/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct execute_work { struct work_struct work ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct dma_pool; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField73 ; union __anonunion____missing_field_name_215 __annonCompField74 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_216 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_217 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_218 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_220 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_221 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_219 { struct __anonstruct_elv_220 elv ; struct __anonstruct_flush_221 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_216 __annonCompField75 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_217 __annonCompField76 ; union __anonunion____missing_field_name_218 __annonCompField77 ; union __anonunion____missing_field_name_219 __annonCompField78 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_223 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_223 __annonCompField79 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct scsi_cmnd; struct scsi_lun { __u8 scsi_lun[8U] ; }; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_224 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_224 __annonCompField80 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_231 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_231 __annonCompField81 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; enum sas_oob_mode { OOB_NOT_CONNECTED = 0, SATA_OOB_MODE = 1, SAS_OOB_MODE = 2 } ; enum sas_device_type { SAS_PHY_UNUSED = 0, SAS_END_DEVICE = 1, SAS_EDGE_EXPANDER_DEVICE = 2, SAS_FANOUT_EXPANDER_DEVICE = 3, SAS_HA = 4, SAS_SATA_DEV = 5, SAS_SATA_PM = 7, SAS_SATA_PM_PORT = 8, SAS_SATA_PENDING = 9 } ; enum sas_protocol { SAS_PROTOCOL_NONE = 0, SAS_PROTOCOL_SATA = 1, SAS_PROTOCOL_SMP = 2, SAS_PROTOCOL_STP = 4, SAS_PROTOCOL_SSP = 8, SAS_PROTOCOL_ALL = 14, SAS_PROTOCOL_STP_ALL = 5 } ; enum phy_func { PHY_FUNC_NOP = 0, PHY_FUNC_LINK_RESET = 1, PHY_FUNC_HARD_RESET = 2, PHY_FUNC_DISABLE = 3, PHY_FUNC_CLEAR_ERROR_LOG = 5, PHY_FUNC_CLEAR_AFFIL = 6, PHY_FUNC_TX_SATA_PS_SIGNAL = 7, PHY_FUNC_RELEASE_SPINUP_HOLD = 16, PHY_FUNC_SET_LINK_RATE = 17, PHY_FUNC_GET_EVENTS = 18 } ; enum sas_open_rej_reason { SAS_OREJ_UNKNOWN = 0, SAS_OREJ_BAD_DEST = 1, SAS_OREJ_CONN_RATE = 2, SAS_OREJ_EPROTO = 3, SAS_OREJ_RESV_AB0 = 4, SAS_OREJ_RESV_AB1 = 5, SAS_OREJ_RESV_AB2 = 6, SAS_OREJ_RESV_AB3 = 7, SAS_OREJ_WRONG_DEST = 8, SAS_OREJ_STP_NORES = 9, SAS_OREJ_NO_DEST = 10, SAS_OREJ_PATH_BLOCKED = 11, SAS_OREJ_RSVD_CONT0 = 12, SAS_OREJ_RSVD_CONT1 = 13, SAS_OREJ_RSVD_INIT0 = 14, SAS_OREJ_RSVD_INIT1 = 15, SAS_OREJ_RSVD_STOP0 = 16, SAS_OREJ_RSVD_STOP1 = 17, SAS_OREJ_RSVD_RETRY = 18 } ; union __anonunion____missing_field_name_232 { u8 lbam ; u8 byte_count_low ; }; union __anonunion____missing_field_name_233 { u8 lbah ; u8 byte_count_high ; }; union __anonunion____missing_field_name_234 { u8 sector_count ; u8 interrupt_reason ; }; struct dev_to_host_fis { u8 fis_type ; u8 flags ; u8 status ; u8 error ; u8 lbal ; union __anonunion____missing_field_name_232 __annonCompField82 ; union __anonunion____missing_field_name_233 __annonCompField83 ; u8 device ; u8 lbal_exp ; u8 lbam_exp ; u8 lbah_exp ; u8 _r_a ; union __anonunion____missing_field_name_234 __annonCompField84 ; u8 sector_count_exp ; u8 _r_b ; u8 _r_c ; u32 _r_d ; }; union __anonunion____missing_field_name_235 { u8 lbam ; u8 byte_count_low ; }; union __anonunion____missing_field_name_236 { u8 lbah ; u8 byte_count_high ; }; union __anonunion____missing_field_name_237 { u8 sector_count ; u8 interrupt_reason ; }; struct host_to_dev_fis { u8 fis_type ; u8 flags ; u8 command ; u8 features ; u8 lbal ; union __anonunion____missing_field_name_235 __annonCompField85 ; union __anonunion____missing_field_name_236 __annonCompField86 ; u8 device ; u8 lbal_exp ; u8 lbam_exp ; u8 lbah_exp ; u8 features_exp ; union __anonunion____missing_field_name_237 __annonCompField87 ; u8 sector_count_exp ; u8 _r_a ; u8 control ; u32 _r_b ; }; struct __anonstruct____missing_field_name_239 { unsigned char _un20 : 1 ; unsigned char smp_iport : 1 ; unsigned char stp_iport : 1 ; unsigned char ssp_iport : 1 ; unsigned char _un247 : 4 ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField88 ; u8 initiator_bits ; }; struct __anonstruct____missing_field_name_241 { unsigned char _un30 : 1 ; unsigned char smp_tport : 1 ; unsigned char stp_tport : 1 ; unsigned char ssp_tport : 1 ; unsigned char _un347 : 4 ; }; union __anonunion____missing_field_name_240 { struct __anonstruct____missing_field_name_241 __annonCompField90 ; u8 target_bits ; }; struct sas_identify_frame { unsigned char frame_type : 4 ; unsigned char dev_type : 3 ; unsigned char _un0 : 1 ; u8 _un1 ; union __anonunion____missing_field_name_238 __annonCompField89 ; union __anonunion____missing_field_name_240 __annonCompField91 ; u8 _un4_11[8U] ; u8 sas_addr[8U] ; u8 phy_id ; u8 _un21_27[7U] ; __be32 crc ; }; struct report_general_resp { __be16 change_count ; __be16 route_indexes ; u8 _r_a ; u8 num_phys ; unsigned char conf_route_table : 1 ; unsigned char configuring : 1 ; unsigned char config_others : 1 ; unsigned char orej_retry_supp : 1 ; unsigned char stp_cont_awt : 1 ; unsigned char self_config : 1 ; unsigned char zone_config : 1 ; unsigned char t2t_supp : 1 ; u8 _r_c ; u8 enclosure_logical_id[8U] ; u8 _r_d[12U] ; }; struct discover_resp { u8 _r_a[5U] ; u8 phy_id ; __be16 _r_b ; unsigned char _r_c : 4 ; unsigned char attached_dev_type : 3 ; unsigned char _r_d : 1 ; unsigned char linkrate : 4 ; unsigned char _r_e : 4 ; unsigned char attached_sata_host : 1 ; unsigned char iproto : 3 ; unsigned char _r_f : 4 ; unsigned char attached_sata_dev : 1 ; unsigned char tproto : 3 ; unsigned char _r_g : 3 ; unsigned char attached_sata_ps : 1 ; u8 sas_addr[8U] ; u8 attached_sas_addr[8U] ; u8 attached_phy_id ; u8 _r_h[7U] ; unsigned char hmin_linkrate : 4 ; unsigned char pmin_linkrate : 4 ; unsigned char hmax_linkrate : 4 ; unsigned char pmax_linkrate : 4 ; u8 change_count ; unsigned char pptv : 4 ; unsigned char _r_i : 3 ; unsigned char virtual : 1 ; unsigned char routing_attr : 4 ; unsigned char _r_j : 4 ; u8 conn_type ; u8 conn_el_index ; u8 conn_phy_link ; u8 _r_k[8U] ; }; struct report_phy_sata_resp { u8 _r_a[5U] ; u8 phy_id ; u8 _r_b ; unsigned char affil_valid : 1 ; unsigned char affil_supp : 1 ; unsigned char _r_c : 6 ; u32 _r_d ; u8 stp_sas_addr[8U] ; struct dev_to_host_fis fis ; u32 _r_e ; u8 affil_stp_ini_addr[8U] ; __be32 crc ; }; union __anonunion____missing_field_name_242 { struct report_general_resp rg ; struct discover_resp disc ; struct report_phy_sata_resp rps ; }; struct smp_resp { u8 frame_type ; u8 function ; u8 result ; u8 reserved ; union __anonunion____missing_field_name_242 __annonCompField92 ; }; struct ata_bmdma_prd { __le32 addr ; __le32 flags_len ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u64 acpi_io_address; typedef void *acpi_handle; typedef u32 acpi_object_type; struct __anonstruct_integer_243 { acpi_object_type type ; u64 value ; }; struct __anonstruct_string_244 { acpi_object_type type ; u32 length ; char *pointer ; }; struct __anonstruct_buffer_245 { acpi_object_type type ; u32 length ; u8 *pointer ; }; struct __anonstruct_package_246 { acpi_object_type type ; u32 count ; union acpi_object *elements ; }; struct __anonstruct_reference_247 { acpi_object_type type ; acpi_object_type actual_type ; acpi_handle handle ; }; struct __anonstruct_processor_248 { acpi_object_type type ; u32 proc_id ; acpi_io_address pblk_address ; u32 pblk_length ; }; struct __anonstruct_power_resource_249 { acpi_object_type type ; u32 system_level ; u32 resource_order ; }; union acpi_object { acpi_object_type type ; struct __anonstruct_integer_243 integer ; struct __anonstruct_string_244 string ; struct __anonstruct_buffer_245 buffer ; struct __anonstruct_package_246 package ; struct __anonstruct_reference_247 reference ; struct __anonstruct_processor_248 processor ; struct __anonstruct_power_resource_249 power_resource ; }; struct acpi_driver; struct acpi_hotplug_profile { struct kobject kobj ; int (*scan_dependent)(struct acpi_device * ) ; void (*notify_online)(struct acpi_device * ) ; bool enabled ; bool demand_offline ; }; struct acpi_scan_handler { struct acpi_device_id const *ids ; struct list_head list_node ; bool (*match)(char * , struct acpi_device_id const ** ) ; int (*attach)(struct acpi_device * , struct acpi_device_id const * ) ; void (*detach)(struct acpi_device * ) ; void (*bind)(struct device * ) ; void (*unbind)(struct device * ) ; struct acpi_hotplug_profile hotplug ; }; struct acpi_hotplug_context { struct acpi_device *self ; int (*notify)(struct acpi_device * , u32 ) ; void (*uevent)(struct acpi_device * , u32 ) ; void (*fixup)(struct acpi_device * ) ; }; struct acpi_device_ops { int (*add)(struct acpi_device * ) ; int (*remove)(struct acpi_device * ) ; void (*notify)(struct acpi_device * , u32 ) ; }; struct acpi_driver { char name[80U] ; char class[80U] ; struct acpi_device_id const *ids ; unsigned int flags ; struct acpi_device_ops ops ; struct device_driver drv ; struct module *owner ; }; struct acpi_device_status { unsigned char present : 1 ; unsigned char enabled : 1 ; unsigned char show_in_ui : 1 ; unsigned char functional : 1 ; unsigned char battery_present : 1 ; unsigned int reserved : 27 ; }; struct acpi_device_flags { unsigned char dynamic_status : 1 ; unsigned char removable : 1 ; unsigned char ejectable : 1 ; unsigned char power_manageable : 1 ; unsigned char match_driver : 1 ; unsigned char initialized : 1 ; unsigned char visited : 1 ; unsigned char hotplug_notify : 1 ; unsigned char is_dock_station : 1 ; unsigned int reserved : 23 ; }; struct acpi_device_dir { struct proc_dir_entry *entry ; }; typedef char acpi_bus_id[8U]; typedef unsigned long acpi_bus_address; typedef char acpi_device_name[40U]; typedef char acpi_device_class[20U]; struct acpi_pnp_type { unsigned char hardware_id : 1 ; unsigned char bus_address : 1 ; unsigned char platform_id : 1 ; unsigned int reserved : 29 ; }; struct acpi_device_pnp { acpi_bus_id bus_id ; struct acpi_pnp_type type ; acpi_bus_address bus_address ; char *unique_id ; struct list_head ids ; acpi_device_name device_name ; acpi_device_class device_class ; union acpi_object *str_obj ; }; struct acpi_device_power_flags { unsigned char explicit_get : 1 ; unsigned char power_resources : 1 ; unsigned char inrush_current : 1 ; unsigned char power_removed : 1 ; unsigned char ignore_parent : 1 ; unsigned char dsw_present : 1 ; unsigned int reserved : 26 ; }; struct __anonstruct_flags_250 { unsigned char valid : 1 ; unsigned char os_accessible : 1 ; unsigned char explicit_set : 1 ; unsigned char reserved : 6 ; }; struct acpi_device_power_state { struct __anonstruct_flags_250 flags ; int power ; int latency ; struct list_head resources ; }; struct acpi_device_power { int state ; struct acpi_device_power_flags flags ; struct acpi_device_power_state states[5U] ; }; struct acpi_device_perf_flags { u8 reserved ; }; struct __anonstruct_flags_251 { unsigned char valid : 1 ; unsigned char reserved : 7 ; }; struct acpi_device_perf_state { struct __anonstruct_flags_251 flags ; u8 power ; u8 performance ; int latency ; }; struct acpi_device_perf { int state ; struct acpi_device_perf_flags flags ; int state_count ; struct acpi_device_perf_state *states ; }; struct acpi_device_wakeup_flags { unsigned char valid : 1 ; unsigned char run_wake : 1 ; unsigned char notifier_present : 1 ; unsigned char enabled : 1 ; }; struct acpi_device_wakeup_context { struct work_struct work ; struct device *dev ; }; struct acpi_device_wakeup { acpi_handle gpe_device ; u64 gpe_number ; u64 sleep_state ; struct list_head resources ; struct acpi_device_wakeup_flags flags ; struct acpi_device_wakeup_context context ; struct wakeup_source *ws ; int prepare_count ; }; struct acpi_device_data { union acpi_object const *pointer ; union acpi_object const *properties ; union acpi_object const *of_compatible ; }; struct acpi_gpio_mapping; struct acpi_device { int device_type ; acpi_handle handle ; struct fwnode_handle fwnode ; struct acpi_device *parent ; struct list_head children ; struct list_head node ; struct list_head wakeup_list ; struct list_head del_list ; struct acpi_device_status status ; struct acpi_device_flags flags ; struct acpi_device_pnp pnp ; struct acpi_device_power power ; struct acpi_device_wakeup wakeup ; struct acpi_device_perf performance ; struct acpi_device_dir dir ; struct acpi_device_data data ; struct acpi_scan_handler *handler ; struct acpi_hotplug_context *hp ; struct acpi_driver *driver ; struct acpi_gpio_mapping const *driver_gpios ; void *driver_data ; struct device dev ; unsigned int physical_node_count ; unsigned int dep_unmet ; struct list_head physical_node_list ; struct mutex physical_node_lock ; void (*remove)(struct acpi_device * ) ; }; struct acpi_gpio_params { unsigned int crs_entry_index ; unsigned int line_index ; bool active_low ; }; struct acpi_gpio_mapping { char const *name ; struct acpi_gpio_params const *data ; unsigned int size ; }; enum ata_lpm_policy { ATA_LPM_UNKNOWN = 0, ATA_LPM_MAX_POWER = 1, ATA_LPM_MED_POWER = 2, ATA_LPM_MIN_POWER = 3 } ; struct ata_port_operations; struct ata_port; struct ata_link; struct ata_queued_cmd; enum sw_activity { OFF = 0, BLINK_ON = 1, BLINK_OFF = 2 } ; struct ata_taskfile { unsigned long flags ; u8 protocol ; u8 ctl ; u8 hob_feature ; u8 hob_nsect ; u8 hob_lbal ; u8 hob_lbam ; u8 hob_lbah ; u8 feature ; u8 nsect ; u8 lbal ; u8 lbam ; u8 lbah ; u8 device ; u8 command ; u32 auxiliary ; }; struct ata_ioports { void *cmd_addr ; void *data_addr ; void *error_addr ; void *feature_addr ; void *nsect_addr ; void *lbal_addr ; void *lbam_addr ; void *lbah_addr ; void *device_addr ; void *status_addr ; void *command_addr ; void *altstatus_addr ; void *ctl_addr ; void *bmdma_addr ; void *scr_addr ; }; struct ata_host { spinlock_t lock ; struct device *dev ; void * const *iomap ; unsigned int n_ports ; unsigned int n_tags ; void *private_data ; struct ata_port_operations *ops ; unsigned long flags ; struct mutex eh_mutex ; struct task_struct *eh_owner ; struct ata_port *simplex_claimed ; struct ata_port *ports[0U] ; }; struct ata_device; struct ata_queued_cmd { struct ata_port *ap ; struct ata_device *dev ; struct scsi_cmnd *scsicmd ; void (*scsidone)(struct scsi_cmnd * ) ; struct ata_taskfile tf ; u8 cdb[16U] ; unsigned long flags ; unsigned int tag ; unsigned int n_elem ; unsigned int orig_n_elem ; int dma_dir ; unsigned int sect_size ; unsigned int nbytes ; unsigned int extrabytes ; unsigned int curbytes ; struct scatterlist sgent ; struct scatterlist *sg ; struct scatterlist *cursg ; unsigned int cursg_ofs ; unsigned int err_mask ; struct ata_taskfile result_tf ; void (*complete_fn)(struct ata_queued_cmd * ) ; void *private_data ; void *lldd_task ; }; struct ata_port_stats { unsigned long unhandled_irq ; unsigned long idle_irq ; unsigned long rw_reqbuf ; }; struct ata_ering_entry { unsigned int eflags ; unsigned int err_mask ; u64 timestamp ; }; struct ata_ering { int cursor ; struct ata_ering_entry ring[32U] ; }; union __anonunion____missing_field_name_259 { u16 id[256U] ; u32 gscr[128U] ; }; struct ata_device { struct ata_link *link ; unsigned int devno ; unsigned int horkage ; unsigned long flags ; struct scsi_device *sdev ; void *private_data ; union acpi_object *gtf_cache ; unsigned int gtf_filter ; void *zpodd ; struct device tdev ; u64 n_sectors ; u64 n_native_sectors ; unsigned int class ; unsigned long unpark_deadline ; u8 pio_mode ; u8 dma_mode ; u8 xfer_mode ; unsigned int xfer_shift ; unsigned int multi_count ; unsigned int max_sectors ; unsigned int cdb_len ; unsigned long pio_mask ; unsigned long mwdma_mask ; unsigned long udma_mask ; u16 cylinders ; u16 heads ; u16 sectors ; union __anonunion____missing_field_name_259 __annonCompField93 ; u8 devslp_timing[8U] ; u8 ncq_send_recv_cmds[16U] ; int spdn_cnt ; struct ata_ering ering ; }; struct ata_eh_info { struct ata_device *dev ; u32 serror ; unsigned int err_mask ; unsigned int action ; unsigned int dev_action[2U] ; unsigned int flags ; unsigned int probe_mask ; char desc[80U] ; int desc_len ; }; struct ata_eh_context { struct ata_eh_info i ; int tries[2U] ; int cmd_timeout_idx[2U][6U] ; unsigned int classes[2U] ; unsigned int did_probe_mask ; unsigned int unloaded_mask ; unsigned int saved_ncq_enabled ; u8 saved_xfer_mode[2U] ; unsigned long last_reset ; }; struct ata_acpi_drive { u32 pio ; u32 dma ; }; struct ata_acpi_gtm { struct ata_acpi_drive drive[2U] ; u32 flags ; }; struct ata_link { struct ata_port *ap ; int pmp ; struct device tdev ; unsigned int active_tag ; u32 sactive ; unsigned int flags ; u32 saved_scontrol ; unsigned int hw_sata_spd_limit ; unsigned int sata_spd_limit ; unsigned int sata_spd ; enum ata_lpm_policy lpm_policy ; struct ata_eh_info eh_info ; struct ata_eh_context eh_context ; struct ata_device device[2U] ; }; struct ata_port { struct Scsi_Host *scsi_host ; struct ata_port_operations *ops ; spinlock_t *lock ; unsigned long flags ; unsigned int pflags ; unsigned int print_id ; unsigned int local_port_no ; unsigned int port_no ; struct ata_ioports ioaddr ; u8 ctl ; u8 last_ctl ; struct ata_link *sff_pio_task_link ; struct delayed_work sff_pio_task ; struct ata_bmdma_prd *bmdma_prd ; dma_addr_t bmdma_prd_dma ; unsigned int pio_mask ; unsigned int mwdma_mask ; unsigned int udma_mask ; unsigned int cbl ; struct ata_queued_cmd qcmd[32U] ; unsigned long sas_tag_allocated ; unsigned int qc_active ; int nr_active_links ; unsigned int sas_last_tag ; struct ata_link link ; struct ata_link *slave_link ; int nr_pmp_links ; struct ata_link *pmp_link ; struct ata_link *excl_link ; struct ata_port_stats stats ; struct ata_host *host ; struct device *dev ; struct device tdev ; struct mutex scsi_scan_mutex ; struct delayed_work hotplug_task ; struct work_struct scsi_rescan_task ; unsigned int hsm_task_state ; u32 msg_enable ; struct list_head eh_done_q ; wait_queue_head_t eh_wait_q ; int eh_tries ; struct completion park_req_pending ; pm_message_t pm_mesg ; enum ata_lpm_policy target_lpm_policy ; struct timer_list fastdrain_timer ; unsigned long fastdrain_cnt ; int em_message_type ; void *private_data ; struct ata_acpi_gtm __acpi_init_gtm ; u8 sector_buf[512U] ; }; struct ata_port_operations { int (*qc_defer)(struct ata_queued_cmd * ) ; int (*check_atapi_dma)(struct ata_queued_cmd * ) ; void (*qc_prep)(struct ata_queued_cmd * ) ; unsigned int (*qc_issue)(struct ata_queued_cmd * ) ; bool (*qc_fill_rtf)(struct ata_queued_cmd * ) ; int (*cable_detect)(struct ata_port * ) ; unsigned long (*mode_filter)(struct ata_device * , unsigned long ) ; void (*set_piomode)(struct ata_port * , struct ata_device * ) ; void (*set_dmamode)(struct ata_port * , struct ata_device * ) ; int (*set_mode)(struct ata_link * , struct ata_device ** ) ; unsigned int (*read_id)(struct ata_device * , struct ata_taskfile * , u16 * ) ; void (*dev_config)(struct ata_device * ) ; void (*freeze)(struct ata_port * ) ; void (*thaw)(struct ata_port * ) ; int (*prereset)(struct ata_link * , unsigned long ) ; int (*softreset)(struct ata_link * , unsigned int * , unsigned long ) ; int (*hardreset)(struct ata_link * , unsigned int * , unsigned long ) ; void (*postreset)(struct ata_link * , unsigned int * ) ; int (*pmp_prereset)(struct ata_link * , unsigned long ) ; int (*pmp_softreset)(struct ata_link * , unsigned int * , unsigned long ) ; int (*pmp_hardreset)(struct ata_link * , unsigned int * , unsigned long ) ; void (*pmp_postreset)(struct ata_link * , unsigned int * ) ; void (*error_handler)(struct ata_port * ) ; void (*lost_interrupt)(struct ata_port * ) ; void (*post_internal_cmd)(struct ata_queued_cmd * ) ; void (*sched_eh)(struct ata_port * ) ; void (*end_eh)(struct ata_port * ) ; int (*scr_read)(struct ata_link * , unsigned int , u32 * ) ; int (*scr_write)(struct ata_link * , unsigned int , u32 ) ; void (*pmp_attach)(struct ata_port * ) ; void (*pmp_detach)(struct ata_port * ) ; int (*set_lpm)(struct ata_link * , enum ata_lpm_policy , unsigned int ) ; int (*port_suspend)(struct ata_port * , pm_message_t ) ; int (*port_resume)(struct ata_port * ) ; int (*port_start)(struct ata_port * ) ; void (*port_stop)(struct ata_port * ) ; void (*host_stop)(struct ata_host * ) ; void (*sff_dev_select)(struct ata_port * , unsigned int ) ; void (*sff_set_devctl)(struct ata_port * , u8 ) ; u8 (*sff_check_status)(struct ata_port * ) ; u8 (*sff_check_altstatus)(struct ata_port * ) ; void (*sff_tf_load)(struct ata_port * , struct ata_taskfile const * ) ; void (*sff_tf_read)(struct ata_port * , struct ata_taskfile * ) ; void (*sff_exec_command)(struct ata_port * , struct ata_taskfile const * ) ; unsigned int (*sff_data_xfer)(struct ata_device * , unsigned char * , unsigned int , int ) ; void (*sff_irq_on)(struct ata_port * ) ; bool (*sff_irq_check)(struct ata_port * ) ; void (*sff_irq_clear)(struct ata_port * ) ; void (*sff_drain_fifo)(struct ata_queued_cmd * ) ; void (*bmdma_setup)(struct ata_queued_cmd * ) ; void (*bmdma_start)(struct ata_queued_cmd * ) ; void (*bmdma_stop)(struct ata_queued_cmd * ) ; u8 (*bmdma_status)(struct ata_port * ) ; ssize_t (*em_show)(struct ata_port * , char * ) ; ssize_t (*em_store)(struct ata_port * , char const * , size_t ) ; ssize_t (*sw_activity_show)(struct ata_device * , char * ) ; ssize_t (*sw_activity_store)(struct ata_device * , enum sw_activity ) ; ssize_t (*transmit_led_message)(struct ata_port * , u32 , ssize_t ) ; void (*phy_reset)(struct ata_port * ) ; void (*eng_timeout)(struct ata_port * ) ; struct ata_port_operations const *inherits ; }; struct scsi_sense_hdr; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; struct sas_rphy; enum sas_linkrate { SAS_LINK_RATE_UNKNOWN = 0, SAS_PHY_DISABLED = 1, SAS_PHY_RESET_PROBLEM = 2, SAS_SATA_SPINUP_HOLD = 3, SAS_SATA_PORT_SELECTOR = 4, SAS_PHY_RESET_IN_PROGRESS = 5, SAS_LINK_RATE_1_5_GBPS = 8, SAS_LINK_RATE_G1 = 8, SAS_LINK_RATE_3_0_GBPS = 9, SAS_LINK_RATE_G2 = 9, SAS_LINK_RATE_6_0_GBPS = 10, SAS_LINK_RATE_12_0_GBPS = 11, SAS_LINK_RATE_FAILED = 16, SAS_PHY_VIRTUAL = 17 } ; struct sas_identify { enum sas_device_type device_type ; enum sas_protocol initiator_port_protocols ; enum sas_protocol target_port_protocols ; u64 sas_address ; u8 phy_identifier ; }; struct sas_phy { struct device dev ; int number ; int enabled ; struct sas_identify identify ; enum sas_linkrate negotiated_linkrate ; enum sas_linkrate minimum_linkrate_hw ; enum sas_linkrate minimum_linkrate ; enum sas_linkrate maximum_linkrate_hw ; enum sas_linkrate maximum_linkrate ; u32 invalid_dword_count ; u32 running_disparity_error_count ; u32 loss_of_dword_sync_count ; u32 phy_reset_problem_count ; struct list_head port_siblings ; void *hostdata ; }; struct sas_rphy { struct device dev ; struct sas_identify identify ; struct list_head list ; struct request_queue *q ; u32 scsi_target_id ; }; struct sas_port { struct device dev ; int port_identifier ; int num_phys ; unsigned char is_backlink : 1 ; struct sas_rphy *rphy ; struct mutex phy_list_mutex ; struct list_head phy_list ; }; struct sas_phy_linkrates { enum sas_linkrate maximum_linkrate ; enum sas_linkrate minimum_linkrate ; }; enum sas_class { SAS = 0, EXPANDER = 1 } ; enum sas_phy_role { PHY_ROLE_NONE = 0, PHY_ROLE_TARGET = 64, PHY_ROLE_INITIATOR = 128 } ; enum sas_phy_type { PHY_TYPE_PHYSICAL = 0, PHY_TYPE_VIRTUAL = 1 } ; enum ha_event { HAE_RESET = 0, HA_NUM_EVENTS = 1 } ; enum port_event { PORTE_BYTES_DMAED = 0, PORTE_BROADCAST_RCVD = 1, PORTE_LINK_RESET_ERR = 2, PORTE_TIMER_EVENT = 3, PORTE_HARD_RESET = 4, PORT_NUM_EVENTS = 5 } ; enum phy_event { PHYE_LOSS_OF_SIGNAL = 0, PHYE_OOB_DONE = 1, PHYE_OOB_ERROR = 2, PHYE_SPINUP_HOLD = 3, PHYE_RESUME_TIMEOUT = 4, PHY_NUM_EVENTS = 5 } ; enum routing_attribute { DIRECT_ROUTING = 0, SUBTRACTIVE_ROUTING = 1, TABLE_ROUTING = 2 } ; enum ex_phy_state { PHY_EMPTY = 0, PHY_VACANT = 1, PHY_NOT_PRESENT = 2, PHY_DEVICE_DISCOVERED = 3 } ; struct ex_phy { int phy_id ; enum ex_phy_state phy_state ; enum sas_device_type attached_dev_type ; enum sas_linkrate linkrate ; unsigned char attached_sata_host : 1 ; unsigned char attached_sata_dev : 1 ; unsigned char attached_sata_ps : 1 ; enum sas_protocol attached_tproto ; enum sas_protocol attached_iproto ; u8 attached_sas_addr[8U] ; u8 attached_phy_id ; int phy_change_count ; enum routing_attribute routing_attr ; unsigned char virtual : 1 ; int last_da_index ; struct sas_phy *phy ; struct sas_port *port ; }; struct expander_device { struct list_head children ; int ex_change_count ; u16 max_route_indexes ; u8 num_phys ; unsigned char t2t_supp : 1 ; unsigned char configuring : 1 ; unsigned char conf_route_table : 1 ; u8 enclosure_logical_id[8U] ; struct ex_phy *ex_phy ; struct sas_port *parent_port ; struct mutex cmd_mutex ; }; struct sata_device { unsigned int class ; struct smp_resp rps_resp ; u8 port_no ; struct ata_port *ap ; struct ata_host ata_host ; u8 fis[24U] ; }; struct ssp_device { struct list_head eh_list_node ; struct scsi_lun reset_lun ; }; struct asd_sas_port; union __anonunion____missing_field_name_260 { struct expander_device ex_dev ; struct sata_device sata_dev ; struct ssp_device ssp_dev ; }; struct domain_device { spinlock_t done_lock ; enum sas_device_type dev_type ; enum sas_linkrate linkrate ; enum sas_linkrate min_linkrate ; enum sas_linkrate max_linkrate ; int pathways ; struct domain_device *parent ; struct list_head siblings ; struct asd_sas_port *port ; struct sas_phy *phy ; struct list_head dev_list_node ; struct list_head disco_list_node ; enum sas_protocol iproto ; enum sas_protocol tproto ; struct sas_rphy *rphy ; u8 sas_addr[8U] ; u8 hashed_sas_addr[3U] ; u8 frame_rcvd[32U] ; union __anonunion____missing_field_name_260 __annonCompField94 ; void *lldd_dev ; unsigned long state ; struct kref kref ; }; struct sas_work { struct list_head drain_node ; struct work_struct work ; }; struct sas_discovery_event { struct sas_work work ; struct asd_sas_port *port ; }; struct sas_discovery { struct sas_discovery_event disc_work[7U] ; unsigned long pending ; u8 fanout_sas_addr[8U] ; u8 eeds_a[8U] ; u8 eeds_b[8U] ; int max_level ; }; struct sas_ha_struct; struct asd_sas_port { struct completion port_gone_completion ; struct sas_discovery disc ; struct domain_device *port_dev ; spinlock_t dev_list_lock ; struct list_head dev_list ; struct list_head disco_list ; struct list_head destroy_list ; enum sas_linkrate linkrate ; struct sas_work work ; int suspended ; int id ; enum sas_class class ; u8 sas_addr[8U] ; u8 attached_sas_addr[8U] ; enum sas_protocol iproto ; enum sas_protocol tproto ; enum sas_oob_mode oob_mode ; spinlock_t phy_list_lock ; struct list_head phy_list ; int num_phys ; u32 phy_mask ; struct sas_ha_struct *ha ; struct sas_port *port ; void *lldd_port ; }; struct asd_sas_phy; struct asd_sas_event { struct sas_work work ; struct asd_sas_phy *phy ; }; struct asd_sas_phy { struct asd_sas_event port_events[5U] ; struct asd_sas_event phy_events[5U] ; unsigned long port_events_pending ; unsigned long phy_events_pending ; int error ; int suspended ; struct sas_phy *phy ; int enabled ; int id ; enum sas_class class ; enum sas_protocol iproto ; enum sas_protocol tproto ; enum sas_phy_type type ; enum sas_phy_role role ; enum sas_oob_mode oob_mode ; enum sas_linkrate linkrate ; u8 *sas_addr ; u8 attached_sas_addr[8U] ; spinlock_t frame_rcvd_lock ; u8 *frame_rcvd ; int frame_rcvd_size ; spinlock_t sas_prim_lock ; u32 sas_prim ; struct list_head port_phy_el ; struct asd_sas_port *port ; struct sas_ha_struct *ha ; void *lldd_phy ; }; struct scsi_core { struct Scsi_Host *shost ; }; struct sas_ha_event { struct sas_work work ; struct sas_ha_struct *ha ; }; struct sas_ha_struct { struct sas_ha_event ha_events[1U] ; unsigned long pending ; struct list_head defer_q ; struct mutex drain_mutex ; unsigned long state ; spinlock_t lock ; int eh_active ; wait_queue_head_t eh_wait_q ; struct list_head eh_dev_q ; struct mutex disco_mutex ; struct scsi_core core ; char *sas_ha_name ; struct device *dev ; struct module *lldd_module ; u8 *sas_addr ; u8 hashed_sas_addr[3U] ; spinlock_t phy_port_lock ; struct asd_sas_phy **sas_phy ; struct asd_sas_port **sas_port ; int num_phys ; int strict_wide_ports ; void (*notify_ha_event)(struct sas_ha_struct * , enum ha_event ) ; void (*notify_port_event)(struct asd_sas_phy * , enum port_event ) ; void (*notify_phy_event)(struct asd_sas_phy * , enum phy_event ) ; void *lldd_ha ; struct list_head eh_done_q ; struct list_head eh_ata_q ; }; enum service_response { SAS_TASK_COMPLETE = 0, SAS_TASK_UNDELIVERED = -1 } ; enum exec_status { __SAM_STAT_CHECK_CONDITION = 2, SAS_DEV_NO_RESPONSE = 128, SAS_DATA_UNDERRUN = 129, SAS_DATA_OVERRUN = 130, SAS_INTERRUPTED = 131, SAS_QUEUE_FULL = 132, SAS_DEVICE_UNKNOWN = 133, SAS_SG_ERR = 134, SAS_OPEN_REJECT = 135, SAS_OPEN_TO = 136, SAS_PROTO_RESPONSE = 137, SAS_PHY_DOWN = 138, SAS_NAK_R_ERR = 139, SAS_PENDING = 140, SAS_ABORTED_TASK = 141 } ; struct task_status_struct { enum service_response resp ; enum exec_status stat ; int buf_valid_size ; u8 buf[96U] ; u32 residual ; enum sas_open_rej_reason open_rej_reason ; }; struct sas_ata_task { struct host_to_dev_fis fis ; u8 atapi_packet[16U] ; u8 retry_count ; unsigned char dma_xfer : 1 ; unsigned char use_ncq : 1 ; unsigned char set_affil_pol : 1 ; unsigned char stp_affil_pol : 1 ; unsigned char device_control_reg_update : 1 ; }; struct sas_smp_task { struct scatterlist smp_req ; struct scatterlist smp_resp ; }; enum task_attribute { TASK_ATTR_SIMPLE = 0, TASK_ATTR_HOQ = 1, TASK_ATTR_ORDERED = 2, TASK_ATTR_ACA = 4 } ; struct sas_ssp_task { u8 retry_count ; u8 LUN[8U] ; unsigned char enable_first_burst : 1 ; enum task_attribute task_attr ; u8 task_prio ; struct scsi_cmnd *cmd ; }; union __anonunion____missing_field_name_261 { struct sas_ata_task ata_task ; struct sas_smp_task smp_task ; struct sas_ssp_task ssp_task ; }; struct sas_task_slow; struct sas_task { struct domain_device *dev ; spinlock_t task_state_lock ; unsigned int task_state_flags ; enum sas_protocol task_proto ; union __anonunion____missing_field_name_261 __annonCompField95 ; struct scatterlist *scatter ; int num_scatter ; u32 total_xfer_len ; unsigned char data_dir : 2 ; struct task_status_struct task_status ; void (*task_done)(struct sas_task * ) ; void *lldd_task ; void *uldd_task ; struct sas_task_slow *slow_task ; }; struct sas_task_slow { struct timer_list timer ; struct completion completion ; }; struct sas_domain_function_template { void (*lldd_port_formed)(struct asd_sas_phy * ) ; void (*lldd_port_deformed)(struct asd_sas_phy * ) ; int (*lldd_dev_found)(struct domain_device * ) ; void (*lldd_dev_gone)(struct domain_device * ) ; int (*lldd_execute_task)(struct sas_task * , gfp_t ) ; int (*lldd_abort_task)(struct sas_task * ) ; int (*lldd_abort_task_set)(struct domain_device * , u8 * ) ; int (*lldd_clear_aca)(struct domain_device * , u8 * ) ; int (*lldd_clear_task_set)(struct domain_device * , u8 * ) ; int (*lldd_I_T_nexus_reset)(struct domain_device * ) ; int (*lldd_ata_check_ready)(struct domain_device * ) ; void (*lldd_ata_set_dmamode)(struct domain_device * ) ; int (*lldd_lu_reset)(struct domain_device * , u8 * ) ; int (*lldd_query_task)(struct sas_task * ) ; int (*lldd_clear_nexus_port)(struct asd_sas_port * ) ; int (*lldd_clear_nexus_ha)(struct sas_ha_struct * ) ; int (*lldd_control_phy)(struct asd_sas_phy * , enum phy_func , void * ) ; int (*lldd_write_gpio)(struct sas_ha_struct * , u8 , u8 , u8 , u8 * ) ; }; enum mvs_port_type { PORT_TGT_MASK = 32, PORT_INIT_PORT = 16, PORT_TGT_PORT = 8, PORT_INIT_TGT_PORT = 24, PORT_TYPE_SAS = 2, PORT_TYPE_SATA = 1 } ; struct mvs_info; struct mvs_dispatch; struct mvs_dispatch { char *name ; int (*chip_init)(struct mvs_info * ) ; int (*spi_init)(struct mvs_info * ) ; int (*chip_ioremap)(struct mvs_info * ) ; void (*chip_iounmap)(struct mvs_info * ) ; irqreturn_t (*isr)(struct mvs_info * , int , u32 ) ; u32 (*isr_status)(struct mvs_info * , int ) ; void (*interrupt_enable)(struct mvs_info * ) ; void (*interrupt_disable)(struct mvs_info * ) ; u32 (*read_phy_ctl)(struct mvs_info * , u32 ) ; void (*write_phy_ctl)(struct mvs_info * , u32 , u32 ) ; u32 (*read_port_cfg_data)(struct mvs_info * , u32 ) ; void (*write_port_cfg_data)(struct mvs_info * , u32 , u32 ) ; void (*write_port_cfg_addr)(struct mvs_info * , u32 , u32 ) ; u32 (*read_port_vsr_data)(struct mvs_info * , u32 ) ; void (*write_port_vsr_data)(struct mvs_info * , u32 , u32 ) ; void (*write_port_vsr_addr)(struct mvs_info * , u32 , u32 ) ; u32 (*read_port_irq_stat)(struct mvs_info * , u32 ) ; void (*write_port_irq_stat)(struct mvs_info * , u32 , u32 ) ; u32 (*read_port_irq_mask)(struct mvs_info * , u32 ) ; void (*write_port_irq_mask)(struct mvs_info * , u32 , u32 ) ; void (*command_active)(struct mvs_info * , u32 ) ; void (*clear_srs_irq)(struct mvs_info * , u8 , u8 ) ; void (*issue_stop)(struct mvs_info * , enum mvs_port_type , u32 ) ; void (*start_delivery)(struct mvs_info * , u32 ) ; u32 (*rx_update)(struct mvs_info * ) ; void (*int_full)(struct mvs_info * ) ; u8 (*assign_reg_set)(struct mvs_info * , u8 * ) ; void (*free_reg_set)(struct mvs_info * , u8 * ) ; u32 (*prd_size)(void) ; u32 (*prd_count)(void) ; void (*make_prd)(struct scatterlist * , int , void * ) ; void (*detect_porttype)(struct mvs_info * , int ) ; int (*oob_done)(struct mvs_info * , int ) ; void (*fix_phy_info)(struct mvs_info * , int , struct sas_identify_frame * ) ; void (*phy_work_around)(struct mvs_info * , int ) ; void (*phy_set_link_rate)(struct mvs_info * , u32 , struct sas_phy_linkrates * ) ; u32 (*phy_max_link_rate)(void) ; void (*phy_disable)(struct mvs_info * , u32 ) ; void (*phy_enable)(struct mvs_info * , u32 ) ; void (*phy_reset)(struct mvs_info * , u32 , int ) ; void (*stp_reset)(struct mvs_info * , u32 ) ; void (*clear_active_cmds)(struct mvs_info * ) ; u32 (*spi_read_data)(struct mvs_info * ) ; void (*spi_write_data)(struct mvs_info * , u32 ) ; int (*spi_buildcmd)(struct mvs_info * , u32 * , u8 , u8 , u8 , u32 ) ; int (*spi_issuecmd)(struct mvs_info * , u32 ) ; int (*spi_waitdataready)(struct mvs_info * , u32 ) ; void (*dma_fix)(struct mvs_info * , u32 , int , int , void * ) ; void (*tune_interrupt)(struct mvs_info * , u32 ) ; void (*non_spec_ncq_error)(struct mvs_info * ) ; }; struct mvs_chip_info { u32 n_host ; u32 n_phy ; u32 fis_offs ; u32 fis_count ; u32 srs_sz ; u32 sg_width ; u32 slot_width ; struct mvs_dispatch const *dispatch ; }; struct mvs_cmd_hdr { __le32 flags ; __le32 lens ; __le32 tags ; __le32 data_len ; __le64 cmd_tbl ; __le64 open_frame ; __le64 status_buf ; __le64 prd_tbl ; __le32 reserved[4U] ; }; struct mvs_port { struct asd_sas_port sas_port ; u8 port_attached ; u8 wide_port_phymap ; struct list_head list ; }; struct mvs_phy { struct mvs_info *mvi ; struct mvs_port *port ; struct asd_sas_phy sas_phy ; struct sas_identify identify ; struct scsi_device *sdev ; struct timer_list timer ; u64 dev_sas_addr ; u64 att_dev_sas_addr ; u32 att_dev_info ; u32 dev_info ; u32 phy_type ; u32 phy_status ; u32 irq_status ; u32 frame_rcvd_size ; u8 frame_rcvd[32U] ; u8 phy_attached ; u8 phy_mode ; u8 reserved[2U] ; u32 phy_event ; enum sas_linkrate minimum_linkrate ; enum sas_linkrate maximum_linkrate ; }; struct mvs_device { struct list_head dev_entry ; enum sas_device_type dev_type ; struct mvs_info *mvi_info ; struct domain_device *sas_device ; struct timer_list timer ; u32 attached_phy ; u32 device_id ; u32 running_req ; u8 taskfileset ; u8 dev_status ; u16 reserved ; }; struct phy_tuning { unsigned char trans_emp_en : 1 ; unsigned char trans_emp_amp : 4 ; unsigned char Reserved_2bit_1 : 3 ; unsigned char trans_amp : 5 ; unsigned char trans_amp_adj : 2 ; unsigned char resv_2bit_2 : 1 ; u8 reserved[2U] ; }; struct ffe_control { unsigned char ffe_cap_sel : 4 ; unsigned char ffe_rss_sel : 3 ; unsigned char reserved : 1 ; }; struct hba_info_page { u8 signature[4U] ; u32 reserved1[13U] ; u64 sas_addr[8U] ; struct ffe_control ffe_ctl[8U] ; u32 reserved2[12U] ; u8 phy_rate[8U] ; struct phy_tuning phy_tuning[8U] ; u32 reserved3[10U] ; }; union __anonunion____missing_field_name_262 { struct sas_task *task ; void *tdata ; }; struct mvs_slot_info { struct list_head entry ; union __anonunion____missing_field_name_262 __annonCompField96 ; u32 n_elem ; u32 tx ; u32 slot_tag ; void *buf ; dma_addr_t buf_dma ; void *response ; struct mvs_port *port ; struct mvs_device *device ; void *open_frame ; }; struct mvs_info { unsigned long flags ; spinlock_t lock ; struct pci_dev *pdev ; struct device *dev ; void *regs ; void *regs_ex ; u8 sas_addr[8U] ; struct sas_ha_struct *sas ; struct Scsi_Host *shost ; __le32 *tx ; dma_addr_t tx_dma ; u32 tx_prod ; __le32 *rx ; dma_addr_t rx_dma ; u32 rx_cons ; __le32 *rx_fis ; dma_addr_t rx_fis_dma ; struct mvs_cmd_hdr *slot ; dma_addr_t slot_dma ; u32 chip_id ; struct mvs_chip_info const *chip ; int tags_num ; unsigned long *tags ; struct mvs_phy phy[8U] ; struct mvs_port port[8U] ; u32 id ; u64 sata_reg_set ; struct list_head *hba_list ; struct list_head soc_entry ; struct list_head wq_list ; unsigned long instance ; u16 flashid ; u32 flashsize ; u32 flashsectSize ; void *addon ; struct hba_info_page hba_info_param ; struct mvs_device devices[1024U] ; void *bulk_buffer ; dma_addr_t bulk_buffer_dma ; void *bulk_buffer1 ; dma_addr_t bulk_buffer_dma1 ; void *dma_pool ; struct mvs_slot_info slot_info[0U] ; }; struct mvs_prv_info { u8 n_host ; u8 n_phy ; u8 scan_finished ; u8 reserve ; struct mvs_info *mvi[2U] ; struct tasklet_struct mv_tasklet ; }; struct mvs_wq { struct delayed_work work_q ; struct mvs_info *mvi ; void *data ; int handler ; struct list_head entry ; }; struct ldv_struct_EMGentry_18 { int signal_pending ; }; struct ldv_struct_free_irq_11 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_1 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_scsi_host_template_instance_2 { struct Scsi_Host *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_8 { struct timer_list *arg0 ; int signal_pending ; }; typedef struct Scsi_Host *ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef __u64 __be64; typedef int pao_T__; typedef int pao_T_____0; enum hrtimer_restart; struct ssp_frame_hdr { u8 frame_type ; u8 hashed_dest_addr[3U] ; u8 _r_a ; u8 hashed_src_addr[3U] ; __be16 _r_b ; unsigned char changing_data_ptr : 1 ; unsigned char retransmit : 1 ; unsigned char retry_data_frames : 1 ; unsigned char _r_c : 5 ; unsigned char num_fill_bytes : 2 ; unsigned char _r_d : 6 ; u32 _r_e ; __be16 tag ; __be16 tptt ; __be32 data_offs ; }; struct ssp_response_iu { u8 _r_a[10U] ; unsigned char datapres : 2 ; unsigned char _r_b : 6 ; u8 status ; u32 _r_c ; __be32 sense_data_len ; __be32 response_data_len ; u8 resp_data[0U] ; u8 sense_data[0U] ; }; struct ata_task_resp { u16 frame_len ; u8 ending_fis[24U] ; }; struct mvs_tmf_task { u8 tmf ; u16 tag_of_task_to_be_managed ; }; struct mvs_task_exec_info { struct sas_task *task ; struct mvs_cmd_hdr *hdr ; struct mvs_port *port ; u32 tag ; int n_elem ; }; typedef int ldv_func_ret_type___4; enum hrtimer_restart; struct mvs_prd { __le64 addr ; __le32 reserved ; __le32 len ; }; enum hrtimer_restart; struct __anonstruct_u_263 { unsigned char phy_reset : 1 ; unsigned char sas_support : 1 ; unsigned char sata_support : 1 ; unsigned char sata_host_mode : 1 ; unsigned char speed_support : 3 ; unsigned char snw_3_support : 1 ; unsigned char tx_lnk_parity : 1 ; unsigned char tx_spt_phs_lnk_rate : 6 ; unsigned char tx_lgcl_lnk_rate : 4 ; unsigned char tx_ssc_type : 1 ; unsigned char sata_spin_up_spt : 1 ; unsigned char sata_spin_up_en : 1 ; unsigned char bypass_oob : 1 ; unsigned char disable_phy : 1 ; unsigned char rsvd ; }; union reg_phy_cfg { u32 v ; struct __anonstruct_u_263 u ; }; struct mvs_prd_imt { unsigned int len : 22 ; unsigned char _r_a : 2 ; unsigned char misc_ctl : 4 ; unsigned char inter_sel : 4 ; }; struct mvs_prd___0 { __le64 addr ; __le32 im_len ; }; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_113(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_110(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_114(void) ; static void ldv_ldv_pre_probe_116(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_115(int retval ) ; static int ldv_ldv_post_probe_117(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_111(void) ; static void ldv_ldv_check_final_state_112(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static __u64 __fswab64(__u64 val ) { long tmp ; { { tmp = __builtin_bswap64((unsigned long )val); } return ((__u64 )tmp); } } extern int printk(char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern bool cancel_delayed_work(struct delayed_work * ) ; static void *ldv_ioremap_nocache_98(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void *ldv_ioremap_nocache_99(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_100(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_101(void volatile *ldv_func_arg1 ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_printk(char const * , struct device const * , char const * , ...) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_108(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_109(struct pci_driver *ldv_func_arg1 ) ; extern struct dma_pool *dma_pool_create(char const * , struct device * , size_t , size_t , size_t ) ; extern void dma_pool_destroy(struct dma_pool * ) ; __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; static struct Scsi_Host *ldv_scsi_host_alloc_102(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; static void ldv_scsi_remove_host_105(struct Scsi_Host *ldv_func_arg1 ) ; static void ldv_scsi_remove_host_106(struct Scsi_Host *ldv_func_arg1 ) ; extern void scsi_host_put(struct Scsi_Host * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { { tmp = scsi_add_host_with_dma(host, dev, dev); } return (tmp); } } __inline static int ldv_scsi_add_host_103(struct Scsi_Host *host , struct device *dev ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_104(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_107(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern void sas_remove_host(struct Scsi_Host * ) ; extern void sas_release_transport(struct scsi_transport_template * ) ; extern int sas_register_ha(struct sas_ha_struct * ) ; extern int sas_unregister_ha(struct sas_ha_struct * ) ; extern int sas_queuecommand(struct Scsi_Host * , struct scsi_cmnd * ) ; extern int sas_target_alloc(struct scsi_target * ) ; extern int sas_slave_configure(struct scsi_device * ) ; extern int sas_change_queue_depth(struct scsi_device * , int ) ; extern int sas_bios_param(struct scsi_device * , struct block_device * , sector_t , int * ) ; extern struct scsi_transport_template *sas_domain_attach_transport(struct sas_domain_function_template * ) ; extern int sas_eh_device_reset_handler(struct scsi_cmnd * ) ; extern int sas_eh_bus_reset_handler(struct scsi_cmnd * ) ; extern void sas_target_destroy(struct scsi_target * ) ; extern int sas_ioctl(struct scsi_device * , int , void * ) ; int interrupt_coalescing ; struct mvs_dispatch const mvs_64xx_dispatch ; struct mvs_dispatch const mvs_94xx_dispatch ; void mvs_tag_init(struct mvs_info *mvi ) ; void mvs_iounmap(void *regs ) ; int mvs_ioremap(struct mvs_info *mvi , int bar , int bar_ex ) ; int mvs_phy_control(struct asd_sas_phy *sas_phy , enum phy_func func , void *funcdata ) ; void mvs_scan_start(struct Scsi_Host *shost ) ; int mvs_scan_finished(struct Scsi_Host *shost , unsigned long time ) ; int mvs_queue_command(struct sas_task *task , gfp_t gfp_flags ) ; int mvs_abort_task(struct sas_task *task ) ; int mvs_abort_task_set(struct domain_device *dev , u8 *lun ) ; int mvs_clear_aca(struct domain_device *dev , u8 *lun ) ; int mvs_clear_task_set(struct domain_device *dev , u8 *lun ) ; void mvs_port_formed(struct asd_sas_phy *sas_phy ) ; void mvs_port_deformed(struct asd_sas_phy *sas_phy ) ; int mvs_dev_found(struct domain_device *dev ) ; void mvs_dev_gone(struct domain_device *dev ) ; int mvs_lu_reset(struct domain_device *dev , u8 *lun ) ; int mvs_I_T_nexus_reset(struct domain_device *dev ) ; int mvs_query_task(struct sas_task *task ) ; int interrupt_coalescing = 128; static struct scsi_transport_template *mvs_stt ; static struct mvs_chip_info const mvs_chips[9U] = { {1U, 2U, 1024U, 17U, 16U, 6U, 9U, & mvs_64xx_dispatch}, {1U, 4U, 1024U, 17U, 16U, 6U, 9U, & mvs_64xx_dispatch}, {1U, 8U, 2048U, 33U, 32U, 6U, 10U, & mvs_64xx_dispatch}, {2U, 4U, 2048U, 17U, 64U, 8U, 9U, & mvs_94xx_dispatch}, {2U, 4U, 2048U, 17U, 64U, 8U, 9U, & mvs_94xx_dispatch}, {1U, 4U, 2048U, 17U, 64U, 8U, 11U, & mvs_94xx_dispatch}, {2U, 4U, 2048U, 17U, 64U, 8U, 11U, & mvs_94xx_dispatch}, {1U, 4U, 1024U, 17U, 16U, 6U, 9U, & mvs_64xx_dispatch}, {2U, 4U, 2048U, 17U, 64U, 8U, 9U, & mvs_94xx_dispatch}}; struct device_attribute *mvst_host_attrs[3U] ; static struct scsi_host_template mvs_sht = {& __this_module, "mvsas", 0, 0, 0, & sas_ioctl, 0, & sas_queuecommand, 0, & sas_eh_device_reset_handler, 0, & sas_eh_bus_reset_handler, 0, 0, & sas_slave_configure, 0, & sas_target_alloc, & sas_target_destroy, & mvs_scan_finished, & mvs_scan_start, & sas_change_queue_depth, & sas_bios_param, 0, 0, 0, 0, 0, 0, 0, 1, -1, 128U, (unsigned short)0, 1024U, 0UL, 1, (unsigned char)0, 0, 1U, 1U, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0U, (struct device_attribute **)(& mvst_host_attrs), 0, {0, 0}, 0ULL, 0U, 0, (_Bool)0}; static struct sas_domain_function_template mvs_transport_ops = {& mvs_port_formed, & mvs_port_deformed, & mvs_dev_found, & mvs_dev_gone, & mvs_queue_command, & mvs_abort_task, & mvs_abort_task_set, & mvs_clear_aca, & mvs_clear_task_set, & mvs_I_T_nexus_reset, 0, 0, & mvs_lu_reset, & mvs_query_task, 0, 0, & mvs_phy_control, 0}; static void mvs_phy_init(struct mvs_info *mvi , int phy_id ) { struct mvs_phy *phy ; struct asd_sas_phy *sas_phy ; struct lock_class_key __key ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_id; sas_phy = & phy->sas_phy; phy->mvi = mvi; phy->port = (struct mvs_port *)0; init_timer_key(& phy->timer, 0U, "(&phy->timer)", & __key); sas_phy->enabled = (unsigned int )phy_id < (unsigned int )(mvi->chip)->n_phy; sas_phy->class = 0; sas_phy->iproto = 14; sas_phy->tproto = 0; sas_phy->type = 0; sas_phy->role = 128; sas_phy->oob_mode = 0; sas_phy->linkrate = 0; sas_phy->id = phy_id; sas_phy->sas_addr = (u8 *)(& mvi->sas_addr); sas_phy->frame_rcvd = (u8 *)(& phy->frame_rcvd); sas_phy->ha = (struct sas_ha_struct *)(& (mvi->shost)->hostdata); sas_phy->lldd_phy = (void *)phy; } return; } } static void mvs_free(struct mvs_info *mvi ) { struct mvs_wq *mwq ; int slot_nr ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { if ((unsigned long )mvi == (unsigned long )((struct mvs_info *)0)) { return; } else { } if ((mvi->flags & 4UL) != 0UL) { slot_nr = 64; } else { slot_nr = (int )(1U << (int )(mvi->chip)->slot_width); } if ((unsigned long )mvi->dma_pool != (unsigned long )((void *)0)) { { dma_pool_destroy((struct dma_pool *)mvi->dma_pool); } } else { } if ((unsigned long )mvi->tx != (unsigned long )((__le32 *)0U)) { { dma_free_attrs(mvi->dev, (unsigned long )(1U << (int )(mvi->chip)->slot_width) * 4UL, (void *)mvi->tx, mvi->tx_dma, (struct dma_attrs *)0); } } else { } if ((unsigned long )mvi->rx_fis != (unsigned long )((__le32 *)0U)) { { dma_free_attrs(mvi->dev, (size_t )((unsigned int )(mvi->chip)->fis_offs + (unsigned int )(mvi->chip)->fis_count * 256U), (void *)mvi->rx_fis, mvi->rx_fis_dma, (struct dma_attrs *)0); } } else { } if ((unsigned long )mvi->rx != (unsigned long )((__le32 *)0U)) { { dma_free_attrs(mvi->dev, 4100UL, (void *)mvi->rx, mvi->rx_dma, (struct dma_attrs *)0); } } else { } if ((unsigned long )mvi->slot != (unsigned long )((struct mvs_cmd_hdr *)0)) { { dma_free_attrs(mvi->dev, (unsigned long )slot_nr * 64UL, (void *)mvi->slot, mvi->slot_dma, (struct dma_attrs *)0); } } else { } if ((unsigned long )mvi->bulk_buffer != (unsigned long )((void *)0)) { { dma_free_attrs(mvi->dev, 131072UL, mvi->bulk_buffer, mvi->bulk_buffer_dma, (struct dma_attrs *)0); } } else { } if ((unsigned long )mvi->bulk_buffer1 != (unsigned long )((void *)0)) { { dma_free_attrs(mvi->dev, 131072UL, mvi->bulk_buffer1, mvi->bulk_buffer_dma1, (struct dma_attrs *)0); } } else { } { (*(((mvi->chip)->dispatch)->chip_iounmap))(mvi); } if ((unsigned long )mvi->shost != (unsigned long )((struct Scsi_Host *)0)) { { scsi_host_put(mvi->shost); } } else { } __mptr = (struct list_head const *)mvi->wq_list.next; mwq = (struct mvs_wq *)__mptr + 0xffffffffffffff08UL; goto ldv_46032; ldv_46031: { cancel_delayed_work(& mwq->work_q); __mptr___0 = (struct list_head const *)mwq->entry.next; mwq = (struct mvs_wq *)__mptr___0 + 0xffffffffffffff08UL; } ldv_46032: ; if ((unsigned long )(& mwq->entry) != (unsigned long )(& mvi->wq_list)) { goto ldv_46031; } else { } { kfree((void const *)mvi->tags); kfree((void const *)mvi); } return; } } static void mvs_tasklet(unsigned long opaque ) { u32 stat ; u16 core_nr ; u16 i ; struct mvs_info *mvi ; struct sas_ha_struct *sha ; long tmp ; { { i = 0U; sha = (struct sas_ha_struct *)opaque; core_nr = (u16 )((struct mvs_prv_info *)sha->lldd_ha)->n_host; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0]; tmp = ldv__builtin_expect((unsigned long )mvi == (unsigned long )((struct mvs_info *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/mvsas/mv_init.c"), "i" (176), "i" (12UL)); __builtin_unreachable(); } } else { } { stat = (*(((mvi->chip)->dispatch)->isr_status))(mvi, (int )(mvi->pdev)->irq); } if (stat == 0U) { goto out; } else { } i = 0U; goto ldv_46044; ldv_46043: { mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[(int )i]; (*(((mvi->chip)->dispatch)->isr))(mvi, (int )(mvi->pdev)->irq, stat); i = (u16 )((int )i + 1); } ldv_46044: ; if ((int )i < (int )core_nr) { goto ldv_46043; } else { } out: { (*(((mvi->chip)->dispatch)->interrupt_enable))(mvi); } return; } } static irqreturn_t mvs_interrupt(int irq , void *opaque ) { u32 core_nr ; u32 stat ; struct mvs_info *mvi ; struct sas_ha_struct *sha ; long tmp ; { { sha = (struct sas_ha_struct *)opaque; core_nr = (u32 )((struct mvs_prv_info *)sha->lldd_ha)->n_host; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0]; tmp = ldv__builtin_expect((unsigned long )mvi == (unsigned long )((struct mvs_info *)0), 0L); } if (tmp != 0L) { return (0); } else { } { (*(((mvi->chip)->dispatch)->interrupt_disable))(mvi); stat = (*(((mvi->chip)->dispatch)->isr_status))(mvi, irq); } if (stat == 0U) { { (*(((mvi->chip)->dispatch)->interrupt_enable))(mvi); } return (0); } else { } { tasklet_schedule(& ((struct mvs_prv_info *)sha->lldd_ha)->mv_tasklet); } return (1); } } static int mvs_alloc(struct mvs_info *mvi , struct Scsi_Host *shost ) { int i ; int slot_nr ; char pool_name[32U] ; struct lock_class_key __key ; struct lock_class_key __key___0 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; struct dma_pool *tmp___3 ; { i = 0; if ((mvi->flags & 4UL) != 0UL) { slot_nr = 64; } else { slot_nr = (int )(1U << (int )(mvi->chip)->slot_width); } { spinlock_check(& mvi->lock); __raw_spin_lock_init(& mvi->lock.__annonCompField18.rlock, "&(&mvi->lock)->rlock", & __key); i = 0; } goto ldv_46063; ldv_46062: { mvs_phy_init(mvi, i); mvi->port[i].wide_port_phymap = 0U; mvi->port[i].port_attached = 0U; INIT_LIST_HEAD(& mvi->port[i].list); i = i + 1; } ldv_46063: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46062; } else { } i = 0; goto ldv_46067; ldv_46066: { mvi->devices[i].taskfileset = 127U; mvi->devices[i].dev_type = 0; mvi->devices[i].device_id = (u32 )i; mvi->devices[i].dev_status = 0U; init_timer_key(& mvi->devices[i].timer, 0U, "(&mvi->devices[i].timer)", & __key___0); i = i + 1; } ldv_46067: ; if (i <= 1023) { goto ldv_46066; } else { } { tmp = dma_alloc_attrs(mvi->dev, (unsigned long )(1U << (int )(mvi->chip)->slot_width) * 4UL, & mvi->tx_dma, 208U, (struct dma_attrs *)0); mvi->tx = (__le32 *)tmp; } if ((unsigned long )mvi->tx == (unsigned long )((__le32 *)0U)) { goto err_out; } else { } { __memset((void *)mvi->tx, 0, (unsigned long )(1U << (int )(mvi->chip)->slot_width) * 4UL); tmp___0 = dma_alloc_attrs(mvi->dev, (size_t )((unsigned int )(mvi->chip)->fis_offs + (unsigned int )(mvi->chip)->fis_count * 256U), & mvi->rx_fis_dma, 208U, (struct dma_attrs *)0); mvi->rx_fis = (__le32 *)tmp___0; } if ((unsigned long )mvi->rx_fis == (unsigned long )((__le32 *)0U)) { goto err_out; } else { } { __memset((void *)mvi->rx_fis, 0, (size_t )((unsigned int )(mvi->chip)->fis_offs + (unsigned int )(mvi->chip)->fis_count * 256U)); tmp___1 = dma_alloc_attrs(mvi->dev, 4100UL, & mvi->rx_dma, 208U, (struct dma_attrs *)0); mvi->rx = (__le32 *)tmp___1; } if ((unsigned long )mvi->rx == (unsigned long )((__le32 *)0U)) { goto err_out; } else { } { __memset((void *)mvi->rx, 0, 4100UL); *(mvi->rx) = 4095U; mvi->rx_cons = 4095U; tmp___2 = dma_alloc_attrs(mvi->dev, (unsigned long )slot_nr * 64UL, & mvi->slot_dma, 208U, (struct dma_attrs *)0); mvi->slot = (struct mvs_cmd_hdr *)tmp___2; } if ((unsigned long )mvi->slot == (unsigned long )((struct mvs_cmd_hdr *)0)) { goto err_out; } else { } { __memset((void *)mvi->slot, 0, (unsigned long )slot_nr * 64UL); mvi->bulk_buffer = dma_alloc_attrs(mvi->dev, 131072UL, & mvi->bulk_buffer_dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )mvi->bulk_buffer == (unsigned long )((void *)0)) { goto err_out; } else { } { mvi->bulk_buffer1 = dma_alloc_attrs(mvi->dev, 131072UL, & mvi->bulk_buffer_dma1, 208U, (struct dma_attrs *)0); } if ((unsigned long )mvi->bulk_buffer1 == (unsigned long )((void *)0)) { goto err_out; } else { } { sprintf((char *)(& pool_name), "%s%d", (char *)"mvs_dma_pool", mvi->id); tmp___3 = dma_pool_create((char const *)(& pool_name), & (mvi->pdev)->dev, 8192UL, 16UL, 0UL); mvi->dma_pool = (void *)tmp___3; } if ((unsigned long )mvi->dma_pool == (unsigned long )((void *)0)) { { printk("\017failed to create dma pool %s.\n", (char *)(& pool_name)); } goto err_out; } else { } { mvi->tags_num = slot_nr; mvs_tag_init(mvi); } return (0); err_out: ; return (1); } } int mvs_ioremap(struct mvs_info *mvi , int bar , int bar_ex ) { unsigned long res_start ; unsigned long res_len ; unsigned long res_flag ; unsigned long res_flag_ex ; struct pci_dev *pdev ; { res_flag_ex = 0UL; pdev = mvi->pdev; if (bar_ex != -1) { res_start = (unsigned long )pdev->resource[bar_ex].start; res_len = pdev->resource[bar_ex].start != 0ULL || pdev->resource[bar_ex].end != pdev->resource[bar_ex].start ? (unsigned long )((pdev->resource[bar_ex].end - pdev->resource[bar_ex].start) + 1ULL) : 0UL; if (res_start == 0UL || res_len == 0UL) { goto err_out; } else { } res_flag_ex = pdev->resource[bar_ex].flags; if ((res_flag_ex & 512UL) != 0UL) { if ((res_flag_ex & 32768UL) != 0UL) { { mvi->regs_ex = ioremap((resource_size_t )res_start, res_len); } } else { { mvi->regs_ex = ldv_ioremap_nocache_98((resource_size_t )res_start, res_len); } } } else { mvi->regs_ex = (void *)res_start; } if ((unsigned long )mvi->regs_ex == (unsigned long )((void *)0)) { goto err_out; } else { } } else { } res_start = (unsigned long )pdev->resource[bar].start; res_len = pdev->resource[bar].start != 0ULL || pdev->resource[bar].end != pdev->resource[bar].start ? (unsigned long )((pdev->resource[bar].end - pdev->resource[bar].start) + 1ULL) : 0UL; if (res_start == 0UL || res_len == 0UL) { goto err_out; } else { } res_flag = pdev->resource[bar].flags; if ((res_flag & 32768UL) != 0UL) { { mvi->regs = ioremap((resource_size_t )res_start, res_len); } } else { { mvi->regs = ldv_ioremap_nocache_99((resource_size_t )res_start, res_len); } } if ((unsigned long )mvi->regs == (unsigned long )((void *)0)) { if ((unsigned long )mvi->regs_ex != (unsigned long )((void *)0) && (res_flag_ex & 512UL) != 0UL) { { ldv_iounmap_100((void volatile *)mvi->regs_ex); } } else { } mvi->regs_ex = (void *)0; goto err_out; } else { } return (0); err_out: ; return (-1); } } void mvs_iounmap(void *regs ) { { { ldv_iounmap_101((void volatile *)regs); } return; } } static struct mvs_info *mvs_pci_alloc(struct pci_dev *pdev , struct pci_device_id const *ent , struct Scsi_Host *shost , unsigned int id ) { struct mvs_info *mvi ; struct sas_ha_struct *sha ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { { mvi = (struct mvs_info *)0; sha = *((struct sas_ha_struct **)(& shost->hostdata)); tmp = kzalloc((88UL << (int )mvs_chips[ent->driver_data].slot_width) + 212152UL, 208U); mvi = (struct mvs_info *)tmp; } if ((unsigned long )mvi == (unsigned long )((struct mvs_info *)0)) { return ((struct mvs_info *)0); } else { } { mvi->pdev = pdev; mvi->dev = & pdev->dev; mvi->chip_id = (u32 )ent->driver_data; mvi->chip = (struct mvs_chip_info const *)(& mvs_chips) + (unsigned long )mvi->chip_id; INIT_LIST_HEAD(& mvi->wq_list); ((struct mvs_prv_info *)sha->lldd_ha)->mvi[id] = mvi; ((struct mvs_prv_info *)sha->lldd_ha)->n_phy = (u8 )(mvi->chip)->n_phy; mvi->id = id; mvi->sas = sha; mvi->shost = shost; tmp___0 = kzalloc((size_t )((1U << (int )(mvi->chip)->slot_width) >> 3), 208U); mvi->tags = (unsigned long *)tmp___0; } if ((unsigned long )mvi->tags == (unsigned long )((unsigned long *)0UL)) { goto err_out; } else { } { tmp___1 = (*(((mvi->chip)->dispatch)->chip_ioremap))(mvi); } if (tmp___1 != 0) { goto err_out; } else { } { tmp___2 = mvs_alloc(mvi, shost); } if (tmp___2 == 0) { return (mvi); } else { } err_out: { mvs_free(mvi); } return ((struct mvs_info *)0); } } static int pci_go_64(struct pci_dev *pdev ) { int rc ; int tmp ; { { tmp = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp == 0) { { rc = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (rc != 0) { { rc = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (rc != 0) { { dev_printk("\v", (struct device const *)(& pdev->dev), "64-bit DMA enable failed\n"); } return (rc); } else { } } else { } } else { { rc = pci_set_dma_mask(pdev, 4294967295ULL); } if (rc != 0) { { dev_printk("\v", (struct device const *)(& pdev->dev), "32-bit DMA enable failed\n"); } return (rc); } else { } { rc = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (rc != 0) { { dev_printk("\v", (struct device const *)(& pdev->dev), "32-bit consistent DMA enable failed\n"); } return (rc); } else { } } return (rc); } } static int mvs_prep_sas_ha_init(struct Scsi_Host *shost , struct mvs_chip_info const *chip_info ) { int phy_nr ; int port_nr ; unsigned short core_nr ; struct asd_sas_phy **arr_phy ; struct asd_sas_port **arr_port ; struct sas_ha_struct *sha ; void *tmp ; void *tmp___0 ; { { sha = *((struct sas_ha_struct **)(& shost->hostdata)); core_nr = (unsigned short )chip_info->n_host; phy_nr = (int )((unsigned int )core_nr * (unsigned int )chip_info->n_phy); port_nr = phy_nr; __memset((void *)sha, 0, 848UL); tmp = kcalloc((size_t )phy_nr, 8UL, 208U); arr_phy = (struct asd_sas_phy **)tmp; tmp___0 = kcalloc((size_t )port_nr, 8UL, 208U); arr_port = (struct asd_sas_port **)tmp___0; } if ((unsigned long )arr_phy == (unsigned long )((struct asd_sas_phy **)0) || (unsigned long )arr_port == (unsigned long )((struct asd_sas_port **)0)) { goto exit_free; } else { } { sha->sas_phy = arr_phy; sha->sas_port = arr_port; sha->core.shost = shost; sha->lldd_ha = kzalloc(64UL, 208U); } if ((unsigned long )sha->lldd_ha == (unsigned long )((void *)0)) { goto exit_free; } else { } ((struct mvs_prv_info *)sha->lldd_ha)->n_host = (u8 )core_nr; shost->transportt = mvs_stt; shost->max_id = 1024U; shost->max_lun = 0xffffffffffffffffULL; shost->max_channel = 1U; shost->max_cmd_len = 16U; return (0); exit_free: { kfree((void const *)arr_phy); kfree((void const *)arr_port); } return (-1); } } static void mvs_post_sas_ha_init(struct Scsi_Host *shost , struct mvs_chip_info const *chip_info ) { int can_queue ; int i ; int j ; struct mvs_info *mvi ; struct sas_ha_struct *sha ; unsigned short nr_core ; u16 __min1 ; u16 __min2 ; { i = 0; j = 0; mvi = (struct mvs_info *)0; sha = *((struct sas_ha_struct **)(& shost->hostdata)); nr_core = (unsigned short )((struct mvs_prv_info *)sha->lldd_ha)->n_host; j = 0; goto ldv_46122; ldv_46121: mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j]; i = 0; goto ldv_46119; ldv_46118: *(sha->sas_phy + (unsigned long )((unsigned int )j * (unsigned int )chip_info->n_phy + (unsigned int )i)) = & mvi->phy[i].sas_phy; *(sha->sas_port + (unsigned long )((unsigned int )j * (unsigned int )chip_info->n_phy + (unsigned int )i)) = & mvi->port[i].sas_port; i = i + 1; ldv_46119: ; if ((unsigned int )i < (unsigned int )chip_info->n_phy) { goto ldv_46118; } else { } j = j + 1; ldv_46122: ; if (j < (int )nr_core) { goto ldv_46121; } else { } sha->sas_ha_name = (char *)"mvsas"; sha->dev = mvi->dev; sha->lldd_module = & __this_module; sha->sas_addr = (u8 *)(& mvi->sas_addr); sha->num_phys = (int )((unsigned int )nr_core * (unsigned int )chip_info->n_phy); if ((mvi->flags & 4UL) != 0UL) { can_queue = 62; } else { can_queue = (int )(1U << (int )(mvi->chip)->slot_width); } __min1 = 128U; __min2 = (u16 )(1U << (int )(mvi->chip)->sg_width); shost->sg_tablesize = (unsigned short )((int )__min1 < (int )__min2 ? __min1 : __min2); shost->can_queue = can_queue; (mvi->shost)->cmd_per_lun = 64; sha->core.shost = mvi->shost; return; } } static void mvs_init_sas_add(struct mvs_info *mvi ) { u8 i ; __u64 tmp ; { i = 0U; goto ldv_46132; ldv_46131: { mvi->phy[(int )i].dev_sas_addr = 5766019502419148800ULL; tmp = __fswab64(mvi->phy[(int )i].dev_sas_addr); mvi->phy[(int )i].dev_sas_addr = tmp; i = (u8 )((int )i + 1); } ldv_46132: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46131; } else { } { __memcpy((void *)(& mvi->sas_addr), (void const *)(& mvi->phy[0].dev_sas_addr), 8UL); } return; } } static int mvs_pci_init(struct pci_dev *pdev , struct pci_device_id const *ent ) { unsigned int rc ; unsigned int nhost ; struct mvs_info *mvi ; struct mvs_prv_info *mpi ; irqreturn_t (*irq_handler)(int , void * ) ; struct Scsi_Host *shost ; struct mvs_chip_info const *chip ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { { nhost = 0U; irq_handler = & mvs_interrupt; shost = (struct Scsi_Host *)0; dev_printk("\016", (struct device const *)(& pdev->dev), "mvsas: driver version %s\n", (char *)"0.8.16"); tmp = pci_enable_device(pdev); rc = (unsigned int )tmp; } if (rc != 0U) { goto err_out_enable; } else { } { pci_set_master(pdev); tmp___0 = pci_request_regions(pdev, "mvsas"); rc = (unsigned int )tmp___0; } if (rc != 0U) { goto err_out_disable; } else { } { tmp___1 = pci_go_64(pdev); rc = (unsigned int )tmp___1; } if (rc != 0U) { goto err_out_regions; } else { } { shost = ldv_scsi_host_alloc_102(& mvs_sht, 8); } if ((unsigned long )shost == (unsigned long )((struct Scsi_Host *)0)) { rc = 4294967284U; goto err_out_regions; } else { } { chip = (struct mvs_chip_info const *)(& mvs_chips) + ent->driver_data; tmp___2 = kcalloc(1UL, 848UL, 208U); *((struct sas_ha_struct **)(& shost->hostdata)) = (struct sas_ha_struct *)tmp___2; } if ((unsigned long )*((struct sas_ha_struct **)(& shost->hostdata)) == (unsigned long )((struct sas_ha_struct *)0)) { { kfree((void const *)shost); rc = 4294967284U; } goto err_out_regions; } else { } { tmp___3 = mvs_prep_sas_ha_init(shost, chip); rc = (unsigned int )tmp___3; } if (rc != 0U) { { kfree((void const *)shost); rc = 4294967284U; } goto err_out_regions; } else { } { pci_set_drvdata(pdev, (void *)*((struct sas_ha_struct **)(& shost->hostdata))); } ldv_46148: { mvi = mvs_pci_alloc(pdev, ent, shost, nhost); } if ((unsigned long )mvi == (unsigned long )((struct mvs_info *)0)) { rc = 4294967284U; goto err_out_regions; } else { } { __memset((void *)(& mvi->hba_info_param), 255, 256UL); mvs_init_sas_add(mvi); mvi->instance = (unsigned long )nhost; tmp___4 = (*(((mvi->chip)->dispatch)->chip_init))(mvi); rc = (unsigned int )tmp___4; } if (rc != 0U) { { mvs_free(mvi); } goto err_out_regions; } else { } nhost = nhost + 1U; if (nhost < (unsigned int )chip->n_host) { goto ldv_46148; } else { } { mpi = (struct mvs_prv_info *)(*((struct sas_ha_struct **)(& shost->hostdata)))->lldd_ha; tasklet_init(& mpi->mv_tasklet, & mvs_tasklet, (unsigned long )*((struct sas_ha_struct **)(& shost->hostdata))); mvs_post_sas_ha_init(shost, chip); tmp___5 = ldv_scsi_add_host_103(shost, & pdev->dev); rc = (unsigned int )tmp___5; } if (rc != 0U) { goto err_out_shost; } else { } { tmp___6 = sas_register_ha(*((struct sas_ha_struct **)(& shost->hostdata))); rc = (unsigned int )tmp___6; } if (rc != 0U) { goto err_out_shost; } else { } { tmp___7 = ldv_request_irq_104(pdev->irq, irq_handler, 128UL, "mvsas", (void *)*((struct sas_ha_struct **)(& shost->hostdata))); rc = (unsigned int )tmp___7; } if (rc != 0U) { goto err_not_sas; } else { } { (*(((mvi->chip)->dispatch)->interrupt_enable))(mvi); scsi_scan_host(mvi->shost); } return (0); err_not_sas: { sas_unregister_ha(*((struct sas_ha_struct **)(& shost->hostdata))); } err_out_shost: { ldv_scsi_remove_host_105(mvi->shost); } err_out_regions: { pci_release_regions(pdev); } err_out_disable: { pci_disable_device(pdev); } err_out_enable: ; return ((int )rc); } } static void mvs_pci_remove(struct pci_dev *pdev ) { unsigned short core_nr ; unsigned short i ; struct sas_ha_struct *sha ; void *tmp ; struct mvs_info *mvi ; { { i = 0U; tmp = pci_get_drvdata(pdev); sha = (struct sas_ha_struct *)tmp; mvi = (struct mvs_info *)0; core_nr = (unsigned short )((struct mvs_prv_info *)sha->lldd_ha)->n_host; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0]; tasklet_kill(& ((struct mvs_prv_info *)sha->lldd_ha)->mv_tasklet); sas_unregister_ha(sha); sas_remove_host(mvi->shost); ldv_scsi_remove_host_106(mvi->shost); (*(((mvi->chip)->dispatch)->interrupt_disable))(mvi); ldv_free_irq_107((mvi->pdev)->irq, (void *)sha); i = 0U; } goto ldv_46160; ldv_46159: { mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[(int )i]; mvs_free(mvi); i = (unsigned short )((int )i + 1); } ldv_46160: ; if ((int )i < (int )core_nr) { goto ldv_46159; } else { } { kfree((void const *)sha->sas_phy); kfree((void const *)sha->sas_port); kfree((void const *)sha); pci_release_regions(pdev); pci_disable_device(pdev); } return; } } static struct pci_device_id mvs_pci_table[32U] = { {4523U, 25376U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4523U, 25408U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {4523U, 25664U, 4294967295U, 25728U, 0U, 0U, 2UL}, {4523U, 25664U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {4523U, 25733U, 4294967295U, 4294967295U, 0U, 0U, 2UL}, {4523U, 38016U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4523U, 37248U, 4294967295U, 4294967295U, 0U, 0U, 4UL}, {6099U, 4864U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {6099U, 4896U, 4294967295U, 4294967295U, 0U, 0U, 8UL}, {36869U, 1104U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {4355U, 10000U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4355U, 10016U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4355U, 10017U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4355U, 10018U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4355U, 10048U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4355U, 10052U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4355U, 10080U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {6987U, 38016U, 4294967295U, 38016U, 0U, 0U, 3UL}, {6987U, 37957U, 4294967295U, 38016U, 0U, 0U, 5UL}, {6987U, 38021U, 4294967295U, 38016U, 0U, 0U, 6UL}, {6987U, 38021U, 4294967295U, 38021U, 0U, 0U, 6UL}, {7045U, 4129U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4130U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4160U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4161U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4162U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4163U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4164U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4224U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4227U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {7045U, 4228U, 4294967295U, 4294967295U, 0U, 0U, 6UL}}; static struct pci_driver mvs_pci_driver = {{0, 0}, "mvsas", (struct pci_device_id const *)(& mvs_pci_table), & mvs_pci_init, & mvs_pci_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static ssize_t mvs_show_driver_version(struct device *cdev , struct device_attribute *attr , char *buffer ) { int tmp ; { { tmp = snprintf(buffer, 4096UL, "%s\n", (char *)"0.8.16"); } return ((ssize_t )tmp); } } static struct device_attribute dev_attr_driver_version = {{"driver_version", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & mvs_show_driver_version, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t mvs_store_interrupt_coalescing(struct device *cdev , struct device_attribute *attr , char const *buffer , size_t size ) { int val ; struct mvs_info *mvi ; struct Scsi_Host *shost ; struct device const *__mptr ; struct sas_ha_struct *sha ; u8 i ; u8 core_nr ; int tmp ; size_t tmp___0 ; long tmp___1 ; size_t tmp___2 ; { val = 0; mvi = (struct mvs_info *)0; __mptr = (struct device const *)cdev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c8UL; sha = *((struct sas_ha_struct **)(& shost->hostdata)); if ((unsigned long )buffer == (unsigned long )((char const *)0)) { return ((ssize_t )size); } else { } { tmp = sscanf(buffer, "%d", & val); } if (tmp != 1) { return (-22L); } else { } if (val > 65535) { { printk("\017%s %d:interrupt coalescing timer %d us istoo long\n", (char *)"drivers/scsi/mvsas/mv_init.c", 780, val); tmp___0 = strlen(buffer); } return ((ssize_t )tmp___0); } else { } { interrupt_coalescing = val; core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0]; tmp___1 = ldv__builtin_expect((unsigned long )mvi == (unsigned long )((struct mvs_info *)0), 0L); } if (tmp___1 != 0L) { return (-22L); } else { } i = 0U; goto ldv_46195; ldv_46194: mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[(int )i]; if ((unsigned long )((mvi->chip)->dispatch)->tune_interrupt != (unsigned long )((void (*/* const */)(struct mvs_info * , u32 ))0)) { { (*(((mvi->chip)->dispatch)->tune_interrupt))(mvi, (u32 )interrupt_coalescing); } } else { } i = (u8 )((int )i + 1); ldv_46195: ; if ((int )i < (int )core_nr) { goto ldv_46194; } else { } { printk("\017%s %d:set interrupt coalescing time to %d us\n", (char *)"drivers/scsi/mvsas/mv_init.c", 799, interrupt_coalescing); tmp___2 = strlen(buffer); } return ((ssize_t )tmp___2); } } static ssize_t mvs_show_interrupt_coalescing(struct device *cdev , struct device_attribute *attr , char *buffer ) { int tmp ; { { tmp = snprintf(buffer, 4096UL, "%d\n", interrupt_coalescing); } return ((ssize_t )tmp); } } static struct device_attribute dev_attr_interrupt_coalescing = {{"interrupt_coalescing", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & mvs_show_interrupt_coalescing, & mvs_store_interrupt_coalescing}; struct task_struct *mvs_th ; static int mvs_init(void) { int rc ; { { mvs_stt = sas_domain_attach_transport(& mvs_transport_ops); } if ((unsigned long )mvs_stt == (unsigned long )((struct scsi_transport_template *)0)) { return (-12); } else { } { rc = ldv___pci_register_driver_108(& mvs_pci_driver, & __this_module, "mvsas"); } if (rc != 0) { goto err_out; } else { } return (0); err_out: { sas_release_transport(mvs_stt); } return (rc); } } static void mvs_exit(void) { { { ldv_pci_unregister_driver_109(& mvs_pci_driver); sas_release_transport(mvs_stt); } return; } } struct device_attribute *mvst_host_attrs[3U] = { & dev_attr_driver_version, & dev_attr_interrupt_coalescing, (struct device_attribute *)0}; struct pci_device_id const __mod_pci__mvs_pci_table_device_table[32U] ; void ldv_EMGentry_exit_mvs_exit_18_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_mvs_init_18_15(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_15_1(struct Scsi_Host *arg0 ) ; void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_16_18_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_12_18_5(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_13_18_6(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_18_7(void) ; void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_11_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_13_2(struct Scsi_Host *arg0 ) ; void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_16_18_8(void) ; void ldv_dispatch_register_dummy_resourceless_instance_12_18_9(void) ; void ldv_dispatch_register_dummy_resourceless_instance_13_18_10(void) ; void ldv_dispatch_register_dummy_resourceless_instance_14_18_11(void) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_10(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_100(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_103(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_106(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_109(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_11(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_112(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_115(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_118(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_12(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_121(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_124(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_13(void (*arg0)(struct mvs_info * , unsigned char , unsigned char ) , struct mvs_info *arg1 , unsigned char arg2 , unsigned char arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_16(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_19(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_22(void (*arg0)(struct mvs_info * , unsigned int , int , int , void * ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 , int arg4 , void *arg5 ) ; void ldv_dummy_resourceless_instance_callback_5_25(void (*arg0)(struct mvs_info * , int , struct sas_identify_frame * ) , struct mvs_info *arg1 , int arg2 , struct sas_identify_frame *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_28(void (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_3(unsigned char (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_31(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_32(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_33(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_34(enum irqreturn (*arg0)(struct mvs_info * , int , unsigned int ) , struct mvs_info *arg1 , int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_37(unsigned int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_40(void (*arg0)(struct mvs_info * , enum mvs_port_type , unsigned int ) , struct mvs_info *arg1 , enum mvs_port_type arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_43(void (*arg0)(struct scatterlist * , int , void * ) , struct scatterlist *arg1 , int arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_46(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_47(int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_50(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_53(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_56(unsigned int (*arg0)(void) ) ; void ldv_dummy_resourceless_instance_callback_5_57(void (*arg0)(struct mvs_info * , unsigned int , int ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_60(void (*arg0)(struct mvs_info * , unsigned int , struct sas_phy_linkrates * ) , struct mvs_info *arg1 , unsigned int arg2 , struct sas_phy_linkrates *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_63(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_66(unsigned int (*arg0)(void) ) ; void ldv_dummy_resourceless_instance_callback_5_67(unsigned int (*arg0)(void) ) ; void ldv_dummy_resourceless_instance_callback_5_68(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_71(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_74(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_77(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_80(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_83(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_84(int (*arg0)(struct mvs_info * , unsigned int * , unsigned char , unsigned char , unsigned char , unsigned int ) , struct mvs_info *arg1 , unsigned int *arg2 , unsigned char arg3 , unsigned char arg4 , unsigned char arg5 , unsigned int arg6 ) ; void ldv_dummy_resourceless_instance_callback_5_87(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_9(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_90(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_91(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_94(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_97(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_10(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_100(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_103(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_106(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_109(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_11(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_112(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_115(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_118(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_12(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_121(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_124(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_13(void (*arg0)(struct mvs_info * , unsigned char , unsigned char ) , struct mvs_info *arg1 , unsigned char arg2 , unsigned char arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_16(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_19(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_22(void (*arg0)(struct mvs_info * , unsigned int , int , int , void * ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 , int arg4 , void *arg5 ) ; void ldv_dummy_resourceless_instance_callback_6_25(void (*arg0)(struct mvs_info * , int , struct sas_identify_frame * ) , struct mvs_info *arg1 , int arg2 , struct sas_identify_frame *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_28(void (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_3(unsigned char (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_31(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_32(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_33(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_34(enum irqreturn (*arg0)(struct mvs_info * , int , unsigned int ) , struct mvs_info *arg1 , int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_37(unsigned int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_40(void (*arg0)(struct mvs_info * , enum mvs_port_type , unsigned int ) , struct mvs_info *arg1 , enum mvs_port_type arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_43(void (*arg0)(struct scatterlist * , int , void * ) , struct scatterlist *arg1 , int arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_46(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_47(int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_50(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_53(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_56(unsigned int (*arg0)(void) ) ; void ldv_dummy_resourceless_instance_callback_6_57(void (*arg0)(struct mvs_info * , unsigned int , int ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_60(void (*arg0)(struct mvs_info * , unsigned int , struct sas_phy_linkrates * ) , struct mvs_info *arg1 , unsigned int arg2 , struct sas_phy_linkrates *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_63(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_66(unsigned int (*arg0)(void) ) ; void ldv_dummy_resourceless_instance_callback_6_67(unsigned int (*arg0)(void) ) ; void ldv_dummy_resourceless_instance_callback_6_68(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_71(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_74(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_77(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_80(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_83(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_84(int (*arg0)(struct mvs_info * , unsigned int * , unsigned char , unsigned char , unsigned char , unsigned int ) , struct mvs_info *arg1 , unsigned int *arg2 , unsigned char arg3 , unsigned char arg4 , unsigned char arg5 , unsigned int arg6 ) ; void ldv_dummy_resourceless_instance_callback_6_87(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_9(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_90(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_91(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_94(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_97(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_11(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_14(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_17(int (*arg0)(struct asd_sas_phy * , enum phy_func , void * ) , struct asd_sas_phy *arg1 , enum phy_func arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_18(int (*arg0)(struct domain_device * ) , struct domain_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_19(void (*arg0)(struct domain_device * ) , struct domain_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_20(int (*arg0)(struct sas_task * , unsigned int ) , struct sas_task *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_23(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_26(void (*arg0)(struct asd_sas_phy * ) , struct asd_sas_phy *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_27(void (*arg0)(struct asd_sas_phy * ) , struct asd_sas_phy *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_28(int (*arg0)(struct sas_task * ) , struct sas_task *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct domain_device * ) , struct domain_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_7(int (*arg0)(struct sas_task * ) , struct sas_task *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_8(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) ; void ldv_entry_EMGentry_18(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) ; struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) ; void ldv_scsi_host_template_instance_callback_2_17(int (*arg0)(struct scsi_device * , int ) , struct scsi_device *arg1 , int arg2 ) ; void ldv_scsi_host_template_instance_callback_2_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_2_21(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_2_22(int (*arg0)(struct scsi_device * , int , void * ) , struct scsi_device *arg1 , int arg2 , void *arg3 ) ; void ldv_scsi_host_template_instance_callback_2_25(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) ; void ldv_scsi_host_template_instance_callback_2_26(int (*arg0)(struct Scsi_Host * , unsigned long ) , struct Scsi_Host *arg1 , unsigned long arg2 ) ; void ldv_scsi_host_template_instance_callback_2_29(void (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_callback_2_30(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) ; void ldv_scsi_host_template_instance_callback_2_31(int (*arg0)(struct scsi_target * ) , struct scsi_target *arg1 ) ; void ldv_scsi_host_template_instance_callback_2_32(void (*arg0)(struct scsi_target * ) , struct scsi_target *arg1 ) ; void ldv_scsi_host_template_instance_callback_2_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) ; int ldv_scsi_host_template_instance_probe_2_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_release_2_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_scsi_host_template_instance_2(void *arg0 ) ; void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_mvs_dispatch_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_mvs_dispatch_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_sas_domain_function_template_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_timer_dummy_factory_9(void *arg0 ) ; void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_8(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_18 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_mvs_exit_18_2(void (*arg0)(void) ) { { { mvs_exit(); } return; } } int ldv_EMGentry_init_mvs_init_18_15(int (*arg0)(void) ) { int tmp ; { { tmp = mvs_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_17_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_17_pci_driver_pci_driver = arg1; ldv_dispatch_register_17_2(ldv_17_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_15_1(struct Scsi_Host *arg0 ) { { return; } } void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_16_18_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_12_18_5(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_13_18_6(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_18_7(void) { { return; } } void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_8 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_timer_instance_8 *)tmp; cf_arg_8->arg0 = arg0; ldv_timer_timer_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_irq_deregister_11_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_13_2(struct Scsi_Host *arg0 ) { struct ldv_struct_scsi_host_template_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_scsi_host_template_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_scsi_host_template_scsi_host_template_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_pci_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_pci_pci_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_dummy_factory_16_18_8(void) { struct ldv_struct_EMGentry_18 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_18 *)tmp; ldv_timer_dummy_factory_9((void *)cf_arg_9); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_12_18_9(void) { struct ldv_struct_EMGentry_18 *cf_arg_3 ; struct ldv_struct_EMGentry_18 *cf_arg_4 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_18 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___0 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_18 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_13_18_10(void) { struct ldv_struct_EMGentry_18 *cf_arg_5 ; struct ldv_struct_EMGentry_18 *cf_arg_6 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_EMGentry_18 *)tmp; ldv_struct_mvs_dispatch_dummy_resourceless_instance_5((void *)cf_arg_5); tmp___0 = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_18 *)tmp___0; ldv_struct_mvs_dispatch_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_18_11(void) { struct ldv_struct_EMGentry_18 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_18 *)tmp; ldv_struct_sas_domain_function_template_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { mvs_show_driver_version(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { mvs_show_interrupt_coalescing(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { mvs_store_interrupt_coalescing(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_7_11(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) { { { mvs_clear_aca(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_14(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) { { { mvs_clear_task_set(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_17(int (*arg0)(struct asd_sas_phy * , enum phy_func , void * ) , struct asd_sas_phy *arg1 , enum phy_func arg2 , void *arg3 ) { { { mvs_phy_control(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_18(int (*arg0)(struct domain_device * ) , struct domain_device *arg1 ) { { { mvs_dev_found(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_19(void (*arg0)(struct domain_device * ) , struct domain_device *arg1 ) { { { mvs_dev_gone(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_20(int (*arg0)(struct sas_task * , unsigned int ) , struct sas_task *arg1 , unsigned int arg2 ) { { { mvs_queue_command(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_23(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) { { { mvs_lu_reset(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_26(void (*arg0)(struct asd_sas_phy * ) , struct asd_sas_phy *arg1 ) { { { mvs_port_deformed(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_27(void (*arg0)(struct asd_sas_phy * ) , struct asd_sas_phy *arg1 ) { { { mvs_port_formed(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_28(int (*arg0)(struct sas_task * ) , struct sas_task *arg1 ) { { { mvs_query_task(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct domain_device * ) , struct domain_device *arg1 ) { { { mvs_I_T_nexus_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_7(int (*arg0)(struct sas_task * ) , struct sas_task *arg1 ) { { { mvs_abort_task(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_8(int (*arg0)(struct domain_device * , unsigned char * ) , struct domain_device *arg1 , unsigned char *arg2 ) { { { mvs_abort_task_set(arg1, arg2); } return; } } void ldv_entry_EMGentry_18(void *arg0 ) { void (*ldv_18_exit_mvs_exit_default)(void) ; int (*ldv_18_init_mvs_init_default)(void) ; int ldv_18_ret_default ; int tmp ; int tmp___0 ; { { ldv_18_ret_default = ldv_EMGentry_init_mvs_init_18_15(ldv_18_init_mvs_init_default); ldv_18_ret_default = ldv_ldv_post_init_110(ldv_18_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_18_ret_default != 0); ldv_ldv_check_final_state_111(); ldv_stop(); } return; } else { { ldv_assume(ldv_18_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_14_18_11(); ldv_dispatch_register_dummy_resourceless_instance_13_18_10(); ldv_dispatch_register_dummy_resourceless_instance_12_18_9(); ldv_dispatch_register_dummy_factory_16_18_8(); ldv_dispatch_deregister_dummy_resourceless_instance_14_18_7(); ldv_dispatch_deregister_dummy_resourceless_instance_13_18_6(); ldv_dispatch_deregister_dummy_resourceless_instance_12_18_5(); ldv_dispatch_deregister_dummy_factory_16_18_4(); } } else { } { ldv_EMGentry_exit_mvs_exit_18_2(ldv_18_exit_mvs_exit_default); ldv_ldv_check_final_state_112(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_113(); ldv_entry_EMGentry_18((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_11_line_line ; { { ldv_11_line_line = arg1; ldv_dispatch_irq_deregister_11_1(ldv_11_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_0_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = mvs_pci_init(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { mvs_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; struct ldv_struct_pci_instance_1 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_1 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_1 *)0)) { { ldv_1_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_1_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_114(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_ldv_post_probe_115(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } goto ldv_call_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; { { ldv_16_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_16_1(ldv_16_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_12_callback_handler)(int , void * ) ; void *ldv_12_data_data ; int ldv_12_line_line ; enum irqreturn (*ldv_12_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_line_line = (int )arg1; ldv_12_callback_handler = arg2; ldv_12_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_12_data_data = arg5; ldv_dispatch_irq_register_12_2(ldv_12_line_line, ldv_12_callback_handler, ldv_12_thread_thread, ldv_12_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) { struct Scsi_Host *ldv_13_host_host ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_dispatch_register_13_2(ldv_13_host_host); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) { struct Scsi_Host *ldv_14_host_host ; struct scsi_host_template *ldv_14_scsi_host_template_scsi_host_template ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3800UL); ldv_14_host_host = (struct Scsi_Host *)tmp; ldv_14_scsi_host_template_scsi_host_template = arg1; ldv_14_host_host->hostt = ldv_14_scsi_host_template_scsi_host_template; } return (ldv_14_host_host); return (arg0); } else { return ((struct Scsi_Host *)0); return (arg0); } return (arg0); } } void ldv_scsi_host_template_instance_callback_2_17(int (*arg0)(struct scsi_device * , int ) , struct scsi_device *arg1 , int arg2 ) { { { sas_change_queue_depth(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_2_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { sas_eh_bus_reset_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_2_21(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { sas_eh_device_reset_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_2_22(int (*arg0)(struct scsi_device * , int , void * ) , struct scsi_device *arg1 , int arg2 , void *arg3 ) { { { sas_ioctl(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_2_25(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) { { { sas_queuecommand(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_2_26(int (*arg0)(struct Scsi_Host * , unsigned long ) , struct Scsi_Host *arg1 , unsigned long arg2 ) { { { mvs_scan_finished(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_2_29(void (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { mvs_scan_start(arg1); } return; } } void ldv_scsi_host_template_instance_callback_2_30(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) { { { sas_slave_configure(arg1); } return; } } void ldv_scsi_host_template_instance_callback_2_31(int (*arg0)(struct scsi_target * ) , struct scsi_target *arg1 ) { { { sas_target_alloc(arg1); } return; } } void ldv_scsi_host_template_instance_callback_2_32(void (*arg0)(struct scsi_target * ) , struct scsi_target *arg1 ) { { { sas_target_destroy(arg1); } return; } } void ldv_scsi_host_template_instance_callback_2_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) { { { sas_bios_param(arg1, arg2, arg3, arg4); } return; } } int ldv_scsi_host_template_instance_probe_2_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_scsi_host_template_instance_release_2_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_scsi_host_template_scsi_host_template_instance_2(void *arg0 ) { int (*ldv_2_callback_bios_param)(struct scsi_device * , struct block_device * , unsigned long , int * ) ; int (*ldv_2_callback_change_queue_depth)(struct scsi_device * , int ) ; int (*ldv_2_callback_eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_2_callback_eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_2_callback_ioctl)(struct scsi_device * , int , void * ) ; int (*ldv_2_callback_queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*ldv_2_callback_scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*ldv_2_callback_scan_start)(struct Scsi_Host * ) ; int (*ldv_2_callback_slave_configure)(struct scsi_device * ) ; int (*ldv_2_callback_target_alloc)(struct scsi_target * ) ; void (*ldv_2_callback_target_destroy)(struct scsi_target * ) ; struct Scsi_Host *ldv_2_host_host ; struct scsi_cmnd *ldv_2_host_struct_scsi_cmnd_ptr ; struct scsi_device *ldv_2_host_struct_scsi_device_ptr ; struct scsi_target *ldv_2_host_struct_scsi_target_ptr ; int ldv_2_ldv_param_17_1_default ; int ldv_2_ldv_param_22_1_default ; unsigned long ldv_2_ldv_param_26_1_default ; struct block_device *ldv_2_ldv_param_4_1_default ; unsigned long ldv_2_ldv_param_4_2_default ; int *ldv_2_ldv_param_4_3_default ; int ldv_2_ret_default ; struct ldv_struct_scsi_host_template_instance_2 *data ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; { data = (struct ldv_struct_scsi_host_template_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_scsi_host_template_instance_2 *)0)) { { ldv_2_host_host = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_2; return; ldv_main_2: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_116(); } if ((unsigned long )(ldv_2_host_host->hostt)->detect != (unsigned long )((int (*)(struct scsi_host_template * ))0)) { { ldv_2_ret_default = ldv_scsi_host_template_instance_probe_2_10((int (*)(struct Scsi_Host * ))(ldv_2_host_host->hostt)->detect, ldv_2_host_host); } } else { } { ldv_2_ret_default = ldv_ldv_post_probe_117(ldv_2_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { return; } return; ldv_call_2: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { if ((unsigned long )(ldv_2_host_host->hostt)->release != (unsigned long )((int (*)(struct Scsi_Host * ))0)) { { ldv_scsi_host_template_instance_release_2_2((ldv_2_host_host->hostt)->release, ldv_2_host_host); } } else { } goto ldv_main_2; } else { { tmp___1 = ldv_xmalloc(480UL); ldv_2_ldv_param_4_1_default = (struct block_device *)tmp___1; tmp___2 = ldv_xmalloc(4UL); ldv_2_ldv_param_4_3_default = (int *)tmp___2; tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } if (tmp___3 == 6) { goto case_6; } else { } if (tmp___3 == 7) { goto case_7; } else { } if (tmp___3 == 8) { goto case_8; } else { } if (tmp___3 == 9) { goto case_9; } else { } if (tmp___3 == 10) { goto case_10; } else { } if (tmp___3 == 11) { goto case_11; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_32(ldv_2_callback_target_destroy, ldv_2_host_struct_scsi_target_ptr); } goto ldv_47685; case_2: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_31(ldv_2_callback_target_alloc, ldv_2_host_struct_scsi_target_ptr); } goto ldv_47685; case_3: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_30(ldv_2_callback_slave_configure, ldv_2_host_struct_scsi_device_ptr); } goto ldv_47685; case_4: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_29(ldv_2_callback_scan_start, ldv_2_host_host); } goto ldv_47685; case_5: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_26(ldv_2_callback_scan_finished, ldv_2_host_host, ldv_2_ldv_param_26_1_default); } goto ldv_47685; case_6: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_25(ldv_2_callback_queuecommand, ldv_2_host_host, ldv_2_host_struct_scsi_cmnd_ptr); } goto ldv_47685; case_7: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_22(ldv_2_callback_ioctl, ldv_2_host_struct_scsi_device_ptr, ldv_2_ldv_param_22_1_default, (void *)ldv_2_host_struct_scsi_cmnd_ptr); } goto ldv_47685; case_8: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_21(ldv_2_callback_eh_device_reset_handler, ldv_2_host_struct_scsi_cmnd_ptr); } goto ldv_47685; case_9: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_20(ldv_2_callback_eh_bus_reset_handler, ldv_2_host_struct_scsi_cmnd_ptr); } goto ldv_47685; case_10: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_17(ldv_2_callback_change_queue_depth, ldv_2_host_struct_scsi_device_ptr, ldv_2_ldv_param_17_1_default); } goto ldv_47685; case_11: /* CIL Label */ { ldv_scsi_host_template_instance_callback_2_4(ldv_2_callback_bios_param, ldv_2_host_struct_scsi_device_ptr, ldv_2_ldv_param_4_1_default, ldv_2_ldv_param_4_2_default, ldv_2_ldv_param_4_3_default); } goto ldv_47685; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47685: ; } { ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); } goto ldv_call_2; return; } } void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) { struct Scsi_Host *ldv_15_host_host ; { { ldv_15_host_host = arg1; ldv_dispatch_deregister_15_1(ldv_15_host_host); } return; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) { long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; char *ldv_3_ldv_param_3_2_default ; char *ldv_3_ldv_param_9_2_default ; unsigned long ldv_3_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_3; return; ldv_call_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_3_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___0; } if ((unsigned long )ldv_3_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default, ldv_3_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_3_2_default); } } { ldv_free((void *)ldv_3_ldv_param_3_2_default); } goto ldv_call_3; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; char *ldv_4_ldv_param_3_2_default ; char *ldv_4_ldv_param_9_2_default ; unsigned long ldv_4_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_4; return; ldv_call_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default, ldv_4_ldv_param_9_3_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_3_2_default); } } { ldv_free((void *)ldv_4_ldv_param_3_2_default); } goto ldv_call_4; } else { return; } return; } } void ldv_struct_mvs_dispatch_dummy_resourceless_instance_5(void *arg0 ) { unsigned char (*ldv_5_callback_assign_reg_set)(struct mvs_info * , unsigned char * ) ; int (*ldv_5_callback_chip_init)(struct mvs_info * ) ; int (*ldv_5_callback_chip_ioremap)(struct mvs_info * ) ; void (*ldv_5_callback_chip_iounmap)(struct mvs_info * ) ; void (*ldv_5_callback_clear_active_cmds)(struct mvs_info * ) ; void (*ldv_5_callback_clear_srs_irq)(struct mvs_info * , unsigned char , unsigned char ) ; void (*ldv_5_callback_command_active)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_detect_porttype)(struct mvs_info * , int ) ; void (*ldv_5_callback_dma_fix)(struct mvs_info * , unsigned int , int , int , void * ) ; void (*ldv_5_callback_fix_phy_info)(struct mvs_info * , int , struct sas_identify_frame * ) ; void (*ldv_5_callback_free_reg_set)(struct mvs_info * , unsigned char * ) ; void (*ldv_5_callback_int_full)(struct mvs_info * ) ; void (*ldv_5_callback_interrupt_disable)(struct mvs_info * ) ; void (*ldv_5_callback_interrupt_enable)(struct mvs_info * ) ; enum irqreturn (*ldv_5_callback_isr)(struct mvs_info * , int , unsigned int ) ; unsigned int (*ldv_5_callback_isr_status)(struct mvs_info * , int ) ; void (*ldv_5_callback_issue_stop)(struct mvs_info * , enum mvs_port_type , unsigned int ) ; void (*ldv_5_callback_make_prd)(struct scatterlist * , int , void * ) ; void (*ldv_5_callback_non_spec_ncq_error)(struct mvs_info * ) ; int (*ldv_5_callback_oob_done)(struct mvs_info * , int ) ; void (*ldv_5_callback_phy_disable)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_phy_enable)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_phy_max_link_rate)(void) ; void (*ldv_5_callback_phy_reset)(struct mvs_info * , unsigned int , int ) ; void (*ldv_5_callback_phy_set_link_rate)(struct mvs_info * , unsigned int , struct sas_phy_linkrates * ) ; void (*ldv_5_callback_phy_work_around)(struct mvs_info * , int ) ; unsigned int (*ldv_5_callback_prd_count)(void) ; unsigned int (*ldv_5_callback_prd_size)(void) ; unsigned int (*ldv_5_callback_read_phy_ctl)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_read_port_cfg_data)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_read_port_irq_mask)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_read_port_irq_stat)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_read_port_vsr_data)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_rx_update)(struct mvs_info * ) ; int (*ldv_5_callback_spi_buildcmd)(struct mvs_info * , unsigned int * , unsigned char , unsigned char , unsigned char , unsigned int ) ; int (*ldv_5_callback_spi_issuecmd)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_5_callback_spi_read_data)(struct mvs_info * ) ; int (*ldv_5_callback_spi_waitdataready)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_spi_write_data)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_start_delivery)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_stp_reset)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_tune_interrupt)(struct mvs_info * , unsigned int ) ; void (*ldv_5_callback_write_phy_ctl)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_5_callback_write_port_cfg_addr)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_5_callback_write_port_cfg_data)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_5_callback_write_port_irq_mask)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_5_callback_write_port_irq_stat)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_5_callback_write_port_vsr_addr)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_5_callback_write_port_vsr_data)(struct mvs_info * , unsigned int , unsigned int ) ; enum mvs_port_type ldv_5_container_enum_mvs_port_type ; struct mvs_info *ldv_5_container_struct_mvs_info_ptr ; struct sas_identify_frame *ldv_5_container_struct_sas_identify_frame_ptr ; struct sas_phy_linkrates *ldv_5_container_struct_sas_phy_linkrates_ptr ; struct scatterlist *ldv_5_container_struct_scatterlist_ptr ; unsigned int ldv_5_ldv_param_100_1_default ; unsigned int ldv_5_ldv_param_103_1_default ; unsigned int ldv_5_ldv_param_106_1_default ; unsigned int ldv_5_ldv_param_106_2_default ; unsigned int ldv_5_ldv_param_109_1_default ; unsigned int ldv_5_ldv_param_109_2_default ; unsigned int ldv_5_ldv_param_112_1_default ; unsigned int ldv_5_ldv_param_112_2_default ; unsigned int ldv_5_ldv_param_115_1_default ; unsigned int ldv_5_ldv_param_115_2_default ; unsigned int ldv_5_ldv_param_118_1_default ; unsigned int ldv_5_ldv_param_118_2_default ; unsigned int ldv_5_ldv_param_121_1_default ; unsigned int ldv_5_ldv_param_121_2_default ; unsigned int ldv_5_ldv_param_124_1_default ; unsigned int ldv_5_ldv_param_124_2_default ; unsigned char ldv_5_ldv_param_13_1_default ; unsigned char ldv_5_ldv_param_13_2_default ; unsigned int ldv_5_ldv_param_16_1_default ; int ldv_5_ldv_param_19_1_default ; unsigned int ldv_5_ldv_param_22_1_default ; int ldv_5_ldv_param_22_2_default ; int ldv_5_ldv_param_22_3_default ; int ldv_5_ldv_param_25_1_default ; unsigned char *ldv_5_ldv_param_28_1_default ; int ldv_5_ldv_param_34_1_default ; unsigned int ldv_5_ldv_param_34_2_default ; int ldv_5_ldv_param_37_1_default ; unsigned char *ldv_5_ldv_param_3_1_default ; unsigned int ldv_5_ldv_param_40_2_default ; int ldv_5_ldv_param_43_1_default ; int ldv_5_ldv_param_47_1_default ; unsigned int ldv_5_ldv_param_50_1_default ; unsigned int ldv_5_ldv_param_53_1_default ; unsigned int ldv_5_ldv_param_57_1_default ; int ldv_5_ldv_param_57_2_default ; unsigned int ldv_5_ldv_param_60_1_default ; int ldv_5_ldv_param_63_1_default ; unsigned int ldv_5_ldv_param_68_1_default ; unsigned int ldv_5_ldv_param_71_1_default ; unsigned int ldv_5_ldv_param_74_1_default ; unsigned int ldv_5_ldv_param_77_1_default ; unsigned int ldv_5_ldv_param_80_1_default ; unsigned int *ldv_5_ldv_param_84_1_default ; unsigned char ldv_5_ldv_param_84_2_default ; unsigned char ldv_5_ldv_param_84_3_default ; unsigned char ldv_5_ldv_param_84_4_default ; unsigned int ldv_5_ldv_param_84_5_default ; unsigned int ldv_5_ldv_param_87_1_default ; unsigned int ldv_5_ldv_param_91_1_default ; unsigned int ldv_5_ldv_param_94_1_default ; unsigned int ldv_5_ldv_param_97_1_default ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; { goto ldv_call_5; return; ldv_call_5: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_1_default = (unsigned char *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } if (tmp___0 == 5) { goto case_5; } else { } if (tmp___0 == 6) { goto case_6; } else { } if (tmp___0 == 7) { goto case_7; } else { } if (tmp___0 == 8) { goto case_8; } else { } if (tmp___0 == 9) { goto case_9; } else { } if (tmp___0 == 10) { goto case_10; } else { } if (tmp___0 == 11) { goto case_11; } else { } if (tmp___0 == 12) { goto case_12; } else { } if (tmp___0 == 13) { goto case_13; } else { } if (tmp___0 == 14) { goto case_14; } else { } if (tmp___0 == 15) { goto case_15; } else { } if (tmp___0 == 16) { goto case_16; } else { } if (tmp___0 == 17) { goto case_17; } else { } if (tmp___0 == 18) { goto case_18; } else { } if (tmp___0 == 19) { goto case_19; } else { } if (tmp___0 == 20) { goto case_20; } else { } if (tmp___0 == 21) { goto case_21; } else { } if (tmp___0 == 22) { goto case_22; } else { } if (tmp___0 == 23) { goto case_23; } else { } if (tmp___0 == 24) { goto case_24; } else { } if (tmp___0 == 25) { goto case_25; } else { } if (tmp___0 == 26) { goto case_26; } else { } if (tmp___0 == 27) { goto case_27; } else { } if (tmp___0 == 28) { goto case_28; } else { } if (tmp___0 == 29) { goto case_29; } else { } if (tmp___0 == 30) { goto case_30; } else { } if (tmp___0 == 31) { goto case_31; } else { } if (tmp___0 == 32) { goto case_32; } else { } if (tmp___0 == 33) { goto case_33; } else { } if (tmp___0 == 34) { goto case_34; } else { } if (tmp___0 == 35) { goto case_35; } else { } if (tmp___0 == 36) { goto case_36; } else { } if (tmp___0 == 37) { goto case_37; } else { } if (tmp___0 == 38) { goto case_38; } else { } if (tmp___0 == 39) { goto case_39; } else { } if (tmp___0 == 40) { goto case_40; } else { } if (tmp___0 == 41) { goto case_41; } else { } if (tmp___0 == 42) { goto case_42; } else { } if (tmp___0 == 43) { goto case_43; } else { } if (tmp___0 == 44) { goto case_44; } else { } if (tmp___0 == 45) { goto case_45; } else { } if (tmp___0 == 46) { goto case_46; } else { } if (tmp___0 == 47) { goto case_47; } else { } if (tmp___0 == 48) { goto case_48; } else { } if (tmp___0 == 49) { goto case_49; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_124(ldv_5_callback_write_port_vsr_data, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_124_1_default, ldv_5_ldv_param_124_2_default); } goto ldv_47955; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_121(ldv_5_callback_write_port_vsr_addr, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_121_1_default, ldv_5_ldv_param_121_2_default); } goto ldv_47955; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_118(ldv_5_callback_write_port_irq_stat, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_118_1_default, ldv_5_ldv_param_118_2_default); } goto ldv_47955; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_115(ldv_5_callback_write_port_irq_mask, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_115_1_default, ldv_5_ldv_param_115_2_default); } goto ldv_47955; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_112(ldv_5_callback_write_port_cfg_data, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_112_1_default, ldv_5_ldv_param_112_2_default); } goto ldv_47955; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_109(ldv_5_callback_write_port_cfg_addr, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_109_1_default, ldv_5_ldv_param_109_2_default); } goto ldv_47955; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_106(ldv_5_callback_write_phy_ctl, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_106_1_default, ldv_5_ldv_param_106_2_default); } goto ldv_47955; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_103(ldv_5_callback_tune_interrupt, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_103_1_default); } goto ldv_47955; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_100(ldv_5_callback_stp_reset, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_100_1_default); } goto ldv_47955; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_97(ldv_5_callback_start_delivery, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_97_1_default); } goto ldv_47955; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_94(ldv_5_callback_spi_write_data, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_94_1_default); } goto ldv_47955; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_91(ldv_5_callback_spi_waitdataready, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_91_1_default); } goto ldv_47955; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_90(ldv_5_callback_spi_read_data, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_87(ldv_5_callback_spi_issuecmd, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_87_1_default); } goto ldv_47955; case_15: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_5_ldv_param_84_1_default = (unsigned int *)tmp___1; ldv_dummy_resourceless_instance_callback_5_84(ldv_5_callback_spi_buildcmd, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_84_1_default, (int )ldv_5_ldv_param_84_2_default, (int )ldv_5_ldv_param_84_3_default, (int )ldv_5_ldv_param_84_4_default, ldv_5_ldv_param_84_5_default); ldv_free((void *)ldv_5_ldv_param_84_1_default); } goto ldv_47955; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_83(ldv_5_callback_rx_update, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_80(ldv_5_callback_read_port_vsr_data, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_80_1_default); } goto ldv_47955; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_77(ldv_5_callback_read_port_irq_stat, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_77_1_default); } goto ldv_47955; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_74(ldv_5_callback_read_port_irq_mask, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_74_1_default); } goto ldv_47955; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_71(ldv_5_callback_read_port_cfg_data, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_71_1_default); } goto ldv_47955; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_68(ldv_5_callback_read_phy_ctl, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_68_1_default); } goto ldv_47955; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_67(ldv_5_callback_prd_size); } goto ldv_47955; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_66(ldv_5_callback_prd_count); } goto ldv_47955; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_63(ldv_5_callback_phy_work_around, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_63_1_default); } goto ldv_47955; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_60(ldv_5_callback_phy_set_link_rate, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_60_1_default, ldv_5_container_struct_sas_phy_linkrates_ptr); } goto ldv_47955; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_57(ldv_5_callback_phy_reset, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_57_1_default, ldv_5_ldv_param_57_2_default); } goto ldv_47955; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_56(ldv_5_callback_phy_max_link_rate); } goto ldv_47955; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_53(ldv_5_callback_phy_enable, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_53_1_default); } goto ldv_47955; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_50(ldv_5_callback_phy_disable, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_50_1_default); } goto ldv_47955; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_47(ldv_5_callback_oob_done, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_47_1_default); } goto ldv_47955; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_46(ldv_5_callback_non_spec_ncq_error, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_43(ldv_5_callback_make_prd, ldv_5_container_struct_scatterlist_ptr, ldv_5_ldv_param_43_1_default, (void *)ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_40(ldv_5_callback_issue_stop, ldv_5_container_struct_mvs_info_ptr, ldv_5_container_enum_mvs_port_type, ldv_5_ldv_param_40_2_default); } goto ldv_47955; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_37(ldv_5_callback_isr_status, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_37_1_default); } goto ldv_47955; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_34(ldv_5_callback_isr, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_34_1_default, ldv_5_ldv_param_34_2_default); } goto ldv_47955; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_33(ldv_5_callback_interrupt_enable, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_32(ldv_5_callback_interrupt_disable, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_31(ldv_5_callback_int_full, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_39: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_5_ldv_param_28_1_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_5_28(ldv_5_callback_free_reg_set, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_28_1_default); ldv_free((void *)ldv_5_ldv_param_28_1_default); } goto ldv_47955; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_25(ldv_5_callback_fix_phy_info, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_25_1_default, ldv_5_container_struct_sas_identify_frame_ptr); } goto ldv_47955; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_22(ldv_5_callback_dma_fix, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_22_1_default, ldv_5_ldv_param_22_2_default, ldv_5_ldv_param_22_3_default, (void *)ldv_5_container_struct_sas_identify_frame_ptr); } goto ldv_47955; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_19(ldv_5_callback_detect_porttype, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_19_1_default); } goto ldv_47955; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_16(ldv_5_callback_command_active, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_16_1_default); } goto ldv_47955; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_13(ldv_5_callback_clear_srs_irq, ldv_5_container_struct_mvs_info_ptr, (int )ldv_5_ldv_param_13_1_default, (int )ldv_5_ldv_param_13_2_default); } goto ldv_47955; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_12(ldv_5_callback_clear_active_cmds, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_46: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_11(ldv_5_callback_chip_iounmap, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_10(ldv_5_callback_chip_ioremap, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_48: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_chip_init, ldv_5_container_struct_mvs_info_ptr); } goto ldv_47955; case_49: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_assign_reg_set, ldv_5_container_struct_mvs_info_ptr, ldv_5_ldv_param_3_1_default); } goto ldv_47955; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47955: { ldv_free((void *)ldv_5_ldv_param_3_1_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_mvs_dispatch_dummy_resourceless_instance_6(void *arg0 ) { unsigned char (*ldv_6_callback_assign_reg_set)(struct mvs_info * , unsigned char * ) ; int (*ldv_6_callback_chip_init)(struct mvs_info * ) ; int (*ldv_6_callback_chip_ioremap)(struct mvs_info * ) ; void (*ldv_6_callback_chip_iounmap)(struct mvs_info * ) ; void (*ldv_6_callback_clear_active_cmds)(struct mvs_info * ) ; void (*ldv_6_callback_clear_srs_irq)(struct mvs_info * , unsigned char , unsigned char ) ; void (*ldv_6_callback_command_active)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_detect_porttype)(struct mvs_info * , int ) ; void (*ldv_6_callback_dma_fix)(struct mvs_info * , unsigned int , int , int , void * ) ; void (*ldv_6_callback_fix_phy_info)(struct mvs_info * , int , struct sas_identify_frame * ) ; void (*ldv_6_callback_free_reg_set)(struct mvs_info * , unsigned char * ) ; void (*ldv_6_callback_int_full)(struct mvs_info * ) ; void (*ldv_6_callback_interrupt_disable)(struct mvs_info * ) ; void (*ldv_6_callback_interrupt_enable)(struct mvs_info * ) ; enum irqreturn (*ldv_6_callback_isr)(struct mvs_info * , int , unsigned int ) ; unsigned int (*ldv_6_callback_isr_status)(struct mvs_info * , int ) ; void (*ldv_6_callback_issue_stop)(struct mvs_info * , enum mvs_port_type , unsigned int ) ; void (*ldv_6_callback_make_prd)(struct scatterlist * , int , void * ) ; void (*ldv_6_callback_non_spec_ncq_error)(struct mvs_info * ) ; int (*ldv_6_callback_oob_done)(struct mvs_info * , int ) ; void (*ldv_6_callback_phy_disable)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_phy_enable)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_phy_max_link_rate)(void) ; void (*ldv_6_callback_phy_reset)(struct mvs_info * , unsigned int , int ) ; void (*ldv_6_callback_phy_set_link_rate)(struct mvs_info * , unsigned int , struct sas_phy_linkrates * ) ; void (*ldv_6_callback_phy_work_around)(struct mvs_info * , int ) ; unsigned int (*ldv_6_callback_prd_count)(void) ; unsigned int (*ldv_6_callback_prd_size)(void) ; unsigned int (*ldv_6_callback_read_phy_ctl)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_read_port_cfg_data)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_read_port_irq_mask)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_read_port_irq_stat)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_read_port_vsr_data)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_rx_update)(struct mvs_info * ) ; int (*ldv_6_callback_spi_buildcmd)(struct mvs_info * , unsigned int * , unsigned char , unsigned char , unsigned char , unsigned int ) ; int (*ldv_6_callback_spi_issuecmd)(struct mvs_info * , unsigned int ) ; unsigned int (*ldv_6_callback_spi_read_data)(struct mvs_info * ) ; int (*ldv_6_callback_spi_waitdataready)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_spi_write_data)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_start_delivery)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_stp_reset)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_tune_interrupt)(struct mvs_info * , unsigned int ) ; void (*ldv_6_callback_write_phy_ctl)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_6_callback_write_port_cfg_addr)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_6_callback_write_port_cfg_data)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_6_callback_write_port_irq_mask)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_6_callback_write_port_irq_stat)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_6_callback_write_port_vsr_addr)(struct mvs_info * , unsigned int , unsigned int ) ; void (*ldv_6_callback_write_port_vsr_data)(struct mvs_info * , unsigned int , unsigned int ) ; enum mvs_port_type ldv_6_container_enum_mvs_port_type ; struct mvs_info *ldv_6_container_struct_mvs_info_ptr ; struct sas_identify_frame *ldv_6_container_struct_sas_identify_frame_ptr ; struct sas_phy_linkrates *ldv_6_container_struct_sas_phy_linkrates_ptr ; struct scatterlist *ldv_6_container_struct_scatterlist_ptr ; unsigned int ldv_6_ldv_param_100_1_default ; unsigned int ldv_6_ldv_param_103_1_default ; unsigned int ldv_6_ldv_param_106_1_default ; unsigned int ldv_6_ldv_param_106_2_default ; unsigned int ldv_6_ldv_param_109_1_default ; unsigned int ldv_6_ldv_param_109_2_default ; unsigned int ldv_6_ldv_param_112_1_default ; unsigned int ldv_6_ldv_param_112_2_default ; unsigned int ldv_6_ldv_param_115_1_default ; unsigned int ldv_6_ldv_param_115_2_default ; unsigned int ldv_6_ldv_param_118_1_default ; unsigned int ldv_6_ldv_param_118_2_default ; unsigned int ldv_6_ldv_param_121_1_default ; unsigned int ldv_6_ldv_param_121_2_default ; unsigned int ldv_6_ldv_param_124_1_default ; unsigned int ldv_6_ldv_param_124_2_default ; unsigned char ldv_6_ldv_param_13_1_default ; unsigned char ldv_6_ldv_param_13_2_default ; unsigned int ldv_6_ldv_param_16_1_default ; int ldv_6_ldv_param_19_1_default ; unsigned int ldv_6_ldv_param_22_1_default ; int ldv_6_ldv_param_22_2_default ; int ldv_6_ldv_param_22_3_default ; int ldv_6_ldv_param_25_1_default ; unsigned char *ldv_6_ldv_param_28_1_default ; int ldv_6_ldv_param_34_1_default ; unsigned int ldv_6_ldv_param_34_2_default ; int ldv_6_ldv_param_37_1_default ; unsigned char *ldv_6_ldv_param_3_1_default ; unsigned int ldv_6_ldv_param_40_2_default ; int ldv_6_ldv_param_43_1_default ; int ldv_6_ldv_param_47_1_default ; unsigned int ldv_6_ldv_param_50_1_default ; unsigned int ldv_6_ldv_param_53_1_default ; unsigned int ldv_6_ldv_param_57_1_default ; int ldv_6_ldv_param_57_2_default ; unsigned int ldv_6_ldv_param_60_1_default ; int ldv_6_ldv_param_63_1_default ; unsigned int ldv_6_ldv_param_68_1_default ; unsigned int ldv_6_ldv_param_71_1_default ; unsigned int ldv_6_ldv_param_74_1_default ; unsigned int ldv_6_ldv_param_77_1_default ; unsigned int ldv_6_ldv_param_80_1_default ; unsigned int *ldv_6_ldv_param_84_1_default ; unsigned char ldv_6_ldv_param_84_2_default ; unsigned char ldv_6_ldv_param_84_3_default ; unsigned char ldv_6_ldv_param_84_4_default ; unsigned int ldv_6_ldv_param_84_5_default ; unsigned int ldv_6_ldv_param_87_1_default ; unsigned int ldv_6_ldv_param_91_1_default ; unsigned int ldv_6_ldv_param_94_1_default ; unsigned int ldv_6_ldv_param_97_1_default ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; { goto ldv_call_6; return; ldv_call_6: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_1_default = (unsigned char *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } if (tmp___0 == 5) { goto case_5; } else { } if (tmp___0 == 6) { goto case_6; } else { } if (tmp___0 == 7) { goto case_7; } else { } if (tmp___0 == 8) { goto case_8; } else { } if (tmp___0 == 9) { goto case_9; } else { } if (tmp___0 == 10) { goto case_10; } else { } if (tmp___0 == 11) { goto case_11; } else { } if (tmp___0 == 12) { goto case_12; } else { } if (tmp___0 == 13) { goto case_13; } else { } if (tmp___0 == 14) { goto case_14; } else { } if (tmp___0 == 15) { goto case_15; } else { } if (tmp___0 == 16) { goto case_16; } else { } if (tmp___0 == 17) { goto case_17; } else { } if (tmp___0 == 18) { goto case_18; } else { } if (tmp___0 == 19) { goto case_19; } else { } if (tmp___0 == 20) { goto case_20; } else { } if (tmp___0 == 21) { goto case_21; } else { } if (tmp___0 == 22) { goto case_22; } else { } if (tmp___0 == 23) { goto case_23; } else { } if (tmp___0 == 24) { goto case_24; } else { } if (tmp___0 == 25) { goto case_25; } else { } if (tmp___0 == 26) { goto case_26; } else { } if (tmp___0 == 27) { goto case_27; } else { } if (tmp___0 == 28) { goto case_28; } else { } if (tmp___0 == 29) { goto case_29; } else { } if (tmp___0 == 30) { goto case_30; } else { } if (tmp___0 == 31) { goto case_31; } else { } if (tmp___0 == 32) { goto case_32; } else { } if (tmp___0 == 33) { goto case_33; } else { } if (tmp___0 == 34) { goto case_34; } else { } if (tmp___0 == 35) { goto case_35; } else { } if (tmp___0 == 36) { goto case_36; } else { } if (tmp___0 == 37) { goto case_37; } else { } if (tmp___0 == 38) { goto case_38; } else { } if (tmp___0 == 39) { goto case_39; } else { } if (tmp___0 == 40) { goto case_40; } else { } if (tmp___0 == 41) { goto case_41; } else { } if (tmp___0 == 42) { goto case_42; } else { } if (tmp___0 == 43) { goto case_43; } else { } if (tmp___0 == 44) { goto case_44; } else { } if (tmp___0 == 45) { goto case_45; } else { } if (tmp___0 == 46) { goto case_46; } else { } if (tmp___0 == 47) { goto case_47; } else { } if (tmp___0 == 48) { goto case_48; } else { } if (tmp___0 == 49) { goto case_49; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_124(ldv_6_callback_write_port_vsr_data, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_124_1_default, ldv_6_ldv_param_124_2_default); } goto ldv_48222; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_121(ldv_6_callback_write_port_vsr_addr, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_121_1_default, ldv_6_ldv_param_121_2_default); } goto ldv_48222; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_118(ldv_6_callback_write_port_irq_stat, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_118_1_default, ldv_6_ldv_param_118_2_default); } goto ldv_48222; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_115(ldv_6_callback_write_port_irq_mask, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_115_1_default, ldv_6_ldv_param_115_2_default); } goto ldv_48222; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_112(ldv_6_callback_write_port_cfg_data, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_112_1_default, ldv_6_ldv_param_112_2_default); } goto ldv_48222; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_109(ldv_6_callback_write_port_cfg_addr, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_109_1_default, ldv_6_ldv_param_109_2_default); } goto ldv_48222; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_106(ldv_6_callback_write_phy_ctl, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_106_1_default, ldv_6_ldv_param_106_2_default); } goto ldv_48222; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_103(ldv_6_callback_tune_interrupt, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_103_1_default); } goto ldv_48222; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_100(ldv_6_callback_stp_reset, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_100_1_default); } goto ldv_48222; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_97(ldv_6_callback_start_delivery, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_97_1_default); } goto ldv_48222; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_94(ldv_6_callback_spi_write_data, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_94_1_default); } goto ldv_48222; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_91(ldv_6_callback_spi_waitdataready, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_91_1_default); } goto ldv_48222; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_90(ldv_6_callback_spi_read_data, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_87(ldv_6_callback_spi_issuecmd, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_87_1_default); } goto ldv_48222; case_15: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_6_ldv_param_84_1_default = (unsigned int *)tmp___1; ldv_dummy_resourceless_instance_callback_6_84(ldv_6_callback_spi_buildcmd, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_84_1_default, (int )ldv_6_ldv_param_84_2_default, (int )ldv_6_ldv_param_84_3_default, (int )ldv_6_ldv_param_84_4_default, ldv_6_ldv_param_84_5_default); ldv_free((void *)ldv_6_ldv_param_84_1_default); } goto ldv_48222; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_83(ldv_6_callback_rx_update, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_80(ldv_6_callback_read_port_vsr_data, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_80_1_default); } goto ldv_48222; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_77(ldv_6_callback_read_port_irq_stat, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_77_1_default); } goto ldv_48222; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_74(ldv_6_callback_read_port_irq_mask, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_74_1_default); } goto ldv_48222; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_71(ldv_6_callback_read_port_cfg_data, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_71_1_default); } goto ldv_48222; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_68(ldv_6_callback_read_phy_ctl, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_68_1_default); } goto ldv_48222; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_67(ldv_6_callback_prd_size); } goto ldv_48222; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_66(ldv_6_callback_prd_count); } goto ldv_48222; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_63(ldv_6_callback_phy_work_around, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_63_1_default); } goto ldv_48222; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_60(ldv_6_callback_phy_set_link_rate, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_60_1_default, ldv_6_container_struct_sas_phy_linkrates_ptr); } goto ldv_48222; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_57(ldv_6_callback_phy_reset, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_57_1_default, ldv_6_ldv_param_57_2_default); } goto ldv_48222; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_56(ldv_6_callback_phy_max_link_rate); } goto ldv_48222; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_53(ldv_6_callback_phy_enable, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_53_1_default); } goto ldv_48222; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_50(ldv_6_callback_phy_disable, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_50_1_default); } goto ldv_48222; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_47(ldv_6_callback_oob_done, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_47_1_default); } goto ldv_48222; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_46(ldv_6_callback_non_spec_ncq_error, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_43(ldv_6_callback_make_prd, ldv_6_container_struct_scatterlist_ptr, ldv_6_ldv_param_43_1_default, (void *)ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_40(ldv_6_callback_issue_stop, ldv_6_container_struct_mvs_info_ptr, ldv_6_container_enum_mvs_port_type, ldv_6_ldv_param_40_2_default); } goto ldv_48222; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_37(ldv_6_callback_isr_status, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_37_1_default); } goto ldv_48222; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_34(ldv_6_callback_isr, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_34_1_default, ldv_6_ldv_param_34_2_default); } goto ldv_48222; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_33(ldv_6_callback_interrupt_enable, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_32(ldv_6_callback_interrupt_disable, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_31(ldv_6_callback_int_full, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_39: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_6_ldv_param_28_1_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_6_28(ldv_6_callback_free_reg_set, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_28_1_default); ldv_free((void *)ldv_6_ldv_param_28_1_default); } goto ldv_48222; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_25(ldv_6_callback_fix_phy_info, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_25_1_default, ldv_6_container_struct_sas_identify_frame_ptr); } goto ldv_48222; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_22(ldv_6_callback_dma_fix, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_22_1_default, ldv_6_ldv_param_22_2_default, ldv_6_ldv_param_22_3_default, (void *)ldv_6_container_struct_sas_identify_frame_ptr); } goto ldv_48222; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_19(ldv_6_callback_detect_porttype, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_19_1_default); } goto ldv_48222; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_16(ldv_6_callback_command_active, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_16_1_default); } goto ldv_48222; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_13(ldv_6_callback_clear_srs_irq, ldv_6_container_struct_mvs_info_ptr, (int )ldv_6_ldv_param_13_1_default, (int )ldv_6_ldv_param_13_2_default); } goto ldv_48222; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_12(ldv_6_callback_clear_active_cmds, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_46: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_11(ldv_6_callback_chip_iounmap, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_10(ldv_6_callback_chip_ioremap, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_48: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_chip_init, ldv_6_container_struct_mvs_info_ptr); } goto ldv_48222; case_49: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_assign_reg_set, ldv_6_container_struct_mvs_info_ptr, ldv_6_ldv_param_3_1_default); } goto ldv_48222; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_48222: { ldv_free((void *)ldv_6_ldv_param_3_1_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_sas_domain_function_template_dummy_resourceless_instance_7(void *arg0 ) { int (*ldv_7_callback_lldd_I_T_nexus_reset)(struct domain_device * ) ; int (*ldv_7_callback_lldd_abort_task)(struct sas_task * ) ; int (*ldv_7_callback_lldd_abort_task_set)(struct domain_device * , unsigned char * ) ; int (*ldv_7_callback_lldd_clear_aca)(struct domain_device * , unsigned char * ) ; int (*ldv_7_callback_lldd_clear_task_set)(struct domain_device * , unsigned char * ) ; int (*ldv_7_callback_lldd_control_phy)(struct asd_sas_phy * , enum phy_func , void * ) ; int (*ldv_7_callback_lldd_dev_found)(struct domain_device * ) ; void (*ldv_7_callback_lldd_dev_gone)(struct domain_device * ) ; int (*ldv_7_callback_lldd_execute_task)(struct sas_task * , unsigned int ) ; int (*ldv_7_callback_lldd_lu_reset)(struct domain_device * , unsigned char * ) ; void (*ldv_7_callback_lldd_port_deformed)(struct asd_sas_phy * ) ; void (*ldv_7_callback_lldd_port_formed)(struct asd_sas_phy * ) ; int (*ldv_7_callback_lldd_query_task)(struct sas_task * ) ; enum phy_func ldv_7_container_enum_phy_func ; struct asd_sas_phy *ldv_7_container_struct_asd_sas_phy_ptr ; struct domain_device *ldv_7_container_struct_domain_device_ptr ; struct sas_task *ldv_7_container_struct_sas_task_ptr ; unsigned char *ldv_7_ldv_param_11_1_default ; unsigned char *ldv_7_ldv_param_14_1_default ; unsigned int ldv_7_ldv_param_20_1_default ; unsigned char *ldv_7_ldv_param_23_1_default ; unsigned char *ldv_7_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { goto ldv_call_7; return; ldv_call_7: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_28(ldv_7_callback_lldd_query_task, ldv_7_container_struct_sas_task_ptr); } goto ldv_call_7; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_27(ldv_7_callback_lldd_port_formed, ldv_7_container_struct_asd_sas_phy_ptr); } goto ldv_call_7; goto ldv_call_7; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_26(ldv_7_callback_lldd_port_deformed, ldv_7_container_struct_asd_sas_phy_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_4: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_23_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_23(ldv_7_callback_lldd_lu_reset, ldv_7_container_struct_domain_device_ptr, ldv_7_ldv_param_23_1_default); ldv_free((void *)ldv_7_ldv_param_23_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_20(ldv_7_callback_lldd_execute_task, ldv_7_container_struct_sas_task_ptr, ldv_7_ldv_param_20_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_19(ldv_7_callback_lldd_dev_gone, ldv_7_container_struct_domain_device_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_18(ldv_7_callback_lldd_dev_found, ldv_7_container_struct_domain_device_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_17(ldv_7_callback_lldd_control_phy, ldv_7_container_struct_asd_sas_phy_ptr, ldv_7_container_enum_phy_func, (void *)ldv_7_container_struct_domain_device_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_9: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_7_ldv_param_14_1_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_7_14(ldv_7_callback_lldd_clear_task_set, ldv_7_container_struct_domain_device_ptr, ldv_7_ldv_param_14_1_default); ldv_free((void *)ldv_7_ldv_param_14_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_10: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_7_ldv_param_11_1_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_7_11(ldv_7_callback_lldd_clear_aca, ldv_7_container_struct_domain_device_ptr, ldv_7_ldv_param_11_1_default); ldv_free((void *)ldv_7_ldv_param_11_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_11: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_7_ldv_param_8_1_default = (unsigned char *)tmp___3; ldv_dummy_resourceless_instance_callback_7_8(ldv_7_callback_lldd_abort_task_set, ldv_7_container_struct_domain_device_ptr, ldv_7_ldv_param_8_1_default); ldv_free((void *)ldv_7_ldv_param_8_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_7(ldv_7_callback_lldd_abort_task, ldv_7_container_struct_sas_task_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_lldd_I_T_nexus_reset, ldv_7_container_struct_domain_device_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_14: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_timer_dummy_factory_9(void *arg0 ) { struct timer_list *ldv_9_container_timer_list ; { { ldv_dispatch_instance_register_9_3(ldv_9_container_timer_list); } return; return; } } void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_8(void *arg0 ) { struct timer_list *ldv_8_container_timer_list ; struct ldv_struct_timer_instance_8 *data ; { data = (struct ldv_struct_timer_instance_8 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_8 *)0)) { { ldv_8_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_8_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_8_2(ldv_8_container_timer_list->function, ldv_8_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_ioremap_nocache_98(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } static void *ldv_ioremap_nocache_99(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } static void ldv_iounmap_100(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_101(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static struct Scsi_Host *ldv_scsi_host_alloc_102(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_scsi_add_host_103(struct Scsi_Host *host , struct device *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = scsi_add_host(host, dev); ldv_func_res = tmp; tmp___0 = ldv_scsi_add_host(ldv_func_res, host, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_104(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_scsi_remove_host_105(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv_scsi_remove_host_106(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv_free_irq_107(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv___pci_register_driver_108(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_109(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_110(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_111(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_112(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_113(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_114(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_115(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_116(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_117(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_linux_kernel_sched_completion_wait_for_completion_completion_of_sas_task_slow(void) ; unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } static unsigned long ldv_find_first_zero_bit_98(unsigned long const *addr , unsigned long size ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u64 __le64_to_cpup(__le64 const *p ) { { return ((__u64 )*p); } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } extern void __bad_percpu_size(void) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mvs_info(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_task_state_lock_of_sas_task(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_task_state_lock_of_sas_task(void) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_7529; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7529; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7529; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_7529; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7529: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_7541; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7541; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7541; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_7541; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7541: ; return; } } extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_125(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) ; extern void wait_for_completion(struct completion * ) ; static void ldv_wait_for_completion_113(struct completion *ldv_func_arg1 ) ; extern void complete(struct completion * ) ; extern unsigned long volatile jiffies ; extern int del_timer(struct timer_list * ) ; static int ldv_del_timer_104(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_111(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_112(struct timer_list *ldv_func_arg1 ) ; extern void add_timer(struct timer_list * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } extern void put_device(struct device * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; static void *ldv_dma_pool_alloc_99(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; extern void dma_pool_free(struct dma_pool * , void * , dma_addr_t ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } __inline static void *sg_virt(struct scatterlist *sg ) { struct page *tmp ; void *tmp___0 ; { { tmp = sg_page(sg); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )sg->offset); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_sg(struct device * , struct scatterlist * , int , int , int ) ; extern void debug_dma_unmap_sg(struct device * , struct scatterlist * , int , int ) ; __inline static int dma_map_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int i ; int ents ; struct scatterlist *s ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; i = 0; s = sg; } goto ldv_26147; ldv_26146: { tmp___0 = sg_virt(s); kmemcheck_mark_initialized(tmp___0, s->length); i = i + 1; s = sg_next(s); } ldv_26147: ; if (i < nents) { goto ldv_26146; } else { } { tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (52), "i" (12UL)); __builtin_unreachable(); } } else { } { ents = (*(ops->map_sg))(dev, sg, nents, dir, attrs); debug_dma_map_sg(dev, sg, nents, ents, (int )dir); } return (ents); } } __inline static void dma_unmap_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { debug_dma_unmap_sg(dev, sg, nents, (int )dir); } if ((unsigned long )ops->unmap_sg != (unsigned long )((void (*)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_sg))(dev, sg, nents, dir, attrs); } } else { } return; } } __inline static void pagefault_disable(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void pagefault_enable(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { { pagefault_enable(); } return; } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static u64 get_unaligned_le64(void const *p ) { __u64 tmp ; { { tmp = __le64_to_cpup((__le64 const *)p); } return (tmp); } } extern void int_to_scsilun(u64 , struct scsi_lun * ) ; __inline static int sas_protocol_ata(enum sas_protocol proto ) { { return (((unsigned int )proto & 5U) != 0U); } } __inline static void sas_phy_disconnected(struct asd_sas_phy *phy ) { { phy->oob_mode = 0; phy->linkrate = 0; return; } } __inline static void sas_put_local_phy(struct sas_phy *phy ) { { { put_device(& phy->dev); } return; } } extern struct sas_task *sas_alloc_slow_task(gfp_t ) ; extern void sas_free_task(struct sas_task * ) ; extern int sas_phy_reset(struct sas_phy * , int ) ; extern int sas_drain_work(struct sas_ha_struct * ) ; extern void sas_ssp_task_response(struct device * , struct sas_task * , struct ssp_response_iu * ) ; extern struct sas_phy *sas_get_local_phy(struct domain_device * ) ; void mvs_tag_clear(struct mvs_info *mvi , u32 tag ) ; void mvs_tag_free(struct mvs_info *mvi , u32 tag ) ; void mvs_tag_set(struct mvs_info *mvi , unsigned int tag ) ; __inline int mvs_tag_alloc(struct mvs_info *mvi , u32 *tag_out ) ; void mvs_phys_reset(struct mvs_info *mvi , u32 phy_mask , int hard ) ; void mvs_set_sas_addr(struct mvs_info *mvi , int port_id , u32 off_lo , u32 off_hi , u64 sas_addr ) ; int mvs_slot_complete(struct mvs_info *mvi , u32 rx_desc , u32 flags ) ; void mvs_release_task(struct mvs_info *mvi , struct domain_device *dev ) ; void mvs_do_release_task(struct mvs_info *mvi , int phy_no , struct domain_device *dev ) ; void mvs_int_port(struct mvs_info *mvi , int phy_no , u32 events ) ; void mvs_update_phyinfo(struct mvs_info *mvi , int i , int get_st ) ; int mvs_int_rx(struct mvs_info *mvi , bool self_clear ) ; struct mvs_device *mvs_find_dev_by_reg_set(struct mvs_info *mvi , u8 reg_set ) ; static int mvs_find_tag(struct mvs_info *mvi , struct sas_task *task , u32 *tag ) { struct mvs_slot_info *slot ; { if ((unsigned long )task->lldd_task != (unsigned long )((void *)0)) { slot = (struct mvs_slot_info *)task->lldd_task; *tag = slot->slot_tag; return (1); } else { } return (0); } } void mvs_tag_clear(struct mvs_info *mvi , u32 tag ) { void *bitmap ; { { bitmap = (void *)mvi->tags; clear_bit((long )tag, (unsigned long volatile *)bitmap); } return; } } void mvs_tag_free(struct mvs_info *mvi , u32 tag ) { { { mvs_tag_clear(mvi, tag); } return; } } void mvs_tag_set(struct mvs_info *mvi , unsigned int tag ) { void *bitmap ; { { bitmap = (void *)mvi->tags; set_bit((long )tag, (unsigned long volatile *)bitmap); } return; } } __inline int mvs_tag_alloc(struct mvs_info *mvi , u32 *tag_out ) { unsigned int index ; unsigned int tag ; void *bitmap ; unsigned long tmp ; { { bitmap = (void *)mvi->tags; tmp = ldv_find_first_zero_bit_98((unsigned long const *)bitmap, (unsigned long )mvi->tags_num); index = (unsigned int )tmp; tag = index; } if (tag >= (unsigned int )mvi->tags_num) { return (-132); } else { } { mvs_tag_set(mvi, tag); *tag_out = tag; } return (0); } } void mvs_tag_init(struct mvs_info *mvi ) { int i ; { i = 0; goto ldv_46104; ldv_46103: { mvs_tag_clear(mvi, (u32 )i); i = i + 1; } ldv_46104: ; if (i < mvi->tags_num) { goto ldv_46103; } else { } return; } } struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev ) { unsigned long i ; unsigned long j ; unsigned long hi ; struct sas_ha_struct *sha ; struct mvs_info *mvi ; struct asd_sas_phy *phy ; struct list_head const *__mptr ; { i = 0UL; j = 0UL; hi = 0UL; sha = (dev->port)->ha; mvi = (struct mvs_info *)0; goto ldv_46122; ldv_46121: ; if ((unsigned long )*(sha->sas_port + i) == (unsigned long )dev->port) { __mptr = (struct list_head const *)(*(sha->sas_port + i))->phy_list.next; phy = (struct asd_sas_phy *)__mptr + 0xfffffffffffffaf0UL; j = 0UL; goto ldv_46119; ldv_46118: ; if ((unsigned long )*(sha->sas_phy + j) == (unsigned long )phy) { goto ldv_46117; } else { } j = j + 1UL; ldv_46119: ; if ((unsigned long )*(sha->sas_phy + j) != (unsigned long )((struct asd_sas_phy *)0)) { goto ldv_46118; } else { } ldv_46117: ; goto ldv_46120; } else { } i = i + 1UL; ldv_46122: ; if ((unsigned long )*(sha->sas_port + i) != (unsigned long )((struct asd_sas_port *)0)) { goto ldv_46121; } else { } ldv_46120: hi = j / (unsigned long )((struct mvs_prv_info *)sha->lldd_ha)->n_phy; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi]; return (mvi); } } int mvs_find_dev_phyno(struct domain_device *dev , int *phyno ) { unsigned long i ; unsigned long j ; unsigned long n ; unsigned long num ; struct mvs_device *mvi_dev ; struct mvs_info *mvi ; struct sas_ha_struct *sha ; struct asd_sas_phy *phy ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { i = 0UL; j = 0UL; n = 0UL; num = 0UL; mvi_dev = (struct mvs_device *)dev->lldd_dev; mvi = mvi_dev->mvi_info; sha = (dev->port)->ha; goto ldv_46147; ldv_46146: ; if ((unsigned long )*(sha->sas_port + i) == (unsigned long )dev->port) { __mptr = (struct list_head const *)(*(sha->sas_port + i))->phy_list.next; phy = (struct asd_sas_phy *)__mptr + 0xfffffffffffffaf0UL; goto ldv_46143; ldv_46142: j = 0UL; goto ldv_46141; ldv_46140: ; if ((unsigned long )*(sha->sas_phy + j) == (unsigned long )phy) { goto ldv_46139; } else { } j = j + 1UL; ldv_46141: ; if ((unsigned long )*(sha->sas_phy + j) != (unsigned long )((struct asd_sas_phy *)0)) { goto ldv_46140; } else { } ldv_46139: *(phyno + n) = j >= (unsigned long )(mvi->chip)->n_phy ? (int )((unsigned int )j - (unsigned int )(mvi->chip)->n_phy) : (int )j; num = num + 1UL; n = n + 1UL; __mptr___0 = (struct list_head const *)phy->port_phy_el.next; phy = (struct asd_sas_phy *)__mptr___0 + 0xfffffffffffffaf0UL; ldv_46143: ; if ((unsigned long )(& phy->port_phy_el) != (unsigned long )(& (*(sha->sas_port + i))->phy_list)) { goto ldv_46142; } else { } goto ldv_46145; } else { } i = i + 1UL; ldv_46147: ; if ((unsigned long )*(sha->sas_port + i) != (unsigned long )((struct asd_sas_port *)0)) { goto ldv_46146; } else { } ldv_46145: ; return ((int )num); } } struct mvs_device *mvs_find_dev_by_reg_set(struct mvs_info *mvi , u8 reg_set ) { u32 dev_no ; { dev_no = 0U; goto ldv_46155; ldv_46154: ; if ((unsigned int )mvi->devices[dev_no].taskfileset == 127U) { goto ldv_46153; } else { } if ((int )mvi->devices[dev_no].taskfileset == (int )reg_set) { return ((struct mvs_device *)(& mvi->devices) + (unsigned long )dev_no); } else { } ldv_46153: dev_no = dev_no + 1U; ldv_46155: ; if (dev_no <= 1023U) { goto ldv_46154; } else { } return ((struct mvs_device *)0); } } __inline static void mvs_free_reg_set(struct mvs_info *mvi , struct mvs_device *dev ) { { if ((unsigned long )dev == (unsigned long )((struct mvs_device *)0)) { { printk("\017%s %d:device has been free.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 153); } return; } else { } if ((unsigned int )dev->taskfileset == 127U) { return; } else { } { (*(((mvi->chip)->dispatch)->free_reg_set))(mvi, & dev->taskfileset); } return; } } __inline static u8 mvs_assign_reg_set(struct mvs_info *mvi , struct mvs_device *dev ) { u8 tmp ; { if ((unsigned int )dev->taskfileset != 127U) { return (0U); } else { } { tmp = (*(((mvi->chip)->dispatch)->assign_reg_set))(mvi, & dev->taskfileset); } return (tmp); } } void mvs_phys_reset(struct mvs_info *mvi , u32 phy_mask , int hard ) { u32 no ; { phy_mask = phy_mask; no = 0U; goto ldv_46173; ldv_46172: ; if ((phy_mask & 1U) == 0U) { goto ldv_46171; } else { } { (*(((mvi->chip)->dispatch)->phy_reset))(mvi, no, hard); } ldv_46171: no = no + 1U; phy_mask = phy_mask >> 1; ldv_46173: ; if (phy_mask != 0U) { goto ldv_46172; } else { } return; } } int mvs_phy_control(struct asd_sas_phy *sas_phy , enum phy_func func , void *funcdata ) { int rc ; int phy_id ; u32 tmp ; u32 i ; u32 hi ; struct sas_ha_struct *sha ; struct mvs_info *mvi ; { rc = 0; phy_id = sas_phy->id; i = 0U; sha = sas_phy->ha; mvi = (struct mvs_info *)0; goto ldv_46189; ldv_46188: ; if ((unsigned long )*(sha->sas_phy + (unsigned long )i) == (unsigned long )sas_phy) { goto ldv_46187; } else { } i = i + 1U; ldv_46189: ; if ((unsigned long )*(sha->sas_phy + (unsigned long )i) != (unsigned long )((struct asd_sas_phy *)0)) { goto ldv_46188; } else { } ldv_46187: hi = i / (u32 )((struct mvs_prv_info *)sha->lldd_ha)->n_phy; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi]; { if ((unsigned int )func == 17U) { goto case_17; } else { } if ((unsigned int )func == 2U) { goto case_2; } else { } if ((unsigned int )func == 1U) { goto case_1; } else { } if ((unsigned int )func == 3U) { goto case_3; } else { } if ((unsigned int )func == 16U) { goto case_16; } else { } goto switch_default; case_17: /* CIL Label */ { (*(((mvi->chip)->dispatch)->phy_set_link_rate))(mvi, (u32 )phy_id, (struct sas_phy_linkrates *)funcdata); } goto ldv_46191; case_2: /* CIL Label */ { tmp = (*(((mvi->chip)->dispatch)->read_phy_ctl))(mvi, (u32 )phy_id); } if ((tmp & 2U) != 0U) { goto ldv_46191; } else { } { (*(((mvi->chip)->dispatch)->phy_reset))(mvi, (u32 )phy_id, 1); } goto ldv_46191; case_1: /* CIL Label */ { (*(((mvi->chip)->dispatch)->phy_enable))(mvi, (u32 )phy_id); (*(((mvi->chip)->dispatch)->phy_reset))(mvi, (u32 )phy_id, 0); } goto ldv_46191; case_3: /* CIL Label */ { (*(((mvi->chip)->dispatch)->phy_disable))(mvi, (u32 )phy_id); } goto ldv_46191; case_16: /* CIL Label */ ; switch_default: /* CIL Label */ rc = -38; switch_break: /* CIL Label */ ; } ldv_46191: { msleep(200U); } return (rc); } } void mvs_set_sas_addr(struct mvs_info *mvi , int port_id , u32 off_lo , u32 off_hi , u64 sas_addr ) { u32 lo ; u32 hi ; { { lo = (unsigned int )sas_addr; hi = (unsigned int )(sas_addr >> 32); (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )port_id, off_lo); (*(((mvi->chip)->dispatch)->write_port_cfg_data))(mvi, (u32 )port_id, lo); (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )port_id, off_hi); (*(((mvi->chip)->dispatch)->write_port_cfg_data))(mvi, (u32 )port_id, hi); } return; } } static void mvs_bytes_dmaed(struct mvs_info *mvi , int i ) { struct mvs_phy *phy ; struct asd_sas_phy *sas_phy ; struct sas_ha_struct *sas_ha ; struct sas_phy *sphy ; u32 tmp ; struct sas_identify_frame *id ; { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; sas_phy = & phy->sas_phy; if ((unsigned int )phy->phy_attached == 0U) { return; } else { } if ((phy->att_dev_info & 917504U) == 0U && (phy->phy_type & 2U) != 0U) { return; } else { } { sas_ha = mvi->sas; (*(sas_ha->notify_phy_event))(sas_phy, 1); } if ((unsigned long )sas_phy->phy != (unsigned long )((struct sas_phy *)0)) { { sphy = sas_phy->phy; sphy->negotiated_linkrate = sas_phy->linkrate; sphy->minimum_linkrate = phy->minimum_linkrate; sphy->minimum_linkrate_hw = 8; sphy->maximum_linkrate = phy->maximum_linkrate; tmp = (*(((mvi->chip)->dispatch)->phy_max_link_rate))(); sphy->maximum_linkrate_hw = (enum sas_linkrate )tmp; } } else { } if ((phy->phy_type & 2U) != 0U) { id = (struct sas_identify_frame *)(& phy->frame_rcvd); id->dev_type = (unsigned char )phy->identify.device_type; id->__annonCompField89.initiator_bits = 14U; id->__annonCompField91.target_bits = (u8 )phy->identify.target_port_protocols; if ((phy->att_dev_info & 524288U) != 0U) { { (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )i, 28U); (*(((mvi->chip)->dispatch)->write_port_cfg_data))(mvi, (u32 )i, 0U); } } else { } } else { } { printk("\017%s %d:phy %d byte dmaded.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 277, (u32 )i + mvi->id * (u32 )(mvi->chip)->n_phy); sas_phy->frame_rcvd_size = (int )phy->frame_rcvd_size; (*((mvi->sas)->notify_port_event))(sas_phy, 0); } return; } } void mvs_scan_start(struct Scsi_Host *shost ) { int i ; int j ; unsigned short core_nr ; struct mvs_info *mvi ; struct sas_ha_struct *sha ; struct mvs_prv_info *mvs_prv ; { sha = *((struct sas_ha_struct **)(& shost->hostdata)); mvs_prv = (struct mvs_prv_info *)sha->lldd_ha; core_nr = (unsigned short )((struct mvs_prv_info *)sha->lldd_ha)->n_host; j = 0; goto ldv_46228; ldv_46227: mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j]; i = 0; goto ldv_46225; ldv_46224: { mvs_bytes_dmaed(mvi, i); i = i + 1; } ldv_46225: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46224; } else { } j = j + 1; ldv_46228: ; if (j < (int )core_nr) { goto ldv_46227; } else { } mvs_prv->scan_finished = 1U; return; } } int mvs_scan_finished(struct Scsi_Host *shost , unsigned long time ) { struct sas_ha_struct *sha ; struct mvs_prv_info *mvs_prv ; { sha = *((struct sas_ha_struct **)(& shost->hostdata)); mvs_prv = (struct mvs_prv_info *)sha->lldd_ha; if ((unsigned int )mvs_prv->scan_finished == 0U) { return (0); } else { } { sas_drain_work(sha); } return (1); } } static int mvs_task_prep_smp(struct mvs_info *mvi , struct mvs_task_exec_info *tei ) { int elem ; int rc ; int i ; struct sas_ha_struct *sha ; struct sas_task *task ; struct mvs_cmd_hdr *hdr ; struct domain_device *dev ; struct asd_sas_port *sas_port ; struct sas_phy *sphy ; struct asd_sas_phy *sas_phy ; struct scatterlist *sg_req ; struct scatterlist *sg_resp ; u32 req_len ; u32 resp_len ; u32 tag ; void *buf_tmp ; u8 *buf_oaf ; dma_addr_t buf_tmp_dma ; void *buf_prd ; struct mvs_slot_info *slot ; u32 flags ; u32 tmp ; enum sas_linkrate _min1 ; enum sas_linkrate _min2 ; { { sha = mvi->sas; task = tei->task; hdr = tei->hdr; dev = task->dev; sas_port = dev->port; sphy = dev->phy; sas_phy = *(sha->sas_phy + (unsigned long )sphy->number); tag = tei->tag; slot = (struct mvs_slot_info *)(& mvi->slot_info) + (unsigned long )tag; flags = (u32 )(tei->n_elem << 16); sg_req = & task->__annonCompField95.smp_task.smp_req; elem = dma_map_sg_attrs(mvi->dev, sg_req, 1, 1, (struct dma_attrs *)0); } if (elem == 0) { return (-12); } else { } { req_len = sg_req->dma_length; sg_resp = & task->__annonCompField95.smp_task.smp_resp; elem = dma_map_sg_attrs(mvi->dev, sg_resp, 1, 2, (struct dma_attrs *)0); } if (elem == 0) { rc = -12; goto err_out; } else { } resp_len = 1024U; if ((req_len & 3U) != 0U || (resp_len & 3U) != 0U) { rc = -22; goto err_out_2; } else { } buf_tmp = slot->buf; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = sg_req->dma_address; buf_oaf = (u8 *)buf_tmp; hdr->open_frame = buf_tmp_dma; buf_tmp = buf_tmp + 64UL; buf_tmp_dma = buf_tmp_dma + 64ULL; buf_prd = buf_tmp; if (tei->n_elem != 0) { hdr->prd_tbl = buf_tmp_dma; } else { hdr->prd_tbl = 0ULL; } { tmp = (*(((mvi->chip)->dispatch)->prd_size))(); i = (int )(tmp * (u32 )tei->n_elem); buf_tmp = buf_tmp + (unsigned long )i; buf_tmp_dma = buf_tmp_dma + (dma_addr_t )i; slot->response = buf_tmp; hdr->status_buf = buf_tmp_dma; } if ((mvi->flags & 4UL) != 0UL) { hdr->reserved[0] = 0U; } else { } { slot->tx = mvi->tx_prod; *(mvi->tx + (unsigned long )mvi->tx_prod) = (tag | ((1U << sas_phy->id) << 12)) | 1342177280U; hdr->flags = hdr->flags | flags; hdr->lens = (resp_len / 4U << 16) | (req_len - 4U) / 4U; hdr->tags = tag; hdr->data_len = 0U; *buf_oaf = 129U; _min1 = sas_port->linkrate; _min2 = dev->linkrate; *(buf_oaf + 1UL) = (unsigned int )((u8 )((unsigned int )_min1 < (unsigned int )_min2 ? (unsigned int )_min1 : (unsigned int )_min2)) & 15U; *((u16 *)buf_oaf + 2U) = 65535U; __memcpy((void *)buf_oaf + 4U, (void const *)(& dev->sas_addr), 8UL); (*(((mvi->chip)->dispatch)->make_prd))(task->scatter, tei->n_elem, buf_prd); } return (0); err_out_2: { dma_unmap_sg_attrs(mvi->dev, & (tei->task)->__annonCompField95.smp_task.smp_resp, 1, 2, (struct dma_attrs *)0); } err_out: { dma_unmap_sg_attrs(mvi->dev, & (tei->task)->__annonCompField95.smp_task.smp_req, 1, 1, (struct dma_attrs *)0); } return (rc); } } static u32 mvs_get_ncq_tag(struct sas_task *task , u32 *tag ) { struct ata_queued_cmd *qc ; { qc = (struct ata_queued_cmd *)task->uldd_task; if ((unsigned long )qc != (unsigned long )((struct ata_queued_cmd *)0)) { if ((unsigned int )qc->tf.command - 96U <= 1U) { *tag = qc->tag; return (1U); } else { } } else { } return (0U); } } static int mvs_task_prep_ata(struct mvs_info *mvi , struct mvs_task_exec_info *tei ) { struct sas_ha_struct *sha ; struct sas_task *task ; struct domain_device *dev ; struct mvs_device *mvi_dev ; struct mvs_cmd_hdr *hdr ; struct asd_sas_port *sas_port ; struct sas_phy *sphy ; struct asd_sas_phy *sas_phy ; struct mvs_slot_info *slot ; void *buf_prd ; u32 tag ; u32 hdr_tag ; u32 flags ; u32 del_q ; void *buf_tmp ; u8 *buf_cmd ; u8 *buf_oaf ; dma_addr_t buf_tmp_dma ; u32 i ; u32 req_len ; u32 resp_len ; u32 max_resp_len ; u8 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 _min1 ; unsigned int _min2 ; long tmp___4 ; enum sas_linkrate _min1___0 ; enum sas_linkrate _min2___0 ; __u16 tmp___5 ; { { sha = mvi->sas; task = tei->task; dev = task->dev; mvi_dev = (struct mvs_device *)dev->lldd_dev; hdr = tei->hdr; sas_port = dev->port; sphy = dev->phy; sas_phy = *(sha->sas_phy + (unsigned long )sphy->number); tag = tei->tag; max_resp_len = 1024U; tmp = mvs_assign_reg_set(mvi, mvi_dev); } if ((unsigned int )tmp == 127U) { { printk("\017%s %d:Have not enough regiset for dev %d.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 464, mvi_dev->device_id); } return (-16); } else { } slot = (struct mvs_slot_info *)(& mvi->slot_info) + (unsigned long )tag; slot->tx = mvi->tx_prod; del_q = ((tag | ((1U << sas_phy->id) << 12)) | (u32 )((int )mvi_dev->taskfileset << 20)) | 1879048192U; *(mvi->tx + (unsigned long )mvi->tx_prod) = del_q; if ((unsigned int )*((unsigned char *)task + 184UL) == 2U) { { tmp___0 = (*(((mvi->chip)->dispatch)->prd_count))(); flags = tmp___0 << 16; } } else { flags = (u32 )(tei->n_elem << 16); } if ((unsigned int )*((unsigned char *)task + 125UL) != 0U) { flags = flags | 64U; } else { } if (dev->__annonCompField94.sata_dev.class == 3U) { if ((unsigned int )task->__annonCompField95.ata_task.fis.command != 161U) { flags = flags | 32U; } else { } } else { } hdr->flags = flags; if ((unsigned int )*((unsigned char *)task + 125UL) != 0U) { { tmp___1 = mvs_get_ncq_tag(task, & hdr_tag); } if (tmp___1 != 0U) { task->__annonCompField95.ata_task.fis.__annonCompField87.sector_count = (u8 )((int )task->__annonCompField95.ata_task.fis.__annonCompField87.sector_count | ((int )((unsigned char )hdr_tag) << 3U)); } else { hdr_tag = tag; } } else { hdr_tag = tag; } hdr->tags = hdr_tag; hdr->data_len = task->total_xfer_len; buf_tmp = slot->buf; buf_cmd = (u8 *)buf_tmp; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = buf_tmp_dma; buf_tmp = buf_tmp + 96UL; buf_tmp_dma = buf_tmp_dma + 96ULL; buf_oaf = (u8 *)buf_tmp; hdr->open_frame = buf_tmp_dma; buf_tmp = buf_tmp + 64UL; buf_tmp_dma = buf_tmp_dma + 64ULL; buf_prd = buf_tmp; if (tei->n_elem != 0) { hdr->prd_tbl = buf_tmp_dma; } else { hdr->prd_tbl = 0ULL; } { tmp___2 = (*(((mvi->chip)->dispatch)->prd_size))(); tmp___3 = (*(((mvi->chip)->dispatch)->prd_count))(); i = tmp___2 * tmp___3; buf_tmp = buf_tmp + (unsigned long )i; buf_tmp_dma = buf_tmp_dma + (dma_addr_t )i; slot->response = buf_tmp; hdr->status_buf = buf_tmp_dma; } if ((mvi->flags & 4UL) != 0UL) { hdr->reserved[0] = 0U; } else { } { req_len = 20U; resp_len = 8088U - i; _min1 = resp_len; _min2 = 1024U; resp_len = _min1 <= 1023U ? (unsigned int const )_min1 : _min2; hdr->lens = (resp_len / 4U << 16) | req_len / 4U; tmp___4 = ldv__builtin_expect((unsigned int )*((unsigned char *)task + 125UL) == 0U, 1L); } if (tmp___4 != 0L) { task->__annonCompField95.ata_task.fis.flags = (u8 )((unsigned int )task->__annonCompField95.ata_task.fis.flags | 128U); } else { } { __memcpy((void *)buf_cmd, (void const *)(& task->__annonCompField95.ata_task.fis), 20UL); } if (dev->__annonCompField94.sata_dev.class == 3U) { { __memcpy((void *)buf_cmd + 64U, (void const *)(& task->__annonCompField95.ata_task.atapi_packet), 16UL); } } else { } { *buf_oaf = 161U; _min1___0 = sas_port->linkrate; _min2___0 = dev->linkrate; *(buf_oaf + 1UL) = (unsigned int )((u8 )((unsigned int )_min1___0 < (unsigned int )_min2___0 ? (unsigned int )_min1___0 : (unsigned int )_min2___0)) & 15U; tmp___5 = __fswab16((int )((unsigned int )((__u16 )mvi_dev->device_id) + 1U)); *((u16 *)buf_oaf + 2U) = tmp___5; __memcpy((void *)buf_oaf + 4U, (void const *)(& dev->sas_addr), 8UL); (*(((mvi->chip)->dispatch)->make_prd))(task->scatter, tei->n_elem, buf_prd); } if ((unsigned int )*((unsigned char *)task + 184UL) == 2U) { { (*(((mvi->chip)->dispatch)->dma_fix))(mvi, sas_port->phy_mask, 131072, tei->n_elem, buf_prd); } } else { } return (0); } } static int mvs_task_prep_ssp(struct mvs_info *mvi , struct mvs_task_exec_info *tei , int is_tmf , struct mvs_tmf_task *tmf ) { struct sas_task *task ; struct mvs_cmd_hdr *hdr ; struct mvs_port *port ; struct domain_device *dev ; struct mvs_device *mvi_dev ; struct asd_sas_port *sas_port ; struct mvs_slot_info *slot ; void *buf_prd ; struct ssp_frame_hdr *ssp_hdr ; void *buf_tmp ; u8 *buf_cmd ; u8 *buf_oaf ; u8 fburst ; dma_addr_t buf_tmp_dma ; u32 flags ; u32 resp_len ; u32 req_len ; u32 i ; u32 tag ; u32 max_resp_len ; u32 phy_mask ; u32 tmp ; u32 _min1 ; unsigned int _min2 ; enum sas_linkrate _min1___0 ; enum sas_linkrate _min2___0 ; __u16 tmp___0 ; __u16 tmp___1 ; { task = tei->task; hdr = tei->hdr; port = tei->port; dev = task->dev; mvi_dev = (struct mvs_device *)dev->lldd_dev; sas_port = dev->port; fburst = 0U; tag = tei->tag; max_resp_len = 1024U; slot = (struct mvs_slot_info *)(& mvi->slot_info) + (unsigned long )tag; phy_mask = (unsigned int )port->wide_port_phymap != 0U ? (u32 )port->wide_port_phymap : sas_port->phy_mask & 255U; slot->tx = mvi->tx_prod; *(mvi->tx + (unsigned long )mvi->tx_prod) = (tag | (phy_mask << 12)) | 805306368U; flags = 512U; if ((unsigned int )*((unsigned char *)task + 97UL) != 0U) { flags = flags | 2048U; fburst = 128U; } else { } if (is_tmf != 0) { flags = flags | 8192U; } else { flags = flags; } hdr->flags = flags | (u32 )(tei->n_elem << 16); hdr->tags = tag; hdr->data_len = task->total_xfer_len; buf_tmp = slot->buf; buf_cmd = (u8 *)buf_tmp; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = buf_tmp_dma; buf_tmp = buf_tmp + 64UL; buf_tmp_dma = buf_tmp_dma + 64ULL; buf_oaf = (u8 *)buf_tmp; hdr->open_frame = buf_tmp_dma; buf_tmp = buf_tmp + 64UL; buf_tmp_dma = buf_tmp_dma + 64ULL; buf_prd = buf_tmp; if (tei->n_elem != 0) { hdr->prd_tbl = buf_tmp_dma; } else { hdr->prd_tbl = 0ULL; } { tmp = (*(((mvi->chip)->dispatch)->prd_size))(); i = tmp * (u32 )tei->n_elem; buf_tmp = buf_tmp + (unsigned long )i; buf_tmp_dma = buf_tmp_dma + (dma_addr_t )i; slot->response = buf_tmp; hdr->status_buf = buf_tmp_dma; } if ((mvi->flags & 4UL) != 0UL) { hdr->reserved[0] = 0U; } else { } { resp_len = 8056U - i; _min1 = resp_len; _min2 = 1024U; resp_len = _min1 <= 1023U ? (unsigned int const )_min1 : _min2; req_len = 52U; hdr->lens = (resp_len / 4U << 16) | req_len / 4U; *buf_oaf = 145U; _min1___0 = sas_port->linkrate; _min2___0 = dev->linkrate; *(buf_oaf + 1UL) = (unsigned int )((u8 )((unsigned int )_min1___0 < (unsigned int )_min2___0 ? (unsigned int )_min1___0 : (unsigned int )_min2___0)) & 15U; tmp___0 = __fswab16((int )((unsigned int )((__u16 )mvi_dev->device_id) + 1U)); *((u16 *)buf_oaf + 2U) = tmp___0; __memcpy((void *)buf_oaf + 4U, (void const *)(& dev->sas_addr), 8UL); ssp_hdr = (struct ssp_frame_hdr *)buf_cmd; } if (is_tmf != 0) { ssp_hdr->frame_type = 22U; } else { ssp_hdr->frame_type = 6U; } { __memcpy((void *)(& ssp_hdr->hashed_dest_addr), (void const *)(& dev->hashed_sas_addr), 3UL); __memcpy((void *)(& ssp_hdr->hashed_src_addr), (void const *)(& dev->hashed_sas_addr), 3UL); tmp___1 = __fswab16((int )((__u16 )tag)); ssp_hdr->tag = tmp___1; buf_cmd = buf_cmd + 24UL; __memcpy((void *)buf_cmd, (void const *)(& task->__annonCompField95.ssp_task.LUN), 8UL); } if ((unsigned int )ssp_hdr->frame_type != 22U) { { *(buf_cmd + 9UL) = ((int )fburst | (int )((u8 )task->__annonCompField95.ssp_task.task_attr)) | ((int )task->__annonCompField95.ssp_task.task_prio << 3U); __memcpy((void *)buf_cmd + 12U, (void const *)(task->__annonCompField95.ssp_task.cmd)->cmnd, (size_t )(task->__annonCompField95.ssp_task.cmd)->cmd_len); } } else { *(buf_cmd + 10UL) = tmf->tmf; { if ((int )tmf->tmf == 1) { goto case_1; } else { } if ((int )tmf->tmf == 128) { goto case_128; } else { } goto switch_default; case_1: /* CIL Label */ ; case_128: /* CIL Label */ *(buf_cmd + 12UL) = (u8 )((int )tmf->tag_of_task_to_be_managed >> 8); *(buf_cmd + 13UL) = (u8 )tmf->tag_of_task_to_be_managed; goto ldv_46338; switch_default: /* CIL Label */ ; goto ldv_46338; switch_break: /* CIL Label */ ; } ldv_46338: ; } { (*(((mvi->chip)->dispatch)->make_prd))(task->scatter, tei->n_elem, buf_prd); } return (0); } } static int mvs_task_prep(struct sas_task *task , struct mvs_info *mvi , int is_tmf , struct mvs_tmf_task *tmf , int *pass ) { struct domain_device *dev ; struct mvs_device *mvi_dev ; struct mvs_task_exec_info tei ; struct mvs_slot_info *slot ; u32 tag ; u32 n_elem ; int rc ; struct task_status_struct *tsm ; __u64 tmp ; struct task_status_struct *ts ; struct task_status_struct *ts___0 ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { dev = task->dev; mvi_dev = (struct mvs_device *)dev->lldd_dev; tag = 3735928559U; n_elem = 0U; rc = 0; if ((unsigned long )dev->port == (unsigned long )((struct asd_sas_port *)0)) { tsm = & task->task_status; tsm->resp = -1; tsm->stat = 138; if ((unsigned int )dev->dev_type != 5U) { { (*(task->task_done))(task); } } else { } return (rc); } else { } if ((unsigned long )mvi_dev == (unsigned long )((struct mvs_device *)0) || (unsigned int )mvi_dev->dev_type == 0U) { if ((unsigned long )mvi_dev != (unsigned long )((struct mvs_device *)0)) { { printk("\017%s %d:device %d not ready.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 738, mvi_dev->device_id); } } else { { tmp = __fswab64(*((__be64 *)(& dev->sas_addr))); printk("\017%s %d:device %016llx not ready.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 741, tmp); } } rc = 138; return (rc); } else { } tei.port = (struct mvs_port *)(dev->port)->lldd_port; if ((unsigned long )tei.port != (unsigned long )((struct mvs_port *)0) && ((unsigned int )(tei.port)->port_attached == 0U && (unsigned long )tmf == (unsigned long )((struct mvs_tmf_task *)0))) { { tmp___0 = sas_protocol_ata(task->task_proto); } if (tmp___0 != 0) { { ts = & task->task_status; printk("\017%s %d:SATA/STP port %d does not attachdevice.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 751, (dev->port)->id); ts->resp = 0; ts->stat = 138; (*(task->task_done))(task); } } else { { ts___0 = & task->task_status; printk("\017%s %d:SAS port %d does not attachdevice.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 760, (dev->port)->id); ts___0->resp = -1; ts___0->stat = 138; (*(task->task_done))(task); } } return (rc); } else { } { tmp___2 = sas_protocol_ata(task->task_proto); } if (tmp___2 == 0) { if (task->num_scatter != 0) { { tmp___1 = dma_map_sg_attrs(mvi->dev, task->scatter, task->num_scatter, (enum dma_data_direction )task->data_dir, (struct dma_attrs *)0); n_elem = (u32 )tmp___1; } if (n_elem == 0U) { rc = -12; goto prep_out; } else { } } else { } } else { n_elem = (u32 )task->num_scatter; } { rc = mvs_tag_alloc(mvi, & tag); } if (rc != 0) { goto err_out; } else { } { slot = (struct mvs_slot_info *)(& mvi->slot_info) + (unsigned long )tag; task->lldd_task = (void *)0; slot->n_elem = n_elem; slot->slot_tag = tag; slot->buf = ldv_dma_pool_alloc_99((struct dma_pool *)mvi->dma_pool, 32U, & slot->buf_dma); } if ((unsigned long )slot->buf == (unsigned long )((void *)0)) { goto err_out_tag; } else { } { __memset(slot->buf, 0, 8192UL); tei.task = task; tei.hdr = mvi->slot + (unsigned long )tag; tei.tag = tag; tei.n_elem = (int )n_elem; } { if ((unsigned int )task->task_proto == 2U) { goto case_2; } else { } if ((unsigned int )task->task_proto == 8U) { goto case_8; } else { } if ((unsigned int )task->task_proto == 1U) { goto case_1; } else { } if ((unsigned int )task->task_proto == 4U) { goto case_4; } else { } if ((unsigned int )task->task_proto == 5U) { goto case_5; } else { } goto switch_default; case_2: /* CIL Label */ { rc = mvs_task_prep_smp(mvi, & tei); } goto ldv_46361; case_8: /* CIL Label */ { rc = mvs_task_prep_ssp(mvi, & tei, is_tmf, tmf); } goto ldv_46361; case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ { rc = mvs_task_prep_ata(mvi, & tei); } goto ldv_46361; switch_default: /* CIL Label */ { dev_printk("\v", (struct device const *)mvi->dev, "unknown sas_task proto: 0x%x\n", (unsigned int )task->task_proto); rc = -22; } goto ldv_46361; switch_break: /* CIL Label */ ; } ldv_46361: ; if (rc != 0) { { printk("\017%s %d:rc is %x\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 823, rc); } goto err_out_slot_buf; } else { } { slot->__annonCompField96.task = task; slot->port = tei.port; task->lldd_task = (void *)slot; list_add_tail(& slot->entry, & (tei.port)->list); ldv_spin_lock_100(& task->task_state_lock); task->task_state_flags = task->task_state_flags | 16U; ldv_spin_unlock_101(& task->task_state_lock); mvi_dev->running_req = mvi_dev->running_req + 1U; *pass = *pass + 1; mvi->tx_prod = (mvi->tx_prod + 1U) & ((1U << (int )(mvi->chip)->slot_width) - 1U); } return (rc); err_out_slot_buf: { dma_pool_free((struct dma_pool *)mvi->dma_pool, slot->buf, slot->buf_dma); } err_out_tag: { mvs_tag_free(mvi, tag); } err_out: { dev_printk("\v", (struct device const *)mvi->dev, "mvsas prep failed[%d]!\n", rc); tmp___3 = sas_protocol_ata(task->task_proto); } if (tmp___3 == 0) { if (n_elem != 0U) { { dma_unmap_sg_attrs(mvi->dev, task->scatter, (int )n_elem, (enum dma_data_direction )task->data_dir, (struct dma_attrs *)0); } } else { } } else { } prep_out: ; return (rc); } } static int mvs_task_exec(struct sas_task *task , gfp_t gfp_flags , struct completion *completion , int is_tmf , struct mvs_tmf_task *tmf ) { struct mvs_info *mvi ; u32 rc ; u32 pass ; unsigned long flags ; int tmp ; long tmp___0 ; { { mvi = (struct mvs_info *)0; rc = 0U; pass = 0U; flags = 0UL; mvi = ((struct mvs_device *)(task->dev)->lldd_dev)->mvi_info; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(& mvi->lock); tmp = mvs_task_prep(task, mvi, is_tmf, tmf, (int *)(& pass)); rc = (u32 )tmp; } if (rc != 0U) { { dev_printk("\v", (struct device const *)mvi->dev, "mvsas exec failed[%d]!\n", rc); } } else { } { tmp___0 = ldv__builtin_expect(pass != 0U, 1L); } if (tmp___0 != 0L) { { (*(((mvi->chip)->dispatch)->start_delivery))(mvi, (mvi->tx_prod - 1U) & ((1U << (int )(mvi->chip)->slot_width) - 1U)); } } else { } { ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } return ((int )rc); } } int mvs_queue_command(struct sas_task *task , gfp_t gfp_flags ) { int tmp ; { { tmp = mvs_task_exec(task, gfp_flags, (struct completion *)0, 0, (struct mvs_tmf_task *)0); } return (tmp); } } static void mvs_slot_free(struct mvs_info *mvi , u32 rx_desc ) { u32 slot_idx ; { { slot_idx = rx_desc & 4095U; mvs_tag_clear(mvi, slot_idx); } return; } } static void mvs_slot_task_free(struct mvs_info *mvi , struct sas_task *task , struct mvs_slot_info *slot , u32 slot_idx ) { int tmp ; { if ((unsigned long )slot->__annonCompField96.task == (unsigned long )((struct sas_task *)0)) { return; } else { } { tmp = sas_protocol_ata(task->task_proto); } if (tmp == 0) { if (slot->n_elem != 0U) { { dma_unmap_sg_attrs(mvi->dev, task->scatter, (int )slot->n_elem, (enum dma_data_direction )task->data_dir, (struct dma_attrs *)0); } } else { } } else { } { if ((unsigned int )task->task_proto == 2U) { goto case_2; } else { } if ((unsigned int )task->task_proto == 1U) { goto case_1; } else { } if ((unsigned int )task->task_proto == 4U) { goto case_4; } else { } if ((unsigned int )task->task_proto == 8U) { goto case_8; } else { } goto switch_default; case_2: /* CIL Label */ { dma_unmap_sg_attrs(mvi->dev, & task->__annonCompField95.smp_task.smp_resp, 1, 2, (struct dma_attrs *)0); dma_unmap_sg_attrs(mvi->dev, & task->__annonCompField95.smp_task.smp_req, 1, 1, (struct dma_attrs *)0); } goto ldv_46395; case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; case_8: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_46395; switch_break: /* CIL Label */ ; } ldv_46395: ; if ((unsigned long )slot->buf != (unsigned long )((void *)0)) { { dma_pool_free((struct dma_pool *)mvi->dma_pool, slot->buf, slot->buf_dma); slot->buf = (void *)0; } } else { } { list_del_init(& slot->entry); task->lldd_task = (void *)0; slot->__annonCompField96.task = (struct sas_task *)0; slot->port = (struct mvs_port *)0; slot->slot_tag = 4294967295U; mvs_slot_free(mvi, slot_idx); } return; } } static void mvs_update_wideport(struct mvs_info *mvi , int phy_no ) { struct mvs_phy *phy ; struct mvs_port *port ; int j ; int no ; { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_no; port = phy->port; j = (int )port->wide_port_phymap; no = 0; goto ldv_46409; ldv_46408: ; if (j & 1) { { (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )no, 56U); (*(((mvi->chip)->dispatch)->write_port_cfg_data))(mvi, (u32 )no, (u32 )port->wide_port_phymap); } } else { { (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )no, 56U); (*(((mvi->chip)->dispatch)->write_port_cfg_data))(mvi, (u32 )no, 0U); } } no = no + 1; j = j >> 1; ldv_46409: ; if (j != 0) { goto ldv_46408; } else { } return; } } static u32 mvs_is_phy_ready(struct mvs_info *mvi , int i ) { u32 tmp ; struct mvs_phy *phy ; struct mvs_port *port ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; port = phy->port; tmp = (*(((mvi->chip)->dispatch)->read_phy_ctl))(mvi, (u32 )i); } if ((tmp & 1048576U) != 0U && (phy->irq_status & 4096U) == 0U) { if ((unsigned long )port == (unsigned long )((struct mvs_port *)0)) { phy->phy_attached = 1U; } else { } return (tmp); } else { } if ((unsigned long )port != (unsigned long )((struct mvs_port *)0)) { if ((phy->phy_type & 2U) != 0U) { port->wide_port_phymap = (int )port->wide_port_phymap & ~ ((int )((u8 )(1U << i))); if ((unsigned int )port->wide_port_phymap == 0U) { port->port_attached = 0U; } else { } { mvs_update_wideport(mvi, i); } } else if ((int )phy->phy_type & 1) { port->port_attached = 0U; } else { } phy->port = (struct mvs_port *)0; phy->phy_attached = 0U; phy->phy_type = phy->phy_type & 4294967292U; } else { } return (0U); } } static void *mvs_get_d2h_reg(struct mvs_info *mvi , int i , void *buf ) { u32 *s ; { s = (u32 *)buf; if ((unsigned long )s == (unsigned long )((u32 *)0U)) { return ((void *)0); } else { } { (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )i, 44U); *(s + 3UL) = (*(((mvi->chip)->dispatch)->read_port_cfg_data))(mvi, (u32 )i); (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )i, 40U); *(s + 2UL) = (*(((mvi->chip)->dispatch)->read_port_cfg_data))(mvi, (u32 )i); (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )i, 36U); *(s + 1UL) = (*(((mvi->chip)->dispatch)->read_port_cfg_data))(mvi, (u32 )i); (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )i, 32U); *s = (*(((mvi->chip)->dispatch)->read_port_cfg_data))(mvi, (u32 )i); } if ((*(s + 1UL) & 16777215U) == 15406081U && (unsigned int )*((u8 *)s + 3U) == 1U) { *(s + 1UL) = (u32 )(((int )*((u8 *)s + 4U) & 16) | 15406081); } else { } return ((void *)s); } } static u32 mvs_is_sig_fis_received(u32 irq_status ) { { return (irq_status & 65536U); } } static void mvs_sig_remove_timer(struct mvs_phy *phy ) { { if ((unsigned long )phy->timer.function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_del_timer_104(& phy->timer); } } else { } phy->timer.function = (void (*)(unsigned long ))0; return; } } void mvs_update_phyinfo(struct mvs_info *mvi , int i , int get_st ) { struct mvs_phy *phy ; struct sas_identify_frame *id ; int oob_done ; struct asd_sas_phy *sas_phy ; u32 tmp ; u32 tmp___0 ; { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; id = (struct sas_identify_frame *)(& phy->frame_rcvd); if (get_st != 0) { { phy->irq_status = (*(((mvi->chip)->dispatch)->read_port_irq_stat))(mvi, (u32 )i); phy->phy_status = mvs_is_phy_ready(mvi, i); } } else { } if (phy->phy_status != 0U) { { oob_done = 0; sas_phy = & mvi->phy[i].sas_phy; oob_done = (*(((mvi->chip)->dispatch)->oob_done))(mvi, i); (*(((mvi->chip)->dispatch)->fix_phy_info))(mvi, i, id); } if ((int )phy->phy_type & 1) { { phy->identify.target_port_protocols = 4; tmp___0 = mvs_is_sig_fis_received(phy->irq_status); } if (tmp___0 != 0U) { { mvs_sig_remove_timer(phy); phy->phy_attached = 1U; phy->att_dev_sas_addr = (u64 )((u32 )i + mvi->id * (u32 )(mvi->chip)->n_phy); } if (oob_done != 0) { sas_phy->oob_mode = 1; } else { } { phy->frame_rcvd_size = 20U; mvs_get_d2h_reg(mvi, i, (void *)id); } } else { { dev_printk("\017", (struct device const *)mvi->dev, "Phy%d : No sig fis\n", i); tmp = (*(((mvi->chip)->dispatch)->read_port_irq_mask))(mvi, (u32 )i); (*(((mvi->chip)->dispatch)->write_port_irq_mask))(mvi, (u32 )i, tmp | 65536U); phy->phy_attached = 0U; phy->phy_type = phy->phy_type & 4294967294U; } goto out_done; } } else if ((phy->phy_type & 2U) != 0U || (phy->att_dev_info & 2048U) != 0U) { phy->phy_attached = 1U; phy->identify.device_type = (enum sas_device_type )(phy->att_dev_info & 7U); if ((unsigned int )phy->identify.device_type == 1U) { phy->identify.target_port_protocols = 8; } else if ((unsigned int )phy->identify.device_type != 0U) { phy->identify.target_port_protocols = 2; } else { } if (oob_done != 0) { sas_phy->oob_mode = 2; } else { } phy->frame_rcvd_size = 32U; } else { } { __memcpy((void *)(& sas_phy->attached_sas_addr), (void const *)(& phy->att_dev_sas_addr), 8UL); } if ((unsigned long )((mvi->chip)->dispatch)->phy_work_around != (unsigned long )((void (*/* const */)(struct mvs_info * , int ))0)) { { (*(((mvi->chip)->dispatch)->phy_work_around))(mvi, i); } } else { } } else { } { printk("\017%s %d:phy %d attach dev info is %x\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1080, (u32 )i + mvi->id * (u32 )(mvi->chip)->n_phy, phy->att_dev_info); printk("\017%s %d:phy %d attach sas addr is %llx\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1082, (u32 )i + mvi->id * (u32 )(mvi->chip)->n_phy, phy->att_dev_sas_addr); } out_done: ; if (get_st != 0) { { (*(((mvi->chip)->dispatch)->write_port_irq_stat))(mvi, (u32 )i, phy->irq_status); } } else { } return; } } static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy , int lock ) { struct sas_ha_struct *sas_ha ; struct mvs_info *mvi ; int i ; int hi ; struct mvs_phy *phy ; struct asd_sas_port *sas_port ; struct mvs_port *port ; unsigned long flags ; { sas_ha = sas_phy->ha; mvi = (struct mvs_info *)0; i = 0; phy = (struct mvs_phy *)sas_phy->lldd_phy; sas_port = sas_phy->port; flags = 0UL; if ((unsigned long )sas_port == (unsigned long )((struct asd_sas_port *)0)) { return; } else { } goto ldv_46455; ldv_46454: ; if ((unsigned long )*(sas_ha->sas_phy + (unsigned long )i) == (unsigned long )sas_phy) { goto ldv_46453; } else { } i = i + 1; ldv_46455: ; if ((unsigned long )*(sas_ha->sas_phy + (unsigned long )i) != (unsigned long )((struct asd_sas_phy *)0)) { goto ldv_46454; } else { } ldv_46453: hi = i / (int )((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy; mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi]; if ((unsigned int )i >= (unsigned int )(mvi->chip)->n_phy) { port = (struct mvs_port *)(& mvi->port) + (unsigned long )((unsigned int )i - (unsigned int )(mvi->chip)->n_phy); } else { port = (struct mvs_port *)(& mvi->port) + (unsigned long )i; } if (lock != 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(& mvi->lock); } } else { } port->port_attached = 1U; phy->port = port; sas_port->lldd_port = (void *)port; if ((phy->phy_type & 2U) != 0U) { { port->wide_port_phymap = (u8 )sas_port->phy_mask; printk("\017%s %d:set wide port phy map %x\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1117, sas_port->phy_mask); mvs_update_wideport(mvi, sas_phy->id); } if ((phy->att_dev_info & 524288U) != 0U) { { (*(((mvi->chip)->dispatch)->write_port_cfg_addr))(mvi, (u32 )i, 28U); (*(((mvi->chip)->dispatch)->write_port_cfg_data))(mvi, (u32 )i, 4U); } } else { } } else { } if (lock != 0) { { ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } } else { } return; } } static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy , int lock ) { struct domain_device *dev ; struct mvs_phy *phy ; struct mvs_info *mvi ; struct asd_sas_port *port ; int phy_no ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { phy = (struct mvs_phy *)sas_phy->lldd_phy; mvi = phy->mvi; port = sas_phy->port; phy_no = 0; goto ldv_46466; ldv_46465: phy_no = phy_no + 1; if (phy_no > 7) { return; } else { } ldv_46466: ; if ((unsigned long )phy != (unsigned long )((struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_no)) { goto ldv_46465; } else { } __mptr = (struct list_head const *)port->dev_list.next; dev = (struct domain_device *)__mptr + 0xffffffffffffff78UL; goto ldv_46473; ldv_46472: { mvs_do_release_task(phy->mvi, phy_no, dev); __mptr___0 = (struct list_head const *)dev->dev_list_node.next; dev = (struct domain_device *)__mptr___0 + 0xffffffffffffff78UL; } ldv_46473: ; if ((unsigned long )(& dev->dev_list_node) != (unsigned long )(& port->dev_list)) { goto ldv_46472; } else { } return; } } void mvs_port_formed(struct asd_sas_phy *sas_phy ) { { { mvs_port_notify_formed(sas_phy, 1); } return; } } void mvs_port_deformed(struct asd_sas_phy *sas_phy ) { { { mvs_port_notify_deformed(sas_phy, 1); } return; } } struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi ) { u32 dev ; { dev = 0U; goto ldv_46486; ldv_46485: ; if ((unsigned int )mvi->devices[dev].dev_type == 0U) { mvi->devices[dev].device_id = dev; return ((struct mvs_device *)(& mvi->devices) + (unsigned long )dev); } else { } dev = dev + 1U; ldv_46486: ; if (dev <= 1023U) { goto ldv_46485; } else { } if (dev == 1024U) { { printk("\017%s %d:max support %d devices, ignore ..\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1171, 1024); } } else { } return ((struct mvs_device *)0); } } void mvs_free_dev(struct mvs_device *mvi_dev ) { u32 id ; { { id = mvi_dev->device_id; __memset((void *)mvi_dev, 0, 184UL); mvi_dev->device_id = id; mvi_dev->dev_type = 0; mvi_dev->dev_status = 0U; mvi_dev->taskfileset = 127U; } return; } } int mvs_dev_found_notify(struct domain_device *dev , int lock ) { unsigned long flags ; int res ; struct mvs_info *mvi ; struct domain_device *parent_dev ; struct mvs_device *mvi_device ; int phy_id ; u8 phy_num ; struct ex_phy *phy ; __u64 tmp ; __u64 tmp___0 ; __u64 tmp___1 ; __u64 tmp___2 ; { { flags = 0UL; res = 0; mvi = (struct mvs_info *)0; parent_dev = dev->parent; mvi = mvs_find_dev_mvi(dev); } if (lock != 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(& mvi->lock); } } else { } { mvi_device = mvs_alloc_dev(mvi); } if ((unsigned long )mvi_device == (unsigned long )((struct mvs_device *)0)) { res = -1; goto found_out; } else { } dev->lldd_dev = (void *)mvi_device; mvi_device->dev_status = 0U; mvi_device->dev_type = dev->dev_type; mvi_device->mvi_info = mvi; mvi_device->sas_device = dev; if ((unsigned long )parent_dev != (unsigned long )((struct domain_device *)0) && (unsigned int )parent_dev->dev_type - 2U <= 1U) { phy_num = parent_dev->__annonCompField94.ex_dev.num_phys; phy_id = 0; goto ldv_46507; ldv_46506: { phy = parent_dev->__annonCompField94.ex_dev.ex_phy + (unsigned long )phy_id; tmp = __fswab64(*((__be64 *)(& phy->attached_sas_addr))); tmp___0 = __fswab64(*((__be64 *)(& dev->sas_addr))); } if (tmp == tmp___0) { mvi_device->attached_phy = (u32 )phy_id; goto ldv_46505; } else { } phy_id = phy_id + 1; ldv_46507: ; if (phy_id < (int )phy_num) { goto ldv_46506; } else { } ldv_46505: ; if (phy_id == (int )phy_num) { { tmp___1 = __fswab64(*((__be64 *)(& parent_dev->sas_addr))); tmp___2 = __fswab64(*((__be64 *)(& dev->sas_addr))); printk("\017%s %d:Error: no attached dev:%016llxat ex:%016llx.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1226, tmp___2, tmp___1); res = -1; } } else { } } else { } found_out: ; if (lock != 0) { { ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } } else { } return (res); } } int mvs_dev_found(struct domain_device *dev ) { int tmp ; { { tmp = mvs_dev_found_notify(dev, 1); } return (tmp); } } void mvs_dev_gone_notify(struct domain_device *dev ) { unsigned long flags ; struct mvs_device *mvi_dev ; struct mvs_info *mvi ; { flags = 0UL; mvi_dev = (struct mvs_device *)dev->lldd_dev; if ((unsigned long )mvi_dev == (unsigned long )((struct mvs_device *)0)) { { printk("\017%s %d:found dev has gone.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1249); } return; } else { } { mvi = mvi_dev->mvi_info; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(& mvi->lock); printk("\017%s %d:found dev[%d:%x] is gone.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1258, mvi_dev->device_id, (unsigned int )mvi_dev->dev_type); mvs_release_task(mvi, dev); mvs_free_reg_set(mvi, mvi_dev); mvs_free_dev(mvi_dev); dev->lldd_dev = (void *)0; mvi_dev->sas_device = (struct domain_device *)0; ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } return; } } void mvs_dev_gone(struct domain_device *dev ) { { { mvs_dev_gone_notify(dev); } return; } } static void mvs_task_done(struct sas_task *task ) { int tmp ; { { tmp = ldv_del_timer_111(& (task->slow_task)->timer); } if (tmp == 0) { return; } else { } { complete(& (task->slow_task)->completion); } return; } } static void mvs_tmf_timedout(unsigned long data ) { struct sas_task *task ; { { task = (struct sas_task *)data; task->task_state_flags = task->task_state_flags | 4U; complete(& (task->slow_task)->completion); } return; } } static int mvs_exec_internal_tmf_task(struct domain_device *dev , void *parameter , u32 para_len , struct mvs_tmf_task *tmf ) { int res ; int retry ; struct sas_task *task ; __u64 tmp ; long tmp___0 ; { task = (struct sas_task *)0; retry = 0; goto ldv_46539; ldv_46538: { task = sas_alloc_slow_task(208U); } if ((unsigned long )task == (unsigned long )((struct sas_task *)0)) { return (-12); } else { } { task->dev = dev; task->task_proto = dev->tproto; __memcpy((void *)(& task->__annonCompField95.ssp_task), (void const *)parameter, (size_t )para_len); task->task_done = & mvs_task_done; (task->slow_task)->timer.data = (unsigned long )task; (task->slow_task)->timer.function = & mvs_tmf_timedout; (task->slow_task)->timer.expires = (unsigned long )jiffies + 5000UL; add_timer(& (task->slow_task)->timer); res = mvs_task_exec(task, 208U, (struct completion *)0, 1, tmf); } if (res != 0) { { ldv_del_timer_112(& (task->slow_task)->timer); printk("\017%s %d:executing internal task failed:%d\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1317, res); } goto ex_err; } else { } { ldv_wait_for_completion_113(& (task->slow_task)->completion); res = 5; } if ((task->task_state_flags & 4U) != 0U) { if ((task->task_state_flags & 2U) == 0U) { { printk("\017%s %d:TMF task[%x] timeout.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1326, (int )tmf->tmf); } goto ex_err; } else { } } else { } if ((int )task->task_status.resp == 0 && (unsigned int )task->task_status.stat == 0U) { res = 0; goto ldv_46537; } else { } if ((int )task->task_status.resp == 0 && (unsigned int )task->task_status.stat == 129U) { res = (int )task->task_status.residual; goto ldv_46537; } else { } if ((int )task->task_status.resp == 0 && (unsigned int )task->task_status.stat == 130U) { { printk("\017%s %d:blocked task error.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1347); res = -90; } goto ldv_46537; } else { { tmp = __fswab64(*((__be64 *)(& dev->sas_addr))); printk("\017%s %d: task to dev %016llx response: 0x%x status 0x%x\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1355, tmp, (int )task->task_status.resp, (unsigned int )task->task_status.stat); sas_free_task(task); task = (struct sas_task *)0; } } retry = retry + 1; ldv_46539: ; if (retry <= 2) { goto ldv_46538; } else { } ldv_46537: ; ex_err: { tmp___0 = ldv__builtin_expect((long )(retry == 3 && (unsigned long )task != (unsigned long )((struct sas_task *)0)), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/mvsas/mv_sas.c"), "i" (1362), "i" (12UL)); __builtin_unreachable(); } } else { } { sas_free_task(task); } return (res); } } static int mvs_debug_issue_ssp_tmf(struct domain_device *dev , u8 *lun , struct mvs_tmf_task *tmf ) { struct sas_ssp_task ssp_task ; int tmp ; { if (((unsigned int )dev->tproto & 8U) == 0U) { return (4); } else { } { __memcpy((void *)(& ssp_task.LUN), (void const *)lun, 8UL); tmp = mvs_exec_internal_tmf_task(dev, (void *)(& ssp_task), 32U, tmf); } return (tmp); } } static int mvs_debug_I_T_nexus_reset(struct domain_device *dev ) { int rc ; struct sas_phy *phy ; struct sas_phy *tmp ; int reset_type ; { { tmp = sas_get_local_phy(dev); phy = tmp; reset_type = (unsigned int )dev->dev_type != 5U && ((unsigned int )dev->tproto & 4U) == 0U; rc = sas_phy_reset(phy, reset_type); sas_put_local_phy(phy); msleep(2000U); } return (rc); } } int mvs_lu_reset(struct domain_device *dev , u8 *lun ) { unsigned long flags ; int rc ; struct mvs_tmf_task tmf_task ; struct mvs_device *mvi_dev ; struct mvs_info *mvi ; { { rc = 5; mvi_dev = (struct mvs_device *)dev->lldd_dev; mvi = mvi_dev->mvi_info; tmf_task.tmf = 8U; mvi_dev->dev_status = 1U; rc = mvs_debug_issue_ssp_tmf(dev, lun, & tmf_task); } if (rc == 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(& mvi->lock); mvs_release_task(mvi, dev); ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } } else { } { printk("\017%s %d:%s for device[%x]:rc= %d\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1414, "mvs_lu_reset", mvi_dev->device_id, rc); } return (rc); } } int mvs_I_T_nexus_reset(struct domain_device *dev ) { unsigned long flags ; int rc ; struct mvs_device *mvi_dev ; struct mvs_info *mvi ; { rc = 5; mvi_dev = (struct mvs_device *)dev->lldd_dev; mvi = mvi_dev->mvi_info; if ((unsigned int )mvi_dev->dev_status != 1U) { return (0); } else { mvi_dev->dev_status = 0U; } { rc = mvs_debug_I_T_nexus_reset(dev); printk("\017%s %d:%s for device[%x]:rc= %d\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1431, "mvs_I_T_nexus_reset", mvi_dev->device_id, rc); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(& mvi->lock); mvs_release_task(mvi, dev); ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } return (rc); } } int mvs_query_task(struct sas_task *task ) { u32 tag ; struct scsi_lun lun ; struct mvs_tmf_task tmf_task ; int rc ; struct scsi_cmnd *cmnd ; struct domain_device *dev ; struct mvs_device *mvi_dev ; struct mvs_info *mvi ; { rc = 5; if ((unsigned long )task->lldd_task != (unsigned long )((void *)0) && ((unsigned int )task->task_proto & 8U) != 0U) { { cmnd = (struct scsi_cmnd *)task->uldd_task; dev = task->dev; mvi_dev = (struct mvs_device *)dev->lldd_dev; mvi = mvi_dev->mvi_info; int_to_scsilun((cmnd->device)->lun, & lun); rc = mvs_find_tag(mvi, task, & tag); } if (rc == 0) { rc = 5; return (rc); } else { } { tmf_task.tmf = 128U; tmf_task.tag_of_task_to_be_managed = (unsigned short )tag; rc = mvs_debug_issue_ssp_tmf(dev, (u8 *)(& lun.scsi_lun), & tmf_task); } { if (rc == 8) { goto case_8; } else { } if (rc == 5) { goto case_5; } else { } if (rc == 0) { goto case_0; } else { } goto switch_break; case_8: /* CIL Label */ ; case_5: /* CIL Label */ ; case_0: /* CIL Label */ ; goto ldv_46584; switch_break: /* CIL Label */ ; } ldv_46584: ; } else { } { printk("\017%s %d:%s:rc= %d\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1473, "mvs_query_task", rc); } return (rc); } } int mvs_abort_task(struct sas_task *task ) { struct scsi_lun lun ; struct mvs_tmf_task tmf_task ; struct domain_device *dev ; struct mvs_device *mvi_dev ; struct mvs_info *mvi ; int rc ; unsigned long flags ; u32 tag ; struct scsi_cmnd *cmnd ; u32 slot_no ; struct mvs_slot_info *slot ; struct mvs_slot_info *slot___0 ; u32 slot_idx ; { dev = task->dev; mvi_dev = (struct mvs_device *)dev->lldd_dev; rc = 5; if ((unsigned long )mvi_dev == (unsigned long )((struct mvs_device *)0)) { { printk("\017%s %d:Device has removed\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1490); } return (5); } else { } { mvi = mvi_dev->mvi_info; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(& task->task_state_lock); } if ((task->task_state_flags & 2U) != 0U) { { ldv_spin_unlock_irqrestore_119(& task->task_state_lock, flags); rc = 0; } goto out; } else { } { ldv_spin_unlock_irqrestore_119(& task->task_state_lock, flags); mvi_dev->dev_status = 1U; } if ((unsigned long )task->lldd_task != (unsigned long )((void *)0) && ((unsigned int )task->task_proto & 8U) != 0U) { { cmnd = (struct scsi_cmnd *)task->uldd_task; int_to_scsilun((cmnd->device)->lun, & lun); rc = mvs_find_tag(mvi, task, & tag); } if (rc == 0) { { printk("\017%s %d:No such tag in %s\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1510, "mvs_abort_task"); rc = 5; } return (rc); } else { } { tmf_task.tmf = 1U; tmf_task.tag_of_task_to_be_managed = (unsigned short )tag; rc = mvs_debug_issue_ssp_tmf(dev, (u8 *)(& lun.scsi_lun), & tmf_task); } if (rc == 0) { if ((unsigned long )task->lldd_task != (unsigned long )((void *)0)) { { slot = (struct mvs_slot_info *)task->lldd_task; slot_no = (unsigned int )(((long )slot - (long )(& mvi->slot_info)) / 88L); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(& mvi->lock); mvs_slot_complete(mvi, slot_no, 1U); ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); } } else { } } else { } } else if (*((unsigned int *)task + 21UL) != 0U) { if ((unsigned int )dev->dev_type == 5U) { { slot___0 = (struct mvs_slot_info *)task->lldd_task; slot_idx = (unsigned int )(((long )slot___0 - (long )(& mvi->slot_info)) / 88L); printk("\017%s %d:mvs_abort_task() mvi=%p task=%p slot=%p slot_idx=x%x\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1541, mvi, task, slot___0, slot_idx); task->task_state_flags = task->task_state_flags | 4U; mvs_slot_task_free(mvi, task, slot___0, slot_idx); rc = 0; } goto out; } else { } } else { } out: ; if (rc != 0) { { printk("\017%s %d:%s:rc= %d\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1551, "mvs_abort_task", rc); } } else { } return (rc); } } int mvs_abort_task_set(struct domain_device *dev , u8 *lun ) { int rc ; struct mvs_tmf_task tmf_task ; { { rc = 5; tmf_task.tmf = 2U; rc = mvs_debug_issue_ssp_tmf(dev, lun, & tmf_task); } return (rc); } } int mvs_clear_aca(struct domain_device *dev , u8 *lun ) { int rc ; struct mvs_tmf_task tmf_task ; { { rc = 5; tmf_task.tmf = 64U; rc = mvs_debug_issue_ssp_tmf(dev, lun, & tmf_task); } return (rc); } } int mvs_clear_task_set(struct domain_device *dev , u8 *lun ) { int rc ; struct mvs_tmf_task tmf_task ; { { rc = 5; tmf_task.tmf = 4U; rc = mvs_debug_issue_ssp_tmf(dev, lun, & tmf_task); } return (rc); } } static int mvs_sata_done(struct mvs_info *mvi , struct sas_task *task , u32 slot_idx , int err ) { struct mvs_device *mvi_dev ; struct task_status_struct *tstat ; struct ata_task_resp *resp ; int stat ; long tmp ; long tmp___0 ; { { mvi_dev = (struct mvs_device *)(task->dev)->lldd_dev; tstat = & task->task_status; resp = (struct ata_task_resp *)(& tstat->buf); stat = 0; resp->frame_len = 20U; __memcpy((void *)(& resp->ending_fis), (void const *)mvi->rx_fis + (((unsigned long )(mvi->chip)->fis_offs + (unsigned long )((int )mvi_dev->taskfileset * 256)) + 64UL), 20UL); tstat->buf_valid_size = 26; tmp___0 = ldv__builtin_expect(err != 0, 0L); } if (tmp___0 != 0L) { { tmp = ldv__builtin_expect(err < 0, 0L); } if (tmp != 0L) { stat = 135; } else { stat = 137; } } else { } return (stat); } } void mvs_set_sense(u8 *buffer , int len , int d_sense , int key , int asc , int ascq ) { { { __memset((void *)buffer, 0, (size_t )len); } if (d_sense != 0) { if (len <= 3) { { printk("\017%s %d:Length %d of sense buffer too small to fit sense %x:%x:%x", (char *)"drivers/scsi/mvsas/mv_sas.c", 1621, len, key, asc, ascq); } } else { } *buffer = 114U; if (len > 1) { *(buffer + 1UL) = (u8 )key; } else { } if (len > 2) { *(buffer + 2UL) = (u8 )asc; } else { } if (len > 3) { *(buffer + 3UL) = (u8 )ascq; } else { } } else { if (len <= 13) { { printk("\017%s %d:Length %d of sense buffer too small to fit sense %x:%x:%x", (char *)"drivers/scsi/mvsas/mv_sas.c", 1634, len, key, asc, ascq); } } else { } *buffer = 112U; if (len > 2) { *(buffer + 2UL) = (u8 )key; } else { } if (len > 7) { *(buffer + 7UL) = 10U; } else { } if (len > 12) { *(buffer + 12UL) = (u8 )asc; } else { } if (len > 13) { *(buffer + 13UL) = (u8 )ascq; } else { } } return; } } void mvs_fill_ssp_resp_iu(struct ssp_response_iu *iu , u8 key , u8 asc , u8 asc_q ) { { { iu->datapres = 2U; iu->response_data_len = 0U; iu->sense_data_len = 17U; iu->status = 2U; mvs_set_sense((u8 *)(& iu->sense_data), 17, 0, (int )key, (int )asc, (int )asc_q); } return; } } static int mvs_slot_err(struct mvs_info *mvi , struct sas_task *task , u32 slot_idx ) { struct mvs_slot_info *slot ; int stat ; u32 err_dw0 ; u32 err_dw1 ; u32 tfs ; enum mvs_port_type type ; struct ssp_response_iu *iu ; { slot = (struct mvs_slot_info *)(& mvi->slot_info) + (unsigned long )slot_idx; err_dw0 = *((u32 *)slot->response); err_dw1 = *((u32 *)slot->response + 1UL); tfs = 0U; type = 2; if ((int )err_dw0 < 0) { { (*(((mvi->chip)->dispatch)->issue_stop))(mvi, type, tfs); } } else { } { (*(((mvi->chip)->dispatch)->command_active))(mvi, slot_idx); stat = 2; } { if ((unsigned int )task->task_proto == 8U) { goto case_8; } else { } if ((unsigned int )task->task_proto == 2U) { goto case_2; } else { } if ((unsigned int )task->task_proto == 1U) { goto case_1; } else { } if ((unsigned int )task->task_proto == 4U) { goto case_4; } else { } if ((unsigned int )task->task_proto == 5U) { goto case_5; } else { } goto switch_default; case_8: /* CIL Label */ stat = 141; if ((err_dw0 & 512U) != 0U || (int )err_dw1 < 0) { { iu = (struct ssp_response_iu *)slot->response + 8U; mvs_fill_ssp_resp_iu(iu, 2, 4, 1); sas_ssp_task_response(mvi->dev, task, iu); stat = 2; } } else { } if ((int )err_dw1 < 0) { { printk("\017%s %d:reuse same slot, retry command.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1690); } } else { } goto ldv_46659; case_2: /* CIL Label */ stat = 2; goto ldv_46659; case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ { task->__annonCompField95.ata_task.use_ncq = 0U; stat = 137; mvs_sata_done(mvi, task, slot_idx, (int )err_dw0); } goto ldv_46659; switch_default: /* CIL Label */ ; goto ldv_46659; switch_break: /* CIL Label */ ; } ldv_46659: ; return (stat); } } extern void __compiletime_assert_1801(void) ; int mvs_slot_complete(struct mvs_info *mvi , u32 rx_desc , u32 flags ) { u32 slot_idx ; struct mvs_slot_info *slot ; struct sas_task *task ; struct mvs_device *mvi_dev ; struct task_status_struct *tstat ; struct domain_device *dev ; u32 aborted ; void *to ; enum exec_status sts ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; u64 tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; struct ssp_response_iu *iu ; struct scatterlist *sg_resp ; struct page *tmp___12 ; bool __cond ; int tmp___13 ; int tmp___14 ; { { slot_idx = rx_desc & 4095U; slot = (struct mvs_slot_info *)(& mvi->slot_info) + (unsigned long )slot_idx; task = slot->__annonCompField96.task; mvi_dev = (struct mvs_device *)0; tmp = ldv__builtin_expect((unsigned long )task == (unsigned long )((struct sas_task *)0), 0L); } if (tmp != 0L) { tmp___1 = 1; } else { { tmp___0 = ldv__builtin_expect((unsigned long )task->lldd_task == (unsigned long )((void *)0), 0L); } if (tmp___0 != 0L) { tmp___1 = 1; } else { tmp___1 = 0; } } if (tmp___1 != 0) { return (-1); } else { { tmp___2 = ldv__builtin_expect((unsigned long )task->dev == (unsigned long )((struct domain_device *)0), 0L); } if (tmp___2 != 0L) { return (-1); } else { } } { tstat = & task->task_status; dev = task->dev; mvi_dev = (struct mvs_device *)dev->lldd_dev; ldv_spin_lock_100(& task->task_state_lock); task->task_state_flags = task->task_state_flags & 4294967278U; task->task_state_flags = task->task_state_flags | 2U; aborted = task->task_state_flags & 4U; ldv_spin_unlock_101(& task->task_state_lock); __memset((void *)tstat, 0, 116UL); tstat->resp = 0; tmp___4 = ldv__builtin_expect(aborted != 0U, 0L); } if (tmp___4 != 0L) { tstat->stat = 141; if ((unsigned long )mvi_dev != (unsigned long )((struct mvs_device *)0) && mvi_dev->running_req != 0U) { mvi_dev->running_req = mvi_dev->running_req - 1U; } else { } { tmp___3 = sas_protocol_ata(task->task_proto); } if (tmp___3 != 0) { { mvs_free_reg_set(mvi, mvi_dev); } } else { } { mvs_slot_task_free(mvi, task, slot, slot_idx); } return (-1); } else { } { tmp___5 = ldv__builtin_expect((long )((unsigned long )mvi_dev == (unsigned long )((struct mvs_device *)0) || flags != 0U), 0L); } if (tmp___5 != 0L) { if ((unsigned long )mvi_dev == (unsigned long )((struct mvs_device *)0)) { { printk("\017%s %d:port has not device.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1758); } } else { } tstat->stat = 138; goto out; } else { } { tmp___8 = ldv__builtin_expect((rx_desc & 131072U) != 0U, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect(*((u32 *)slot->response) != 0U, 0L); } if (tmp___9 != 0L) { tmp___11 = 1; } else { { tmp___10 = ldv__builtin_expect(*((u32 *)slot->response + 1UL) != 0U, 0L); } if (tmp___10 != 0L) { tmp___11 = 1; } else { tmp___11 = 0; } } if (tmp___11 != 0) { { tmp___6 = get_unaligned_le64((void const *)slot->response); printk("\017%s %d:port %d slot %d rx_desc %X has error info%016llX.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1772, (slot->port)->sas_port.id, slot_idx, rx_desc, tmp___6); tmp___7 = mvs_slot_err(mvi, task, slot_idx); tstat->stat = (enum exec_status )tmp___7; tstat->resp = 0; } goto out; } else { } } else { } { if ((unsigned int )task->task_proto == 8U) { goto case_8; } else { } if ((unsigned int )task->task_proto == 2U) { goto case_2; } else { } if ((unsigned int )task->task_proto == 1U) { goto case_1; } else { } if ((unsigned int )task->task_proto == 4U) { goto case_4; } else { } if ((unsigned int )task->task_proto == 5U) { goto case_5; } else { } goto switch_default; case_8: /* CIL Label */ ; if ((rx_desc & 8388608U) != 0U) { tstat->stat = 0; tstat->resp = 0; } else if ((rx_desc & 262144U) != 0U) { { iu = (struct ssp_response_iu *)slot->response + 8U; sas_ssp_task_response(mvi->dev, task, iu); } } else { tstat->stat = 2; } goto ldv_46682; case_2: /* CIL Label */ { sg_resp = & task->__annonCompField95.smp_task.smp_resp; tstat->stat = 0; tmp___12 = sg_page(sg_resp); to = kmap_atomic(tmp___12); __memcpy(to + (unsigned long )sg_resp->offset, (void const *)slot->response + 8U, (size_t )sg_resp->dma_length); __cond = 0; } if ((int )__cond) { { __compiletime_assert_1801(); } } else { } { __kunmap_atomic(to); } goto ldv_46682; case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ { tmp___13 = mvs_sata_done(mvi, task, slot_idx, 0); tstat->stat = (enum exec_status )tmp___13; } goto ldv_46682; switch_default: /* CIL Label */ tstat->stat = 2; goto ldv_46682; switch_break: /* CIL Label */ ; } ldv_46682: ; if ((unsigned int )(slot->port)->port_attached == 0U) { { printk("\017%s %d:port %d has removed.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1817, (slot->port)->sas_port.id); tstat->stat = 138; } } else { } out: ; if ((unsigned long )mvi_dev != (unsigned long )((struct mvs_device *)0) && mvi_dev->running_req != 0U) { { mvi_dev->running_req = mvi_dev->running_req - 1U; tmp___14 = sas_protocol_ata(task->task_proto); } if (tmp___14 != 0 && mvi_dev->running_req == 0U) { { mvs_free_reg_set(mvi, mvi_dev); } } else { } } else { } { mvs_slot_task_free(mvi, task, slot, slot_idx); sts = tstat->stat; ldv_spin_unlock_125(& mvi->lock); } if ((unsigned long )task->task_done != (unsigned long )((void (*)(struct sas_task * ))0)) { { (*(task->task_done))(task); } } else { } { ldv_spin_lock_126(& mvi->lock); } return ((int )sts); } } void mvs_do_release_task(struct mvs_info *mvi , int phy_no , struct domain_device *dev ) { u32 slot_idx ; struct mvs_phy *phy ; struct mvs_port *port ; struct mvs_slot_info *slot ; struct mvs_slot_info *slot2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct sas_task *task ; struct list_head const *__mptr___1 ; { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_no; port = phy->port; if ((unsigned long )port == (unsigned long )((struct mvs_port *)0)) { return; } else { } { mvs_int_rx(mvi, 0); __mptr = (struct list_head const *)port->list.next; slot = (struct mvs_slot_info *)__mptr; __mptr___0 = (struct list_head const *)slot->entry.next; slot2 = (struct mvs_slot_info *)__mptr___0; } goto ldv_46712; ldv_46711: slot_idx = (unsigned int )(((long )slot - (long )(& mvi->slot_info)) / 88L); task = slot->__annonCompField96.task; if ((unsigned long )dev != (unsigned long )((struct domain_device *)0) && (unsigned long )task->dev != (unsigned long )dev) { goto ldv_46710; } else { } { printk("\017%s %d:Release slot [%x] tag[%x], task [%p]:\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1866, slot_idx, slot->slot_tag, task); (*(((mvi->chip)->dispatch)->command_active))(mvi, slot_idx); mvs_slot_complete(mvi, slot_idx, 1U); } ldv_46710: slot = slot2; __mptr___1 = (struct list_head const *)slot2->entry.next; slot2 = (struct mvs_slot_info *)__mptr___1; ldv_46712: ; if ((unsigned long )(& slot->entry) != (unsigned long )(& port->list)) { goto ldv_46711; } else { } return; } } void mvs_release_task(struct mvs_info *mvi , struct domain_device *dev ) { int i ; int phyno[4U] ; int num ; { { num = mvs_find_dev_phyno(dev, (int *)(& phyno)); i = 0; } goto ldv_46722; ldv_46721: { mvs_do_release_task(mvi, phyno[i], dev); i = i + 1; } ldv_46722: ; if (i < num) { goto ldv_46721; } else { } return; } } static void mvs_phy_disconnected(struct mvs_phy *phy ) { { phy->phy_attached = 0U; phy->att_dev_info = 0U; phy->att_dev_sas_addr = 0ULL; return; } } static void mvs_work_queue(struct work_struct *work ) { struct delayed_work *dw ; struct work_struct const *__mptr ; struct mvs_wq *mwq ; struct delayed_work const *__mptr___0 ; struct mvs_info *mvi ; unsigned long flags ; u32 phy_no ; struct sas_ha_struct *sas_ha ; struct mvs_phy *phy ; struct asd_sas_phy *sas_phy ; u32 tmp ; struct sas_identify_frame *id ; { { __mptr = (struct work_struct const *)work; dw = (struct delayed_work *)__mptr; __mptr___0 = (struct delayed_work const *)dw; mwq = (struct mvs_wq *)__mptr___0; mvi = mwq->mvi; phy_no = (u32 )((long )mwq->data); sas_ha = mvi->sas; phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_no; sas_phy = & phy->sas_phy; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(& mvi->lock); } if ((mwq->handler & 3) != 0) { if ((phy->phy_event & 2U) != 0U) { { id = (struct sas_identify_frame *)(& phy->frame_rcvd); tmp = (*(((mvi->chip)->dispatch)->read_phy_ctl))(mvi, phy_no); phy->phy_event = phy->phy_event & 4294967293U; } if ((tmp & 1048576U) == 0U) { { sas_phy_disconnected(sas_phy); mvs_phy_disconnected(phy); (*(sas_ha->notify_phy_event))(sas_phy, 0); printk("\017%s %d:phy%d Removed Device\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1914, phy_no); } } else { { (*(((mvi->chip)->dispatch)->detect_porttype))(mvi, (int )phy_no); mvs_update_phyinfo(mvi, (int )phy_no, 1); mvs_bytes_dmaed(mvi, (int )phy_no); mvs_port_notify_formed(sas_phy, 0); printk("\017%s %d:phy%d Attached Device\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1920, phy_no); } } } else { } } else if ((mwq->handler & 4) != 0) { { phy->phy_event = phy->phy_event & 4294967291U; (*(sas_ha->notify_port_event))(sas_phy, 1); printk("\017%s %d:phy%d Got Broadcast Change\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1927, phy_no); } } else { } { list_del(& mwq->entry); ldv_spin_unlock_irqrestore_103(& mvi->lock, flags); kfree((void const *)mwq); } return; } } static int mvs_handle_event(struct mvs_info *mvi , void *data , int handler ) { struct mvs_wq *mwq ; int ret ; void *tmp ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { { ret = 0; tmp = kmalloc(264UL, 32U); mwq = (struct mvs_wq *)tmp; } if ((unsigned long )mwq != (unsigned long )((struct mvs_wq *)0)) { { mwq->mvi = mvi; mwq->data = data; mwq->handler = handler; __init_work(& mwq->work_q.work, 0); __constr_expr_0.counter = 137438953408L; mwq->work_q.work.data = __constr_expr_0; lockdep_init_map(& mwq->work_q.work.lockdep_map, "(&(&mwq->work_q)->work)", & __key, 0); INIT_LIST_HEAD(& mwq->work_q.work.entry); mwq->work_q.work.func = & mvs_work_queue; init_timer_key(& mwq->work_q.timer, 2U, "(&(&mwq->work_q)->timer)", & __key___0); mwq->work_q.timer.function = & delayed_work_timer_fn; mwq->work_q.timer.data = (unsigned long )(& mwq->work_q); list_add_tail(& mwq->entry, & mvi->wq_list); schedule_delayed_work(& mwq->work_q, 500UL); } } else { ret = -12; } return (ret); } } static void mvs_sig_time_out(unsigned long tphy ) { struct mvs_phy *phy ; struct mvs_info *mvi ; u8 phy_no ; { phy = (struct mvs_phy *)tphy; mvi = phy->mvi; phy_no = 0U; goto ldv_46761; ldv_46760: ; if ((unsigned long )((struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_no) == (unsigned long )phy) { { printk("\017%s %d:Get signature time out, reset phy %d\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1962, (u32 )phy_no + mvi->id * (u32 )(mvi->chip)->n_phy); (*(((mvi->chip)->dispatch)->phy_reset))(mvi, (u32 )phy_no, 1); } } else { } phy_no = (u8 )((int )phy_no + 1); ldv_46761: ; if ((unsigned int )phy_no < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46760; } else { } return; } } void mvs_int_port(struct mvs_info *mvi , int phy_no , u32 events ) { u32 tmp ; struct mvs_phy *phy ; u32 tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; int dev_sata ; int ready ; u32 tmp___2 ; unsigned long __ms___0 ; unsigned long tmp___3 ; unsigned long __ms___1 ; unsigned long tmp___4 ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )phy_no; phy->irq_status = (*(((mvi->chip)->dispatch)->read_port_irq_stat))(mvi, (u32 )phy_no); (*(((mvi->chip)->dispatch)->write_port_irq_stat))(mvi, (u32 )phy_no, phy->irq_status); tmp___0 = (*(((mvi->chip)->dispatch)->read_phy_ctl))(mvi, (u32 )phy_no); printk("\017%s %d:phy %d ctrl sts=0x%08X.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1976, (u32 )phy_no + mvi->id * (u32 )(mvi->chip)->n_phy, tmp___0); printk("\017%s %d:phy %d irq sts = 0x%08X\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1978, (u32 )phy_no + mvi->id * (u32 )(mvi->chip)->n_phy, phy->irq_status); } if ((phy->irq_status & 8388608U) != 0U) { { printk("\017%s %d:phy %d STP decoding error.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 1987, (u32 )phy_no + mvi->id * (u32 )(mvi->chip)->n_phy); } } else { } if ((phy->irq_status & 4096U) != 0U) { __ms = 500UL; goto ldv_46772; ldv_46771: { __const_udelay(4295000UL); } ldv_46772: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_46771; } else { } if ((phy->phy_event & 2U) == 0U) { { dev_sata = (int )phy->phy_type & 1; mvs_do_release_task(mvi, phy_no, (struct domain_device *)0); phy->phy_event = phy->phy_event | 2U; (*(((mvi->chip)->dispatch)->clear_srs_irq))(mvi, 0, 1); mvs_handle_event(mvi, (void *)((unsigned long )phy_no), 3); tmp___2 = mvs_is_phy_ready(mvi, phy_no); ready = (int )tmp___2; } if ((ready | dev_sata) != 0) { if ((unsigned long )((mvi->chip)->dispatch)->stp_reset != (unsigned long )((void (*/* const */)(struct mvs_info * , u32 ))0)) { { (*(((mvi->chip)->dispatch)->stp_reset))(mvi, (u32 )phy_no); } } else { { (*(((mvi->chip)->dispatch)->phy_reset))(mvi, (u32 )phy_no, 0); } } return; } else { } } else { } } else { } if ((phy->irq_status & 128U) != 0U) { { tmp = (*(((mvi->chip)->dispatch)->read_port_irq_mask))(mvi, (u32 )phy_no); (*(((mvi->chip)->dispatch)->write_port_irq_mask))(mvi, (u32 )phy_no, tmp | 65536U); } if ((unsigned long )phy->timer.function == (unsigned long )((void (*)(unsigned long ))0)) { { phy->timer.data = (unsigned long )phy; phy->timer.function = & mvs_sig_time_out; phy->timer.expires = (unsigned long )jiffies + 1250UL; add_timer(& phy->timer); } } else { } } else { } if ((phy->irq_status & 65540U) != 0U) { { phy->phy_status = mvs_is_phy_ready(mvi, phy_no); printk("\017%s %d:notify plug in on phy[%d]\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 2027, phy_no); } if (phy->phy_status != 0U) { __ms___0 = 10UL; goto ldv_46778; ldv_46777: { __const_udelay(4295000UL); } ldv_46778: tmp___3 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___3 != 0UL) { goto ldv_46777; } else { } { (*(((mvi->chip)->dispatch)->detect_porttype))(mvi, phy_no); } if ((int )phy->phy_type & 1) { { tmp = (*(((mvi->chip)->dispatch)->read_port_irq_mask))(mvi, (u32 )phy_no); tmp = tmp & 4294901759U; (*(((mvi->chip)->dispatch)->write_port_irq_mask))(mvi, (u32 )phy_no, tmp); } } else { } { mvs_update_phyinfo(mvi, phy_no, 0); } if ((phy->phy_type & 2U) != 0U) { { (*(((mvi->chip)->dispatch)->phy_reset))(mvi, (u32 )phy_no, 2); __ms___1 = 10UL; } goto ldv_46782; ldv_46781: { __const_udelay(4295000UL); } ldv_46782: tmp___4 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___4 != 0UL) { goto ldv_46781; } else { } } else { } { mvs_bytes_dmaed(mvi, phy_no); } if ((phy->phy_event & 2U) != 0U) { { mvs_port_notify_formed(& phy->sas_phy, 0); phy->phy_event = phy->phy_event & 4294967293U; } } else { } } else { { printk("\017%s %d:plugin interrupt but phy%d is gone\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 2052, (u32 )phy_no + mvi->id * (u32 )(mvi->chip)->n_phy); } } } else if ((phy->irq_status & 256U) != 0U) { { printk("\017%s %d:phy %d broadcast change.\n", (char *)"drivers/scsi/mvsas/mv_sas.c", 2056, (u32 )phy_no + mvi->id * (u32 )(mvi->chip)->n_phy); mvs_handle_event(mvi, (void *)((unsigned long )phy_no), 4); } } else { } return; } } int mvs_int_rx(struct mvs_info *mvi , bool self_clear ) { u32 rx_prod_idx ; u32 rx_desc ; bool attn ; u32 tmp ; long tmp___0 ; long tmp___1 ; { attn = 0; rx_prod_idx = mvi->rx_cons; mvi->rx_cons = *(mvi->rx); if (mvi->rx_cons == 4095U) { return (0); } else { } { tmp___0 = ldv__builtin_expect(mvi->rx_cons == rx_prod_idx, 0L); } if (tmp___0 != 0L) { { tmp = (*(((mvi->chip)->dispatch)->rx_update))(mvi); mvi->rx_cons = tmp & 4095U; } } else { } if (mvi->rx_cons == rx_prod_idx) { return (0); } else { } goto ldv_46792; ldv_46791: { rx_prod_idx = (rx_prod_idx + 1U) & 1023U; rx_desc = *(mvi->rx + (unsigned long )(rx_prod_idx + 1U)); tmp___1 = ldv__builtin_expect((rx_desc & 65536U) != 0U, 1L); } if (tmp___1 != 0L) { { mvs_slot_complete(mvi, rx_desc, 0U); } } else { } if ((rx_desc & 524288U) != 0U) { attn = 1; } else if ((rx_desc & 131072U) != 0U) { if ((rx_desc & 65536U) == 0U) { { mvs_slot_complete(mvi, rx_desc, 0U); } } else { } } else if ((rx_desc & 2097152U) != 0U) { { mvs_slot_free(mvi, rx_desc); } } else { } ldv_46792: ; if (mvi->rx_cons != rx_prod_idx) { goto ldv_46791; } else { } if ((int )attn && (int )self_clear) { { (*(((mvi->chip)->dispatch)->int_full))(mvi); } } else { } return (0); } } int ldv_del_timer(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_instance_deregister_10_1(struct timer_list *arg0 ) ; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_10_timer_list_timer_list ; { { ldv_10_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_10_1(ldv_10_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_instance_deregister_10_1(struct timer_list *arg0 ) { { return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static unsigned long ldv_find_first_zero_bit_98(unsigned long const *addr , unsigned long size ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_first_bit(size); } return (tmp); } } static void *ldv_dma_pool_alloc_99(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static void ldv_spin_lock_100(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_task_state_lock_of_sas_task(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_101(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_task_state_lock_of_sas_task(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_103(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mvs_info(); spin_unlock_irqrestore(lock, flags); } return; } } static int ldv_del_timer_104(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_111(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_112(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_wait_for_completion_113(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_completion_of_sas_task_slow(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_task_state_lock_of_sas_task(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_task_state_lock_of_sas_task(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_125(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mvs_info(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_126(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); spin_lock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_125(spinlock_t *lock ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void outl(unsigned int value , int port ) { { __asm__ volatile ("outl %0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned int inl(int port ) { unsigned int value ; { __asm__ volatile ("inl %w1, %0": "=a" (value): "Nd" (port)); return (value); } } extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static u32 mvs_cr32(struct mvs_info *mvi , u32 addr ) { void *regs ; unsigned int tmp ; { { regs = mvi->regs; writel(addr, (void volatile *)regs + 440U); tmp = readl((void const volatile *)regs + 444U); } return (tmp); } } __inline static void mvs_cw32(struct mvs_info *mvi , u32 addr , u32 val ) { void *regs ; { { regs = mvi->regs; writel(addr, (void volatile *)regs + 440U); writel(val, (void volatile *)regs + 444U); } return; } } __inline static u32 mvs_read_phy_ctl(struct mvs_info *mvi , u32 port ) { void *regs ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { regs = mvi->regs; if (port <= 3U) { { tmp = readl((void const volatile *)(regs + ((unsigned long )(port * 4U) + 384UL))); tmp___1 = tmp; } } else { { tmp___0 = readl((void const volatile *)(regs + ((unsigned long )((port + 1073741820U) * 4U) + 544UL))); tmp___1 = tmp___0; } } return (tmp___1); } } __inline static void mvs_write_phy_ctl(struct mvs_info *mvi , u32 port , u32 val ) { void *regs ; { regs = mvi->regs; if (port <= 3U) { { writel(val, (void volatile *)(regs + ((unsigned long )(port * 4U) + 384UL))); } } else { { writel(val, (void volatile *)(regs + ((unsigned long )((port + 1073741820U) * 4U) + 544UL))); } } return; } } __inline static u32 mvs_read_port(struct mvs_info *mvi , u32 off , u32 off2 , u32 port ) { void *regs ; void *regs2 ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { regs = mvi->regs + (unsigned long )off; regs2 = mvi->regs + (unsigned long )off2; if (port <= 3U) { { tmp = readl((void const volatile *)regs + (unsigned long )(port * 8U)); tmp___1 = tmp; } } else { { tmp___0 = readl((void const volatile *)regs2 + (unsigned long )((port + 536870908U) * 8U)); tmp___1 = tmp___0; } } return (tmp___1); } } __inline static void mvs_write_port(struct mvs_info *mvi , u32 off , u32 off2 , u32 port , u32 val ) { void *regs ; void *regs2 ; { regs = mvi->regs + (unsigned long )off; regs2 = mvi->regs + (unsigned long )off2; if (port <= 3U) { { writel(val, (void volatile *)regs + (unsigned long )(port * 8U)); } } else { { writel(val, (void volatile *)regs2 + (unsigned long )((port + 536870908U) * 8U)); } } return; } } __inline static u32 mvs_read_port_cfg_data(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 452U, 564U, port); } return (tmp); } } __inline static void mvs_write_port_cfg_data(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 452U, 564U, port, val); } return; } } __inline static void mvs_write_port_cfg_addr(struct mvs_info *mvi , u32 port , u32 addr ) { unsigned long __ms ; unsigned long tmp ; { { mvs_write_port(mvi, 448U, 560U, port, addr); __ms = 10UL; } goto ldv_46034; ldv_46033: { __const_udelay(4295000UL); } ldv_46034: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_46033; } else { } return; } } __inline static u32 mvs_read_port_vsr_data(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 484U, 596U, port); } return (tmp); } } __inline static void mvs_write_port_vsr_data(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 484U, 596U, port, val); } return; } } __inline static void mvs_write_port_vsr_addr(struct mvs_info *mvi , u32 port , u32 addr ) { unsigned long __ms ; unsigned long tmp ; { { mvs_write_port(mvi, 480U, 592U, port, addr); __ms = 10UL; } goto ldv_46052; ldv_46051: { __const_udelay(4295000UL); } ldv_46052: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_46051; } else { } return; } } __inline static u32 mvs_read_port_irq_stat(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 352U, 512U, port); } return (tmp); } } __inline static void mvs_write_port_irq_stat(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 352U, 512U, port, val); } return; } } __inline static u32 mvs_read_port_irq_mask(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 356U, 516U, port); } return (tmp); } } __inline static void mvs_write_port_irq_mask(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 356U, 516U, port, val); } return; } } __inline static void mvs_phy_hacks(struct mvs_info *mvi ) { u32 tmp ; { { tmp = mvs_cr32(mvi, 280U); tmp = tmp & 4294966783U; tmp = tmp | 1024U; mvs_cw32(mvi, 280U, tmp); mvs_cw32(mvi, 296U, 32639U); tmp = mvs_cr32(mvi, 292U); tmp = tmp & 4294901760U; tmp = tmp | 16383U; mvs_cw32(mvi, 292U, tmp); mvs_cw32(mvi, 316U, 7995392U); mvs_cw32(mvi, 420U, 4293902205U); } return; } } __inline static void mvs_int_sata(struct mvs_info *mvi ) { u32 tmp ; void *regs ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 344U); } if (tmp != 0U) { { writel(tmp, (void volatile *)regs + 344U); } } else { } { (*(((mvi->chip)->dispatch)->clear_active_cmds))(mvi); } return; } } __inline static void mvs_int_full(struct mvs_info *mvi ) { void *regs ; u32 tmp ; u32 stat ; int i ; { { regs = mvi->regs; stat = readl((void const volatile *)regs + 336U); mvs_int_rx(mvi, 0); i = 0; } goto ldv_46089; ldv_46088: tmp = (stat >> i) & 65792U; if (tmp != 0U) { { mvs_int_port(mvi, i, tmp); } } else { } i = i + 1; ldv_46089: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46088; } else { } if ((stat & 33554432U) != 0U) { { (*(((mvi->chip)->dispatch)->non_spec_ncq_error))(mvi); } } else { } if ((stat & 8U) != 0U) { { mvs_int_sata(mvi); } } else { } { writel(stat, (void volatile *)regs + 336U); } return; } } __inline static void mvs_start_delivery(struct mvs_info *mvi , u32 tx ) { void *regs ; { { regs = mvi->regs; writel(tx, (void volatile *)regs + 300U); } return; } } __inline static u32 mvs_rx_update(struct mvs_info *mvi ) { void *regs ; unsigned int tmp ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 320U); } return (tmp); } } __inline static u32 mvs_get_prd_size(void) { { return (16U); } } __inline static u32 mvs_get_prd_count(void) { { return (64U); } } __inline static void mvs_show_pcie_usage(struct mvs_info *mvi ) { u16 link_stat ; u16 link_spd ; char const *spd[3U] ; { spd[0] = "UnKnown"; spd[1] = "2.5"; spd[2] = "5.0"; if ((mvi->flags & 4UL) != 0UL || mvi->id != 0U) { return; } else { } { pci_read_config_word((struct pci_dev const *)mvi->pdev, 242, & link_stat); link_spd = (unsigned int )link_stat & 15U; } if ((unsigned int )link_spd > 2U) { link_spd = 0U; } else { } { dev_printk("\016", (struct device const *)mvi->dev, "mvsas: PCI-E x%u, Bandwidth Usage: %s Gbps\n", ((int )link_stat & 1008) >> 4, spd[(int )link_spd]); } return; } } __inline static u32 mvs_hw_max_link_rate(void) { { return (9U); } } static void mvs_64xx_detect_porttype(struct mvs_info *mvi , int i ) { void *regs ; u32 reg ; struct mvs_phy *phy ; { { regs = mvi->regs; phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; reg = readl((void const volatile *)regs + 160U); phy->phy_type = phy->phy_type & 4294967292U; } if (((reg & (u32 )(1 << i)) & 255U) != 0U) { phy->phy_type = phy->phy_type | 2U; } else { phy->phy_type = phy->phy_type | 1U; } return; } } static void mvs_64xx_enable_xmt(struct mvs_info *mvi , int phy_id ) { void *regs ; u32 tmp ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 260U); } if ((unsigned int )(mvi->chip)->n_phy <= 4U) { tmp = tmp | (u32 )(1 << (phy_id + 12)); } else { tmp = tmp | (u32 )(1 << (phy_id + 8)); } { writel(tmp, (void volatile *)regs + 260U); } return; } } static void mvs_64xx_phy_hacks(struct mvs_info *mvi ) { void *regs ; int i ; { { regs = mvi->regs; mvs_phy_hacks(mvi); } if ((mvi->flags & 4UL) == 0UL) { i = 0; goto ldv_46134; ldv_46133: { mvs_write_port_vsr_addr(mvi, (u32 )i, 8U); mvs_write_port_vsr_data(mvi, (u32 )i, 752U); i = i + 1; } ldv_46134: ; if (i <= 3) { goto ldv_46133; } else { } } else { { writel(0U, (void volatile *)regs + 160U); i = 0; } goto ldv_46137; ldv_46136: { mvs_write_port_vsr_addr(mvi, (u32 )i, 7U); mvs_write_port_vsr_data(mvi, (u32 )i, 2415919104U); mvs_write_port_vsr_addr(mvi, (u32 )i, 9U); mvs_write_port_vsr_data(mvi, (u32 )i, 20722U); mvs_write_port_vsr_addr(mvi, (u32 )i, 11U); mvs_write_port_vsr_data(mvi, (u32 )i, 14U); i = i + 1; } ldv_46137: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46136; } else { } } return; } } static void mvs_64xx_stp_reset(struct mvs_info *mvi , u32 phy_id ) { void *regs ; u32 reg ; u32 tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; { regs = mvi->regs; if ((mvi->flags & 4UL) == 0UL) { if (phy_id <= 3U) { { pci_read_config_dword((struct pci_dev const *)mvi->pdev, 64, & reg); } } else { { pci_read_config_dword((struct pci_dev const *)mvi->pdev, 144, & reg); } } } else { { reg = readl((void const volatile *)regs + 64U); } } tmp = reg; if (phy_id <= 3U) { tmp = tmp | ((1U << (int )phy_id) << 16); } else { tmp = tmp | ((1U << (int )(phy_id - 4U)) << 16); } if ((mvi->flags & 4UL) == 0UL) { if (phy_id <= 3U) { { pci_write_config_dword((struct pci_dev const *)mvi->pdev, 64, tmp); __ms = 10UL; } goto ldv_46148; ldv_46147: { __const_udelay(4295000UL); } ldv_46148: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_46147; } else { } { pci_write_config_dword((struct pci_dev const *)mvi->pdev, 64, reg); } } else { { pci_write_config_dword((struct pci_dev const *)mvi->pdev, 144, tmp); __ms___0 = 10UL; } goto ldv_46152; ldv_46151: { __const_udelay(4295000UL); } ldv_46152: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_46151; } else { } { pci_write_config_dword((struct pci_dev const *)mvi->pdev, 144, reg); } } } else { { writel(tmp, (void volatile *)regs + 64U); __ms___1 = 10UL; } goto ldv_46156; ldv_46155: { __const_udelay(4295000UL); } ldv_46156: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_46155; } else { } { writel(reg, (void volatile *)regs + 64U); } } return; } } static void mvs_64xx_phy_reset(struct mvs_info *mvi , u32 phy_id , int hard ) { u32 tmp ; { { tmp = mvs_read_port_irq_stat(mvi, phy_id); tmp = tmp & 4294967294U; mvs_write_port_irq_stat(mvi, phy_id, tmp); tmp = mvs_read_phy_ctl(mvi, phy_id); } if (hard == 1) { tmp = tmp | 2U; } else if (hard == 0) { tmp = tmp | 1U; } else { } { mvs_write_phy_ctl(mvi, phy_id, tmp); } if (hard != 0) { ldv_46164: { tmp = mvs_read_phy_ctl(mvi, phy_id); } if ((tmp & 2U) != 0U) { goto ldv_46164; } else { } } else { } return; } } void mvs_64xx_clear_srs_irq(struct mvs_info *mvi , u8 reg_set , u8 clear_all ) { void *regs ; u32 tmp ; { regs = mvi->regs; if ((unsigned int )clear_all != 0U) { { tmp = readl((void const volatile *)regs + 344U); } if (tmp != 0U) { { printk("\017check SRS 0 %08X.\n", tmp); writel(tmp, (void volatile *)regs + 344U); } } else { } } else { { tmp = readl((void const volatile *)regs + 344U); } if ((tmp & (u32 )(1 << ((int )reg_set & 31))) != 0U) { { printk("\017register set 0x%x was stopped.\n", (int )reg_set); writel((unsigned int )(1 << ((int )reg_set & 31)), (void volatile *)regs + 344U); } } else { } } return; } } static int mvs_64xx_chip_reset(struct mvs_info *mvi ) { void *regs ; u32 tmp ; int i ; unsigned int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; { { regs = mvi->regs; writel(0U, (void volatile *)regs + 4U); tmp = readl((void const volatile *)regs + 4U); } if ((tmp & 1U) == 0U) { if ((mvi->flags & 2UL) != 0UL) { { pci_read_config_dword((struct pci_dev const *)mvi->pdev, 64, & tmp); tmp = tmp & 4043309055U; tmp = tmp | 61440U; pci_write_config_dword((struct pci_dev const *)mvi->pdev, 64, tmp); pci_read_config_dword((struct pci_dev const *)mvi->pdev, 144, & tmp); tmp = tmp & 4043309055U; tmp = tmp | 61440U; pci_write_config_dword((struct pci_dev const *)mvi->pdev, 144, tmp); } } else { } } else { } { writel(0U, (void volatile *)regs + 4U); tmp = readl((void const volatile *)regs + 4U); } if ((tmp & 1U) == 0U) { { writel(1U, (void volatile *)regs + 4U); readl((void const volatile *)regs + 4U); } } else { } i = 1000; goto ldv_46181; ldv_46180: { msleep(10U); tmp___0 = readl((void const volatile *)regs + 4U); } if ((tmp___0 & 1U) == 0U) { goto ldv_46179; } else { } ldv_46181: tmp___1 = i; i = i - 1; if (tmp___1 > 0) { goto ldv_46180; } else { } ldv_46179: { tmp___2 = readl((void const volatile *)regs + 4U); } if ((int )tmp___2 & 1) { { dev_printk("\v", (struct device const *)mvi->dev, "HBA reset failed\n"); } return (-16); } else { } return (0); } } static void mvs_64xx_phy_disable(struct mvs_info *mvi , u32 phy_id ) { void *regs ; u32 tmp ; u32 offs ; { regs = mvi->regs; if ((mvi->flags & 4UL) == 0UL) { if (phy_id <= 3U) { offs = 64U; } else { offs = 144U; phy_id = phy_id - 4U; } { pci_read_config_dword((struct pci_dev const *)mvi->pdev, (int )offs, & tmp); tmp = tmp | (1U << (int )(phy_id + 12U)); pci_write_config_dword((struct pci_dev const *)mvi->pdev, (int )offs, tmp); } } else { { tmp = readl((void const volatile *)regs + 64U); tmp = tmp | (1U << (int )(phy_id + 12U)); writel(tmp, (void volatile *)regs + 64U); } } return; } } static void mvs_64xx_phy_enable(struct mvs_info *mvi , u32 phy_id ) { void *regs ; u32 tmp ; u32 offs ; { regs = mvi->regs; if ((mvi->flags & 4UL) == 0UL) { if (phy_id <= 3U) { offs = 64U; } else { offs = 144U; phy_id = phy_id - 4U; } { pci_read_config_dword((struct pci_dev const *)mvi->pdev, (int )offs, & tmp); tmp = tmp & ~ (1U << (int )(phy_id + 12U)); pci_write_config_dword((struct pci_dev const *)mvi->pdev, (int )offs, tmp); } } else { { tmp = readl((void const volatile *)regs + 64U); tmp = tmp & ~ (1U << (int )(phy_id + 12U)); writel(tmp, (void volatile *)regs + 64U); } } return; } } static int mvs_64xx_init(struct mvs_info *mvi ) { void *regs ; int i ; u32 tmp ; u32 cctl ; int tmp___0 ; unsigned int tmp___1 ; __u64 tmp___2 ; { regs = mvi->regs; if ((unsigned long )mvi->pdev != (unsigned long )((struct pci_dev *)0) && (unsigned int )(mvi->pdev)->revision == 0U) { mvi->flags = mvi->flags | 2UL; } else { } if ((mvi->flags & 4UL) == 0UL) { { mvs_show_pcie_usage(mvi); tmp___0 = mvs_64xx_chip_reset(mvi); tmp = (u32 )tmp___0; } if (tmp != 0U) { return ((int )tmp); } else { } } else { { tmp = readl((void const volatile *)regs + 64U); tmp = tmp & 4043309055U; tmp = tmp | 61440U; writel(tmp, (void volatile *)regs + 64U); } } { tmp___1 = readl((void const volatile *)regs + 256U); cctl = tmp___1 & 65535U; } if ((cctl & 32U) != 0U) { cctl = cctl & 4294967263U; } else { { writel(cctl | 32U, (void volatile *)regs + 256U); readl((void const volatile *)regs + 256U); } } if ((mvi->flags & 4UL) == 0UL) { { pci_read_config_dword((struct pci_dev const *)mvi->pdev, 232, & tmp); tmp = tmp & 4294938623U; tmp = tmp | 16384U; pci_write_config_dword((struct pci_dev const *)mvi->pdev, 232, tmp); pci_read_config_dword((struct pci_dev const *)mvi->pdev, 64, & tmp); tmp = tmp & 4043309055U; tmp = tmp & 4294905855U; pci_write_config_dword((struct pci_dev const *)mvi->pdev, 64, tmp); pci_read_config_dword((struct pci_dev const *)mvi->pdev, 144, & tmp); tmp = tmp & 251658240U; tmp = tmp & 4294905855U; pci_write_config_dword((struct pci_dev const *)mvi->pdev, 144, tmp); } } else { { tmp = readl((void const volatile *)regs + 64U); tmp = tmp & 4043309055U; tmp = tmp | 15728640U; tmp = tmp & 4294905855U; tmp = tmp | 983040U; writel(tmp, (void volatile *)regs + 64U); msleep(100U); tmp = tmp & 4293984255U; writel(tmp, (void volatile *)regs + 64U); msleep(100U); } } { writel(0U, (void volatile *)regs + 260U); mvs_64xx_phy_hacks(mvi); tmp = mvs_cr32(mvi, 440U); tmp = tmp & 65535U; tmp = tmp | 16384000U; mvs_cw32(mvi, 440U, tmp); writel(65280U, (void volatile *)regs + 160U); writel((unsigned int )mvi->slot_dma, (void volatile *)regs + 264U); writel((unsigned int )(mvi->slot_dma >> 32ULL), (void volatile *)regs + 268U); writel((unsigned int )mvi->rx_fis_dma, (void volatile *)regs + 272U); writel((unsigned int )(mvi->rx_fis_dma >> 32ULL), (void volatile *)regs + 276U); writel(1U << (int )(mvi->chip)->slot_width, (void volatile *)regs + 288U); writel((unsigned int )mvi->tx_dma, (void volatile *)regs + 292U); writel((unsigned int )(mvi->tx_dma >> 32ULL), (void volatile *)regs + 296U); writel(1024U, (void volatile *)regs + 308U); writel((unsigned int )mvi->rx_dma, (void volatile *)regs + 312U); writel((unsigned int )(mvi->rx_dma >> 32ULL), (void volatile *)regs + 316U); i = 0; } goto ldv_46204; ldv_46203: { tmp___2 = __fswab64(mvi->phy[i].dev_sas_addr); mvs_set_sas_addr(mvi, i, 4U, 8U, tmp___2); mvs_64xx_enable_xmt(mvi, i); mvs_64xx_phy_reset(mvi, (u32 )i, 1); msleep(500U); mvs_64xx_detect_porttype(mvi, i); i = i + 1; } ldv_46204: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46203; } else { } if ((mvi->flags & 4UL) != 0UL) { { writel(234913792U, (void volatile *)regs); writel(1493172232U, (void volatile *)regs + 4U); writel(32U, (void volatile *)regs + 8U); writel(32U, (void volatile *)regs + 12U); writel(32U, (void volatile *)regs + 16U); writel(32U, (void volatile *)regs + 20U); writel(32U, (void volatile *)regs + 24U); writel(32U, (void volatile *)regs + 28U); } } else { } i = 0; goto ldv_46207; ldv_46206: { tmp = mvs_read_port_irq_stat(mvi, (u32 )i); tmp = tmp & 4294901759U; mvs_write_port_irq_stat(mvi, (u32 )i, tmp); tmp = 29884677U; mvs_write_port_irq_mask(mvi, (u32 )i, tmp); msleep(100U); mvs_update_phyinfo(mvi, i, 1); i = i + 1; } ldv_46207: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46206; } else { } { cctl = readl((void const volatile *)regs + 256U); cctl = cctl | 1U; cctl = cctl | 8U; cctl = cctl & 4294967293U; cctl = cctl | 4U; writel(cctl, (void volatile *)regs + 256U); readl((void const volatile *)regs + 256U); tmp = readl((void const volatile *)regs + 260U); tmp = tmp | 2U; tmp = tmp & 4294967263U; writel(tmp, (void volatile *)regs + 260U); tmp = 0U; } if (1U << (int )(mvi->chip)->slot_width > 511U) { { writel(66047U, (void volatile *)regs + 328U); } } else { { writel((1U << (int )(mvi->chip)->slot_width) | 65536U, (void volatile *)regs + 328U); } } { tmp = (u32 )(interrupt_coalescing | 65536); writel(tmp, (void volatile *)regs + 332U); writel(0U, (void volatile *)regs + 288U); writel((1U << (int )(mvi->chip)->slot_width) | 65536U, (void volatile *)regs + 288U); writel(66560U, (void volatile *)regs + 308U); writel(281U, (void volatile *)regs + 260U); tmp = 201391883U; writel(tmp, (void volatile *)regs + 340U); writel(65535U, (void volatile *)regs + 348U); } return (0); } } static int mvs_64xx_ioremap(struct mvs_info *mvi ) { int tmp ; { { tmp = mvs_ioremap(mvi, 4, 2); } if (tmp == 0) { return (0); } else { } return (-1); } } static void mvs_64xx_iounmap(struct mvs_info *mvi ) { { { mvs_iounmap(mvi->regs); mvs_iounmap(mvi->regs_ex); } return; } } static void mvs_64xx_interrupt_enable(struct mvs_info *mvi ) { void *regs ; u32 tmp ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 4U); writel(tmp | 2U, (void volatile *)regs + 4U); } return; } } static void mvs_64xx_interrupt_disable(struct mvs_info *mvi ) { void *regs ; u32 tmp ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 4U); writel(tmp & 4294967293U, (void volatile *)regs + 4U); } return; } } static u32 mvs_64xx_isr_status(struct mvs_info *mvi , int irq ) { void *regs ; u32 stat ; { regs = mvi->regs; if ((mvi->flags & 4UL) == 0UL) { { stat = readl((void const volatile *)regs + 8U); } if (stat - 1U > 4294967293U) { return (0U); } else { } } else { stat = 1U; } return (stat); } } static irqreturn_t mvs_64xx_isr(struct mvs_info *mvi , int irq , u32 stat ) { void *regs ; { { regs = mvi->regs; writel(1U, (void volatile *)regs + 336U); readl((void const volatile *)regs + 336U); ldv_spin_lock_126(& mvi->lock); mvs_int_full(mvi); ldv_spin_unlock_125(& mvi->lock); } return (1); } } static void mvs_64xx_command_active(struct mvs_info *mvi , u32 slot_idx ) { u32 tmp ; { { mvs_cw32(mvi, (slot_idx >> 3) + 64U, (u32 )(1 << ((int )slot_idx & 31))); mvs_cw32(mvi, slot_idx >> 3, (u32 )(1 << ((int )slot_idx & 31))); } ldv_46242: { tmp = mvs_cr32(mvi, slot_idx >> 3); } if ((tmp & (u32 )(1 << ((int )slot_idx & 31))) != 0U) { goto ldv_46242; } else { } ldv_46244: { tmp = mvs_cr32(mvi, (slot_idx >> 3) + 64U); } if ((tmp & (u32 )(1 << ((int )slot_idx & 31))) != 0U) { goto ldv_46244; } else { } return; } } static void mvs_64xx_issue_stop(struct mvs_info *mvi , enum mvs_port_type type , u32 tfs ) { void *regs ; u32 tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { regs = mvi->regs; if ((unsigned int )type == 1U) { { tmp___0 = readl((void const volatile *)regs + 344U); tmp = tmp___0 | (1U << (int )tfs); writel(tmp, (void volatile *)regs + 344U); } } else { } { writel(2U, (void volatile *)regs + 336U); tmp___1 = readl((void const volatile *)regs + 260U); tmp = tmp___1 | 65280U; writel(tmp, (void volatile *)regs + 260U); } return; } } static void mvs_64xx_free_reg_set(struct mvs_info *mvi , u8 *tfs ) { void *regs ; u32 tmp ; u32 offs ; unsigned int tmp___0 ; { regs = mvi->regs; if ((unsigned int )*tfs == 127U) { return; } else { } offs = 1U << (((int )*tfs & 15) + 16); if ((unsigned int )*tfs <= 15U) { { tmp = readl((void const volatile *)regs + 260U); writel(tmp & ~ offs, (void volatile *)regs + 260U); } } else { { tmp = readl((void const volatile *)regs + 256U); writel(tmp & ~ offs, (void volatile *)regs + 256U); } } { tmp___0 = readl((void const volatile *)regs + 344U); tmp = tmp___0 & (1U << (int )*tfs); } if (tmp != 0U) { { writel(tmp, (void volatile *)regs + 344U); } } else { } *tfs = 127U; return; } } static u8 mvs_64xx_assign_reg_set(struct mvs_info *mvi , u8 *tfs ) { int i ; u32 tmp ; u32 offs ; void *regs ; unsigned int tmp___0 ; { regs = mvi->regs; if ((unsigned int )*tfs != 127U) { return (0U); } else { } { tmp = readl((void const volatile *)regs + 260U); i = 0; } goto ldv_46269; ldv_46268: ; if (i == 16) { { tmp = readl((void const volatile *)regs + 256U); } } else { } offs = 1U << ((i & 15) + 16); if ((tmp & offs) == 0U) { *tfs = (u8 )i; if (i <= 15) { { writel(tmp | offs, (void volatile *)regs + 260U); } } else { { writel(tmp | offs, (void volatile *)regs + 256U); } } { tmp___0 = readl((void const volatile *)regs + 344U); tmp = tmp___0 & (1U << i); } if (tmp != 0U) { { writel(tmp, (void volatile *)regs + 344U); } } else { } return (0U); } else { } i = i + 1; ldv_46269: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->srs_sz) { goto ldv_46268; } else { } return (127U); } } void mvs_64xx_make_prd(struct scatterlist *scatter , int nr , void *prd ) { int i ; struct scatterlist *sg ; struct mvs_prd *buf_prd ; { buf_prd = (struct mvs_prd *)prd; i = 0; sg = scatter; goto ldv_46280; ldv_46279: { buf_prd->addr = sg->dma_address; buf_prd->len = sg->dma_length; buf_prd = buf_prd + 1; i = i + 1; sg = sg_next(sg); } ldv_46280: ; if (i < nr) { goto ldv_46279; } else { } return; } } static int mvs_64xx_oob_done(struct mvs_info *mvi , int i ) { u32 phy_st ; { { mvs_write_port_cfg_addr(mvi, (u32 )i, 28U); phy_st = mvs_read_port_cfg_data(mvi, (u32 )i); } if ((int )phy_st & 1) { return (1); } else { } return (0); } } static void mvs_64xx_fix_phy_info(struct mvs_info *mvi , int i , struct sas_identify_frame *id ) { struct mvs_phy *phy ; struct asd_sas_phy *sas_phy ; u32 tmp ; u32 tmp___0 ; __u64 tmp___1 ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; sas_phy = & phy->sas_phy; sas_phy->linkrate = (enum sas_linkrate )((phy->phy_status & 983040U) >> 16); phy->minimum_linkrate = (enum sas_linkrate )((phy->phy_status & 3840U) >> 8); phy->maximum_linkrate = (enum sas_linkrate )((phy->phy_status & 61440U) >> 12); mvs_write_port_cfg_addr(mvi, (u32 )i, 0U); phy->dev_info = mvs_read_port_cfg_data(mvi, (u32 )i); mvs_write_port_cfg_addr(mvi, (u32 )i, 12U); phy->att_dev_info = mvs_read_port_cfg_data(mvi, (u32 )i); mvs_write_port_cfg_addr(mvi, (u32 )i, 20U); tmp = mvs_read_port_cfg_data(mvi, (u32 )i); phy->att_dev_sas_addr = (unsigned long long )tmp << 32; mvs_write_port_cfg_addr(mvi, (u32 )i, 16U); tmp___0 = mvs_read_port_cfg_data(mvi, (u32 )i); phy->att_dev_sas_addr = phy->att_dev_sas_addr | (u64 )tmp___0; tmp___1 = __fswab64(phy->att_dev_sas_addr); phy->att_dev_sas_addr = tmp___1; } return; } } static void mvs_64xx_phy_work_around(struct mvs_info *mvi , int i ) { u32 tmp ; struct mvs_phy *phy ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; mvs_write_port_vsr_addr(mvi, (u32 )i, 6U); tmp = mvs_read_port_vsr_data(mvi, (u32 )i); } if ((phy->phy_status & 983040U) >> 16 == 8U) { tmp = tmp & 3758096383U; } else { tmp = tmp | 536870912U; } { mvs_write_port_vsr_data(mvi, (u32 )i, tmp); } return; } } void mvs_64xx_phy_set_link_rate(struct mvs_info *mvi , u32 phy_id , struct sas_phy_linkrates *rates ) { u32 lrmin ; u32 lrmax ; u32 tmp ; { { lrmin = 0U; lrmax = 0U; tmp = mvs_read_phy_ctl(mvi, phy_id); lrmin = (unsigned int )rates->minimum_linkrate << 8; lrmax = (unsigned int )rates->maximum_linkrate << 12; } if (lrmin != 0U) { tmp = tmp & 4294963455U; tmp = tmp | lrmin; } else { } if (lrmax != 0U) { tmp = tmp & 4294905855U; tmp = tmp | lrmax; } else { } { mvs_write_phy_ctl(mvi, phy_id, tmp); mvs_64xx_phy_reset(mvi, phy_id, 1); } return; } } static void mvs_64xx_clear_active_cmds(struct mvs_info *mvi ) { u32 tmp ; void *regs ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 260U); writel(tmp & 65535U, (void volatile *)regs + 260U); writel(tmp, (void volatile *)regs + 260U); tmp = readl((void const volatile *)regs + 256U); writel(tmp & 65535U, (void volatile *)regs + 256U); writel(tmp, (void volatile *)regs + 256U); } return; } } u32 mvs_64xx_spi_read_data(struct mvs_info *mvi ) { void *regs ; unsigned int tmp ; { { regs = mvi->regs_ex; tmp = inl((int )((long )(regs + 24UL))); } return (tmp); } } void mvs_64xx_spi_write_data(struct mvs_info *mvi , u32 data ) { void *regs ; { { regs = mvi->regs_ex; outl(data, (int )((long )(regs + 24UL))); } return; } } int mvs_64xx_spi_buildcmd(struct mvs_info *mvi , u32 *dwCmd , u8 cmd , u8 read , u8 length , u32 addr ) { u32 dwTmp ; { dwTmp = ((unsigned int )cmd << 24) | ((unsigned int )length << 19); if ((unsigned int )read != 0U) { dwTmp = dwTmp | 8388608U; } else { } if (addr != 4294967295U) { dwTmp = dwTmp | 4194304U; dwTmp = dwTmp | (addr & 262143U); } else { } *dwCmd = dwTmp; return (0); } } int mvs_64xx_spi_issuecmd(struct mvs_info *mvi , u32 cmd ) { void *regs ; int retry ; { regs = mvi->regs_ex; retry = 0; goto ldv_46338; ldv_46337: { outl(536870912U, (int )((long )(regs + 16UL))); outl(cmd, (int )((long )(regs + 20UL))); outl(537919488U, (int )((long )(regs + 16UL))); retry = retry + 1; } ldv_46338: ; if (retry <= 0) { goto ldv_46337; } else { } return (0); } } int mvs_64xx_spi_waitdataready(struct mvs_info *mvi , u32 timeout ) { void *regs ; u32 i ; u32 dwTmp ; { regs = mvi->regs_ex; i = 0U; goto ldv_46348; ldv_46347: { dwTmp = inl((int )((long )(regs + 16UL))); } if ((dwTmp & 1048576U) == 0U) { return (0); } else { } { msleep(10U); i = i + 1U; } ldv_46348: ; if (i < timeout) { goto ldv_46347; } else { } return (-1); } } void mvs_64xx_fix_dma(struct mvs_info *mvi , u32 phy_mask , int buf_len , int from , void *prd ) { int i ; struct mvs_prd *buf_prd ; dma_addr_t buf_dma ; { buf_prd = (struct mvs_prd *)prd; buf_dma = mvi->bulk_buffer_dma; buf_prd = buf_prd + (unsigned long )from; i = 0; goto ldv_46361; ldv_46360: buf_prd->addr = buf_dma; buf_prd->len = (unsigned int )buf_len; buf_prd = buf_prd + 1; i = i + 1; ldv_46361: ; if (i < 64 - from) { goto ldv_46360; } else { } return; } } static void mvs_64xx_tune_interrupt(struct mvs_info *mvi , u32 time ) { void *regs ; u32 tmp ; { regs = mvi->regs; tmp = 0U; if (time == 0U) { { writel(0U, (void volatile *)regs + 328U); writel(65536U, (void volatile *)regs + 332U); } } else { if (1U << (int )(mvi->chip)->slot_width > 511U) { { writel(66047U, (void volatile *)regs + 328U); } } else { { writel((1U << (int )(mvi->chip)->slot_width) | 65536U, (void volatile *)regs + 328U); } } { tmp = time | 65536U; writel(tmp, (void volatile *)regs + 332U); } } return; } } struct mvs_dispatch const mvs_64xx_dispatch = {(char *)"mv64xx", & mvs_64xx_init, (int (*)(struct mvs_info * ))0, & mvs_64xx_ioremap, & mvs_64xx_iounmap, & mvs_64xx_isr, & mvs_64xx_isr_status, & mvs_64xx_interrupt_enable, & mvs_64xx_interrupt_disable, & mvs_read_phy_ctl, & mvs_write_phy_ctl, & mvs_read_port_cfg_data, & mvs_write_port_cfg_data, & mvs_write_port_cfg_addr, & mvs_read_port_vsr_data, & mvs_write_port_vsr_data, & mvs_write_port_vsr_addr, & mvs_read_port_irq_stat, & mvs_write_port_irq_stat, & mvs_read_port_irq_mask, & mvs_write_port_irq_mask, & mvs_64xx_command_active, & mvs_64xx_clear_srs_irq, & mvs_64xx_issue_stop, & mvs_start_delivery, & mvs_rx_update, & mvs_int_full, & mvs_64xx_assign_reg_set, & mvs_64xx_free_reg_set, & mvs_get_prd_size, & mvs_get_prd_count, & mvs_64xx_make_prd, & mvs_64xx_detect_porttype, & mvs_64xx_oob_done, & mvs_64xx_fix_phy_info, & mvs_64xx_phy_work_around, & mvs_64xx_phy_set_link_rate, & mvs_hw_max_link_rate, & mvs_64xx_phy_disable, & mvs_64xx_phy_enable, & mvs_64xx_phy_reset, & mvs_64xx_stp_reset, & mvs_64xx_clear_active_cmds, & mvs_64xx_spi_read_data, & mvs_64xx_spi_write_data, & mvs_64xx_spi_buildcmd, & mvs_64xx_spi_issuecmd, & mvs_64xx_spi_waitdataready, & mvs_64xx_fix_dma, & mvs_64xx_tune_interrupt, (void (*)(struct mvs_info * ))0}; void ldv_dummy_resourceless_instance_callback_5_10(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_ioremap(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_100(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_stp_reset(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_103(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_tune_interrupt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_11(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_iounmap(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_12(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_clear_active_cmds(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_13(void (*arg0)(struct mvs_info * , unsigned char , unsigned char ) , struct mvs_info *arg1 , unsigned char arg2 , unsigned char arg3 ) { { { mvs_64xx_clear_srs_irq(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_16(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_command_active(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_19(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_64xx_detect_porttype(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_22(void (*arg0)(struct mvs_info * , unsigned int , int , int , void * ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 , int arg4 , void *arg5 ) { { { mvs_64xx_fix_dma(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_dummy_resourceless_instance_callback_5_25(void (*arg0)(struct mvs_info * , int , struct sas_identify_frame * ) , struct mvs_info *arg1 , int arg2 , struct sas_identify_frame *arg3 ) { { { mvs_64xx_fix_phy_info(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_28(void (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) { { { mvs_64xx_free_reg_set(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(unsigned char (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) { { { mvs_64xx_assign_reg_set(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_32(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_interrupt_disable(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_33(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_interrupt_enable(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_34(enum irqreturn (*arg0)(struct mvs_info * , int , unsigned int ) , struct mvs_info *arg1 , int arg2 , unsigned int arg3 ) { { { mvs_64xx_isr(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_37(unsigned int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_64xx_isr_status(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_40(void (*arg0)(struct mvs_info * , enum mvs_port_type , unsigned int ) , struct mvs_info *arg1 , enum mvs_port_type arg2 , unsigned int arg3 ) { { { mvs_64xx_issue_stop(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_43(void (*arg0)(struct scatterlist * , int , void * ) , struct scatterlist *arg1 , int arg2 , void *arg3 ) { { { mvs_64xx_make_prd(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_47(int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_64xx_oob_done(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_50(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_phy_disable(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_53(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_phy_enable(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_57(void (*arg0)(struct mvs_info * , unsigned int , int ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 ) { { { mvs_64xx_phy_reset(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_60(void (*arg0)(struct mvs_info * , unsigned int , struct sas_phy_linkrates * ) , struct mvs_info *arg1 , unsigned int arg2 , struct sas_phy_linkrates *arg3 ) { { { mvs_64xx_phy_set_link_rate(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_63(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_64xx_phy_work_around(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_84(int (*arg0)(struct mvs_info * , unsigned int * , unsigned char , unsigned char , unsigned char , unsigned int ) , struct mvs_info *arg1 , unsigned int *arg2 , unsigned char arg3 , unsigned char arg4 , unsigned char arg5 , unsigned int arg6 ) { { { mvs_64xx_spi_buildcmd(arg1, arg2, (int )arg3, (int )arg4, (int )arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_5_87(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_spi_issuecmd(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_90(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_64xx_spi_read_data(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_91(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_spi_waitdataready(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_94(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_spi_write_data(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_100(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_64xx_stp_reset(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_63(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_64xx_phy_work_around(arg1, arg2); } return; } } __inline static unsigned long __ffs(unsigned long word ) { { __asm__ ("rep; bsf %1,%0": "=r" (word): "rm" (word)); return (word); } } __inline static unsigned long __ffs64(u64 word ) { unsigned long tmp ; { { tmp = __ffs((unsigned long )word); } return (tmp); } } extern unsigned long __phys_addr(unsigned long ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_125(spinlock_t *lock ) ; __inline static phys_addr_t virt_to_phys(void volatile *address ) { unsigned long tmp ; { { tmp = __phys_addr((unsigned long )address); } return ((phys_addr_t )tmp); } } __inline static int mv_ffc64(u64 v ) { u64 x ; unsigned long tmp ; int tmp___0 ; { x = ~ v; if (x != 0ULL) { { tmp = __ffs64(x); tmp___0 = (int )tmp; } } else { tmp___0 = -1; } return (tmp___0); } } __inline static u32 mvs_cr32___0(struct mvs_info *mvi , u32 addr ) { void *regs ; unsigned int tmp ; { { regs = mvi->regs; writel(addr, (void volatile *)regs + 368U); tmp = readl((void const volatile *)regs + 372U); } return (tmp); } } __inline static void mvs_cw32___0(struct mvs_info *mvi , u32 addr , u32 val ) { void *regs ; { { regs = mvi->regs; writel(addr, (void volatile *)regs + 368U); writel(val, (void volatile *)regs + 372U); } return; } } __inline static u32 mvs_read_phy_ctl___0(struct mvs_info *mvi , u32 port ) { void *regs ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { regs = mvi->regs; if (port <= 3U) { { tmp = readl((void const volatile *)(regs + ((unsigned long )(port * 4U) + 464UL))); tmp___1 = tmp; } } else { { tmp___0 = readl((void const volatile *)(regs + ((unsigned long )((port + 1073741820U) * 4U) + 480UL))); tmp___1 = tmp___0; } } return (tmp___1); } } __inline static void mvs_write_phy_ctl___0(struct mvs_info *mvi , u32 port , u32 val ) { void *regs ; { regs = mvi->regs; if (port <= 3U) { { writel(val, (void volatile *)(regs + ((unsigned long )(port * 4U) + 464UL))); } } else { { writel(val, (void volatile *)(regs + ((unsigned long )((port + 1073741820U) * 4U) + 480UL))); } } return; } } __inline static u32 mvs_read_port_cfg_data___0(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 516U, 548U, port); } return (tmp); } } __inline static void mvs_write_port_cfg_data___0(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 516U, 548U, port, val); } return; } } __inline static void mvs_write_port_cfg_addr___0(struct mvs_info *mvi , u32 port , u32 addr ) { unsigned long __ms ; unsigned long tmp ; { { mvs_write_port(mvi, 512U, 544U, port, addr); __ms = 10UL; } goto ldv_46115; ldv_46114: { __const_udelay(4295000UL); } ldv_46115: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_46114; } else { } return; } } __inline static u32 mvs_read_port_vsr_data___0(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 596U, 596U, port); } return (tmp); } } __inline static void mvs_write_port_vsr_data___0(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 596U, 596U, port, val); } return; } } __inline static void mvs_write_port_vsr_addr___0(struct mvs_info *mvi , u32 port , u32 addr ) { unsigned long __ms ; unsigned long tmp ; { { mvs_write_port(mvi, 592U, 592U, port, addr); __ms = 10UL; } goto ldv_46133; ldv_46132: { __const_udelay(4295000UL); } ldv_46133: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_46132; } else { } return; } } __inline static u32 mvs_read_port_irq_stat___0(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 384U, 416U, port); } return (tmp); } } __inline static void mvs_write_port_irq_stat___0(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 384U, 416U, port, val); } return; } } __inline static u32 mvs_read_port_irq_mask___0(struct mvs_info *mvi , u32 port ) { u32 tmp ; { { tmp = mvs_read_port(mvi, 388U, 420U, port); } return (tmp); } } __inline static void mvs_write_port_irq_mask___0(struct mvs_info *mvi , u32 port , u32 val ) { { { mvs_write_port(mvi, 388U, 420U, port, val); } return; } } __inline static void mvs_phy_hacks___0(struct mvs_info *mvi ) { u32 tmp ; { { tmp = mvs_cr32___0(mvi, 280U); tmp = tmp & 4294966783U; tmp = tmp | 1024U; mvs_cw32___0(mvi, 280U, tmp); mvs_cw32___0(mvi, 296U, 32639U); tmp = mvs_cr32___0(mvi, 292U); tmp = tmp & 4294901760U; tmp = tmp | 16383U; mvs_cw32___0(mvi, 292U, tmp); mvs_cw32___0(mvi, 316U, 7995392U); mvs_cw32___0(mvi, 420U, 4293902205U); } return; } } __inline static void mvs_int_full___0(struct mvs_info *mvi ) { void *regs ; u32 tmp ; u32 stat ; int i ; { { regs = mvi->regs; stat = readl((void const volatile *)regs + 336U); mvs_int_rx(mvi, 0); i = 0; } goto ldv_46170; ldv_46169: tmp = (stat >> i) & 65792U; if (tmp != 0U) { { mvs_int_port(mvi, i, tmp); } } else { } i = i + 1; ldv_46170: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46169; } else { } if ((stat & 33554432U) != 0U) { { (*(((mvi->chip)->dispatch)->non_spec_ncq_error))(mvi); } } else { } if ((stat & 8U) != 0U) { { mvs_int_sata(mvi); } } else { } { writel(stat, (void volatile *)regs + 336U); } return; } } __inline static u32 mvs_get_prd_size___0(void) { { return (12U); } } __inline static u32 mvs_get_prd_count___0(void) { { return (255U); } } __inline static void mvs_show_pcie_usage___0(struct mvs_info *mvi ) { u16 link_stat ; u16 link_spd ; char const *spd[3U] ; { spd[0] = "UnKnown"; spd[1] = "2.5"; spd[2] = "5.0"; if ((mvi->flags & 4UL) != 0UL || mvi->id != 0U) { return; } else { } { pci_read_config_word((struct pci_dev const *)mvi->pdev, 130, & link_stat); link_spd = (unsigned int )link_stat & 15U; } if ((unsigned int )link_spd > 2U) { link_spd = 0U; } else { } { dev_printk("\016", (struct device const *)mvi->dev, "mvsas: PCI-E x%u, Bandwidth Usage: %s Gbps\n", ((int )link_stat & 1008) >> 4, spd[(int )link_spd]); } return; } } __inline static u32 mvs_hw_max_link_rate___0(void) { { return (10U); } } static void mvs_94xx_detect_porttype(struct mvs_info *mvi , int i ) { u32 reg ; struct mvs_phy *phy ; u32 phy_status ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; mvs_write_port_vsr_addr___0(mvi, (u32 )i, 12U); reg = mvs_read_port_vsr_data___0(mvi, (u32 )i); phy_status = ((reg & 4128768U) >> 16) & 255U; phy->phy_type = phy->phy_type & 4294967292U; } { if (phy_status == 16U) { goto case_16; } else { } if (phy_status == 29U) { goto case_29; } else { } goto switch_default; case_16: /* CIL Label */ phy->phy_type = phy->phy_type | 2U; goto ldv_46204; case_29: /* CIL Label */ ; switch_default: /* CIL Label */ phy->phy_type = phy->phy_type | 1U; goto ldv_46204; switch_break: /* CIL Label */ ; } ldv_46204: ; return; } } void set_phy_tuning(struct mvs_info *mvi , int phy_id , struct phy_tuning phy_tuning ) { u32 tmp ; u32 setting_0 ; u32 setting_1 ; u8 i ; { setting_0 = 0U; setting_1 = 0U; if ((unsigned int )(mvi->pdev)->revision == 160U) { return; } else { } i = 0U; goto ldv_46221; ldv_46220: ; { if ((int )i == 0) { goto case_0; } else { } if ((int )i == 1) { goto case_1; } else { } if ((int )i == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ setting_0 = 280U; setting_1 = 284U; goto ldv_46217; case_1: /* CIL Label */ setting_0 = 284U; setting_1 = 288U; goto ldv_46217; case_2: /* CIL Label */ setting_0 = 288U; setting_1 = 292U; goto ldv_46217; switch_break: /* CIL Label */ ; } ldv_46217: { mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, setting_0); tmp = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); tmp = tmp & 4030857215U; tmp = tmp | (u32 )(((((int )phy_tuning.trans_emp_en << 11) | ((int )phy_tuning.trans_emp_amp << 7)) | ((int )phy_tuning.trans_amp << 1)) << 16); mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, tmp); mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, setting_1); tmp = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); tmp = tmp & 4294918143U; tmp = tmp | (u32 )((int )phy_tuning.trans_amp_adj << 14); mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, tmp); i = (u8 )((int )i + 1); } ldv_46221: ; if ((unsigned int )i <= 2U) { goto ldv_46220; } else { } return; } } void set_phy_ffe_tuning(struct mvs_info *mvi , int phy_id , struct ffe_control ffe ) { u32 tmp ; { if ((unsigned int )(mvi->pdev)->revision == 160U || (unsigned int )(mvi->pdev)->revision == 1U) { return; } else { } { mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, 268U); tmp = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); tmp = tmp & 4294967040U; tmp = tmp | (u32 )((((int )ffe.ffe_rss_sel << 4) | 128) | (int )ffe.ffe_cap_sel); mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, tmp); mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, 416U); tmp = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); tmp = tmp & 4294705150U; tmp = tmp; mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, tmp); mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, 272U); tmp = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); tmp = tmp & 4294963200U; tmp = tmp | 4032U; mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, tmp); mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, 416U); tmp = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); tmp = tmp & 4294967287U; tmp = tmp; mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, tmp); } return; } } void set_phy_rate(struct mvs_info *mvi , int phy_id , u8 rate ) { union reg_phy_cfg phy_cfg ; union reg_phy_cfg phy_cfg_tmp ; { { mvs_write_port_vsr_addr___0(mvi, (u32 )phy_id, 8U); phy_cfg_tmp.v = mvs_read_port_vsr_data___0(mvi, (u32 )phy_id); phy_cfg.v = 0U; phy_cfg.u.disable_phy = phy_cfg_tmp.u.disable_phy; phy_cfg.u.sas_support = 1U; phy_cfg.u.sata_support = 1U; phy_cfg.u.sata_host_mode = 1U; } { if ((int )rate == 0) { goto case_0; } else { } if ((int )rate == 1) { goto case_1; } else { } if ((int )rate == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ phy_cfg.u.speed_support = 1U; phy_cfg.u.snw_3_support = 0U; phy_cfg.u.tx_lnk_parity = 1U; phy_cfg.u.tx_spt_phs_lnk_rate = 48U; goto ldv_46237; case_1: /* CIL Label */ phy_cfg.u.speed_support = 3U; phy_cfg.u.tx_spt_phs_lnk_rate = 60U; phy_cfg.u.tx_lgcl_lnk_rate = 8U; goto ldv_46237; case_2: /* CIL Label */ ; switch_default: /* CIL Label */ phy_cfg.u.speed_support = 7U; phy_cfg.u.snw_3_support = 1U; phy_cfg.u.tx_lnk_parity = 1U; phy_cfg.u.tx_spt_phs_lnk_rate = 63U; phy_cfg.u.tx_lgcl_lnk_rate = 9U; goto ldv_46237; switch_break: /* CIL Label */ ; } ldv_46237: { mvs_write_port_vsr_data___0(mvi, (u32 )phy_id, phy_cfg.v); } return; } } static void mvs_94xx_config_reg_from_hba(struct mvs_info *mvi , int phy_id ) { u32 temp ; { temp = *((u32 *)(& mvi->hba_info_param.phy_tuning) + (unsigned long )phy_id); if (temp == 4294967295U) { mvi->hba_info_param.phy_tuning[phy_id].trans_emp_amp = 6U; mvi->hba_info_param.phy_tuning[phy_id].trans_amp = 26U; mvi->hba_info_param.phy_tuning[phy_id].trans_amp_adj = 3U; } else { } temp = (u32 )*((u8 *)(& mvi->hba_info_param.ffe_ctl) + (unsigned long )phy_id); if (temp == 255U) { { if ((int )(mvi->pdev)->revision == 160) { goto case_160; } else { } if ((int )(mvi->pdev)->revision == 1) { goto case_1; } else { } if ((int )(mvi->pdev)->revision == 2) { goto case_2; } else { } if ((int )(mvi->pdev)->revision == 3) { goto case_3; } else { } if ((int )(mvi->pdev)->revision == 194) { goto case_194; } else { } goto switch_default; case_160: /* CIL Label */ ; case_1: /* CIL Label */ mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 7U; mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 7U; goto ldv_46248; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_194: /* CIL Label */ ; switch_default: /* CIL Label */ mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 7U; mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 12U; goto ldv_46248; switch_break: /* CIL Label */ ; } ldv_46248: ; } else { } temp = (u32 )*((u8 *)(& mvi->hba_info_param.phy_rate) + (unsigned long )phy_id); if (temp == 255U) { mvi->hba_info_param.phy_rate[phy_id] = 2U; } else { } { set_phy_tuning(mvi, phy_id, mvi->hba_info_param.phy_tuning[phy_id]); set_phy_ffe_tuning(mvi, phy_id, mvi->hba_info_param.ffe_ctl[phy_id]); set_phy_rate(mvi, phy_id, (int )mvi->hba_info_param.phy_rate[phy_id]); } return; } } static void mvs_94xx_enable_xmt(struct mvs_info *mvi , int phy_id ) { void *regs ; u32 tmp ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 260U); tmp = tmp | (u32 )(1 << (phy_id + 8)); writel(tmp, (void volatile *)regs + 260U); } return; } } static void mvs_94xx_phy_reset(struct mvs_info *mvi , u32 phy_id , int hard ) { u32 tmp ; u32 delay ; { delay = 5000U; if (hard == 2) { { mvs_write_port_cfg_addr___0(mvi, phy_id, 24U); tmp = mvs_read_port_cfg_data___0(mvi, phy_id); mvs_write_port_cfg_data___0(mvi, phy_id, tmp | 536870912U); mvs_write_port_cfg_data___0(mvi, phy_id, tmp | 1048576U); } return; } else { } { tmp = mvs_read_port_irq_stat___0(mvi, phy_id); tmp = tmp & 4294967294U; mvs_write_port_irq_stat___0(mvi, phy_id, tmp); } if (hard != 0) { { tmp = mvs_read_phy_ctl___0(mvi, phy_id); tmp = tmp | 2U; mvs_write_phy_ctl___0(mvi, phy_id, tmp); } ldv_46266: { tmp = mvs_read_phy_ctl___0(mvi, phy_id); __const_udelay(42950UL); delay = delay - 1U; } if ((tmp & 2U) != 0U && delay != 0U) { goto ldv_46266; } else { } if (delay == 0U) { { printk("\017%s %d:phy hard reset failed.\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 294); } } else { } } else { { tmp = mvs_read_phy_ctl___0(mvi, phy_id); tmp = tmp | 1U; mvs_write_phy_ctl___0(mvi, phy_id, tmp); } } return; } } static void mvs_94xx_phy_disable(struct mvs_info *mvi , u32 phy_id ) { u32 tmp ; { { mvs_write_port_vsr_addr___0(mvi, phy_id, 8U); tmp = mvs_read_port_vsr_data___0(mvi, phy_id); mvs_write_port_vsr_data___0(mvi, phy_id, tmp | 8388608U); } return; } } static void mvs_94xx_phy_enable(struct mvs_info *mvi , u32 phy_id ) { u32 tmp ; u8 revision ; { revision = 0U; revision = (mvi->pdev)->revision; if ((unsigned int )revision == 160U) { { mvs_write_port_vsr_addr___0(mvi, phy_id, 436U); mvs_write_port_vsr_data___0(mvi, phy_id, 2197880769U); } } else { } if ((unsigned int )revision == 1U) { { mvs_write_port_vsr_addr___0(mvi, phy_id, 324U); mvs_write_port_vsr_data___0(mvi, phy_id, 134221830U); mvs_write_port_vsr_addr___0(mvi, phy_id, 436U); mvs_write_port_vsr_data___0(mvi, phy_id, 28767U); } } else { } { mvs_write_port_vsr_addr___0(mvi, phy_id, 8U); tmp = mvs_read_port_vsr_data___0(mvi, phy_id); tmp = tmp | 1U; mvs_write_port_vsr_data___0(mvi, phy_id, tmp & 4253024255U); } return; } } static int mvs_94xx_init(struct mvs_info *mvi ) { void *regs ; int i ; u32 tmp ; u32 cctl ; u8 revision ; unsigned int tmp___0 ; { { regs = mvi->regs; revision = (mvi->pdev)->revision; mvs_show_pcie_usage___0(mvi); } if ((mvi->flags & 4UL) != 0UL) { { tmp = readl((void const volatile *)regs + 64U); tmp = tmp & 4043309055U; tmp = tmp | 61440U; writel(tmp, (void volatile *)regs + 64U); } } else { } { tmp___0 = readl((void const volatile *)regs + 256U); cctl = tmp___0 & 65535U; } if ((cctl & 32U) != 0U) { cctl = cctl & 4294967263U; } else { { writel(cctl | 32U, (void volatile *)regs + 256U); readl((void const volatile *)regs + 256U); } } if ((mvi->flags & 4UL) != 0UL) { { tmp = readl((void const volatile *)regs + 64U); tmp = tmp & 4043309055U; tmp = tmp | 15728640U; tmp = tmp & 4294905855U; tmp = tmp | 983040U; writel(tmp, (void volatile *)regs + 64U); msleep(100U); tmp = tmp & 4293984255U; writel(tmp, (void volatile *)regs + 64U); msleep(100U); } } else { } { writel(255U, (void volatile *)regs + 156U); } if ((unsigned int )revision == 160U) { { writel(260U, (void volatile *)regs + 656U); writel(98432U, (void volatile *)regs + 660U); } } else { } { writel(8U, (void volatile *)regs + 656U); } if ((unsigned int )revision == 160U || (unsigned int )revision == 1U) { { writel(8705278U, (void volatile *)regs + 660U); } } else { { writel(8716286U, (void volatile *)regs + 660U); } } if ((unsigned int )revision == 1U) { { writel(324U, (void volatile *)regs + 656U); writel(134221830U, (void volatile *)regs + 660U); writel(436U, (void volatile *)regs + 656U); writel(28767U, (void volatile *)regs + 660U); } } else { } { writel(0U, (void volatile *)regs + 260U); writel(0U, (void volatile *)regs + 280U); writel(0U, (void volatile *)regs + 284U); mvs_phy_hacks___0(mvi); tmp = mvs_cr32___0(mvi, 296U); } if (((unsigned int )revision == 160U || (unsigned int )revision == 1U) || (unsigned int )revision == 2U) { { tmp = tmp & 4294901760U; tmp = tmp | 127U; mvs_cw32___0(mvi, 296U, tmp); } } else { } { writel(48U, (void volatile *)regs + 656U); tmp = readl((void const volatile *)regs + 660U); tmp = tmp & 4294902015U; tmp = tmp | 13056U; writel(tmp, (void volatile *)regs + 660U); writel((unsigned int )mvi->slot_dma, (void volatile *)regs + 264U); writel((unsigned int )(mvi->slot_dma >> 32ULL), (void volatile *)regs + 268U); writel((unsigned int )mvi->rx_fis_dma, (void volatile *)regs + 272U); writel((unsigned int )(mvi->rx_fis_dma >> 32ULL), (void volatile *)regs + 276U); writel(1U << (int )(mvi->chip)->slot_width, (void volatile *)regs + 288U); writel((unsigned int )mvi->tx_dma, (void volatile *)regs + 292U); writel((unsigned int )(mvi->tx_dma >> 32ULL), (void volatile *)regs + 296U); writel(1024U, (void volatile *)regs + 308U); writel((unsigned int )mvi->rx_dma, (void volatile *)regs + 312U); writel((unsigned int )(mvi->rx_dma >> 32ULL), (void volatile *)regs + 316U); i = 0; } goto ldv_46288; ldv_46287: { mvs_94xx_phy_disable(mvi, (u32 )i); mvs_set_sas_addr(mvi, i, 268U, 272U, mvi->phy[i].dev_sas_addr); mvs_94xx_enable_xmt(mvi, i); mvs_94xx_config_reg_from_hba(mvi, i); mvs_94xx_phy_enable(mvi, (u32 )i); mvs_94xx_phy_reset(mvi, (u32 )i, 2); msleep(500U); mvs_94xx_detect_porttype(mvi, i); i = i + 1; } ldv_46288: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46287; } else { } if ((mvi->flags & 4UL) != 0UL) { { writel(234913792U, (void volatile *)regs); writel(1493172232U, (void volatile *)regs + 4U); writel(32U, (void volatile *)regs + 8U); writel(32U, (void volatile *)regs + 12U); writel(32U, (void volatile *)regs + 16U); writel(32U, (void volatile *)regs + 20U); writel(32U, (void volatile *)regs + 24U); writel(32U, (void volatile *)regs + 28U); } } else { } i = 0; goto ldv_46291; ldv_46290: { tmp = mvs_read_port_irq_stat___0(mvi, (u32 )i); tmp = tmp & 4294901759U; mvs_write_port_irq_stat___0(mvi, (u32 )i, tmp); tmp = 12583173U; mvs_write_port_irq_mask___0(mvi, (u32 )i, tmp); msleep(100U); mvs_update_phyinfo(mvi, i, 1); i = i + 1; } ldv_46291: ; if ((unsigned int )i < (unsigned int )(mvi->chip)->n_phy) { goto ldv_46290; } else { } { cctl = readl((void const volatile *)regs + 256U); cctl = cctl | 1U; cctl = cctl & 4294967293U; cctl = cctl | 4U; writel(cctl, (void volatile *)regs + 256U); readl((void const volatile *)regs + 256U); tmp = readl((void const volatile *)regs + 260U); tmp = tmp | 2U; tmp = tmp & 4294967263U; writel(tmp, (void volatile *)regs + 260U); tmp = 0U; } if (1U << (int )(mvi->chip)->slot_width > 511U) { { writel(66047U, (void volatile *)regs + 328U); } } else { { writel((1U << (int )(mvi->chip)->slot_width) | 65536U, (void volatile *)regs + 328U); } } { tmp = (u32 )(interrupt_coalescing | 65536); writel(tmp, (void volatile *)regs + 332U); writel(0U, (void volatile *)regs + 288U); writel((1U << (int )(mvi->chip)->slot_width) | 65536U, (void volatile *)regs + 288U); writel(66560U, (void volatile *)regs + 308U); writel(89U, (void volatile *)regs + 260U); tmp = 234946315U; tmp = tmp | 240U; writel(tmp, (void volatile *)regs + 340U); tmp = mvs_cr32___0(mvi, 484U); tmp = tmp | 4294901760U; mvs_cw32___0(mvi, 484U, tmp); tmp = 4128831U; mvs_cw32___0(mvi, 312U, tmp); tmp = mvs_cr32___0(mvi, 480U); tmp = tmp | 4294901887U; mvs_cw32___0(mvi, 480U, tmp); tmp = mvs_cr32___0(mvi, 444U); tmp = tmp | 768U; tmp = tmp & 4294967294U; mvs_cw32___0(mvi, 444U, tmp); writel(65535U, (void volatile *)regs + 348U); } return (0); } } static int mvs_94xx_ioremap(struct mvs_info *mvi ) { int tmp ; { { tmp = mvs_ioremap(mvi, 2, -1); } if (tmp == 0) { mvi->regs_ex = mvi->regs + 66048UL; mvi->regs = mvi->regs + 131072UL; if (mvi->id == 1U) { mvi->regs = mvi->regs + 16384UL; } else { } return (0); } else { } return (-1); } } static void mvs_94xx_iounmap(struct mvs_info *mvi ) { { if ((unsigned long )mvi->regs != (unsigned long )((void *)0)) { mvi->regs = mvi->regs + 0xfffffffffffe0000UL; if (mvi->id == 1U) { mvi->regs = mvi->regs + 0xffffffffffffc000UL; } else { } { mvs_iounmap(mvi->regs); } } else { } return; } } static void mvs_94xx_interrupt_enable(struct mvs_info *mvi ) { void *regs ; u32 tmp ; { { regs = mvi->regs_ex; tmp = readl((void const volatile *)regs + 4U); tmp = tmp | 786432U; writel(tmp, (void volatile *)regs); writel(tmp, (void volatile *)regs + 12U); writel(tmp, (void volatile *)regs + 16U); writel(tmp, (void volatile *)regs + 20U); writel(tmp, (void volatile *)regs + 24U); writel(tmp, (void volatile *)regs + 4U); } return; } } static void mvs_94xx_interrupt_disable(struct mvs_info *mvi ) { void *regs ; u32 tmp ; { { regs = mvi->regs_ex; tmp = readl((void const volatile *)regs + 4U); tmp = tmp & 4294180863U; writel(tmp, (void volatile *)regs); writel(tmp, (void volatile *)regs + 12U); writel(tmp, (void volatile *)regs + 16U); writel(tmp, (void volatile *)regs + 20U); writel(tmp, (void volatile *)regs + 24U); writel(tmp, (void volatile *)regs + 4U); } return; } } static u32 mvs_94xx_isr_status(struct mvs_info *mvi , int irq ) { void *regs ; u32 stat ; { regs = mvi->regs_ex; stat = 0U; if ((mvi->flags & 4UL) == 0UL) { { stat = readl((void const volatile *)regs); } if ((stat & 786432U) == 0U) { return (0U); } else { } } else { } return (stat); } } static irqreturn_t mvs_94xx_isr(struct mvs_info *mvi , int irq , u32 stat ) { void *regs ; { regs = mvi->regs; if (((stat & 262144U) != 0U && mvi->id == 0U) || ((stat & 524288U) != 0U && mvi->id == 1U)) { { writel(1U, (void volatile *)regs + 336U); readl((void const volatile *)regs + 336U); ldv_spin_lock_126(& mvi->lock); mvs_int_full___0(mvi); ldv_spin_unlock_125(& mvi->lock); } } else { } return (1); } } static void mvs_94xx_command_active(struct mvs_info *mvi , u32 slot_idx ) { u32 tmp ; { { tmp = mvs_cr32___0(mvi, (slot_idx >> 3) + 768U); } if (tmp != 0U && 1 << ((int )slot_idx & 31) != 0) { { printk("\017%s %d:command active %08X, slot [%x].\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 625, tmp, slot_idx); mvs_cw32___0(mvi, (slot_idx >> 3) + 768U, (u32 )(1 << ((int )slot_idx & 31))); } ldv_46326: { tmp = mvs_cr32___0(mvi, (slot_idx >> 3) + 768U); } if ((tmp & (u32 )(1 << ((int )slot_idx & 31))) != 0U) { goto ldv_46326; } else { } } else { } return; } } void mvs_94xx_clear_srs_irq(struct mvs_info *mvi , u8 reg_set , u8 clear_all ) { void *regs ; u32 tmp ; { regs = mvi->regs; if ((unsigned int )clear_all != 0U) { { tmp = readl((void const volatile *)regs + 344U); } if (tmp != 0U) { { printk("\017%s %d:check SRS 0 %08X.\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 643, tmp); writel(tmp, (void volatile *)regs + 344U); } } else { } { tmp = readl((void const volatile *)regs + 352U); } if (tmp != 0U) { { printk("\017%s %d:check SRS 1 %08X.\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 648, tmp); writel(tmp, (void volatile *)regs + 352U); } } else { } } else { if ((unsigned int )reg_set > 31U) { { tmp = readl((void const volatile *)regs + 352U); } } else { { tmp = readl((void const volatile *)regs + 344U); } } if ((tmp & (u32 )(1 << ((int )reg_set & 31))) != 0U) { { printk("\017%s %d:register set 0x%x was stopped.\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 658, (int )reg_set); } if ((unsigned int )reg_set > 31U) { { writel((unsigned int )(1 << ((int )reg_set & 31)), (void volatile *)regs + 352U); } } else { { writel((unsigned int )(1 << ((int )reg_set & 31)), (void volatile *)regs + 344U); } } } else { } } return; } } static void mvs_94xx_issue_stop(struct mvs_info *mvi , enum mvs_port_type type , u32 tfs ) { void *regs ; u32 tmp ; unsigned int tmp___0 ; { { regs = mvi->regs; mvs_94xx_clear_srs_irq(mvi, 0, 1); tmp = readl((void const volatile *)regs + 336U); writel(tmp | 2U, (void volatile *)regs + 336U); tmp___0 = readl((void const volatile *)regs + 260U); tmp = tmp___0 | 65280U; writel(tmp, (void volatile *)regs + 260U); } return; } } static void mvs_94xx_non_spec_ncq_error(struct mvs_info *mvi ) { void *regs ; u32 err_0 ; u32 err_1 ; u8 i ; struct mvs_device *device ; { { regs = mvi->regs; err_0 = readl((void const volatile *)regs + 360U); err_1 = readl((void const volatile *)regs + 364U); printk("\017%s %d:non specific ncq error err_0:%x,err_1:%x.\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 691, err_0, err_1); i = 0U; } goto ldv_46351; ldv_46350: ; if ((int )((unsigned long long )err_0 >> (int )i) & 1) { { device = mvs_find_dev_by_reg_set(mvi, (int )i); } if ((unsigned long )device != (unsigned long )((struct mvs_device *)0)) { { mvs_release_task(mvi, device->sas_device); } } else { } } else { } if ((int )((unsigned long long )err_1 >> (int )i) & 1) { { device = mvs_find_dev_by_reg_set(mvi, (int )((unsigned int )i + 32U)); } if ((unsigned long )device != (unsigned long )((struct mvs_device *)0)) { { mvs_release_task(mvi, device->sas_device); } } else { } } else { } i = (u8 )((int )i + 1); ldv_46351: ; if ((unsigned int )i <= 31U) { goto ldv_46350; } else { } { writel(err_0, (void volatile *)regs + 360U); writel(err_1, (void volatile *)regs + 364U); } return; } } static void mvs_94xx_free_reg_set(struct mvs_info *mvi , u8 *tfs ) { void *regs ; u8 reg_set ; { regs = mvi->regs; reg_set = *tfs; if ((unsigned int )*tfs == 127U) { return; } else { } mvi->sata_reg_set = mvi->sata_reg_set & ~ (1ULL << (int )reg_set); if ((unsigned int )reg_set <= 31U) { if ((unsigned int )reg_set > 31U) { { writel((unsigned int )mvi->sata_reg_set, (void volatile *)regs + 284U); } } else { { writel((unsigned int )mvi->sata_reg_set, (void volatile *)regs + 280U); } } } else if ((unsigned int )reg_set > 31U) { { writel((unsigned int )(mvi->sata_reg_set >> 32), (void volatile *)regs + 284U); } } else { { writel((unsigned int )(mvi->sata_reg_set >> 32), (void volatile *)regs + 280U); } } *tfs = 127U; return; } } static u8 mvs_94xx_assign_reg_set(struct mvs_info *mvi , u8 *tfs ) { int i ; void *regs ; { regs = mvi->regs; if ((unsigned int )*tfs != 127U) { return (0U); } else { } { i = mv_ffc64(mvi->sata_reg_set); } if (i > 31) { mvi->sata_reg_set = mvi->sata_reg_set | (1ULL << i); if (i > 31) { { writel((unsigned int )(mvi->sata_reg_set >> 32), (void volatile *)regs + 284U); } } else { { writel((unsigned int )(mvi->sata_reg_set >> 32), (void volatile *)regs + 280U); } } *tfs = (u8 )i; return (0U); } else if (i >= 0) { mvi->sata_reg_set = mvi->sata_reg_set | (1ULL << i); if (i > 31) { { writel((unsigned int )mvi->sata_reg_set, (void volatile *)regs + 284U); } } else { { writel((unsigned int )mvi->sata_reg_set, (void volatile *)regs + 280U); } } *tfs = (u8 )i; return (0U); } else { } return (127U); } } static void mvs_94xx_make_prd(struct scatterlist *scatter , int nr , void *prd ) { int i ; struct scatterlist *sg ; struct mvs_prd___0 *buf_prd ; struct mvs_prd_imt im_len ; { buf_prd = (struct mvs_prd___0 *)prd; *((u32 *)(& im_len)) = 0U; i = 0; sg = scatter; goto ldv_46375; ldv_46374: { buf_prd->addr = sg->dma_address; im_len.len = sg->dma_length; buf_prd->im_len = *((u32 *)(& im_len)); buf_prd = buf_prd + 1; i = i + 1; sg = sg_next(sg); } ldv_46375: ; if (i < nr) { goto ldv_46374; } else { } return; } } static int mvs_94xx_oob_done(struct mvs_info *mvi , int i ) { u32 phy_st ; { { phy_st = mvs_read_phy_ctl___0(mvi, (u32 )i); } if ((phy_st & 1048576U) != 0U) { return (1); } else { } return (0); } } static void mvs_94xx_get_dev_identify_frame(struct mvs_info *mvi , int port_id , struct sas_identify_frame *id ) { int i ; u32 id_frame[7U] ; { i = 0; goto ldv_46390; ldv_46389: { mvs_write_port_cfg_addr___0(mvi, (u32 )port_id, (u32 )((i + 64) * 4)); id_frame[i] = mvs_read_port_cfg_data___0(mvi, (u32 )port_id); i = i + 1; } ldv_46390: ; if (i <= 6) { goto ldv_46389; } else { } { __memcpy((void *)id, (void const *)(& id_frame), 28UL); } return; } } static void mvs_94xx_get_att_identify_frame(struct mvs_info *mvi , int port_id , struct sas_identify_frame *id ) { int i ; u32 id_frame[7U] ; { i = 0; goto ldv_46400; ldv_46399: { mvs_write_port_cfg_addr___0(mvi, (u32 )port_id, (u32 )((i + 71) * 4)); id_frame[i] = mvs_read_port_cfg_data___0(mvi, (u32 )port_id); printk("\017%s %d:94xx phy %d atta frame %d %x.\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 800, (u32 )port_id + mvi->id * (u32 )(mvi->chip)->n_phy, i, id_frame[i]); i = i + 1; } ldv_46400: ; if (i <= 6) { goto ldv_46399; } else { } { __memcpy((void *)id, (void const *)(& id_frame), 28UL); } return; } } static u32 mvs_94xx_make_dev_info(struct sas_identify_frame *id ) { u32 att_dev_info ; { att_dev_info = 0U; att_dev_info = att_dev_info | (u32 )id->dev_type; if ((unsigned int )*((unsigned char *)id + 2UL) != 0U) { att_dev_info = att_dev_info | 512U; } else { } if ((unsigned int )*((unsigned char *)id + 2UL) != 0U) { att_dev_info = att_dev_info | 1024U; } else { } if ((unsigned int )*((unsigned char *)id + 2UL) != 0U) { att_dev_info = att_dev_info | 2048U; } else { } if ((unsigned int )*((unsigned char *)id + 3UL) != 0U) { att_dev_info = att_dev_info | 131072U; } else { } if ((unsigned int )*((unsigned char *)id + 3UL) != 0U) { att_dev_info = att_dev_info | 262144U; } else { } if ((unsigned int )*((unsigned char *)id + 3UL) != 0U) { att_dev_info = att_dev_info | 524288U; } else { } att_dev_info = att_dev_info | ((unsigned int )id->phy_id << 24); return (att_dev_info); } } static u32 mvs_94xx_make_att_info(struct sas_identify_frame *id ) { u32 tmp ; { { tmp = mvs_94xx_make_dev_info(id); } return (tmp); } } static void mvs_94xx_fix_phy_info(struct mvs_info *mvi , int i , struct sas_identify_frame *id ) { struct mvs_phy *phy ; struct asd_sas_phy *sas_phy ; { { phy = (struct mvs_phy *)(& mvi->phy) + (unsigned long )i; sas_phy = & phy->sas_phy; printk("\017%s %d:get all reg link rate is 0x%x\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 837, phy->phy_status); sas_phy->linkrate = (enum sas_linkrate )((phy->phy_status & 196608U) >> 16); sas_phy->linkrate = (enum sas_linkrate )((unsigned int )sas_phy->linkrate + 8U); printk("\017%s %d:get link rate is %d\n", (char *)"drivers/scsi/mvsas/mv_94xx.c", 842, (unsigned int )sas_phy->linkrate); phy->minimum_linkrate = 8; phy->maximum_linkrate = 10; mvs_94xx_get_dev_identify_frame(mvi, i, id); phy->dev_info = mvs_94xx_make_dev_info(id); } if ((phy->phy_type & 2U) != 0U) { { mvs_94xx_get_att_identify_frame(mvi, i, id); phy->att_dev_info = mvs_94xx_make_att_info(id); phy->att_dev_sas_addr = *((u64 *)(& id->sas_addr)); } } else { phy->att_dev_info = 131073U; } { mvs_write_port_cfg_addr___0(mvi, (u32 )i, 28U); mvs_write_port_cfg_data___0(mvi, (u32 )i, 4U); } return; } } void mvs_94xx_phy_set_link_rate(struct mvs_info *mvi , u32 phy_id , struct sas_phy_linkrates *rates ) { u32 lrmax ; u32 tmp ; { { lrmax = 0U; tmp = mvs_read_phy_ctl___0(mvi, phy_id); lrmax = ((unsigned int )rates->maximum_linkrate - 8U) << 12; } if (lrmax != 0U) { tmp = tmp & 4294955007U; tmp = tmp | lrmax; } else { } { mvs_write_phy_ctl___0(mvi, phy_id, tmp); mvs_94xx_phy_reset(mvi, phy_id, 2); } return; } } static void mvs_94xx_clear_active_cmds(struct mvs_info *mvi ) { u32 tmp ; void *regs ; { { regs = mvi->regs; tmp = readl((void const volatile *)regs + 280U); writel(0U, (void volatile *)regs + 280U); writel(tmp, (void volatile *)regs + 280U); tmp = readl((void const volatile *)regs + 284U); writel(0U, (void volatile *)regs + 284U); writel(tmp, (void volatile *)regs + 284U); } return; } } u32 mvs_94xx_spi_read_data(struct mvs_info *mvi ) { void *regs ; unsigned int tmp ; { { regs = mvi->regs_ex + 0xfffffffffffefe00UL; tmp = readl((void const volatile *)regs + 51212U); } return (tmp); } } void mvs_94xx_spi_write_data(struct mvs_info *mvi , u32 data ) { void *regs ; { { regs = mvi->regs_ex + 0xfffffffffffefe00UL; writel(data, (void volatile *)regs + 51212U); } return; } } int mvs_94xx_spi_buildcmd(struct mvs_info *mvi , u32 *dwCmd , u8 cmd , u8 read , u8 length , u32 addr ) { void *regs ; u32 dwTmp ; { regs = mvi->regs_ex + 0xfffffffffffefe00UL; dwTmp = ((unsigned int )cmd << 8) | ((unsigned int )length << 4); if ((unsigned int )read != 0U) { dwTmp = dwTmp | 4U; } else { } if (addr != 4294967295U) { { writel(addr & 262143U, (void volatile *)regs + 51204U); dwTmp = dwTmp | 2U; } } else { } *dwCmd = dwTmp; return (0); } } int mvs_94xx_spi_issuecmd(struct mvs_info *mvi , u32 cmd ) { void *regs ; { { regs = mvi->regs_ex + 0xfffffffffffefe00UL; writel(cmd | 1U, (void volatile *)regs + 51200U); } return (0); } } int mvs_94xx_spi_waitdataready(struct mvs_info *mvi , u32 timeout ) { void *regs ; u32 i ; u32 dwTmp ; { regs = mvi->regs_ex + 0xfffffffffffefe00UL; i = 0U; goto ldv_46460; ldv_46459: { dwTmp = readl((void const volatile *)regs + 51200U); } if ((dwTmp & 1U) == 0U) { return (0); } else { } { msleep(10U); i = i + 1U; } ldv_46460: ; if (i < timeout) { goto ldv_46459; } else { } return (-1); } } void mvs_94xx_fix_dma(struct mvs_info *mvi , u32 phy_mask , int buf_len , int from , void *prd ) { int i ; struct mvs_prd___0 *buf_prd ; dma_addr_t buf_dma ; struct mvs_prd_imt im_len ; { buf_prd = (struct mvs_prd___0 *)prd; *((u32 *)(& im_len)) = 0U; buf_prd = buf_prd + (unsigned long )from; if ((unsigned int )(mvi->pdev)->revision == 160U || (unsigned int )(mvi->pdev)->revision == 1U) { buf_dma = phy_mask <= 8U ? mvi->bulk_buffer_dma : mvi->bulk_buffer_dma1; } else { return; } i = from; goto ldv_46474; ldv_46473: ; if (i == 254) { { buf_prd->addr = virt_to_phys((void volatile *)buf_prd + 0xffffffffffffffffUL); im_len.len = 2U; im_len.misc_ctl = 1U; } } else { buf_prd->addr = buf_dma; im_len.len = (unsigned int )buf_len; } buf_prd->im_len = *((u32 *)(& im_len)); i = i + 1; buf_prd = buf_prd + 1; ldv_46474: ; if (i <= 254) { goto ldv_46473; } else { } return; } } static void mvs_94xx_tune_interrupt(struct mvs_info *mvi , u32 time ) { void *regs ; u32 tmp ; { regs = mvi->regs; tmp = 0U; if (time == 0U) { { writel(0U, (void volatile *)regs + 328U); writel(65536U, (void volatile *)regs + 332U); } } else { if (1U << (int )(mvi->chip)->slot_width > 511U) { { writel(66047U, (void volatile *)regs + 328U); } } else { { writel((1U << (int )(mvi->chip)->slot_width) | 65536U, (void volatile *)regs + 328U); } } { tmp = time | 65536U; writel(tmp, (void volatile *)regs + 332U); } } return; } } struct mvs_dispatch const mvs_94xx_dispatch = {(char *)"mv94xx", & mvs_94xx_init, (int (*)(struct mvs_info * ))0, & mvs_94xx_ioremap, & mvs_94xx_iounmap, & mvs_94xx_isr, & mvs_94xx_isr_status, & mvs_94xx_interrupt_enable, & mvs_94xx_interrupt_disable, & mvs_read_phy_ctl___0, & mvs_write_phy_ctl___0, & mvs_read_port_cfg_data___0, & mvs_write_port_cfg_data___0, & mvs_write_port_cfg_addr___0, & mvs_read_port_vsr_data___0, & mvs_write_port_vsr_data___0, & mvs_write_port_vsr_addr___0, & mvs_read_port_irq_stat___0, & mvs_write_port_irq_stat___0, & mvs_read_port_irq_mask___0, & mvs_write_port_irq_mask___0, & mvs_94xx_command_active, & mvs_94xx_clear_srs_irq, & mvs_94xx_issue_stop, & mvs_start_delivery, & mvs_rx_update, & mvs_int_full___0, & mvs_94xx_assign_reg_set, & mvs_94xx_free_reg_set, & mvs_get_prd_size___0, & mvs_get_prd_count___0, & mvs_94xx_make_prd, & mvs_94xx_detect_porttype, & mvs_94xx_oob_done, & mvs_94xx_fix_phy_info, (void (*)(struct mvs_info * , int ))0, & mvs_94xx_phy_set_link_rate, & mvs_hw_max_link_rate___0, & mvs_94xx_phy_disable, & mvs_94xx_phy_enable, & mvs_94xx_phy_reset, (void (*)(struct mvs_info * , u32 ))0, & mvs_94xx_clear_active_cmds, & mvs_94xx_spi_read_data, & mvs_94xx_spi_write_data, & mvs_94xx_spi_buildcmd, & mvs_94xx_spi_issuecmd, & mvs_94xx_spi_waitdataready, & mvs_94xx_fix_dma, & mvs_94xx_tune_interrupt, & mvs_94xx_non_spec_ncq_error}; void ldv_dummy_resourceless_instance_callback_5_106(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_phy_ctl___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_109(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_cfg_addr___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_112(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_cfg_data___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_115(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_irq_mask___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_118(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_irq_stat___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_121(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_vsr_addr___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_124(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_vsr_data___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_31(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_int_full___0(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_46(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_non_spec_ncq_error(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_56(unsigned int (*arg0)(void) ) { { { mvs_hw_max_link_rate___0(); } return; } } void ldv_dummy_resourceless_instance_callback_5_66(unsigned int (*arg0)(void) ) { { { mvs_get_prd_count___0(); } return; } } void ldv_dummy_resourceless_instance_callback_5_67(unsigned int (*arg0)(void) ) { { { mvs_get_prd_size___0(); } return; } } void ldv_dummy_resourceless_instance_callback_5_68(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_phy_ctl___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_71(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_cfg_data___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_74(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_irq_mask___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_77(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_irq_stat___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_80(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_vsr_data___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_83(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_rx_update(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_97(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_start_delivery(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_10(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_ioremap(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_103(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_tune_interrupt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_106(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_phy_ctl___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_109(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_cfg_addr___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_11(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_iounmap(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_112(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_cfg_data___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_115(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_irq_mask___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_118(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_irq_stat___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_12(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_clear_active_cmds(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_121(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_vsr_addr___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_124(void (*arg0)(struct mvs_info * , unsigned int , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { mvs_write_port_vsr_data___0(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_13(void (*arg0)(struct mvs_info * , unsigned char , unsigned char ) , struct mvs_info *arg1 , unsigned char arg2 , unsigned char arg3 ) { { { mvs_94xx_clear_srs_irq(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_16(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_command_active(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_19(void (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_94xx_detect_porttype(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_22(void (*arg0)(struct mvs_info * , unsigned int , int , int , void * ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 , int arg4 , void *arg5 ) { { { mvs_94xx_fix_dma(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_dummy_resourceless_instance_callback_6_25(void (*arg0)(struct mvs_info * , int , struct sas_identify_frame * ) , struct mvs_info *arg1 , int arg2 , struct sas_identify_frame *arg3 ) { { { mvs_94xx_fix_phy_info(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_28(void (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) { { { mvs_94xx_free_reg_set(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(unsigned char (*arg0)(struct mvs_info * , unsigned char * ) , struct mvs_info *arg1 , unsigned char *arg2 ) { { { mvs_94xx_assign_reg_set(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_31(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_int_full___0(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_32(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_interrupt_disable(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_33(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_interrupt_enable(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_34(enum irqreturn (*arg0)(struct mvs_info * , int , unsigned int ) , struct mvs_info *arg1 , int arg2 , unsigned int arg3 ) { { { mvs_94xx_isr(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_37(unsigned int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_94xx_isr_status(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_40(void (*arg0)(struct mvs_info * , enum mvs_port_type , unsigned int ) , struct mvs_info *arg1 , enum mvs_port_type arg2 , unsigned int arg3 ) { { { mvs_94xx_issue_stop(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_43(void (*arg0)(struct scatterlist * , int , void * ) , struct scatterlist *arg1 , int arg2 , void *arg3 ) { { { mvs_94xx_make_prd(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_46(void (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_non_spec_ncq_error(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_47(int (*arg0)(struct mvs_info * , int ) , struct mvs_info *arg1 , int arg2 ) { { { mvs_94xx_oob_done(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_50(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_phy_disable(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_53(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_phy_enable(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_56(unsigned int (*arg0)(void) ) { { { mvs_hw_max_link_rate___0(); } return; } } void ldv_dummy_resourceless_instance_callback_6_57(void (*arg0)(struct mvs_info * , unsigned int , int ) , struct mvs_info *arg1 , unsigned int arg2 , int arg3 ) { { { mvs_94xx_phy_reset(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_60(void (*arg0)(struct mvs_info * , unsigned int , struct sas_phy_linkrates * ) , struct mvs_info *arg1 , unsigned int arg2 , struct sas_phy_linkrates *arg3 ) { { { mvs_94xx_phy_set_link_rate(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_66(unsigned int (*arg0)(void) ) { { { mvs_get_prd_count___0(); } return; } } void ldv_dummy_resourceless_instance_callback_6_67(unsigned int (*arg0)(void) ) { { { mvs_get_prd_size___0(); } return; } } void ldv_dummy_resourceless_instance_callback_6_68(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_phy_ctl___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_71(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_cfg_data___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_74(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_irq_mask___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_77(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_irq_stat___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_80(unsigned int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_read_port_vsr_data___0(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_83(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_rx_update(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_84(int (*arg0)(struct mvs_info * , unsigned int * , unsigned char , unsigned char , unsigned char , unsigned int ) , struct mvs_info *arg1 , unsigned int *arg2 , unsigned char arg3 , unsigned char arg4 , unsigned char arg5 , unsigned int arg6 ) { { { mvs_94xx_spi_buildcmd(arg1, arg2, (int )arg3, (int )arg4, (int )arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_6_87(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_spi_issuecmd(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_90(unsigned int (*arg0)(struct mvs_info * ) , struct mvs_info *arg1 ) { { { mvs_94xx_spi_read_data(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_91(int (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_spi_waitdataready(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_94(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_94xx_spi_write_data(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_97(void (*arg0)(struct mvs_info * , unsigned int ) , struct mvs_info *arg1 , unsigned int arg2 ) { { { mvs_start_delivery(arg1, arg2); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mvs_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mvs_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_mvs_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_mvs_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_mvs_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_mvs_info(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_mvs_info(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_mvs_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_mvs_info(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_task_state_lock_of_sas_task(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_task_state_lock_of_sas_task(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 2); ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_task_state_lock_of_sas_task(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_task_state_lock_of_sas_task(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_task_state_lock_of_sas_task(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_task_state_lock_of_sas_task(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_task_state_lock_of_sas_task(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_task_state_lock_of_sas_task(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_task_state_lock_of_sas_task(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_mvs_info == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_task_state_lock_of_sas_task == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_completion_of_sas_task_slow = 0; void ldv_linux_kernel_sched_completion_init_completion_completion_of_sas_task_slow(void) { { ldv_linux_kernel_sched_completion_completion_completion_of_sas_task_slow = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_completion_of_sas_task_slow(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_completion_of_sas_task_slow != 0); ldv_linux_kernel_sched_completion_completion_completion_of_sas_task_slow = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_completion_of_sas_task_slow(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_completion_of_sas_task_slow != 0); ldv_linux_kernel_sched_completion_completion_completion_of_sas_task_slow = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }