/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef __kernel_long_t __kernel_suseconds_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u64 __be64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned int uint; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct execute_work { struct work_struct work ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_179 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField48 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_178 __annonCompField49 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct dma_pool; struct msix_entry { u32 vector ; u16 entry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct exception_table_entry { int insn ; int fixup ; }; struct __large_struct { unsigned long buf[100U] ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField73 ; union __anonunion____missing_field_name_215 __annonCompField74 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_216 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_217 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_218 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_220 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_221 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_219 { struct __anonstruct_elv_220 elv ; struct __anonstruct_flush_221 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_216 __annonCompField75 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_217 __annonCompField76 ; union __anonunion____missing_field_name_218 __annonCompField77 ; union __anonunion____missing_field_name_219 __annonCompField78 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_223 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_223 __annonCompField79 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_224 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_224 __annonCompField80 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_231 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_231 __annonCompField81 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u64 acpi_io_address; typedef void *acpi_handle; typedef u32 acpi_object_type; struct __anonstruct_integer_233 { acpi_object_type type ; u64 value ; }; struct __anonstruct_string_234 { acpi_object_type type ; u32 length ; char *pointer ; }; struct __anonstruct_buffer_235 { acpi_object_type type ; u32 length ; u8 *pointer ; }; struct __anonstruct_package_236 { acpi_object_type type ; u32 count ; union acpi_object *elements ; }; struct __anonstruct_reference_237 { acpi_object_type type ; acpi_object_type actual_type ; acpi_handle handle ; }; struct __anonstruct_processor_238 { acpi_object_type type ; u32 proc_id ; acpi_io_address pblk_address ; u32 pblk_length ; }; struct __anonstruct_power_resource_239 { acpi_object_type type ; u32 system_level ; u32 resource_order ; }; union acpi_object { acpi_object_type type ; struct __anonstruct_integer_233 integer ; struct __anonstruct_string_234 string ; struct __anonstruct_buffer_235 buffer ; struct __anonstruct_package_236 package ; struct __anonstruct_reference_237 reference ; struct __anonstruct_processor_238 processor ; struct __anonstruct_power_resource_239 power_resource ; }; struct acpi_driver; struct acpi_hotplug_profile { struct kobject kobj ; int (*scan_dependent)(struct acpi_device * ) ; void (*notify_online)(struct acpi_device * ) ; bool enabled ; bool demand_offline ; }; struct acpi_scan_handler { struct acpi_device_id const *ids ; struct list_head list_node ; bool (*match)(char * , struct acpi_device_id const ** ) ; int (*attach)(struct acpi_device * , struct acpi_device_id const * ) ; void (*detach)(struct acpi_device * ) ; void (*bind)(struct device * ) ; void (*unbind)(struct device * ) ; struct acpi_hotplug_profile hotplug ; }; struct acpi_hotplug_context { struct acpi_device *self ; int (*notify)(struct acpi_device * , u32 ) ; void (*uevent)(struct acpi_device * , u32 ) ; void (*fixup)(struct acpi_device * ) ; }; struct acpi_device_ops { int (*add)(struct acpi_device * ) ; int (*remove)(struct acpi_device * ) ; void (*notify)(struct acpi_device * , u32 ) ; }; struct acpi_driver { char name[80U] ; char class[80U] ; struct acpi_device_id const *ids ; unsigned int flags ; struct acpi_device_ops ops ; struct device_driver drv ; struct module *owner ; }; struct acpi_device_status { unsigned char present : 1 ; unsigned char enabled : 1 ; unsigned char show_in_ui : 1 ; unsigned char functional : 1 ; unsigned char battery_present : 1 ; unsigned int reserved : 27 ; }; struct acpi_device_flags { unsigned char dynamic_status : 1 ; unsigned char removable : 1 ; unsigned char ejectable : 1 ; unsigned char power_manageable : 1 ; unsigned char match_driver : 1 ; unsigned char initialized : 1 ; unsigned char visited : 1 ; unsigned char hotplug_notify : 1 ; unsigned char is_dock_station : 1 ; unsigned int reserved : 23 ; }; struct acpi_device_dir { struct proc_dir_entry *entry ; }; typedef char acpi_bus_id[8U]; typedef unsigned long acpi_bus_address; typedef char acpi_device_name[40U]; typedef char acpi_device_class[20U]; struct acpi_pnp_type { unsigned char hardware_id : 1 ; unsigned char bus_address : 1 ; unsigned char platform_id : 1 ; unsigned int reserved : 29 ; }; struct acpi_device_pnp { acpi_bus_id bus_id ; struct acpi_pnp_type type ; acpi_bus_address bus_address ; char *unique_id ; struct list_head ids ; acpi_device_name device_name ; acpi_device_class device_class ; union acpi_object *str_obj ; }; struct acpi_device_power_flags { unsigned char explicit_get : 1 ; unsigned char power_resources : 1 ; unsigned char inrush_current : 1 ; unsigned char power_removed : 1 ; unsigned char ignore_parent : 1 ; unsigned char dsw_present : 1 ; unsigned int reserved : 26 ; }; struct __anonstruct_flags_240 { unsigned char valid : 1 ; unsigned char os_accessible : 1 ; unsigned char explicit_set : 1 ; unsigned char reserved : 6 ; }; struct acpi_device_power_state { struct __anonstruct_flags_240 flags ; int power ; int latency ; struct list_head resources ; }; struct acpi_device_power { int state ; struct acpi_device_power_flags flags ; struct acpi_device_power_state states[5U] ; }; struct acpi_device_perf_flags { u8 reserved ; }; struct __anonstruct_flags_241 { unsigned char valid : 1 ; unsigned char reserved : 7 ; }; struct acpi_device_perf_state { struct __anonstruct_flags_241 flags ; u8 power ; u8 performance ; int latency ; }; struct acpi_device_perf { int state ; struct acpi_device_perf_flags flags ; int state_count ; struct acpi_device_perf_state *states ; }; struct acpi_device_wakeup_flags { unsigned char valid : 1 ; unsigned char run_wake : 1 ; unsigned char notifier_present : 1 ; unsigned char enabled : 1 ; }; struct acpi_device_wakeup_context { struct work_struct work ; struct device *dev ; }; struct acpi_device_wakeup { acpi_handle gpe_device ; u64 gpe_number ; u64 sleep_state ; struct list_head resources ; struct acpi_device_wakeup_flags flags ; struct acpi_device_wakeup_context context ; struct wakeup_source *ws ; int prepare_count ; }; struct acpi_device_data { union acpi_object const *pointer ; union acpi_object const *properties ; union acpi_object const *of_compatible ; }; struct acpi_gpio_mapping; struct acpi_device { int device_type ; acpi_handle handle ; struct fwnode_handle fwnode ; struct acpi_device *parent ; struct list_head children ; struct list_head node ; struct list_head wakeup_list ; struct list_head del_list ; struct acpi_device_status status ; struct acpi_device_flags flags ; struct acpi_device_pnp pnp ; struct acpi_device_power power ; struct acpi_device_wakeup wakeup ; struct acpi_device_perf performance ; struct acpi_device_dir dir ; struct acpi_device_data data ; struct acpi_scan_handler *handler ; struct acpi_hotplug_context *hp ; struct acpi_driver *driver ; struct acpi_gpio_mapping const *driver_gpios ; void *driver_data ; struct device dev ; unsigned int physical_node_count ; unsigned int dep_unmet ; struct list_head physical_node_list ; struct mutex physical_node_lock ; void (*remove)(struct acpi_device * ) ; }; struct acpi_gpio_params { unsigned int crs_entry_index ; unsigned int line_index ; bool active_low ; }; struct acpi_gpio_mapping { char const *name ; struct acpi_gpio_params const *data ; unsigned int size ; }; struct scsi_sense_hdr; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; struct scsi_sense_hdr { u8 response_code ; u8 sense_key ; u8 asc ; u8 ascq ; u8 byte4 ; u8 byte5 ; u8 byte6 ; u8 additional_length ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_250 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_250 __annonCompField83 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_31440 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_31440 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct in6_addr; struct sk_buff; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_254 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_253 { u64 v64 ; struct __anonstruct____missing_field_name_254 __annonCompField85 ; }; struct skb_mstamp { union __anonunion____missing_field_name_253 __annonCompField86 ; }; union __anonunion____missing_field_name_257 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_256 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_257 __annonCompField87 ; }; union __anonunion____missing_field_name_255 { struct __anonstruct____missing_field_name_256 __annonCompField88 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_259 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_258 { __wsum csum ; struct __anonstruct____missing_field_name_259 __annonCompField90 ; }; union __anonunion____missing_field_name_260 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_261 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_262 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_255 __annonCompField89 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_258 __annonCompField91 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_260 __annonCompField92 ; __u32 secmark ; union __anonunion____missing_field_name_261 __annonCompField93 ; union __anonunion____missing_field_name_262 __annonCompField94 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct xfrm_policy; struct xfrm_state; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct scm_creds { u32 pid ; kuid_t uid ; kgid_t gid ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_skb_parms { struct scm_creds creds ; __u32 portid ; __u32 dst_group ; __u32 flags ; struct sock *sk ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct nla_policy { u16 type ; u16 len ; }; struct genlmsghdr { __u8 cmd ; __u8 version ; __u16 reserved ; }; union __anonunion_in6_u_263 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_263 in6_u ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct __anonstruct_sync_serial_settings_269 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_269 sync_serial_settings; struct __anonstruct_te1_settings_270 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_270 te1_settings; struct __anonstruct_raw_hdlc_proto_271 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_271 raw_hdlc_proto; struct __anonstruct_fr_proto_272 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_272 fr_proto; struct __anonstruct_fr_proto_pvc_273 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_273 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_274 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_274 fr_proto_pvc_info; struct __anonstruct_cisco_proto_275 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_275 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_276 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_276 ifs_ifsu ; }; union __anonunion_ifr_ifrn_277 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_278 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_277 ifr_ifrn ; union __anonunion_ifr_ifru_278 ifr_ifru ; }; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct genl_multicast_group { char name[16U] ; }; struct genl_ops; struct genl_info; struct genl_family { unsigned int id ; unsigned int hdrsize ; char name[16U] ; unsigned int version ; unsigned int maxattr ; bool netnsok ; bool parallel_ops ; int (*pre_doit)(struct genl_ops const * , struct sk_buff * , struct genl_info * ) ; void (*post_doit)(struct genl_ops const * , struct sk_buff * , struct genl_info * ) ; int (*mcast_bind)(struct net * , int ) ; void (*mcast_unbind)(struct net * , int ) ; struct nlattr **attrbuf ; struct genl_ops const *ops ; struct genl_multicast_group const *mcgrps ; unsigned int n_ops ; unsigned int n_mcgrps ; unsigned int mcgrp_offset ; struct list_head family_list ; struct module *module ; }; struct genl_info { u32 snd_seq ; u32 snd_portid ; struct nlmsghdr *nlhdr ; struct genlmsghdr *genlhdr ; void *userhdr ; struct nlattr **attrs ; struct net *_net ; void *user_ptr[2U] ; struct sock *dst_sk ; }; struct genl_ops { struct nla_policy const *policy ; int (*doit)(struct sk_buff * , struct genl_info * ) ; int (*dumpit)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; u8 cmd ; u8 internal_flags ; u8 flags ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_281 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_281 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_35776 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_35776 phy_interface_t; enum ldv_35829 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_35829 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_301 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_302 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_303 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_301 adj_list ; struct __anonstruct_all_adj_list_302 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_303 __annonCompField97 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_304 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_304 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_309 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; u32 len ; struct sock_fprog_kern *orig_prog ; struct bpf_prog_aux *aux ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_309 __annonCompField102 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_314 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_314 __annonCompField103 ; }; struct __anonstruct_socket_lock_t_315 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_315 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_317 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_316 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_317 __annonCompField104 ; }; union __anonunion____missing_field_name_318 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_320 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_319 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_320 __annonCompField107 ; }; union __anonunion____missing_field_name_321 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_322 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_316 __annonCompField105 ; union __anonunion____missing_field_name_318 __annonCompField106 ; union __anonunion____missing_field_name_319 __annonCompField108 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_321 __annonCompField109 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_322 __annonCompField110 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_323 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_323 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_324 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_324 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct pmcraid_ioadl_desc { __le64 address ; __le32 data_len ; __u8 reserved[3U] ; __u8 flags ; }; union __anonunion_u_325 { struct pmcraid_ioadl_desc ioadl[27U] ; __u8 add_cmd_params[48U] ; }; struct pmcraid_ioarcb_add_data { union __anonunion_u_325 u ; }; struct pmcraid_ioarcb { __le64 ioarcb_bus_addr ; __le32 resource_handle ; __le32 response_handle ; __le64 ioadl_bus_addr ; __le32 ioadl_length ; __le32 data_transfer_length ; __le64 ioasa_bus_addr ; __le16 ioasa_len ; __le16 cmd_timeout ; __le16 add_cmd_param_offset ; __le16 add_cmd_param_length ; __le32 reserved1[2U] ; __le32 reserved2 ; __u8 request_type ; __u8 request_flags0 ; __u8 request_flags1 ; __u8 hrrq_id ; __u8 cdb[16U] ; struct pmcraid_ioarcb_add_data add_data ; }; struct pmcraid_ioasa_vset { __le32 failing_lba_hi ; __le32 failing_lba_lo ; __le32 reserved ; }; union __anonunion_u_326 { struct pmcraid_ioasa_vset vset ; }; struct pmcraid_ioasa { __le32 ioasc ; __le16 returned_status_length ; __le16 available_status_length ; __le32 residual_data_length ; __le32 ilid ; __le32 fd_ioasc ; __le32 fd_res_address ; __le32 fd_res_handle ; __le32 reserved ; union __anonunion_u_326 u ; __le16 auto_sense_length ; __le16 error_data_length ; __u8 sense_data[256U] ; }; struct pmcraid_config_table_entry { __u8 resource_type ; __u8 bus_protocol ; __le16 array_id ; __u8 common_flags0 ; __u8 common_flags1 ; __u8 unique_flags0 ; __u8 unique_flags1 ; __le32 resource_handle ; __le32 resource_address ; __u8 device_id[8U] ; __u8 lun[8U] ; }; struct pmcraid_config_table_entry_ext { struct pmcraid_config_table_entry cfgte ; }; union __anonunion____missing_field_name_327 { struct pmcraid_config_table_entry entries[256U] ; struct pmcraid_config_table_entry_ext entries_ext[256U] ; }; struct pmcraid_config_table { __le16 num_entries ; __u8 table_format ; __u8 reserved1 ; __u8 flags ; __u8 reserved2[11U] ; union __anonunion____missing_field_name_327 __annonCompField111 ; }; union __anonunion_u_328 { __u8 data[4056U] ; }; struct pmcraid_hostrcb_error { __le32 fd_ioasc ; __le32 fd_ra ; __le32 fd_rh ; __le32 prc ; union __anonunion_u_328 u ; }; struct pmcraid_hcam_hdr { __u8 op_code ; __u8 notification_type ; __u8 notification_lost ; __u8 flags ; __u8 overlay_id ; __u8 reserved1[3U] ; __le32 ilid ; __le32 timestamp1 ; __le32 timestamp2 ; __le32 data_len ; }; struct pmcraid_hcam_ccn { struct pmcraid_hcam_hdr header ; struct pmcraid_config_table_entry cfg_entry ; struct pmcraid_config_table_entry cfg_entry_old ; }; struct pmcraid_hcam_ldn { struct pmcraid_hcam_hdr header ; struct pmcraid_hostrcb_error error_log ; }; struct pmcraid_chip_details { unsigned long ioastatus ; unsigned long ioarrin ; unsigned long mailbox ; unsigned long global_intr_mask ; unsigned long ioa_host_intr ; unsigned long ioa_host_msix_intr ; unsigned long ioa_host_intr_clr ; unsigned long ioa_host_mask ; unsigned long ioa_host_mask_clr ; unsigned long host_ioa_intr ; unsigned long host_ioa_intr_clr ; unsigned long transop_timeout ; }; struct pmcraid_control_block { struct pmcraid_ioarcb ioarcb ; struct pmcraid_ioadl_desc ioadl[40U] ; struct pmcraid_ioasa ioasa ; }; struct pmcraid_sglist { u32 order ; u32 num_sg ; u32 num_dma_sg ; u32 buffer_len ; struct scatterlist scatterlist[1U] ; }; struct pmcraid_inquiry_data { __u8 ph_dev_type ; __u8 page_code ; __u8 reserved1 ; __u8 add_page_len ; __u8 length ; __u8 reserved2 ; __le16 fw_version ; __u8 reserved3[16U] ; }; struct pmcraid_timestamp_data { __u8 reserved1[4U] ; __u8 timestamp[6U] ; __u8 reserved2[2U] ; }; struct pmcraid_instance; struct pmcraid_resource_entry; struct __anonstruct____missing_field_name_330 { u8 *sense_buffer ; dma_addr_t sense_buffer_dma ; }; union __anonunion____missing_field_name_329 { unsigned long time_left ; struct pmcraid_resource_entry *res ; int hrrq_index ; struct __anonstruct____missing_field_name_330 __annonCompField112 ; }; struct pmcraid_cmd { struct pmcraid_control_block *ioa_cb ; dma_addr_t ioa_cb_bus_addr ; dma_addr_t dma_handle ; struct scsi_cmnd *scsi_cmd ; struct list_head free_list ; struct completion wait_for_completion ; struct timer_list timer ; u32 timeout ; u32 index ; u8 completion_req ; u8 release ; void (*cmd_done)(struct pmcraid_cmd * ) ; struct pmcraid_instance *drv_inst ; struct pmcraid_sglist *sglist ; union __anonunion____missing_field_name_329 __annonCompField113 ; }; struct pmcraid_interrupts { void *ioa_host_interrupt_reg ; void *ioa_host_msix_interrupt_reg ; void *ioa_host_interrupt_clr_reg ; void *ioa_host_interrupt_mask_reg ; void *ioa_host_interrupt_mask_clr_reg ; void *global_interrupt_mask_reg ; void *host_ioa_interrupt_reg ; void *host_ioa_interrupt_clr_reg ; }; struct pmcraid_isr_param { struct pmcraid_instance *drv_inst ; u16 vector ; u8 hrrq_id ; }; struct pmcraid_aen_msg { u32 hostno ; u32 length ; u8 reserved[8U] ; u8 data[0U] ; }; struct pmcraid_state_msg { struct pmcraid_aen_msg msg ; u32 ioa_state ; }; struct pmcraid_hostrcb { struct pmcraid_instance *drv_inst ; struct pmcraid_aen_msg *msg ; struct pmcraid_hcam_hdr *hcam ; struct pmcraid_cmd *cmd ; dma_addr_t baddr ; atomic_t ignore ; }; struct pmcraid_instance { struct pmcraid_resource_entry *res_entries ; struct list_head free_res_q ; struct list_head used_res_q ; spinlock_t resource_lock ; void *mapped_dma_addr ; void *ioa_status ; void *mailbox ; void *ioarrin ; struct pmcraid_interrupts int_regs ; struct pmcraid_chip_details *chip_cfg ; struct pmcraid_hostrcb ldn ; struct pmcraid_hostrcb ccn ; struct pmcraid_state_msg scn ; dma_addr_t hrrq_start_bus_addr[16U] ; __be32 *hrrq_start[16U] ; __be32 *hrrq_end[16U] ; __be32 *hrrq_curr[16U] ; spinlock_t hrrq_lock[16U] ; struct pmcraid_inquiry_data *inq_data ; dma_addr_t inq_data_baddr ; struct pmcraid_timestamp_data *timestamp_data ; dma_addr_t timestamp_data_baddr ; u32 config_table_entry_size ; u8 host_toggle_bit[16U] ; wait_queue_head_t reset_wait_q ; struct pmcraid_cmd *reset_cmd ; struct fasync_struct *aen_queue ; struct mutex aen_queue_lock ; struct cdev cdev ; struct Scsi_Host *host ; struct pci_dev *pdev ; u8 ioa_reset_attempts ; u8 current_log_level ; u8 num_hrrq ; u8 interrupt_mode ; dev_t dev ; struct pmcraid_isr_param hrrq_vector[16U] ; atomic_t last_message_id ; struct pmcraid_config_table *cfg_table ; dma_addr_t cfg_table_bus_addr ; struct kmem_cache *cmd_cachep ; struct dma_pool *control_pool ; char cmd_pool_name[64U] ; char ctl_pool_name[64U] ; struct pmcraid_cmd *cmd_list[1024U] ; struct list_head free_cmd_pool ; struct list_head pending_cmd_pool ; spinlock_t free_pool_lock ; spinlock_t pending_pool_lock ; struct tasklet_struct isr_tasklet[16U] ; struct work_struct worker_q ; atomic_t outstanding_cmds ; atomic_t expose_resources ; unsigned char ioa_state : 4 ; unsigned char ioa_reset_in_progress : 1 ; unsigned char ioa_hard_reset : 1 ; unsigned char ioa_unit_check : 1 ; unsigned char ioa_bringdown : 1 ; unsigned char force_ioa_reset : 1 ; unsigned char reinit_cfg_table : 1 ; unsigned char ioa_shutdown_type : 2 ; unsigned char timestamp_error : 1 ; }; union __anonunion____missing_field_name_331 { struct pmcraid_config_table_entry cfg_entry ; struct pmcraid_config_table_entry_ext cfg_entry_ext ; }; struct pmcraid_resource_entry { struct list_head queue ; union __anonunion____missing_field_name_331 __annonCompField114 ; struct scsi_device *scsi_dev ; atomic_t read_failures ; atomic_t write_failures ; u8 change_detected ; u8 reset_progress ; u8 sync_reqd ; u8 target ; }; struct pmcraid_ioasc_error { u32 ioasc_code ; u8 log_level ; char *error_string ; }; struct pmcraid_ioctl_header { u8 signature[8U] ; u32 reserved ; u32 buffer_length ; }; struct pmcraid_passthrough_ioctl_buffer { struct pmcraid_ioctl_header ioctl_header ; struct pmcraid_ioarcb ioarcb ; struct pmcraid_ioasa ioasa ; u8 request_buffer[1U] ; }; struct ldv_struct_EMGentry_21 { int signal_pending ; }; struct ldv_struct_file_operations_instance_0 { struct file_operations *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_13 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_1 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_scsi_host_template_instance_4 { struct Scsi_Host *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_8 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef struct Scsi_Host *ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) ; void ldv_linux_drivers_base_class_check_final_state(void) ; int ldv_linux_fs_char_dev_register_chrdev_region(void) ; void ldv_linux_fs_char_dev_unregister_chrdev_region(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_destroy_class(struct class *cls ) ; int ldv_linux_usb_gadget_register_chrdev_region(void) ; void ldv_linux_usb_gadget_unregister_chrdev_region(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; void ldv_linux_kernel_sched_completion_init_completion_wait_for_completion_of_pmcraid_cmd(void) ; void ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(void) ; unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) ; int ldv_undef_int(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_247(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_244(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_248(void) ; static void ldv_ldv_pre_probe_250(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_249(int retval ) ; static int ldv_ldv_post_probe_251(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_245(void) ; static void ldv_ldv_check_final_state_246(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_185(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } static unsigned long ldv_find_first_zero_bit_224(unsigned long const *addr , unsigned long size ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u64 __fswab64(__u64 val ) { long tmp ; { { tmp = __builtin_bswap64((unsigned long )val); } return ((__u64 )tmp); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern int kstrtou8(char const * , unsigned int , u8 * ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_move_tail(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add_tail(list, head); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void __bad_percpu_size(void) ; __inline static int __get_order(unsigned long size ) { int order ; { { size = size - 1UL; size = size >> 12; order = fls64((__u64 )size); } return (order); } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_134(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_136(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_138(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_140(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_143(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_145(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_147(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_149(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_152(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_155(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_157(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_159(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_162(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_164(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_166(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_170(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_178(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_180(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_183(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_188(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_192(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_196(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_198(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_200(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_201(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_204(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_207(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_209(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_211(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_214(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_216(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_229(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_231(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_free_pool_lock_of_pmcraid_instance(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_free_pool_lock_of_pmcraid_instance(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lockp(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lockp(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_pending_pool_lock_of_pmcraid_instance(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_resource_lock_of_pmcraid_instance(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_186(struct mutex *ldv_func_arg1 ) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7312; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7312; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7312; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7312; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7312: ti = (struct thread_info *)(pfo_ret__ - 32728UL); return (ti); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_144(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_144(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_144(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_144(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_210(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_144(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_210(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static void ldv_init_completion_173(struct completion *x ) ; __inline static void ldv_init_completion_173(struct completion *x ) ; __inline static void ldv_init_completion_173(struct completion *x ) ; extern void wait_for_completion(struct completion * ) ; static void ldv_wait_for_completion_175(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_177(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_190(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_194(struct completion *ldv_func_arg1 ) ; extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; static unsigned long ldv_wait_for_completion_timeout_191(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static unsigned long ldv_wait_for_completion_timeout_195(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void complete(struct completion * ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void do_gettimeofday(struct timeval * ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; __inline static int timer_pending(struct timer_list const *timer ) { { return ((unsigned long )timer->entry.next != (unsigned long )((struct list_head */* const */)0)); } } extern int del_timer(struct timer_list * ) ; static int ldv_del_timer_133(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_161(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_213(struct timer_list *ldv_func_arg1 ) ; extern void add_timer(struct timer_list * ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern void cdev_init(struct cdev * , struct file_operations const * ) ; static void ldv_cdev_init_225(struct cdev *ldv_func_arg1 , struct file_operations const *ldv_func_arg2 ) ; extern int cdev_add(struct cdev * , dev_t , unsigned int ) ; extern void cdev_del(struct cdev * ) ; static void ldv_cdev_del_226(struct cdev *ldv_func_arg1 ) ; static void ldv_iounmap_228(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_236(void volatile *ldv_func_arg1 ) ; extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern void __free_pages(struct page * , unsigned int ) ; static void ldv_class_destroy_239(struct class *cls ) ; static void ldv_class_destroy_243(struct class *cls ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern struct device *device_create(struct class * , struct device * , dev_t , void * , char const * , ...) ; extern void device_destroy(struct class * , dev_t ) ; extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern bool capable(int ) ; extern long schedule_timeout(long ) ; extern void schedule(void) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; extern void kfree(void const * ) ; static void *ldv_kmem_cache_alloc_222(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) ; extern void kmem_cache_free(struct kmem_cache * , void * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_238(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_242(struct pci_driver *ldv_func_arg1 ) ; extern struct dma_pool *dma_pool_create(char const * , struct device * , size_t , size_t , size_t ) ; extern void dma_pool_destroy(struct dma_pool * ) ; static void *ldv_dma_pool_alloc_223(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; extern void dma_pool_free(struct dma_pool * , void * , dma_addr_t ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void sg_assign_page(struct scatterlist *sg , struct page *page ) { unsigned long page_link ; long tmp ; long tmp___0 ; long tmp___1 ; { { page_link = sg->page_link & 3UL; tmp = ldv__builtin_expect(((unsigned long )page & 3UL) != 0UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (67), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (68), "i" (12UL)); __builtin_unreachable(); } } else { } sg->page_link = page_link | (unsigned long )page; return; } } __inline static void sg_set_page(struct scatterlist *sg , struct page *page , unsigned int len , unsigned int offset ) { { { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } return; } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } __inline static void *sg_virt(struct scatterlist *sg ) { struct page *tmp ; void *tmp___0 ; { { tmp = sg_page(sg); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )sg->offset); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; extern void sg_init_table(struct scatterlist * , unsigned int ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_sg(struct device * , struct scatterlist * , int , int , int ) ; extern void debug_dma_unmap_sg(struct device * , struct scatterlist * , int , int ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static int dma_map_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int i ; int ents ; struct scatterlist *s ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; i = 0; s = sg; } goto ldv_26898; ldv_26897: { tmp___0 = sg_virt(s); kmemcheck_mark_initialized(tmp___0, s->length); i = i + 1; s = sg_next(s); } ldv_26898: ; if (i < nents) { goto ldv_26897; } else { } { tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (52), "i" (12UL)); __builtin_unreachable(); } } else { } { ents = (*(ops->map_sg))(dev, sg, nents, dir, attrs); debug_dma_map_sg(dev, sg, nents, ents, (int )dir); } return (ents); } } __inline static void dma_unmap_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { debug_dma_unmap_sg(dev, sg, nents, (int )dir); } if ((unsigned long )ops->unmap_sg != (unsigned long )((void (*)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_sg))(dev, sg, nents, dir, attrs); } } else { } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static int pci_map_sg(struct pci_dev *hwdev , struct scatterlist *sg , int nents , int direction ) { int tmp ; { { tmp = dma_map_sg_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, sg, nents, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_sg(struct pci_dev *hwdev , struct scatterlist *sg , int nents , int direction ) { { { dma_unmap_sg_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, sg, nents, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern int fasync_helper(int , struct file * , int , struct fasync_struct ** ) ; extern int alloc_chrdev_region(dev_t * , unsigned int , unsigned int , char const * ) ; static int ldv_alloc_chrdev_region_237(dev_t *ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 , char const *ldv_func_arg4 ) ; extern void unregister_chrdev_region(dev_t , unsigned int ) ; static void ldv_unregister_chrdev_region_240(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) ; static void ldv_unregister_chrdev_region_241(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) ; extern loff_t noop_llseek(struct file * , loff_t , int ) ; __inline static bool __chk_range_not_ok(unsigned long addr , unsigned long size , unsigned long limit ) { { addr = addr + size; if (addr < size) { return (1); } else { } return (addr > limit); } } extern unsigned long copy_user_enhanced_fast_string(void * , void const * , unsigned int ) ; extern unsigned long copy_user_generic_string(void * , void const * , unsigned int ) ; extern unsigned long copy_user_generic_unrolled(void * , void const * , unsigned int ) ; __inline static unsigned long copy_user_generic(void *to , void const *from , unsigned int len ) { unsigned int ret ; { __asm__ volatile ("661:\n\tcall %P4\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 3*32+16)\n .byte 662b-661b\n .byte 6641f-6631f\n .long 661b - .\n .long 6632f - .\n .word ( 9*32+ 9)\n .byte 662b-661b\n .byte 6642f-6632f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n .byte 0xff + (6642f-6632f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\tcall %P5\n6641:\n\t6632:\n\tcall %P6\n6642:\n\t.popsection": "=a" (ret), "=D" (to), "=S" (from), "=d" (len): [old] "i" (& copy_user_generic_unrolled), [new1] "i" (& copy_user_generic_string), [new2] "i" (& copy_user_enhanced_fast_string), "1" (to), "2" (from), "3" (len): "memory", "rcx", "r8", "r9", "r10", "r11"); return ((unsigned long )ret); } } __inline static int __copy_from_user_nocheck(void *dst , void const *src , unsigned int size ) { int ret ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { { ret = 0; tmp = copy_user_generic(dst, src, size); } return ((int )tmp); { if (size == 1U) { goto case_1; } else { } if (size == 2U) { goto case_2; } else { } if (size == 4U) { goto case_4; } else { } if (size == 8U) { goto case_8; } else { } if (size == 10U) { goto case_10; } else { } if (size == 16U) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovb %2,%b1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorb %b1,%b1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=q" (*((u8 *)dst)): "m" (*((struct __large_struct *)src)), "i" (1), "0" (ret)); return (ret); case_2: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %2,%w1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorw %w1,%w1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u16 *)dst)): "m" (*((struct __large_struct *)src)), "i" (2), "0" (ret)); return (ret); case_4: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovl %2,%k1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorl %k1,%k1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u32 *)dst)): "m" (*((struct __large_struct *)src)), "i" (4), "0" (ret)); return (ret); case_8: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (8), "0" (ret)); return (ret); case_10: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (10), "0" (ret)); tmp___0 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___0 != 0L) { return (ret); } else { } __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %2,%w1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorw %w1,%w1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u16 *)dst + 8U)): "m" (*((struct __large_struct *)src + 8U)), "i" (2), "0" (ret)); return (ret); case_16: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (16), "0" (ret)); tmp___1 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___1 != 0L) { return (ret); } else { } __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst + 8U)): "m" (*((struct __large_struct *)src + 8U)), "i" (8), "0" (ret)); return (ret); switch_default: /* CIL Label */ { tmp___2 = copy_user_generic(dst, src, size); } return ((int )tmp___2); switch_break: /* CIL Label */ ; } } } __inline static int __copy_from_user(void *dst , void const *src , unsigned int size ) { int tmp ; { { might_fault(); tmp = __copy_from_user_nocheck(dst, src, size); } return (tmp); } } __inline static int __copy_to_user_nocheck(void *dst , void const *src , unsigned int size ) { int ret ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { { ret = 0; tmp = copy_user_generic(dst, src, size); } return ((int )tmp); { if (size == 1U) { goto case_1; } else { } if (size == 2U) { goto case_2; } else { } if (size == 4U) { goto case_4; } else { } if (size == 8U) { goto case_8; } else { } if (size == 10U) { goto case_10; } else { } if (size == 16U) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovb %b1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "iq" (*((u8 *)src)), "m" (*((struct __large_struct *)dst)), "i" (1), "0" (ret)); return (ret); case_2: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %w1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u16 *)src)), "m" (*((struct __large_struct *)dst)), "i" (2), "0" (ret)); return (ret); case_4: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovl %k1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u32 *)src)), "m" (*((struct __large_struct *)dst)), "i" (4), "0" (ret)); return (ret); case_8: /* CIL Label */ __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (8), "0" (ret)); return (ret); case_10: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (10), "0" (ret)); tmp___0 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___0 != 0L) { return (ret); } else { } __asm__ volatile ("": : : "memory"); __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovw %w1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u16 *)src + 4UL)), "m" (*((struct __large_struct *)dst + 4U)), "i" (2), "0" (ret)); return (ret); case_16: /* CIL Label */ { __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (16), "0" (ret)); tmp___1 = ldv__builtin_expect(ret != 0, 0L); } if (tmp___1 != 0L) { return (ret); } else { } __asm__ volatile ("": : : "memory"); __asm__ volatile ("661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xcb\n6641:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t.byte 0x66,0x66,0x90\n\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 9*32+20)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0x0f,0x01,0xca\n6641:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src + 1UL)), "m" (*((struct __large_struct *)dst + 1U)), "i" (8), "0" (ret)); return (ret); switch_default: /* CIL Label */ { tmp___2 = copy_user_generic(dst, src, size); } return ((int )tmp___2); switch_break: /* CIL Label */ ; } } } __inline static int __copy_to_user(void *dst , void const *src , unsigned int size ) { int tmp ; { { might_fault(); tmp = __copy_to_user_nocheck(dst, src, size); } return (tmp); } } extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static void *kmap(struct page *page ) { void *tmp ; { { __might_sleep("include/linux/highmem.h", 58, 0); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void kunmap(struct page *page ) { { return; } } extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_rq_timeout(struct request_queue * , unsigned int ) ; __inline static void *shost_priv(struct Scsi_Host *shost ) { { return ((void *)(& shost->hostdata)); } } extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; static struct Scsi_Host *ldv_scsi_host_alloc_233(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; static void ldv_scsi_remove_host_227(struct Scsi_Host *ldv_func_arg1 ) ; static void ldv_scsi_remove_host_235(struct Scsi_Host *ldv_func_arg1 ) ; extern void scsi_host_put(struct Scsi_Host * ) ; extern void scsi_cmd_get_serial(struct Scsi_Host * , struct scsi_cmnd * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { { tmp = scsi_add_host_with_dma(host, dev, dev); } return (tmp); } } __inline static int ldv_scsi_add_host_234(struct Scsi_Host *host , struct device *dev ) ; extern void scsi_unblock_requests(struct Scsi_Host * ) ; extern void scsi_block_requests(struct Scsi_Host * ) ; extern void msleep(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_219(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_221(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_218(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_220(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern void sdev_prefix_printk(char const * , struct scsi_device const * , char const * , char const * , ...) ; extern void scmd_printk(char const * , struct scsi_cmnd const * , char const * , ...) ; extern int scsi_add_device(struct Scsi_Host * , uint , uint , u64 ) ; extern void scsi_remove_device(struct scsi_device * ) ; extern int scsi_device_get(struct scsi_device * ) ; extern void scsi_device_put(struct scsi_device * ) ; extern int scsi_change_queue_depth(struct scsi_device * , int ) ; extern int scsi_dma_map(struct scsi_cmnd * ) ; extern void scsi_dma_unmap(struct scsi_cmnd * ) ; __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } __inline static unsigned int scsi_bufflen(struct scsi_cmnd *cmd ) { { return (cmd->sdb.length); } } __inline static void scsi_set_resid(struct scsi_cmnd *cmd , int resid ) { { cmd->sdb.resid = resid; return; } } extern void scsi_report_bus_reset(struct Scsi_Host * , int ) ; extern void kfree_skb(struct sk_buff * ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) ; __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern int netlink_broadcast(struct sock * , struct sk_buff * , __u32 , __u32 , gfp_t ) ; extern int nla_put(struct sk_buff * , int , int , void const * ) ; __inline static int nlmsg_msg_size(int payload ) { { return (payload + 16); } } __inline static int nlmsg_total_size(int payload ) { int tmp ; { { tmp = nlmsg_msg_size(payload); } return ((int )((unsigned int )tmp + 3U) & -4); } } __inline static struct sk_buff *nlmsg_new(size_t payload , gfp_t flags ) { int tmp ; struct sk_buff *tmp___0 ; { { tmp = nlmsg_total_size((int )payload); tmp___0 = alloc_skb((unsigned int )tmp, flags); } return (tmp___0); } } __inline static void nlmsg_end(struct sk_buff *skb , struct nlmsghdr *nlh ) { unsigned char *tmp ; { { tmp = skb_tail_pointer((struct sk_buff const *)skb); nlh->nlmsg_len = (__u32 )((long )tmp) - (__u32 )((long )nlh); } return; } } __inline static void nlmsg_free(struct sk_buff *skb ) { { { kfree_skb(skb); } return; } } __inline static int nlmsg_multicast(struct sock *sk , struct sk_buff *skb , u32 portid , unsigned int group , gfp_t flags ) { int err ; { { ((struct netlink_skb_parms *)(& skb->cb))->dst_group = group; err = netlink_broadcast(sk, skb, portid, group, flags); } if (err > 0) { err = 0; } else { } return (err); } } __inline static int nla_attr_size(int payload ) { { return (payload + 4); } } __inline static int nla_total_size(int payload ) { int tmp ; { { tmp = nla_attr_size(payload); } return ((tmp + 3) & -4); } } extern struct net init_net ; extern int __genl_register_family(struct genl_family * ) ; __inline static int genl_register_family(struct genl_family *family ) { int tmp ; { { family->module = & __this_module; tmp = __genl_register_family(family); } return (tmp); } } extern int genl_unregister_family(struct genl_family * ) ; extern void *genlmsg_put(struct sk_buff * , u32 , u32 , struct genl_family * , int , u8 ) ; __inline static void genlmsg_end(struct sk_buff *skb , void *hdr ) { { { nlmsg_end(skb, (struct nlmsghdr *)hdr + 0xffffffffffffffecUL); } return; } } __inline static int genlmsg_multicast_netns(struct genl_family *family , struct net *net , struct sk_buff *skb , u32 portid , unsigned int group , gfp_t flags ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; { { __ret_warn_once = group >= family->n_mcgrps; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/net/genetlink.h", 299); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { return (-22); } else { } { group = family->mcgrp_offset + group; tmp___3 = nlmsg_multicast(net->genl_sock, skb, portid, group, flags); } return (tmp___3); } } __inline static int genlmsg_multicast(struct genl_family *family , struct sk_buff *skb , u32 portid , unsigned int group , gfp_t flags ) { int tmp ; { { tmp = genlmsg_multicast_netns(family, & init_net, skb, portid, group, flags); } return (tmp); } } __inline static int genlmsg_msg_size(int payload ) { { return ((int )((unsigned int )payload + 4U)); } } __inline static int genlmsg_total_size(int payload ) { int tmp ; { { tmp = genlmsg_msg_size(payload); } return ((int )((unsigned int )tmp + 3U) & -4); } } __inline static struct sk_buff *genlmsg_new(size_t payload , gfp_t flags ) { int tmp ; struct sk_buff *tmp___0 ; { { tmp = genlmsg_total_size((int )payload); tmp___0 = nlmsg_new((size_t )tmp, flags); } return (tmp___0); } } static struct pmcraid_ioasc_error pmcraid_ioasc_error_table[67U] = { {18351616U, 2U, (char *)"Recovered Error, soft media error, sector reassignment suggested"}, {22872064U, 2U, (char *)"Recovered Error, failure prediction threshold exceeded"}, {22909440U, 2U, (char *)"Recovered Error, soft Cache Card Battery error threshold"}, {22909440U, 2U, (char *)"Recovered Error, soft Cache Card Battery error threshold"}, {33849344U, 2U, (char *)"Not Ready, IOA Reset Required"}, {37782784U, 2U, (char *)"Not Ready, IOA microcode download required"}, {51448576U, 2U, (char *)"Medium Error, data unreadable, reassignment suggested"}, {51448832U, 1U, (char *)"Medium Error, data unreadable do not reassign"}, {53542912U, 2U, (char *)"Medium Error, media corrupted"}, {67436544U, 2U, (char *)"Hardware Error, IOA can\'t communicate with device"}, {67633152U, 1U, (char *)"Hardware Error, device bus error"}, {67665920U, 1U, (char *)"Hardware Error, device bus is not functioning"}, {68255744U, 2U, (char *)"Hardware Error, IOA reserved area data check"}, {68256000U, 2U, (char *)"Hardware Error, IOA reserved area invalid data pattern"}, {68256256U, 2U, (char *)"Hardware Error, IOA reserved area LRC error"}, {70385664U, 2U, (char *)"Hardware Error, reassignment space exhausted"}, {70451200U, 2U, (char *)"Hardware Error, data transfer underlength error"}, {70451200U, 2U, (char *)"Hardware Error, data transfer overlength error"}, {71401472U, 1U, (char *)"Hardware Error, PCI bus error"}, {71565312U, 2U, (char *)"Hardware Error, device error"}, {71598592U, 1U, (char *)"Hardware Error, IOA error"}, {71598848U, 2U, (char *)"Hardware Error, undefined device response"}, {71599104U, 2U, (char *)"Hardware Error, IOA microcode error"}, {71599616U, 2U, (char *)"Hardware Error, IOA reset required"}, {71602688U, 2U, (char *)"Hardware Error, hard Cache Fearuee Card Battery error"}, {71606272U, 2U, (char *)"Hardware Error, failed device altered"}, {71606784U, 2U, (char *)"Hardware Error, data check after reassignment"}, {71607040U, 2U, (char *)"Hardware Error, LRC error after reassignment"}, {71958528U, 2U, (char *)"Hardware Error, device bus error (msg/cmd phase)"}, {73860096U, 2U, (char *)"Hardware Error, new device can\'t be used"}, {73891840U, 2U, (char *)"Hardware Error, invalid multiadapter configuration"}, {73892096U, 2U, (char *)"Hardware Error, incorrect connection between enclosures"}, {73892352U, 2U, (char *)"Hardware Error, connections exceed IOA design limits"}, {73892608U, 2U, (char *)"Hardware Error, incorrect multipath connection"}, {73895936U, 2U, (char *)"Hardware Error, command to LUN failed"}, {105676800U, 2U, (char *)"Unit Attention, cache exists for missing/failed device"}, {107413760U, 2U, (char *)"Unit Attention, incompatible exposed mode device"}, {107415040U, 2U, (char *)"Unit Attention, attachment of logical unit failed"}, {107446272U, 2U, (char *)"Unit Attention, cables exceed connective design limit"}, {107447040U, 2U, (char *)"Unit Attention, incomplete multipath connection betweenIOA and enclosure"}, {107447296U, 2U, (char *)"Unit Attention, incomplete multipath connection betweendevice and enclosure"}, {107447552U, 2U, (char *)"Unit Attention, incomplete multipath connection betweenIOA and remote IOA"}, {107447808U, 2U, (char *)"Unit Attention, missing remote IOA"}, {107450624U, 2U, (char *)"Unit Attention, enclosure doesn\'t support required multipathfunction"}, {107577856U, 2U, (char *)"Unit Attention, corrupt array parity detected on device"}, {107676160U, 2U, (char *)"Unit Attention, array exposed"}, {107708928U, 2U, (char *)"Unit Attention, exposed array is still protected"}, {107713024U, 2U, (char *)"Unit Attention, Multipath redundancy level got worse"}, {119996416U, 2U, (char *)"Data Protect, device is read/write protected by IOA"}, {120029184U, 2U, (char *)"Data Protect, IOA doesn\'t support device attribute"}, {120029440U, 2U, (char *)"Data Protect, NVRAM mirroring prohibited"}, {120030208U, 2U, (char *)"Data Protect, array is short 2 or more devices"}, {120030720U, 2U, (char *)"Data Protect, exposed array is short a required device"}, {120030976U, 2U, (char *)"Data Protect, array members not at required addresses"}, {120031232U, 2U, (char *)"Data Protect, exposed mode device resource address conflict"}, {120031488U, 2U, (char *)"Data Protect, incorrect resource address of exposed mode device"}, {120031744U, 2U, (char *)"Data Protect, Array is missing a device and parity is out of sync"}, {120032000U, 2U, (char *)"Data Protect, maximum number of arrays already exist"}, {120032256U, 2U, (char *)"Data Protect, cannot locate cache data for device"}, {120032512U, 2U, (char *)"Data Protect, cache data exits for a changed device"}, {120033536U, 2U, (char *)"Data Protect, detection of a device requiring format"}, {120033792U, 2U, (char *)"Data Protect, IOA exceeds maximum number of devices"}, {120034816U, 2U, (char *)"Data Protect, missing array, volume set is not functional"}, {120035072U, 2U, (char *)"Data Protect, single device for a volume set"}, {120035328U, 2U, (char *)"Data Protect, missing multiple devices for a volume set"}, {120035584U, 2U, (char *)"Data Protect, maximum number of volument sets already exists"}, {120035840U, 2U, (char *)"Data Protect, other volume set problem"}}; static unsigned int pmcraid_debug_log ; static unsigned int pmcraid_disable_aen ; static unsigned int pmcraid_log_level = 1U; static unsigned int pmcraid_enable_msix ; static atomic_t pmcraid_adapter_count = {0}; static unsigned int pmcraid_major ; static struct class *pmcraid_class ; unsigned long pmcraid_minor[16U] ; static struct pmcraid_chip_details pmcraid_chip_cfg[1U] = { {0UL, 64UL, 523312UL, 52UL, 156UL, 523328UL, 160UL, 523304UL, 523304UL, 32UL, 32UL, 300UL}}; static struct pci_device_id pmcraid_pci_table[2U] = { {4600U, 21024U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& pmcraid_chip_cfg)}}; struct pci_device_id const __mod_pci__pmcraid_pci_table_device_table[2U] ; static int pmcraid_slave_alloc(struct scsi_device *scsi_dev ) { struct pmcraid_resource_entry *temp ; struct pmcraid_resource_entry *res ; struct pmcraid_instance *pinstance ; u8 target ; u8 bus ; u8 lun ; unsigned long lock_flags ; int rc ; u16 fw_version ; void *tmp ; __u16 tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { res = (struct pmcraid_resource_entry *)0; rc = -6; tmp = shost_priv(scsi_dev->host); pinstance = (struct pmcraid_instance *)tmp; tmp___0 = __fswab16((int )(pinstance->inq_data)->fw_version); fw_version = tmp___0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(& pinstance->resource_lock); __mptr = (struct list_head const *)pinstance->used_res_q.next; temp = (struct pmcraid_resource_entry *)__mptr; } goto ldv_62469; ldv_62468: ; if ((unsigned int )temp->__annonCompField114.cfg_entry.resource_type == 2U) { if ((unsigned int )fw_version <= 2U) { target = temp->__annonCompField114.cfg_entry.unique_flags1; } else { target = (u8 )temp->__annonCompField114.cfg_entry.array_id; } if ((int )((signed char )target) < 0) { goto ldv_62466; } else { } bus = 1U; lun = 0U; } else if ((unsigned int )temp->__annonCompField114.cfg_entry.resource_type == 1U) { target = (u8 )(temp->__annonCompField114.cfg_entry.resource_address >> 16); bus = 0U; lun = 0U; } else { goto ldv_62466; } if (((unsigned int )bus == scsi_dev->channel && (unsigned int )target == scsi_dev->id) && (u64 )lun == scsi_dev->lun) { res = temp; goto ldv_62467; } else { } ldv_62466: __mptr___0 = (struct list_head const *)temp->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___0; ldv_62469: ; if ((unsigned long )(& temp->queue) != (unsigned long )(& pinstance->used_res_q)) { goto ldv_62468; } else { } ldv_62467: ; if ((unsigned long )res != (unsigned long )((struct pmcraid_resource_entry *)0)) { { res->scsi_dev = scsi_dev; scsi_dev->hostdata = (void *)res; res->change_detected = 0U; atomic_set(& res->read_failures, 0); atomic_set(& res->write_failures, 0); rc = 0; } } else { } { ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); } return (rc); } } static int pmcraid_slave_configure(struct scsi_device *scsi_dev ) { struct pmcraid_resource_entry *res ; { res = (struct pmcraid_resource_entry *)scsi_dev->hostdata; if ((unsigned long )res == (unsigned long )((struct pmcraid_resource_entry *)0)) { return (0); } else { } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 1U && (int )((signed char )scsi_dev->type) != 13) { return (-6); } else { } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: configuring %x:%x:%x:%x\n", (scsi_dev->host)->unique_id, scsi_dev->channel, scsi_dev->id, (int )((unsigned char )scsi_dev->lun)); } } else { } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 1U) { scsi_dev->allow_restart = 1U; } else if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 2U) { { scsi_dev->allow_restart = 1U; blk_queue_rq_timeout(scsi_dev->request_queue, 15000U); blk_queue_max_hw_sectors(scsi_dev->request_queue, 512U); } } else { } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type - 1U > 1U) { scsi_dev->tagged_supported = 0U; } else { } return (0); } } static void pmcraid_slave_destroy(struct scsi_device *scsi_dev ) { struct pmcraid_resource_entry *res ; { res = (struct pmcraid_resource_entry *)scsi_dev->hostdata; if ((unsigned long )res != (unsigned long )((struct pmcraid_resource_entry *)0)) { res->scsi_dev = (struct scsi_device *)0; } else { } scsi_dev->hostdata = (void *)0; return; } } static int pmcraid_change_queue_depth(struct scsi_device *scsi_dev , int depth ) { int tmp ; { if (depth > 254) { depth = 254; } else { } { tmp = scsi_change_queue_depth(scsi_dev, depth); } return (tmp); } } void pmcraid_init_cmdblk(struct pmcraid_cmd *cmd , int index ) { struct pmcraid_ioarcb *ioarcb ; dma_addr_t dma_addr ; u32 ioasa_offset ; struct lock_class_key __key ; { ioarcb = & (cmd->ioa_cb)->ioarcb; dma_addr = cmd->ioa_cb_bus_addr; if (index >= 0) { ioasa_offset = 1152U; cmd->index = (u32 )index; ioarcb->response_handle = (unsigned int )(index << 2); ioarcb->ioarcb_bus_addr = dma_addr; ioarcb->ioasa_bus_addr = dma_addr + (dma_addr_t )ioasa_offset; ioarcb->ioasa_len = 304U; } else { { __memset((void *)(& (cmd->ioa_cb)->ioarcb.cdb), 0, 16UL); ioarcb->hrrq_id = 0U; ioarcb->request_flags0 = 0U; ioarcb->request_flags1 = 0U; ioarcb->cmd_timeout = 0U; ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr & 0xffffffffffffffe0ULL; ioarcb->ioadl_bus_addr = 0ULL; ioarcb->ioadl_length = 0U; ioarcb->data_transfer_length = 0U; ioarcb->add_cmd_param_length = 0U; ioarcb->add_cmd_param_offset = 0U; (cmd->ioa_cb)->ioasa.ioasc = 0U; (cmd->ioa_cb)->ioasa.residual_data_length = 0U; cmd->__annonCompField113.time_left = 0UL; } } { cmd->cmd_done = (void (*)(struct pmcraid_cmd * ))0; cmd->scsi_cmd = (struct scsi_cmnd *)0; cmd->release = 0U; cmd->completion_req = 0U; cmd->__annonCompField113.__annonCompField112.sense_buffer = (u8 *)0U; cmd->__annonCompField113.__annonCompField112.sense_buffer_dma = 0ULL; cmd->dma_handle = 0ULL; init_timer_key(& cmd->timer, 0U, "(&cmd->timer)", & __key); } return; } } static void pmcraid_reinit_cmdblk(struct pmcraid_cmd *cmd ) { { { pmcraid_init_cmdblk(cmd, -1); } return; } } static struct pmcraid_cmd *pmcraid_get_free_cmd(struct pmcraid_instance *pinstance ) { struct pmcraid_cmd *cmd ; unsigned long lock_flags ; struct list_head const *__mptr ; int tmp ; { { cmd = (struct pmcraid_cmd *)0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(& pinstance->free_pool_lock); tmp = list_empty((struct list_head const *)(& pinstance->free_cmd_pool)); } if (tmp == 0) { { __mptr = (struct list_head const *)pinstance->free_cmd_pool.next; cmd = (struct pmcraid_cmd *)__mptr + 0xffffffffffffffe0UL; list_del(& cmd->free_list); } } else { } { ldv_spin_unlock_irqrestore_130(& pinstance->free_pool_lock, lock_flags); } if ((unsigned long )cmd != (unsigned long )((struct pmcraid_cmd *)0)) { { pmcraid_reinit_cmdblk(cmd); } } else { } return (cmd); } } void pmcraid_return_cmd(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; unsigned long lock_flags ; { { pinstance = cmd->drv_inst; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(& pinstance->free_pool_lock); list_add_tail(& cmd->free_list, & pinstance->free_cmd_pool); ldv_spin_unlock_irqrestore_130(& pinstance->free_pool_lock, lock_flags); } return; } } static u32 pmcraid_read_interrupts(struct pmcraid_instance *pinstance ) { unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { if ((unsigned int )pinstance->interrupt_mode != 0U) { { tmp = ioread32(pinstance->int_regs.ioa_host_msix_interrupt_reg); tmp___1 = tmp; } } else { { tmp___0 = ioread32(pinstance->int_regs.ioa_host_interrupt_reg); tmp___1 = tmp___0; } } return (tmp___1); } } static void pmcraid_disable_interrupts(struct pmcraid_instance *pinstance , u32 intrs ) { u32 gmask ; unsigned int tmp ; u32 nmask ; { { tmp = ioread32(pinstance->int_regs.global_interrupt_mask_reg); gmask = tmp; nmask = gmask | 5U; iowrite32(intrs, pinstance->int_regs.ioa_host_interrupt_clr_reg); iowrite32(nmask, pinstance->int_regs.global_interrupt_mask_reg); ioread32(pinstance->int_regs.global_interrupt_mask_reg); } if ((unsigned int )pinstance->interrupt_mode == 0U) { { iowrite32(intrs, pinstance->int_regs.ioa_host_interrupt_mask_reg); ioread32(pinstance->int_regs.ioa_host_interrupt_mask_reg); } } else { } return; } } static void pmcraid_enable_interrupts(struct pmcraid_instance *pinstance , u32 intrs ) { u32 gmask ; unsigned int tmp ; u32 nmask ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { tmp = ioread32(pinstance->int_regs.global_interrupt_mask_reg); gmask = tmp; nmask = gmask & 4294967290U; iowrite32(nmask, pinstance->int_regs.global_interrupt_mask_reg); } if ((unsigned int )pinstance->interrupt_mode == 0U) { { iowrite32(~ intrs, pinstance->int_regs.ioa_host_interrupt_mask_reg); ioread32(pinstance->int_regs.ioa_host_interrupt_mask_reg); } } else { } if (pmcraid_debug_log != 0U) { { tmp___0 = ioread32(pinstance->int_regs.ioa_host_interrupt_mask_reg); tmp___1 = ioread32(pinstance->int_regs.global_interrupt_mask_reg); printk("\016MaxRAID: enabled interrupts global mask = %x intr_mask = %x\n", tmp___1, tmp___0); } } else { } return; } } static void pmcraid_clr_trans_op(struct pmcraid_instance *pinstance ) { unsigned long lock_flags ; { if ((unsigned int )pinstance->interrupt_mode == 0U) { { iowrite32(2147483648U, pinstance->int_regs.ioa_host_interrupt_mask_reg); ioread32(pinstance->int_regs.ioa_host_interrupt_mask_reg); iowrite32(2147483648U, pinstance->int_regs.ioa_host_interrupt_clr_reg); ioread32(pinstance->int_regs.ioa_host_interrupt_clr_reg); } } else { } if ((unsigned long )pinstance->reset_cmd != (unsigned long )((struct pmcraid_cmd *)0)) { { ldv_del_timer_133(& (pinstance->reset_cmd)->timer); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_134((pinstance->host)->host_lock); (*((pinstance->reset_cmd)->cmd_done))(pinstance->reset_cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } else { } return; } } static void pmcraid_reset_type(struct pmcraid_instance *pinstance ) { u32 mask ; u32 intrs ; u32 alerts ; { { mask = ioread32(pinstance->int_regs.ioa_host_interrupt_mask_reg); intrs = ioread32(pinstance->int_regs.ioa_host_interrupt_reg); alerts = ioread32(pinstance->int_regs.host_ioa_interrupt_reg); } if (((mask & 2U) == 0U || (alerts & 16777216U) != 0U) || (intrs & 469762076U) != 0U) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: IOA requires hard reset\n"); } } else { } pinstance->ioa_hard_reset = 1U; } else { } if ((intrs & 134217728U) != 0U) { pinstance->ioa_unit_check = 1U; } else { } return; } } static void pmcraid_ioa_reset(struct pmcraid_cmd *cmd ) ; static void pmcraid_bist_done(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; unsigned long lock_flags ; int rc ; u16 pci_reg ; { { pinstance = cmd->drv_inst; rc = pci_read_config_word((struct pci_dev const *)pinstance->pdev, 4, & pci_reg); } if ((rc != 0 || ((int )pci_reg & 2) == 0) && cmd->__annonCompField113.time_left != 0UL) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: BIST not complete, waiting another 2 secs\n"); } } else { } { cmd->timer.expires = (unsigned long )jiffies + cmd->__annonCompField113.time_left; cmd->__annonCompField113.time_left = 0UL; cmd->timer.data = (unsigned long )cmd; cmd->timer.function = (void (*)(unsigned long ))(& pmcraid_bist_done); add_timer(& cmd->timer); } } else { cmd->__annonCompField113.time_left = 0UL; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: BIST is complete, proceeding with reset\n"); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_136((pinstance->host)->host_lock); pmcraid_ioa_reset(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } return; } } static void pmcraid_start_bist(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u32 doorbells ; u32 intrs ; unsigned long tmp ; { { pinstance = cmd->drv_inst; iowrite32(256U, pinstance->int_regs.host_ioa_interrupt_reg); doorbells = ioread32(pinstance->int_regs.host_ioa_interrupt_reg); intrs = ioread32(pinstance->int_regs.ioa_host_interrupt_reg); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: doorbells after start bist: %x intrs: %x\n", doorbells, intrs); } } else { } { cmd->__annonCompField113.time_left = msecs_to_jiffies(2000U); cmd->timer.data = (unsigned long )cmd; tmp = msecs_to_jiffies(2000U); cmd->timer.expires = (unsigned long )jiffies + tmp; cmd->timer.function = (void (*)(unsigned long ))(& pmcraid_bist_done); add_timer(& cmd->timer); } return; } } static void pmcraid_reset_alert_done(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u32 status ; unsigned int tmp ; unsigned long lock_flags ; { { pinstance = cmd->drv_inst; tmp = ioread32(pinstance->ioa_status); status = tmp; } if ((status & 33554432U) == 0U || cmd->__annonCompField113.time_left == 0UL) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: critical op is reset proceeding with reset\n"); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_138((pinstance->host)->host_lock); pmcraid_ioa_reset(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } else { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: critical op is not yet reset waiting again\n"); } } else { } { cmd->__annonCompField113.time_left = cmd->__annonCompField113.time_left - 25UL; cmd->timer.data = (unsigned long )cmd; cmd->timer.expires = (unsigned long )jiffies + 25UL; cmd->timer.function = (void (*)(unsigned long ))(& pmcraid_reset_alert_done); add_timer(& cmd->timer); } } return; } } static void pmcraid_notify_ioastate(struct pmcraid_instance *pinstance , u32 evt ) ; static void pmcraid_reset_alert(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u32 doorbells ; int rc ; u16 pci_reg ; { { pinstance = cmd->drv_inst; rc = pci_read_config_word((struct pci_dev const *)pinstance->pdev, 4, & pci_reg); } if (rc == 0 && ((int )pci_reg & 2) != 0) { { cmd->__annonCompField113.time_left = 500UL; cmd->timer.data = (unsigned long )cmd; cmd->timer.expires = (unsigned long )jiffies + 25UL; cmd->timer.function = (void (*)(unsigned long ))(& pmcraid_reset_alert_done); add_timer(& cmd->timer); iowrite32(16777216U, pinstance->int_regs.host_ioa_interrupt_reg); doorbells = ioread32(pinstance->int_regs.host_ioa_interrupt_reg); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: doorbells after reset alert: %x\n", doorbells); } } else { } } else { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: PCI config is not accessible starting BIST\n"); } } else { } { pinstance->ioa_state = 4U; pmcraid_start_bist(cmd); } } return; } } static void pmcraid_timeout_handler(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; unsigned long lock_flags ; { { pinstance = cmd->drv_inst; _dev_info((struct device const *)(& (pinstance->pdev)->dev), "Adapter being reset due to cmd(CDB[0] = %x) timeout\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0]); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_140((pinstance->host)->host_lock); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { { pinstance->ioa_reset_attempts = 0U; cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); printk("\vMaxRAID: no free cmnd block for timeout handler\n"); } return; } else { } pinstance->reset_cmd = cmd; pinstance->ioa_reset_in_progress = 1U; } else { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset is already in progress\n"); } } else { } if ((unsigned long )pinstance->reset_cmd != (unsigned long )cmd) { { printk("\vMaxRAID: cmd is pending but reset in progress\n"); } } else { } if ((unsigned long )cmd == (unsigned long )pinstance->reset_cmd) { cmd->cmd_done = & pmcraid_ioa_reset; } else { } } if (pinstance->scn.ioa_state != 285212672U && pinstance->scn.ioa_state != 285212675U) { { pmcraid_notify_ioastate(pinstance, 285212672U); } } else { } { pinstance->ioa_state = 5U; scsi_block_requests(pinstance->host); pmcraid_reset_alert(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } return; } } static void pmcraid_internal_done(struct pmcraid_cmd *cmd ) { { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: response internal cmd CDB[0] = %x ioasc = %x\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioasa.ioasc); } } else { } if ((unsigned int )cmd->completion_req != 0U) { { cmd->completion_req = 0U; complete(& cmd->wait_for_completion); } } else { } if ((unsigned int )cmd->release != 0U) { { cmd->release = 0U; pmcraid_return_cmd(cmd); } } else { } return; } } static void pmcraid_reinit_cfgtable_done(struct pmcraid_cmd *cmd ) { { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: response internal cmd CDB[0] = %x ioasc = %x\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioasa.ioasc); } } else { } if ((unsigned int )cmd->release != 0U) { { cmd->release = 0U; pmcraid_return_cmd(cmd); } } else { } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: scheduling worker for config table reinitialization\n"); } } else { } { schedule_work(& (cmd->drv_inst)->worker_q); } return; } } static void pmcraid_erp_done(struct pmcraid_cmd *cmd ) { struct scsi_cmnd *scsi_cmd ; struct pmcraid_instance *pinstance ; u32 ioasc ; { scsi_cmd = cmd->scsi_cmd; pinstance = cmd->drv_inst; ioasc = (cmd->ioa_cb)->ioasa.ioasc; if (ioasc >> 24 != 0U) { { scsi_cmd->result = scsi_cmd->result | 458752; scmd_printk("\016", (struct scsi_cmnd const *)scsi_cmd, "command CDB[0] = %x failed with IOASC: 0x%08X\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], ioasc); } } else { } if ((unsigned long )cmd->__annonCompField113.__annonCompField112.sense_buffer != (unsigned long )((u8 *)0U)) { { __memcpy((void *)scsi_cmd->sense_buffer, (void const *)cmd->__annonCompField113.__annonCompField112.sense_buffer, 96UL); pci_free_consistent(pinstance->pdev, 96UL, (void *)cmd->__annonCompField113.__annonCompField112.sense_buffer, cmd->__annonCompField113.__annonCompField112.sense_buffer_dma); cmd->__annonCompField113.__annonCompField112.sense_buffer = (u8 *)0U; cmd->__annonCompField113.__annonCompField112.sense_buffer_dma = 0ULL; } } else { } { scsi_dma_unmap(scsi_cmd); pmcraid_return_cmd(cmd); (*(scsi_cmd->scsi_done))(scsi_cmd); } return; } } static void _pmcraid_fire_command(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; unsigned long lock_flags ; { { pinstance = cmd->drv_inst; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_143(& pinstance->pending_pool_lock); list_add_tail(& cmd->free_list, & pinstance->pending_cmd_pool); ldv_spin_unlock_irqrestore_144(& pinstance->pending_pool_lock, lock_flags); atomic_inc(& pinstance->outstanding_cmds); __asm__ volatile ("mfence": : : "memory"); iowrite32((unsigned int )(cmd->ioa_cb)->ioarcb.ioarcb_bus_addr, pinstance->ioarrin); } return; } } static void pmcraid_send_cmd(struct pmcraid_cmd *cmd , void (*cmd_done)(struct pmcraid_cmd * ) , unsigned long timeout , void (*timeout_func)(struct pmcraid_cmd * ) ) { { cmd->cmd_done = cmd_done; if ((unsigned long )timeout_func != (unsigned long )((void (*)(struct pmcraid_cmd * ))0)) { { cmd->timer.data = (unsigned long )cmd; cmd->timer.expires = (unsigned long )jiffies + timeout; cmd->timer.function = (void (*)(unsigned long ))timeout_func; add_timer(& cmd->timer); } } else { } { _pmcraid_fire_command(cmd); } return; } } static void pmcraid_ioa_shutdown_done(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; unsigned long lock_flags ; { { pinstance = cmd->drv_inst; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_145((pinstance->host)->host_lock); pmcraid_ioa_reset(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } return; } } static void pmcraid_ioa_shutdown(struct pmcraid_cmd *cmd ) { { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: response for Cancel CCN CDB[0] = %x ioasc = %x\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioasa.ioasc); } } else { } { pmcraid_reinit_cmdblk(cmd); (cmd->ioa_cb)->ioarcb.request_type = 1U; (cmd->ioa_cb)->ioarcb.resource_handle = 4294967295U; (cmd->ioa_cb)->ioarcb.cdb[0] = 247U; (cmd->ioa_cb)->ioarcb.cdb[1] = 0U; } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: firing normal shutdown command (%d) to IOA\n", (cmd->ioa_cb)->ioarcb.response_handle); } } else { } { pmcraid_notify_ioastate(cmd->drv_inst, 285212675U); pmcraid_send_cmd(cmd, & pmcraid_ioa_shutdown_done, 37500UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_querycfg(struct pmcraid_cmd *cmd ) ; static void pmcraid_get_fwversion_done(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u32 ioasc ; unsigned long lock_flags ; { pinstance = cmd->drv_inst; ioasc = (cmd->ioa_cb)->ioasa.ioasc; if (ioasc != 0U) { { printk("\vMaxRAID: IOA Inquiry failed with %x\n", ioasc); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_147((pinstance->host)->host_lock); pinstance->ioa_state = 5U; pmcraid_reset_alert(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } else { { pmcraid_querycfg(cmd); } } return; } } static void pmcraid_get_fwversion(struct pmcraid_cmd *cmd ) { struct pmcraid_ioarcb *ioarcb ; struct pmcraid_ioadl_desc *ioadl ; struct pmcraid_instance *pinstance ; u16 data_size ; { { ioarcb = & (cmd->ioa_cb)->ioarcb; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); pinstance = cmd->drv_inst; data_size = 24U; pmcraid_reinit_cmdblk(cmd); ioarcb->request_type = 0U; ioarcb->resource_handle = 4294967295U; ioarcb->cdb[0] = 18U; ioarcb->cdb[1] = 1U; ioarcb->cdb[2] = 208U; ioarcb->cdb[3] = (__u8 )((int )data_size >> 8); ioarcb->cdb[4] = (__u8 )data_size; ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + 80ULL; ioarcb->ioadl_length = 16U; ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr & 0xffffffffffffffe0ULL; ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 4U); ioarcb->data_transfer_length = (unsigned int )data_size; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); ioadl->flags = 64U; ioadl->address = pinstance->inq_data_baddr; ioadl->data_len = (unsigned int )data_size; pmcraid_send_cmd(cmd, & pmcraid_get_fwversion_done, 15000UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_identify_hrrq(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; struct pmcraid_ioarcb *ioarcb ; int index ; __be64 hrrq_addr ; __u64 tmp ; u32 hrrq_size ; void (*done_function)(struct pmcraid_cmd * ) ; { { pinstance = cmd->drv_inst; ioarcb = & (cmd->ioa_cb)->ioarcb; index = cmd->__annonCompField113.hrrq_index; tmp = __fswab64(pinstance->hrrq_start_bus_addr[index]); hrrq_addr = tmp; hrrq_size = 1048576U; pmcraid_reinit_cmdblk(cmd); cmd->__annonCompField113.hrrq_index = index + 1; } if (cmd->__annonCompField113.hrrq_index < (int )pinstance->num_hrrq) { done_function = & pmcraid_identify_hrrq; } else { cmd->__annonCompField113.hrrq_index = 0; done_function = & pmcraid_get_fwversion; } ioarcb->request_type = 1U; ioarcb->resource_handle = 4294967295U; ioarcb->hrrq_id = (__u8 )index; ioarcb->cdb[0] = 196U; ioarcb->cdb[1] = (__u8 )index; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: HRRQ_IDENTIFY with hrrq:ioarcb:index => %llx:%llx:%x\n", hrrq_addr, ioarcb->ioarcb_bus_addr, index); } } else { } { __memcpy((void *)(& ioarcb->cdb) + 2U, (void const *)(& hrrq_addr), 8UL); __memcpy((void *)(& ioarcb->cdb) + 10U, (void const *)(& hrrq_size), 4UL); pmcraid_send_cmd(cmd, done_function, 15000UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_process_ccn(struct pmcraid_cmd *cmd ) ; static void pmcraid_process_ldn(struct pmcraid_cmd *cmd ) ; static void pmcraid_send_hcam_cmd(struct pmcraid_cmd *cmd ) { { if ((unsigned int )(cmd->ioa_cb)->ioarcb.cdb[1] == 1U) { { atomic_set(& (cmd->drv_inst)->ccn.ignore, 0); } } else { { atomic_set(& (cmd->drv_inst)->ldn.ignore, 0); } } { pmcraid_send_cmd(cmd, cmd->cmd_done, 0UL, (void (*)(struct pmcraid_cmd * ))0); } return; } } static struct pmcraid_cmd *pmcraid_init_hcam(struct pmcraid_instance *pinstance , u8 type ) { struct pmcraid_cmd *cmd ; struct pmcraid_ioarcb *ioarcb ; struct pmcraid_ioadl_desc *ioadl ; struct pmcraid_hostrcb *hcam ; void (*cmd_done)(struct pmcraid_cmd * ) ; dma_addr_t dma ; int rcb_size ; { { cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { printk("\vMaxRAID: no free command blocks for hcam\n"); } return (cmd); } else { } if ((unsigned int )type == 1U) { rcb_size = 4032; cmd_done = & pmcraid_process_ccn; dma = pinstance->ccn.baddr + 16ULL; hcam = & pinstance->ccn; } else { rcb_size = 4096; cmd_done = & pmcraid_process_ldn; dma = pinstance->ldn.baddr + 16ULL; hcam = & pinstance->ldn; } hcam->cmd = cmd; ioarcb = & (cmd->ioa_cb)->ioarcb; ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + 80ULL; ioarcb->ioadl_length = 16U; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); ioarcb->request_type = 2U; ioarcb->resource_handle = 4294967295U; ioarcb->cdb[0] = 207U; ioarcb->cdb[1] = type; ioarcb->cdb[7] = (__u8 )(rcb_size >> 8); ioarcb->cdb[8] = (__u8 )rcb_size; ioarcb->data_transfer_length = (unsigned int )rcb_size; ioadl->flags = (__u8 )((unsigned int )ioadl->flags | 64U); ioadl->data_len = (unsigned int )rcb_size; ioadl->address = (__le64 )((unsigned int )dma); cmd->cmd_done = cmd_done; return (cmd); } } static void pmcraid_send_hcam(struct pmcraid_instance *pinstance , u8 type ) { struct pmcraid_cmd *cmd ; struct pmcraid_cmd *tmp ; { { tmp = pmcraid_init_hcam(pinstance, (int )type); cmd = tmp; pmcraid_send_hcam_cmd(cmd); } return; } } static void pmcraid_prepare_cancel_cmd(struct pmcraid_cmd *cmd , struct pmcraid_cmd *cmd_to_cancel ) { struct pmcraid_ioarcb *ioarcb ; __be64 ioarcb_addr ; __u64 tmp ; { { ioarcb = & (cmd->ioa_cb)->ioarcb; ioarcb_addr = (cmd_to_cancel->ioa_cb)->ioarcb.ioarcb_bus_addr; ioarcb->resource_handle = (cmd_to_cancel->ioa_cb)->ioarcb.resource_handle; ioarcb->request_type = 1U; __memset((void *)(& ioarcb->cdb), 0, 16UL); ioarcb->cdb[0] = 199U; tmp = __fswab64(ioarcb_addr); ioarcb_addr = tmp; __memcpy((void *)(& ioarcb->cdb) + 2U, (void const *)(& ioarcb_addr), 8UL); } return; } } static void pmcraid_cancel_hcam(struct pmcraid_cmd *cmd , u8 type , void (*cmd_done)(struct pmcraid_cmd * ) ) { struct pmcraid_instance *pinstance ; struct pmcraid_hostrcb *hcam ; { pinstance = cmd->drv_inst; hcam = (unsigned int )type == 2U ? & pinstance->ldn : & pinstance->ccn; if ((unsigned long )hcam->cmd == (unsigned long )((struct pmcraid_cmd *)0)) { return; } else { } { pmcraid_prepare_cancel_cmd(cmd, hcam->cmd); pmcraid_send_cmd(cmd, cmd_done, 15000UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_cancel_ccn(struct pmcraid_cmd *cmd ) { { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: response for Cancel LDN CDB[0] = %x ioasc = %x\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioasa.ioasc); } } else { } { pmcraid_reinit_cmdblk(cmd); pmcraid_cancel_hcam(cmd, 1, & pmcraid_ioa_shutdown); } return; } } static void pmcraid_cancel_ldn(struct pmcraid_cmd *cmd ) { { { pmcraid_cancel_hcam(cmd, 2, & pmcraid_cancel_ccn); } return; } } static int pmcraid_expose_resource(u16 fw_version , struct pmcraid_config_table_entry *cfgte ) { int retval ; { retval = 0; if ((unsigned int )cfgte->resource_type == 2U) { if ((unsigned int )fw_version <= 2U) { retval = (int )((signed char )cfgte->unique_flags1) >= 0; } else { retval = (int )((signed char )cfgte->unique_flags0) >= 0 && (int )((signed char )cfgte->unique_flags1) >= 0; } } else if ((unsigned int )cfgte->resource_type == 1U) { retval = (cfgte->resource_address & 255U) != 8U; } else { } return (retval); } } static struct genl_multicast_group pmcraid_mcgrps[1U] = { {{'e', 'v', 'e', 'n', 't', 's', '\000'}}}; static struct genl_family pmcraid_event_family = {18U, 0U, {'p', 'm', 'c', 'r', 'a', 'i', 'd', '\000'}, 1U, 1U, (_Bool)0, (_Bool)0, 0, 0, 0, 0, 0, 0, (struct genl_multicast_group const *)(& pmcraid_mcgrps), 0U, 1U, 0U, {0, 0}, 0}; static int pmcraid_netlink_init(void) { int result ; { { result = genl_register_family(& pmcraid_event_family); } if (result != 0) { return (result); } else { } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: registered NETLINK GENERIC group: %d\n", pmcraid_event_family.id); } } else { } return (result); } } static void pmcraid_netlink_release(void) { { { genl_unregister_family(& pmcraid_event_family); } return; } } static int pmcraid_notify_aen(struct pmcraid_instance *pinstance , struct pmcraid_aen_msg *aen_msg , u32 data_size ) { struct sk_buff *skb ; void *msg_header ; u32 total_size ; u32 nla_genl_hdr_total_size ; int result ; int tmp ; { { aen_msg->hostno = ((pinstance->host)->unique_id << 16) | (pinstance->cdev.dev & 1048575U); aen_msg->length = data_size; data_size = data_size + 16U; tmp = nla_total_size((int )data_size); total_size = (u32 )tmp; nla_genl_hdr_total_size = (total_size + pmcraid_event_family.hdrsize) + 20U; skb = genlmsg_new((size_t )nla_genl_hdr_total_size, 32U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vMaxRAID: Failed to allocate aen data SKB of size: %x\n", total_size); } return (-12); } else { } { msg_header = genlmsg_put(skb, 0U, 0U, & pmcraid_event_family, 0, 1); } if ((unsigned long )msg_header == (unsigned long )((void *)0)) { { printk("\vMaxRAID: failed to copy command details\n"); nlmsg_free(skb); } return (-12); } else { } { result = nla_put(skb, 1, (int )data_size, (void const *)aen_msg); } if (result != 0) { { printk("\vMaxRAID: failed to copy AEN attribute data\n"); nlmsg_free(skb); } return (-22); } else { } { genlmsg_end(skb, msg_header); result = genlmsg_multicast(& pmcraid_event_family, skb, 0U, 0U, 32U); } if (result != 0) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: error (%x) sending aen event message\n", result); } } else { } } else { } return (result); } } static int pmcraid_notify_ccn(struct pmcraid_instance *pinstance ) { int tmp ; { { tmp = pmcraid_notify_aen(pinstance, pinstance->ccn.msg, (pinstance->ccn.hcam)->data_len + 24U); } return (tmp); } } static int pmcraid_notify_ldn(struct pmcraid_instance *pinstance ) { int tmp ; { { tmp = pmcraid_notify_aen(pinstance, pinstance->ldn.msg, (pinstance->ldn.hcam)->data_len + 24U); } return (tmp); } } static void pmcraid_notify_ioastate(struct pmcraid_instance *pinstance , u32 evt ) { { { pinstance->scn.ioa_state = evt; pmcraid_notify_aen(pinstance, & pinstance->scn.msg, 4U); } return; } } static void pmcraid_handle_config_change(struct pmcraid_instance *pinstance ) { struct pmcraid_config_table_entry *cfg_entry ; struct pmcraid_hcam_ccn *ccn_hcam ; struct pmcraid_cmd *cmd ; struct pmcraid_cmd *cfgcmd ; struct pmcraid_resource_entry *res ; unsigned long lock_flags ; unsigned long host_lock_flags ; u32 new_entry ; u32 hidden_entry ; u16 fw_version ; int rc ; __u16 tmp ; int tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp___1 ; struct list_head const *__mptr___1 ; { { res = (struct pmcraid_resource_entry *)0; new_entry = 1U; hidden_entry = 0U; ccn_hcam = (struct pmcraid_hcam_ccn *)pinstance->ccn.hcam; cfg_entry = & ccn_hcam->cfg_entry; tmp = __fswab16((int )(pinstance->inq_data)->fw_version); fw_version = tmp; } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: CCN(%x): %x timestamp: %llx type: %x lost: %x flags: %x \t\t res: %x:%x:%x:%x\n", (pinstance->ccn.hcam)->ilid, (int )(pinstance->ccn.hcam)->op_code, (long long )(pinstance->ccn.hcam)->timestamp1 | ((long long )(pinstance->ccn.hcam)->timestamp2 << 32), (int )(pinstance->ccn.hcam)->notification_type, (int )(pinstance->ccn.hcam)->notification_lost, (int )(pinstance->ccn.hcam)->flags, (pinstance->host)->unique_id, (unsigned int )cfg_entry->resource_type != 2U ? ((unsigned int )cfg_entry->resource_type != 1U ? cfg_entry->resource_address & 255U : 0U) : 1U, (unsigned int )cfg_entry->resource_type == 2U ? ((unsigned int )fw_version <= 2U ? (__le32 )cfg_entry->unique_flags1 : (__le32 )cfg_entry->array_id & 255U) : (cfg_entry->resource_address >> 16) & 255U, 0); } } else { } if ((unsigned int )(pinstance->ccn.hcam)->notification_lost != 0U) { { cfgcmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cfgcmd != (unsigned long )((struct pmcraid_cmd *)0)) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: lost CCN, reading config table\b"); } } else { } { pinstance->reinit_cfg_table = 1U; pmcraid_querycfg(cfgcmd); } } else { { printk("\vMaxRAID: lost CCN, no free cmd for querycfg\n"); } } goto out_notify_apps; } else { } if ((unsigned int )(pinstance->ccn.hcam)->notification_type == 0U && (unsigned int )cfg_entry->resource_type == 2U) { if ((unsigned int )fw_version <= 2U) { hidden_entry = (int )((signed char )cfg_entry->unique_flags1) < 0; } else { hidden_entry = (int )((signed char )cfg_entry->unique_flags1) < 0; } } else { { tmp___0 = pmcraid_expose_resource((int )fw_version, cfg_entry); } if (tmp___0 == 0) { goto out_notify_apps; } else { } } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_149(& pinstance->resource_lock); __mptr = (struct list_head const *)pinstance->used_res_q.next; res = (struct pmcraid_resource_entry *)__mptr; } goto ldv_62738; ldv_62737: { rc = memcmp((void const *)(& res->__annonCompField114.cfg_entry.resource_address), (void const *)(& cfg_entry->resource_address), 4UL); } if (rc == 0) { new_entry = 0U; goto ldv_62736; } else { } __mptr___0 = (struct list_head const *)res->queue.next; res = (struct pmcraid_resource_entry *)__mptr___0; ldv_62738: ; if ((unsigned long )(& res->queue) != (unsigned long )(& pinstance->used_res_q)) { goto ldv_62737; } else { } ldv_62736: ; if (new_entry != 0U) { if (hidden_entry != 0U) { { ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); } goto out_notify_apps; } else { } { tmp___1 = list_empty((struct list_head const *)(& pinstance->free_res_q)); } if (tmp___1 != 0) { { ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); printk("\vMaxRAID: too many resources attached\n"); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_152((pinstance->host)->host_lock); pmcraid_send_hcam(pinstance, 1); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, host_lock_flags); } return; } else { } { __mptr___1 = (struct list_head const *)pinstance->free_res_q.next; res = (struct pmcraid_resource_entry *)__mptr___1; list_del(& res->queue); res->scsi_dev = (struct scsi_device *)0; res->reset_progress = 0U; list_add_tail(& res->queue, & pinstance->used_res_q); } } else { } { __memcpy((void *)(& res->__annonCompField114.cfg_entry), (void const *)cfg_entry, (size_t )pinstance->config_table_entry_size); } if ((unsigned int )(pinstance->ccn.hcam)->notification_type == 2U || hidden_entry != 0U) { if ((unsigned long )res->scsi_dev != (unsigned long )((struct scsi_device *)0)) { if ((unsigned int )fw_version <= 2U) { res->__annonCompField114.cfg_entry.unique_flags1 = (unsigned int )res->__annonCompField114.cfg_entry.unique_flags1 & 127U; } else { res->__annonCompField114.cfg_entry.array_id = (unsigned int )res->__annonCompField114.cfg_entry.array_id & 255U; } { res->change_detected = 2U; res->__annonCompField114.cfg_entry.resource_handle = 0U; schedule_work(& pinstance->worker_q); } } else { { list_move_tail(& res->queue, & pinstance->free_res_q); } } } else if ((unsigned long )res->scsi_dev == (unsigned long )((struct scsi_device *)0)) { { res->change_detected = 1U; schedule_work(& pinstance->worker_q); } } else { } { ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); } out_notify_apps: ; if (pmcraid_disable_aen == 0U) { { pmcraid_notify_ccn(pinstance); } } else { } { cmd = pmcraid_init_hcam(pinstance, 1); } if ((unsigned long )cmd != (unsigned long )((struct pmcraid_cmd *)0)) { { pmcraid_send_hcam_cmd(cmd); } } else { } return; } } static struct pmcraid_ioasc_error *pmcraid_get_error_info(u32 ioasc ) { int i ; { i = 0; goto ldv_62748; ldv_62747: ; if (pmcraid_ioasc_error_table[i].ioasc_code == ioasc) { return ((struct pmcraid_ioasc_error *)(& pmcraid_ioasc_error_table) + (unsigned long )i); } else { } i = i + 1; ldv_62748: ; if ((unsigned int )i <= 66U) { goto ldv_62747; } else { } return ((struct pmcraid_ioasc_error *)0); } } void pmcraid_ioasc_logger(u32 ioasc , struct pmcraid_cmd *cmd ) { struct pmcraid_ioasc_error *error_info ; struct pmcraid_ioasc_error *tmp ; { { tmp = pmcraid_get_error_info(ioasc); error_info = tmp; } if ((unsigned long )error_info == (unsigned long )((struct pmcraid_ioasc_error *)0) || (int )(cmd->drv_inst)->current_log_level < (int )error_info->log_level) { return; } else { } { printk("\vMaxRAID: cmd [%x] for resource %x failed with %x(%s)\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioarcb.resource_handle, ioasc, error_info->error_string); } return; } } static void pmcraid_handle_error_log(struct pmcraid_instance *pinstance ) { struct pmcraid_hcam_ldn *hcam_ldn ; u32 ioasc ; { hcam_ldn = (struct pmcraid_hcam_ldn *)pinstance->ldn.hcam; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: LDN(%x): %x type: %x lost: %x flags: %x overlay id: %x\n", (pinstance->ldn.hcam)->ilid, (int )(pinstance->ldn.hcam)->op_code, (int )(pinstance->ldn.hcam)->notification_type, (int )(pinstance->ldn.hcam)->notification_lost, (int )(pinstance->ldn.hcam)->flags, (int )(pinstance->ldn.hcam)->overlay_id); } } else { } if ((unsigned int )(pinstance->ldn.hcam)->notification_type != 16U) { return; } else { } if ((unsigned int )(pinstance->ldn.hcam)->notification_lost == 128U) { { _dev_info((struct device const *)(& (pinstance->pdev)->dev), "Error notifications lost\n"); } } else { } ioasc = hcam_ldn->error_log.fd_ioasc; if (ioasc == 103350272U || ioasc == 103383040U) { { _dev_info((struct device const *)(& (pinstance->pdev)->dev), "UnitAttention due to IOA Bus Reset\n"); scsi_report_bus_reset(pinstance->host, (int )hcam_ldn->error_log.fd_ra & 255); } } else { } return; } } static void pmcraid_process_ccn(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u32 ioasc ; unsigned long lock_flags ; int tmp ; { { pinstance = cmd->drv_inst; ioasc = (cmd->ioa_cb)->ioasa.ioasc; pinstance->ccn.cmd = (struct pmcraid_cmd *)0; pmcraid_return_cmd(cmd); } if (ioasc == 268435457U) { return; } else { { tmp = atomic_read((atomic_t const *)(& pinstance->ccn.ignore)); } if (tmp == 1) { return; } else if (ioasc != 0U) { { _dev_info((struct device const *)(& (pinstance->pdev)->dev), "Host RCB (CCN) failed with IOASC: 0x%08X\n", ioasc); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_155((pinstance->host)->host_lock); pmcraid_send_hcam(pinstance, 1); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } else { { pmcraid_handle_config_change(pinstance); } } } return; } } static void pmcraid_initiate_reset(struct pmcraid_instance *pinstance ) ; static void pmcraid_set_timestamp(struct pmcraid_cmd *cmd ) ; static void pmcraid_process_ldn(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; struct pmcraid_hcam_ldn *ldn_hcam ; u32 ioasc ; u32 fd_ioasc ; unsigned long lock_flags ; int tmp ; { { pinstance = cmd->drv_inst; ldn_hcam = (struct pmcraid_hcam_ldn *)pinstance->ldn.hcam; ioasc = (cmd->ioa_cb)->ioasa.ioasc; fd_ioasc = ldn_hcam->error_log.fd_ioasc; pinstance->ldn.cmd = (struct pmcraid_cmd *)0; pmcraid_return_cmd(cmd); } if (ioasc == 268435457U) { return; } else { { tmp = atomic_read((atomic_t const *)(& pinstance->ccn.ignore)); } if (tmp == 1) { return; } else if (ioasc == 0U) { { pmcraid_handle_error_log(pinstance); } if (fd_ioasc == 33849344U) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_157((pinstance->host)->host_lock); pmcraid_initiate_reset(pinstance); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } return; } else { } if (fd_ioasc == 110136064U) { { pinstance->timestamp_error = 1U; pmcraid_set_timestamp(cmd); } } else { } } else { { _dev_info((struct device const *)(& (pinstance->pdev)->dev), "Host RCB(LDN) failed with IOASC: 0x%08X\n", ioasc); } } } if (pmcraid_disable_aen == 0U) { { pmcraid_notify_ldn(pinstance); } } else { } { cmd = pmcraid_init_hcam(pinstance, 2); } if ((unsigned long )cmd != (unsigned long )((struct pmcraid_cmd *)0)) { { pmcraid_send_hcam_cmd(cmd); } } else { } return; } } static void pmcraid_register_hcams(struct pmcraid_instance *pinstance ) { { { pmcraid_send_hcam(pinstance, 1); pmcraid_send_hcam(pinstance, 2); } return; } } static void pmcraid_unregister_hcams(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; { { pinstance = cmd->drv_inst; atomic_set(& pinstance->ccn.ignore, 1); atomic_set(& pinstance->ldn.ignore, 1); } if ((unsigned int )*((unsigned short *)pinstance + 6100UL) == 256U || (unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { { pinstance->force_ioa_reset = 0U; pinstance->ioa_unit_check = 0U; pinstance->ioa_state = 5U; pmcraid_reset_alert(cmd); } return; } else { } { pmcraid_cancel_ldn(cmd); } return; } } static void pmcraid_reinit_buffers(struct pmcraid_instance *pinstance ) ; static int pmcraid_reset_enable_ioa(struct pmcraid_instance *pinstance ) { u32 intrs ; { { pmcraid_reinit_buffers(pinstance); intrs = pmcraid_read_interrupts(pinstance); pmcraid_enable_interrupts(pinstance, 2617245727U); } if ((int )intrs < 0) { if ((unsigned int )pinstance->interrupt_mode == 0U) { { iowrite32(2147483648U, pinstance->int_regs.ioa_host_interrupt_mask_reg); iowrite32(2147483648U, pinstance->int_regs.ioa_host_interrupt_clr_reg); } } else { } return (1); } else { return (0); } } } static void pmcraid_soft_reset(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u32 int_reg ; u32 doorbell ; unsigned long tmp ; int tmp___0 ; unsigned int tmp___1 ; { { pinstance = cmd->drv_inst; cmd->cmd_done = & pmcraid_ioa_reset; cmd->timer.data = (unsigned long )cmd; tmp = msecs_to_jiffies(60000U); cmd->timer.expires = (unsigned long )jiffies + tmp; cmd->timer.function = (void (*)(unsigned long ))(& pmcraid_timeout_handler); tmp___0 = timer_pending((struct timer_list const *)(& cmd->timer)); } if (tmp___0 == 0) { { add_timer(& cmd->timer); } } else { } doorbell = 1082130432U; if ((unsigned int )pinstance->interrupt_mode != 0U) { { iowrite32(64U, pinstance->int_regs.host_ioa_interrupt_reg); ioread32(pinstance->int_regs.host_ioa_interrupt_reg); } } else { } { iowrite32(doorbell, pinstance->int_regs.host_ioa_interrupt_reg); ioread32(pinstance->int_regs.host_ioa_interrupt_reg); int_reg = ioread32(pinstance->int_regs.ioa_host_interrupt_reg); } if (pmcraid_debug_log != 0U) { { tmp___1 = ioread32(pinstance->int_regs.host_ioa_interrupt_reg); printk("\016MaxRAID: Waiting for IOA to become operational %x:%x\n", tmp___1, int_reg); } } else { } return; } } static void pmcraid_get_dump(struct pmcraid_instance *pinstance ) { { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: %s is not yet implemented\n", "pmcraid_get_dump"); } } else { } return; } } static void pmcraid_fail_outstanding_cmds(struct pmcraid_instance *pinstance ) { struct pmcraid_cmd *cmd ; struct pmcraid_cmd *temp ; unsigned long lock_flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct scsi_cmnd *scsi_cmd ; __le32 resp ; struct list_head const *__mptr___1 ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_159(& pinstance->pending_pool_lock); __mptr = (struct list_head const *)pinstance->pending_cmd_pool.next; cmd = (struct pmcraid_cmd *)__mptr + 0xffffffffffffffe0UL; __mptr___0 = (struct list_head const *)cmd->free_list.next; temp = (struct pmcraid_cmd *)__mptr___0 + 0xffffffffffffffe0UL; } goto ldv_62817; ldv_62816: { list_del(& cmd->free_list); ldv_spin_unlock_irqrestore_144(& pinstance->pending_pool_lock, lock_flags); (cmd->ioa_cb)->ioasa.ioasc = 268435457U; (cmd->ioa_cb)->ioasa.ilid = 4294967295U; ldv_del_timer_161(& cmd->timer); } if ((unsigned long )cmd->scsi_cmd != (unsigned long )((struct scsi_cmnd *)0)) { { scsi_cmd = cmd->scsi_cmd; resp = (cmd->ioa_cb)->ioarcb.response_handle; scsi_cmd->result = scsi_cmd->result | 458752; scsi_dma_unmap(scsi_cmd); pmcraid_return_cmd(cmd); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: failing(%d) CDB[0] = %x result: %x\n", resp >> 2, (int )(cmd->ioa_cb)->ioarcb.cdb[0], scsi_cmd->result); } } else { } { (*(scsi_cmd->scsi_done))(scsi_cmd); } } else if ((unsigned long )cmd->cmd_done == (unsigned long )(& pmcraid_internal_done) || (unsigned long )cmd->cmd_done == (unsigned long )(& pmcraid_erp_done)) { { (*(cmd->cmd_done))(cmd); } } else if ((unsigned long )cmd->cmd_done != (unsigned long )(& pmcraid_ioa_reset) && (unsigned long )cmd->cmd_done != (unsigned long )(& pmcraid_ioa_shutdown_done)) { { pmcraid_return_cmd(cmd); } } else { } { atomic_dec(& pinstance->outstanding_cmds); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_162(& pinstance->pending_pool_lock); cmd = temp; __mptr___1 = (struct list_head const *)temp->free_list.next; temp = (struct pmcraid_cmd *)__mptr___1 + 0xffffffffffffffe0UL; } ldv_62817: ; if ((unsigned long )(& cmd->free_list) != (unsigned long )(& pinstance->pending_cmd_pool)) { goto ldv_62816; } else { } { ldv_spin_unlock_irqrestore_144(& pinstance->pending_pool_lock, lock_flags); } return; } } static void pmcraid_ioa_reset(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; u8 reset_complete ; unsigned int tmp ; int tmp___0 ; { pinstance = cmd->drv_inst; reset_complete = 0U; pinstance->ioa_reset_in_progress = 1U; if ((unsigned long )pinstance->reset_cmd != (unsigned long )cmd) { { printk("\vMaxRAID: reset is called with different command block\n"); pinstance->reset_cmd = cmd; } } else { } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_engine: state = %d, command = %p\n", (int )pinstance->ioa_state, cmd); } } else { } { if ((int )pinstance->ioa_state == 2) { goto case_2; } else { } if ((int )pinstance->ioa_state == 6) { goto case_6; } else { } if ((int )pinstance->ioa_state == 1) { goto case_1; } else { } if ((int )pinstance->ioa_state == 5) { goto case_5; } else { } if ((int )pinstance->ioa_state == 4) { goto case_4; } else { } if ((int )pinstance->ioa_state == 3) { goto case_3; } else { } if ((int )pinstance->ioa_state == 7) { goto case_7; } else { } if ((int )pinstance->ioa_state == 0) { goto case_0; } else { } goto switch_default; case_2: /* CIL Label */ { printk("\vMaxRAID: IOA is offline no reset is possible\n"); reset_complete = 1U; } goto ldv_62825; case_6: /* CIL Label */ { pmcraid_disable_interrupts(pinstance, 4294967295U); pinstance->ioa_state = 5U; pmcraid_reset_alert(cmd); } goto ldv_62825; case_1: /* CIL Label */ { scsi_block_requests(pinstance->host); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { { tmp = ioread32(pinstance->ioa_status); } if ((int )tmp < 0) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: sticky bit set, bring-up\n"); } } else { } { pinstance->ioa_state = 7U; pmcraid_reinit_cmdblk(cmd); pmcraid_identify_hrrq(cmd); } } else { { pinstance->ioa_state = 3U; pmcraid_soft_reset(cmd); } } } else { { pinstance->ioa_state = 5U; pmcraid_reset_alert(cmd); } } goto ldv_62825; case_5: /* CIL Label */ { pinstance->ioa_state = 4U; pmcraid_start_bist(cmd); } goto ldv_62825; case_4: /* CIL Label */ pinstance->ioa_reset_attempts = (u8 )((int )pinstance->ioa_reset_attempts + 1); if ((unsigned int )pinstance->ioa_reset_attempts > 3U) { { pinstance->ioa_reset_attempts = 0U; printk("\vMaxRAID: IOA didn\'t respond marking it as dead\n"); pinstance->ioa_state = 2U; } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { { pmcraid_notify_ioastate(pinstance, 285212677U); } } else { { pmcraid_notify_ioastate(pinstance, 285212674U); } } reset_complete = 1U; goto ldv_62825; } else { } { pci_restore_state(pinstance->pdev); pmcraid_fail_outstanding_cmds(pinstance); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: unit check is active\n"); } } else { } { pinstance->ioa_unit_check = 0U; pmcraid_get_dump(pinstance); pinstance->ioa_reset_attempts = (u8 )((int )pinstance->ioa_reset_attempts - 1); pinstance->ioa_state = 5U; pmcraid_reset_alert(cmd); } goto ldv_62825; } else { } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: bringing down the adapter\n"); } } else { } { pinstance->ioa_shutdown_type = 0U; pinstance->ioa_bringdown = 0U; pinstance->ioa_state = 1U; pmcraid_notify_ioastate(pinstance, 285212676U); reset_complete = 1U; } } else { { tmp___0 = pmcraid_reset_enable_ioa(pinstance); } if (tmp___0 != 0) { pinstance->ioa_state = 7U; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: bringing up the adapter\n"); } } else { } { pmcraid_reinit_cmdblk(cmd); pmcraid_identify_hrrq(cmd); } } else { { pinstance->ioa_state = 3U; pmcraid_soft_reset(cmd); } } } goto ldv_62825; case_3: /* CIL Label */ ; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: In softreset proceeding with bring-up\n"); } } else { } { pinstance->ioa_state = 7U; pmcraid_identify_hrrq(cmd); } goto ldv_62825; case_7: /* CIL Label */ pinstance->ioa_state = 0U; reset_complete = 1U; goto ldv_62825; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ ; if ((unsigned int )*((unsigned char *)pinstance + 12201UL) == 0U) { { pmcraid_notify_ioastate(pinstance, 285212673U); reset_complete = 1U; } } else { if ((unsigned int )*((unsigned char *)pinstance + 12201UL) != 0U) { pinstance->ioa_state = 6U; } else { } { pmcraid_reinit_cmdblk(cmd); pmcraid_unregister_hcams(cmd); } } goto ldv_62825; switch_break: /* CIL Label */ ; } ldv_62825: ; if ((unsigned int )reset_complete != 0U) { { pinstance->ioa_reset_in_progress = 0U; pinstance->ioa_reset_attempts = 0U; pinstance->reset_cmd = (struct pmcraid_cmd *)0; pinstance->ioa_shutdown_type = 0U; pinstance->ioa_bringdown = 0U; pmcraid_return_cmd(cmd); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { { pmcraid_register_hcams(pinstance); } } else { } { __wake_up(& pinstance->reset_wait_q, 3U, 0, (void *)0); } } else { } return; } } static void pmcraid_initiate_reset(struct pmcraid_instance *pinstance ) { struct pmcraid_cmd *cmd ; { if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { { scsi_block_requests(pinstance->host); cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { printk("\vMaxRAID: no cmnd blocks for initiate_reset\n"); } return; } else { } { pinstance->ioa_shutdown_type = 0U; pinstance->reset_cmd = cmd; pinstance->force_ioa_reset = 1U; pmcraid_notify_ioastate(pinstance, 285212672U); pmcraid_ioa_reset(cmd); } } else { } return; } } static int pmcraid_reset_reload(struct pmcraid_instance *pinstance , u8 shutdown_type , u8 target_state ) { struct pmcraid_cmd *reset_cmd ; unsigned long lock_flags ; int reset ; wait_queue_t __wait ; long __ret ; long __int ; long tmp ; wait_queue_t __wait___0 ; long __ret___0 ; long __int___0 ; long tmp___0 ; { { reset_cmd = (struct pmcraid_cmd *)0; reset = 1; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_164((pinstance->host)->host_lock); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_reload: reset is already in progress\n"); } } else { } { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); __might_sleep("drivers/scsi/pmcraid.c", 2375, 0); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { goto ldv_62846; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_62852: { tmp = prepare_to_wait_event(& pinstance->reset_wait_q, & __wait, 2); __int = tmp; } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { goto ldv_62851; } else { } { schedule(); } goto ldv_62852; ldv_62851: { finish_wait(& pinstance->reset_wait_q, & __wait); } ldv_62846: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_166((pinstance->host)->host_lock); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 2U) { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_reload: IOA is dead\n"); } } else { } return (reset); } else if ((int )pinstance->ioa_state == (int )target_state) { reset = 0; } else { } } else { } if (reset != 0) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_reload: proceeding with reset\n"); } } else { } { scsi_block_requests(pinstance->host); reset_cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )reset_cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { printk("\vMaxRAID: no free cmnd for reset_reload\n"); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } return (reset); } else { } if ((unsigned int )shutdown_type == 1U) { pinstance->ioa_bringdown = 1U; } else { } pinstance->ioa_shutdown_type = shutdown_type; pinstance->reset_cmd = reset_cmd; pinstance->force_ioa_reset = (unsigned char )reset; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_reload: initiating reset\n"); } } else { } { pmcraid_ioa_reset(reset_cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_reload: waiting for reset to complete\n"); } } else { } { __might_sleep("drivers/scsi/pmcraid.c", 2412, 0); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { goto ldv_62854; } else { } { __ret___0 = 0L; INIT_LIST_HEAD(& __wait___0.task_list); __wait___0.flags = 0U; } ldv_62860: { tmp___0 = prepare_to_wait_event(& pinstance->reset_wait_q, & __wait___0, 2); __int___0 = tmp___0; } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U) { goto ldv_62859; } else { } { schedule(); } goto ldv_62860; ldv_62859: { finish_wait(& pinstance->reset_wait_q, & __wait___0); } ldv_62854: ; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: reset_reload: reset is complete !!\n"); } } else { } { scsi_unblock_requests(pinstance->host); } if ((int )pinstance->ioa_state == (int )target_state) { reset = 0; } else { } } else { } return (reset); } } static int pmcraid_reset_bringdown(struct pmcraid_instance *pinstance ) { int tmp ; { { tmp = pmcraid_reset_reload(pinstance, 1, 1); } return (tmp); } } static int pmcraid_reset_bringup(struct pmcraid_instance *pinstance ) { int tmp ; { { pmcraid_notify_ioastate(pinstance, 285212672U); tmp = pmcraid_reset_reload(pinstance, 0, 0); } return (tmp); } } static void pmcraid_request_sense(struct pmcraid_cmd *cmd ) { struct pmcraid_ioarcb *ioarcb ; struct pmcraid_ioadl_desc *ioadl ; void *tmp ; { { ioarcb = & (cmd->ioa_cb)->ioarcb; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); tmp = pci_alloc_consistent((cmd->drv_inst)->pdev, 96UL, & cmd->__annonCompField113.__annonCompField112.sense_buffer_dma); cmd->__annonCompField113.__annonCompField112.sense_buffer = (u8 *)tmp; } if ((unsigned long )cmd->__annonCompField113.__annonCompField112.sense_buffer == (unsigned long )((u8 *)0U)) { { printk("\vMaxRAID: couldn\'t allocate sense buffer for request sense\n"); pmcraid_erp_done(cmd); } return; } else { } { __memset((void *)(& (cmd->ioa_cb)->ioasa), 0, 304UL); __memset((void *)(& ioarcb->cdb), 0, 16UL); ioarcb->request_flags0 = 44U; ioarcb->request_type = 0U; ioarcb->cdb[0] = 3U; ioarcb->cdb[4] = 96U; ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + 80ULL; ioarcb->ioadl_length = 16U; ioarcb->data_transfer_length = 96U; ioadl->address = cmd->__annonCompField113.__annonCompField112.sense_buffer_dma; ioadl->data_len = 96U; ioadl->flags = 64U; pmcraid_send_cmd(cmd, & pmcraid_erp_done, 7500UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_cancel_all(struct pmcraid_cmd *cmd , u32 sense ) { struct scsi_cmnd *scsi_cmd ; struct pmcraid_ioarcb *ioarcb ; struct pmcraid_resource_entry *res ; void (*cmd_done)(struct pmcraid_cmd * ) ; { { scsi_cmd = cmd->scsi_cmd; ioarcb = & (cmd->ioa_cb)->ioarcb; res = (struct pmcraid_resource_entry *)(scsi_cmd->device)->hostdata; cmd_done = sense != 0U ? & pmcraid_erp_done : & pmcraid_request_sense; __memset((void *)(& ioarcb->cdb), 0, 16UL); ioarcb->request_flags0 = 16U; ioarcb->request_type = 1U; ioarcb->cdb[0] = 206U; } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 1U) { ioarcb->cdb[1] = 128U; } else { } { ioarcb->ioadl_bus_addr = 0ULL; ioarcb->ioadl_length = 0U; ioarcb->data_transfer_length = 0U; ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr & 0xffffffffffffffe0ULL; pmcraid_send_cmd(cmd, cmd_done, 7500UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_frame_auto_sense(struct pmcraid_cmd *cmd ) { u8 *sense_buf ; struct pmcraid_resource_entry *res ; struct pmcraid_ioasa *ioasa ; u32 ioasc ; u32 failing_lba ; { { sense_buf = (cmd->scsi_cmd)->sense_buffer; res = (struct pmcraid_resource_entry *)((cmd->scsi_cmd)->device)->hostdata; ioasa = & (cmd->ioa_cb)->ioasa; ioasc = ioasa->ioasc; failing_lba = 0U; __memset((void *)sense_buf, 0, 96UL); (cmd->scsi_cmd)->result = 2; } if (((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 2U && ioasc == 51448832U) && ioasa->u.vset.failing_lba_hi != 0U) { *sense_buf = 114U; *(sense_buf + 1UL) = (u8 )(ioasc >> 24); *(sense_buf + 2UL) = (u8 )((ioasc & 16711680U) >> 16); *(sense_buf + 3UL) = (u8 )((ioasc & 65280U) >> 8); *(sense_buf + 7UL) = 12U; *(sense_buf + 8UL) = 0U; *(sense_buf + 9UL) = 10U; *(sense_buf + 10UL) = 128U; failing_lba = ioasa->u.vset.failing_lba_hi; *(sense_buf + 12UL) = (u8 )(failing_lba >> 24); *(sense_buf + 13UL) = (u8 )((failing_lba & 16711680U) >> 16); *(sense_buf + 14UL) = (u8 )((failing_lba & 65280U) >> 8); *(sense_buf + 15UL) = (u8 )failing_lba; failing_lba = ioasa->u.vset.failing_lba_lo; *(sense_buf + 16UL) = (u8 )(failing_lba >> 24); *(sense_buf + 17UL) = (u8 )((failing_lba & 16711680U) >> 16); *(sense_buf + 18UL) = (u8 )((failing_lba & 65280U) >> 8); *(sense_buf + 19UL) = (u8 )failing_lba; } else { *sense_buf = 112U; *(sense_buf + 2UL) = (u8 )(ioasc >> 24); *(sense_buf + 12UL) = (u8 )((ioasc & 16711680U) >> 16); *(sense_buf + 13UL) = (u8 )((ioasc & 65280U) >> 8); if (ioasc == 51448832U) { if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 2U) { failing_lba = ioasa->u.vset.failing_lba_lo; } else { } *sense_buf = (u8 )((unsigned int )*sense_buf | 128U); *(sense_buf + 3UL) = (u8 )(failing_lba >> 24); *(sense_buf + 4UL) = (u8 )(failing_lba >> 16); *(sense_buf + 5UL) = (u8 )(failing_lba >> 8); *(sense_buf + 6UL) = (u8 )failing_lba; } else { } *(sense_buf + 7UL) = 6U; } return; } } static int pmcraid_error_handler(struct pmcraid_cmd *cmd ) { struct scsi_cmnd *scsi_cmd ; struct pmcraid_resource_entry *res ; struct pmcraid_instance *pinstance ; struct pmcraid_ioasa *ioasa ; u32 ioasc ; u32 masked_ioasc ; u32 sense_copied ; u8 op ; u8 __type ; u8 op___0 ; u8 __type___0 ; short sense_len ; int data_size ; u16 __min1 ; u16 __min2 ; { scsi_cmd = cmd->scsi_cmd; res = (struct pmcraid_resource_entry *)(scsi_cmd->device)->hostdata; pinstance = cmd->drv_inst; ioasa = & (cmd->ioa_cb)->ioasa; ioasc = ioasa->ioasc; masked_ioasc = ioasc & 4294967040U; sense_copied = 0U; if ((unsigned long )res == (unsigned long )((struct pmcraid_resource_entry *)0)) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: resource pointer is NULL\n"); } } else { } return (0); } else { } op___0 = *(scsi_cmd->cmnd); __type___0 = 0U; if (((unsigned int )op___0 == 8U || (unsigned int )op___0 == 40U) || ((unsigned int )op___0 == 168U || (unsigned int )op___0 == 136U)) { __type___0 = 1U; } else if (((unsigned int )op___0 == 10U || (unsigned int )op___0 == 42U) || ((unsigned int )op___0 == 170U || (unsigned int )op___0 == 138U)) { __type___0 = 2U; } else { } if ((unsigned int )__type___0 == 1U) { { atomic_inc(& res->read_failures); } } else { op = *(scsi_cmd->cmnd); __type = 0U; if (((unsigned int )op == 8U || (unsigned int )op == 40U) || ((unsigned int )op == 168U || (unsigned int )op == 136U)) { __type = 1U; } else if (((unsigned int )op == 10U || (unsigned int )op == 42U) || ((unsigned int )op == 170U || (unsigned int )op == 138U)) { __type = 2U; } else { } if ((unsigned int )__type == 2U) { { atomic_inc(& res->write_failures); } } else { } } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type != 1U && masked_ioasc != 71599360U) { { pmcraid_frame_auto_sense(cmd); } } else { } { pmcraid_ioasc_logger(ioasc, cmd); } { if (masked_ioasc == 190447616U) { goto case_190447616; } else { } if (masked_ioasc == 86310912U) { goto case_86310912; } else { } if (masked_ioasc == 67436544U) { goto case_67436544; } else { } if (masked_ioasc == 37683200U) { goto case_37683200; } else { } if (masked_ioasc == 51448832U) { goto case_51448832; } else { } if (masked_ioasc == 103350272U) { goto case_103350272; } else { } if (masked_ioasc == 103383040U) { goto case_103383040; } else { } if (masked_ioasc == 71599360U) { goto case_71599360; } else { } if (masked_ioasc == 33817088U) { goto case_33817088; } else { } goto switch_default; case_190447616: /* CIL Label */ scsi_cmd->result = scsi_cmd->result | 327680; goto ldv_62907; case_86310912: /* CIL Label */ ; case_67436544: /* CIL Label */ scsi_cmd->result = scsi_cmd->result | 65536; goto ldv_62907; case_37683200: /* CIL Label */ res->sync_reqd = 1U; scsi_cmd->result = scsi_cmd->result | 786432; goto ldv_62907; case_51448832: /* CIL Label */ scsi_cmd->result = scsi_cmd->result | 655360; goto ldv_62907; case_103350272: /* CIL Label */ ; case_103383040: /* CIL Label */ ; if ((unsigned int )res->reset_progress == 0U) { { scsi_report_bus_reset(pinstance->host, (int )(scsi_cmd->device)->channel); } } else { } scsi_cmd->result = scsi_cmd->result | 458752; goto ldv_62907; case_71599360: /* CIL Label */ scsi_cmd->result = (int )((u32 )scsi_cmd->result | (ioasc & 255U)); res->sync_reqd = 1U; if ((ioasc & 255U) != 2U && (ioasc & 255U) != 48U) { return (0); } else { } if ((unsigned int )ioasa->auto_sense_length != 0U) { { sense_len = (short )ioasa->auto_sense_length; __min1 = (unsigned short )sense_len; __min2 = 96U; data_size = (int )__min1 < (int )__min2 ? __min1 : __min2; __memcpy((void *)scsi_cmd->sense_buffer, (void const *)(& ioasa->sense_data), (size_t )data_size); sense_copied = 1U; } } else { } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 1U) { { pmcraid_cancel_all(cmd, sense_copied); } } else if (sense_copied != 0U) { { pmcraid_erp_done(cmd); } } else { { pmcraid_request_sense(cmd); } } return (1); case_33817088: /* CIL Label */ ; goto ldv_62907; switch_default: /* CIL Label */ ; if (ioasc >> 24 > 1U) { scsi_cmd->result = scsi_cmd->result | 458752; } else { } goto ldv_62907; switch_break: /* CIL Label */ ; } ldv_62907: ; return (0); } } static int pmcraid_reset_device(struct scsi_cmnd *scsi_cmd , unsigned long timeout , u8 modifier ) { struct pmcraid_cmd *cmd ; struct pmcraid_instance *pinstance ; struct pmcraid_resource_entry *res ; struct pmcraid_ioarcb *ioarcb ; unsigned long lock_flags ; u32 ioasc ; { pinstance = (struct pmcraid_instance *)(& ((scsi_cmd->device)->host)->hostdata); res = (struct pmcraid_resource_entry *)(scsi_cmd->device)->hostdata; if ((unsigned long )res == (unsigned long )((struct pmcraid_resource_entry *)0)) { { sdev_prefix_printk("\v", (struct scsi_device const *)scsi_cmd->device, (char const *)0, "reset_device: NULL resource pointer\n"); } return (8195); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_170((pinstance->host)->host_lock); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U || (unsigned int )*((unsigned char *)pinstance + 12200UL) == 2U) { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } return (8195); } else { } res->reset_progress = 1U; if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: Resetting %s resource with addr %x\n", ((int )modifier & 64) == 0 ? (((int )modifier & 32) != 0 ? (char *)"TARGET" : (char *)"BUS") : (char *)"LUN", res->__annonCompField114.cfg_entry.resource_address); } } else { } { cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); printk("\vMaxRAID: %s: no cmd blocks are available\n", "pmcraid_reset_device"); } return (8195); } else { } ioarcb = & (cmd->ioa_cb)->ioarcb; ioarcb->resource_handle = res->__annonCompField114.cfg_entry.resource_handle; ioarcb->request_type = 1U; ioarcb->cdb[0] = 195U; if ((unsigned int )modifier != 0U) { modifier = (u8 )((unsigned int )modifier | 128U); } else { } { ioarcb->cdb[1] = modifier; ldv_init_completion_173(& cmd->wait_for_completion); cmd->completion_req = 1U; } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: cmd(CDB[0] = %x) for %x with index = %d\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioarcb.resource_handle, (cmd->ioa_cb)->ioarcb.response_handle >> 2); } } else { } { pmcraid_send_cmd(cmd, & pmcraid_internal_done, timeout, & pmcraid_timeout_handler); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); ldv_wait_for_completion_175(& cmd->wait_for_completion); pmcraid_return_cmd(cmd); res->reset_progress = 0U; ioasc = (cmd->ioa_cb)->ioasa.ioasc; } return (ioasc >> 24 != 0U ? 8195 : 8194); } } static int _pmcraid_io_done(struct pmcraid_cmd *cmd , int reslen , int ioasc ) { struct scsi_cmnd *scsi_cmd ; int rc ; { { scsi_cmd = cmd->scsi_cmd; rc = 0; scsi_set_resid(scsi_cmd, reslen); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: response(%d) CDB[0] = %x ioasc:result: %x:%x\n", (cmd->ioa_cb)->ioarcb.response_handle >> 2, (int )(cmd->ioa_cb)->ioarcb.cdb[0], ioasc, scsi_cmd->result); } } else { } if (ioasc >> 24 != 0) { { rc = pmcraid_error_handler(cmd); } } else { } if (rc == 0) { { scsi_dma_unmap(scsi_cmd); (*(scsi_cmd->scsi_done))(scsi_cmd); } } else { } return (rc); } } static void pmcraid_io_done(struct pmcraid_cmd *cmd ) { u32 ioasc ; u32 reslen ; int tmp ; { { ioasc = (cmd->ioa_cb)->ioasa.ioasc; reslen = (cmd->ioa_cb)->ioasa.residual_data_length; tmp = _pmcraid_io_done(cmd, (int )reslen, (int )ioasc); } if (tmp == 0) { { pmcraid_return_cmd(cmd); } } else { } return; } } static struct pmcraid_cmd *pmcraid_abort_cmd(struct pmcraid_cmd *cmd ) { struct pmcraid_cmd *cancel_cmd ; struct pmcraid_instance *pinstance ; struct pmcraid_resource_entry *res ; { { pinstance = cmd->drv_inst; res = (struct pmcraid_resource_entry *)((cmd->scsi_cmd)->device)->hostdata; cancel_cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cancel_cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { printk("\vMaxRAID: %s: no cmd blocks are available\n", "pmcraid_abort_cmd"); } return ((struct pmcraid_cmd *)0); } else { } { pmcraid_prepare_cancel_cmd(cancel_cmd, cmd); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: aborting command CDB[0]= %x with index = %d\n", (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioarcb.response_handle >> 2); } } else { } { ldv_init_completion_173(& cancel_cmd->wait_for_completion); cancel_cmd->completion_req = 1U; } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: command (%d) CDB[0] = %x for %x\n", (cancel_cmd->ioa_cb)->ioarcb.response_handle >> 2, (int )(cancel_cmd->ioa_cb)->ioarcb.cdb[0], (cancel_cmd->ioa_cb)->ioarcb.resource_handle); } } else { } { pmcraid_send_cmd(cancel_cmd, & pmcraid_internal_done, 15000UL, & pmcraid_timeout_handler); } return (cancel_cmd); } } static int pmcraid_abort_complete(struct pmcraid_cmd *cancel_cmd ) { struct pmcraid_resource_entry *res ; u32 ioasc ; { { ldv_wait_for_completion_177(& cancel_cmd->wait_for_completion); res = cancel_cmd->__annonCompField113.res; cancel_cmd->__annonCompField113.res = (struct pmcraid_resource_entry *)0; ioasc = (cancel_cmd->ioa_cb)->ioasa.ioasc; } if (ioasc == 103350272U || ioasc == 37683200U) { if (ioasc == 37683200U) { res->sync_reqd = 1U; } else { } ioasc = 0U; } else { } { pmcraid_return_cmd(cancel_cmd); } return (ioasc >> 24 != 0U ? 8195 : 8194); } } static int pmcraid_eh_abort_handler(struct scsi_cmnd *scsi_cmd ) { struct pmcraid_instance *pinstance ; struct pmcraid_cmd *cmd ; struct pmcraid_resource_entry *res ; unsigned long host_lock_flags ; unsigned long pending_lock_flags ; struct pmcraid_cmd *cancel_cmd ; int cmd_found ; int rc ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { cancel_cmd = (struct pmcraid_cmd *)0; cmd_found = 0; rc = 8195; pinstance = (struct pmcraid_instance *)(& ((scsi_cmd->device)->host)->hostdata); scmd_printk("\016", (struct scsi_cmnd const *)scsi_cmd, "I/O command timed out, aborting it.\n"); res = (struct pmcraid_resource_entry *)(scsi_cmd->device)->hostdata; } if ((unsigned long )res == (unsigned long )((struct pmcraid_resource_entry *)0)) { return (rc); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_178((pinstance->host)->host_lock); } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U || (unsigned int )*((unsigned char *)pinstance + 12200UL) == 2U) { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, host_lock_flags); } return (rc); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_180(& pinstance->pending_pool_lock); __mptr = (struct list_head const *)pinstance->pending_cmd_pool.next; cmd = (struct pmcraid_cmd *)__mptr + 0xffffffffffffffe0UL; } goto ldv_62975; ldv_62974: ; if ((unsigned long )cmd->scsi_cmd == (unsigned long )scsi_cmd) { cmd_found = 1; goto ldv_62973; } else { } __mptr___0 = (struct list_head const *)cmd->free_list.next; cmd = (struct pmcraid_cmd *)__mptr___0 + 0xffffffffffffffe0UL; ldv_62975: ; if ((unsigned long )(& cmd->free_list) != (unsigned long )(& pinstance->pending_cmd_pool)) { goto ldv_62974; } else { } ldv_62973: { ldv_spin_unlock_irqrestore_144(& pinstance->pending_pool_lock, pending_lock_flags); } if (cmd_found != 0) { { cancel_cmd = pmcraid_abort_cmd(cmd); } } else { } { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, host_lock_flags); } if ((unsigned long )cancel_cmd != (unsigned long )((struct pmcraid_cmd *)0)) { { cancel_cmd->__annonCompField113.res = (struct pmcraid_resource_entry *)((cmd->scsi_cmd)->device)->hostdata; rc = pmcraid_abort_complete(cancel_cmd); } } else { } return (cmd_found != 0 ? rc : 8194); } } static int pmcraid_eh_device_reset_handler(struct scsi_cmnd *scmd ) { int tmp ; { { scmd_printk("\016", (struct scsi_cmnd const *)scmd, "resetting device due to an I/O command timeout.\n"); tmp = pmcraid_reset_device(scmd, 15000UL, 64); } return (tmp); } } static int pmcraid_eh_bus_reset_handler(struct scsi_cmnd *scmd ) { int tmp ; { { scmd_printk("\016", (struct scsi_cmnd const *)scmd, "Doing bus reset due to an I/O command timeout.\n"); tmp = pmcraid_reset_device(scmd, 15000UL, 16); } return (tmp); } } static int pmcraid_eh_target_reset_handler(struct scsi_cmnd *scmd ) { int tmp ; { { scmd_printk("\016", (struct scsi_cmnd const *)scmd, "Doing target reset due to an I/O command timeout.\n"); tmp = pmcraid_reset_device(scmd, 15000UL, 32); } return (tmp); } } static int pmcraid_eh_host_reset_handler(struct scsi_cmnd *scmd ) { unsigned long interval ; int waits ; unsigned int tmp ; struct pmcraid_instance *pinstance ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { interval = 10000UL; tmp = jiffies_to_msecs(37500UL); waits = (int )((unsigned long )tmp / interval); pinstance = (struct pmcraid_instance *)(& ((scmd->device)->host)->hostdata); } goto ldv_62992; ldv_62991: { tmp___0 = atomic_read((atomic_t const *)(& pinstance->outstanding_cmds)); } if (tmp___0 <= 2) { return (8194); } else { } { msleep((unsigned int )interval); } ldv_62992: tmp___1 = waits; waits = waits - 1; if (tmp___1 != 0) { goto ldv_62991; } else { } { dev_err((struct device const *)(& (pinstance->pdev)->dev), "Adapter being reset due to an I/O command timeout.\n"); tmp___2 = pmcraid_reset_bringup(pinstance); } return (tmp___2 == 0 ? 8194 : 8195); } } struct pmcraid_ioadl_desc *pmcraid_init_ioadls(struct pmcraid_cmd *cmd , int sgcount ) { struct pmcraid_ioadl_desc *ioadl ; struct pmcraid_ioarcb *ioarcb ; int ioadl_count ; int __x ; int __d ; { ioarcb = & (cmd->ioa_cb)->ioarcb; ioadl_count = 0; if ((unsigned int )ioarcb->add_cmd_param_length != 0U) { ioadl_count = ((int )ioarcb->add_cmd_param_length + 15) / 16; } else { } ioarcb->ioadl_length = (__le32 )((unsigned long )sgcount) * 16U; if ((unsigned int )(sgcount + ioadl_count) > 27U) { ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr & 0xffffffffffffffe0ULL; ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + 128ULL; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl) + 3UL; } else { ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + (unsigned long long )(((unsigned long )ioadl_count + 5UL) * 16UL); ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl) + (unsigned long )ioadl_count; __x = sgcount + ioadl_count; __d = 8; ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr | (__le64 )(__x > 0 ? (__x + __d / 2) / __d : (__x - __d / 2) / __d); } return (ioadl); } } static int pmcraid_build_ioadl(struct pmcraid_instance *pinstance , struct pmcraid_cmd *cmd ) { int i ; int nseg ; struct scatterlist *sglist ; struct scsi_cmnd *scsi_cmd ; struct pmcraid_ioarcb *ioarcb ; struct pmcraid_ioadl_desc *ioadl ; u32 length ; unsigned int tmp ; { { scsi_cmd = cmd->scsi_cmd; ioarcb = & (cmd->ioa_cb)->ioarcb; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); tmp = scsi_bufflen(scsi_cmd); length = tmp; } if (length == 0U) { return (0); } else { } { nseg = scsi_dma_map(scsi_cmd); } if (nseg < 0) { { scmd_printk("\v", (struct scsi_cmnd const *)scsi_cmd, "scsi_map_dma failed!\n"); } return (-1); } else if (nseg > 27) { { scsi_dma_unmap(scsi_cmd); scmd_printk("\v", (struct scsi_cmnd const *)scsi_cmd, "sg count is (%d) more than allowed!\n", nseg); } return (-1); } else { } if ((unsigned int )scsi_cmd->sc_data_direction == 1U) { ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 128U); } else { } { ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 4U); ioarcb->data_transfer_length = length; ioadl = pmcraid_init_ioadls(cmd, nseg); i = 0; sglist = scsi_sglist(scsi_cmd); } goto ldv_63018; ldv_63017: { (ioadl + (unsigned long )i)->data_len = sglist->dma_length; (ioadl + (unsigned long )i)->address = sglist->dma_address; (ioadl + (unsigned long )i)->flags = 0U; i = i + 1; sglist = sg_next(sglist); } ldv_63018: ; if (i < nseg) { goto ldv_63017; } else { } (ioadl + ((unsigned long )i + 0xffffffffffffffffUL))->flags = 64U; return (0); } } static void pmcraid_free_sglist(struct pmcraid_sglist *sglist ) { int i ; struct page *tmp ; { i = 0; goto ldv_63025; ldv_63024: { tmp = sg_page((struct scatterlist *)(& sglist->scatterlist) + (unsigned long )i); __free_pages(tmp, sglist->order); i = i + 1; } ldv_63025: ; if ((u32 )i < sglist->num_sg) { goto ldv_63024; } else { } { kfree((void const *)sglist); } return; } } static struct pmcraid_sglist *pmcraid_alloc_sglist(int buflen ) { struct pmcraid_sglist *sglist ; struct scatterlist *scatterlist ; struct page *page ; int num_elem ; int i ; int j ; int sg_size ; int order ; int bsize_elem ; int tmp___69 ; void *tmp___70 ; struct page *tmp___71 ; { sg_size = buflen / 26; if (sg_size > 0) { { tmp___69 = __get_order((unsigned long )sg_size); order = tmp___69; } } else { order = 0; } bsize_elem = (int )(4096U << order); if (buflen % bsize_elem != 0) { num_elem = buflen / bsize_elem + 1; } else { num_elem = buflen / bsize_elem; } { tmp___70 = kzalloc((unsigned long )(num_elem + -1) * 40UL + 56UL, 208U); sglist = (struct pmcraid_sglist *)tmp___70; } if ((unsigned long )sglist == (unsigned long )((struct pmcraid_sglist *)0)) { return ((struct pmcraid_sglist *)0); } else { } { scatterlist = (struct scatterlist *)(& sglist->scatterlist); sg_init_table(scatterlist, (unsigned int )num_elem); sglist->order = (u32 )order; sglist->num_sg = (u32 )num_elem; sg_size = buflen; i = 0; } goto ldv_63043; ldv_63042: { page = alloc_pages(32977U, (unsigned int )order); } if ((unsigned long )page == (unsigned long )((struct page *)0)) { j = i + -1; goto ldv_63040; ldv_63039: { tmp___71 = sg_page(scatterlist + (unsigned long )j); __free_pages(tmp___71, (unsigned int )order); j = j - 1; } ldv_63040: ; if (j >= 0) { goto ldv_63039; } else { } { kfree((void const *)sglist); } return ((struct pmcraid_sglist *)0); } else { } { sg_set_page(scatterlist + (unsigned long )i, page, (unsigned int )(sg_size < bsize_elem ? sg_size : bsize_elem), 0U); sg_size = sg_size - bsize_elem; i = i + 1; } ldv_63043: ; if (i < num_elem) { goto ldv_63042; } else { } return (sglist); } } static int pmcraid_copy_sglist(struct pmcraid_sglist *sglist , unsigned long buffer , u32 len , int direction ) { struct scatterlist *scatterlist ; void *kaddr ; int bsize_elem ; int i ; int rc ; struct page *page ; struct page *tmp ; struct page *page___0 ; struct page *tmp___0 ; { rc = 0; bsize_elem = (int )(4096U << (int )sglist->order); scatterlist = (struct scatterlist *)(& sglist->scatterlist); i = 0; goto ldv_63058; ldv_63057: { tmp = sg_page(scatterlist + (unsigned long )i); page = tmp; kaddr = kmap(page); } if (direction == 1) { { rc = __copy_from_user(kaddr, (void const *)buffer, (unsigned int )bsize_elem); } } else { { rc = __copy_to_user((void *)buffer, (void const *)kaddr, (unsigned int )bsize_elem); } } { kunmap(page); } if (rc != 0) { { printk("\vMaxRAID: failed to copy user data into sg list\n"); } return (-14); } else { } (scatterlist + (unsigned long )i)->length = (unsigned int )bsize_elem; i = i + 1; buffer = buffer + (unsigned long )bsize_elem; ldv_63058: ; if ((u32 )i < len / (u32 )bsize_elem) { goto ldv_63057; } else { } if (len % (u32 )bsize_elem != 0U) { { tmp___0 = sg_page(scatterlist + (unsigned long )i); page___0 = tmp___0; kaddr = kmap(page___0); } if (direction == 1) { { rc = __copy_from_user(kaddr, (void const *)buffer, len % (u32 )bsize_elem); } } else { { rc = __copy_to_user((void *)buffer, (void const *)kaddr, len % (u32 )bsize_elem); } } { kunmap(page___0); (scatterlist + (unsigned long )i)->length = len % (u32 )bsize_elem; } } else { } if (rc != 0) { { printk("\vMaxRAID: failed to copy user data into sg list\n"); rc = -14; } } else { } return (rc); } } static int pmcraid_queuecommand_lck(struct scsi_cmnd *scsi_cmd , void (*done)(struct scsi_cmnd * ) ) { struct pmcraid_instance *pinstance ; struct pmcraid_resource_entry *res ; struct pmcraid_ioarcb *ioarcb ; struct pmcraid_cmd *cmd ; u32 fw_version ; int rc ; __u16 tmp ; int tmp___0 ; long tmp___1 ; { { rc = 0; pinstance = (struct pmcraid_instance *)(& ((scsi_cmd->device)->host)->hostdata); tmp = __fswab16((int )(pinstance->inq_data)->fw_version); fw_version = (u32 )tmp; scsi_cmd->scsi_done = done; res = (struct pmcraid_resource_entry *)(scsi_cmd->device)->hostdata; scsi_cmd->result = 0; } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) == 2U) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: IOA is dead, but queuecommand is scheduled\n"); } } else { } { scsi_cmd->result = 65536; (*(scsi_cmd->scsi_done))(scsi_cmd); } return (0); } else { } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { return (4181); } else { } if ((unsigned int )*(scsi_cmd->cmnd) == 53U) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: SYNC_CACHE(0x35), completing in driver itself\n"); } } else { } { (*(scsi_cmd->scsi_done))(scsi_cmd); } return (0); } else { } { cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { printk("\vMaxRAID: free command block is not available\n"); } return (4181); } else { } { cmd->scsi_cmd = scsi_cmd; ioarcb = & (cmd->ioa_cb)->ioarcb; __memcpy((void *)(& ioarcb->cdb), (void const *)scsi_cmd->cmnd, (size_t )scsi_cmd->cmd_len); ioarcb->resource_handle = res->__annonCompField114.cfg_entry.resource_handle; ioarcb->request_type = 0U; tmp___0 = atomic_add_return(1, & pinstance->last_message_id); ioarcb->hrrq_id = (__u8 )(tmp___0 % (int )pinstance->num_hrrq); cmd->cmd_done = & pmcraid_io_done; } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type - 1U <= 1U) { if (scsi_cmd->underflow == 0U) { ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 32U); } else { } if ((unsigned int )res->sync_reqd != 0U) { ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 8U); res->sync_reqd = 0U; } else { } ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 4U); if (scsi_cmd->flags & 1) { ioarcb->request_flags1 = (__u8 )((unsigned int )ioarcb->request_flags1 | 16U); } else { } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 1U) { ioarcb->request_flags1 = (__u8 )((unsigned int )ioarcb->request_flags1 | 128U); } else { } } else { } { rc = pmcraid_build_ioadl(pinstance, cmd); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: command (%d) CDB[0] = %x for %x:%x:%x:%x\n", ioarcb->response_handle >> 2, (int )*(scsi_cmd->cmnd), (pinstance->host)->unique_id, (unsigned int )res->__annonCompField114.cfg_entry.resource_type == 2U, (unsigned int )res->__annonCompField114.cfg_entry.resource_type == 2U ? (fw_version <= 2U ? (__le32 )res->__annonCompField114.cfg_entry.unique_flags1 : (__le32 )res->__annonCompField114.cfg_entry.array_id & 255U) : (res->__annonCompField114.cfg_entry.resource_address >> 16) & 255U, 0); } } else { } { tmp___1 = ldv__builtin_expect(rc == 0, 1L); } if (tmp___1 != 0L) { { _pmcraid_fire_command(cmd); } } else { { printk("\vMaxRAID: queuecommand could not build ioadl\n"); pmcraid_return_cmd(cmd); rc = 4181; } } return (rc); } } static int pmcraid_queuecommand(struct Scsi_Host *shost , struct scsi_cmnd *cmd ) { unsigned long irq_flags ; int rc ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_183(shost->host_lock); scsi_cmd_get_serial(shost, cmd); rc = pmcraid_queuecommand_lck(cmd, cmd->scsi_done); ldv_spin_unlock_irqrestore_135(shost->host_lock, irq_flags); } return (rc); } } static int pmcraid_chr_open(struct inode *inode , struct file *filep ) { struct pmcraid_instance *pinstance ; bool tmp ; int tmp___0 ; struct cdev const *__mptr ; { { tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13); } else { } __mptr = (struct cdev const *)inode->__annonCompField69.i_cdev; pinstance = (struct pmcraid_instance *)__mptr + 0xfffffffffffff6f0UL; filep->private_data = (void *)pinstance; return (0); } } static int pmcraid_chr_fasync(int fd , struct file *filep , int mode ) { struct pmcraid_instance *pinstance ; int rc ; { { pinstance = (struct pmcraid_instance *)filep->private_data; ldv_mutex_lock_185(& pinstance->aen_queue_lock); rc = fasync_helper(fd, filep, mode, & pinstance->aen_queue); ldv_mutex_unlock_186(& pinstance->aen_queue_lock); } return (rc); } } static int pmcraid_build_passthrough_ioadls(struct pmcraid_cmd *cmd , int buflen , int direction ) { struct pmcraid_sglist *sglist ; struct scatterlist *sg ; struct pmcraid_ioarcb *ioarcb ; struct pmcraid_ioadl_desc *ioadl ; int i ; int tmp ; { { sglist = (struct pmcraid_sglist *)0; sg = (struct scatterlist *)0; ioarcb = & (cmd->ioa_cb)->ioarcb; sglist = pmcraid_alloc_sglist(buflen); } if ((unsigned long )sglist == (unsigned long )((struct pmcraid_sglist *)0)) { { printk("\vMaxRAID: can\'t allocate memory for passthrough SGls\n"); } return (-12); } else { } { tmp = pci_map_sg((cmd->drv_inst)->pdev, (struct scatterlist *)(& sglist->scatterlist), (int )sglist->num_sg, direction); sglist->num_dma_sg = (u32 )tmp; } if (sglist->num_dma_sg - 1U > 26U) { { dev_err((struct device const *)(& ((cmd->drv_inst)->pdev)->dev), "Failed to map passthrough buffer!\n"); pmcraid_free_sglist(sglist); } return (-5); } else { } { cmd->sglist = sglist; ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 4U); ioadl = pmcraid_init_ioadls(cmd, (int )sglist->num_dma_sg); i = 0; sg = (struct scatterlist *)(& sglist->scatterlist); } goto ldv_63103; ldv_63102: { (ioadl + (unsigned long )i)->data_len = sg->dma_length; (ioadl + (unsigned long )i)->address = sg->dma_address; (ioadl + (unsigned long )i)->flags = 0U; i = i + 1; sg = sg_next(sg); } ldv_63103: ; if ((u32 )i < sglist->num_dma_sg) { goto ldv_63102; } else { } (ioadl + ((unsigned long )i + 0xffffffffffffffffUL))->flags = 64U; return (0); } } static void pmcraid_release_passthrough_ioadls(struct pmcraid_cmd *cmd , int buflen , int direction ) { struct pmcraid_sglist *sglist ; { sglist = cmd->sglist; if (buflen > 0) { { pci_unmap_sg((cmd->drv_inst)->pdev, (struct scatterlist *)(& sglist->scatterlist), (int )sglist->num_sg, direction); pmcraid_free_sglist(sglist); cmd->sglist = (struct pmcraid_sglist *)0; } } else { } return; } } static long pmcraid_ioctl_passthrough(struct pmcraid_instance *pinstance , unsigned int ioctl_cmd , unsigned int buflen , unsigned long arg ) { struct pmcraid_passthrough_ioctl_buffer *buffer ; struct pmcraid_ioarcb *ioarcb ; struct pmcraid_cmd *cmd ; struct pmcraid_cmd *cancel_cmd ; unsigned long request_buffer ; unsigned long request_offset ; unsigned long lock_flags ; void *ioasa ; u32 ioasc ; int request_size ; int buffer_size ; u8 access ; u8 direction ; int rc ; long __ret ; unsigned long tmp ; wait_queue_t __wait ; long __ret___0 ; unsigned long tmp___0 ; long __int ; long tmp___1 ; bool __cond ; bool __cond___0 ; void *tmp___2 ; struct thread_info *tmp___3 ; bool tmp___4 ; int tmp___5 ; long tmp___6 ; int tmp___7 ; unsigned long tmp___8 ; unsigned long tmp___9 ; unsigned long tmp___10 ; unsigned long tmp___11 ; unsigned long tmp___12 ; { rc = 0; if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { { tmp = msecs_to_jiffies(10000U); __ret = (long )tmp; __might_sleep("drivers/scsi/pmcraid.c", 3681, 0); __cond___0 = (unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U; } if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { tmp___0 = msecs_to_jiffies(10000U); __ret___0 = (long )tmp___0; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_63141: { tmp___1 = prepare_to_wait_event(& pinstance->reset_wait_q, & __wait, 1); __int = tmp___1; __cond = (unsigned int )*((unsigned char *)pinstance + 12200UL) == 0U; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_63140; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_63140; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_63141; ldv_63140: { finish_wait(& pinstance->reset_wait_q, & __wait); } __ret = __ret___0; } else { } rc = (int )__ret; if (rc == 0) { return (-110L); } else if (rc < 0) { return (-512L); } else { } } else { } if ((unsigned int )*((unsigned char *)pinstance + 12200UL) != 0U) { { printk("\vMaxRAID: IOA is not operational\n"); } return (-25L); } else { } { buffer_size = 833; tmp___2 = kmalloc((size_t )buffer_size, 208U); buffer = (struct pmcraid_passthrough_ioctl_buffer *)tmp___2; } if ((unsigned long )buffer == (unsigned long )((struct pmcraid_passthrough_ioctl_buffer *)0)) { { printk("\vMaxRAID: no memory for passthrough buffer\n"); } return (-12L); } else { } { request_offset = 832UL; request_buffer = arg + request_offset; rc = __copy_from_user((void *)buffer, (void const *)arg, 833U); ioasa = (void *)(arg + 528UL); } if (rc != 0) { { printk("\vMaxRAID: ioctl: can\'t copy passthrough buffer\n"); rc = -14; } goto out_free_buffer; } else { } request_size = (int )buffer->ioarcb.data_transfer_length; if ((int )((signed char )buffer->ioarcb.request_flags0) < 0) { access = 0U; direction = 1U; } else { access = 1U; direction = 2U; } if (request_size > 0) { { tmp___3 = current_thread_info(); tmp___4 = __chk_range_not_ok(arg, request_offset + (unsigned long )request_size, tmp___3->addr_limit.seg); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } { tmp___6 = ldv__builtin_expect((long )tmp___5, 1L); rc = (int )tmp___6; } if (rc == 0) { rc = -14; goto out_free_buffer; } else { } } else if (request_size < 0) { rc = -22; goto out_free_buffer; } else { } if ((unsigned int )buffer->ioarcb.add_cmd_param_length > 48U) { rc = -22; goto out_free_buffer; } else { } { cmd = pmcraid_get_free_cmd(pinstance); } if ((unsigned long )cmd == (unsigned long )((struct pmcraid_cmd *)0)) { { printk("\vMaxRAID: free command block is not available\n"); rc = -12; } goto out_free_buffer; } else { } { cmd->scsi_cmd = (struct scsi_cmnd *)0; ioarcb = & (cmd->ioa_cb)->ioarcb; ioarcb->resource_handle = buffer->ioarcb.resource_handle; ioarcb->data_transfer_length = buffer->ioarcb.data_transfer_length; ioarcb->cmd_timeout = buffer->ioarcb.cmd_timeout; ioarcb->request_type = buffer->ioarcb.request_type; ioarcb->request_flags0 = buffer->ioarcb.request_flags0; ioarcb->request_flags1 = buffer->ioarcb.request_flags1; __memcpy((void *)(& ioarcb->cdb), (void const *)(& buffer->ioarcb.cdb), 16UL); } if ((unsigned int )buffer->ioarcb.add_cmd_param_length != 0U) { { ioarcb->add_cmd_param_length = buffer->ioarcb.add_cmd_param_length; ioarcb->add_cmd_param_offset = buffer->ioarcb.add_cmd_param_offset; __memcpy((void *)(& ioarcb->add_data.u.add_cmd_params), (void const *)(& buffer->ioarcb.add_data.u.add_cmd_params), (size_t )buffer->ioarcb.add_cmd_param_length); } } else { } { tmp___7 = atomic_add_return(1, & pinstance->last_message_id); ioarcb->hrrq_id = (__u8 )(tmp___7 % (int )pinstance->num_hrrq); } if (request_size != 0) { { rc = pmcraid_build_passthrough_ioadls(cmd, request_size, (int )direction); } if (rc != 0) { { printk("\vMaxRAID: couldn\'t build passthrough ioadls\n"); } goto out_free_buffer; } else { } } else if (request_size < 0) { rc = -22; goto out_free_buffer; } else { } if ((unsigned int )direction == 1U && request_size > 0) { { rc = pmcraid_copy_sglist(cmd->sglist, request_buffer, (u32 )request_size, (int )direction); } if (rc != 0) { { printk("\vMaxRAID: failed to copy user buffer\n"); } goto out_free_sglist; } else { } } else { } { cmd->cmd_done = & pmcraid_internal_done; ldv_init_completion_173(& cmd->wait_for_completion); cmd->completion_req = 1U; } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: command(%d) (CDB[0] = %x) for %x\n", (cmd->ioa_cb)->ioarcb.response_handle >> 2, (int )(cmd->ioa_cb)->ioarcb.cdb[0], (cmd->ioa_cb)->ioarcb.resource_handle); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_188((pinstance->host)->host_lock); _pmcraid_fire_command(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); buffer->ioarcb.cmd_timeout = 0U; } if ((unsigned int )buffer->ioarcb.cmd_timeout == 0U) { { ldv_wait_for_completion_190(& cmd->wait_for_completion); } } else { { tmp___10 = msecs_to_jiffies((unsigned int const )((int )buffer->ioarcb.cmd_timeout * 1000)); tmp___11 = ldv_wait_for_completion_timeout_191(& cmd->wait_for_completion, tmp___10); } if (tmp___11 == 0UL) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: aborting cmd %d (CDB[0] = %x) due to timeout\n", (cmd->ioa_cb)->ioarcb.response_handle >> 2, (int )(cmd->ioa_cb)->ioarcb.cdb[0]); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_192((pinstance->host)->host_lock); cancel_cmd = pmcraid_abort_cmd(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } if ((unsigned long )cancel_cmd != (unsigned long )((struct pmcraid_cmd *)0)) { { ldv_wait_for_completion_194(& cancel_cmd->wait_for_completion); ioasc = (cancel_cmd->ioa_cb)->ioasa.ioasc; pmcraid_return_cmd(cancel_cmd); } if (ioasc == 268435457U || ioasc >> 24 == 0U) { if (ioasc != 5898240U) { rc = -110; } else { } goto out_handle_response; } else { } } else { } { tmp___8 = msecs_to_jiffies(150000U); tmp___9 = ldv_wait_for_completion_timeout_195(& cmd->wait_for_completion, tmp___8); } if (tmp___9 == 0UL) { { pmcraid_reset_bringup(cmd->drv_inst); rc = -110; } } else { } } else { } } out_handle_response: { tmp___12 = copy_to_user(ioasa, (void const *)(& (cmd->ioa_cb)->ioasa), 304UL); } if (tmp___12 != 0UL) { { printk("\vMaxRAID: failed to copy ioasa buffer to user\n"); rc = -14; } } else if ((unsigned int )direction == 2U && request_size > 0) { { rc = pmcraid_copy_sglist(cmd->sglist, request_buffer, (u32 )request_size, (int )direction); } if (rc != 0) { { printk("\vMaxRAID: failed to copy user buffer\n"); rc = -14; } } else { } } else { } out_free_sglist: { pmcraid_release_passthrough_ioadls(cmd, request_size, (int )direction); pmcraid_return_cmd(cmd); } out_free_buffer: { kfree((void const *)buffer); } return ((long )rc); } } static long pmcraid_ioctl_driver(struct pmcraid_instance *pinstance , unsigned int cmd , unsigned int buflen , void *user_buffer ) { int rc ; struct thread_info *tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; { { rc = -38; tmp = current_thread_info(); tmp___0 = __chk_range_not_ok((unsigned long )user_buffer, (unsigned long )(cmd >> 16) & 16383UL, tmp->addr_limit.seg); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 1L); } if (tmp___2 == 0L) { { printk("\vMaxRAID: ioctl_driver: access fault in request buffer\n"); } return (-14L); } else { } { if (cmd == 3222291461U) { goto case_3222291461; } else { } goto switch_default; case_3222291461: /* CIL Label */ { pmcraid_reset_bringup(pinstance); rc = 0; } goto ldv_63157; switch_default: /* CIL Label */ ; goto ldv_63157; switch_break: /* CIL Label */ ; } ldv_63157: ; return ((long )rc); } } static int pmcraid_check_ioctl_buffer(int cmd , void *arg , struct pmcraid_ioctl_header *hdr ) { int rc ; int access ; unsigned long tmp ; struct thread_info *tmp___0 ; bool tmp___1 ; int tmp___2 ; long tmp___3 ; { { rc = 0; access = 0; tmp = copy_from_user((void *)hdr, (void const *)arg, 16UL); } if (tmp != 0UL) { { printk("\vMaxRAID: couldn\'t copy ioctl header from user buffer\n"); } return (-14); } else { } { rc = memcmp((void const *)(& hdr->signature), (void const *)"PMCRAID", 8UL); } if (rc != 0) { { printk("\vMaxRAID: signature verification failed\n"); } return (-22); } else { } if (cmd < 0) { access = 1; } else { } { tmp___0 = current_thread_info(); tmp___1 = __chk_range_not_ok((unsigned long )(arg + 16UL), (unsigned long )hdr->buffer_length, tmp___0->addr_limit.seg); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } { tmp___3 = ldv__builtin_expect((long )tmp___2, 1L); rc = (int )tmp___3; } if (rc == 0) { { printk("\vMaxRAID: access failed for user buffer of size %d\n", hdr->buffer_length); } return (-14); } else { } return (0); } } static long pmcraid_chr_ioctl(struct file *filep , unsigned int cmd , unsigned long arg ) { struct pmcraid_instance *pinstance ; struct pmcraid_ioctl_header *hdr ; int retval ; void *tmp ; long tmp___0 ; long tmp___1 ; { { pinstance = (struct pmcraid_instance *)0; hdr = (struct pmcraid_ioctl_header *)0; retval = -25; tmp = kmalloc(16UL, 208U); hdr = (struct pmcraid_ioctl_header *)tmp; } if ((unsigned long )hdr == (unsigned long )((struct pmcraid_ioctl_header *)0)) { { printk("\vMaxRAID: failed to allocate memory for ioctl header\n"); } return (-12L); } else { } { retval = pmcraid_check_ioctl_buffer((int )cmd, (void *)arg, hdr); } if (retval != 0) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: chr_ioctl: header check failed\n"); } } else { } { kfree((void const *)hdr); } return ((long )retval); } else { } pinstance = (struct pmcraid_instance *)filep->private_data; if ((unsigned long )pinstance == (unsigned long )((struct pmcraid_instance *)0)) { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: adapter instance is not found\n"); } } else { } { kfree((void const *)hdr); } return (-25L); } else { } { if (((cmd >> 8) & 255U) == 70U) { goto case_70; } else { } if (((cmd >> 8) & 255U) == 68U) { goto case_68; } else { } goto switch_default; case_70: /* CIL Label */ ; if (cmd == 3275834882U) { { scsi_block_requests(pinstance->host); } } else { } { tmp___0 = pmcraid_ioctl_passthrough(pinstance, cmd, hdr->buffer_length, arg); retval = (int )tmp___0; } if (cmd == 3275834882U) { { scsi_unblock_requests(pinstance->host); } } else { } goto ldv_63176; case_68: /* CIL Label */ { arg = arg + 16UL; tmp___1 = pmcraid_ioctl_driver(pinstance, cmd, hdr->buffer_length, (void *)arg); retval = (int )tmp___1; } goto ldv_63176; switch_default: /* CIL Label */ retval = -25; goto ldv_63176; switch_break: /* CIL Label */ ; } ldv_63176: { kfree((void const *)hdr); } return ((long )retval); } } static struct file_operations const pmcraid_fops = {& __this_module, & noop_llseek, 0, 0, 0, 0, 0, 0, 0, 0, & pmcraid_chr_ioctl, & pmcraid_chr_ioctl, 0, 0, & pmcraid_chr_open, 0, 0, 0, 0, & pmcraid_chr_fasync, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static ssize_t pmcraid_show_log_level(struct device *dev , struct device_attribute *attr , char *buf ) { struct Scsi_Host *shost ; struct device const *__mptr ; struct pmcraid_instance *pinstance ; int tmp ; { { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c8UL; pinstance = (struct pmcraid_instance *)(& shost->hostdata); tmp = snprintf(buf, 4096UL, "%d\n", (int )pinstance->current_log_level); } return ((ssize_t )tmp); } } static ssize_t pmcraid_store_log_level(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct Scsi_Host *shost ; struct pmcraid_instance *pinstance ; u8 val ; int tmp ; struct device const *__mptr ; size_t tmp___0 ; { { tmp = kstrtou8(buf, 10U, & val); } if (tmp != 0) { return (-22L); } else { } if ((unsigned int )val > 2U) { return (-22L); } else { } { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c8UL; pinstance = (struct pmcraid_instance *)(& shost->hostdata); pinstance->current_log_level = val; tmp___0 = strlen(buf); } return ((ssize_t )tmp___0); } } static struct device_attribute pmcraid_log_level_attr = {{"log_level", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & pmcraid_show_log_level, & pmcraid_store_log_level}; static ssize_t pmcraid_show_drv_version(struct device *dev , struct device_attribute *attr , char *buf ) { int tmp ; { { tmp = snprintf(buf, 4096UL, "version: %s\n", (char *)"1.0.3"); } return ((ssize_t )tmp); } } static struct device_attribute pmcraid_driver_version_attr = {{"drv_version", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & pmcraid_show_drv_version, 0}; static ssize_t pmcraid_show_adapter_id(struct device *dev , struct device_attribute *attr , char *buf ) { struct Scsi_Host *shost ; struct device const *__mptr ; struct pmcraid_instance *pinstance ; u32 adapter_id ; u32 aen_group ; int tmp ; { { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c8UL; pinstance = (struct pmcraid_instance *)(& shost->hostdata); adapter_id = (unsigned int )((int )((pinstance->pdev)->bus)->number << 8) | (pinstance->pdev)->devfn; aen_group = pmcraid_event_family.id; tmp = snprintf(buf, 4096UL, "adapter id: %d\nminor: %d\naen group: %d\n", adapter_id, pinstance->cdev.dev & 1048575U, aen_group); } return ((ssize_t )tmp); } } static struct device_attribute pmcraid_adapter_id_attr = {{"adapter_id", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & pmcraid_show_adapter_id, 0}; static struct device_attribute *pmcraid_host_attrs[4U] = { & pmcraid_log_level_attr, & pmcraid_driver_version_attr, & pmcraid_adapter_id_attr, (struct device_attribute *)0}; static struct scsi_host_template pmcraid_host_template = {& __this_module, "PMC MaxRAID", 0, 0, 0, 0, 0, & pmcraid_queuecommand, & pmcraid_eh_abort_handler, & pmcraid_eh_device_reset_handler, & pmcraid_eh_target_reset_handler, & pmcraid_eh_bus_reset_handler, & pmcraid_eh_host_reset_handler, & pmcraid_slave_alloc, & pmcraid_slave_configure, & pmcraid_slave_destroy, 0, 0, 0, 0, & pmcraid_change_queue_depth, 0, 0, 0, 0, 0, 0, "PMC MaxRAID", 0, 1020, -1, 27U, (unsigned short)0, 32767U, 0UL, 254, (unsigned char)0, 0, 1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, 0U, (struct device_attribute **)(& pmcraid_host_attrs), 0, {0, 0}, 0ULL, 0U, 0, (_Bool)0}; static irqreturn_t pmcraid_isr_msix(int irq , void *dev_id ) { struct pmcraid_isr_param *hrrq_vector ; struct pmcraid_instance *pinstance ; unsigned long lock_flags ; u32 intrs_val ; int hrrq_id ; unsigned int tmp ; { hrrq_vector = (struct pmcraid_isr_param *)dev_id; hrrq_id = (int )hrrq_vector->hrrq_id; pinstance = hrrq_vector->drv_inst; if (hrrq_id == 0) { { intrs_val = pmcraid_read_interrupts(pinstance); } if (intrs_val != 0U) { { tmp = ioread32(pinstance->int_regs.host_ioa_interrupt_reg); } if ((tmp & 32U) == 0U) { if ((intrs_val & 469762076U) != 0U) { if ((intrs_val & 134217728U) != 0U) { pinstance->ioa_unit_check = 1U; } else { } { printk("\vMaxRAID: ISR: error interrupts: %x \t\t\t\t\tinitiating reset\n", intrs_val); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_196((pinstance->host)->host_lock); pmcraid_initiate_reset(pinstance); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } else { } if ((int )intrs_val < 0) { { pmcraid_clr_trans_op(pinstance); } } else { } { iowrite32(32U, pinstance->int_regs.host_ioa_interrupt_reg); ioread32(pinstance->int_regs.host_ioa_interrupt_reg); } } else { } } else { } } else { } { tasklet_schedule((struct tasklet_struct *)(& pinstance->isr_tasklet) + (unsigned long )hrrq_id); } return (1); } } static irqreturn_t pmcraid_isr(int irq , void *dev_id ) { struct pmcraid_isr_param *hrrq_vector ; struct pmcraid_instance *pinstance ; u32 intrs ; unsigned long lock_flags ; int hrrq_id ; long tmp ; { hrrq_id = 0; if ((unsigned long )dev_id == (unsigned long )((void *)0)) { { printk("\016%s(): NULL host pointer\n", "pmcraid_isr"); } return (0); } else { } { hrrq_vector = (struct pmcraid_isr_param *)dev_id; pinstance = hrrq_vector->drv_inst; intrs = pmcraid_read_interrupts(pinstance); tmp = ldv__builtin_expect((intrs & 2617245727U) == 0U, 0L); } if (tmp != 0L) { return (0); } else { } if ((intrs & 469762076U) != 0U) { if ((intrs & 134217728U) != 0U) { pinstance->ioa_unit_check = 1U; } else { } { iowrite32(intrs, pinstance->int_regs.ioa_host_interrupt_clr_reg); printk("\vMaxRAID: ISR: error interrupts: %x initiating reset\n", intrs); intrs = ioread32(pinstance->int_regs.ioa_host_interrupt_clr_reg); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_198((pinstance->host)->host_lock); pmcraid_initiate_reset(pinstance); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, lock_flags); } } else if ((int )intrs < 0) { { pmcraid_clr_trans_op(pinstance); } } else { { iowrite32(intrs, pinstance->int_regs.ioa_host_interrupt_clr_reg); ioread32(pinstance->int_regs.ioa_host_interrupt_clr_reg); tasklet_schedule((struct tasklet_struct *)(& pinstance->isr_tasklet) + (unsigned long )hrrq_id); } } return (1); } } static void pmcraid_worker_function(struct work_struct *workp ) { struct pmcraid_instance *pinstance ; struct pmcraid_resource_entry *res ; struct pmcraid_resource_entry *temp ; struct scsi_device *sdev ; unsigned long lock_flags ; unsigned long host_lock_flags ; u16 fw_version ; u8 bus ; u8 target ; u8 lun ; struct work_struct const *__mptr ; int tmp ; __u16 tmp___0 ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; int tmp___2 ; struct list_head const *__mptr___4 ; { { __mptr = (struct work_struct const *)workp; pinstance = (struct pmcraid_instance *)__mptr + 0xffffffffffffd0b0UL; tmp = atomic_read((atomic_t const *)(& pinstance->expose_resources)); } if (tmp == 0) { return; } else { } { tmp___0 = __fswab16((int )(pinstance->inq_data)->fw_version); fw_version = tmp___0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_200(& pinstance->resource_lock); __mptr___0 = (struct list_head const *)pinstance->used_res_q.next; res = (struct pmcraid_resource_entry *)__mptr___0; __mptr___1 = (struct list_head const *)res->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___1; } goto ldv_63262; ldv_63261: ; if ((unsigned int )res->change_detected == 2U && (unsigned long )res->scsi_dev != (unsigned long )((struct scsi_device *)0)) { { sdev = res->scsi_dev; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_201((pinstance->host)->host_lock); tmp___1 = scsi_device_get(sdev); } if (tmp___1 == 0) { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, host_lock_flags); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: deleting %x from midlayer\n", res->__annonCompField114.cfg_entry.resource_address); } } else { } { list_move_tail(& res->queue, & pinstance->free_res_q); ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); scsi_remove_device(sdev); scsi_device_put(sdev); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_204(& pinstance->resource_lock); res->change_detected = 0U; } } else { { ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, host_lock_flags); } } } else { } res = temp; __mptr___2 = (struct list_head const *)temp->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___2; ldv_63262: ; if ((unsigned long )(& res->queue) != (unsigned long )(& pinstance->used_res_q)) { goto ldv_63261; } else { } __mptr___3 = (struct list_head const *)pinstance->used_res_q.next; res = (struct pmcraid_resource_entry *)__mptr___3; goto ldv_63270; ldv_63269: ; if ((unsigned int )res->change_detected == 1U) { { tmp___2 = pmcraid_expose_resource((int )fw_version, & res->__annonCompField114.cfg_entry); } if (tmp___2 == 0) { goto ldv_63268; } else { } if ((unsigned int )res->__annonCompField114.cfg_entry.resource_type == 2U) { bus = 1U; if ((unsigned int )fw_version <= 2U) { target = res->__annonCompField114.cfg_entry.unique_flags1; } else { target = (u8 )res->__annonCompField114.cfg_entry.array_id; } lun = 0U; } else { bus = 0U; target = (u8 )(res->__annonCompField114.cfg_entry.resource_address >> 16); lun = 0U; } { res->change_detected = 0U; ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); scsi_add_device(pinstance->host, (uint )bus, (uint )target, (u64 )lun); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_207(& pinstance->resource_lock); } } else { } ldv_63268: __mptr___4 = (struct list_head const *)res->queue.next; res = (struct pmcraid_resource_entry *)__mptr___4; ldv_63270: ; if ((unsigned long )(& res->queue) != (unsigned long )(& pinstance->used_res_q)) { goto ldv_63269; } else { } { ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); } return; } } static void pmcraid_tasklet_function(unsigned long instance ) { struct pmcraid_isr_param *hrrq_vector ; struct pmcraid_instance *pinstance ; unsigned long hrrq_lock_flags ; unsigned long pending_lock_flags ; unsigned long host_lock_flags ; spinlock_t *lockp ; int id ; __le32 resp ; int cmd_index ; struct pmcraid_cmd *cmd ; { { hrrq_vector = (struct pmcraid_isr_param *)instance; pinstance = hrrq_vector->drv_inst; id = (int )hrrq_vector->hrrq_id; lockp = (spinlock_t *)(& pinstance->hrrq_lock) + (unsigned long )id; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_209(lockp); resp = *(pinstance->hrrq_curr[id]); } goto ldv_63285; ldv_63286: cmd_index = (int )(resp >> 2); cmd = (struct pmcraid_cmd *)0; if ((unsigned long )pinstance->hrrq_curr[id] < (unsigned long )pinstance->hrrq_end[id]) { pinstance->hrrq_curr[id] = pinstance->hrrq_curr[id] + 1; } else { pinstance->hrrq_curr[id] = pinstance->hrrq_start[id]; pinstance->host_toggle_bit[id] = (u8 )((unsigned int )pinstance->host_toggle_bit[id] ^ 1U); } if (cmd_index > 1023) { { printk("\vMaxRAID: Invalid response handle %d\n", cmd_index); resp = *(pinstance->hrrq_curr[id]); } goto ldv_63285; } else { } { cmd = pinstance->cmd_list[cmd_index]; ldv_spin_unlock_irqrestore_210(lockp, hrrq_lock_flags); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_211(& pinstance->pending_pool_lock); list_del(& cmd->free_list); ldv_spin_unlock_irqrestore_144(& pinstance->pending_pool_lock, pending_lock_flags); ldv_del_timer_213(& cmd->timer); atomic_dec(& pinstance->outstanding_cmds); } if ((unsigned long )cmd->cmd_done == (unsigned long )(& pmcraid_ioa_reset)) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_214((pinstance->host)->host_lock); (*(cmd->cmd_done))(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, host_lock_flags); } } else if ((unsigned long )cmd->cmd_done != (unsigned long )((void (*)(struct pmcraid_cmd * ))0)) { { (*(cmd->cmd_done))(cmd); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_216(lockp); resp = *(pinstance->hrrq_curr[id]); } ldv_63285: ; if ((resp & 1U) == (__le32 )pinstance->host_toggle_bit[id]) { goto ldv_63286; } else { } { ldv_spin_unlock_irqrestore_210(lockp, hrrq_lock_flags); } return; } } static void pmcraid_unregister_interrupt_handler(struct pmcraid_instance *pinstance ) { int i ; { i = 0; goto ldv_63293; ldv_63292: { ldv_free_irq_218((unsigned int )pinstance->hrrq_vector[i].vector, (void *)(& pinstance->hrrq_vector) + (unsigned long )i); i = i + 1; } ldv_63293: ; if (i < (int )pinstance->num_hrrq) { goto ldv_63292; } else { } if ((unsigned int )pinstance->interrupt_mode != 0U) { { pci_disable_msix(pinstance->pdev); pinstance->interrupt_mode = 0U; } } else { } return; } } static int pmcraid_register_interrupt_handler(struct pmcraid_instance *pinstance ) { int rc ; struct pci_dev *pdev ; int num_hrrq ; struct msix_entry entries[16U] ; int i ; int j ; int tmp ; { pdev = pinstance->pdev; if (pmcraid_enable_msix != 0U) { { tmp = pci_find_capability(pdev, 17); } if (tmp != 0) { num_hrrq = 16; i = 0; goto ldv_63304; ldv_63303: entries[i].entry = (u16 )i; i = i + 1; ldv_63304: ; if (i <= 15) { goto ldv_63303; } else { } { num_hrrq = pci_enable_msix_range(pdev, (struct msix_entry *)(& entries), 1, num_hrrq); } if (num_hrrq < 0) { goto pmcraid_isr_legacy; } else { } i = 0; goto ldv_63312; ldv_63311: { pinstance->hrrq_vector[i].hrrq_id = (u8 )i; pinstance->hrrq_vector[i].drv_inst = pinstance; pinstance->hrrq_vector[i].vector = (u16 )entries[i].vector; rc = ldv_request_irq_219((unsigned int )pinstance->hrrq_vector[i].vector, & pmcraid_isr_msix, 0UL, "PMC MaxRAID", (void *)(& pinstance->hrrq_vector) + (unsigned long )i); } if (rc != 0) { j = 0; goto ldv_63309; ldv_63308: { ldv_free_irq_220(entries[j].vector, (void *)(& pinstance->hrrq_vector) + (unsigned long )j); j = j + 1; } ldv_63309: ; if (j < i) { goto ldv_63308; } else { } { pci_disable_msix(pdev); } goto pmcraid_isr_legacy; } else { } i = i + 1; ldv_63312: ; if (i < num_hrrq) { goto ldv_63311; } else { } { pinstance->num_hrrq = (u8 )num_hrrq; pinstance->interrupt_mode = 1U; iowrite32(64U, pinstance->int_regs.host_ioa_interrupt_reg); ioread32(pinstance->int_regs.host_ioa_interrupt_reg); } goto pmcraid_isr_out; } else { } } else { } pmcraid_isr_legacy: { pinstance->hrrq_vector[0].hrrq_id = 0U; pinstance->hrrq_vector[0].drv_inst = pinstance; pinstance->hrrq_vector[0].vector = (u16 )pdev->irq; pinstance->num_hrrq = 1U; rc = ldv_request_irq_221(pdev->irq, & pmcraid_isr, 128UL, "PMC MaxRAID", (void *)(& pinstance->hrrq_vector)); } pmcraid_isr_out: ; return (rc); } } static void pmcraid_release_cmd_blocks(struct pmcraid_instance *pinstance , int max_index ) { int i ; { i = 0; goto ldv_63321; ldv_63320: { kmem_cache_free(pinstance->cmd_cachep, (void *)pinstance->cmd_list[i]); pinstance->cmd_list[i] = (struct pmcraid_cmd *)0; i = i + 1; } ldv_63321: ; if (i < max_index) { goto ldv_63320; } else { } { kmem_cache_destroy(pinstance->cmd_cachep); pinstance->cmd_cachep = (struct kmem_cache *)0; } return; } } static void pmcraid_release_control_blocks(struct pmcraid_instance *pinstance , int max_index ) { int i ; { if ((unsigned long )pinstance->control_pool == (unsigned long )((struct dma_pool *)0)) { return; } else { } i = 0; goto ldv_63329; ldv_63328: { dma_pool_free(pinstance->control_pool, (void *)(pinstance->cmd_list[i])->ioa_cb, (pinstance->cmd_list[i])->ioa_cb_bus_addr); (pinstance->cmd_list[i])->ioa_cb = (struct pmcraid_control_block *)0; (pinstance->cmd_list[i])->ioa_cb_bus_addr = 0ULL; i = i + 1; } ldv_63329: ; if (i < max_index) { goto ldv_63328; } else { } { dma_pool_destroy(pinstance->control_pool); pinstance->control_pool = (struct dma_pool *)0; } return; } } static int pmcraid_allocate_cmd_blocks(struct pmcraid_instance *pinstance ) { int i ; void *tmp ; { { sprintf((char *)(& pinstance->cmd_pool_name), "pmcraid_cmd_pool_%d", (pinstance->host)->unique_id); pinstance->cmd_cachep = kmem_cache_create((char const *)(& pinstance->cmd_pool_name), 328UL, 0UL, 8192UL, (void (*)(void * ))0); } if ((unsigned long )pinstance->cmd_cachep == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } i = 0; goto ldv_63336; ldv_63335: { tmp = ldv_kmem_cache_alloc_222(pinstance->cmd_cachep, 208U); pinstance->cmd_list[i] = (struct pmcraid_cmd *)tmp; } if ((unsigned long )pinstance->cmd_list[i] == (unsigned long )((struct pmcraid_cmd *)0)) { { pmcraid_release_cmd_blocks(pinstance, i); } return (-12); } else { } i = i + 1; ldv_63336: ; if (i <= 1023) { goto ldv_63335; } else { } return (0); } } static int pmcraid_allocate_control_blocks(struct pmcraid_instance *pinstance ) { int i ; void *tmp ; { { sprintf((char *)(& pinstance->ctl_pool_name), "pmcraid_control_pool_%d", (pinstance->host)->unique_id); pinstance->control_pool = dma_pool_create((char const *)(& pinstance->ctl_pool_name), & (pinstance->pdev)->dev, 1472UL, 32UL, 0UL); } if ((unsigned long )pinstance->control_pool == (unsigned long )((struct dma_pool *)0)) { return (-12); } else { } i = 0; goto ldv_63343; ldv_63342: { tmp = ldv_dma_pool_alloc_223(pinstance->control_pool, 208U, & (pinstance->cmd_list[i])->ioa_cb_bus_addr); (pinstance->cmd_list[i])->ioa_cb = (struct pmcraid_control_block *)tmp; } if ((unsigned long )(pinstance->cmd_list[i])->ioa_cb == (unsigned long )((struct pmcraid_control_block *)0)) { { pmcraid_release_control_blocks(pinstance, i); } return (-12); } else { } { __memset((void *)(pinstance->cmd_list[i])->ioa_cb, 0, 1472UL); i = i + 1; } ldv_63343: ; if (i <= 1023) { goto ldv_63342; } else { } return (0); } } static void pmcraid_release_host_rrqs(struct pmcraid_instance *pinstance , int maxindex ) { int i ; { i = 0; goto ldv_63351; ldv_63350: { pci_free_consistent(pinstance->pdev, 4096UL, (void *)pinstance->hrrq_start[i], pinstance->hrrq_start_bus_addr[i]); pinstance->hrrq_start[i] = (__be32 *)0U; pinstance->hrrq_start_bus_addr[i] = 0ULL; pinstance->host_toggle_bit[i] = 0U; i = i + 1; } ldv_63351: ; if (i < maxindex) { goto ldv_63350; } else { } return; } } static int pmcraid_allocate_host_rrqs(struct pmcraid_instance *pinstance ) { int i ; int buffer_size ; void *tmp ; struct lock_class_key __key ; { buffer_size = 4096; i = 0; goto ldv_63360; ldv_63359: { tmp = pci_alloc_consistent(pinstance->pdev, (size_t )buffer_size, (dma_addr_t *)(& pinstance->hrrq_start_bus_addr) + (unsigned long )i); pinstance->hrrq_start[i] = (__be32 *)tmp; } if ((unsigned long )pinstance->hrrq_start[i] == (unsigned long )((__be32 *)0U)) { { printk("\vMaxRAID: pci_alloc failed for hrrq vector : %d\n", i); pmcraid_release_host_rrqs(pinstance, i); } return (-12); } else { } { __memset((void *)pinstance->hrrq_start[i], 0, (size_t )buffer_size); pinstance->hrrq_curr[i] = pinstance->hrrq_start[i]; pinstance->hrrq_end[i] = pinstance->hrrq_start[i] + 1023U; pinstance->host_toggle_bit[i] = 1U; spinlock_check((spinlock_t *)(& pinstance->hrrq_lock) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& pinstance->hrrq_lock) + (unsigned long )i)->__annonCompField18.rlock, "&(&pinstance->hrrq_lock[i])->rlock", & __key); i = i + 1; } ldv_63360: ; if (i < (int )pinstance->num_hrrq) { goto ldv_63359; } else { } return (0); } } static void pmcraid_release_hcams(struct pmcraid_instance *pinstance ) { { if ((unsigned long )pinstance->ccn.msg != (unsigned long )((struct pmcraid_aen_msg *)0)) { { pci_free_consistent(pinstance->pdev, 4048UL, (void *)pinstance->ccn.msg, pinstance->ccn.baddr); pinstance->ccn.msg = (struct pmcraid_aen_msg *)0; pinstance->ccn.hcam = (struct pmcraid_hcam_hdr *)0; pinstance->ccn.baddr = 0ULL; } } else { } if ((unsigned long )pinstance->ldn.msg != (unsigned long )((struct pmcraid_aen_msg *)0)) { { pci_free_consistent(pinstance->pdev, 4112UL, (void *)pinstance->ldn.msg, pinstance->ldn.baddr); pinstance->ldn.msg = (struct pmcraid_aen_msg *)0; pinstance->ldn.hcam = (struct pmcraid_hcam_hdr *)0; pinstance->ldn.baddr = 0ULL; } } else { } return; } } static int pmcraid_allocate_hcams(struct pmcraid_instance *pinstance ) { void *tmp ; void *tmp___0 ; { { tmp = pci_alloc_consistent(pinstance->pdev, 4048UL, & pinstance->ccn.baddr); pinstance->ccn.msg = (struct pmcraid_aen_msg *)tmp; tmp___0 = pci_alloc_consistent(pinstance->pdev, 4112UL, & pinstance->ldn.baddr); pinstance->ldn.msg = (struct pmcraid_aen_msg *)tmp___0; } if ((unsigned long )pinstance->ldn.msg == (unsigned long )((struct pmcraid_aen_msg *)0) || (unsigned long )pinstance->ccn.msg == (unsigned long )((struct pmcraid_aen_msg *)0)) { { pmcraid_release_hcams(pinstance); } } else { { pinstance->ccn.hcam = (struct pmcraid_hcam_hdr *)pinstance->ccn.msg + 16U; pinstance->ldn.hcam = (struct pmcraid_hcam_hdr *)pinstance->ldn.msg + 16U; atomic_set(& pinstance->ccn.ignore, 0); atomic_set(& pinstance->ldn.ignore, 0); } } return ((unsigned long )pinstance->ldn.msg == (unsigned long )((struct pmcraid_aen_msg *)0) ? -12 : 0); } } static void pmcraid_release_config_buffers(struct pmcraid_instance *pinstance ) { int i ; { if ((unsigned long )pinstance->cfg_table != (unsigned long )((struct pmcraid_config_table *)0) && pinstance->cfg_table_bus_addr != 0ULL) { { pci_free_consistent(pinstance->pdev, 8208UL, (void *)pinstance->cfg_table, pinstance->cfg_table_bus_addr); pinstance->cfg_table = (struct pmcraid_config_table *)0; pinstance->cfg_table_bus_addr = 0ULL; } } else { } if ((unsigned long )pinstance->res_entries != (unsigned long )((struct pmcraid_resource_entry *)0)) { i = 0; goto ldv_63373; ldv_63372: { list_del(& (pinstance->res_entries + (unsigned long )i)->queue); i = i + 1; } ldv_63373: ; if (i <= 255) { goto ldv_63372; } else { } { kfree((void const *)pinstance->res_entries); pinstance->res_entries = (struct pmcraid_resource_entry *)0; } } else { } { pmcraid_release_hcams(pinstance); } return; } } static int pmcraid_allocate_config_buffers(struct pmcraid_instance *pinstance ) { int i ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp = kzalloc(18432UL, 208U); pinstance->res_entries = (struct pmcraid_resource_entry *)tmp; } if ((unsigned long )pinstance->res_entries == (unsigned long )((struct pmcraid_resource_entry *)0)) { { printk("\vMaxRAID: failed to allocate memory for resource table\n"); } return (-12); } else { } i = 0; goto ldv_63380; ldv_63379: { list_add_tail(& (pinstance->res_entries + (unsigned long )i)->queue, & pinstance->free_res_q); i = i + 1; } ldv_63380: ; if (i <= 255) { goto ldv_63379; } else { } { tmp___0 = pci_alloc_consistent(pinstance->pdev, 8208UL, & pinstance->cfg_table_bus_addr); pinstance->cfg_table = (struct pmcraid_config_table *)tmp___0; } if ((unsigned long )pinstance->cfg_table == (unsigned long )((struct pmcraid_config_table *)0)) { { printk("\vMaxRAID: couldn\'t alloc DMA memory for config table\n"); pmcraid_release_config_buffers(pinstance); } return (-12); } else { } { tmp___1 = pmcraid_allocate_hcams(pinstance); } if (tmp___1 != 0) { { printk("\vMaxRAID: could not alloc DMA memory for HCAMS\n"); pmcraid_release_config_buffers(pinstance); } return (-12); } else { } return (0); } } static void pmcraid_init_tasklets(struct pmcraid_instance *pinstance ) { int i ; { i = 0; goto ldv_63387; ldv_63386: { tasklet_init((struct tasklet_struct *)(& pinstance->isr_tasklet) + (unsigned long )i, & pmcraid_tasklet_function, (unsigned long )((struct pmcraid_isr_param *)(& pinstance->hrrq_vector) + (unsigned long )i)); i = i + 1; } ldv_63387: ; if (i < (int )pinstance->num_hrrq) { goto ldv_63386; } else { } return; } } static void pmcraid_kill_tasklets(struct pmcraid_instance *pinstance ) { int i ; { i = 0; goto ldv_63394; ldv_63393: { tasklet_kill((struct tasklet_struct *)(& pinstance->isr_tasklet) + (unsigned long )i); i = i + 1; } ldv_63394: ; if (i < (int )pinstance->num_hrrq) { goto ldv_63393; } else { } return; } } static void pmcraid_release_buffers(struct pmcraid_instance *pinstance ) { { { pmcraid_release_config_buffers(pinstance); pmcraid_release_control_blocks(pinstance, 1024); pmcraid_release_cmd_blocks(pinstance, 1024); pmcraid_release_host_rrqs(pinstance, (int )pinstance->num_hrrq); } if ((unsigned long )pinstance->inq_data != (unsigned long )((struct pmcraid_inquiry_data *)0)) { { pci_free_consistent(pinstance->pdev, 24UL, (void *)pinstance->inq_data, pinstance->inq_data_baddr); pinstance->inq_data = (struct pmcraid_inquiry_data *)0; pinstance->inq_data_baddr = 0ULL; } } else { } if ((unsigned long )pinstance->timestamp_data != (unsigned long )((struct pmcraid_timestamp_data *)0)) { { pci_free_consistent(pinstance->pdev, 12UL, (void *)pinstance->timestamp_data, pinstance->timestamp_data_baddr); pinstance->timestamp_data = (struct pmcraid_timestamp_data *)0; pinstance->timestamp_data_baddr = 0ULL; } } else { } return; } } static int pmcraid_init_buffers(struct pmcraid_instance *pinstance ) { int i ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; struct pmcraid_cmd *cmdp ; { { tmp = pmcraid_allocate_host_rrqs(pinstance); } if (tmp != 0) { { printk("\vMaxRAID: couldn\'t allocate memory for %d host rrqs\n", (int )pinstance->num_hrrq); } return (-12); } else { } { tmp___0 = pmcraid_allocate_config_buffers(pinstance); } if (tmp___0 != 0) { { printk("\vMaxRAID: couldn\'t allocate memory for config buffers\n"); pmcraid_release_host_rrqs(pinstance, (int )pinstance->num_hrrq); } return (-12); } else { } { tmp___1 = pmcraid_allocate_cmd_blocks(pinstance); } if (tmp___1 != 0) { { printk("\vMaxRAID: couldn\'t allocate memory for cmd blocks\n"); pmcraid_release_config_buffers(pinstance); pmcraid_release_host_rrqs(pinstance, (int )pinstance->num_hrrq); } return (-12); } else { } { tmp___2 = pmcraid_allocate_control_blocks(pinstance); } if (tmp___2 != 0) { { printk("\vMaxRAID: couldn\'t allocate memory control blocks\n"); pmcraid_release_config_buffers(pinstance); pmcraid_release_cmd_blocks(pinstance, 1024); pmcraid_release_host_rrqs(pinstance, (int )pinstance->num_hrrq); } return (-12); } else { } { tmp___3 = pci_alloc_consistent(pinstance->pdev, 24UL, & pinstance->inq_data_baddr); pinstance->inq_data = (struct pmcraid_inquiry_data *)tmp___3; } if ((unsigned long )pinstance->inq_data == (unsigned long )((struct pmcraid_inquiry_data *)0)) { { printk("\vMaxRAID: couldn\'t allocate DMA memory for INQUIRY\n"); pmcraid_release_buffers(pinstance); } return (-12); } else { } { tmp___4 = pci_alloc_consistent(pinstance->pdev, 12UL, & pinstance->timestamp_data_baddr); pinstance->timestamp_data = (struct pmcraid_timestamp_data *)tmp___4; } if ((unsigned long )pinstance->timestamp_data == (unsigned long )((struct pmcraid_timestamp_data *)0)) { { printk("\vMaxRAID: couldn\'t allocate DMA memory for \t\t\t\tset time_stamp \n"); pmcraid_release_buffers(pinstance); } return (-12); } else { } i = 0; goto ldv_63405; ldv_63404: { cmdp = pinstance->cmd_list[i]; pmcraid_init_cmdblk(cmdp, i); cmdp->drv_inst = pinstance; list_add_tail(& cmdp->free_list, & pinstance->free_cmd_pool); i = i + 1; } ldv_63405: ; if (i <= 1023) { goto ldv_63404; } else { } return (0); } } static void pmcraid_reinit_buffers(struct pmcraid_instance *pinstance ) { int i ; int buffer_size ; { buffer_size = 4096; i = 0; goto ldv_63413; ldv_63412: { __memset((void *)pinstance->hrrq_start[i], 0, (size_t )buffer_size); pinstance->hrrq_curr[i] = pinstance->hrrq_start[i]; pinstance->hrrq_end[i] = pinstance->hrrq_start[i] + 1023U; pinstance->host_toggle_bit[i] = 1U; i = i + 1; } ldv_63413: ; if (i < (int )pinstance->num_hrrq) { goto ldv_63412; } else { } return; } } static int pmcraid_init_instance(struct pci_dev *pdev , struct Scsi_Host *host , void *mapped_pci_addr ) { struct pmcraid_instance *pinstance ; struct pmcraid_chip_details *chip_cfg ; struct pmcraid_interrupts *pint_regs ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_0 ; { { pinstance = (struct pmcraid_instance *)(& host->hostdata); pinstance->host = host; pinstance->pdev = pdev; pinstance->mapped_dma_addr = mapped_pci_addr; chip_cfg = pinstance->chip_cfg; pint_regs = & pinstance->int_regs; pinstance->ioarrin = mapped_pci_addr + chip_cfg->ioarrin; pint_regs->ioa_host_interrupt_reg = mapped_pci_addr + chip_cfg->ioa_host_intr; pint_regs->ioa_host_interrupt_clr_reg = mapped_pci_addr + chip_cfg->ioa_host_intr_clr; pint_regs->ioa_host_msix_interrupt_reg = mapped_pci_addr + chip_cfg->ioa_host_msix_intr; pint_regs->host_ioa_interrupt_reg = mapped_pci_addr + chip_cfg->host_ioa_intr; pint_regs->host_ioa_interrupt_clr_reg = mapped_pci_addr + chip_cfg->host_ioa_intr_clr; pinstance->mailbox = mapped_pci_addr + chip_cfg->mailbox; pinstance->ioa_status = mapped_pci_addr + chip_cfg->ioastatus; pint_regs->ioa_host_interrupt_mask_reg = mapped_pci_addr + chip_cfg->ioa_host_mask; pint_regs->ioa_host_interrupt_mask_clr_reg = mapped_pci_addr + chip_cfg->ioa_host_mask_clr; pint_regs->global_interrupt_mask_reg = mapped_pci_addr + chip_cfg->global_intr_mask; pinstance->ioa_reset_attempts = 0U; __init_waitqueue_head(& pinstance->reset_wait_q, "&pinstance->reset_wait_q", & __key); atomic_set(& pinstance->outstanding_cmds, 0); atomic_set(& pinstance->last_message_id, 0); atomic_set(& pinstance->expose_resources, 0); INIT_LIST_HEAD(& pinstance->free_res_q); INIT_LIST_HEAD(& pinstance->used_res_q); INIT_LIST_HEAD(& pinstance->free_cmd_pool); INIT_LIST_HEAD(& pinstance->pending_cmd_pool); spinlock_check(& pinstance->free_pool_lock); __raw_spin_lock_init(& pinstance->free_pool_lock.__annonCompField18.rlock, "&(&pinstance->free_pool_lock)->rlock", & __key___0); spinlock_check(& pinstance->pending_pool_lock); __raw_spin_lock_init(& pinstance->pending_pool_lock.__annonCompField18.rlock, "&(&pinstance->pending_pool_lock)->rlock", & __key___1); spinlock_check(& pinstance->resource_lock); __raw_spin_lock_init(& pinstance->resource_lock.__annonCompField18.rlock, "&(&pinstance->resource_lock)->rlock", & __key___2); __mutex_init(& pinstance->aen_queue_lock, "&pinstance->aen_queue_lock", & __key___3); __init_work(& pinstance->worker_q, 0); __constr_expr_0.counter = 137438953408L; pinstance->worker_q.data = __constr_expr_0; lockdep_init_map(& pinstance->worker_q.lockdep_map, "(&pinstance->worker_q)", & __key___4, 0); INIT_LIST_HEAD(& pinstance->worker_q.entry); pinstance->worker_q.func = & pmcraid_worker_function; pinstance->current_log_level = (u8 )pmcraid_log_level; pinstance->ioa_state = 1U; pinstance->reset_cmd = (struct pmcraid_cmd *)0; } return (0); } } static void pmcraid_shutdown(struct pci_dev *pdev ) { struct pmcraid_instance *pinstance ; void *tmp ; { { tmp = pci_get_drvdata(pdev); pinstance = (struct pmcraid_instance *)tmp; pmcraid_reset_bringdown(pinstance); } return; } } static unsigned short pmcraid_get_minor(void) { int minor ; unsigned long tmp ; { { tmp = ldv_find_first_zero_bit_224((unsigned long const *)(& pmcraid_minor), 128UL); minor = (int )tmp; __set_bit((long )minor, (unsigned long volatile *)(& pmcraid_minor)); } return ((unsigned short )minor); } } static void pmcraid_release_minor(unsigned short minor ) { { { __clear_bit((long )minor, (unsigned long volatile *)(& pmcraid_minor)); } return; } } static int pmcraid_setup_chrdev(struct pmcraid_instance *pinstance ) { int minor ; int error ; unsigned short tmp ; { { tmp = pmcraid_get_minor(); minor = (int )tmp; ldv_cdev_init_225(& pinstance->cdev, & pmcraid_fops); pinstance->cdev.owner = & __this_module; error = cdev_add(& pinstance->cdev, (pmcraid_major << 20) | (unsigned int )minor, 1U); } if (error != 0) { { pmcraid_release_minor((int )((unsigned short )minor)); } } else { { device_create(pmcraid_class, (struct device *)0, (pmcraid_major << 20) | (unsigned int )minor, (void *)0, "%s%u", (char *)"pmcsas", minor); } } return (error); } } static void pmcraid_release_chrdev(struct pmcraid_instance *pinstance ) { { { pmcraid_release_minor((int )((unsigned short )pinstance->cdev.dev)); device_destroy(pmcraid_class, (pmcraid_major << 20) | (pinstance->cdev.dev & 1048575U)); ldv_cdev_del_226(& pinstance->cdev); } return; } } static void pmcraid_remove(struct pci_dev *pdev ) { struct pmcraid_instance *pinstance ; void *tmp ; { { tmp = pci_get_drvdata(pdev); pinstance = (struct pmcraid_instance *)tmp; pmcraid_release_chrdev(pinstance); ldv_scsi_remove_host_227(pinstance->host); scsi_block_requests(pinstance->host); pmcraid_shutdown(pdev); pmcraid_disable_interrupts(pinstance, 4294967295U); flush_work(& pinstance->worker_q); pmcraid_kill_tasklets(pinstance); pmcraid_unregister_interrupt_handler(pinstance); pmcraid_release_buffers(pinstance); ldv_iounmap_228((void volatile *)pinstance->mapped_dma_addr); pci_release_regions(pdev); scsi_host_put(pinstance->host); pci_disable_device(pdev); } return; } } static int pmcraid_suspend(struct pci_dev *pdev , pm_message_t state ) { struct pmcraid_instance *pinstance ; void *tmp ; pci_power_t tmp___0 ; { { tmp = pci_get_drvdata(pdev); pinstance = (struct pmcraid_instance *)tmp; pmcraid_shutdown(pdev); pmcraid_disable_interrupts(pinstance, 4294967295U); pmcraid_kill_tasklets(pinstance); pci_set_drvdata(pinstance->pdev, (void *)pinstance); pmcraid_unregister_interrupt_handler(pinstance); pci_save_state(pdev); pci_disable_device(pdev); tmp___0 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___0); } return (0); } } static int pmcraid_resume(struct pci_dev *pdev ) { struct pmcraid_instance *pinstance ; void *tmp ; struct Scsi_Host *host ; int rc ; int tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); pinstance = (struct pmcraid_instance *)tmp; host = pinstance->host; pci_set_power_state(pdev, 0); pci_enable_wake(pdev, 0, 0); pci_restore_state(pdev); rc = pci_enable_device(pdev); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "resume: Enable device failed\n"); } return (rc); } else { } { pci_set_master(pdev); tmp___0 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___0 != 0) { { rc = pci_set_dma_mask(pdev, 4294967295ULL); } } else { } if (rc == 0) { { rc = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } } else { } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "resume: Failed to set PCI DMA mask\n"); } goto disable_device; } else { } { pmcraid_disable_interrupts(pinstance, 4294967295U); atomic_set(& pinstance->outstanding_cmds, 0); rc = pmcraid_register_interrupt_handler(pinstance); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "resume: couldn\'t register interrupt handlers\n"); rc = -19; } goto release_host; } else { } { pmcraid_init_tasklets(pinstance); pmcraid_enable_interrupts(pinstance, 2617245727U); pinstance->ioa_hard_reset = 1U; tmp___1 = pmcraid_reset_bringup(pinstance); } if (tmp___1 != 0) { { dev_err((struct device const *)(& pdev->dev), "couldn\'t initialize IOA\n"); rc = -19; } goto release_tasklets; } else { } return (0); release_tasklets: { pmcraid_disable_interrupts(pinstance, 4294967295U); pmcraid_kill_tasklets(pinstance); pmcraid_unregister_interrupt_handler(pinstance); } release_host: { scsi_host_put(host); } disable_device: { pci_disable_device(pdev); } return (rc); } } static void pmcraid_complete_ioa_reset(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; unsigned long flags ; { { pinstance = cmd->drv_inst; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_229((pinstance->host)->host_lock); pmcraid_ioa_reset(cmd); ldv_spin_unlock_irqrestore_135((pinstance->host)->host_lock, flags); scsi_unblock_requests(pinstance->host); schedule_work(& pinstance->worker_q); } return; } } static void pmcraid_set_supported_devs(struct pmcraid_cmd *cmd ) { struct pmcraid_ioarcb *ioarcb ; void (*cmd_done)(struct pmcraid_cmd * ) ; { { ioarcb = & (cmd->ioa_cb)->ioarcb; cmd_done = & pmcraid_complete_ioa_reset; pmcraid_reinit_cmdblk(cmd); ioarcb->resource_handle = 4294967295U; ioarcb->request_type = 1U; ioarcb->cdb[0] = 251U; ioarcb->cdb[1] = 128U; } if ((unsigned int )*((unsigned char *)cmd->drv_inst + 12201UL) != 0U) { (cmd->drv_inst)->reinit_cfg_table = 0U; cmd->release = 1U; cmd_done = & pmcraid_reinit_cfgtable_done; } else { } { pmcraid_send_cmd(cmd, cmd_done, 30000UL, & pmcraid_timeout_handler); } return; } } static void pmcraid_set_timestamp(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; struct pmcraid_ioarcb *ioarcb ; __be32 time_stamp_len ; struct pmcraid_ioadl_desc *ioadl ; struct timeval tv ; __le64 timestamp ; { { pinstance = cmd->drv_inst; ioarcb = & (cmd->ioa_cb)->ioarcb; time_stamp_len = 201326592U; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); do_gettimeofday(& tv); timestamp = (__le64 )(tv.tv_sec * 1000L); (pinstance->timestamp_data)->timestamp[0] = (unsigned char )timestamp; (pinstance->timestamp_data)->timestamp[1] = (unsigned char )(timestamp >> 8); (pinstance->timestamp_data)->timestamp[2] = (unsigned char )(timestamp >> 16); (pinstance->timestamp_data)->timestamp[3] = (unsigned char )(timestamp >> 24); (pinstance->timestamp_data)->timestamp[4] = (unsigned char )(timestamp >> 32); (pinstance->timestamp_data)->timestamp[5] = (unsigned char )(timestamp >> 40); pmcraid_reinit_cmdblk(cmd); ioarcb->request_type = 0U; ioarcb->resource_handle = 4294967295U; ioarcb->cdb[0] = 164U; ioarcb->cdb[1] = 15U; __memcpy((void *)(& ioarcb->cdb) + 6U, (void const *)(& time_stamp_len), 4UL); ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + 80ULL; ioarcb->ioadl_length = 16U; ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr & 0xffffffffffffffe0ULL; ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 4U); ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 128U); ioarcb->data_transfer_length = 12U; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); ioadl->flags = 64U; ioadl->address = pinstance->timestamp_data_baddr; ioadl->data_len = 12U; } if ((unsigned int )*((unsigned char *)pinstance + 12201UL) == 0U) { { pinstance->timestamp_error = 0U; pmcraid_send_cmd(cmd, & pmcraid_set_supported_devs, 15000UL, & pmcraid_timeout_handler); } } else { { pmcraid_send_cmd(cmd, & pmcraid_return_cmd, 15000UL, & pmcraid_timeout_handler); } return; } return; } } static void pmcraid_init_res_table(struct pmcraid_cmd *cmd ) { struct pmcraid_instance *pinstance ; struct pmcraid_resource_entry *res ; struct pmcraid_resource_entry *temp ; struct pmcraid_config_table_entry *cfgte ; unsigned long lock_flags ; int found ; int rc ; int i ; u16 fw_version ; struct list_head old_res ; __u16 tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; __u16 tmp___0 ; int tmp___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; int tmp___2 ; struct list_head const *__mptr___5 ; struct list_head const *__mptr___6 ; struct list_head const *__mptr___7 ; struct list_head const *__mptr___8 ; { { pinstance = cmd->drv_inst; old_res.next = & old_res; old_res.prev = & old_res; tmp = __fswab16((int )(pinstance->inq_data)->fw_version); fw_version = tmp; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_231(& pinstance->resource_lock); __mptr = (struct list_head const *)pinstance->used_res_q.next; res = (struct pmcraid_resource_entry *)__mptr; __mptr___0 = (struct list_head const *)res->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___0; } goto ldv_63507; ldv_63506: { list_move_tail(& res->queue, & old_res); res = temp; __mptr___1 = (struct list_head const *)temp->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___1; } ldv_63507: ; if ((unsigned long )(& res->queue) != (unsigned long )(& pinstance->used_res_q)) { goto ldv_63506; } else { } i = 0; goto ldv_63523; ldv_63522: { tmp___0 = __fswab16((int )(pinstance->inq_data)->fw_version); } if ((int )tmp___0 <= 2) { cfgte = (struct pmcraid_config_table_entry *)(& (pinstance->cfg_table)->__annonCompField111.entries) + (unsigned long )i; } else { cfgte = (struct pmcraid_config_table_entry *)(& (pinstance->cfg_table)->__annonCompField111.entries_ext) + (unsigned long )i; } { tmp___1 = pmcraid_expose_resource((int )fw_version, cfgte); } if (tmp___1 == 0) { goto ldv_63509; } else { } found = 0; __mptr___2 = (struct list_head const *)old_res.next; res = (struct pmcraid_resource_entry *)__mptr___2; __mptr___3 = (struct list_head const *)res->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___3; goto ldv_63518; ldv_63517: { rc = memcmp((void const *)(& res->__annonCompField114.cfg_entry.resource_address), (void const *)(& cfgte->resource_address), 4UL); } if (rc == 0) { { list_move_tail(& res->queue, & pinstance->used_res_q); found = 1; } goto ldv_63516; } else { } res = temp; __mptr___4 = (struct list_head const *)temp->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___4; ldv_63518: ; if ((unsigned long )(& res->queue) != (unsigned long )(& old_res)) { goto ldv_63517; } else { } ldv_63516: ; if (found == 0) { { tmp___2 = list_empty((struct list_head const *)(& pinstance->free_res_q)); } if (tmp___2 != 0) { { printk("\vMaxRAID: Too many devices attached\n"); } goto ldv_63519; } else { } { found = 1; __mptr___5 = (struct list_head const *)pinstance->free_res_q.next; res = (struct pmcraid_resource_entry *)__mptr___5; res->scsi_dev = (struct scsi_device *)0; res->change_detected = 1U; res->reset_progress = 0U; list_move_tail(& res->queue, & pinstance->used_res_q); } } else { } if (found != 0) { { __memcpy((void *)(& res->__annonCompField114.cfg_entry), (void const *)cfgte, (size_t )pinstance->config_table_entry_size); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: New res type:%x, vset:%x, addr:%x:\n", (int )res->__annonCompField114.cfg_entry.resource_type, (unsigned int )fw_version <= 2U ? (int )res->__annonCompField114.cfg_entry.unique_flags1 : (int )res->__annonCompField114.cfg_entry.array_id & 255, res->__annonCompField114.cfg_entry.resource_address); } } else { } } else { } ldv_63509: i = i + 1; ldv_63523: ; if (i < (int )(pinstance->cfg_table)->num_entries) { goto ldv_63522; } else { } ldv_63519: __mptr___6 = (struct list_head const *)old_res.next; res = (struct pmcraid_resource_entry *)__mptr___6; __mptr___7 = (struct list_head const *)res->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___7; goto ldv_63531; ldv_63530: ; if ((unsigned long )res->scsi_dev != (unsigned long )((struct scsi_device *)0)) { { res->change_detected = 2U; res->__annonCompField114.cfg_entry.resource_handle = 0U; list_move_tail(& res->queue, & pinstance->used_res_q); } } else { { list_move_tail(& res->queue, & pinstance->free_res_q); } } res = temp; __mptr___8 = (struct list_head const *)temp->queue.next; temp = (struct pmcraid_resource_entry *)__mptr___8; ldv_63531: ; if ((unsigned long )(& res->queue) != (unsigned long )(& old_res)) { goto ldv_63530; } else { } { ldv_spin_unlock_irqrestore_128(& pinstance->resource_lock, lock_flags); pmcraid_set_timestamp(cmd); } return; } } static void pmcraid_querycfg(struct pmcraid_cmd *cmd ) { struct pmcraid_ioarcb *ioarcb ; struct pmcraid_ioadl_desc *ioadl ; struct pmcraid_instance *pinstance ; int cfg_table_size ; __u16 tmp ; { { ioarcb = & (cmd->ioa_cb)->ioarcb; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); pinstance = cmd->drv_inst; cfg_table_size = 270532608; tmp = __fswab16((int )(pinstance->inq_data)->fw_version); } if ((int )tmp <= 2) { pinstance->config_table_entry_size = 32U; } else { pinstance->config_table_entry_size = 32U; } { ioarcb->request_type = 1U; ioarcb->resource_handle = 4294967295U; ioarcb->cdb[0] = 197U; __memcpy((void *)(& ioarcb->cdb) + 10U, (void const *)(& cfg_table_size), 4UL); ioarcb->ioadl_bus_addr = cmd->ioa_cb_bus_addr + 80ULL; ioarcb->ioadl_length = 16U; ioarcb->ioarcb_bus_addr = ioarcb->ioarcb_bus_addr & 0xffffffffffffffe0ULL; ioarcb->request_flags0 = (__u8 )((unsigned int )ioarcb->request_flags0 | 4U); ioarcb->data_transfer_length = 8208U; ioadl = (struct pmcraid_ioadl_desc *)(& ioarcb->add_data.u.ioadl); ioadl->flags = 64U; ioadl->address = pinstance->cfg_table_bus_addr; ioadl->data_len = 8208U; pmcraid_send_cmd(cmd, & pmcraid_init_res_table, 15000UL, & pmcraid_timeout_handler); } return; } } static int pmcraid_probe(struct pci_dev *pdev , struct pci_device_id const *dev_id ) { struct pmcraid_instance *pinstance ; struct Scsi_Host *host ; void *mapped_pci_addr ; int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { rc = 0; tmp___0 = atomic_read((atomic_t const *)(& pmcraid_adapter_count)); } if (tmp___0 > 1023) { { tmp = atomic_read((atomic_t const *)(& pmcraid_adapter_count)); printk("\vMaxRAID: maximum number(%d) of supported adapters reached\n", tmp); } return (-12); } else { } { atomic_inc(& pmcraid_adapter_count); rc = pci_enable_device(pdev); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable adapter\n"); atomic_dec(& pmcraid_adapter_count); } return (rc); } else { } { tmp___1 = atomic_read((atomic_t const *)(& pmcraid_adapter_count)); _dev_info((struct device const *)(& pdev->dev), "Found new IOA(%x:%x), Total IOA count: %d\n", (int )pdev->vendor, (int )pdev->device, tmp___1); rc = pci_request_regions(pdev, "PMC MaxRAID"); } if (rc < 0) { { dev_err((struct device const *)(& pdev->dev), "Couldn\'t register memory range of registers\n"); } goto out_disable_device; } else { } { mapped_pci_addr = pci_iomap(pdev, 0, 0UL); } if ((unsigned long )mapped_pci_addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Couldn\'t map PCI registers memory\n"); rc = -12; } goto out_release_regions; } else { } { pci_set_master(pdev); tmp___2 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___2 != 0) { { rc = pci_set_dma_mask(pdev, 4294967295ULL); } } else { } if (rc == 0) { { rc = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } } else { } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to set PCI DMA mask\n"); } goto cleanup_nomem; } else { } { host = ldv_scsi_host_alloc_233(& pmcraid_host_template, 12208); } if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { { dev_err((struct device const *)(& pdev->dev), "scsi_host_alloc failed!\n"); rc = -12; } goto cleanup_nomem; } else { } { host->max_id = 256U; host->max_lun = 8ULL; host->unique_id = host->host_no; host->max_channel = 1U; host->max_cmd_len = 16U; pinstance = (struct pmcraid_instance *)(& host->hostdata); __memset((void *)pinstance, 0, 12208UL); pinstance->chip_cfg = (struct pmcraid_chip_details *)dev_id->driver_data; rc = pmcraid_init_instance(pdev, host, mapped_pci_addr); } if (rc < 0) { { dev_err((struct device const *)(& pdev->dev), "failed to initialize adapter instance\n"); } goto out_scsi_host_put; } else { } { pci_set_drvdata(pdev, (void *)pinstance); rc = pci_save_state(pinstance->pdev); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to save PCI config space\n"); } goto out_scsi_host_put; } else { } { pmcraid_disable_interrupts(pinstance, 4294967295U); rc = pmcraid_register_interrupt_handler(pinstance); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "couldn\'t register interrupt handler\n"); } goto out_scsi_host_put; } else { } { pmcraid_init_tasklets(pinstance); rc = pmcraid_init_buffers(pinstance); } if (rc != 0) { { printk("\vMaxRAID: couldn\'t allocate memory blocks\n"); } goto out_unregister_isr; } else { } { pmcraid_reset_type(pinstance); pmcraid_enable_interrupts(pinstance, 2617245727U); } if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: starting IOA initialization sequence\n"); } } else { } { tmp___3 = pmcraid_reset_bringup(pinstance); } if (tmp___3 != 0) { { dev_err((struct device const *)(& pdev->dev), "couldn\'t initialize IOA\n"); rc = 1; } goto out_release_bufs; } else { } { rc = ldv_scsi_add_host_234(pinstance->host, & pdev->dev); } if (rc != 0) { { printk("\vMaxRAID: couldn\'t add host into mid-layer: %d\n", rc); } goto out_release_bufs; } else { } { scsi_scan_host(pinstance->host); rc = pmcraid_setup_chrdev(pinstance); } if (rc != 0) { { printk("\vMaxRAID: couldn\'t create mgmt interface, error: %x\n", rc); } goto out_remove_host; } else { } { atomic_set(& pinstance->expose_resources, 1); schedule_work(& pinstance->worker_q); } return (rc); out_remove_host: { ldv_scsi_remove_host_235(host); } out_release_bufs: { pmcraid_release_buffers(pinstance); } out_unregister_isr: { pmcraid_kill_tasklets(pinstance); pmcraid_unregister_interrupt_handler(pinstance); } out_scsi_host_put: { scsi_host_put(host); } cleanup_nomem: { ldv_iounmap_236((void volatile *)mapped_pci_addr); } out_release_regions: { pci_release_regions(pdev); } out_disable_device: { atomic_dec(& pmcraid_adapter_count); pci_disable_device(pdev); } return (-19); } } static struct pci_driver pmcraid_driver = {{0, 0}, "PMC MaxRAID", (struct pci_device_id const *)(& pmcraid_pci_table), & pmcraid_probe, & pmcraid_remove, & pmcraid_suspend, 0, 0, & pmcraid_resume, & pmcraid_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int pmcraid_init(void) { dev_t dev ; int error ; void *tmp ; long tmp___0 ; bool tmp___1 ; { if (pmcraid_debug_log != 0U) { { printk("\016MaxRAID: %s Device Driver version: %s\n", (char *)"PMC MaxRAID", (char *)"1.0.3"); } } else { } { error = ldv_alloc_chrdev_region_237(& dev, 0U, 1024U, "pmcsas"); } if (error != 0) { { printk("\vMaxRAID: failed to get a major number for adapters\n"); } goto out_init; } else { } { pmcraid_major = dev >> 20; tmp = ldv_create_class(); pmcraid_class = (struct class *)tmp; tmp___1 = IS_ERR((void const *)pmcraid_class); } if ((int )tmp___1) { { tmp___0 = PTR_ERR((void const *)pmcraid_class); error = (int )tmp___0; printk("\vMaxRAID: failed to register with sysfs, error = %x\n", error); } goto out_unreg_chrdev; } else { } { error = pmcraid_netlink_init(); } if (error != 0) { goto out_unreg_chrdev; } else { } { error = ldv___pci_register_driver_238(& pmcraid_driver, & __this_module, "pmcraid"); } if (error == 0) { goto out_init; } else { } { printk("\vMaxRAID: failed to register pmcraid driver, error = %x\n", error); ldv_class_destroy_239(pmcraid_class); pmcraid_netlink_release(); } out_unreg_chrdev: { ldv_unregister_chrdev_region_240(pmcraid_major << 20, 1024U); } out_init: ; return (error); } } static void pmcraid_exit(void) { { { pmcraid_netlink_release(); ldv_unregister_chrdev_region_241(pmcraid_major << 20, 1024U); ldv_pci_unregister_driver_242(& pmcraid_driver); ldv_class_destroy_243(pmcraid_class); } return; } } void ldv_EMGentry_exit_pmcraid_exit_21_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_pmcraid_init_21_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_cdev_del(void *arg0 , struct cdev *arg1 ) ; void ldv_cdev_init(void *arg0 , struct cdev *arg1 , struct file_operations *arg2 ) ; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_10_1(struct file_operations *arg0 ) ; void ldv_dispatch_deregister_18_1(struct Scsi_Host *arg0 ) ; void ldv_dispatch_deregister_19_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_17_21_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_15_21_5(void) ; void ldv_dispatch_instance_deregister_12_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_13_1(int arg0 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_1(struct file_operations *arg0 ) ; void ldv_dispatch_register_16_2(struct Scsi_Host *arg0 ) ; void ldv_dispatch_register_20_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_17_21_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_15_21_7(void) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_entry_EMGentry_21(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) ; struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) ; void ldv_scsi_host_template_instance_callback_4_17(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_scsi_host_template_instance_callback_4_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_21(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_22(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_23(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_24(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_25(int (*arg0)(int , struct file * , int ) , int arg1 , struct file *arg2 , int arg3 ) ; void ldv_scsi_host_template_instance_callback_4_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_scsi_host_template_instance_callback_4_31(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_scsi_host_template_instance_callback_4_34(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) ; void ldv_scsi_host_template_instance_callback_4_35(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_36(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_37(void (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_38(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_scsi_host_template_instance_callback_4_4(int (*arg0)(struct scsi_device * , int ) , struct scsi_device *arg1 , int arg2 ) ; int ldv_scsi_host_template_instance_probe_4_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_release_4_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_scsi_host_template_instance_4(void *arg0 ) ; void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_timer_dummy_factory_9(void *arg0 ) ; void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_8(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_21 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_pmcraid_exit_21_2(void (*arg0)(void) ) { { { pmcraid_exit(); } return; } } int ldv_EMGentry_init_pmcraid_init_21_11(int (*arg0)(void) ) { int tmp ; { { tmp = pmcraid_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_20_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_20_pci_driver_pci_driver = arg1; ldv_dispatch_register_20_2(ldv_20_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_cdev_del(void *arg0 , struct cdev *arg1 ) { struct cdev *ldv_10_cdev_cdev ; struct file_operations *ldv_10_file_operations_file_operations ; { { ldv_10_cdev_cdev = arg1; ldv_10_file_operations_file_operations = (struct file_operations *)ldv_10_cdev_cdev->ops; ldv_dispatch_deregister_10_1(ldv_10_file_operations_file_operations); } return; return; } } void ldv_cdev_init(void *arg0 , struct cdev *arg1 , struct file_operations *arg2 ) { struct cdev *ldv_11_cdev_cdev ; struct file_operations *ldv_11_file_operations_file_operations ; { { ldv_11_cdev_cdev = arg1; ldv_11_file_operations_file_operations = arg2; ldv_11_cdev_cdev->ops = (struct file_operations const *)ldv_11_file_operations_file_operations; ldv_dispatch_register_11_1(ldv_11_file_operations_file_operations); } return; return; } } int ldv_del_timer(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_12_timer_list_timer_list ; { { ldv_12_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_12_1(ldv_12_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_10_1(struct file_operations *arg0 ) { { return; } } void ldv_dispatch_deregister_18_1(struct Scsi_Host *arg0 ) { { return; } } void ldv_dispatch_deregister_19_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_17_21_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_15_21_5(void) { { return; } } void ldv_dispatch_instance_deregister_12_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_8 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_timer_instance_8 *)tmp; cf_arg_8->arg0 = arg0; ldv_timer_timer_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_irq_deregister_13_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_1 *cf_arg_1 ; struct ldv_struct_interrupt_instance_1 *cf_arg_2 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_1 *)tmp; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_1 *)tmp___0; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } } return; } } void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_1 *cf_arg_1 ; struct ldv_struct_interrupt_instance_1 *cf_arg_2 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_1 *)tmp; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_1 *)tmp___0; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } } return; } } void ldv_dispatch_register_11_1(struct file_operations *arg0 ) { struct ldv_struct_file_operations_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_file_operations_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_16_2(struct Scsi_Host *arg0 ) { struct ldv_struct_scsi_host_template_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_scsi_host_template_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_scsi_host_template_scsi_host_template_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_20_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_dummy_factory_17_21_6(void) { struct ldv_struct_EMGentry_21 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_21 *)tmp; ldv_timer_dummy_factory_9((void *)cf_arg_9); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_15_21_7(void) { struct ldv_struct_EMGentry_21 *cf_arg_5 ; struct ldv_struct_EMGentry_21 *cf_arg_6 ; struct ldv_struct_EMGentry_21 *cf_arg_7 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { { tmp = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_EMGentry_21 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_5((void *)cf_arg_5); tmp___0 = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_21 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_6((void *)cf_arg_6); tmp___1 = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_21 *)tmp___1; ldv_struct_device_attribute_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { pmcraid_show_adapter_id(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { pmcraid_show_drv_version(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { pmcraid_show_log_level(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { pmcraid_store_log_level(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_entry_EMGentry_21(void *arg0 ) { void (*ldv_21_exit_pmcraid_exit_default)(void) ; int (*ldv_21_init_pmcraid_init_default)(void) ; int ldv_21_ret_default ; int tmp ; int tmp___0 ; { { ldv_21_ret_default = ldv_EMGentry_init_pmcraid_init_21_11(ldv_21_init_pmcraid_init_default); ldv_21_ret_default = ldv_ldv_post_init_244(ldv_21_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_21_ret_default != 0); ldv_ldv_check_final_state_245(); ldv_stop(); } return; } else { { ldv_assume(ldv_21_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_15_21_7(); ldv_dispatch_register_dummy_factory_17_21_6(); ldv_dispatch_deregister_dummy_resourceless_instance_15_21_5(); ldv_dispatch_deregister_dummy_factory_17_21_4(); } } else { } { ldv_EMGentry_exit_pmcraid_exit_21_2(ldv_21_exit_pmcraid_exit_default); ldv_ldv_check_final_state_246(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_247(); ldv_entry_EMGentry_21((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_0_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ ; goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ ; goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = pmcraid_chr_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_13_line_line ; { { ldv_13_line_line = arg1; ldv_dispatch_irq_deregister_13_1(ldv_13_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = pmcraid_isr(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = pmcraid_isr_msix(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_1 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_1 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_1 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_1 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = pmcraid_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pmcraid_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pmcraid_resume(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pmcraid_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = pmcraid_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_248(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_ldv_post_probe_249(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } goto ldv_call_3; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_19_pci_driver_pci_driver ; { { ldv_19_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_19_1(ldv_19_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_15_callback_handler)(int , void * ) ; void *ldv_15_data_data ; int ldv_15_line_line ; enum irqreturn (*ldv_15_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_15_line_line = (int )arg1; ldv_15_callback_handler = arg2; ldv_15_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_15_data_data = arg5; ldv_dispatch_irq_register_15_2(ldv_15_line_line, ldv_15_callback_handler, ldv_15_thread_thread, ldv_15_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) { struct Scsi_Host *ldv_16_host_host ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_dispatch_register_16_2(ldv_16_host_host); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) { struct Scsi_Host *ldv_17_host_host ; struct scsi_host_template *ldv_17_scsi_host_template_scsi_host_template ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3800UL); ldv_17_host_host = (struct Scsi_Host *)tmp; ldv_17_scsi_host_template_scsi_host_template = arg1; ldv_17_host_host->hostt = ldv_17_scsi_host_template_scsi_host_template; } return (ldv_17_host_host); return (arg0); } else { return ((struct Scsi_Host *)0); return (arg0); } return (arg0); } } void ldv_scsi_host_template_instance_callback_4_17(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { pmcraid_chr_ioctl(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_4_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { pmcraid_eh_abort_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_21(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { pmcraid_eh_bus_reset_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_22(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { pmcraid_eh_device_reset_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_23(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { pmcraid_eh_host_reset_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_24(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { pmcraid_eh_target_reset_handler(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_25(int (*arg0)(int , struct file * , int ) , int arg1 , struct file *arg2 , int arg3 ) { { { pmcraid_chr_fasync(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_4_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_4_31(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { pmcraid_chr_open(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_4_34(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) { { { pmcraid_queuecommand(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_4_35(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) { { { pmcraid_slave_alloc(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_36(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) { { { pmcraid_slave_configure(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_37(void (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) { { { pmcraid_slave_destroy(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_38(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { pmcraid_chr_ioctl(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_4_4(int (*arg0)(struct scsi_device * , int ) , struct scsi_device *arg1 , int arg2 ) { { { pmcraid_change_queue_depth(arg1, arg2); } return; } } int ldv_scsi_host_template_instance_probe_4_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_scsi_host_template_instance_release_4_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_scsi_host_template_scsi_host_template_instance_4(void *arg0 ) { int (*ldv_4_callback_change_queue_depth)(struct scsi_device * , int ) ; long (*ldv_4_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_4_callback_eh_abort_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_fasync)(int , struct file * , int ) ; long long (*ldv_4_callback_llseek)(struct file * , long long , int ) ; int (*ldv_4_callback_open)(struct inode * , struct file * ) ; int (*ldv_4_callback_queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*ldv_4_callback_slave_alloc)(struct scsi_device * ) ; int (*ldv_4_callback_slave_configure)(struct scsi_device * ) ; void (*ldv_4_callback_slave_destroy)(struct scsi_device * ) ; long (*ldv_4_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct Scsi_Host *ldv_4_host_host ; struct file *ldv_4_host_struct_file_ptr ; struct scsi_cmnd *ldv_4_host_struct_scsi_cmnd_ptr ; struct scsi_device *ldv_4_host_struct_scsi_device_ptr ; unsigned int ldv_4_ldv_param_17_1_default ; unsigned long ldv_4_ldv_param_17_2_default ; int ldv_4_ldv_param_25_0_default ; int ldv_4_ldv_param_25_2_default ; long long ldv_4_ldv_param_28_1_default ; int ldv_4_ldv_param_28_2_default ; struct inode *ldv_4_ldv_param_31_0_default ; unsigned int ldv_4_ldv_param_38_1_default ; unsigned long ldv_4_ldv_param_38_2_default ; int ldv_4_ldv_param_4_1_default ; int ldv_4_ret_default ; struct ldv_struct_scsi_host_template_instance_4 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_scsi_host_template_instance_4 *)arg0; ldv_4_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_scsi_host_template_instance_4 *)0)) { { ldv_4_host_host = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_4; return; ldv_main_4: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_250(); } if ((unsigned long )(ldv_4_host_host->hostt)->detect != (unsigned long )((int (*)(struct scsi_host_template * ))0)) { { ldv_4_ret_default = ldv_scsi_host_template_instance_probe_4_10((int (*)(struct Scsi_Host * ))(ldv_4_host_host->hostt)->detect, ldv_4_host_host); } } else { } { ldv_4_ret_default = ldv_ldv_post_probe_251(ldv_4_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )(ldv_4_host_host->hostt)->release != (unsigned long )((int (*)(struct Scsi_Host * ))0)) { { ldv_scsi_host_template_instance_release_4_2((ldv_4_host_host->hostt)->release, ldv_4_host_host); } } else { } goto ldv_main_4; } else { { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } if (tmp___1 == 14) { goto case_14; } else { } if (tmp___1 == 15) { goto case_15; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_38(ldv_4_callback_unlocked_ioctl, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_38_1_default, ldv_4_ldv_param_38_2_default); } goto ldv_64504; case_2: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_37(ldv_4_callback_slave_destroy, ldv_4_host_struct_scsi_device_ptr); } goto ldv_64504; case_3: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_36(ldv_4_callback_slave_configure, ldv_4_host_struct_scsi_device_ptr); } goto ldv_64504; case_4: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_35(ldv_4_callback_slave_alloc, ldv_4_host_struct_scsi_device_ptr); } goto ldv_64504; case_5: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_34(ldv_4_callback_queuecommand, ldv_4_host_host, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_64504; case_6: /* CIL Label */ { tmp___2 = ldv_xmalloc(976UL); ldv_4_ldv_param_31_0_default = (struct inode *)tmp___2; ldv_scsi_host_template_instance_callback_4_31(ldv_4_callback_open, ldv_4_ldv_param_31_0_default, ldv_4_host_struct_file_ptr); ldv_free((void *)ldv_4_ldv_param_31_0_default); } goto ldv_64504; case_7: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_28(ldv_4_callback_llseek, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_28_1_default, ldv_4_ldv_param_28_2_default); } goto ldv_64504; case_8: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_25(ldv_4_callback_fasync, ldv_4_ldv_param_25_0_default, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_25_2_default); } goto ldv_64504; case_9: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_24(ldv_4_callback_eh_target_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_64504; case_10: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_23(ldv_4_callback_eh_host_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_64504; case_11: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_22(ldv_4_callback_eh_device_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_64504; case_12: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_21(ldv_4_callback_eh_bus_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_64504; case_13: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_20(ldv_4_callback_eh_abort_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_64504; case_14: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_17(ldv_4_callback_compat_ioctl, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_17_1_default, ldv_4_ldv_param_17_2_default); } goto ldv_64504; case_15: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_4(ldv_4_callback_change_queue_depth, ldv_4_host_struct_scsi_device_ptr, ldv_4_ldv_param_4_1_default); } goto ldv_64504; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_64504: ; } goto ldv_call_4; return; } } void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) { struct Scsi_Host *ldv_18_host_host ; { { ldv_18_host_host = arg1; ldv_dispatch_deregister_18_1(ldv_18_host_host); } return; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) { long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_5_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_5_container_struct_device_attribute ; struct device *ldv_5_container_struct_device_ptr ; char *ldv_5_ldv_param_3_2_default ; char *ldv_5_ldv_param_9_2_default ; unsigned long ldv_5_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_5; return; ldv_call_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_2_default = (char *)tmp___0; } if ((unsigned long )ldv_5_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_store, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_9_2_default, ldv_5_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_show, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_3_2_default); } } { ldv_free((void *)ldv_5_ldv_param_3_2_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_6_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_6_container_struct_device_attribute ; struct device *ldv_6_container_struct_device_ptr ; char *ldv_6_ldv_param_3_2_default ; char *ldv_6_ldv_param_9_2_default ; unsigned long ldv_6_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_6; return; ldv_call_6: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_2_default = (char *)tmp___0; } if ((unsigned long )ldv_6_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_store, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_9_2_default, ldv_6_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_6_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_3_2_default); } } { ldv_free((void *)ldv_6_ldv_param_3_2_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) { long (*ldv_7_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_7_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_7_container_struct_device_attribute ; struct device *ldv_7_container_struct_device_ptr ; char *ldv_7_ldv_param_3_2_default ; char *ldv_7_ldv_param_9_2_default ; unsigned long ldv_7_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_7_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_store, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_9_2_default, ldv_7_ldv_param_9_3_default); ldv_free((void *)ldv_7_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_3_2_default); } } { ldv_free((void *)ldv_7_ldv_param_3_2_default); } goto ldv_call_7; } else { return; } return; } } void ldv_timer_dummy_factory_9(void *arg0 ) { struct timer_list *ldv_9_container_timer_list ; { { ldv_dispatch_instance_register_9_3(ldv_9_container_timer_list); } return; return; } } void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_8(void *arg0 ) { struct timer_list *ldv_8_container_timer_list ; struct ldv_struct_timer_instance_8 *data ; { data = (struct ldv_struct_timer_instance_8 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_8 *)0)) { { ldv_8_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_8_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_8_2(ldv_8_container_timer_list->function, ldv_8_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct page *)tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_resource_lock_of_pmcraid_instance(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_free_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_free_pool_lock_of_pmcraid_instance(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_free_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_133(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_134(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_135(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_136(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_138(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_140(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_143(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_144(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_pending_pool_lock_of_pmcraid_instance(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_145(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_147(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_149(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_152(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_155(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_157(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_159(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_161(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_162(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_164(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_166(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_170(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_init_completion_173(struct completion *x ) { { { ldv_linux_kernel_sched_completion_init_completion_wait_for_completion_of_pmcraid_cmd(); } return; } } static void ldv_wait_for_completion_175(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_177(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_178(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_180(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_183(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_185(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_aen_queue_lock_of_pmcraid_instance(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_186(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_aen_queue_lock_of_pmcraid_instance(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_188(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_190(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(); wait_for_completion(ldv_func_arg1); } return; } } static unsigned long ldv_wait_for_completion_timeout_191(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { unsigned long tmp ; { { ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(); tmp = wait_for_completion_timeout(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_192(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_194(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(); wait_for_completion(ldv_func_arg1); } return; } } static unsigned long ldv_wait_for_completion_timeout_195(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { unsigned long tmp ; { { ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(); tmp = wait_for_completion_timeout(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_196(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_198(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_200(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_201(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_204(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_207(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_209(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lockp(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_210(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lockp(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_211(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_213(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_214(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_216(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lockp(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_free_irq_218(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_219(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_220(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_221(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void *ldv_kmem_cache_alloc_222(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_dma_pool_alloc_223(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static unsigned long ldv_find_first_zero_bit_224(unsigned long const *addr , unsigned long size ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_first_bit(size); } return (tmp); } } static void ldv_cdev_init_225(struct cdev *ldv_func_arg1 , struct file_operations const *ldv_func_arg2 ) { { { cdev_init(ldv_func_arg1, ldv_func_arg2); ldv_cdev_init((void *)0, ldv_func_arg1, (struct file_operations *)ldv_func_arg2); } return; } } static void ldv_cdev_del_226(struct cdev *ldv_func_arg1 ) { { { cdev_del(ldv_func_arg1); ldv_cdev_del((void *)0, ldv_func_arg1); } return; } } static void ldv_scsi_remove_host_227(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv_iounmap_228(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_229(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_231(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static struct Scsi_Host *ldv_scsi_host_alloc_233(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___6 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_scsi_add_host_234(struct Scsi_Host *host , struct device *dev ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = scsi_add_host(host, dev); ldv_func_res = tmp; tmp___0 = ldv_scsi_add_host(ldv_func_res, host, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_scsi_remove_host_235(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv_iounmap_236(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static int ldv_alloc_chrdev_region_237(dev_t *ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 , char const *ldv_func_arg4 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int res1 ; int tmp___0 ; int res2 ; int tmp___1 ; { { tmp = alloc_chrdev_region(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; tmp___0 = ldv_linux_fs_char_dev_register_chrdev_region(); res1 = tmp___0; tmp___1 = ldv_linux_usb_gadget_register_chrdev_region(); res2 = tmp___1; ldv_assume(res1 == res2); } return (res1); return (ldv_func_res); } } static int ldv___pci_register_driver_238(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_class_destroy_239(struct class *cls ) { { { ldv_linux_drivers_base_class_destroy_class(cls); ldv_linux_usb_gadget_destroy_class(cls); } return; } } static void ldv_unregister_chrdev_region_240(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) { { { unregister_chrdev_region(ldv_func_arg1, ldv_func_arg2); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } static void ldv_unregister_chrdev_region_241(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) { { { unregister_chrdev_region(ldv_func_arg1, ldv_func_arg2); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } static void ldv_pci_unregister_driver_242(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv_class_destroy_243(struct class *cls ) { { { ldv_linux_drivers_base_class_destroy_class(cls); ldv_linux_usb_gadget_destroy_class(cls); } return; } } static int ldv_ldv_post_init_244(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_245(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_246(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_247(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_248(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_249(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_250(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_251(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance ; void ldv_linux_kernel_locking_mutex_mutex_lock_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_aen_queue_lock_of_pmcraid_instance(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_aen_queue_lock_of_pmcraid_instance(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_aen_queue_lock_of_pmcraid_instance(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_aen_queue_lock_of_pmcraid_instance(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_aen_queue_lock_of_pmcraid_instance); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_free_pool_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_free_pool_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 2); ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_free_pool_lock_of_pmcraid_instance(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_free_pool_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_free_pool_lock_of_pmcraid_instance(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_free_pool_lock_of_pmcraid_instance(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_free_pool_lock_of_pmcraid_instance(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_free_pool_lock_of_pmcraid_instance(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_free_pool_lock_of_pmcraid_instance(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2); ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_host_lock_of_Scsi_Host(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_host_lock_of_Scsi_Host(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_host_lock_of_Scsi_Host(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_host_lock_of_Scsi_Host(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_host_lock_of_Scsi_Host(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_host_lock_of_Scsi_Host(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lockp = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lockp(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); ldv_linux_kernel_locking_spinlock_spin_lockp = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lockp(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lockp == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lockp == 2); ldv_linux_kernel_locking_spinlock_spin_lockp = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lockp(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lockp = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lockp(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lockp(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lockp == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lockp(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lockp(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lockp(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lockp(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lockp = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_pending_pool_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_pending_pool_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 2); ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_pending_pool_lock_of_pmcraid_instance(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_pending_pool_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_pending_pool_lock_of_pmcraid_instance(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_pending_pool_lock_of_pmcraid_instance(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_pending_pool_lock_of_pmcraid_instance(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_pending_pool_lock_of_pmcraid_instance(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_pending_pool_lock_of_pmcraid_instance(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_resource_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_resource_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 2); ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_resource_lock_of_pmcraid_instance(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_resource_lock_of_pmcraid_instance(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_resource_lock_of_pmcraid_instance(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_resource_lock_of_pmcraid_instance(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_resource_lock_of_pmcraid_instance(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_resource_lock_of_pmcraid_instance(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_resource_lock_of_pmcraid_instance(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lockp == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_free_pool_lock_of_pmcraid_instance == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lockp == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_pending_pool_lock_of_pmcraid_instance == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_resource_lock_of_pmcraid_instance == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_wait_for_completion_of_pmcraid_cmd = 0; void ldv_linux_kernel_sched_completion_init_completion_wait_for_completion_of_pmcraid_cmd(void) { { ldv_linux_kernel_sched_completion_completion_wait_for_completion_of_pmcraid_cmd = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_wait_for_completion_of_pmcraid_cmd(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_wait_for_completion_of_pmcraid_cmd != 0); ldv_linux_kernel_sched_completion_completion_wait_for_completion_of_pmcraid_cmd = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_wait_for_completion_of_pmcraid_cmd(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_wait_for_completion_of_pmcraid_cmd != 0); ldv_linux_kernel_sched_completion_completion_wait_for_completion_of_pmcraid_cmd = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }