gai ; int pcie_cap_reg ; u16 stat ; u32 caps ; int tmp ; int tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; struct atto_hba_get_adapter_address *gaa ; bool tmp___3 ; struct atto_hba_trace *trc ; bool tmp___4 ; u32 len ; u32 offset ; u32 total_len ; int tmp___5 ; int tmp___6 ; struct atto_hba_scsi_pass_thru *spt ; struct scsi_lun lun ; bool tmp___7 ; bool tmp___8 ; int tmp___9 ; bool tmp___10 ; int tmp___11 ; struct atto_hba_get_device_address *gda ; struct esas2r_target *t ; bool tmp___12 ; u16 tmp___13 ; bool tmp___14 ; struct atto_hba_adap_ctrl *ac ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; struct atto_hba_get_device_info *gdi ; struct esas2r_target *t___0 ; bool tmp___20 ; u16 tmp___21 ; { hi = (struct atto_ioctl *)esas2r_buffered_ioctl; hi->status = 0U; { if ((int )hi->function == 0) { goto case_0; } else { } if ((int )hi->function == 1) { goto case_1; } else { } if ((int )hi->function == 2) { goto case_2; } else { } if ((int )hi->function == 3) { goto case_3; } else { } if ((int )hi->function == 4) { goto case_4; } else { } if ((int )hi->function == 5) { goto case_5; } else { } if ((int )hi->function == 6) { goto case_6; } else { } if ((int )hi->function == 12) { goto case_12; } else { } if ((int )hi->function == 14) { goto case_14; } else { } if ((int )hi->function == 15) { goto case_15; } else { } goto switch_default; case_0: /* CIL Label */ class_code = (u8 *)(& (a->pcid)->class); gai = & hi->data.get_adap_info; if ((int )hi->flags & 1) { hi->status = 5U; goto ldv_40067; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_40067; } else { } { __memset((void *)gai, 0, 512UL); gai->pci.vendor_id = (a->pcid)->vendor; gai->pci.device_id = (a->pcid)->device; gai->pci.ss_vendor_id = (a->pcid)->subsystem_vendor; gai->pci.ss_device_id = (a->pcid)->subsystem_device; gai->pci.class_code[0] = *class_code; gai->pci.class_code[1] = *(class_code + 1UL); gai->pci.class_code[2] = *(class_code + 2UL); gai->pci.rev_id = (a->pcid)->revision; gai->pci.bus_num = ((a->pcid)->bus)->number; gai->pci.dev_num = (unsigned int )((u8 )((a->pcid)->devfn >> 3)) & 31U; gai->pci.func_num = (unsigned int )((u8 )(a->pcid)->devfn) & 7U; pcie_cap_reg = pci_find_capability(a->pcid, 16); } if (pcie_cap_reg != 0) { { pci_read_config_word((struct pci_dev const *)a->pcid, pcie_cap_reg + 18, & stat); pci_read_config_dword((struct pci_dev const *)a->pcid, pcie_cap_reg + 12, & caps); gai->pci.link_speed_curr = (unsigned int )((unsigned char )stat) & 15U; gai->pci.link_speed_max = (unsigned int )((unsigned char )caps) & 15U; gai->pci.link_width_curr = (unsigned char )(((int )stat & 1008) >> 4); gai->pci.link_width_max = (unsigned char )((caps & 1008U) >> 4); } } else { } gai->pci.msi_vector_cnt = 1U; if ((unsigned int )*((unsigned char *)a->pcid + 2522UL) != 0U) { gai->pci.interrupt_mode = 3U; } else if ((unsigned int )*((unsigned char *)a->pcid + 2522UL) != 0U) { gai->pci.interrupt_mode = 2U; } else { gai->pci.interrupt_mode = 1U; } { gai->adap_type = 2U; tmp = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags2)); } if (tmp != 0) { gai->adap_type = 10U; } else { } { tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { gai->adap_flags = (u8 )((unsigned int )gai->adap_flags | 1U); } else { } gai->adap_flags = (u8 )((unsigned int )gai->adap_flags | 6U); if (((unsigned int )(a->pcid)->subsystem_device - 74U <= 1U || (unsigned int )(a->pcid)->subsystem_device == 77U) || (unsigned int )(a->pcid)->subsystem_device == 16487U) { gai->adap_flags = (u8 )((unsigned int )gai->adap_flags | 64U); } else { } { gai->num_ports = 8U; gai->num_phys = 8U; strcpy((char *)(& gai->firmware_rev), (char const *)(& a->fw_rev)); strcpy((char *)(& gai->flash_rev), (char const *)(& a->flash_rev)); tmp___1 = esas2r_get_model_name_short(a); strcpy((char *)(& gai->model_name_short), tmp___1); tmp___2 = esas2r_get_model_name(a); strcpy((char *)(& gai->model_name), tmp___2); gai->num_targets = 256U; gai->num_busses = 1U; gai->num_targsper_bus = gai->num_targets; gai->num_lunsper_targ = 256U; } if ((unsigned int )(a->pcid)->subsystem_device - 75U <= 1U) { gai->num_connectors = 4U; } else { gai->num_connectors = 2U; } gai->adap_flags2 = (u8 )((unsigned int )gai->adap_flags2 | 8U); gai->num_targets_backend = a->num_targets_backend; gai->tunnel_flags = a->ioctl_tunnel & 127U; goto ldv_40067; case_1: /* CIL Label */ gaa = & hi->data.get_adap_addr; if ((int )hi->flags & 1) { hi->status = 5U; goto ldv_40067; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; } else if ((unsigned int )gaa->addr_type <= 1U) { if ((unsigned int )gaa->addr_type == 0U && (unsigned int )gaa->port_id > 7U) { hi->status = 10U; } else { { __memcpy((void *)(& gaa->address), (void const *)(& (a->nvram)->sas_addr), 8UL); gaa->addr_len = 8U; } } } else { hi->status = 8U; } goto ldv_40067; case_2: /* CIL Label */ ; if ((int )hi->flags & 1) { { tmp___3 = hba_ioctl_tunnel(a, hi, rq, sgc); } if ((int )tmp___3) { return (1); } else { } goto ldv_40067; } else { } hi->status = 5U; goto ldv_40067; case_3: /* CIL Label */ trc = & hi->data.trace; if ((int )hi->flags & 1) { { tmp___4 = hba_ioctl_tunnel(a, hi, rq, sgc); } if ((int )tmp___4) { return (1); } else { } goto ldv_40067; } else { } if ((unsigned int )hi->version > 1U) { hi->status = 2U; hi->version = 1U; goto ldv_40067; } else { } if ((unsigned int )trc->trace_type == 1U && (unsigned int )hi->version != 0U) { if ((unsigned int )trc->trace_func == 4U) { { len = hi->data_length; offset = trc->current_offset; total_len = 524288U; tmp___5 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___5 == 0) { total_len = 0U; } else { } if (len > total_len) { len = total_len; } else { } if (offset >= total_len || (offset + len > total_len || len == 0U)) { hi->status = 8U; goto ldv_40067; } else { } { __memcpy((void *)trc + 1U, (void const *)(& a->fw_coredump_buff) + (unsigned long )offset, (size_t )len); hi->data_length = len; } } else if ((unsigned int )trc->trace_func == 5U) { { __memset((void *)(& a->fw_coredump_buff), 0, 524288UL); clear_bit(4L, (unsigned long volatile *)(& a->flags2)); } } else if ((unsigned int )trc->trace_func != 0U) { hi->status = 5U; goto ldv_40067; } else { } { trc->trace_mask = 0U; trc->current_offset = 0U; trc->total_length = 524288U; tmp___6 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___6 == 0) { trc->total_length = 0U; } else { } } else { hi->status = 5U; } goto ldv_40067; case_4: /* CIL Label */ { spt = & hi->data.scsi_pass_thru; __memcpy((void *)(& lun), (void const *)(& spt->lun), 8UL); } if ((int )hi->flags & 1) { { tmp___7 = hba_ioctl_tunnel(a, hi, rq, sgc); } if ((int )tmp___7) { return (1); } else { } goto ldv_40067; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_40067; } else { } if (spt->target_id > 255U) { hi->status = 8U; goto ldv_40067; } else { { tmp___8 = check_lun(lun); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { hi->status = 8U; goto ldv_40067; } else { } } { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)0); sgc->length = hi->data_length; sgc->cur_offset = sgc->cur_offset + 416UL; rq->target_id = (unsigned short )spt->target_id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )spt->lun[1]; __memcpy((void *)(& (rq->vrq)->scsi.cdb), (void const *)(& spt->cdb), 16UL); (rq->vrq)->scsi.length = hi->data_length; rq->sense_len = spt->sense_length; rq->sense_buf = (u8 *)(& spt->sense_data); rq->aux_req_cx = (void *)hi; rq->aux_req_cb = rq->comp_cb; rq->comp_cb = & scsi_passthru_comp_cb; } if ((int )spt->flags & 1) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 33554432U; } else if ((spt->flags & 2U) != 0U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 16777216U; } else if (sgc->length != 0U) { hi->status = 8U; goto ldv_40067; } else { } if ((spt->flags & 16U) != 0U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 512U; } else if ((spt->flags & 8U) != 0U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 256U; } else { } { tmp___10 = esas2r_build_sg_list(a, rq, sgc); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { hi->status = 3U; goto ldv_40067; } else { } { esas2r_start_request(a, rq); } return (1); case_5: /* CIL Label */ gda = & hi->data.get_dev_addr; if ((int )hi->flags & 1) { { tmp___12 = hba_ioctl_tunnel(a, hi, rq, sgc); } if ((int )tmp___12) { return (1); } else { } goto ldv_40067; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_40067; } else { } if (gda->target_id > 255U) { hi->status = 8U; goto ldv_40067; } else { } t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )((unsigned short )gda->target_id); if ((unsigned int )t->target_state != 5U) { hi->status = 1U; } else if ((unsigned int )gda->addr_type == 0U) { if (t->sas_addr == 0ULL) { hi->status = 5U; } else { *((u64 *)(& gda->address)) = t->sas_addr; gda->addr_len = 8U; } } else if ((unsigned int )gda->addr_type == 1U) { hi->status = 10U; } else { hi->status = 8U; } { tmp___13 = esas2r_targ_db_find_next_present(a, (int )((unsigned short )gda->target_id)); gda->target_id = (u32 )tmp___13; } goto ldv_40067; case_6: /* CIL Label */ ; case_12: /* CIL Label */ { tmp___14 = hba_ioctl_tunnel(a, hi, rq, sgc); } if ((int )tmp___14) { return (1); } else { } goto ldv_40067; case_14: /* CIL Label */ ac = & hi->data.adap_ctrl; if ((int )hi->flags & 1) { hi->status = 5U; goto ldv_40067; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_40067; } else { } if ((unsigned int )ac->adap_func == 0U) { { esas2r_reset_adapter(a); } } else if ((unsigned int )ac->adap_func != 1U) { hi->status = 5U; goto ldv_40067; } else { } { tmp___19 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); } if (tmp___19 != 0) { ac->adap_state = 2U; } else { { tmp___18 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); } if (tmp___18 != 0) { ac->adap_state = 3U; } else { { tmp___17 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp___17 != 0) { ac->adap_state = 4U; } else { { tmp___16 = constant_test_bit(7L, (unsigned long const volatile *)(& a->flags)); } if (tmp___16 != 0) { ac->adap_state = 6U; } else { { tmp___15 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___15 != 0) { ac->adap_state = 5U; } else { ac->adap_state = 1U; } } } } } goto ldv_40067; case_15: /* CIL Label */ gdi = & hi->data.get_dev_info; if ((int )hi->flags & 1) { { tmp___20 = hba_ioctl_tunnel(a, hi, rq, sgc); } if ((int )tmp___20) { return (1); } else { } goto ldv_40067; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_40067; } else { } if (gdi->target_id > 255U) { hi->status = 8U; goto ldv_40067; } else { } { t___0 = (struct esas2r_target *)(& a->targetdb) + (unsigned long )((unsigned short )gdi->target_id); tmp___21 = esas2r_targ_db_find_next_present(a, (int )((unsigned short )gdi->target_id)); gdi->target_id = (u32 )tmp___21; } if ((unsigned int )t___0->target_state != 5U) { hi->status = 1U; goto ldv_40067; } else { } hi->status = 5U; goto ldv_40067; switch_default: /* CIL Label */ hi->status = 4U; goto ldv_40067; switch_break: /* CIL Label */ ; } ldv_40067: ; return (0); } } static void hba_ioctl_done_callback(struct esas2r_adapter *a , struct esas2r_request *rq , void *context ) { struct atto_ioctl *ioctl_hba ; struct atto_hba_get_adapter_info *gai ; { ioctl_hba = (struct atto_ioctl *)esas2r_buffered_ioctl; if ((unsigned int )ioctl_hba->function == 0U) { { gai = & ioctl_hba->data.get_adap_info; gai->drvr_rev_major = 1U; gai->drvr_rev_minor = 0U; strcpy((char *)(& gai->drvr_rev_ascii), "1.00"); strcpy((char *)(& gai->drvr_name), "esas2r"); gai->num_busses = 1U; gai->num_targsper_bus = 256U; gai->num_lunsper_targ = 1U; } } else { } return; } } u8 handle_hba_ioctl(struct esas2r_adapter *a , struct atto_ioctl *ioctl_hba ) { struct esas2r_buffered_ioctl bi ; u8 tmp ; { { __memset((void *)(& bi), 0, 64UL); bi.a = a; bi.ioctl = (void *)ioctl_hba; bi.length = ioctl_hba->data_length + 576U; bi.callback = & hba_ioctl_callback; bi.context = (void *)0; bi.done_callback = & hba_ioctl_done_callback; bi.done_context = (void *)0; bi.offset = 0U; tmp = handle_buffered_ioctl(& bi); } return (tmp); } } int esas2r_write_params(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *data ) { int result ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; bool tmp___0 ; { { result = 0; a->nvram_command_done = 0; rq->comp_cb = & complete_nvr_req; tmp___0 = esas2r_nvram_write(a, rq, data); } if ((int )tmp___0) { goto ldv_40120; ldv_40119: { __ret = 0; __might_sleep("drivers/scsi/esas2r/esas2r_ioctl.c", 1265, 0); } if (a->nvram_command_done == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_40116: { tmp = prepare_to_wait_event(& a->nvram_waiter, & __wait, 1); __int = tmp; } if (a->nvram_command_done != 0) { goto ldv_40115; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_40115; } else { } { schedule(); } goto ldv_40116; ldv_40115: { finish_wait(& a->nvram_waiter, & __wait); } __ret = (int )__ret___0; } else { } ldv_40120: ; if (a->nvram_command_done == 0) { goto ldv_40119; } else { } if ((unsigned int )rq->req_stat == 0U) { result = 1; } else { } } else { } return (result); } } int esas2r_ioctl_handler(void *hostdata , int cmd , void *arg ) { struct atto_express_ioctl *ioctl ; struct esas2r_adapter *a ; struct esas2r_request *rq ; u16 code ; int err ; struct thread_info *tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; void *tmp___3 ; int tmp___4 ; int i ; int k ; int tmp___5 ; { { ioctl = (struct atto_express_ioctl *)0; esas2r_log(4L, "ioctl (%p, %x, %p)", hostdata, cmd, arg); } if (((unsigned long )arg == (unsigned long )((void *)0) || cmd <= 17663) || cmd > 17679) { return (-524); } else { } { tmp = current_thread_info(); tmp___0 = __chk_range_not_ok((unsigned long )arg, 524320UL, tmp->addr_limit.seg); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 1L); } if (tmp___2 == 0L) { { esas2r_log(2L, "ioctl_handler access_ok failed for cmd %d, address %p", cmd, arg); } return (-14); } else { } { tmp___3 = kzalloc(524320UL, 208U); ioctl = (struct atto_express_ioctl *)tmp___3; } if ((unsigned long )ioctl == (unsigned long )((struct atto_express_ioctl *)0)) { { esas2r_log(2L, "ioctl_handler kzalloc failed for %d bytes", 524320UL); } return (-12); } else { } { err = __copy_from_user((void *)ioctl, (void const *)arg, 524320U); } if (err != 0) { { esas2r_log(2L, "copy_from_user didn\'t copy everything (err %d, cmd %d)", err, cmd); kfree((void const *)ioctl); } return (-14); } else { } { tmp___4 = memcmp((void const *)(& ioctl->header.signature), (void const *)"Express", 8UL); } if (tmp___4 != 0) { { esas2r_log(2L, "invalid signature"); kfree((void const *)ioctl); } return (-524); } else { } ioctl->header.return_code = 0U; err = 0; if (cmd == 17668) { i = 0; k = 0; ioctl->data.chanlist.num_channels = 0U; goto ldv_40136; ldv_40135: ; if ((unsigned long )esas2r_adapters[i] != (unsigned long )((struct esas2r_adapter *)0)) { ioctl->data.chanlist.num_channels = ioctl->data.chanlist.num_channels + 1U; ioctl->data.chanlist.channel[k] = (u8 )i; k = k + 1; } else { } i = i + 1; ldv_40136: ; if (i <= 31) { goto ldv_40135; } else { } goto ioctl_done; } else { } if ((unsigned int )ioctl->header.channel == 255U) { a = (struct esas2r_adapter *)hostdata; } else { a = esas2r_adapters[(int )ioctl->header.channel]; if ((unsigned int )ioctl->header.channel > 31U || (unsigned long )a == (unsigned long )((struct esas2r_adapter *)0)) { { ioctl->header.return_code = 104U; esas2r_log(2L, "bad channel value"); kfree((void const *)ioctl); } return (-524); } else { } } { if (cmd == 17664) { goto case_17664; } else { } if (cmd == 17665) { goto case_17665; } else { } if (cmd == 17666) { goto case_17666; } else { } if (cmd == 17670) { goto case_17670; } else { } if (cmd == 17669) { goto case_17669; } else { } if (cmd == 17674) { goto case_17674; } else { } if (cmd == 17675) { goto case_17675; } else { } if (cmd == 17676) { goto case_17676; } else { } if (cmd == 17677) { goto case_17677; } else { } if (cmd == 17679) { goto case_17679; } else { } goto switch_default; case_17664: /* CIL Label */ ; if ((unsigned int )ioctl->data.fwrw.img_type == 5U) { { err = esas2r_write_fw(a, (char const *)(& ioctl->data.fwrw.image), 0L, 524320); } if (err >= 0) { { err = esas2r_read_fw(a, (char *)(& ioctl->data.fwrw.image), 0L, 524320); } } else { } } else if ((unsigned int )ioctl->data.fwrw.img_type == 6U) { { err = esas2r_write_fs(a, (char const *)(& ioctl->data.fwrw.image), 0L, 524320); } if (err >= 0) { { err = esas2r_read_fs(a, (char *)(& ioctl->data.fwrw.image), 0L, 524320); } } else { } } else { ioctl->header.return_code = 107U; } goto ldv_40140; case_17665: /* CIL Label */ { __memcpy((void *)(& ioctl->data.prw.data_buffer), (void const *)a->nvram, 256UL); ioctl->data.prw.code = 1U; } goto ldv_40140; case_17666: /* CIL Label */ { rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { { kfree((void const *)ioctl); esas2r_log(2L, "could not allocate an internal request"); } return (-12); } else { } { tmp___5 = esas2r_write_params(a, rq, (struct esas2r_sas_nvram *)(& ioctl->data.prw.data_buffer)); code = (u16 )tmp___5; ioctl->data.prw.code = code; esas2r_free_request(a, rq); } goto ldv_40140; case_17670: /* CIL Label */ { esas2r_nvram_get_defaults(a, (struct esas2r_sas_nvram *)(& ioctl->data.prw.data_buffer)); ioctl->data.prw.code = 1U; } goto ldv_40140; case_17669: /* CIL Label */ ioctl->data.chaninfo.major_rev = 1U; ioctl->data.chaninfo.minor_rev = 0U; ioctl->data.chaninfo.IRQ = (u8 )(a->pcid)->irq; ioctl->data.chaninfo.device_id = (a->pcid)->device; ioctl->data.chaninfo.vendor_id = (a->pcid)->vendor; ioctl->data.chaninfo.ven_dev_id = (a->pcid)->subsystem_device; ioctl->data.chaninfo.revision_id = (a->pcid)->revision; ioctl->data.chaninfo.pci_bus = ((a->pcid)->bus)->number; ioctl->data.chaninfo.pci_dev_func = (u8 )(a->pcid)->devfn; ioctl->data.chaninfo.core_rev = 0U; ioctl->data.chaninfo.host_no = (u8 )(a->host)->host_no; ioctl->data.chaninfo.hbaapi_rev = 0U; goto ldv_40140; case_17674: /* CIL Label */ { ioctl->header.return_code = handle_smp_ioctl(a, & ioctl->data.ioctl_smp); } goto ldv_40140; case_17675: /* CIL Label */ { ioctl->header.return_code = handle_csmi_ioctl(a, & ioctl->data.csmi); } goto ldv_40140; case_17676: /* CIL Label */ { ioctl->header.return_code = handle_hba_ioctl(a, & ioctl->data.ioctl_hba); } goto ldv_40140; case_17677: /* CIL Label */ { err = esas2r_write_vda(a, (char const *)(& ioctl->data.ioctl_vda), 0L, (int )(ioctl->data.ioctl_vda.data_length + 632U)); } if (err >= 0) { { err = esas2r_read_vda(a, (char *)(& ioctl->data.ioctl_vda), 0L, (int )(ioctl->data.ioctl_vda.data_length + 632U)); } } else { } goto ldv_40140; case_17679: /* CIL Label */ ioctl->data.modinfo.adapter = (void *)a; ioctl->data.modinfo.pci_dev = (void *)a->pcid; ioctl->data.modinfo.scsi_host = (void *)a->host; ioctl->data.modinfo.host_no = (unsigned short )(a->host)->host_no; goto ldv_40140; switch_default: /* CIL Label */ ioctl->header.return_code = 101U; switch_break: /* CIL Label */ ; } ldv_40140: ; ioctl_done: ; if (err < 0) { { esas2r_log(2L, "err %d on ioctl cmd %d", err, cmd); } { if (err == -12) { goto case_neg_12; } else { } if (err == -16) { goto case_neg_16; } else { } if (err == -38) { goto case_neg_38; } else { } if (err == -22) { goto case_neg_22; } else { } goto switch_default___0; case_neg_12: /* CIL Label */ ; case_neg_16: /* CIL Label */ ioctl->header.return_code = 108U; goto ldv_40153; case_neg_38: /* CIL Label */ ; case_neg_22: /* CIL Label */ ioctl->header.return_code = 110U; goto ldv_40153; switch_default___0: /* CIL Label */ ioctl->header.return_code = 109U; goto ldv_40153; switch_break___0: /* CIL Label */ ; } ldv_40153: ; } else { } { err = __copy_to_user(arg, (void const *)ioctl, 524320U); } if (err != 0) { { esas2r_log(2L, "ioctl_handler copy_to_user didn\'t copy everything (err %d, cmd %d)", err, cmd); kfree((void const *)ioctl); } return (-14); } else { } { kfree((void const *)ioctl); } return (0); } } int esas2r_ioctl(struct scsi_device *sd , int cmd , void *arg ) { int tmp ; { { tmp = esas2r_ioctl_handler((void *)(& (sd->host)->hostdata), cmd, arg); } return (tmp); } } static void free_fw_buffers(struct esas2r_adapter *a ) { { if ((unsigned long )a->firmware.data != (unsigned long )((u8 *)0U)) { { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->firmware.orig_len, (void *)a->firmware.data, a->firmware.phys, (struct dma_attrs *)0); a->firmware.data = (u8 *)0U; } } else { } return; } } static int allocate_fw_buffers(struct esas2r_adapter *a , u32 length ) { void *tmp ; { { free_fw_buffers(a); a->firmware.orig_len = (int )length; tmp = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )length, & a->firmware.phys, 208U, (struct dma_attrs *)0); a->firmware.data = (u8 *)tmp; } if ((unsigned long )a->firmware.data == (unsigned long )((u8 *)0U)) { return (0); } else { } return (1); } } int esas2r_read_fw(struct esas2r_adapter *a , char *buf , long off , int count ) { int size ; int __min1 ; int __min2 ; u32 length ; int tmp ; int size___0 ; int _min1 ; int _min2 ; { if ((unsigned int )a->firmware.state == 1U) { { __min1 = count; __min2 = 2176; size = __min1 < __min2 ? __min1 : __min2; __memcpy((void *)buf, (void const *)(& a->firmware.header), (size_t )size); } return (size); } else { } if ((unsigned int )a->firmware.state == 2U) { length = a->firmware.header.length; if (off == 0L) { if ((unsigned int )a->firmware.header.action == 1U) { { tmp = allocate_fw_buffers(a, length); } if (tmp == 0) { return (-12); } else { } { __memcpy((void *)a->firmware.data, (void const *)(& a->firmware.header), 2176UL); do_fm_api(a, (struct esas2r_flash_img *)a->firmware.data); } } else if ((unsigned int )a->firmware.header.action == 2U) { { _min1 = count; _min2 = 2176; size___0 = _min1 < _min2 ? _min1 : _min2; do_fm_api(a, & a->firmware.header); __memcpy((void *)buf, (void const *)(& a->firmware.header), (size_t )size___0); } return (size___0); } else { return (-38); } } else { } if ((long )count + off > (long )length) { count = (int )(length - (unsigned int )off); } else { } if (count < 0) { return (0); } else { } if ((unsigned long )a->firmware.data == (unsigned long )((u8 *)0U)) { return (-12); } else { } { __memcpy((void *)buf, (void const *)a->firmware.data + (unsigned long )off, (size_t )count); } if ((long )length <= off + (long )count) { { free_fw_buffers(a); } } else { } return (count); } else { } return (-22); } } int esas2r_write_fw(struct esas2r_adapter *a , char const *buf , long off , int count ) { u32 length ; struct esas2r_flash_img *header ; int min_size ; int tmp ; { if (off == 0L) { header = (struct esas2r_flash_img *)buf; min_size = 2160; a->firmware.state = 0; if (count <= 3 || (unsigned int )header->fi_version > 1U) { return (-22); } else { } if ((unsigned int )header->fi_version == 1U) { min_size = 2176; } else { } if (count < min_size) { return (-22); } else { } length = header->length; if (length > 1048576U) { return (-22); } else { } if ((unsigned int )header->action == 0U) { { tmp = allocate_fw_buffers(a, length); } if (tmp == 0) { return (-12); } else { } { __memcpy((void *)(& a->firmware.header), (void const *)buf, 2176UL); } } else if ((unsigned int )header->action - 1U <= 1U) { { __memcpy((void *)(& a->firmware.header), (void const *)buf, 2176UL); a->firmware.state = 2; } return (count); } else { return (-38); } } else { length = a->firmware.header.length; } if (off + (long )count > (long )length) { count = (int )(length - (unsigned int )off); } else { } if (count > 0) { if ((unsigned int )a->firmware.header.action == 1U) { return (count); } else { } if ((unsigned long )a->firmware.data == (unsigned long )((u8 *)0U)) { return (-12); } else { } { __memcpy((void *)a->firmware.data + (unsigned long )off, (void const *)buf, (size_t )count); } if ((long )length == off + (long )count) { { do_fm_api(a, (struct esas2r_flash_img *)a->firmware.data); __memcpy((void *)(& a->firmware.header), (void const *)a->firmware.data, 2176UL); a->firmware.state = 1; free_fw_buffers(a); } } else { } } else { } return (count); } } static void vda_complete_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { a->vda_command_done = 1; __wake_up(& a->vda_waiter, 1U, 1, (void *)0); } return; } } static u32 get_physaddr_vda(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; int offset ; { a = sgc->adapter; offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )a->vda_buffer)); *addr = a->ppvda_buffer + (u64 )offset; return (262416U - (u32 )offset); } } int esas2r_read_vda(struct esas2r_adapter *a , char *buf , long off , int count ) { struct esas2r_request *rq ; struct atto_ioctl_vda *vi ; struct esas2r_sg_context sgc ; bool wait_for_completion___0 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; { if ((unsigned long )a->vda_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (off == 0L) { { vi = (struct atto_ioctl_vda *)a->vda_buffer; rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { return (-16); } else { } { rq->comp_cb = & vda_complete_req; sgc.first_req = rq; sgc.adapter = a; sgc.cur_offset = a->vda_buffer + 272UL; sgc.get_phys_addr = & get_physaddr_vda; a->vda_command_done = 0; wait_for_completion___0 = esas2r_process_vda_ioctl(a, vi, rq, & sgc); } if ((int )wait_for_completion___0) { goto ldv_40223; ldv_40222: { __ret = 0; __might_sleep("drivers/scsi/esas2r/esas2r_ioctl.c", 1891, 0); } if (a->vda_command_done == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_40219: { tmp = prepare_to_wait_event(& a->vda_waiter, & __wait, 1); __int = tmp; } if (a->vda_command_done != 0) { goto ldv_40218; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_40218; } else { } { schedule(); } goto ldv_40219; ldv_40218: { finish_wait(& a->vda_waiter, & __wait); } __ret = (int )__ret___0; } else { } ldv_40223: ; if (a->vda_command_done == 0) { goto ldv_40222; } else { } } else { } { esas2r_free_request(a, rq); } } else { } if ((unsigned long )off > 262416UL) { return (0); } else { } if ((unsigned long )((long )count + off) > 262416UL) { count = (int )(262416U - (unsigned int )off); } else { } if (count < 0) { return (0); } else { } { __memcpy((void *)buf, (void const *)a->vda_buffer + (unsigned long )off, (size_t )count); } return (count); } } int esas2r_write_vda(struct esas2r_adapter *a , char const *buf , long off , int count ) { dma_addr_t dma_addr ; void *tmp ; { if ((unsigned long )a->vda_buffer == (unsigned long )((u8 *)0U)) { { tmp = dma_alloc_attrs(& (a->pcid)->dev, 262416UL, & dma_addr, 208U, (struct dma_attrs *)0); a->vda_buffer = (u8 *)tmp; a->ppvda_buffer = dma_addr; } } else { } if ((unsigned long )a->vda_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if ((unsigned long )off > 262416UL) { return (0); } else { } if ((unsigned long )((long )count + off) > 262416UL) { count = (int )(262416U - (unsigned int )off); } else { } if (count <= 0) { return (0); } else { } { __memcpy((void *)a->vda_buffer + (unsigned long )off, (void const *)buf, (size_t )count); } return (count); } } static void fs_api_complete_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { a->fs_api_command_done = 1; __wake_up(& a->fs_api_waiter, 1U, 1, (void *)0); } return; } } static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; struct esas2r_ioctl_fs *fs ; u32 offset ; { a = sgc->adapter; fs = (struct esas2r_ioctl_fs *)a->fs_api_buffer; offset = (u32 )((long )sgc->cur_offset) - (u32 )((long )fs); *addr = a->ppfs_api_buffer + (u64 )offset; return (a->fs_api_buffer_size - offset); } } int esas2r_read_fs(struct esas2r_adapter *a , char *buf , long off , int count ) { struct esas2r_request *rq ; struct esas2r_sg_context sgc ; struct esas2r_ioctl_fs *fs ; int tmp ; bool tmp___0 ; int tmp___1 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___2 ; { if ((unsigned long )a->fs_api_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (off == 0L) { { fs = (struct esas2r_ioctl_fs *)a->fs_api_buffer; tmp = down_interruptible(& a->fs_api_semaphore); } if (tmp != 0) { busy: fs->status = 3U; return (-16); } else { } { rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { { up(& a->fs_api_semaphore); } goto busy; } else { } { rq->comp_cb = & fs_api_complete_req; sgc.cur_offset = (u8 *)(& fs->data); sgc.get_phys_addr = & get_physaddr_fs_api; a->fs_api_command_done = 0; tmp___0 = esas2r_process_fs_ioctl(a, fs, rq, & sgc); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { if ((unsigned int )fs->status == 3U) { count = -16; } else { } goto dont_wait; } else { } goto ldv_40264; ldv_40263: { __ret = 0; __might_sleep("drivers/scsi/esas2r/esas2r_ioctl.c", 2023, 0); } if (a->fs_api_command_done == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_40260: { tmp___2 = prepare_to_wait_event(& a->fs_api_waiter, & __wait, 1); __int = tmp___2; } if (a->fs_api_command_done != 0) { goto ldv_40259; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_40259; } else { } { schedule(); } goto ldv_40260; ldv_40259: { finish_wait(& a->fs_api_waiter, & __wait); } __ret = (int )__ret___0; } else { } ldv_40264: ; if (a->fs_api_command_done == 0) { goto ldv_40263; } else { } dont_wait: { up(& a->fs_api_semaphore); esas2r_free_request(a, rq); } if (count < 0) { return (count); } else { } } else { } if (off > (long )a->fs_api_buffer_size) { return (0); } else { } if ((long )count + off > (long )a->fs_api_buffer_size) { count = (int )(a->fs_api_buffer_size - (unsigned int )off); } else { } if (count < 0) { return (0); } else { } { __memcpy((void *)buf, (void const *)a->fs_api_buffer + (unsigned long )off, (size_t )count); } return (count); } } int esas2r_write_fs(struct esas2r_adapter *a , char const *buf , long off , int count ) { struct esas2r_ioctl_fs *fs ; u32 length ; void *tmp ; { if (off == 0L) { fs = (struct esas2r_ioctl_fs *)buf; length = fs->command.length + 32U; if ((unsigned int )fs->command.command == 2U) { length = 32U; } else { } if ((unsigned int )count <= 31U) { return (-22); } else { } if ((unsigned long )a->fs_api_buffer != (unsigned long )((u8 *)0U)) { if (a->fs_api_buffer_size < length) { { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->fs_api_buffer_size, (void *)a->fs_api_buffer, a->ppfs_api_buffer, (struct dma_attrs *)0); } goto re_allocate_buffer; } else { } } else { re_allocate_buffer: { a->fs_api_buffer_size = length; tmp = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )a->fs_api_buffer_size, & a->ppfs_api_buffer, 208U, (struct dma_attrs *)0); a->fs_api_buffer = (u8 *)tmp; } } } else { } if ((unsigned long )a->fs_api_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (off > (long )a->fs_api_buffer_size) { return (0); } else { } if ((long )count + off > (long )a->fs_api_buffer_size) { count = (int )(a->fs_api_buffer_size - (unsigned int )off); } else { } if (count <= 0) { return (0); } else { } { __memcpy((void *)a->fs_api_buffer + (unsigned long )off, (void const *)buf, (size_t )count); } return (count); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___3(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___4(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104___1(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106___1(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103___0(spinlock_t *lock , unsigned long flags ) ; struct esas2r_target *esas2r_targ_db_find_by_ident(struct esas2r_adapter *a , void *identifier , u8 ident_len ) ; void esas2r_targ_db_initialize(struct esas2r_adapter *a ) { struct esas2r_target *t ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39875; ldv_39874: { __memset((void *)t, 0, 120UL); t->target_state = 0U; t->buffered_target_state = 0U; t->new_target_state = 255U; t = t + 1; } ldv_39875: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39874; } else { } return; } } void esas2r_targ_db_remove_all(struct esas2r_adapter *a , bool notify ) { struct esas2r_target *t ; unsigned long flags ; u16 tmp ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39885; ldv_39884: ; if ((unsigned int )t->target_state != 5U) { goto ldv_39883; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___4(& a->mem_lock); esas2r_targ_db_remove(a, t); ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } if ((int )notify) { { tmp = esas2r_targ_get_id(t, a); esas2r_target_state_changed(a, (int )tmp, 0); } } else { } ldv_39883: t = t + 1; ldv_39885: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39884; } else { } return; } } void esas2r_targ_db_report_changes(struct esas2r_adapter *a ) { struct esas2r_target *t ; unsigned long flags ; int tmp ; u8 state ; u8 tmp___0 ; u16 tmp___1 ; { { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return; } else { } t = (struct esas2r_target *)(& a->targetdb); goto ldv_39894; ldv_39893: { state = 255U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104___1(& a->mem_lock); } if ((int )t->buffered_target_state != (int )t->target_state) { tmp___0 = t->target_state; t->buffered_target_state = tmp___0; state = tmp___0; } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } if ((unsigned int )state != 255U) { { tmp___1 = esas2r_targ_get_id(t, a); esas2r_target_state_changed(a, (int )tmp___1, (int )state); } } else { } t = t + 1; ldv_39894: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39893; } else { } return; } } struct esas2r_target *esas2r_targ_db_add_raid(struct esas2r_adapter *a , struct esas2r_disc_context *dc ) { struct esas2r_target *t ; { if ((unsigned int )dc->curr_virt_id > 255U) { return ((struct esas2r_target *)0); } else { } t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )dc->curr_virt_id; if ((unsigned int )t->target_state == 5U) { return ((struct esas2r_target *)0); } else { } if (dc->interleave == 0U || dc->block_size == 0U) { return ((struct esas2r_target *)0); } else { } t->block_size = dc->block_size; t->inter_byte = dc->interleave; t->inter_block = dc->interleave / dc->block_size; t->virt_targ_id = dc->curr_virt_id; t->phys_targ_id = 65535U; t->flags = (unsigned int )t->flags & 254U; t->flags = (u8 )((unsigned int )t->flags | 2U); t->identifier_len = 0U; t->target_state = 5U; return (t); } } struct esas2r_target *esas2r_targ_db_add_pthru(struct esas2r_adapter *a , struct esas2r_disc_context *dc , u8 *ident , u8 ident_len ) { struct esas2r_target *t ; { if ((unsigned int )dc->curr_virt_id > 255U) { return ((struct esas2r_target *)0); } else { } { t = esas2r_targ_db_find_by_ident(a, (void *)ident, (int )ident_len); } if ((unsigned long )t == (unsigned long )((struct esas2r_target *)0)) { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )dc->curr_virt_id; if ((unsigned int )ident_len > 60U || (unsigned int )t->target_state == 5U) { return ((struct esas2r_target *)0); } else { } } else { } { t->block_size = 0U; t->inter_byte = 0U; t->inter_block = 0U; t->virt_targ_id = dc->curr_virt_id; t->phys_targ_id = dc->curr_phys_id; t->identifier_len = ident_len; __memcpy((void *)(& t->identifier), (void const *)ident, (size_t )ident_len); t->flags = (u8 )((unsigned int )t->flags | 3U); t->target_state = 5U; } return (t); } } void esas2r_targ_db_remove(struct esas2r_adapter *a , struct esas2r_target *t ) { { t->target_state = 0U; return; } } struct esas2r_target *esas2r_targ_db_find_by_sas_addr(struct esas2r_adapter *a , u64 *sas_addr ) { struct esas2r_target *t ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39918; ldv_39917: ; if (t->sas_addr == *sas_addr) { return (t); } else { } t = t + 1; ldv_39918: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39917; } else { } return ((struct esas2r_target *)0); } } struct esas2r_target *esas2r_targ_db_find_by_ident(struct esas2r_adapter *a , void *identifier , u8 ident_len ) { struct esas2r_target *t ; int tmp ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39927; ldv_39926: ; if ((int )ident_len == (int )t->identifier_len) { { tmp = memcmp((void const *)(& t->identifier), (void const *)identifier, (size_t )ident_len); } if (tmp == 0) { return (t); } else { } } else { } t = t + 1; ldv_39927: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39926; } else { } return ((struct esas2r_target *)0); } } u16 esas2r_targ_db_find_next_present(struct esas2r_adapter *a , u16 target_id ) { u16 id ; struct esas2r_target *t ; { id = (unsigned int )target_id + 1U; goto ldv_39937; ldv_39936: t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )id; if ((unsigned int )t->target_state == 5U) { goto ldv_39935; } else { } id = (u16 )((int )id + 1); ldv_39937: ; if ((unsigned int )id <= 255U) { goto ldv_39936; } else { } ldv_39935: ; return (id); } } struct esas2r_target *esas2r_targ_db_find_by_virt_id(struct esas2r_adapter *a , u16 virt_id ) { struct esas2r_target *t ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39945; ldv_39944: ; if ((unsigned int )t->target_state != 5U) { goto ldv_39943; } else { } if ((int )t->virt_targ_id == (int )virt_id) { return (t); } else { } ldv_39943: t = t + 1; ldv_39945: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39944; } else { } return ((struct esas2r_target *)0); } } u16 esas2r_targ_db_get_tgt_cnt(struct esas2r_adapter *a ) { u16 devcnt ; struct esas2r_target *t ; unsigned long flags ; { { devcnt = 0U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106___1(& a->mem_lock); t = (struct esas2r_target *)(& a->targetdb); } goto ldv_39954; ldv_39953: ; if ((unsigned int )t->target_state == 5U) { devcnt = (u16 )((int )devcnt + 1); } else { } t = t + 1; ldv_39954: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_39953; } else { } { ldv_spin_unlock_irqrestore_103___0(& a->mem_lock, flags); } return (devcnt); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102___4(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104___1(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106___1(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } void esas2r_build_cli_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u32 cmd_rsp_len ) ; void esas2r_nuxi_mgt_data(u8 function , void *data ) ; void esas2r_nuxi_cfg_data(u8 function , void *data ) ; static u8 esas2r_vdaioctl_versions[9U] = { 255U, 0U, 255U, 255U, 0U, 255U, 0U, 0U, 0U}; static void clear_vda_request(struct esas2r_request *rq ) ; static void esas2r_complete_vda_ioctl(struct esas2r_adapter *a , struct esas2r_request *rq ) ; bool esas2r_process_vda_ioctl(struct esas2r_adapter *a , struct atto_ioctl_vda *vi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { u32 datalen ; struct atto_vda_sge *firstsg ; u8 vercnt ; int tmp ; u8 *cmdcurr_offset ; u32 payldlen ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { datalen = 0U; firstsg = (struct atto_vda_sge *)0; vercnt = 9U; vi->status = 0U; vi->vda_status = 254U; if ((int )vi->function >= (int )vercnt) { vi->status = 4U; return (0); } else { } if ((int )vi->version > (int )esas2r_vdaioctl_versions[(int )vi->function]) { vi->status = 2U; return (0); } else { } { tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { vi->status = 11U; return (0); } else { } if ((unsigned int )vi->function != 0U) { { clear_vda_request(rq); } } else { } (rq->vrq)->scsi.function = vi->function; rq->interrupt_cb = & esas2r_complete_vda_ioctl; rq->interrupt_cx = (void *)vi; { if ((int )vi->function == 1) { goto case_1; } else { } if ((int )vi->function == 4) { goto case_4; } else { } if ((int )vi->function == 7) { goto case_7; } else { } if ((int )vi->function == 6) { goto case_6; } else { } if ((int )vi->function == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )vi->cmd.flash.sub_func - 6U > 2U) { vi->status = 4U; return (0); } else { } if ((unsigned int )vi->cmd.flash.sub_func != 8U) { datalen = vi->data_length; } else { } { (rq->vrq)->flash.length = datalen; (rq->vrq)->flash.sub_func = vi->cmd.flash.sub_func; __memcpy((void *)(& (rq->vrq)->flash.data.file.file_name), (void const *)(& vi->cmd.flash.data.file.file_name), 16UL); firstsg = (struct atto_vda_sge *)(& (rq->vrq)->flash.data.file.sge); } goto ldv_39852; case_4: /* CIL Label */ datalen = vi->data_length; (rq->vrq)->cli.cmd_rsp_len = vi->cmd.cli.cmd_rsp_len; (rq->vrq)->cli.length = datalen; firstsg = (struct atto_vda_sge *)(& (rq->vrq)->cli.sge); goto ldv_39852; case_7: /* CIL Label */ cmdcurr_offset = sgc->cur_offset + 0xffffffffffffff10UL; if (vi->data_length != 0U) { payldlen = 0U; if ((unsigned int )vi->cmd.mgt.mgt_func - 8U <= 1U) { (rq->vrq)->mgt.payld_sglst_offset = 48U; payldlen = vi->data_length; datalen = vi->cmd.mgt.data_length; } else if ((unsigned int )vi->cmd.mgt.mgt_func == 10U || (unsigned int )vi->cmd.mgt.mgt_func == 12U) { datalen = vi->data_length; cmdcurr_offset = sgc->cur_offset; } else { vi->status = 8U; return (0); } (rq->vrq)->mgt.length = datalen; if (payldlen != 0U) { { (rq->vrq)->mgt.payld_length = payldlen; esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->mgt.payld_sge)); sgc->length = payldlen; tmp___0 = esas2r_build_sg_list(a, rq, sgc); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { vi->status = 3U; return (0); } else { } } else { } } else { datalen = vi->cmd.mgt.data_length; (rq->vrq)->mgt.length = datalen; } { firstsg = (struct atto_vda_sge *)(& (rq->vrq)->mgt.__annonCompField93.sge); sgc->cur_offset = cmdcurr_offset; (rq->vrq)->mgt.mgt_func = vi->cmd.mgt.mgt_func; (rq->vrq)->mgt.scan_generation = vi->cmd.mgt.scan_generation; (rq->vrq)->mgt.dev_index = vi->cmd.mgt.dev_index; esas2r_nuxi_mgt_data((int )(rq->vrq)->mgt.mgt_func, (void *)(& vi->cmd.mgt.data)); } goto ldv_39852; case_6: /* CIL Label */ ; if (vi->data_length != 0U || vi->cmd.cfg.data_length == 0U) { vi->status = 8U; return (0); } else { } if ((unsigned int )vi->cmd.cfg.cfg_func == 0U) { vi->status = 4U; return (0); } else { } (rq->vrq)->cfg.sub_func = vi->cmd.cfg.cfg_func; (rq->vrq)->cfg.length = vi->cmd.cfg.data_length; if ((unsigned int )vi->cmd.cfg.cfg_func == 1U) { { __memcpy((void *)(& (rq->vrq)->cfg.data), (void const *)(& vi->cmd.cfg.data), (size_t )vi->cmd.cfg.data_length); esas2r_nuxi_cfg_data((int )(rq->vrq)->cfg.sub_func, (void *)(& (rq->vrq)->cfg.data)); } } else { vi->status = 4U; return (0); } goto ldv_39852; case_8: /* CIL Label */ { vi->cmd.gsv.rsp_len = vercnt; __memcpy((void *)(& vi->cmd.gsv.version_info), (void const *)(& esas2r_vdaioctl_versions), (size_t )vercnt); vi->vda_status = 0U; } goto ldv_39852; switch_default: /* CIL Label */ vi->status = 4U; return (0); switch_break: /* CIL Label */ ; } ldv_39852: ; if (datalen != 0U) { { esas2r_sgc_init(sgc, a, rq, firstsg); sgc->length = datalen; tmp___2 = esas2r_build_sg_list(a, rq, sgc); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { vi->status = 3U; return (0); } else { } } else { } { esas2r_start_request(a, rq); } return (1); } } static void esas2r_complete_vda_ioctl(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_ioctl_vda *vi ; struct atto_ioctl_vda_cfg_cmd *cfg ; struct atto_vda_cfg_rsp *rsp ; char buf[5U] ; { vi = (struct atto_ioctl_vda *)rq->interrupt_cx; vi->vda_status = rq->req_stat; { if ((int )vi->function == 1) { goto case_1; } else { } if ((int )vi->function == 7) { goto case_7; } else { } if ((int )vi->function == 6) { goto case_6; } else { } if ((int )vi->function == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )vi->cmd.flash.sub_func == 8U || (unsigned int )vi->cmd.flash.sub_func == 6U) { vi->cmd.flash.data.file.file_size = rq->func_rsp.flash_rsp.file_size; } else { } goto ldv_39866; case_7: /* CIL Label */ vi->cmd.mgt.scan_generation = rq->func_rsp.mgt_rsp.scan_generation; vi->cmd.mgt.dev_index = rq->func_rsp.mgt_rsp.dev_index; if (vi->data_length == 0U) { vi->cmd.mgt.data_length = rq->func_rsp.mgt_rsp.length; } else { } { esas2r_nuxi_mgt_data((int )(rq->vrq)->mgt.mgt_func, (void *)(& vi->cmd.mgt.data)); } goto ldv_39866; case_6: /* CIL Label */ ; if ((unsigned int )vi->cmd.cfg.cfg_func == 1U) { { cfg = & vi->cmd.cfg; rsp = & rq->func_rsp.cfg_rsp; cfg->data_length = 112U; cfg->data.init.vda_version = (unsigned int )rsp->vda_version; cfg->data.init.fw_build = rsp->fw_build; snprintf((char *)(& buf), 5UL, "%1.1u.%2.2u", (int )((unsigned char )rsp->fw_release), (int )((unsigned char )((int )rsp->fw_release >> 8))); __memcpy((void *)(& cfg->data.init.fw_release), (void const *)(& buf), 4UL); } if ((unsigned int )((unsigned char )cfg->data.init.fw_build) == 65U) { cfg->data.init.fw_version = cfg->data.init.fw_build; } else { cfg->data.init.fw_version = cfg->data.init.fw_release; } } else { { esas2r_nuxi_cfg_data((int )(rq->vrq)->cfg.sub_func, (void *)(& vi->cmd.cfg.data)); } } goto ldv_39866; case_4: /* CIL Label */ vi->cmd.cli.cmd_rsp_len = rq->func_rsp.cli_rsp.cmd_rsp_len; goto ldv_39866; switch_default: /* CIL Label */ ; goto ldv_39866; switch_break: /* CIL Label */ ; } ldv_39866: ; return; } } void esas2r_build_flash_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 cksum , u32 addr , u32 length ) { struct atto_vda_flash_req *vrq ; { { vrq = & (rq->vrq)->flash; clear_vda_request(rq); (rq->vrq)->scsi.function = 1U; } if (((unsigned int )sub_func == 0U || (unsigned int )sub_func == 2U) || (unsigned int )sub_func == 1U) { vrq->sg_list_offset = 20U; } else { } vrq->length = length; vrq->flash_addr = addr; vrq->checksum = cksum; vrq->sub_func = sub_func; return; } } void esas2r_build_mgt_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 scan_gen , u16 dev_index , u32 length , void *data ) { struct atto_vda_mgmt_req *vrq ; int tmp ; { { vrq = & (rq->vrq)->mgt; clear_vda_request(rq); (rq->vrq)->scsi.function = 7U; vrq->mgt_func = sub_func; vrq->scan_generation = scan_gen; vrq->dev_index = dev_index; vrq->length = length; } if (vrq->length != 0U) { { tmp = constant_test_bit(24L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { vrq->sg_list_offset = 24U; vrq->__annonCompField93.sge[0].length = length | 16777216U; vrq->__annonCompField93.sge[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } else { vrq->sg_list_offset = 24U; vrq->__annonCompField93.prde[0].ctl_len = length; vrq->__annonCompField93.prde[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } } else { } if ((unsigned long )data != (unsigned long )((void *)0)) { { esas2r_nuxi_mgt_data((int )sub_func, data); __memcpy((void *)(& (rq->__annonCompField102.vda_rsp_data)->mgt_data.data.bytes), (void const *)data, (size_t )length); } } else { } return; } } void esas2r_build_ae_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_vda_ae_req *vrq ; int tmp ; { { vrq = & (rq->vrq)->ae; clear_vda_request(rq); (rq->vrq)->scsi.function = 3U; vrq->length = 256U; tmp = constant_test_bit(24L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { vrq->sg_list_offset = 12U; vrq->__annonCompField89.sge[0].length = vrq->length | 16777216U; vrq->__annonCompField89.sge[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } else { vrq->sg_list_offset = 12U; vrq->__annonCompField89.prde[0].ctl_len = vrq->length; vrq->__annonCompField89.prde[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } return; } } void esas2r_build_cli_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u32 cmd_rsp_len ) { struct atto_vda_cli_req *vrq ; { { vrq = & (rq->vrq)->cli; clear_vda_request(rq); (rq->vrq)->scsi.function = 4U; vrq->length = length; vrq->cmd_rsp_len = cmd_rsp_len; vrq->sg_list_offset = 16U; } return; } } void esas2r_build_ioctl_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u8 sub_func ) { struct atto_vda_ioctl_req *vrq ; { { vrq = & (rq->vrq)->ioctl; clear_vda_request(rq); (rq->vrq)->scsi.function = 5U; vrq->length = length; vrq->sub_func = sub_func; vrq->sg_list_offset = 32U; } return; } } void esas2r_build_cfg_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u32 length , void *data ) { struct atto_vda_cfg_req *vrq ; { { vrq = & (rq->vrq)->cfg; clear_vda_request(rq); (rq->vrq)->scsi.function = 6U; vrq->sub_func = sub_func; vrq->length = length; } if ((unsigned long )data != (unsigned long )((void *)0)) { { esas2r_nuxi_cfg_data((int )sub_func, data); __memcpy((void *)(& vrq->data), (void const *)data, (size_t )length); } } else { } return; } } static void clear_vda_request(struct esas2r_request *rq ) { u32 handle ; { { handle = (rq->vrq)->scsi.handle; __memset((void *)rq->vrq, 0, 1024UL); (rq->vrq)->scsi.handle = handle; rq->req_stat = 254U; __memset(rq->__annonCompField102.data_buf, 0, 256UL); INIT_LIST_HEAD(& rq->req_list); } return; } } void ldv_stop(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; int ldv_linux_fs_char_dev_register_chrdev(int major ) ; void ldv_linux_fs_char_dev_unregister_chrdev_region(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; int ldv_linux_usb_gadget_register_chrdev(int major ) ; void ldv_linux_usb_gadget_unregister_chrdev_region(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; static void ldv_ldv_initialize_130(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_127(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_131(void) ; static void ldv_ldv_pre_probe_133(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_132(int retval ) ; static int ldv_ldv_post_probe_134(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_128(void) ; static void ldv_ldv_check_final_state_129(void) ; void ldv_free(void *s ) ; extern struct module __this_module ; extern void __bad_size_call_parameter(void) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___2(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_111(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_119(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_request_lock_of_esas2r_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_request_lock_of_esas2r_adapter(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_111(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_115___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_115___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_115___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_108(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_108(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_108(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_108(spinlock_t *lock , unsigned long flags ) ; extern int sysfs_create_bin_file(struct kobject * , struct bin_attribute const * ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void add_timer(struct timer_list * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern int seq_putc(struct seq_file * , char ) ; extern int seq_puts(struct seq_file * , char const * ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int cpu_number ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_104(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_105(struct pci_driver *ldv_func_arg1 ) ; static void ldv_pci_unregister_driver_107(struct pci_driver *ldv_func_arg1 ) ; extern struct scatterlist *sg_next(struct scatterlist * ) ; extern int __register_chrdev(unsigned int , unsigned int , unsigned int , char const * , struct file_operations const * ) ; extern void __unregister_chrdev(unsigned int , unsigned int , unsigned int , char const * ) ; __inline static int ldv_register_chrdev_90(unsigned int major , char const *name , struct file_operations const *fops ) { int tmp ; { { tmp = __register_chrdev(major, 0U, 256U, name, fops); } return (tmp); } } __inline static int register_chrdev(unsigned int major , char const *name , struct file_operations const *fops ) ; __inline static int ldv_register_chrdev_110(unsigned int major , char const *name , struct file_operations const *fops ) ; __inline static void ldv_unregister_chrdev_91(unsigned int major , char const *name ) { { { __unregister_chrdev(major, 0U, 256U, name); } return; } } __inline static void unregister_chrdev(unsigned int major , char const *name ) ; __inline static void ldv_unregister_chrdev_106(unsigned int major , char const *name ) ; extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; static struct Scsi_Host *ldv_scsi_host_alloc_102(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { { tmp = scsi_add_host_with_dma(host, dev, dev); } return (tmp); } } __inline static int ldv_scsi_add_host_103(struct Scsi_Host *host , struct device *dev ) ; extern void scsi_unregister(struct Scsi_Host * ) ; static void ldv_scsi_unregister_109(struct Scsi_Host *ldv_func_arg1 ) ; extern void msleep(unsigned int ) ; extern struct proc_dir_entry *proc_create_data(char const * , umode_t , struct proc_dir_entry * , struct file_operations const * , void * ) ; __inline static struct proc_dir_entry *proc_create(char const *name , umode_t mode , struct proc_dir_entry *parent , struct file_operations const *proc_fops ) { struct proc_dir_entry *tmp ; { { tmp = proc_create_data(name, (int )mode, parent, proc_fops, (void *)0); } return (tmp); } } extern void remove_proc_entry(char const * , struct proc_dir_entry * ) ; static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int scsi_add_device(struct Scsi_Host * , uint , uint , u64 ) ; extern void scsi_remove_device(struct scsi_device * ) ; extern void scsi_device_put(struct scsi_device * ) ; extern struct scsi_device *scsi_device_lookup(struct Scsi_Host * , uint , uint , u64 ) ; extern int scsi_change_queue_depth(struct scsi_device * , int ) ; extern int scsi_device_set_state(struct scsi_device * , enum scsi_device_state ) ; extern int scsi_dma_map(struct scsi_cmnd * ) ; extern void scsi_dma_unmap(struct scsi_cmnd * ) ; __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } __inline static unsigned int scsi_bufflen(struct scsi_cmnd *cmd ) { { return (cmd->sdb.length); } } __inline static void scsi_set_resid(struct scsi_cmnd *cmd , int resid ) { { cmd->sdb.resid = resid; return; } } struct esas2r_adapter *esas2r_adapters[32U] ; int cmd_per_lun ; int can_queue ; int esas2r_max_sectors ; int sg_tablesize ; int esas2r_release(struct Scsi_Host *sh ) ; char const *esas2r_info(struct Scsi_Host *sh ) ; int esas2r_queuecommand(struct Scsi_Host *host , struct scsi_cmnd *cmd ) ; int esas2r_show_info(struct seq_file *m , struct Scsi_Host *sh ) ; long esas2r_proc_ioctl(struct file *fp , unsigned int cmd , unsigned long arg ) ; int esas2r_eh_abort(struct scsi_cmnd *cmd ) ; int esas2r_device_reset(struct scsi_cmnd *cmd ) ; int esas2r_host_reset(struct scsi_cmnd *cmd ) ; int esas2r_bus_reset(struct scsi_cmnd *cmd ) ; int esas2r_target_reset(struct scsi_cmnd *cmd ) ; void esas2r_fw_event_on(struct esas2r_adapter *a ) ; int esas2r_req_status_to_error(u8 req_stat ) ; __inline static void esas2r_rq_free_sg_lists___2(struct esas2r_request *rq , struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; { { tmp = list_empty((struct list_head const *)(& rq->sg_table_head)); } if (tmp != 0) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___2(& a->sg_list_lock); list_splice_tail_init(& rq->sg_table_head, & a->free_sg_list_head); ldv_spin_unlock_irqrestore_99(& a->sg_list_lock, flags); } return; } } __inline static void esas2r_rq_destroy_request___1(struct esas2r_request *rq , struct esas2r_adapter *a ) { { { esas2r_rq_free_sg_lists___2(rq, a); *(a->req_table + (unsigned long )((unsigned short )(rq->vrq)->scsi.handle)) = (struct esas2r_request *)0; rq->__annonCompField102.data_buf = (void *)0; } return; } } static int found_adapters ; static struct esas2r_adapter *esas2r_adapter_from_kobj(struct kobject *kobj ) { struct device *dev ; struct kobject const *__mptr ; struct Scsi_Host *host ; struct device const *__mptr___0 ; { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct device const *)dev; host = (struct Scsi_Host *)__mptr___0 + 0xfffffffffffff6c8UL; return ((struct esas2r_adapter *)(& host->hostdata)); } } static ssize_t read_fw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_read_fw(a, buf, (long )off, (int )count); } return ((ssize_t )tmp___0); } } static ssize_t write_fw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_write_fw(a, (char const *)buf, (long )off, (int )count); } return ((ssize_t )tmp___0); } } static ssize_t read_fs(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_read_fs(a, buf, (long )off, (int )count); } return ((ssize_t )tmp___0); } } static ssize_t write_fs(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; unsigned long _min1 ; size_t _min2 ; int result ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; _min1 = 36UL; _min2 = count; length = (int )(_min1 < _min2 ? _min1 : _min2); result = 0; result = esas2r_write_fs(a, (char const *)buf, (long )off, (int )count); } if (result < 0) { result = 0; } else { } return ((ssize_t )length); } } static ssize_t read_vda(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_read_vda(a, buf, (long )off, (int )count); } return ((ssize_t )tmp___0); } } static ssize_t write_vda(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_write_vda(a, (char const *)buf, (long )off, (int )count); } return ((ssize_t )tmp___0); } } static ssize_t read_live_nvram(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; size_t __min1 ; size_t __min2 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; __min1 = 256UL; __min2 = 4096UL; length = (int )(__min1 < __min2 ? __min1 : __min2); __memcpy((void *)buf, (void const *)a->nvram, (size_t )length); } return ((ssize_t )length); } } static ssize_t write_live_nvram(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; struct esas2r_request *rq ; int result ; int tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; result = -14; rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { return (-12L); } else { } { tmp___0 = esas2r_write_params(a, rq, (struct esas2r_sas_nvram *)buf); } if (tmp___0 != 0) { result = (int )count; } else { } { esas2r_free_request(a, rq); } return ((ssize_t )result); } } static ssize_t read_default_nvram(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; esas2r_nvram_get_defaults(a, (struct esas2r_sas_nvram *)buf); } return (256L); } } static ssize_t read_hw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; size_t __min1 ; size_t __min2 ; u8 tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; __min1 = 576UL; __min2 = 4096UL; length = (int )(__min1 < __min2 ? __min1 : __min2); } if ((unsigned long )a->local_atto_ioctl == (unsigned long )((struct atto_ioctl *)0)) { return (-12L); } else { } { tmp___0 = handle_hba_ioctl(a, a->local_atto_ioctl); } if ((unsigned int )tmp___0 != 0U) { return (-12L); } else { } { __memcpy((void *)buf, (void const *)a->local_atto_ioctl, (size_t )length); } return ((ssize_t )length); } } static ssize_t write_hw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; unsigned long _min1 ; size_t _min2 ; void *tmp___0 ; { { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; _min1 = 576UL; _min2 = count; length = (int )(_min1 < _min2 ? _min1 : _min2); } if ((unsigned long )a->local_atto_ioctl == (unsigned long )((struct atto_ioctl *)0)) { { tmp___0 = kzalloc(576UL, 208U); a->local_atto_ioctl = (struct atto_ioctl *)tmp___0; } if ((unsigned long )a->local_atto_ioctl == (unsigned long )((struct atto_ioctl *)0)) { { esas2r_log(2L, "write_hw kzalloc failed for %d bytes", 576UL); } return (-12L); } else { } } else { } { __memset((void *)a->local_atto_ioctl, 0, 576UL); __memcpy((void *)a->local_atto_ioctl, (void const *)buf, (size_t )length); } return ((ssize_t )length); } } struct bin_attribute bin_attr_fw = {{"fw", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_fw, & write_fw, 0}; struct bin_attribute bin_attr_fs = {{"fs", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_fs, & write_fs, 0}; struct bin_attribute bin_attr_vda = {{"vda", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_vda, & write_vda, 0}; struct bin_attribute bin_attr_hw = {{"hw", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_hw, & write_hw, 0}; struct bin_attribute bin_attr_live_nvram = {{"live_nvram", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_live_nvram, & write_live_nvram, 0}; struct bin_attribute bin_attr_default_nvram = {{"default_nvram", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_default_nvram, (ssize_t (*)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ))0, 0}; static struct scsi_host_template driver_template = {& __this_module, "ATTO ExpressSAS 6GB RAID Adapter", 0, & esas2r_release, & esas2r_info, & esas2r_ioctl, 0, & esas2r_queuecommand, & esas2r_eh_abort, & esas2r_device_reset, & esas2r_target_reset, & esas2r_bus_reset, & esas2r_host_reset, 0, 0, 0, 0, 0, 0, 0, & scsi_change_queue_depth, 0, 0, & esas2r_show_info, 0, 0, 0, "esas2r", 0, 128, -1, 128U, (unsigned short)0, 65535U, 0UL, 64, 0U, 0, 1U, (unsigned char)0, (unsigned char)0, 0U, 1U, 0U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0U, 0, 0, {0, 0}, 0ULL, 0U, 0, (_Bool)0}; int sgl_page_size = 512; int num_sg_lists = 1024; int sg_tablesize = 128; int num_requests = 256; int num_ae_requests = 4; int cmd_per_lun = 64; int can_queue = 128; int esas2r_max_sectors = 65535; int interrupt_mode = 1; static struct pci_device_id esas2r_pci_table[7U] = { {4476U, 73U, 4476U, 73U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 74U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 75U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 76U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 77U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 78U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__esas2r_pci_table_device_table[7U] ; static int esas2r_probe(struct pci_dev *pcid , struct pci_device_id const *id ) ; static void esas2r_remove(struct pci_dev *pdev ) ; static struct pci_driver esas2r_pci_driver = {{0, 0}, "esas2r", (struct pci_device_id const *)(& esas2r_pci_table), & esas2r_probe, & esas2r_remove, & esas2r_suspend, 0, 0, & esas2r_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int esas2r_probe(struct pci_dev *pcid , struct pci_device_id const *id ) { struct Scsi_Host *host ; struct esas2r_adapter *a ; int err ; size_t host_alloc_size ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { host = (struct Scsi_Host *)0; host_alloc_size = (unsigned long )(num_requests + 1) * 176UL + 559640UL; esas2r_log_dev(4L, (struct device const *)(& pcid->dev), "esas2r_probe() 0x%02x 0x%02x 0x%02x 0x%02x", (int )pcid->vendor, (int )pcid->device, (int )pcid->subsystem_vendor, (int )pcid->subsystem_device); esas2r_log_dev(3L, (struct device const *)(& pcid->dev), "before pci_enable_device() enable_cnt: %d", pcid->enable_cnt.counter); err = pci_enable_device(pcid); } if (err != 0) { { esas2r_log_dev(1L, (struct device const *)(& pcid->dev), "pci_enable_device() FAIL (%d)", err); } return (-19); } else { } { esas2r_log_dev(3L, (struct device const *)(& pcid->dev), "pci_enable_device() OK"); esas2r_log_dev(3L, (struct device const *)(& pcid->dev), "after pci_enable_device() enable_cnt: %d", pcid->enable_cnt.counter); host = ldv_scsi_host_alloc_102(& driver_template, (int )host_alloc_size); } if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { { esas2r_log(1L, "scsi_host_alloc() FAIL"); } return (-19); } else { } { __memset((void *)(& host->hostdata), 0, host_alloc_size); a = (struct esas2r_adapter *)(& host->hostdata); esas2r_log(3L, "scsi_host_alloc() OK host: %p", host); host->max_id = 256U; host->max_lun = 255ULL; host->max_cmd_len = 16U; host->can_queue = can_queue; host->cmd_per_lun = (short )cmd_per_lun; host->this_id = (int )(host->max_id + 1U); host->max_channel = 0U; host->unique_id = (unsigned int )found_adapters; host->sg_tablesize = (unsigned short )sg_tablesize; host->max_sectors = (unsigned int )esas2r_max_sectors; esas2r_log(3L, "pci_set_master() called"); pci_set_master(pcid); tmp = esas2r_init_adapter(host, pcid, found_adapters); } if (tmp == 0) { { esas2r_log(1L, "unable to initialize device at PCI bus %x:%x", (int )(pcid->bus)->number, pcid->devfn); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "scsi_host_put() called"); scsi_host_put(host); } return (0); } else { } { esas2r_log(3L, "pci_set_drvdata(%p, %p) called", pcid, (unsigned long *)(& host->hostdata)); pci_set_drvdata(pcid, (void *)host); esas2r_log(3L, "scsi_add_host() called"); err = ldv_scsi_add_host_103(host, & pcid->dev); } if (err != 0) { { esas2r_log(1L, "scsi_add_host returned %d", err); esas2r_log_dev(1L, (struct device const *)(& host->shost_gendev), "scsi_add_host() FAIL"); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "scsi_host_put() called"); scsi_host_put(host); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "pci_set_drvdata(%p, NULL) called", pcid); pci_set_drvdata(pcid, (void *)0); } return (-19); } else { } { esas2r_fw_event_on(a); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "scsi_scan_host() called"); scsi_scan_host(host); tmp___0 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fw)); } if (tmp___0 != 0) { { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: fw"); } } else { a->sysfs_fw_created = 1U; } { tmp___1 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fs)); } if (tmp___1 != 0) { { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: fs"); } } else { a->sysfs_fs_created = 1U; } { tmp___2 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_vda)); } if (tmp___2 != 0) { { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: vda"); } } else { a->sysfs_vda_created = 1U; } { tmp___3 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_hw)); } if (tmp___3 != 0) { { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: hw"); } } else { a->sysfs_hw_created = 1U; } { tmp___4 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_live_nvram)); } if (tmp___4 != 0) { { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: live_nvram"); } } else { a->sysfs_live_nvram_created = 1U; } { tmp___5 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_default_nvram)); } if (tmp___5 != 0) { { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: default_nvram"); } } else { a->sysfs_default_nvram_created = 1U; } found_adapters = found_adapters + 1; return (0); } } static void esas2r_remove(struct pci_dev *pdev ) { struct Scsi_Host *host ; int index ; void *tmp ; { if ((unsigned long )pdev == (unsigned long )((struct pci_dev *)0)) { { esas2r_log(2L, "esas2r_remove pdev==NULL"); } return; } else { } { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; } if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { return; } else { } { esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "esas2r_remove(%p) called; host:%p", pdev, host); index = esas2r_cleanup(host); } if (index < 0) { { esas2r_log_dev(2L, (struct device const *)(& pdev->dev), "unknown host in %s", "esas2r_remove"); } } else { } found_adapters = found_adapters - 1; if (found_adapters == 0) { { esas2r_cleanup((struct Scsi_Host *)0); } } else { } return; } } static int esas2r_init(void) { int i ; int tmp ; { { esas2r_log(3L, "%s called", "esas2r_init"); } if (can_queue <= 0) { { esas2r_log(2L, "warning: can_queue must be at least 1, value forced."); can_queue = 1; } } else if (can_queue > 2048) { { esas2r_log(2L, "warning: can_queue must be no larger than 2048, value forced."); can_queue = 2048; } } else { } if (cmd_per_lun <= 0) { { esas2r_log(2L, "warning: cmd_per_lun must be at least 1, value forced."); cmd_per_lun = 1; } } else if (cmd_per_lun > 2048) { { esas2r_log(2L, "warning: cmd_per_lun must be no larger than 2048, value forced."); cmd_per_lun = 2048; } } else { } if (sg_tablesize <= 31) { { esas2r_log(2L, "warning: sg_tablesize must be at least 32, value forced."); sg_tablesize = 32; } } else { } if (esas2r_max_sectors <= 0) { { esas2r_log(2L, "warning: esas2r_max_sectors must be at least 1, value forced."); esas2r_max_sectors = 1; } } else if (esas2r_max_sectors > 65535) { { esas2r_log(2L, "warning: esas2r_max_sectors must be no larger than 0xffff, value forced."); esas2r_max_sectors = 65535; } } else { } sgl_page_size = sgl_page_size & -16; if (sgl_page_size <= 63) { sgl_page_size = 64; } else if (sgl_page_size > 1024) { sgl_page_size = 1024; } else { } if (num_sg_lists <= 7) { num_sg_lists = 8; } else if (num_sg_lists > 2048) { num_sg_lists = 2048; } else { } if (num_requests <= 3) { num_requests = 4; } else if (num_requests > 256) { num_requests = 256; } else { } if (num_ae_requests <= 1) { num_ae_requests = 2; } else if (num_ae_requests > 8) { num_ae_requests = 8; } else { } i = 0; goto ldv_40355; ldv_40354: esas2r_adapters[i] = (struct esas2r_adapter *)0; i = i + 1; ldv_40355: ; if (i <= 31) { goto ldv_40354; } else { } { driver_template.module = & __this_module; tmp = ldv___pci_register_driver_104(& esas2r_pci_driver, & __this_module, "esas2r"); } if (tmp != 0) { { esas2r_log(1L, "pci_register_driver FAILED"); } } else { { esas2r_log(3L, "pci_register_driver() OK"); } } if (found_adapters == 0) { { ldv_pci_unregister_driver_105(& esas2r_pci_driver); esas2r_cleanup((struct Scsi_Host *)0); esas2r_log(1L, "driver will not be loaded because no ATTO %s devices were found", (char *)"esas2r"); } return (-1); } else { { esas2r_log(3L, "found %d adapters", found_adapters); } } return (0); } } static struct file_operations const esas2r_proc_fops = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & esas2r_proc_ioctl, & esas2r_proc_ioctl, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct Scsi_Host *esas2r_proc_host ; static int esas2r_proc_major ; long esas2r_proc_ioctl(struct file *fp , unsigned int cmd , unsigned long arg ) { int tmp ; { { tmp = esas2r_ioctl_handler((void *)(& esas2r_proc_host->hostdata), (int )cmd, (void *)arg); } return ((long )tmp); } } static void esas2r_exit(void) { { { esas2r_log(3L, "%s called", "esas2r_exit"); } if (esas2r_proc_major > 0) { { esas2r_log(3L, "unregister proc"); remove_proc_entry("ATTONode", (esas2r_proc_host->hostt)->proc_dir); ldv_unregister_chrdev_106((unsigned int )esas2r_proc_major, "esas2r"); esas2r_proc_major = 0; } } else { } { esas2r_log(3L, "pci_unregister_driver() called"); ldv_pci_unregister_driver_107(& esas2r_pci_driver); } return; } } int esas2r_show_info(struct seq_file *m , struct Scsi_Host *sh ) { struct esas2r_adapter *a ; struct esas2r_target *t ; int dev_count ; char const *tmp ; { { a = (struct esas2r_adapter *)(& sh->hostdata); dev_count = 0; esas2r_log(4L, "esas2r_show_info (%p,%d)", m, sh->host_no); seq_printf(m, "ATTO ExpressSAS 6GB RAID Adapter\nDriver version: 1.00\nFlash version: %s\nFirmware version: %s\nCopyright 2001-2013\nhttp://www.attotech.com\n\n", (char *)(& a->flash_rev), (int )((signed char )a->fw_rev[0]) != 0 ? (char *)(& a->fw_rev) : (char *)"(none)"); tmp = esas2r_get_model_name(a); seq_printf(m, "Adapter information:\n--------------------\nModel: %s\nSAS address: %02X%02X%02X%02X:%02X%02X%02X%02X\n", tmp, (int )(a->nvram)->sas_addr[0], (int )(a->nvram)->sas_addr[1], (int )(a->nvram)->sas_addr[2], (int )(a->nvram)->sas_addr[3], (int )(a->nvram)->sas_addr[4], (int )(a->nvram)->sas_addr[5], (int )(a->nvram)->sas_addr[6], (int )(a->nvram)->sas_addr[7]); seq_puts(m, "\nDiscovered devices:\n\n # Target ID\n---------------\n"); t = (struct esas2r_target *)(& a->targetdb); } goto ldv_40377; ldv_40376: ; if ((unsigned int )t->buffered_target_state == 5U) { { dev_count = dev_count + 1; seq_printf(m, " %3d %3d\n", dev_count, (int )((unsigned short )(((long )t - (long )(& a->targetdb)) / 120L))); } } else { } t = t + 1; ldv_40377: ; if ((unsigned long )t < (unsigned long )a->targetdb_end) { goto ldv_40376; } else { } if (dev_count == 0) { { seq_puts(m, "none\n"); } } else { } { seq_putc(m, 10); } return (0); } } int esas2r_release(struct Scsi_Host *sh ) { { { esas2r_log_dev(3L, (struct device const *)(& sh->shost_gendev), "esas2r_release() called"); esas2r_cleanup(sh); } if (sh->irq != 0U) { { ldv_free_irq_108(sh->irq, (void *)0); } } else { } { ldv_scsi_unregister_109(sh); } return (0); } } char const *esas2r_info(struct Scsi_Host *sh ) { struct esas2r_adapter *a ; char esas2r_info_str[512U] ; struct proc_dir_entry *pde ; { { a = (struct esas2r_adapter *)(& sh->hostdata); esas2r_log_dev(3L, (struct device const *)(& sh->shost_gendev), "esas2r_info() called"); } if (esas2r_proc_major <= 0) { { esas2r_proc_host = sh; esas2r_proc_major = ldv_register_chrdev_110(0U, "esas2r", & esas2r_proc_fops); esas2r_log_dev(4L, (struct device const *)(& sh->shost_gendev), "register_chrdev (major %d)", esas2r_proc_major); } if (esas2r_proc_major > 0) { { pde = proc_create("ATTONode", 0, (sh->hostt)->proc_dir, & esas2r_proc_fops); } if ((unsigned long )pde == (unsigned long )((struct proc_dir_entry *)0)) { { esas2r_log_dev(2L, (struct device const *)(& sh->shost_gendev), "failed to create_proc_entry"); esas2r_proc_major = -1; } } else { } } else { } } else { } { sprintf((char *)(& esas2r_info_str), "ATTO ExpressSAS 6GB RAID Adapter (bus 0x%02X, device 0x%02X, IRQ 0x%02X) driver version: 1.00 firmware version: %s\n", (int )((a->pcid)->bus)->number, (a->pcid)->devfn, (a->pcid)->irq, (int )((signed char )a->fw_rev[0]) != 0 ? (char *)(& a->fw_rev) : (char *)"(none)"); } return ((char const *)(& esas2r_info_str)); } } static u32 get_physaddr_from_sgc(struct esas2r_sg_context *sgc , u64 *addr ) { u32 len ; long tmp ; { { tmp = ldv__builtin_expect((unsigned long )sgc->cur_offset == (unsigned long )sgc->exp_offset, 1L); } if (tmp != 0L) { if (sgc->sgel_count < sgc->num_sgel) { if ((unsigned long )sgc->exp_offset != (unsigned long )((u8 *)0U)) { { sgc->cur_sgel = sg_next(sgc->cur_sgel); sgc->sgel_count = sgc->sgel_count + 1; } } else { } len = (sgc->cur_sgel)->dma_length; *addr = (sgc->cur_sgel)->dma_address; sgc->exp_offset = sgc->exp_offset + (unsigned long )len; } else { len = 0U; } } else if ((unsigned long )sgc->cur_offset < (unsigned long )sgc->exp_offset) { len = (sgc->cur_sgel)->dma_length; *addr = (sgc->cur_sgel)->dma_address; sgc->exp_offset = sgc->exp_offset + - ((unsigned long )len); *addr = *addr + (unsigned long long )((long )sgc->cur_offset - (long )sgc->exp_offset); sgc->exp_offset = sgc->exp_offset + (unsigned long )len; len = (unsigned int )((long )sgc->exp_offset) - (unsigned int )((long )sgc->cur_offset); } else { len = 0U; } return (len); } } int esas2r_queuecommand(struct Scsi_Host *host , struct scsi_cmnd *cmd ) { struct esas2r_adapter *a ; struct esas2r_request *rq ; struct esas2r_sg_context sgc ; unsigned int bufflen ; int tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; bool tmp___4 ; int tmp___5 ; long tmp___6 ; { { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); cmd->result = 0; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { cmd->result = 65536; (*(cmd->scsi_done))(cmd); } return (0); } else { } { rq = esas2r_alloc_request(a); tmp___1 = ldv__builtin_expect((unsigned long )rq == (unsigned long )((struct esas2r_request *)0), 0L); } if (tmp___1 != 0L) { return (4181); } else { } { rq->__annonCompField103.cmd = cmd; bufflen = scsi_bufflen(cmd); tmp___2 = ldv__builtin_expect(bufflen != 0U, 1L); } if (tmp___2 != 0L) { if ((unsigned int )cmd->sc_data_direction == 1U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 16777216U; } else if ((unsigned int )cmd->sc_data_direction == 2U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 33554432U; } else { } } else { } { __memcpy((void *)(& (rq->vrq)->scsi.cdb), (void const *)cmd->cmnd, (size_t )cmd->cmd_len); (rq->vrq)->scsi.length = bufflen; rq->target_id = (u16 )(cmd->device)->id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )(cmd->device)->lun; rq->sense_buf = cmd->sense_buffer; rq->sense_len = 96U; esas2r_sgc_init(& sgc, a, rq, (struct atto_vda_sge *)0); sgc.length = bufflen; sgc.cur_offset = (u8 *)0U; sgc.cur_sgel = scsi_sglist(cmd); sgc.exp_offset = (u8 *)0U; sgc.num_sgel = scsi_dma_map(cmd); sgc.sgel_count = 0; tmp___3 = ldv__builtin_expect(sgc.num_sgel < 0, 0L); } if (tmp___3 != 0L) { { esas2r_free_request(a, rq); } return (4181); } else { } { sgc.get_phys_addr = & get_physaddr_from_sgc; tmp___4 = esas2r_build_sg_list(a, rq, & sgc); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } { tmp___6 = ldv__builtin_expect((long )tmp___5, 0L); } if (tmp___6 != 0L) { { scsi_dma_unmap(cmd); esas2r_free_request(a, rq); } return (4181); } else { } { esas2r_start_request(a, rq); } return (0); } } static void complete_task_management_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { { { *(rq->__annonCompField103.task_management_status_ptr) = rq->req_stat; esas2r_free_request(a, rq); } return; } } static int esas2r_check_active_queue(struct esas2r_adapter *a , struct esas2r_request **abort_request , struct scsi_cmnd *cmd , struct list_head *queue ) { bool found ; struct esas2r_request *ar ; struct esas2r_request *rq ; struct list_head *element ; struct list_head *next ; struct list_head const *__mptr ; { found = 0; ar = *abort_request; element = queue->next; next = element->next; goto ldv_40420; ldv_40419: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned long )rq->__annonCompField103.cmd == (unsigned long )cmd) { if ((unsigned long )queue == (unsigned long )(& a->active_list)) { { ar = esas2r_alloc_request(a); } if ((unsigned long )ar == (unsigned long )((struct esas2r_request *)0)) { { esas2r_log_dev(2L, (struct device const *)(& (a->host)->shost_gendev), "unable to allocate an abort request for cmd %p", cmd); } return (0); } else { } { ar->sense_len = 0U; (ar->vrq)->scsi.length = 0U; ar->target_id = rq->target_id; (ar->vrq)->scsi.flags = (ar->vrq)->scsi.flags | (u32 )((unsigned char )(rq->vrq)->scsi.flags); __memset((void *)(& (ar->vrq)->scsi.cdb), 0, 16UL); (ar->vrq)->scsi.flags = (ar->vrq)->scsi.flags | 8388608U; (ar->vrq)->scsi.u.abort_handle = (rq->vrq)->scsi.handle; } } else { { list_del_init(& rq->req_list); esas2r_free_request(a, rq); } } found = 1; goto ldv_40418; } else { } element = next; next = element->next; ldv_40420: ; if ((unsigned long )element != (unsigned long )queue) { goto ldv_40419; } else { } ldv_40418: ; if (! found) { return (1); } else { } return (2); } } int esas2r_eh_abort(struct scsi_cmnd *cmd ) { struct esas2r_adapter *a ; struct esas2r_request *abort_request ; unsigned long flags ; struct list_head *queue ; int result ; int tmp ; u8 task_management_status ; int tmp___0 ; { { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); abort_request = (struct esas2r_request *)0; esas2r_log(3L, "eh_abort (%p)", cmd); tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { { cmd->result = 327680; scsi_set_resid(cmd, 0); (*(cmd->scsi_done))(cmd); } return (8194); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_111(& a->queue_lock); queue = & a->defer_list; } check_active_queue: { result = esas2r_check_active_queue(a, & abort_request, cmd, queue); } if (result == 0) { { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } return (8195); } else if (result == 2 && (unsigned long )queue == (unsigned long )(& a->defer_list)) { queue = & a->active_list; goto check_active_queue; } else { } { ldv_spin_unlock_irqrestore_111(& a->queue_lock, flags); } if ((unsigned long )abort_request != (unsigned long )((struct esas2r_request *)0)) { { task_management_status = 254U; abort_request->comp_cb = & complete_task_management_request; abort_request->__annonCompField103.task_management_status_ptr = & task_management_status; esas2r_start_request(a, abort_request); tmp___0 = atomic_read((atomic_t const *)(& a->disable_cnt)); } if (tmp___0 == 0) { { esas2r_do_deferred_processes(a); } } else { } goto ldv_40432; ldv_40431: { msleep(10U); } ldv_40432: ; if ((unsigned int )task_management_status == 254U) { goto ldv_40431; } else { } return (8194); } else { } { cmd->result = 327680; scsi_set_resid(cmd, 0); (*(cmd->scsi_done))(cmd); } return (8194); } } static int esas2r_host_bus_reset(struct scsi_cmnd *cmd , bool host_reset ) { struct esas2r_adapter *a ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return (8195); } else { } if ((int )host_reset) { { esas2r_reset_adapter(a); } } else { { esas2r_reset_bus(a); } } goto ldv_40440; ldv_40439: { msleep(10U); tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { return (8195); } else { } ldv_40440: { tmp___1 = constant_test_bit(9L, (unsigned long const volatile *)(& a->flags)); } if (tmp___1 != 0) { goto ldv_40439; } else { } { tmp___2 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___2 != 0) { return (8195); } else { } return (8194); } } int esas2r_host_reset(struct scsi_cmnd *cmd ) { int tmp ; { { esas2r_log(3L, "host_reset (%p)", cmd); tmp = esas2r_host_bus_reset(cmd, 1); } return (tmp); } } int esas2r_bus_reset(struct scsi_cmnd *cmd ) { int tmp ; { { esas2r_log(3L, "bus_reset (%p)", cmd); tmp = esas2r_host_bus_reset(cmd, 0); } return (tmp); } } static int esas2r_dev_targ_reset(struct scsi_cmnd *cmd , bool target_reset ) { struct esas2r_adapter *a ; struct esas2r_request *rq ; u8 task_management_status ; bool completed ; int tmp ; int tmp___0 ; { { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); task_management_status = 254U; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp != 0) { return (8195); } else { } retry: { rq = esas2r_alloc_request(a); } if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { if ((int )target_reset) { { esas2r_log(1L, "unable to allocate a request for a target reset (%d)!", (cmd->device)->id); } } else { { esas2r_log(1L, "unable to allocate a request for a device reset (%d:%d)!", (cmd->device)->id, (cmd->device)->lun); } } return (8195); } else { } rq->target_id = (u16 )(cmd->device)->id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )(cmd->device)->lun; rq->req_stat = 254U; rq->comp_cb = & complete_task_management_request; rq->__annonCompField103.task_management_status_ptr = & task_management_status; if ((int )target_reset) { { completed = esas2r_send_task_mgmt(a, rq, 32); } } else { { completed = esas2r_send_task_mgmt(a, rq, 16); } } if ((int )completed) { { esas2r_free_request(a, rq); } } else { goto ldv_40458; ldv_40457: { msleep(10U); } ldv_40458: ; if ((unsigned int )task_management_status == 254U) { goto ldv_40457; } else { } } { tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); } if (tmp___0 != 0) { return (8195); } else { } if ((unsigned int )task_management_status == 2U) { { msleep(100U); } goto retry; } else { } return (8194); } } int esas2r_device_reset(struct scsi_cmnd *cmd ) { int tmp ; { { esas2r_log(3L, "device_reset (%p)", cmd); tmp = esas2r_dev_targ_reset(cmd, 0); } return (tmp); } } int esas2r_target_reset(struct scsi_cmnd *cmd ) { int tmp ; { { esas2r_log(3L, "target_reset (%p)", cmd); tmp = esas2r_dev_targ_reset(cmd, 1); } return (tmp); } } void esas2r_log_request_failure(struct esas2r_adapter *a , struct esas2r_request *rq ) { u8 reqstatus ; { reqstatus = rq->req_stat; if ((unsigned int )reqstatus == 0U) { return; } else { } if ((unsigned int )(rq->vrq)->scsi.function == 0U) { if ((unsigned int )reqstatus == 8U) { if ((unsigned int )rq->func_rsp.scsi_rsp.sense_len > 12U) { { esas2r_log(2L, "request failure - SCSI error %x ASC:%x ASCQ:%x CDB:%x", (int )*(rq->sense_buf + 2UL), (int )*(rq->sense_buf + 12UL), (int )*(rq->sense_buf + 13UL), (int )(rq->vrq)->scsi.cdb[0]); } } else { { esas2r_log(2L, "request failure - SCSI error CDB:%x\n", (int )(rq->vrq)->scsi.cdb[0]); } } } else if (((unsigned int )(rq->vrq)->scsi.cdb[0] != 18U && (unsigned int )(rq->vrq)->scsi.cdb[0] != 160U) || ((unsigned int )reqstatus != 3U && (unsigned int )reqstatus != 112U)) { if ((unsigned int )reqstatus == 7U && (unsigned int )(rq->vrq)->scsi.cdb[0] == 18U) { } else { { esas2r_log(2L, "request failure - cdb:%x reqstatus:%d target:%d", (int )(rq->vrq)->scsi.cdb[0], (int )reqstatus, (int )rq->target_id); } } } else { } } else { } return; } } void esas2r_wait_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { u32 starttime ; u32 timeout ; unsigned long tmp ; unsigned int tmp___0 ; { { starttime = jiffies_to_msecs(jiffies); timeout = rq->timeout != 0U ? rq->timeout : 5000U; } ldv_40478: { esas2r_polled_interrupt(a); } if ((unsigned int )rq->req_stat != 255U) { goto ldv_40477; } else { } { tmp = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp); tmp___0 = jiffies_to_msecs(jiffies); } if (tmp___0 - starttime > timeout) { { rq->req_stat = 5U; esas2r_local_reset_adapter(a); } return; } else { } goto ldv_40478; ldv_40477: ; return; } } u32 esas2r_map_data_window(struct esas2r_adapter *a , u32 addr_lo ) { u32 offset ; u32 base ; { offset = addr_lo & 131071U; base = addr_lo & 4294836224U; if (a->window_base != base) { { writel(base | 1U, (void volatile *)a->regs + 33848U); readl((void const volatile *)a->regs + 33848U); a->window_base = base; } } else { } return (offset); } } bool esas2r_read_mem_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) { u8 *end ; u32 len ; u32 offset ; u32 iatvr ; u8 *tmp ; u32 tmp___0 ; { end = (u8 *)to; goto ldv_40499; ldv_40498: { iatvr = from & 4294836224U; esas2r_map_data_window(a, iatvr); offset = from & 131071U; len = size; } if (len > 131072U - offset) { len = 131072U - offset; } else { } from = from + len; size = size - len; goto ldv_40496; ldv_40495: { tmp = end; end = end + 1; *tmp = readb((void const volatile *)a->data_window + (unsigned long )offset); offset = offset + 1U; } ldv_40496: tmp___0 = len; len = len - 1U; if (tmp___0 != 0U) { goto ldv_40495; } else { } ldv_40499: ; if (size != 0U) { goto ldv_40498; } else { } return (1); } } void esas2r_nuxi_mgt_data(u8 function , void *data ) { struct atto_vda_grp_info *g ; struct atto_vda_devinfo *d ; struct atto_vdapart_info *p ; struct atto_vda_dh_info *h ; struct atto_vda_metrics_info *m ; struct atto_vda_schedule_info *s ; struct atto_vda_buzzer_info *b ; u8 i ; { { if ((int )function == 112) { goto case_112; } else { } if ((int )function == 113) { goto case_113; } else { } if ((int )function == 81) { goto case_81; } else { } if ((int )function == 80) { goto case_80; } else { } if ((int )function == 1) { goto case_1; } else { } if ((int )function == 2) { goto case_2; } else { } if ((int )function == 5) { goto case_5; } else { } if ((int )function == 6) { goto case_6; } else { } if ((int )function == 7) { goto case_7; } else { } if ((int )function == 11) { goto case_11; } else { } if ((int )function == 16) { goto case_16; } else { } if ((int )function == 17) { goto case_17; } else { } if ((int )function == 18) { goto case_18; } else { } if ((int )function == 19) { goto case_19; } else { } if ((int )function == 20) { goto case_20; } else { } if ((int )function == 21) { goto case_21; } else { } if ((int )function == 22) { goto case_22; } else { } if ((int )function == 23) { goto case_23; } else { } if ((int )function == 24) { goto case_24; } else { } if ((int )function == 25) { goto case_25; } else { } if ((int )function == 26) { goto case_26; } else { } if ((int )function == 27) { goto case_27; } else { } if ((int )function == 64) { goto case_64; } else { } if ((int )function == 65) { goto case_65; } else { } if ((int )function == 66) { goto case_66; } else { } if ((int )function == 67) { goto case_67; } else { } if ((int )function == 28) { goto case_28; } else { } if ((int )function == 48) { goto case_48; } else { } if ((int )function == 49) { goto case_49; } else { } if ((int )function == 50) { goto case_50; } else { } if ((int )function == 51) { goto case_51; } else { } if ((int )function == 52) { goto case_52; } else { } if ((int )function == 53) { goto case_53; } else { } if ((int )function == 8) { goto case_8; } else { } if ((int )function == 9) { goto case_9; } else { } goto switch_default; case_112: /* CIL Label */ ; case_113: /* CIL Label */ b = (struct atto_vda_buzzer_info *)data; b->duration = b->duration; goto ldv_40515; case_81: /* CIL Label */ ; case_80: /* CIL Label */ s = (struct atto_vda_schedule_info *)data; s->id = s->id; goto ldv_40515; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_11: /* CIL Label */ d = (struct atto_vda_devinfo *)data; d->capacity = d->capacity; d->block_size = d->block_size; d->ses_dev_index = d->ses_dev_index; d->__annonCompField83.target_id = d->__annonCompField83.target_id; d->lun = d->lun; d->features = d->features; goto ldv_40515; case_16: /* CIL Label */ ; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ; case_64: /* CIL Label */ ; case_65: /* CIL Label */ ; case_66: /* CIL Label */ ; case_67: /* CIL Label */ ; case_28: /* CIL Label */ g = (struct atto_vda_grp_info *)data; g->capacity = g->capacity; g->block_size = g->block_size; g->interleave = g->interleave; g->features = g->features; i = 0U; goto ldv_40542; ldv_40541: g->__annonCompField86.members[(int )i] = g->__annonCompField86.members[(int )i]; i = (u8 )((int )i + 1); ldv_40542: ; if ((unsigned int )i <= 31U) { goto ldv_40541; } else { } goto ldv_40515; case_48: /* CIL Label */ ; case_49: /* CIL Label */ ; case_50: /* CIL Label */ ; case_51: /* CIL Label */ ; case_52: /* CIL Label */ ; case_53: /* CIL Label */ p = (struct atto_vdapart_info *)data; p->part_size = p->part_size; p->start_lba = (u64 )((unsigned int )p->start_lba); p->block_size = p->block_size; p->target_id = p->target_id; goto ldv_40515; case_8: /* CIL Label */ h = (struct atto_vda_dh_info *)data; h->med_defect_cnt = h->med_defect_cnt; h->info_exc_cnt = h->info_exc_cnt; goto ldv_40515; case_9: /* CIL Label */ m = (struct atto_vda_metrics_info *)data; i = 0U; goto ldv_40553; ldv_40552: m->dev_indexes[(int )i] = m->dev_indexes[(int )i]; i = (u8 )((int )i + 1); ldv_40553: ; if ((unsigned int )i <= 31U) { goto ldv_40552; } else { } goto ldv_40515; switch_default: /* CIL Label */ ; goto ldv_40515; switch_break: /* CIL Label */ ; } ldv_40515: ; return; } } void esas2r_nuxi_cfg_data(u8 function , void *data ) { struct atto_vda_cfg_init *ci ; { { if ((int )function == 0) { goto case_0; } else { } if ((int )function == 1) { goto case_1; } else { } if ((int )function == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ci = (struct atto_vda_cfg_init *)data; ci->date_time.year = ci->date_time.year; ci->sgl_page_size = ci->sgl_page_size; ci->vda_version = ci->vda_version; ci->epoch_time = ci->epoch_time; ci->ioctl_tunnel = ci->ioctl_tunnel; ci->num_targets_backend = ci->num_targets_backend; goto ldv_40564; switch_default: /* CIL Label */ ; goto ldv_40564; switch_break: /* CIL Label */ ; } ldv_40564: ; return; } } void esas2r_nuxi_ae_data(union atto_vda_ae *ae ) { struct atto_vda_ae_raid *r ; struct atto_vda_ae_lu *l ; { r = & ae->raid; l = & ae->lu; { if ((int )ae->hdr.bytype == 1) { goto case_1; } else { } if ((int )ae->hdr.bytype == 2) { goto case_2; } else { } if ((int )ae->hdr.bytype == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ r->dwflags = r->dwflags; goto ldv_40572; case_2: /* CIL Label */ l->dwevent = l->dwevent; l->wphys_target_id = l->wphys_target_id; l->id.tgtlun.wtarget_id = l->id.tgtlun.wtarget_id; if ((unsigned int )l->hdr.bylength > 23U) { l->id.tgtlun_raid.dwinterleave = l->id.tgtlun_raid.dwinterleave; l->id.tgtlun_raid.dwblock_size = l->id.tgtlun_raid.dwblock_size; } else { } goto ldv_40572; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_40572; switch_break: /* CIL Label */ ; } ldv_40572: ; return; } } void esas2r_free_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; { { esas2r_rq_destroy_request___1(rq, a); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114___0(& a->request_lock); list_add(& rq->comp_list, & a->avail_request); ldv_spin_unlock_irqrestore_115___0(& a->request_lock, flags); } return; } } struct esas2r_request *esas2r_alloc_request(struct esas2r_adapter *a ) { struct esas2r_request *rq ; unsigned long flags ; int tmp ; long tmp___0 ; struct list_head const *__mptr ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116___0(& a->request_lock); tmp = list_empty((struct list_head const *)(& a->avail_request)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { ldv_spin_unlock_irqrestore_115___0(& a->request_lock, flags); } return ((struct esas2r_request *)0); } else { } { __mptr = (struct list_head const *)a->avail_request.next; rq = (struct esas2r_request *)__mptr; list_del(& rq->comp_list); ldv_spin_unlock_irqrestore_115___0(& a->request_lock, flags); esas2r_rq_init_request(rq, a); } return (rq); } } void esas2r_complete_request_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { int tmp ; long tmp___0 ; { { scsi_dma_unmap(rq->__annonCompField103.cmd); tmp___0 = ldv__builtin_expect((unsigned int )rq->req_stat != 0U, 0L); } if (tmp___0 != 0L) { { tmp = esas2r_req_status_to_error((int )rq->req_stat); (rq->__annonCompField103.cmd)->result = (tmp << 16) | ((int )rq->func_rsp.scsi_rsp.scsi_stat & 254); } if ((unsigned int )rq->req_stat == 7U) { { scsi_set_resid(rq->__annonCompField103.cmd, (int )rq->func_rsp.scsi_rsp.residual_length); } } else { { scsi_set_resid(rq->__annonCompField103.cmd, 0); } } } else { } { (*((rq->__annonCompField103.cmd)->scsi_done))(rq->__annonCompField103.cmd); esas2r_free_request(a, rq); } return; } } void esas2r_adapter_tasklet(unsigned long context ) { struct esas2r_adapter *a ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; { { a = (struct esas2r_adapter *)context; tmp = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags2)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { clear_bit(10L, (unsigned long volatile *)(& a->flags2)); esas2r_timer_tick(a); } } else { } { tmp___1 = constant_test_bit(9L, (unsigned long const volatile *)(& a->flags2)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 1L); } if (tmp___2 != 0L) { { clear_bit(9L, (unsigned long volatile *)(& a->flags2)); esas2r_adapter_interrupt(a); } } else { } { tmp___3 = esas2r_is_tasklet_pending(a); } if ((int )tmp___3) { { esas2r_do_tasklet_tasks(a); } } else { } { tmp___4 = esas2r_is_tasklet_pending(a); } if ((int )tmp___4) { { clear_bit(15L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } } else { { tmp___5 = constant_test_bit(9L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___5 != 0) { { clear_bit(15L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } } else { { tmp___6 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags2)); } if (tmp___6 != 0) { { clear_bit(15L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } } else { { clear_bit(15L, (unsigned long volatile *)(& a->flags)); } } } } return; } } static void esas2r_timer_callback(unsigned long context ) ; void esas2r_kickoff_timer(struct esas2r_adapter *a ) { struct lock_class_key __key ; unsigned long tmp ; { { init_timer_key(& a->timer, 0U, "(&a->timer)", & __key); a->timer.function = & esas2r_timer_callback; a->timer.data = (unsigned long )a; tmp = msecs_to_jiffies(100U); a->timer.expires = (unsigned long )jiffies + tmp; add_timer(& a->timer); } return; } } static void esas2r_timer_callback(unsigned long context ) { struct esas2r_adapter *a ; { { a = (struct esas2r_adapter *)context; set_bit(10L, (unsigned long volatile *)(& a->flags2)); esas2r_schedule_tasklet(a); esas2r_kickoff_timer(a); } return; } } static void esas2r_free_fw_event(struct esas2r_fw_event_work *fw_event ) { unsigned long flags ; struct esas2r_adapter *a ; { { a = fw_event->a; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_119(& a->fw_event_lock); list_del(& fw_event->list); kfree((void const *)fw_event); ldv_spin_unlock_irqrestore_108(& a->fw_event_lock, flags); } return; } } void esas2r_fw_event_off(struct esas2r_adapter *a ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(& a->fw_event_lock); a->fw_events_off = 1U; ldv_spin_unlock_irqrestore_108(& a->fw_event_lock, flags); } return; } } void esas2r_fw_event_on(struct esas2r_adapter *a ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(& a->fw_event_lock); a->fw_events_off = 0U; ldv_spin_unlock_irqrestore_108(& a->fw_event_lock, flags); } return; } } static void esas2r_add_device(struct esas2r_adapter *a , u16 target_id ) { int ret ; struct scsi_device *scsi_dev ; { { scsi_dev = scsi_device_lookup(a->host, 0U, (uint )target_id, 0ULL); } if ((unsigned long )scsi_dev != (unsigned long )((struct scsi_device *)0)) { { esas2r_log_dev(2L, (struct device const *)(& scsi_dev->sdev_gendev), "scsi device already exists at id %d", (int )target_id); scsi_device_put(scsi_dev); } } else { { esas2r_log_dev(3L, (struct device const *)(& (a->host)->shost_gendev), "scsi_add_device() called for 0:%d:0", (int )target_id); ret = scsi_add_device(a->host, 0U, (uint )target_id, 0ULL); } if (ret != 0) { { esas2r_log_dev(1L, (struct device const *)(& (a->host)->shost_gendev), "scsi_add_device failed with %d for id %d", ret, (int )target_id); } } else { } } return; } } static void esas2r_remove_device(struct esas2r_adapter *a , u16 target_id ) { struct scsi_device *scsi_dev ; { { scsi_dev = scsi_device_lookup(a->host, 0U, (uint )target_id, 0ULL); } if ((unsigned long )scsi_dev != (unsigned long )((struct scsi_device *)0)) { { scsi_device_set_state(scsi_dev, 6); esas2r_log_dev(3L, (struct device const *)(& scsi_dev->sdev_gendev), "scsi_remove_device() called for 0:%d:0", (int )target_id); scsi_remove_device(scsi_dev); esas2r_log_dev(3L, (struct device const *)(& scsi_dev->sdev_gendev), "scsi_device_put() called"); scsi_device_put(scsi_dev); } } else { { esas2r_log_dev(2L, (struct device const *)(& (a->host)->shost_gendev), "no target found at id %d", (int )target_id); } } return; } } static void esas2r_send_ae_event(struct esas2r_fw_event_work *fw_event ) { struct esas2r_vda_ae *ae ; char *type ; { ae = (struct esas2r_vda_ae *)(& fw_event->data); { if ((int )ae->vda_ae.hdr.bytype == 1) { goto case_1; } else { } if ((int )ae->vda_ae.hdr.bytype == 2) { goto case_2; } else { } if ((int )ae->vda_ae.hdr.bytype == 3) { goto case_3; } else { } if ((int )ae->vda_ae.hdr.bytype == 4) { goto case_4; } else { } if ((int )ae->vda_ae.hdr.bytype == 5) { goto case_5; } else { } if ((int )ae->vda_ae.hdr.bytype == 6) { goto case_6; } else { } if ((int )ae->vda_ae.hdr.bytype == 7) { goto case_7; } else { } if ((int )ae->vda_ae.hdr.bytype == 8) { goto case_8; } else { } if ((int )ae->vda_ae.hdr.bytype == 9) { goto case_9; } else { } if ((int )ae->vda_ae.hdr.bytype == 10) { goto case_10; } else { } if ((int )ae->vda_ae.hdr.bytype == 11) { goto case_11; } else { } if ((int )ae->vda_ae.hdr.bytype == 12) { goto case_12; } else { } if ((int )ae->vda_ae.hdr.bytype == 13) { goto case_13; } else { } if ((int )ae->vda_ae.hdr.bytype == 14) { goto case_14; } else { } if ((int )ae->vda_ae.hdr.bytype == 15) { goto case_15; } else { } goto switch_default; case_1: /* CIL Label */ type = (char *)"RAID group state change"; goto ldv_40636; case_2: /* CIL Label */ type = (char *)"Mapped destination LU change"; goto ldv_40636; case_3: /* CIL Label */ type = (char *)"Physical disk inventory change"; goto ldv_40636; case_4: /* CIL Label */ type = (char *)"Firmware reset"; goto ldv_40636; case_5: /* CIL Label */ type = (char *)"Event Log message (INFO level)"; goto ldv_40636; case_6: /* CIL Label */ type = (char *)"Event Log message (WARN level)"; goto ldv_40636; case_7: /* CIL Label */ type = (char *)"Event Log message (CRIT level)"; goto ldv_40636; case_8: /* CIL Label */ type = (char *)"Event Log message (FAIL level)"; goto ldv_40636; case_9: /* CIL Label */ type = (char *)"NVCache change"; goto ldv_40636; case_10: /* CIL Label */ type = (char *)"Time stamped log message (INFO level)"; goto ldv_40636; case_11: /* CIL Label */ type = (char *)"Time stamped log message (WARN level)"; goto ldv_40636; case_12: /* CIL Label */ type = (char *)"Time stamped log message (CRIT level)"; goto ldv_40636; case_13: /* CIL Label */ type = (char *)"Power management"; goto ldv_40636; case_14: /* CIL Label */ type = (char *)"Mute button pressed"; goto ldv_40636; case_15: /* CIL Label */ type = (char *)"Device attribute change"; goto ldv_40636; switch_default: /* CIL Label */ type = (char *)"Unknown"; goto ldv_40636; switch_break: /* CIL Label */ ; } ldv_40636: { esas2r_log(2L, "An async event of type \"%s\" was received from the firmware. The event contents are:", type); esas2r_log_hexdump(2L, (void const *)(& ae->vda_ae), (size_t )ae->vda_ae.hdr.bylength); } return; } } static void esas2r_firmware_event_work(struct work_struct *work ) { struct esas2r_fw_event_work *fw_event ; struct work_struct const *__mptr ; struct esas2r_adapter *a ; u16 target_id ; { __mptr = (struct work_struct const *)work; fw_event = (struct esas2r_fw_event_work *)__mptr + 0xfffffffffffffff0UL; a = fw_event->a; target_id = *((u16 *)(& fw_event->data)); if ((unsigned int )a->fw_events_off != 0U) { goto done; } else { } { if ((unsigned int )fw_event->type == 0U) { goto case_0; } else { } if ((unsigned int )fw_event->type == 1U) { goto case_1; } else { } if ((unsigned int )fw_event->type == 2U) { goto case_2; } else { } if ((unsigned int )fw_event->type == 3U) { goto case_3; } else { } if ((unsigned int )fw_event->type == 4U) { goto case_4; } else { } goto switch_break; case_0: /* CIL Label */ ; goto ldv_40662; case_1: /* CIL Label */ { esas2r_remove_device(a, (int )target_id); esas2r_add_device(a, (int )target_id); } goto ldv_40662; case_2: /* CIL Label */ { esas2r_add_device(a, (int )target_id); } goto ldv_40662; case_3: /* CIL Label */ { esas2r_remove_device(a, (int )target_id); } goto ldv_40662; case_4: /* CIL Label */ { esas2r_send_ae_event(fw_event); } goto ldv_40662; switch_break: /* CIL Label */ ; } ldv_40662: ; done: { esas2r_free_fw_event(fw_event); } return; } } void esas2r_queue_fw_event(struct esas2r_adapter *a , enum fw_event_type type , void *data , int data_sz ) { struct esas2r_fw_event_work *fw_event ; unsigned long flags ; void *tmp ; struct esas2r_vda_ae *ae ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; unsigned long tmp___0 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; { { tmp = kzalloc(392UL, 32U); fw_event = (struct esas2r_fw_event_work *)tmp; } if ((unsigned long )fw_event == (unsigned long )((struct esas2r_fw_event_work *)0)) { { esas2r_log(2L, "esas2r_queue_fw_event failed to alloc"); } return; } else { } if ((unsigned int )type == 4U) { { ae = (struct esas2r_vda_ae *)(& fw_event->data); ae->signature = 1096045647U; ae->bus_number = ((a->pcid)->bus)->number; ae->devfn = (u8 )(a->pcid)->devfn; __memcpy((void *)(& ae->vda_ae), (void const *)data, 128UL); } } else { { __memcpy((void *)(& fw_event->data), (void const *)data, (size_t )data_sz); } } { fw_event->type = type; fw_event->a = a; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(& a->fw_event_lock); list_add_tail(& fw_event->list, & a->fw_event_list); __init_work(& fw_event->work.work, 0); __constr_expr_0.counter = 137438953408L; fw_event->work.work.data = __constr_expr_0; lockdep_init_map(& fw_event->work.work.lockdep_map, "(&(&fw_event->work)->work)", & __key, 0); INIT_LIST_HEAD(& fw_event->work.work.entry); fw_event->work.work.func = & esas2r_firmware_event_work; init_timer_key(& fw_event->work.timer, 2U, "(&(&fw_event->work)->timer)", & __key___0); fw_event->work.timer.function = & delayed_work_timer_fn; fw_event->work.timer.data = (unsigned long )(& fw_event->work); tmp___0 = msecs_to_jiffies(1U); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40684; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40684; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40684; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40684; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_40684: pscr_ret__ = pfo_ret__; goto ldv_40690; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40694; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40694; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40694; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40694; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_40694: pscr_ret__ = pfo_ret_____0; goto ldv_40690; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40703; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40703; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40703; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40703; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_40703: pscr_ret__ = pfo_ret_____1; goto ldv_40690; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40712; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40712; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40712; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40712; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40712: pscr_ret__ = pfo_ret_____2; goto ldv_40690; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_40690; switch_break: /* CIL Label */ ; } ldv_40690: { queue_delayed_work_on(pscr_ret__, a->fw_event_q, & fw_event->work, tmp___0); ldv_spin_unlock_irqrestore_108(& a->fw_event_lock, flags); } return; } } void esas2r_target_state_changed(struct esas2r_adapter *a , u16 targ_id , u8 state ) { { if ((unsigned int )state == 6U) { { esas2r_queue_fw_event(a, 1, (void *)(& targ_id), 2); } } else if ((unsigned int )state == 5U) { { esas2r_queue_fw_event(a, 2, (void *)(& targ_id), 2); } } else if ((unsigned int )state == 0U) { { esas2r_queue_fw_event(a, 3, (void *)(& targ_id), 2); } } else { } return; } } int esas2r_req_status_to_error(u8 req_stat ) { { { if ((int )req_stat == 6) { goto case_6; } else { } if ((int )req_stat == 7) { goto case_7; } else { } if ((int )req_stat == 0) { goto case_0; } else { } if ((int )req_stat == 8) { goto case_8; } else { } if ((int )req_stat == 3) { goto case_3; } else { } if ((int )req_stat == 112) { goto case_112; } else { } if ((int )req_stat == 13) { goto case_13; } else { } if ((int )req_stat == 10) { goto case_10; } else { } if ((int )req_stat == 2) { goto case_2; } else { } goto switch_break; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_0: /* CIL Label */ ; case_8: /* CIL Label */ ; return (0); case_3: /* CIL Label */ ; case_112: /* CIL Label */ ; return (1); case_13: /* CIL Label */ ; return (8); case_10: /* CIL Label */ ; return (5); case_2: /* CIL Label */ ; return (2); switch_break: /* CIL Label */ ; } return (7); } } void ldv_EMGentry_exit_esas2r_exit_23_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_esas2r_init_23_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_19_1(struct file_operations *arg0 ) ; void ldv_dispatch_deregister_21_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_18_23_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_16_23_5(void) ; void ldv_dispatch_instance_register_11_3(struct timer_list *arg0 ) ; void ldv_dispatch_register_15_2(struct Scsi_Host *arg0 ) ; void ldv_dispatch_register_20_2(struct file_operations *arg0 ) ; void ldv_dispatch_register_22_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_18_23_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_16_23_7(void) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_entry_EMGentry_23(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_chrdev(int arg0 , unsigned int arg1 , char *arg2 , struct file_operations *arg3 ) ; int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) ; struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) ; void ldv_scsi_host_template_instance_callback_3_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_3_18(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_3_19(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_3_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_3_21(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_3_22(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_callback_3_23(int (*arg0)(struct scsi_device * , int , void * ) , struct scsi_device *arg1 , int arg2 , void *arg3 ) ; void ldv_scsi_host_template_instance_callback_3_26(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) ; void ldv_scsi_host_template_instance_callback_3_27(int (*arg0)(struct seq_file * , struct Scsi_Host * ) , struct seq_file *arg1 , struct Scsi_Host *arg2 ) ; void ldv_scsi_host_template_instance_callback_3_4(int (*arg0)(struct scsi_device * , int ) , struct scsi_device *arg1 , int arg2 ) ; int ldv_scsi_host_template_instance_probe_3_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_release_3_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_scsi_host_template_instance_3(void *arg0 ) ; extern void ldv_scsi_unregister(void * , struct Scsi_Host * ) ; void ldv_struct_bin_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_bin_attribute_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_bin_attribute_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_bin_attribute_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_bin_attribute_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_bin_attribute_dummy_resourceless_instance_9(void *arg0 ) ; void ldv_timer_dummy_factory_11(void *arg0 ) ; void ldv_timer_instance_callback_10_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_10(void *arg0 ) ; void ldv_unregister_chrdev(void *arg0 , unsigned int arg1 , char *arg2 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_23 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_esas2r_exit_23_2(void (*arg0)(void) ) { { { esas2r_exit(); } return; } } int ldv_EMGentry_init_esas2r_init_23_11(int (*arg0)(void) ) { int tmp ; { { tmp = esas2r_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_22_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_22_pci_driver_pci_driver = arg1; ldv_dispatch_register_22_2(ldv_22_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_19_1(struct file_operations *arg0 ) { { return; } } void ldv_dispatch_deregister_21_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_18_23_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_16_23_5(void) { { return; } } void ldv_dispatch_instance_register_11_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_10 *cf_arg_10 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_10 = (struct ldv_struct_timer_instance_10 *)tmp; cf_arg_10->arg0 = arg0; ldv_timer_timer_instance_10((void *)cf_arg_10); } return; } } void ldv_dispatch_register_15_2(struct Scsi_Host *arg0 ) { struct ldv_struct_scsi_host_template_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_scsi_host_template_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_scsi_host_template_scsi_host_template_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_20_2(struct file_operations *arg0 ) { struct ldv_struct_file_operations_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_file_operations_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_22_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_pci_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_pci_pci_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_factory_18_23_6(void) { struct ldv_struct_EMGentry_23 *cf_arg_11 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_11 = (struct ldv_struct_EMGentry_23 *)tmp; ldv_timer_dummy_factory_11((void *)cf_arg_11); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_16_23_7(void) { struct ldv_struct_EMGentry_23 *cf_arg_4 ; struct ldv_struct_EMGentry_23 *cf_arg_5 ; struct ldv_struct_EMGentry_23 *cf_arg_6 ; struct ldv_struct_EMGentry_23 *cf_arg_7 ; struct ldv_struct_EMGentry_23 *cf_arg_8 ; struct ldv_struct_EMGentry_23 *cf_arg_9 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_23 *)tmp; ldv_struct_bin_attribute_dummy_resourceless_instance_4((void *)cf_arg_4); tmp___0 = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_EMGentry_23 *)tmp___0; ldv_struct_bin_attribute_dummy_resourceless_instance_5((void *)cf_arg_5); tmp___1 = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_23 *)tmp___1; ldv_struct_bin_attribute_dummy_resourceless_instance_6((void *)cf_arg_6); tmp___2 = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_23 *)tmp___2; ldv_struct_bin_attribute_dummy_resourceless_instance_7((void *)cf_arg_7); tmp___3 = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_EMGentry_23 *)tmp___3; ldv_struct_bin_attribute_dummy_resourceless_instance_8((void *)cf_arg_8); tmp___4 = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_23 *)tmp___4; ldv_struct_bin_attribute_dummy_resourceless_instance_9((void *)cf_arg_9); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { read_default_nvram(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { (*arg0)(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { read_fs(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { write_fs(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { read_fw(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { write_fw(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { read_hw(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { write_hw(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { read_live_nvram(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { write_live_nvram(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { read_vda(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { write_vda(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_entry_EMGentry_23(void *arg0 ) { void (*ldv_23_exit_esas2r_exit_default)(void) ; int (*ldv_23_init_esas2r_init_default)(void) ; int ldv_23_ret_default ; int tmp ; int tmp___0 ; { { ldv_23_ret_default = ldv_EMGentry_init_esas2r_init_23_11(ldv_23_init_esas2r_init_default); ldv_23_ret_default = ldv_ldv_post_init_127(ldv_23_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_23_ret_default != 0); ldv_ldv_check_final_state_128(); ldv_stop(); } return; } else { { ldv_assume(ldv_23_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_16_23_7(); ldv_dispatch_register_dummy_factory_18_23_6(); ldv_dispatch_deregister_dummy_resourceless_instance_16_23_5(); ldv_dispatch_deregister_dummy_factory_18_23_4(); } } else { } { ldv_EMGentry_exit_esas2r_exit_23_2(ldv_23_exit_esas2r_exit_default); ldv_ldv_check_final_state_129(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_130(); ldv_entry_EMGentry_23((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; unsigned int ldv_0_ldv_param_22_1_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; unsigned int ldv_0_ldv_param_5_1_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_0_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_0_container_file_operations->open != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ ; goto ldv_main_0; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } if (tmp___7 != 0) { { ldv_file_operations_instance_callback_0_22(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_22_1_default, ldv_0_size_cnt_write_size); } } else { { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size); } } goto ldv_41485; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_41485: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { esas2r_proc_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { esas2r_proc_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_1 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_1 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_1_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = esas2r_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { esas2r_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { esas2r_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = esas2r_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct ldv_struct_pci_instance_2 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_2 *)0)) { { ldv_2_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_2_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_131(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_ldv_post_probe_132(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_2; case_2: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } goto ldv_call_2; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } { ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_21_pci_driver_pci_driver ; { { ldv_21_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_21_1(ldv_21_pci_driver_pci_driver); } return; return; } } int ldv_register_chrdev(int arg0 , unsigned int arg1 , char *arg2 , struct file_operations *arg3 ) { struct file_operations *ldv_20_file_operations_file_operations ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_20_file_operations_file_operations = arg3; ldv_dispatch_register_20_2(ldv_20_file_operations_file_operations); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) { struct Scsi_Host *ldv_15_host_host ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_dispatch_register_15_2(ldv_15_host_host); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) { struct Scsi_Host *ldv_16_host_host ; struct scsi_host_template *ldv_16_scsi_host_template_scsi_host_template ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3800UL); ldv_16_host_host = (struct Scsi_Host *)tmp; ldv_16_scsi_host_template_scsi_host_template = arg1; ldv_16_host_host->hostt = ldv_16_scsi_host_template_scsi_host_template; } return (ldv_16_host_host); return (arg0); } else { return ((struct Scsi_Host *)0); return (arg0); } return (arg0); } } void ldv_scsi_host_template_instance_callback_3_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { esas2r_eh_abort(arg1); } return; } } void ldv_scsi_host_template_instance_callback_3_18(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { esas2r_bus_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_3_19(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { esas2r_device_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_3_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { esas2r_host_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_3_21(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { esas2r_target_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_3_22(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { esas2r_info(arg1); } return; } } void ldv_scsi_host_template_instance_callback_3_23(int (*arg0)(struct scsi_device * , int , void * ) , struct scsi_device *arg1 , int arg2 , void *arg3 ) { { { esas2r_ioctl(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_3_26(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) { { { esas2r_queuecommand(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_3_27(int (*arg0)(struct seq_file * , struct Scsi_Host * ) , struct seq_file *arg1 , struct Scsi_Host *arg2 ) { { { esas2r_show_info(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_3_4(int (*arg0)(struct scsi_device * , int ) , struct scsi_device *arg1 , int arg2 ) { { { scsi_change_queue_depth(arg1, arg2); } return; } } int ldv_scsi_host_template_instance_probe_3_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_scsi_host_template_instance_release_3_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { esas2r_release(arg1); } return; } } void ldv_scsi_host_template_scsi_host_template_instance_3(void *arg0 ) { int (*ldv_3_callback_change_queue_depth)(struct scsi_device * , int ) ; int (*ldv_3_callback_eh_abort_handler)(struct scsi_cmnd * ) ; int (*ldv_3_callback_eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_3_callback_eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_3_callback_eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_3_callback_eh_target_reset_handler)(struct scsi_cmnd * ) ; char *(*ldv_3_callback_info)(struct Scsi_Host * ) ; int (*ldv_3_callback_ioctl)(struct scsi_device * , int , void * ) ; int (*ldv_3_callback_queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*ldv_3_callback_show_info)(struct seq_file * , struct Scsi_Host * ) ; struct Scsi_Host *ldv_3_host_host ; struct scsi_cmnd *ldv_3_host_struct_scsi_cmnd_ptr ; struct scsi_device *ldv_3_host_struct_scsi_device_ptr ; int ldv_3_ldv_param_23_1_default ; struct seq_file *ldv_3_ldv_param_27_0_default ; int ldv_3_ldv_param_4_1_default ; int ldv_3_ret_default ; struct ldv_struct_scsi_host_template_instance_3 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_scsi_host_template_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_scsi_host_template_instance_3 *)0)) { { ldv_3_host_host = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_3; return; ldv_main_3: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_133(); } if ((unsigned long )(ldv_3_host_host->hostt)->detect != (unsigned long )((int (*)(struct scsi_host_template * ))0)) { { ldv_3_ret_default = ldv_scsi_host_template_instance_probe_3_10((int (*)(struct Scsi_Host * ))(ldv_3_host_host->hostt)->detect, ldv_3_host_host); } } else { } { ldv_3_ret_default = ldv_ldv_post_probe_134(ldv_3_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_scsi_host_template_instance_release_3_2((ldv_3_host_host->hostt)->release, ldv_3_host_host); } goto ldv_main_3; } else { { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___2 = ldv_xmalloc(256UL); ldv_3_ldv_param_27_0_default = (struct seq_file *)tmp___2; ldv_scsi_host_template_instance_callback_3_27(ldv_3_callback_show_info, ldv_3_ldv_param_27_0_default, ldv_3_host_host); ldv_free((void *)ldv_3_ldv_param_27_0_default); } goto ldv_41740; case_2: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_26(ldv_3_callback_queuecommand, ldv_3_host_host, ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_3: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_23(ldv_3_callback_ioctl, ldv_3_host_struct_scsi_device_ptr, ldv_3_ldv_param_23_1_default, (void *)ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_4: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_22(ldv_3_callback_info, ldv_3_host_host); } goto ldv_41740; case_5: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_21(ldv_3_callback_eh_target_reset_handler, ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_6: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_20(ldv_3_callback_eh_host_reset_handler, ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_7: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_19(ldv_3_callback_eh_device_reset_handler, ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_8: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_18(ldv_3_callback_eh_bus_reset_handler, ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_9: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_17(ldv_3_callback_eh_abort_handler, ldv_3_host_struct_scsi_cmnd_ptr); } goto ldv_41740; case_10: /* CIL Label */ { ldv_scsi_host_template_instance_callback_3_4(ldv_3_callback_change_queue_depth, ldv_3_host_struct_scsi_device_ptr, ldv_3_ldv_param_4_1_default); } goto ldv_41740; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_41740: ; } goto ldv_call_3; return; } } void ldv_struct_bin_attribute_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_4_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_4_container_struct_bin_attribute ; struct file *ldv_4_container_struct_file_ptr ; struct kobject *ldv_4_container_struct_kobject_ptr ; char *ldv_4_ldv_param_3_3_default ; long long ldv_4_ldv_param_3_4_default ; unsigned long ldv_4_ldv_param_3_5_default ; char *ldv_4_ldv_param_9_3_default ; long long ldv_4_ldv_param_9_4_default ; unsigned long ldv_4_ldv_param_9_5_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_4; return; ldv_call_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_3_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_3_default = (char *)tmp___0; } if ((unsigned long )ldv_4_callback_write != (unsigned long )((long (*)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_write, ldv_4_container_struct_file_ptr, ldv_4_container_struct_kobject_ptr, ldv_4_container_struct_bin_attribute, ldv_4_ldv_param_9_3_default, ldv_4_ldv_param_9_4_default, ldv_4_ldv_param_9_5_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_9_3_default); } } else { { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_read, ldv_4_container_struct_file_ptr, ldv_4_container_struct_kobject_ptr, ldv_4_container_struct_bin_attribute, ldv_4_ldv_param_3_3_default, ldv_4_ldv_param_3_4_default, ldv_4_ldv_param_3_5_default); } } { ldv_free((void *)ldv_4_ldv_param_3_3_default); } goto ldv_call_4; } else { return; } return; } } void ldv_struct_bin_attribute_dummy_resourceless_instance_5(void *arg0 ) { long (*ldv_5_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_5_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_5_container_struct_bin_attribute ; struct file *ldv_5_container_struct_file_ptr ; struct kobject *ldv_5_container_struct_kobject_ptr ; char *ldv_5_ldv_param_3_3_default ; long long ldv_5_ldv_param_3_4_default ; unsigned long ldv_5_ldv_param_3_5_default ; char *ldv_5_ldv_param_9_3_default ; long long ldv_5_ldv_param_9_4_default ; unsigned long ldv_5_ldv_param_9_5_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_5; return; ldv_call_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_3_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_3_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_write, ldv_5_container_struct_file_ptr, ldv_5_container_struct_kobject_ptr, ldv_5_container_struct_bin_attribute, ldv_5_ldv_param_9_3_default, ldv_5_ldv_param_9_4_default, ldv_5_ldv_param_9_5_default); ldv_free((void *)ldv_5_ldv_param_9_3_default); } } else { { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_read, ldv_5_container_struct_file_ptr, ldv_5_container_struct_kobject_ptr, ldv_5_container_struct_bin_attribute, ldv_5_ldv_param_3_3_default, ldv_5_ldv_param_3_4_default, ldv_5_ldv_param_3_5_default); } } { ldv_free((void *)ldv_5_ldv_param_3_3_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_bin_attribute_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_6_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_6_container_struct_bin_attribute ; struct file *ldv_6_container_struct_file_ptr ; struct kobject *ldv_6_container_struct_kobject_ptr ; char *ldv_6_ldv_param_3_3_default ; long long ldv_6_ldv_param_3_4_default ; unsigned long ldv_6_ldv_param_3_5_default ; char *ldv_6_ldv_param_9_3_default ; long long ldv_6_ldv_param_9_4_default ; unsigned long ldv_6_ldv_param_9_5_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_6; return; ldv_call_6: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_3_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_3_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_write, ldv_6_container_struct_file_ptr, ldv_6_container_struct_kobject_ptr, ldv_6_container_struct_bin_attribute, ldv_6_ldv_param_9_3_default, ldv_6_ldv_param_9_4_default, ldv_6_ldv_param_9_5_default); ldv_free((void *)ldv_6_ldv_param_9_3_default); } } else { { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_read, ldv_6_container_struct_file_ptr, ldv_6_container_struct_kobject_ptr, ldv_6_container_struct_bin_attribute, ldv_6_ldv_param_3_3_default, ldv_6_ldv_param_3_4_default, ldv_6_ldv_param_3_5_default); } } { ldv_free((void *)ldv_6_ldv_param_3_3_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_bin_attribute_dummy_resourceless_instance_7(void *arg0 ) { long (*ldv_7_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_7_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_7_container_struct_bin_attribute ; struct file *ldv_7_container_struct_file_ptr ; struct kobject *ldv_7_container_struct_kobject_ptr ; char *ldv_7_ldv_param_3_3_default ; long long ldv_7_ldv_param_3_4_default ; unsigned long ldv_7_ldv_param_3_5_default ; char *ldv_7_ldv_param_9_3_default ; long long ldv_7_ldv_param_9_4_default ; unsigned long ldv_7_ldv_param_9_5_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_7_ldv_param_3_3_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_3_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_write, ldv_7_container_struct_file_ptr, ldv_7_container_struct_kobject_ptr, ldv_7_container_struct_bin_attribute, ldv_7_ldv_param_9_3_default, ldv_7_ldv_param_9_4_default, ldv_7_ldv_param_9_5_default); ldv_free((void *)ldv_7_ldv_param_9_3_default); } } else { { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_read, ldv_7_container_struct_file_ptr, ldv_7_container_struct_kobject_ptr, ldv_7_container_struct_bin_attribute, ldv_7_ldv_param_3_3_default, ldv_7_ldv_param_3_4_default, ldv_7_ldv_param_3_5_default); } } { ldv_free((void *)ldv_7_ldv_param_3_3_default); } goto ldv_call_7; } else { return; } return; } } void ldv_struct_bin_attribute_dummy_resourceless_instance_8(void *arg0 ) { long (*ldv_8_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_8_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_8_container_struct_bin_attribute ; struct file *ldv_8_container_struct_file_ptr ; struct kobject *ldv_8_container_struct_kobject_ptr ; char *ldv_8_ldv_param_3_3_default ; long long ldv_8_ldv_param_3_4_default ; unsigned long ldv_8_ldv_param_3_5_default ; char *ldv_8_ldv_param_9_3_default ; long long ldv_8_ldv_param_9_4_default ; unsigned long ldv_8_ldv_param_9_5_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_8; return; ldv_call_8: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_8_ldv_param_3_3_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_8_ldv_param_9_3_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_8_9(ldv_8_callback_write, ldv_8_container_struct_file_ptr, ldv_8_container_struct_kobject_ptr, ldv_8_container_struct_bin_attribute, ldv_8_ldv_param_9_3_default, ldv_8_ldv_param_9_4_default, ldv_8_ldv_param_9_5_default); ldv_free((void *)ldv_8_ldv_param_9_3_default); } } else { { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_read, ldv_8_container_struct_file_ptr, ldv_8_container_struct_kobject_ptr, ldv_8_container_struct_bin_attribute, ldv_8_ldv_param_3_3_default, ldv_8_ldv_param_3_4_default, ldv_8_ldv_param_3_5_default); } } { ldv_free((void *)ldv_8_ldv_param_3_3_default); } goto ldv_call_8; } else { return; } return; } } void ldv_struct_bin_attribute_dummy_resourceless_instance_9(void *arg0 ) { long (*ldv_9_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_9_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_9_container_struct_bin_attribute ; struct file *ldv_9_container_struct_file_ptr ; struct kobject *ldv_9_container_struct_kobject_ptr ; char *ldv_9_ldv_param_3_3_default ; long long ldv_9_ldv_param_3_4_default ; unsigned long ldv_9_ldv_param_3_5_default ; char *ldv_9_ldv_param_9_3_default ; long long ldv_9_ldv_param_9_4_default ; unsigned long ldv_9_ldv_param_9_5_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_9; return; ldv_call_9: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_9_ldv_param_3_3_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_9_ldv_param_9_3_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_write, ldv_9_container_struct_file_ptr, ldv_9_container_struct_kobject_ptr, ldv_9_container_struct_bin_attribute, ldv_9_ldv_param_9_3_default, ldv_9_ldv_param_9_4_default, ldv_9_ldv_param_9_5_default); ldv_free((void *)ldv_9_ldv_param_9_3_default); } } else { { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_read, ldv_9_container_struct_file_ptr, ldv_9_container_struct_kobject_ptr, ldv_9_container_struct_bin_attribute, ldv_9_ldv_param_3_3_default, ldv_9_ldv_param_3_4_default, ldv_9_ldv_param_3_5_default); } } { ldv_free((void *)ldv_9_ldv_param_3_3_default); } goto ldv_call_9; } else { return; } return; } } void ldv_timer_dummy_factory_11(void *arg0 ) { struct timer_list *ldv_11_container_timer_list ; { { ldv_dispatch_instance_register_11_3(ldv_11_container_timer_list); } return; return; } } void ldv_timer_instance_callback_10_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_10(void *arg0 ) { struct timer_list *ldv_10_container_timer_list ; struct ldv_struct_timer_instance_10 *data ; { data = (struct ldv_struct_timer_instance_10 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_10 *)0)) { { ldv_10_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_10_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_10_2(ldv_10_container_timer_list->function, ldv_10_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_chrdev(void *arg0 , unsigned int arg1 , char *arg2 ) { struct file_operations *ldv_19_file_operations_file_operations ; { { ldv_dispatch_deregister_19_1(ldv_19_file_operations_file_operations); } return; return; } } __inline static int register_chrdev(unsigned int major , char const *name , struct file_operations const *fops ) { ldv_func_ret_type ldv_func_res ; int tmp ; int res1 ; int tmp___0 ; int res2 ; int tmp___1 ; { { tmp = ldv_register_chrdev_90(major, name, fops); ldv_func_res = tmp; tmp___0 = ldv_linux_fs_char_dev_register_chrdev((int )major); res1 = tmp___0; tmp___1 = ldv_linux_usb_gadget_register_chrdev((int )major); res2 = tmp___1; ldv_assume(res1 == res2); } return (res1); return (ldv_func_res); } } __inline static void unregister_chrdev(unsigned int major , char const *name ) { { { ldv_unregister_chrdev_91(major, name); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98___2(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static struct Scsi_Host *ldv_scsi_host_alloc_102(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_scsi_add_host_103(struct Scsi_Host *host , struct device *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = scsi_add_host(host, dev); ldv_func_res = tmp; tmp___0 = ldv_scsi_add_host(ldv_func_res, host, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_104(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_105(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } __inline static void ldv_unregister_chrdev_106(unsigned int major , char const *name ) { { { unregister_chrdev(major, name); ldv_unregister_chrdev((void *)0, major, (char *)name); } return; } } static void ldv_pci_unregister_driver_107(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_scsi_unregister_109(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_unregister(ldv_func_arg1); ldv_scsi_unregister((void *)0, ldv_func_arg1); } return; } } __inline static int ldv_register_chrdev_110(unsigned int major , char const *name , struct file_operations const *fops ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_chrdev(major, name, fops); ldv_func_res = tmp; tmp___0 = ldv_register_chrdev(ldv_func_res, major, (char *)name, (struct file_operations *)fops); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_111(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_request_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_115___0(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_request_lock_of_esas2r_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_request_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_119(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_ldv_post_init_127(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_128(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_129(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_130(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_131(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_132(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_133(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_134(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_event_buffer_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_event_buffer_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 2); ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_event_buffer_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_event_buffer_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_event_buffer_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_event_buffer_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_event_buffer_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_event_buffer_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_event_buffer_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_fw_event_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_fw_event_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_fw_event_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_fw_event_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_fw_event_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_fw_event_lock_of_esas2r_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_fw_event_lock_of_esas2r_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_fw_event_lock_of_esas2r_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_fw_event_lock_of_esas2r_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_mem_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_mem_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_mem_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_mem_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_mem_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_mem_lock_of_esas2r_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_mem_lock_of_esas2r_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_mem_lock_of_esas2r_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_mem_lock_of_esas2r_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_queue_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_queue_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_queue_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_queue_lock_of_esas2r_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_queue_lock_of_esas2r_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_queue_lock_of_esas2r_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_queue_lock_of_esas2r_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_request_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_request_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_request_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_request_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_request_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_request_lock_of_esas2r_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_request_lock_of_esas2r_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_request_lock_of_esas2r_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_request_lock_of_esas2r_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_sg_list_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_sg_list_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_sg_list_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_sg_list_lock_of_esas2r_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_sg_list_lock_of_esas2r_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_sg_list_lock_of_esas2r_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_sg_list_lock_of_esas2r_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_sg_list_lock_of_esas2r_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_sg_list_lock_of_esas2r_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_event_buffer_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_fw_event_lock_of_esas2r_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_mem_lock_of_esas2r_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_esas2r_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_request_lock_of_esas2r_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_sg_list_lock_of_esas2r_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }