/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned short ushort; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct exception_table_entry { int insn ; int fixup ; }; struct rtc_time { int tm_sec ; int tm_min ; int tm_hour ; int tm_mday ; int tm_mon ; int tm_year ; int tm_wday ; int tm_yday ; int tm_isdst ; }; struct rtc_wkalrm { unsigned char enabled ; unsigned char pending ; struct rtc_time time ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_197 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_196 { struct __anonstruct____missing_field_name_197 __annonCompField62 ; }; struct lockref { union __anonunion____missing_field_name_196 __annonCompField63 ; }; struct vfsmount; struct __anonstruct____missing_field_name_199 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_198 { struct __anonstruct____missing_field_name_199 __annonCompField64 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_198 __annonCompField65 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_200 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_200 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_202 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_201 { struct __anonstruct____missing_field_name_202 __annonCompField66 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_201 __annonCompField67 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_204 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_204 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_205 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_205 __annonCompField69 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_208 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_209 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_210 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_208 __annonCompField70 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_209 __annonCompField71 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_210 __annonCompField72 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_211 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_211 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_213 { struct list_head link ; int state ; }; union __anonunion_fl_u_212 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_213 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_212 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct rtc_class_ops { int (*open)(struct device * ) ; void (*release)(struct device * ) ; int (*ioctl)(struct device * , unsigned int , unsigned long ) ; int (*read_time)(struct device * , struct rtc_time * ) ; int (*set_time)(struct device * , struct rtc_time * ) ; int (*read_alarm)(struct device * , struct rtc_wkalrm * ) ; int (*set_alarm)(struct device * , struct rtc_wkalrm * ) ; int (*proc)(struct device * , struct seq_file * ) ; int (*set_mmss)(struct device * , unsigned long ) ; int (*read_callback)(struct device * , int ) ; int (*alarm_irq_enable)(struct device * , unsigned int ) ; }; struct rtc_task { void (*func)(void * ) ; void *private_data ; }; struct rtc_timer { struct rtc_task task ; struct timerqueue_node node ; ktime_t period ; int enabled ; }; struct rtc_device { struct device dev ; struct module *owner ; int id ; char name[20U] ; struct rtc_class_ops const *ops ; struct mutex ops_lock ; struct cdev char_dev ; unsigned long flags ; unsigned long irq_data ; spinlock_t irq_lock ; wait_queue_head_t irq_queue ; struct fasync_struct *async_queue ; struct rtc_task *irq_task ; spinlock_t irq_task_lock ; int irq_freq ; int max_user_freq ; struct timerqueue_head timerqueue ; struct rtc_timer aie_timer ; struct rtc_timer uie_rtctimer ; struct hrtimer pie_timer ; int pie_enabled ; struct work_struct irqwork ; int uie_unsupported ; struct work_struct uie_task ; struct timer_list uie_timer ; unsigned int oldsecs ; unsigned char uie_irq_active : 1 ; unsigned char stop_uie_polling : 1 ; unsigned char uie_task_active : 1 ; unsigned char uie_timer_active : 1 ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_219 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_219 __annonCompField73 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct usb_ctrlrequest { __u8 bRequestType ; __u8 bRequest ; __le16 wValue ; __le16 wIndex ; __le16 wLength ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct usb_ep; struct usb_request { void *buf ; unsigned int length ; dma_addr_t dma ; struct scatterlist *sg ; unsigned int num_sgs ; unsigned int num_mapped_sgs ; unsigned short stream_id ; unsigned char no_interrupt : 1 ; unsigned char zero : 1 ; unsigned char short_not_ok : 1 ; void (*complete)(struct usb_ep * , struct usb_request * ) ; void *context ; struct list_head list ; int status ; unsigned int actual ; }; struct usb_ep_ops { int (*enable)(struct usb_ep * , struct usb_endpoint_descriptor const * ) ; int (*disable)(struct usb_ep * ) ; struct usb_request *(*alloc_request)(struct usb_ep * , gfp_t ) ; void (*free_request)(struct usb_ep * , struct usb_request * ) ; int (*queue)(struct usb_ep * , struct usb_request * , gfp_t ) ; int (*dequeue)(struct usb_ep * , struct usb_request * ) ; int (*set_halt)(struct usb_ep * , int ) ; int (*set_wedge)(struct usb_ep * ) ; int (*fifo_status)(struct usb_ep * ) ; void (*fifo_flush)(struct usb_ep * ) ; }; struct usb_ep { void *driver_data ; char const *name ; struct usb_ep_ops const *ops ; struct list_head ep_list ; unsigned short maxpacket ; unsigned short maxpacket_limit ; unsigned short max_streams ; unsigned char mult : 2 ; unsigned char maxburst : 5 ; u8 address ; struct usb_endpoint_descriptor const *desc ; struct usb_ss_ep_comp_descriptor const *comp_desc ; }; struct usb_dcd_config_params { __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_gadget; struct usb_gadget_driver; struct usb_gadget_ops { int (*get_frame)(struct usb_gadget * ) ; int (*wakeup)(struct usb_gadget * ) ; int (*set_selfpowered)(struct usb_gadget * , int ) ; int (*vbus_session)(struct usb_gadget * , int ) ; int (*vbus_draw)(struct usb_gadget * , unsigned int ) ; int (*pullup)(struct usb_gadget * , int ) ; int (*ioctl)(struct usb_gadget * , unsigned int , unsigned long ) ; void (*get_config_params)(struct usb_dcd_config_params * ) ; int (*udc_start)(struct usb_gadget * , struct usb_gadget_driver * ) ; int (*udc_stop)(struct usb_gadget * ) ; }; struct usb_gadget { struct work_struct work ; struct usb_gadget_ops const *ops ; struct usb_ep *ep0 ; struct list_head ep_list ; enum usb_device_speed speed ; enum usb_device_speed max_speed ; enum usb_device_state state ; char const *name ; struct device dev ; unsigned int out_epnum ; unsigned int in_epnum ; unsigned char sg_supported : 1 ; unsigned char is_otg : 1 ; unsigned char is_a_peripheral : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char a_hnp_support : 1 ; unsigned char a_alt_hnp_support : 1 ; unsigned char quirk_ep_out_aligned_size : 1 ; unsigned char is_selfpowered : 1 ; }; struct usb_gadget_driver { char *function ; enum usb_device_speed max_speed ; int (*bind)(struct usb_gadget * , struct usb_gadget_driver * ) ; void (*unbind)(struct usb_gadget * ) ; int (*setup)(struct usb_gadget * , struct usb_ctrlrequest const * ) ; void (*disconnect)(struct usb_gadget * ) ; void (*suspend)(struct usb_gadget * ) ; void (*resume)(struct usb_gadget * ) ; void (*reset)(struct usb_gadget * ) ; struct device_driver driver ; }; struct net2272; struct net2272_ep { struct usb_ep ep ; struct net2272 *dev ; unsigned long irqs ; struct list_head queue ; struct usb_endpoint_descriptor const *desc ; unsigned char num ; unsigned short fifo_size : 12 ; unsigned char stopped : 1 ; unsigned char wedged : 1 ; unsigned char is_in : 1 ; unsigned char is_iso : 1 ; unsigned char dma : 1 ; unsigned char not_empty : 1 ; }; struct __anonstruct_rdk1_221 { void *plx9054_base_addr ; void *epld_base_addr ; }; struct __anonstruct_rdk2_222 { void *fpga_base_addr ; }; union __anonunion____missing_field_name_220 { struct __anonstruct_rdk1_221 rdk1 ; struct __anonstruct_rdk2_222 rdk2 ; }; struct net2272 { struct usb_gadget gadget ; struct device *dev ; unsigned short dev_id ; spinlock_t lock ; struct net2272_ep ep[4U] ; struct usb_gadget_driver *driver ; unsigned char protocol_stall : 1 ; unsigned char softconnect : 1 ; unsigned char wakeup : 1 ; unsigned char dma_eot_polarity : 1 ; unsigned char dma_dack_polarity : 1 ; unsigned char dma_dreq_polarity : 1 ; unsigned char dma_busy : 1 ; u16 chiprev ; u8 pagesel ; unsigned int irq ; unsigned short fifo_mode ; unsigned int base_shift ; u16 *base_addr ; union __anonunion____missing_field_name_220 __annonCompField74 ; }; struct net2272_request { struct usb_request req ; struct list_head queue ; unsigned char mapped : 1 ; unsigned char valid : 1 ; }; union __anonunion_u_224 { u8 raw[8U] ; struct usb_ctrlrequest r ; }; struct ldv_struct_free_irq_9 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_1 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_2 { struct platform_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_148(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_145(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_149(void) ; static void ldv_ldv_pre_probe_151(void) ; static void ldv_ldv_pre_probe_153(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_150(int retval ) ; static int ldv_ldv_post_probe_152(int retval ) ; static int ldv_ldv_post_probe_154(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_146(void) ; static void ldv_ldv_check_final_state_147(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } extern struct module __this_module ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int scnprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void warn_slowpath_null(char const * , int const ) ; __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static void prefetchw(void const *x ) { { __asm__ volatile ("661:\n\tprefetcht0 (%1)\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 1*32+31)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\tprefetchw (%1)\n6641:\n\t.popsection": : "i" (0), "r" (x)); return; } } extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_99(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_120(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_net2272(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern struct resource iomem_resource ; __inline static resource_size_t resource_size(struct resource const *res ) { { return (((unsigned long long )res->end - (unsigned long long )res->start) + 1ULL); } } extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_102(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } static void *ldv_ioremap_nocache_132(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void *ldv_ioremap_nocache_134(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void *ldv_ioremap_nocache_141(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void ldv_iounmap_129(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_133(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_135(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_136(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_137(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_138(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_142(void volatile *ldv_func_arg1 ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_139(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_140(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern struct resource *platform_get_resource(struct platform_device * , unsigned int , unsigned int ) ; extern int __platform_driver_register(struct platform_driver * , struct module * ) ; static int ldv___platform_driver_register_143(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; extern void platform_driver_unregister(struct platform_driver * ) ; static void ldv_platform_driver_unregister_144(struct platform_driver *ldv_func_arg1 ) ; __inline static void *platform_get_drvdata(struct platform_device const *pdev ) { void *tmp ; { { tmp = dev_get_drvdata(& pdev->dev); } return (tmp); } } __inline static void platform_set_drvdata(struct platform_device *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_130(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_128(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __const_udelay(unsigned long ) ; __inline static int usb_endpoint_type(struct usb_endpoint_descriptor const *epd ) { { return ((int )epd->bmAttributes & 3); } } __inline static int usb_endpoint_dir_in(struct usb_endpoint_descriptor const *epd ) { { return ((int )((signed char )epd->bEndpointAddress) < 0); } } __inline static int usb_endpoint_xfer_bulk(struct usb_endpoint_descriptor const *epd ) { { return (((int )epd->bmAttributes & 3) == 2); } } __inline static int usb_endpoint_xfer_isoc(struct usb_endpoint_descriptor const *epd ) { { return (((int )epd->bmAttributes & 3) == 1); } } __inline static int usb_endpoint_maxp(struct usb_endpoint_descriptor const *epd ) { { return ((int )epd->wMaxPacketSize); } } extern char const *usb_speed_string(enum usb_device_speed ) ; __inline static void usb_ep_set_maxpacket_limit(struct usb_ep *ep , unsigned int maxpacket_limit ) { { ep->maxpacket_limit = (unsigned short )maxpacket_limit; ep->maxpacket = (unsigned short )maxpacket_limit; return; } } extern int usb_add_gadget_udc_release(struct device * , struct usb_gadget * , void (*)(struct device * ) ) ; extern void usb_del_gadget_udc(struct usb_gadget * ) ; extern int usb_gadget_map_request(struct usb_gadget * , struct usb_request * , int ) ; extern void usb_gadget_unmap_request(struct usb_gadget * , struct usb_request * , int ) ; extern void usb_gadget_udc_reset(struct usb_gadget * , struct usb_gadget_driver * ) ; extern void usb_gadget_giveback_request(struct usb_ep * , struct usb_request * ) ; static void *net2272_reg_addr(struct net2272 *dev , unsigned int reg ) { { return ((void *)dev->base_addr + (unsigned long )(reg << (int )dev->base_shift)); } } static void net2272_write(struct net2272 *dev , unsigned int reg , u8 value ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { if (reg > 31U) { { tmp = net2272_reg_addr(dev, 0U); writeb((int )((unsigned char )reg), (void volatile *)tmp); tmp___0 = net2272_reg_addr(dev, 1U); writeb((int )value, (void volatile *)tmp___0); } } else { { tmp___1 = net2272_reg_addr(dev, reg); writeb((int )value, (void volatile *)tmp___1); } } return; } } static u8 net2272_read(struct net2272 *dev , unsigned int reg ) { u8 ret ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { if (reg > 31U) { { tmp = net2272_reg_addr(dev, 0U); writeb((int )((unsigned char )reg), (void volatile *)tmp); tmp___0 = net2272_reg_addr(dev, 1U); ret = readb((void const volatile *)tmp___0); } } else { { tmp___1 = net2272_reg_addr(dev, reg); ret = readb((void const volatile *)tmp___1); } } return (ret); } } static void net2272_ep_write(struct net2272_ep *ep , unsigned int reg , u8 value ) { struct net2272 *dev ; { dev = ep->dev; if ((int )dev->pagesel != (int )ep->num) { { net2272_write(dev, 4U, (int )ep->num); dev->pagesel = ep->num; } } else { } { net2272_write(dev, reg, (int )value); } return; } } static u8 net2272_ep_read(struct net2272_ep *ep , unsigned int reg ) { struct net2272 *dev ; u8 tmp ; { dev = ep->dev; if ((int )dev->pagesel != (int )ep->num) { { net2272_write(dev, 4U, (int )ep->num); dev->pagesel = ep->num; } } else { } { tmp = net2272_read(dev, reg); } return (tmp); } } static void allow_status(struct net2272_ep *ep ) { { { net2272_ep_write(ep, 14U, 140); ep->stopped = 1U; } return; } } static void set_halt(struct net2272_ep *ep ) { { { net2272_ep_write(ep, 14U, 8); net2272_ep_write(ep, 15U, 1); } return; } } static void clear_halt(struct net2272_ep *ep ) { { { net2272_ep_write(ep, 14U, 3); } return; } } static void set_fifo_bytecount(struct net2272_ep *ep , unsigned int count ) { { { net2272_ep_write(ep, 10U, (int )((u8 )(count >> 16))); net2272_ep_write(ep, 9U, (int )((u8 )(count >> 8))); net2272_ep_write(ep, 8U, (int )((u8 )count)); } return; } } static char const driver_name[8U] = { 'n', 'e', 't', '2', '2', '7', '2', '\000'}; static char const driver_vers[25U] = { '2', '0', '0', '6', ' ', 'O', 'c', 't', 'o', 'b', 'e', 'r', ' ', '1', '7', '/', 'm', 'a', 'i', 'n', 'l', 'i', 'n', 'e', '\000'}; static char const driver_desc[38U] = { 'P', 'L', 'X', ' ', 'N', 'E', 'T', '2', '2', '7', '2', ' ', 'U', 'S', 'B', ' ', 'P', 'e', 'r', 'i', 'p', 'h', 'e', 'r', 'a', 'l', ' ', 'C', 'o', 'n', 't', 'r', 'o', 'l', 'l', 'e', 'r', '\000'}; static char const ep0name[4U] = { 'e', 'p', '0', '\000'}; static char const * const ep_name[4U] = { (char const *)(& ep0name), "ep-a", "ep-b", "ep-c"}; static bool use_dma = 0; static ushort dma_ep = 1U; static ushort dma_mode = 2U; static ushort fifo_mode = 0U; static ushort enable_suspend = 0U; static void assert_out_naking(struct net2272_ep *ep , char const *where ) { u8 tmp ; struct _ddebug descriptor ; long tmp___0 ; { return; { tmp = net2272_ep_read(ep, 6U); } if (((int )tmp & 32) == 0) { { descriptor.modname = "net2272"; descriptor.function = "assert_out_naking"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "%s %s %02x !NAK\n"; descriptor.lineno = 131U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(ep->dev)->dev, "%s %s %02x !NAK\n", ep->ep.name, where, (int )tmp); } } else { } { net2272_ep_write(ep, 15U, 128); } } else { } } } static void stop_out_naking(struct net2272_ep *ep ) { u8 tmp ; u8 tmp___0 ; { { tmp___0 = net2272_ep_read(ep, 6U); tmp = tmp___0; } if (((int )tmp & 32) != 0) { { net2272_ep_write(ep, 14U, 128); } } else { } return; } } static char *type_string(u8 bmAttributes ) { { { if (((int )bmAttributes & 3) == 2) { goto case_2; } else { } if (((int )bmAttributes & 3) == 1) { goto case_1; } else { } if (((int )bmAttributes & 3) == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ ; return ((char *)"bulk"); case_1: /* CIL Label */ ; return ((char *)"iso"); case_3: /* CIL Label */ ; return ((char *)"intr"); switch_default: /* CIL Label */ ; return ((char *)"control"); switch_break: /* CIL Label */ ; } } } static char *buf_state_string(unsigned int state ) { { { if (state == 0U) { goto case_0; } else { } if (state == 1U) { goto case_1; } else { } if (state == 2U) { goto case_2; } else { } if (state == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return ((char *)"free"); case_1: /* CIL Label */ ; return ((char *)"valid"); case_2: /* CIL Label */ ; return ((char *)"local"); case_3: /* CIL Label */ ; return ((char *)"usb"); switch_default: /* CIL Label */ ; return ((char *)"unknown"); switch_break: /* CIL Label */ ; } } } static char *dma_mode_string(void) { { if (! use_dma) { return ((char *)"PIO"); } else { } { if ((int )dma_mode == 0) { goto case_0; } else { } if ((int )dma_mode == 1) { goto case_1; } else { } if ((int )dma_mode == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return ((char *)"SLOW DREQ"); case_1: /* CIL Label */ ; return ((char *)"FAST DREQ"); case_2: /* CIL Label */ ; return ((char *)"BURST"); switch_default: /* CIL Label */ ; return ((char *)"invalid"); switch_break: /* CIL Label */ ; } } } static void net2272_dequeue_all(struct net2272_ep *ep ) ; static int net2272_kick_dma(struct net2272_ep *ep , struct net2272_request *req ) ; static int net2272_fifo_status(struct usb_ep *_ep ) ; static struct usb_ep_ops net2272_ep_ops ; static int net2272_enable(struct usb_ep *_ep , struct usb_endpoint_descriptor const *desc ) { struct net2272 *dev ; struct net2272_ep *ep ; u32 max ; u8 tmp ; unsigned long flags ; struct usb_ep const *__mptr ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; struct _ddebug descriptor ; u8 tmp___8 ; char *tmp___9 ; long tmp___10 ; { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if (((((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || (unsigned long )desc == (unsigned long )((struct usb_endpoint_descriptor const *)0)) || (unsigned long )ep->desc != (unsigned long )((struct usb_endpoint_descriptor const *)0)) || (unsigned long )_ep->name == (unsigned long )((char const *)(& ep0name))) || (unsigned int )((unsigned char )desc->bDescriptorType) != 5U) { return (-22); } else { } dev = ep->dev; if ((unsigned long )dev->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )dev->gadget.speed == 0U) { return (-108); } else { } { tmp___0 = usb_endpoint_maxp(desc); max = (u32 )tmp___0 & 8191U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(& dev->lock); _ep->maxpacket = (unsigned int )((unsigned short )max) & 32767U; ep->desc = desc; ep->stopped = 0U; ep->wedged = 0U; net2272_ep_write(ep, 40U, (int )((u8 )max)); net2272_ep_write(ep, 41U, (int )((u8 )((max & 65280U) >> 8))); net2272_ep_write(ep, 7U, 128); tmp___1 = usb_endpoint_type(desc); tmp = (u8 )tmp___1; tmp___2 = usb_endpoint_xfer_bulk(desc); } if (tmp___2 != 0) { if (((unsigned int )dev->gadget.speed == 3U && max != 512U) || ((unsigned int )dev->gadget.speed == 2U && max > 64U)) { { ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return (-34); } else { } } else { } { tmp___3 = usb_endpoint_xfer_isoc(desc); ep->is_iso = tmp___3 != 0; tmp = (int )tmp << 5U; tmp = (u8 )((int )((signed char )tmp) | ((int )((signed char )desc->bEndpointAddress) & 15)); tmp___4 = usb_endpoint_dir_in(desc); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )(tmp___4 << 4))); tmp = (u8 )((unsigned int )tmp | 128U); tmp___5 = usb_endpoint_dir_in(desc); ep->is_in = (unsigned char )tmp___5; } if ((unsigned int )*((unsigned char *)ep + 106UL) == 0U) { { net2272_ep_write(ep, 15U, 128); } } else { } { net2272_ep_write(ep, 42U, (int )tmp); tmp___6 = net2272_read(dev, 32U); tmp = (u8 )((int )((signed char )(1 << (int )ep->num)) | (int )((signed char )tmp___6)); net2272_write(dev, 32U, (int )tmp); tmp___7 = net2272_ep_read(ep, 11U); tmp = (u8 )((unsigned int )tmp___7 | 12U); net2272_ep_write(ep, 11U, (int )tmp); tmp = desc->bEndpointAddress; descriptor.modname = "net2272"; descriptor.function = "net2272_enable"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "enabled %s (ep%d%s-%s) max %04x cfg %02x\n"; descriptor.lineno = 256U; descriptor.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___8 = net2272_ep_read(ep, 42U); tmp___9 = type_string((int )desc->bmAttributes); __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "enabled %s (ep%d%s-%s) max %04x cfg %02x\n", _ep->name, (int )tmp & 15, (int )((signed char )tmp) < 0 ? (char *)"in" : (char *)"out", tmp___9, max, (int )tmp___8); } } else { } { ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return (0); } } static void net2272_ep_reset(struct net2272_ep *ep ) { u8 tmp ; { { ep->desc = (struct usb_endpoint_descriptor const *)0; INIT_LIST_HEAD(& ep->queue); usb_ep_set_maxpacket_limit(& ep->ep, 4294967295U); ep->ep.ops = (struct usb_ep_ops const *)(& net2272_ep_ops); net2272_ep_write(ep, 11U, 0); tmp = 132U; net2272_ep_write(ep, 15U, (int )tmp); tmp = 80U; } if ((unsigned int )ep->num != 0U) { tmp = (u8 )((unsigned int )tmp | 3U); } else { } { net2272_ep_write(ep, 14U, (int )tmp); net2272_ep_write(ep, 6U, 31); net2272_ep_write(ep, 7U, 255); } return; } } static int net2272_disable(struct usb_ep *_ep ) { struct net2272_ep *ep ; unsigned long flags ; struct usb_ep const *__mptr ; { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if (((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || (unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0)) || (unsigned long )_ep->name == (unsigned long )((char const *)(& ep0name))) { return (-22); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_99(& (ep->dev)->lock); net2272_dequeue_all(ep); net2272_ep_reset(ep); ldv_spin_unlock_irqrestore_97(& (ep->dev)->lock, flags); } return (0); } } static struct usb_request *net2272_alloc_request(struct usb_ep *_ep , gfp_t gfp_flags ) { struct net2272_ep *ep ; struct net2272_request *req ; struct usb_ep const *__mptr ; void *tmp ; { if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0)) { return ((struct usb_request *)0); } else { } { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; tmp = kzalloc(112UL, gfp_flags); req = (struct net2272_request *)tmp; } if ((unsigned long )req == (unsigned long )((struct net2272_request *)0)) { return ((struct usb_request *)0); } else { } { INIT_LIST_HEAD(& req->queue); } return (& req->req); } } static void net2272_free_request(struct usb_ep *_ep , struct usb_request *_req ) { struct net2272_ep *ep ; struct net2272_request *req ; struct usb_ep const *__mptr ; struct usb_request const *__mptr___0 ; int __ret_warn_on ; int tmp ; long tmp___0 ; { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || (unsigned long )_req == (unsigned long )((struct usb_request *)0)) { return; } else { } { __mptr___0 = (struct usb_request const *)_req; req = (struct net2272_request *)__mptr___0; tmp = list_empty((struct list_head const *)(& req->queue)); __ret_warn_on = tmp == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/usb/gadget/udc/net2272.c", 359); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); kfree((void const *)req); } return; } } static void net2272_done(struct net2272_ep *ep , struct net2272_request *req , int status ) { struct net2272 *dev ; unsigned int stopped ; { stopped = (unsigned int )ep->stopped; if ((unsigned int )ep->num == 0U) { if ((unsigned int )*((unsigned char *)ep->dev + 2104UL) != 0U) { { ep->stopped = 1U; set_halt(ep); } } else { } { allow_status(ep); } } else { } { list_del_init(& req->queue); } if (req->req.status == -115) { req->req.status = status; } else { status = req->req.status; } dev = ep->dev; if ((int )use_dma && (unsigned int )*((unsigned char *)ep + 107UL) != 0U) { { usb_gadget_unmap_request(& dev->gadget, & req->req, (int )ep->is_in); } } else { } { ep->stopped = 1U; ldv_spin_unlock_101(& dev->lock); usb_gadget_giveback_request(& ep->ep, & req->req); ldv_spin_lock_102(& dev->lock); ep->stopped = (unsigned char )stopped; } return; } } static int net2272_write_packet(struct net2272_ep *ep , u8 *buf , struct net2272_request *req , unsigned int max ) { u16 *ep_data ; void *tmp ; u16 *bufp ; unsigned int length ; unsigned int count ; u8 tmp___0 ; unsigned int _min1 ; unsigned int _min2 ; u16 *tmp___3 ; long tmp___4 ; long tmp___5 ; { { tmp = net2272_reg_addr(ep->dev, 5U); ep_data = (u16 *)tmp; _min1 = req->req.length - req->req.actual; _min2 = max; length = _min1 < _min2 ? _min1 : _min2; req->req.actual = req->req.actual + length; count = length; bufp = (u16 *)buf; } goto ldv_36461; ldv_36460: { tmp___3 = bufp; bufp = bufp + 1; writew((int )*tmp___3, (void volatile *)ep_data); count = count - 2U; } ldv_36461: { tmp___4 = ldv__builtin_expect(count > 1U, 1L); } if (tmp___4 != 0L) { goto ldv_36460; } else { } { buf = (u8 *)bufp; tmp___5 = ldv__builtin_expect(count != 0U, 0L); } if (tmp___5 != 0L) { { tmp___0 = net2272_read(ep->dev, 34U); net2272_write(ep->dev, 34U, (int )tmp___0 & 254); writeb((int )*buf, (void volatile *)ep_data); net2272_write(ep->dev, 34U, (int )tmp___0); } } else { } return ((int )length); } } static int net2272_write_fifo(struct net2272_ep *ep , struct net2272_request *req ) { u8 *buf ; unsigned int count ; unsigned int max ; int status ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; int tmp___3 ; struct list_head const *__mptr ; u8 tmp___4 ; int tmp___5 ; u8 tmp___6 ; { top: { net2272_ep_write(ep, 6U, 4); } goto ldv_36475; ldv_36474: { buf = (u8 *)req->req.buf + (unsigned long )req->req.actual; __builtin_prefetch((void const *)buf); net2272_ep_read(ep, 6U); tmp = net2272_ep_read(ep, 13U); tmp___0 = net2272_ep_read(ep, 12U); max = (unsigned int )(((int )tmp << 8) | (int )tmp___0); } if (max < (unsigned int )ep->ep.maxpacket) { { tmp___1 = net2272_ep_read(ep, 13U); tmp___2 = net2272_ep_read(ep, 12U); max = (unsigned int )(((int )tmp___1 << 8) | (int )tmp___2); } } else { } { tmp___3 = net2272_write_packet(ep, buf, req, max); count = (unsigned int )tmp___3; } if (req->req.length == req->req.actual) { if (count < (unsigned int )ep->ep.maxpacket) { { set_fifo_bytecount(ep, 0U); } } else { } { net2272_done(ep, req, 0); tmp___5 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___5 == 0) { { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; status = net2272_kick_dma(ep, req); } if (status < 0) { { tmp___4 = net2272_ep_read(ep, 6U); } if (((int )tmp___4 & 64) != 0) { goto top; } else { } } else { } } else { } return (1); } else { } { net2272_ep_write(ep, 6U, 4); } ldv_36475: { tmp___6 = net2272_ep_read(ep, 6U); } if ((int )((signed char )tmp___6) >= 0) { goto ldv_36474; } else { } return (0); } } static void net2272_out_flush(struct net2272_ep *ep ) { { { assert_out_naking(ep, "net2272_out_flush"); net2272_ep_write(ep, 6U, 10); net2272_ep_write(ep, 7U, 128); } return; } } static int net2272_read_packet(struct net2272_ep *ep , u8 *buf , struct net2272_request *req , unsigned int avail ) { u16 *ep_data ; void *tmp ; unsigned int is_short ; u16 *bufp ; long tmp___2 ; long tmp___3 ; u16 *tmp___4 ; u8 tmp___5 ; { { tmp = net2272_reg_addr(ep->dev, 5U); ep_data = (u16 *)tmp; req->req.actual = req->req.actual + avail; is_short = avail < (unsigned int )ep->ep.maxpacket; tmp___2 = ldv__builtin_expect(avail == 0U, 0L); } if (tmp___2 != 0L) { { readw((void const volatile *)ep_data); } return ((int )is_short); } else { } { tmp___3 = ldv__builtin_expect((long )((int )avail) & 1L, 0L); } if (tmp___3 != 0L) { avail = avail + 1U; } else { } bufp = (u16 *)buf; ldv_36490: { tmp___4 = bufp; bufp = bufp + 1; *tmp___4 = readw((void const volatile *)ep_data); avail = avail - 2U; } if (avail != 0U) { goto ldv_36490; } else { } { tmp___5 = net2272_ep_read(ep, 6U); } if (((int )tmp___5 & 16) != 0) { { net2272_ep_read(ep, 6U); } } else { } return ((int )is_short); } } static int net2272_read_fifo(struct net2272_ep *ep , struct net2272_request *req ) { u8 *buf ; unsigned int is_short ; int count ; int tmp ; int cleanup ; int status ; u8 tmp___0 ; u8 tmp___1 ; int tmp___2 ; long tmp___3 ; struct list_head const *__mptr ; u8 tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; int tmp___9 ; u8 tmp___10 ; { cleanup = 0; status = -1; top: ; ldv_36505: { buf = (u8 *)req->req.buf + (unsigned long )req->req.actual; prefetchw((void const *)buf); tmp___0 = net2272_ep_read(ep, 13U); tmp___1 = net2272_ep_read(ep, 12U); count = ((int )tmp___0 << 8) | (int )tmp___1; net2272_ep_write(ep, 6U, 24); tmp = (int )(req->req.length - req->req.actual); } if (count > tmp) { if (tmp % (int )ep->ep.maxpacket != 0) { { dev_err((struct device const *)(ep->dev)->dev, "%s out fifo %d bytes, expected %d\n", ep->ep.name, count, tmp); cleanup = 1; } } else { } count = 0 > tmp ? 0 : tmp; } else { } { tmp___2 = net2272_read_packet(ep, buf, req, (unsigned int )count); is_short = (unsigned int )tmp___2; tmp___6 = ldv__builtin_expect((long )(cleanup != 0 || is_short != 0U), 0L); } if (tmp___6 != 0L) { goto _L; } else { { tmp___7 = ldv__builtin_expect(req->req.actual == req->req.length, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect((unsigned int )*((unsigned char *)req + 42UL) == 0U, 0L); } if (tmp___8 != 0L) { tmp___9 = 1; } else { tmp___9 = 0; } } else { tmp___9 = 0; } if (tmp___9 != 0) { _L: /* CIL Label */ if (cleanup != 0) { { net2272_out_flush(ep); net2272_done(ep, req, -75); } } else { { net2272_done(ep, req, 0); } } { tmp___3 = ldv__builtin_expect((unsigned int )ep->num == 0U, 0L); } if (tmp___3 != 0L) { { net2272_ep_write(ep, 10U, 0); net2272_ep_write(ep, 9U, 0); net2272_ep_write(ep, 8U, 0); } } else { } { tmp___5 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___5 == 0) { { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; status = net2272_kick_dma(ep, req); } if (status < 0) { { tmp___4 = net2272_ep_read(ep, 6U); } if (((int )tmp___4 & 64) == 0) { goto top; } else { } } else { } } else { } return (1); } else { } } { tmp___10 = net2272_ep_read(ep, 6U); } if (((int )tmp___10 & 64) == 0) { goto ldv_36505; } else { } return (0); } } static void net2272_pio_advance(struct net2272_ep *ep ) { struct net2272_request *req ; int tmp ; long tmp___0 ; struct list_head const *__mptr ; { { tmp = list_empty((struct list_head const *)(& ep->queue)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { return; } else { } { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; (*((unsigned int )*((unsigned char *)ep + 106UL) != 0U ? & net2272_write_fifo : & net2272_read_fifo))(ep, req); } return; } } static int net2272_request_dma(struct net2272 *dev , unsigned int ep , u32 buf , unsigned int len , unsigned int dir ) { unsigned int tmp ; { if ((unsigned int )*((unsigned char *)dev + 2104UL) != 0U) { return (-16); } else { } if (dir == 1U && len > 16777216U) { return (-22); } else { } dev->dma_busy = 1U; { if ((int )dev->dev_id == 36948) { goto case_36948; } else { } goto switch_break; case_36948: /* CIL Label */ { writel(187457U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 128U); writel(1048576U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 136U); writel(buf, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 132U); writel(len, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 140U); writel((dir << 3) | 4U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 144U); tmp = readl((void const volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 104U); writel(tmp | 262144U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 104U); } goto ldv_36521; switch_break: /* CIL Label */ ; } ldv_36521: { net2272_write(dev, 28U, (int )((u8 )((((int )((signed char )((int )dev->dma_eot_polarity << 3)) | 48) | (int )((signed char )((int )dev->dma_dack_polarity << 2))) | (int )((signed char )((int )dev->dma_dreq_polarity << 1)))) | (int )((u8 )(ep >> 1))); net2272_read(dev, 29U); } return (0); } } static void net2272_start_dma(struct net2272 *dev ) { { { if ((int )dev->dev_id == 36948) { goto case_36948; } else { } goto switch_break; case_36948: /* CIL Label */ { writeb(3, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 168U); } goto ldv_36526; switch_break: /* CIL Label */ ; } ldv_36526: ; return; } } static int net2272_kick_dma(struct net2272_ep *ep , struct net2272_request *req ) { unsigned int size ; u8 tmp ; int tmp___0 ; int tmp___1 ; { if (((! use_dma || (unsigned int )ep->num == 0U) || (unsigned int )ep->num > 2U) || (unsigned int )*((unsigned char *)ep + 107UL) == 0U) { return (-22); } else { } if ((int )req->req.length & 1) { return (-22); } else { } { net2272_ep_write(ep, 15U, 128); } if ((unsigned int )*((unsigned char *)ep->dev + 2104UL) != 0U) { return (-16); } else { } size = req->req.length; size = size & 4294967294U; if ((unsigned int )*((unsigned char *)ep + 106UL) != 0U) { { tmp___0 = net2272_request_dma(ep->dev, (unsigned int )ep->num, (u32 )req->req.dma, size, 0U); } if (tmp___0 != 0) { return (-16); } else { } req->req.actual = req->req.actual + size; } else { { tmp = net2272_ep_read(ep, 6U); tmp___1 = net2272_request_dma(ep->dev, (unsigned int )ep->num, (u32 )req->req.dma, size, 1U); } if (tmp___1 != 0) { return (-16); } else { } if (((int )tmp & 64) == 0) { ep->not_empty = 1U; } else { ep->not_empty = 0U; } { net2272_ep_write(ep, 14U, 128); } if (((int )tmp & 16) != 0) { { net2272_write(ep->dev, 28U, (int )((u8 )(((((int )((signed char )((int )(ep->dev)->dma_eot_polarity << 3)) | 16) | (int )((signed char )((int )(ep->dev)->dma_dack_polarity << 2))) | (int )((signed char )((int )(ep->dev)->dma_dreq_polarity << 1))) | (int )((signed char )((int )ep->num >> 1))))); } return (-16); } else { } } { net2272_ep_write(ep, 11U, 0); net2272_start_dma(ep->dev); } return (0); } } static void net2272_cancel_dma(struct net2272 *dev ) { unsigned char tmp ; { { if ((int )dev->dev_id == 36948) { goto case_36948; } else { } goto switch_break; case_36948: /* CIL Label */ { writeb(0, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 168U); writeb(4, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 168U); } goto ldv_36537; ldv_36538: ; goto ldv_36537; ldv_36537: { tmp = readb((void const volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 168U); } if (((int )tmp & 16) == 0) { goto ldv_36538; } else { } { writeb(8, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 168U); } goto ldv_36540; switch_break: /* CIL Label */ ; } ldv_36540: dev->dma_busy = 0U; return; } } static int net2272_queue(struct usb_ep *_ep , struct usb_request *_req , gfp_t gfp_flags ) { struct net2272_request *req ; struct net2272_ep *ep ; struct net2272 *dev ; unsigned long flags ; int status ; u8 s ; struct usb_request const *__mptr ; int tmp ; struct usb_ep const *__mptr___0 ; struct _ddebug descriptor ; long tmp___0 ; u8 tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; { status = -1; __mptr = (struct usb_request const *)_req; req = (struct net2272_request *)__mptr; if (((unsigned long )_req == (unsigned long )((struct usb_request *)0) || (unsigned long )_req->complete == (unsigned long )((void (*)(struct usb_ep * , struct usb_request * ))0)) || (unsigned long )_req->buf == (unsigned long )((void *)0)) { return (-22); } else { { tmp = list_empty((struct list_head const *)(& req->queue)); } if (tmp == 0) { return (-22); } else { } } __mptr___0 = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr___0; if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || ((unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )ep->num != 0U)) { return (-22); } else { } dev = ep->dev; if ((unsigned long )dev->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )dev->gadget.speed == 0U) { return (-108); } else { } if ((int )use_dma && (unsigned int )*((unsigned char *)ep + 107UL) != 0U) { { status = usb_gadget_map_request(& dev->gadget, _req, (int )ep->is_in); } if (status != 0) { return (status); } else { } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(& dev->lock); _req->status = -115; _req->actual = 0U; tmp___3 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___3 != 0 && (unsigned int )*((unsigned char *)ep + 106UL) == 0U) { if ((unsigned int )ep->num == 0U && _req->length == 0U) { { net2272_done(ep, req, 0); } goto done; } else { } { s = net2272_ep_read(ep, 6U); } if (((int )s & 64) != 0) { if (((int )s & 32) != 0) { { tmp___1 = net2272_ep_read(ep, 7U); } if (((int )tmp___1 & 64) != 0) { { descriptor.modname = "net2272"; descriptor.function = "net2272_queue"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "WARNING: returning ZLP short packet termination!\n"; descriptor.lineno = 878U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "WARNING: returning ZLP short packet termination!\n"); } } else { } { status = net2272_read_fifo(ep, req); net2272_ep_write(ep, 6U, 32); } goto done; } else { } } else { } } else { } { status = net2272_kick_dma(ep, req); } if (status < 0) { status = 0; if ((unsigned int )*((unsigned char *)ep + 106UL) != 0U) { { status = net2272_write_fifo(ep, req); } } else { { s = net2272_ep_read(ep, 6U); } if (((int )s & 64) == 0) { { status = net2272_read_fifo(ep, req); } } else { } } { tmp___2 = ldv__builtin_expect(status != 0, 0L); } if (tmp___2 != 0L) { if (status > 0) { status = 0; } else { } req = (struct net2272_request *)0; } else { } } else { } } else { } { tmp___4 = ldv__builtin_expect((unsigned long )req != (unsigned long )((struct net2272_request *)0), 1L); } if (tmp___4 != 0L) { { list_add_tail(& req->queue, & ep->queue); } } else { } { tmp___5 = list_empty((struct list_head const *)(& ep->queue)); tmp___6 = ldv__builtin_expect(tmp___5 == 0, 1L); } if (tmp___6 != 0L) { { net2272_ep_write(ep, 14U, 128); } } else { } done: { ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return (0); } } static void net2272_dequeue_all(struct net2272_ep *ep ) { struct net2272_request *req ; struct list_head const *__mptr ; int tmp ; { ep->stopped = 1U; goto ldv_36566; ldv_36565: { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; net2272_done(ep, req, -108); } ldv_36566: { tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { goto ldv_36565; } else { } return; } } static int net2272_dequeue(struct usb_ep *_ep , struct usb_request *_req ) { struct net2272_ep *ep ; struct net2272_request *req ; unsigned long flags ; int stopped ; struct usb_ep const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct _ddebug descriptor ; long tmp ; { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if (((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || ((unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )ep->num != 0U)) || (unsigned long )_req == (unsigned long )((struct usb_request *)0)) { return (-22); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(& (ep->dev)->lock); stopped = (int )ep->stopped; ep->stopped = 1U; __mptr___0 = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr___0 + 0xffffffffffffffa8UL; } goto ldv_36584; ldv_36583: ; if ((unsigned long )(& req->req) == (unsigned long )_req) { goto ldv_36582; } else { } __mptr___1 = (struct list_head const *)req->queue.next; req = (struct net2272_request *)__mptr___1 + 0xffffffffffffffa8UL; ldv_36584: ; if ((unsigned long )(& req->queue) != (unsigned long )(& ep->queue)) { goto ldv_36583; } else { } ldv_36582: ; if ((unsigned long )(& req->req) != (unsigned long )_req) { { ldv_spin_unlock_irqrestore_97(& (ep->dev)->lock, flags); } return (-22); } else { } if ((unsigned long )ep->queue.next == (unsigned long )(& req->queue)) { { descriptor.modname = "net2272"; descriptor.function = "net2272_dequeue"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "unlink (%s) pio\n"; descriptor.lineno = 971U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(ep->dev)->dev, "unlink (%s) pio\n", _ep->name); } } else { } { net2272_done(ep, req, -104); } } else { } { req = (struct net2272_request *)0; ep->stopped = (unsigned char )stopped; ldv_spin_unlock_irqrestore_97(& (ep->dev)->lock, flags); } return (0); } } static int net2272_set_halt_and_wedge(struct usb_ep *_ep , int value , int wedged ) { struct net2272_ep *ep ; unsigned long flags ; int ret ; struct usb_ep const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; { ret = 0; __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || ((unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )ep->num != 0U)) { return (-22); } else { } if ((unsigned long )(ep->dev)->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )(ep->dev)->gadget.speed == 0U) { return (-108); } else { } if ((unsigned long )ep->desc != (unsigned long )((struct usb_endpoint_descriptor const *)0)) { { tmp = usb_endpoint_xfer_isoc(ep->desc); } if (tmp != 0) { return (-22); } else { } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(& (ep->dev)->lock); tmp___1 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___1 == 0) { ret = -11; } else if ((unsigned int )*((unsigned char *)ep + 106UL) != 0U && value != 0) { { tmp___0 = net2272_fifo_status(_ep); } if (tmp___0 != 0) { ret = -11; } else { goto _L; } } else _L: /* CIL Label */ if (value != 0) { if ((unsigned int )ep->num == 0U) { (ep->dev)->protocol_stall = 1U; } else { { set_halt(ep); } } if (wedged != 0) { ep->wedged = 1U; } else { } } else { { clear_halt(ep); ep->wedged = 0U; } } { ldv_spin_unlock_irqrestore_97(& (ep->dev)->lock, flags); } return (ret); } } static int net2272_set_halt(struct usb_ep *_ep , int value ) { int tmp ; { { tmp = net2272_set_halt_and_wedge(_ep, value, 0); } return (tmp); } } static int net2272_set_wedge(struct usb_ep *_ep ) { int tmp ; { if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || (unsigned long )_ep->name == (unsigned long )((char const *)(& ep0name))) { return (-22); } else { } { tmp = net2272_set_halt_and_wedge(_ep, 1, 1); } return (tmp); } } static int net2272_fifo_status(struct usb_ep *_ep ) { struct net2272_ep *ep ; u16 avail ; struct usb_ep const *__mptr ; u8 tmp ; u8 tmp___0 ; { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || ((unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )ep->num != 0U)) { return (-19); } else { } if ((unsigned long )(ep->dev)->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )(ep->dev)->gadget.speed == 0U) { return (-108); } else { } { tmp = net2272_ep_read(ep, 13U); avail = (int )((u16 )tmp) << 8U; tmp___0 = net2272_ep_read(ep, 12U); avail = (int )avail | (int )((u16 )tmp___0); } if ((int )avail > (int )ep->fifo_size) { return (-75); } else { } if ((unsigned int )*((unsigned char *)ep + 106UL) != 0U) { avail = (int )ep->fifo_size - (int )avail; } else { } return ((int )avail); } } static void net2272_fifo_flush(struct usb_ep *_ep ) { struct net2272_ep *ep ; struct usb_ep const *__mptr ; { __mptr = (struct usb_ep const *)_ep; ep = (struct net2272_ep *)__mptr; if ((unsigned long )_ep == (unsigned long )((struct usb_ep *)0) || ((unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )ep->num != 0U)) { return; } else { } if ((unsigned long )(ep->dev)->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )(ep->dev)->gadget.speed == 0U) { return; } else { } { net2272_ep_write(ep, 7U, 128); } return; } } static struct usb_ep_ops net2272_ep_ops = {& net2272_enable, & net2272_disable, & net2272_alloc_request, & net2272_free_request, & net2272_queue, & net2272_dequeue, & net2272_set_halt, & net2272_set_wedge, & net2272_fifo_status, & net2272_fifo_flush}; static int net2272_get_frame(struct usb_gadget *_gadget ) { struct net2272 *dev ; unsigned long flags ; u16 ret ; struct usb_gadget const *__mptr ; u8 tmp ; u8 tmp___0 ; { if ((unsigned long )_gadget == (unsigned long )((struct usb_gadget *)0)) { return (-19); } else { } { __mptr = (struct usb_gadget const *)_gadget; dev = (struct net2272 *)__mptr; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(& dev->lock); tmp = net2272_read(dev, 27U); ret = (int )((u16 )tmp) << 8U; tmp___0 = net2272_read(dev, 26U); ret = (int )ret | (int )((u16 )tmp___0); ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return ((int )ret); } } static int net2272_wakeup(struct usb_gadget *_gadget ) { struct net2272 *dev ; u8 tmp ; unsigned long flags ; struct usb_gadget const *__mptr ; { if ((unsigned long )_gadget == (unsigned long )((struct usb_gadget *)0)) { return (0); } else { } { __mptr = (struct usb_gadget const *)_gadget; dev = (struct net2272 *)__mptr; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(& dev->lock); tmp = net2272_read(dev, 24U); } if (((int )tmp & 2) != 0) { { net2272_write(dev, 25U, 8); } } else { } { ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return (0); } } static int net2272_set_selfpowered(struct usb_gadget *_gadget , int value ) { { if ((unsigned long )_gadget == (unsigned long )((struct usb_gadget *)0)) { return (-19); } else { } _gadget->is_selfpowered = value != 0; return (0); } } static int net2272_pullup(struct usb_gadget *_gadget , int is_on ) { struct net2272 *dev ; u8 tmp ; unsigned long flags ; struct usb_gadget const *__mptr ; { if ((unsigned long )_gadget == (unsigned long )((struct usb_gadget *)0)) { return (-19); } else { } { __mptr = (struct usb_gadget const *)_gadget; dev = (struct net2272 *)__mptr; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(& dev->lock); tmp = net2272_read(dev, 24U); dev->softconnect = is_on != 0; } if (is_on != 0) { tmp = (u8 )((unsigned int )tmp | 8U); } else { tmp = (unsigned int )tmp & 247U; } { net2272_write(dev, 24U, (int )tmp); ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return (0); } } static int net2272_start(struct usb_gadget *_gadget , struct usb_gadget_driver *driver ) ; static int net2272_stop(struct usb_gadget *_gadget ) ; static struct usb_gadget_ops const net2272_ops = {& net2272_get_frame, & net2272_wakeup, & net2272_set_selfpowered, 0, 0, & net2272_pullup, 0, 0, & net2272_start, & net2272_stop}; static ssize_t registers_show(struct device *_dev , struct device_attribute *attr , char *buf ) { struct net2272 *dev ; char *next ; unsigned int size ; unsigned int t ; unsigned long flags ; u8 t1 ; u8 t2 ; int i ; char const *s ; void *tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; int tmp___5 ; int tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; int tmp___9 ; struct net2272_ep *ep ; u8 tmp___10 ; int tmp___11 ; char *tmp___12 ; u8 tmp___13 ; u8 tmp___14 ; u8 tmp___15 ; u8 tmp___16 ; int tmp___17 ; u8 tmp___18 ; u8 tmp___19 ; u8 tmp___20 ; int tmp___21 ; u8 tmp___22 ; u8 tmp___23 ; char *tmp___24 ; char *tmp___25 ; int tmp___26 ; { { tmp = dev_get_drvdata((struct device const *)_dev); dev = (struct net2272 *)tmp; next = buf; size = 4096U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(& dev->lock); } if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0)) { s = (dev->driver)->driver.name; } else { s = "(none)"; } { tmp___0 = net2272_read(dev, 3U); tmp___1 = net2272_read(dev, 2U); tmp___2 = net2272_read(dev, 33U); tmp___3 = net2272_read(dev, 32U); tmp___4 = net2272_read(dev, 34U); tmp___5 = scnprintf(next, (size_t )size, "%s version %s,chiprev %02x, locctl %02x\nirqenb0 %02x irqenb1 %02x irqstat0 %02x irqstat1 %02x\n", (char const *)(& driver_name), (char const *)(& driver_vers), (int )dev->chiprev, (int )tmp___4, (int )tmp___3, (int )tmp___2, (int )tmp___1, (int )tmp___0); t = (unsigned int )tmp___5; size = size - t; next = next + (unsigned long )t; t1 = net2272_read(dev, 28U); tmp___6 = scnprintf(next, (size_t )size, "\ndmareq %02x: %s %s%s%s%s\n", (int )t1, ep_name[((int )t1 & 1) + 1], ((int )t1 & 16) != 0 ? (char *)"dack " : (char *)"", ((int )t1 & 32) != 0 ? (char *)"reqenb " : (char *)"", ((int )t1 & 64) != 0 ? (char *)"req " : (char *)"", (int )((signed char )t1) < 0 ? (char *)"valid " : (char *)""); t = (unsigned int )tmp___6; size = size - t; next = next + (unsigned long )t; t1 = net2272_read(dev, 25U); } if ((int )t1 & 1) { if (((int )t1 & 4) != 0) { s = "high speed"; } else if ((unsigned int )dev->gadget.speed == 0U) { s = "powered"; } else { s = "full speed"; } } else { s = "not attached"; } { tmp___7 = net2272_read(dev, 48U); tmp___8 = net2272_read(dev, 24U); tmp___9 = scnprintf(next, (size_t )size, "usbctl0 %02x usbctl1 %02x addr 0x%02x (%s)\n", (int )tmp___8, (int )t1, (int )tmp___7, s); t = (unsigned int )tmp___9; size = size - t; next = next + (unsigned long )t; i = 0; } goto ldv_36670; ldv_36669: ep = (struct net2272_ep *)(& dev->ep) + (unsigned long )i; if (i != 0 && (unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0)) { goto ldv_36668; } else { } { t1 = net2272_ep_read(ep, 42U); t2 = net2272_ep_read(ep, 15U); tmp___10 = net2272_ep_read(ep, 11U); tmp___11 = scnprintf(next, (size_t )size, "\n%s\tcfg %02x rsp (%02x) %s%s%s%s%s%s%s%sirqenb %02x\n", ep->ep.name, (int )t1, (int )t2, (int )((signed char )t2) < 0 ? (char *)"NAK " : (char *)"", ((int )t2 & 64) != 0 ? (char *)"hide " : (char *)"", ((int )t2 & 32) != 0 ? (char *)"auto " : (char *)"", ((int )t2 & 16) != 0 ? (char *)"interrupt " : (char *)"", ((int )t2 & 8) != 0 ? (char *)"status " : (char *)"", ((int )t2 & 4) != 0 ? (char *)"NAKmode " : (char *)"", ((int )t2 & 2) != 0 ? (char *)"DATA1 " : (char *)"DATA0 ", (int )t2 & 1 ? (char *)"HALT " : (char *)"", (int )tmp___10); t = (unsigned int )tmp___11; size = size - t; next = next + (unsigned long )t; tmp___12 = type_string((int )t1 >> 5); tmp___13 = net2272_ep_read(ep, 13U); tmp___14 = net2272_ep_read(ep, 12U); tmp___15 = net2272_ep_read(ep, 7U); tmp___16 = net2272_ep_read(ep, 6U); tmp___17 = scnprintf(next, (size_t )size, "\tstat0 %02x stat1 %02x avail %04x (ep%d%s-%s)%s\n", (int )tmp___16, (int )tmp___15, ((int )tmp___13 << 8) | (int )tmp___14, (int )t1 & 15, (unsigned int )*((unsigned char *)ep + 106UL) != 0U ? (char *)"in" : (char *)"out", tmp___12, (unsigned int )*((unsigned char *)ep + 106UL) != 0U ? (char *)"*" : (char *)""); t = (unsigned int )tmp___17; size = size - t; next = next + (unsigned long )t; tmp___18 = net2272_ep_read(ep, 10U); tmp___19 = net2272_ep_read(ep, 9U); tmp___20 = net2272_ep_read(ep, 8U); tmp___21 = scnprintf(next, (size_t )size, "\tep_transfer %06x\n", (((int )tmp___18 << 16) | ((int )tmp___19 << 8)) | (int )tmp___20); t = (unsigned int )tmp___21; size = size - t; next = next + (unsigned long )t; tmp___22 = net2272_ep_read(ep, 44U); t1 = (unsigned int )tmp___22 & 3U; tmp___23 = net2272_ep_read(ep, 44U); t2 = (unsigned int )((u8 )((int )tmp___23 >> 2)) & 3U; tmp___24 = buf_state_string((unsigned int )t2); tmp___25 = buf_state_string((unsigned int )t1); tmp___26 = scnprintf(next, (size_t )size, "\tbuf-a %s buf-b %s\n", tmp___25, tmp___24); t = (unsigned int )tmp___26; size = size - t; next = next + (unsigned long )t; } ldv_36668: i = i + 1; ldv_36670: ; if (i <= 3) { goto ldv_36669; } else { } { ldv_spin_unlock_irqrestore_97(& dev->lock, flags); } return ((ssize_t )(4096UL - (unsigned long )size)); } } static struct device_attribute dev_attr_registers = {{"registers", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & registers_show, 0}; static void net2272_set_fifo_mode(struct net2272 *dev , int mode ) { u8 tmp ; u8 tmp___0 ; unsigned short tmp___1 ; unsigned short tmp___2 ; { { tmp___0 = net2272_read(dev, 34U); tmp = (unsigned int )tmp___0 & 63U; tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )(mode << 6))); net2272_write(dev, 34U, (int )tmp); INIT_LIST_HEAD(& dev->gadget.ep_list); list_add_tail(& dev->ep[1].ep.ep_list, & dev->gadget.ep_list); } { if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } if (mode == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ { list_add_tail(& dev->ep[2].ep.ep_list, & dev->gadget.ep_list); tmp___1 = 512U; dev->ep[2].fifo_size = tmp___1; dev->ep[1].fifo_size = tmp___1; } goto ldv_36679; case_1: /* CIL Label */ { list_add_tail(& dev->ep[2].ep.ep_list, & dev->gadget.ep_list); dev->ep[1].fifo_size = 1024U; dev->ep[2].fifo_size = 512U; } goto ldv_36679; case_2: /* CIL Label */ { list_add_tail(& dev->ep[2].ep.ep_list, & dev->gadget.ep_list); tmp___2 = 1024U; dev->ep[2].fifo_size = tmp___2; dev->ep[1].fifo_size = tmp___2; } goto ldv_36679; case_3: /* CIL Label */ dev->ep[1].fifo_size = 1024U; goto ldv_36679; switch_break: /* CIL Label */ ; } ldv_36679: { list_add_tail(& dev->ep[3].ep.ep_list, & dev->gadget.ep_list); dev->ep[3].fifo_size = 512U; } return; } } static void net2272_usb_reset(struct net2272 *dev ) { u8 tmp ; { { dev->gadget.speed = 0; net2272_cancel_dma(dev); net2272_write(dev, 32U, 0); net2272_write(dev, 33U, 0); net2272_write(dev, 2U, 255); net2272_write(dev, 3U, 247); net2272_write(dev, 28U, (int )((u8 )(((((int )((signed char )((int )dev->dma_eot_polarity << 3)) | 16) | (int )((signed char )((int )dev->dma_dack_polarity << 2))) | (int )((signed char )((int )dev->dma_dreq_polarity << 1))) | (int )((signed char )((int )dma_ep >> 1))))); net2272_cancel_dma(dev); net2272_set_fifo_mode(dev, (unsigned int )fifo_mode <= 3U ? (int )fifo_mode : 0); tmp = net2272_read(dev, 34U); net2272_write(dev, 34U, (int )((unsigned int )tmp | 1U)); net2272_write(dev, 36U, (int )((u8 )dma_mode)); } return; } } static void net2272_usb_reinit(struct net2272 *dev ) { int i ; struct net2272_ep *ep ; { i = 0; goto ldv_36692; ldv_36691: ep = (struct net2272_ep *)(& dev->ep) + (unsigned long )i; ep->ep.name = ep_name[i]; ep->dev = dev; ep->num = (unsigned char )i; ep->not_empty = 0U; if ((int )use_dma && (int )((unsigned short )ep->num) == (int )dma_ep) { ep->dma = 1U; } else { } if ((unsigned int )i - 1U <= 2U) { ep->fifo_size = 512U; } else { ep->fifo_size = 64U; } { net2272_ep_reset(ep); i = i + 1; } ldv_36692: ; if (i <= 3) { goto ldv_36691; } else { } { usb_ep_set_maxpacket_limit(& dev->ep[0].ep, 64U); dev->gadget.ep0 = & dev->ep[0].ep; dev->ep[0].stopped = 0U; INIT_LIST_HEAD(& (dev->gadget.ep0)->ep_list); } return; } } static void net2272_ep0_start(struct net2272 *dev ) { struct net2272_ep *ep0 ; { { ep0 = (struct net2272_ep *)(& dev->ep); net2272_ep_write(ep0, 15U, 132); net2272_ep_write(ep0, 14U, 72); net2272_write(dev, 24U, (int )((u8 )((int )((signed char )((int )dev->softconnect << 3)) | 34))); net2272_write(dev, 32U, 97); net2272_write(dev, 33U, 84); } return; } } static int net2272_start(struct usb_gadget *_gadget , struct usb_gadget_driver *driver ) { struct net2272 *dev ; unsigned int i ; struct usb_gadget const *__mptr ; { if (((unsigned long )driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned long )driver->setup == (unsigned long )((int (*)(struct usb_gadget * , struct usb_ctrlrequest const * ))0)) || (unsigned int )driver->max_speed != 3U) { return (-22); } else { } __mptr = (struct usb_gadget const *)_gadget; dev = (struct net2272 *)__mptr; i = 0U; goto ldv_36707; ldv_36706: dev->ep[i].irqs = 0UL; i = i + 1U; ldv_36707: ; if (i <= 3U) { goto ldv_36706; } else { } { dev->softconnect = 1U; driver->driver.bus = (struct bus_type *)0; dev->driver = driver; net2272_ep0_start(dev); } return (0); } } static void stop_activity(struct net2272 *dev , struct usb_gadget_driver *driver ) { int i ; { if ((unsigned int )dev->gadget.speed == 0U) { driver = (struct usb_gadget_driver *)0; } else { } { net2272_usb_reset(dev); i = 0; } goto ldv_36715; ldv_36714: { net2272_dequeue_all((struct net2272_ep *)(& dev->ep) + (unsigned long )i); i = i + 1; } ldv_36715: ; if (i <= 3) { goto ldv_36714; } else { } if ((unsigned long )driver != (unsigned long )((struct usb_gadget_driver *)0)) { { ldv_spin_unlock_101(& dev->lock); (*(driver->disconnect))(& dev->gadget); ldv_spin_lock_102(& dev->lock); } } else { } { net2272_usb_reinit(dev); } return; } } static int net2272_stop(struct usb_gadget *_gadget ) { struct net2272 *dev ; unsigned long flags ; struct usb_gadget const *__mptr ; { { __mptr = (struct usb_gadget const *)_gadget; dev = (struct net2272 *)__mptr; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_120(& dev->lock); stop_activity(dev, (struct usb_gadget_driver *)0); ldv_spin_unlock_irqrestore_97(& dev->lock, flags); dev->driver = (struct usb_gadget_driver *)0; } return (0); } } static void net2272_handle_dma(struct net2272_ep *ep ) { struct net2272_request *req ; unsigned int len ; int status ; struct list_head const *__mptr ; int tmp ; u8 tmp___0 ; struct list_head const *__mptr___0 ; int tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; { { tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; } else { req = (struct net2272_request *)0; } { net2272_write(ep->dev, 28U, (int )((u8 )(((((int )((signed char )((int )(ep->dev)->dma_eot_polarity << 3)) | 16) | (int )((signed char )((int )(ep->dev)->dma_dack_polarity << 2))) | (int )((signed char )((int )(ep->dev)->dma_dreq_polarity << 1))) | (int )((signed char )ep->dma)))); (ep->dev)->dma_busy = 0U; tmp___0 = net2272_ep_read(ep, 11U); net2272_ep_write(ep, 11U, (int )((unsigned int )tmp___0 | 12U)); } if ((unsigned int )*((unsigned char *)ep + 106UL) != 0U) { if (req->req.length % (unsigned int )ep->ep.maxpacket != 0U || (unsigned int )*((unsigned char *)req + 42UL) != 0U) { { set_fifo_bytecount(ep, 0U); } } else { } { net2272_done(ep, req, 0); tmp___1 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___1 == 0) { { __mptr___0 = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr___0 + 0xffffffffffffffa8UL; status = net2272_kick_dma(ep, req); } if (status < 0) { { net2272_pio_advance(ep); } } else { } } else { } } else { { tmp___2 = net2272_read(ep->dev, 2U); } if (((int )tmp___2 & 64) != 0) { { net2272_cancel_dma(ep->dev); } } else { } { tmp___3 = net2272_ep_read(ep, 10U); tmp___4 = net2272_ep_read(ep, 9U); tmp___5 = net2272_ep_read(ep, 8U); len = (unsigned int )((((int )tmp___3 << 16) | ((int )tmp___4 << 8)) | (int )tmp___5); } if ((unsigned int )*((unsigned char *)ep + 107UL) != 0U) { len = len + 4U; } else { } { req->req.actual = req->req.actual + len; net2272_pio_advance(ep); } } return; } } static void net2272_handle_ep(struct net2272_ep *ep ) { struct net2272_request *req ; u8 stat0 ; u8 stat1 ; struct list_head const *__mptr ; int tmp ; { { tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; } else { req = (struct net2272_request *)0; } { stat0 = net2272_ep_read(ep, 6U); stat1 = net2272_ep_read(ep, 7U); ep->irqs = ep->irqs + 1UL; net2272_ep_write(ep, 6U, (int )stat0 & 207); net2272_ep_write(ep, 7U, (int )stat1); } if ((unsigned int )*((unsigned char *)ep + 106UL) == 0U && ((int )stat0 & 8) != 0) { { net2272_pio_advance(ep); } } else if (((int )stat0 & 4) != 0) { { net2272_pio_advance(ep); } } else { } return; } } static struct net2272_ep *net2272_get_ep_by_addr(struct net2272 *dev , u16 wIndex ) { struct net2272_ep *ep ; struct list_head const *__mptr ; u8 bEndpointAddress ; struct list_head const *__mptr___0 ; { if (((int )wIndex & 15) == 0) { return ((struct net2272_ep *)(& dev->ep)); } else { } __mptr = (struct list_head const *)dev->gadget.ep_list.next; ep = (struct net2272_ep *)__mptr + 0xffffffffffffffe8UL; goto ldv_36754; ldv_36753: ; if ((unsigned long )ep->desc == (unsigned long )((struct usb_endpoint_descriptor const *)0)) { goto ldv_36752; } else { } bEndpointAddress = (ep->desc)->bEndpointAddress; if ((((int )wIndex ^ (int )bEndpointAddress) & 128) != 0) { goto ldv_36752; } else { } if ((((int )wIndex ^ (int )bEndpointAddress) & 15) == 0) { return (ep); } else { } ldv_36752: __mptr___0 = (struct list_head const *)ep->ep.ep_list.next; ep = (struct net2272_ep *)__mptr___0 + 0xffffffffffffffe8UL; ldv_36754: ; if ((unsigned long )(& ep->ep.ep_list) != (unsigned long )(& dev->gadget.ep_list)) { goto ldv_36753; } else { } return ((struct net2272_ep *)0); } } static u8 const net2272_test_packet[52U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 170U, 170U, 170U, 170U, 170U, 170U, 170U, 170U, 238U, 238U, 238U, 238U, 238U, 238U, 238U, 238U, 254U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 127U, 191U, 223U, 239U, 247U, 251U, 253U, 252U, 126U, 191U, 223U, 239U, 247U, 253U, 126U}; static void net2272_set_test_mode(struct net2272 *dev , int mode ) { int i ; u8 tmp ; u8 tmp___0 ; { { net2272_write(dev, 32U, 0); net2272_write(dev, 33U, 0); net2272_write(dev, 51U, 8); net2272_write(dev, 4U, 0); net2272_write(dev, 6U, 4); net2272_write(dev, 14U, 72); net2272_write(dev, 42U, 16); net2272_write(dev, 7U, 128); } goto ldv_36763; ldv_36762: ; ldv_36763: { tmp = net2272_read(dev, 6U); } if (((int )tmp & 4) == 0) { goto ldv_36762; } else { } { net2272_write(dev, 50U, (int )((u8 )mode)); } if (mode == 4) { { tmp___0 = net2272_read(dev, 34U); net2272_write(dev, 34U, (int )tmp___0 & 254); i = 0; } goto ldv_36766; ldv_36765: { net2272_write(dev, 5U, (int )net2272_test_packet[i]); i = i + 1; } ldv_36766: ; if ((unsigned int )i <= 51U) { goto ldv_36765; } else { } { net2272_write(dev, 8U, 0); } } else { } return; } } static void net2272_handle_stat0_irqs(struct net2272 *dev , u8 stat ) { struct net2272_ep *ep ; u8 num ; u8 scratch ; union __anonunion_u_224 u ; int tmp ; struct net2272_request *req ; u8 tmp___0 ; struct _ddebug descriptor ; char const *tmp___1 ; long tmp___2 ; struct list_head const *__mptr ; int tmp___3 ; struct net2272_ep *e ; u16 status ; u8 tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; struct net2272_ep *e___0 ; struct net2272_ep *e___1 ; u8 tmp___9 ; long tmp___10 ; u8 t ; struct _ddebug descriptor___0 ; long tmp___11 ; { { tmp___10 = ldv__builtin_expect(((int )stat & 32) != 0, 0L); } if (tmp___10 != 0L) { tmp = 0; if ((unsigned int )dev->gadget.speed == 0U) { { tmp___0 = net2272_read(dev, 25U); } if (((int )tmp___0 & 4) != 0) { dev->gadget.speed = 3; } else { dev->gadget.speed = 2; } { descriptor.modname = "net2272"; descriptor.function = "net2272_handle_stat0_irqs"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "%s\n"; descriptor.lineno = 1736U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = usb_speed_string(dev->gadget.speed); __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "%s\n", tmp___1); } } else { } } else { } ep = (struct net2272_ep *)(& dev->ep); ep->irqs = ep->irqs + 1UL; stat = (unsigned int )stat & 254U; goto ldv_36786; ldv_36785: { __mptr = (struct list_head const *)ep->queue.next; req = (struct net2272_request *)__mptr + 0xffffffffffffffa8UL; net2272_done(ep, req, req->req.actual == req->req.length ? 0 : -71); } ldv_36786: { tmp___3 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___3 == 0) { goto ldv_36785; } else { } { ep->stopped = 0U; dev->protocol_stall = 0U; net2272_ep_write(ep, 6U, 31); net2272_ep_write(ep, 7U, 127); net2272_write(dev, 4U, 0); net2272_write(dev, 10U, 255); net2272_write(dev, 9U, 255); net2272_write(dev, 8U, 255); u.raw[0] = net2272_read(dev, 64U); u.raw[1] = net2272_read(dev, 65U); u.raw[2] = net2272_read(dev, 66U); u.raw[3] = net2272_read(dev, 67U); u.raw[4] = net2272_read(dev, 68U); u.raw[5] = net2272_read(dev, 69U); u.raw[6] = net2272_read(dev, 70U); u.raw[7] = net2272_read(dev, 71U); net2272_write(dev, 2U, 32); stat = (u8 )((unsigned int )stat ^ 32U); ep->is_in = (int )((signed char )u.r.bRequestType) < 0; } if ((unsigned int )*((unsigned char *)ep + 106UL) != 0U) { { scratch = 7U; stop_out_naking(ep); } } else { scratch = 11U; } { net2272_ep_write(ep, 11U, (int )scratch); } if (((int )u.r.bRequestType & 96) != 0) { goto delegate; } else { } { if ((int )u.r.bRequest == 0) { goto case_0; } else { } if ((int )u.r.bRequest == 1) { goto case_1___0; } else { } if ((int )u.r.bRequest == 3) { goto case_3; } else { } if ((int )u.r.bRequest == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ status = 0U; { if (((int )u.r.bRequestType & 31) == 2) { goto case_2; } else { } if (((int )u.r.bRequestType & 31) == 0) { goto case_0___0; } else { } if (((int )u.r.bRequestType & 31) == 1) { goto case_1; } else { } goto switch_break___0; case_2: /* CIL Label */ { e = net2272_get_ep_by_addr(dev, (int )u.r.wIndex); } if ((unsigned long )e == (unsigned long )((struct net2272_ep *)0) || (unsigned int )u.r.wLength > 2U) { goto do_stall; } else { } { tmp___4 = net2272_ep_read(e, 15U); } if ((int )tmp___4 & 1) { status = 1U; } else { status = 0U; } { net2272_ep_write((struct net2272_ep *)(& dev->ep), 11U, 0); tmp___5 = net2272_reg_addr(dev, 5U); writew((int )status, (void volatile *)tmp___5); set_fifo_bytecount((struct net2272_ep *)(& dev->ep), 0U); allow_status(ep); } goto next_endpoints; case_0___0: /* CIL Label */ ; if ((unsigned int )u.r.wLength > 2U) { goto do_stall; } else { } if ((unsigned int )*((unsigned char *)dev + 1552UL) != 0U) { status = 1U; } else { } { net2272_ep_write((struct net2272_ep *)(& dev->ep), 11U, 0); tmp___6 = net2272_reg_addr(dev, 5U); writew((int )status, (void volatile *)tmp___6); set_fifo_bytecount((struct net2272_ep *)(& dev->ep), 0U); allow_status(ep); } goto next_endpoints; case_1: /* CIL Label */ ; if ((unsigned int )u.r.wLength > 2U) { goto do_stall; } else { } { net2272_ep_write((struct net2272_ep *)(& dev->ep), 11U, 0); tmp___7 = net2272_reg_addr(dev, 5U); writew((int )status, (void volatile *)tmp___7); set_fifo_bytecount((struct net2272_ep *)(& dev->ep), 0U); allow_status(ep); } goto next_endpoints; switch_break___0: /* CIL Label */ ; } goto ldv_36797; case_1___0: /* CIL Label */ ; if ((unsigned int )u.r.bRequestType != 2U) { goto delegate; } else { } if ((unsigned int )u.r.wValue != 0U || (unsigned int )u.r.wLength != 0U) { goto do_stall; } else { } { e___0 = net2272_get_ep_by_addr(dev, (int )u.r.wIndex); } if ((unsigned long )e___0 == (unsigned long )((struct net2272_ep *)0)) { goto do_stall; } else { } if ((unsigned int )*((unsigned char *)e___0 + 106UL) != 0U) { } else { { clear_halt(e___0); } } { allow_status(ep); } goto next_endpoints; case_3: /* CIL Label */ ; if ((unsigned int )u.r.bRequestType == 0U) { if ((unsigned int )u.r.wIndex != 0U) { { net2272_set_test_mode(dev, (int )u.r.wIndex >> 8); } } else { } { allow_status(ep); } goto next_endpoints; } else if ((unsigned int )u.r.bRequestType != 2U) { goto delegate; } else { } if ((unsigned int )u.r.wValue != 0U || (unsigned int )u.r.wLength != 0U) { goto do_stall; } else { } { e___1 = net2272_get_ep_by_addr(dev, (int )u.r.wIndex); } if ((unsigned long )e___1 == (unsigned long )((struct net2272_ep *)0)) { goto do_stall; } else { } { set_halt(e___1); allow_status(ep); } goto next_endpoints; case_5: /* CIL Label */ { net2272_write(dev, 48U, (int )((u8 )u.r.wValue)); allow_status(ep); } goto ldv_36797; switch_default: /* CIL Label */ ; delegate: { ldv_spin_unlock_101(& dev->lock); tmp = (*((dev->driver)->setup))(& dev->gadget, (struct usb_ctrlrequest const *)(& u.r)); ldv_spin_lock_102(& dev->lock); } switch_break: /* CIL Label */ ; } ldv_36797: ; if (tmp < 0) { do_stall: dev->protocol_stall = 1U; } else { } } else if (((int )stat & 64) != 0) { { net2272_cancel_dma(dev); net2272_write(dev, 2U, 64); stat = (unsigned int )stat & 191U; tmp___9 = net2272_read(dev, 28U); num = (int )tmp___9 & 1 ? 2U : 1U; ep = (struct net2272_ep *)(& dev->ep) + (unsigned long )num; net2272_handle_dma(ep); } } else { } next_endpoints: scratch = (unsigned int )stat & 15U; stat = (unsigned int )stat & 240U; num = 0U; goto ldv_36807; ldv_36806: t = (u8 )(1 << (int )num); if ((unsigned int )((int )scratch & (int )t) == 0U) { goto ldv_36805; } else { } { scratch = (u8 )((int )scratch ^ (int )t); ep = (struct net2272_ep *)(& dev->ep) + (unsigned long )num; net2272_handle_ep(ep); } ldv_36805: num = (u8 )((int )num + 1); ldv_36807: ; if ((unsigned int )scratch != 0U) { goto ldv_36806; } else { } stat = (unsigned int )stat & 127U; if ((unsigned int )stat != 0U) { { descriptor___0.modname = "net2272"; descriptor___0.function = "net2272_handle_stat0_irqs"; descriptor___0.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___0.format = "unhandled irqstat0 %02x\n"; descriptor___0.lineno = 1969U; descriptor___0.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___11 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)dev->dev, "unhandled irqstat0 %02x\n", (int )stat); } } else { } } else { } return; } } static void net2272_handle_stat1_irqs(struct net2272 *dev , u8 stat ) { u8 tmp ; u8 mask ; bool reset ; bool disconnect ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; struct _ddebug descriptor___1 ; long tmp___4 ; struct _ddebug descriptor___2 ; long tmp___5 ; { tmp = 68U; mask = 6U; if ((unsigned int )((int )stat & (int )tmp) != 0U) { { reset = 0; disconnect = 0; net2272_write(dev, 3U, (int )tmp); } if ((unsigned int )dev->gadget.speed != 0U) { if (((int )stat & 4) != 0) { { tmp___3 = net2272_read(dev, 25U); } if (((int )tmp___3 & 1) == 0) { { disconnect = 1; descriptor.modname = "net2272"; descriptor.function = "net2272_handle_stat1_irqs"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "disconnect %s\n"; descriptor.lineno = 1996U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "disconnect %s\n", (dev->driver)->driver.name); } } else { } } else { goto _L; } } else _L: /* CIL Label */ if (((int )stat & 64) != 0) { { tmp___2 = net2272_read(dev, 25U); } if ((unsigned int )((int )tmp___2 & (int )mask) == 0U) { { reset = 1; descriptor___0.modname = "net2272"; descriptor___0.function = "net2272_handle_stat1_irqs"; descriptor___0.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___0.format = "reset %s\n"; descriptor___0.lineno = 2002U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)dev->dev, "reset %s\n", (dev->driver)->driver.name); } } else { } } else { } } else { } if ((int )disconnect || (int )reset) { { stop_activity(dev, dev->driver); net2272_ep0_start(dev); ldv_spin_unlock_101(& dev->lock); } if ((int )reset) { { usb_gadget_udc_reset(& dev->gadget, dev->driver); } } else { { (*((dev->driver)->disconnect))(& dev->gadget); } } { ldv_spin_lock_102(& dev->lock); } return; } else { } } else { } stat = (u8 )((int )((signed char )stat) & ~ ((int )((signed char )tmp))); if ((unsigned int )stat == 0U) { return; } else { } } else { } tmp = 16U; if ((unsigned int )((int )stat & (int )tmp) != 0U) { { net2272_write(dev, 3U, (int )tmp); } if (((int )stat & 8) != 0) { if ((unsigned long )(dev->driver)->suspend != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { (*((dev->driver)->suspend))(& dev->gadget); } } else { } if ((unsigned int )enable_suspend == 0U) { { stat = (unsigned int )stat & 247U; descriptor___1.modname = "net2272"; descriptor___1.function = "net2272_handle_stat1_irqs"; descriptor___1.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___1.format = "Suspend disabled, ignoring\n"; descriptor___1.lineno = 2033U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)dev->dev, "Suspend disabled, ignoring\n"); } } else { } } else { } } else if ((unsigned long )(dev->driver)->resume != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { (*((dev->driver)->resume))(& dev->gadget); } } else { } stat = (u8 )((int )((signed char )stat) & ~ ((int )((signed char )tmp))); } else { } if ((unsigned int )stat != 0U) { { net2272_write(dev, 3U, (int )stat); } } else { } stat = (unsigned int )stat & 213U; if ((unsigned int )stat == 0U) { return; } else { { descriptor___2.modname = "net2272"; descriptor___2.function = "net2272_handle_stat1_irqs"; descriptor___2.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___2.format = "unhandled irqstat1 %02x\n"; descriptor___2.lineno = 2053U; descriptor___2.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)dev->dev, "unhandled irqstat1 %02x\n", (int )stat); } } else { } } return; } } static irqreturn_t net2272_irq(int irq , void *_dev ) { struct net2272 *dev ; u8 tmp ; u8 tmp___0 ; { { dev = (struct net2272 *)_dev; ldv_spin_lock_102(& dev->lock); tmp = net2272_read(dev, 3U); net2272_handle_stat1_irqs(dev, (int )tmp); tmp___0 = net2272_read(dev, 2U); net2272_handle_stat0_irqs(dev, (int )tmp___0); ldv_spin_unlock_101(& dev->lock); } return (1); } } static int net2272_present(struct net2272 *dev ) { unsigned int ii ; u8 val ; u8 refval ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; { { refval = net2272_read(dev, 29U); ii = 0U; } goto ldv_36837; ldv_36836: { net2272_write(dev, 29U, (int )((u8 )ii)); val = net2272_read(dev, 29U); } if ((unsigned int )val != ii) { { descriptor.modname = "net2272"; descriptor.function = "net2272_present"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "%s: write/read SCRATCH register test failed: wrote:0x%2.2x, read:0x%2.2x\n"; descriptor.lineno = 2131U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "%s: write/read SCRATCH register test failed: wrote:0x%2.2x, read:0x%2.2x\n", "net2272_present", ii, (int )val); } } else { } return (-22); } else { } ii = ii + 7U; ldv_36837: ; if (ii <= 255U) { goto ldv_36836; } else { } { net2272_write(dev, 29U, (int )refval); refval = net2272_read(dev, 37U); ii = 0U; } goto ldv_36841; ldv_36840: { net2272_write(dev, 37U, (int )((u8 )ii)); val = net2272_read(dev, 37U); } if ((int )val != (int )refval) { { descriptor___0.modname = "net2272"; descriptor___0.function = "net2272_present"; descriptor___0.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___0.format = "%s: write/read CHIPREV register test failed: wrote 0x%2.2x, read:0x%2.2x expected:0x%2.2x\n"; descriptor___0.lineno = 2147U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)dev->dev, "%s: write/read CHIPREV register test failed: wrote 0x%2.2x, read:0x%2.2x expected:0x%2.2x\n", "net2272_present", ii, (int )val, (int )refval); } } else { } return (-22); } else { } ii = ii + 7U; ldv_36841: ; if (ii <= 255U) { goto ldv_36840; } else { } { val = net2272_read(dev, 35U); } if ((unsigned int )val != 64U) { { descriptor___1.modname = "net2272"; descriptor___1.function = "net2272_present"; descriptor___1.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___1.format = "%s: WARNING: UNEXPECTED NET2272 LEGACY REGISTER VALUE:\n - CHIPREV_LEGACY: expected 0x%2.2x, got:0x%2.2x. (Not NET2272?)\n"; descriptor___1.lineno = 2168U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)dev->dev, "%s: WARNING: UNEXPECTED NET2272 LEGACY REGISTER VALUE:\n - CHIPREV_LEGACY: expected 0x%2.2x, got:0x%2.2x. (Not NET2272?)\n", "net2272_present", 64, (int )val); } } else { } return (-22); } else { } { val = net2272_read(dev, 37U); } { if ((int )val == 16) { goto case_16; } else { } if ((int )val == 17) { goto case_17; } else { } goto switch_default; case_16: /* CIL Label */ { descriptor___2.modname = "net2272"; descriptor___2.function = "net2272_present"; descriptor___2.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___2.format = "%s: Rev 1 detected: newer silicon recommended for DMA support\n"; descriptor___2.lineno = 2186U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)dev->dev, "%s: Rev 1 detected: newer silicon recommended for DMA support\n", "net2272_present"); } } else { } goto ldv_36846; case_17: /* CIL Label */ ; goto ldv_36846; switch_default: /* CIL Label */ { descriptor___3.modname = "net2272"; descriptor___3.function = "net2272_present"; descriptor___3.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___3.format = "%s: unexpected silicon revision register value: CHIPREV_2272: 0x%2.2x\n"; descriptor___3.lineno = 2195U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)dev->dev, "%s: unexpected silicon revision register value: CHIPREV_2272: 0x%2.2x\n", "net2272_present", (int )val); } } else { } switch_break: /* CIL Label */ ; } ldv_36846: ; return (0); } } static void net2272_gadget_release(struct device *_dev ) { struct net2272 *dev ; void *tmp ; { { tmp = dev_get_drvdata((struct device const *)_dev); dev = (struct net2272 *)tmp; kfree((void const *)dev); } return; } } static void net2272_remove(struct net2272 *dev ) { { { usb_del_gadget_udc(& dev->gadget); ldv_free_irq_128(dev->irq, (void *)dev); ldv_iounmap_129((void volatile *)dev->base_addr); device_remove_file(dev->dev, (struct device_attribute const *)(& dev_attr_registers)); _dev_info((struct device const *)dev->dev, "unbind\n"); } return; } } static struct net2272 *net2272_probe_init(struct device *dev , unsigned int irq ) { struct net2272 *ret ; struct _ddebug descriptor ; long tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; struct lock_class_key __key ; { if (irq == 0U) { { descriptor.modname = "net2272"; descriptor.function = "net2272_probe_init"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "No IRQ!\n"; descriptor.lineno = 2232U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev, "No IRQ!\n"); } } else { } { tmp___0 = ERR_PTR(-19L); } return ((struct net2272 *)tmp___0); } else { } { tmp___1 = kzalloc(2152UL, 208U); ret = (struct net2272 *)tmp___1; } if ((unsigned long )ret == (unsigned long )((struct net2272 *)0)) { { tmp___2 = ERR_PTR(-12L); } return ((struct net2272 *)tmp___2); } else { } { spinlock_check(& ret->lock); __raw_spin_lock_init(& ret->lock.__annonCompField18.rlock, "&(&ret->lock)->rlock", & __key); ret->irq = irq; ret->dev = dev; ret->gadget.ops = & net2272_ops; ret->gadget.max_speed = 3; ret->gadget.name = (char const *)(& driver_name); } return (ret); } } static int net2272_probe_fin(struct net2272 *dev , unsigned int irqflags ) { int ret ; int tmp ; u8 tmp___0 ; char *tmp___1 ; { { tmp = net2272_present(dev); } if (tmp != 0) { { dev_warn((struct device const *)dev->dev, "2272 not found!\n"); ret = -19; } goto err; } else { } { net2272_usb_reset(dev); net2272_usb_reinit(dev); ret = ldv_request_irq_130(dev->irq, & net2272_irq, (unsigned long )irqflags, (char const *)(& driver_name), (void *)dev); } if (ret != 0) { { dev_err((struct device const *)dev->dev, "request interrupt %i failed\n", dev->irq); } goto err; } else { } { tmp___0 = net2272_read(dev, 37U); dev->chiprev = (u16 )tmp___0; _dev_info((struct device const *)dev->dev, "%s\n", (char const *)(& driver_desc)); tmp___1 = dma_mode_string(); _dev_info((struct device const *)dev->dev, "irq %i, mem %p, chip rev %04x, dma %s\n", dev->irq, dev->base_addr, (int )dev->chiprev, tmp___1); _dev_info((struct device const *)dev->dev, "version: %s\n", (char const *)(& driver_vers)); ret = device_create_file(dev->dev, (struct device_attribute const *)(& dev_attr_registers)); } if (ret != 0) { goto err_irq; } else { } { ret = usb_add_gadget_udc_release(dev->dev, & dev->gadget, & net2272_gadget_release); } if (ret != 0) { goto err_add_udc; } else { } return (0); err_add_udc: { device_remove_file(dev->dev, (struct device_attribute const *)(& dev_attr_registers)); } err_irq: { ldv_free_irq_131(dev->irq, (void *)dev); } err: ; return (ret); } } static int net2272_rdk1_probe(struct pci_dev *pdev , struct net2272 *dev ) { unsigned long resource ; unsigned long len ; unsigned long tmp ; void *mem_mapped_addr[4U] ; int ret ; int i ; struct _ddebug descriptor ; long tmp___0 ; struct resource *tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned char tmp___5 ; { i = 0; goto ldv_36889; ldv_36888: ; if (i == 1) { goto ldv_36883; } else { } { resource = (unsigned long )pdev->resource[i].start; len = pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (unsigned long )((pdev->resource[i].end - pdev->resource[i].start) + 1ULL) : 0UL; tmp___1 = __request_region(& iomem_resource, (resource_size_t )resource, (resource_size_t )len, (char const *)(& driver_name), 0); } if ((unsigned long )tmp___1 == (unsigned long )((struct resource *)0)) { { descriptor.modname = "net2272"; descriptor.function = "net2272_rdk1_probe"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "controller already in use\n"; descriptor.lineno = 2332U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "controller already in use\n"); } } else { } ret = -16; goto err; } else { } { mem_mapped_addr[i] = ldv_ioremap_nocache_132((resource_size_t )resource, len); } if ((unsigned long )mem_mapped_addr[i] == (unsigned long )((void *)0)) { { __release_region(& iomem_resource, (resource_size_t )resource, (resource_size_t )len); descriptor___0.modname = "net2272"; descriptor___0.function = "net2272_rdk1_probe"; descriptor___0.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___0.format = "can\'t map memory\n"; descriptor___0.lineno = 2340U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)dev->dev, "can\'t map memory\n"); } } else { } ret = -14; goto err; } else { } ldv_36883: i = i + 1; ldv_36889: ; if (i <= 3) { goto ldv_36888; } else { } { dev->__annonCompField74.rdk1.plx9054_base_addr = mem_mapped_addr[0]; dev->__annonCompField74.rdk1.epld_base_addr = mem_mapped_addr[2]; dev->base_addr = (u16 *)mem_mapped_addr[3]; tmp___3 = readl((void const volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 248U); tmp = (unsigned long )tmp___3; writel(((unsigned int )tmp & 4294967292U) | 1U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 248U); tmp___4 = readl((void const volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 104U); writel(tmp___4 | 2304U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 104U); writeb(8, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 168U); writeb(243, (void volatile *)dev->base_addr + 1024U); __asm__ volatile ("mfence": : : "memory"); tmp___5 = readb((void const volatile *)dev->base_addr + 1024U); writeb((int )tmp___5 & 254, (void volatile *)dev->base_addr + 1024U); __const_udelay(859000UL); } return (0); err: ; goto ldv_36892; ldv_36891: { ldv_iounmap_133((void volatile *)mem_mapped_addr[i]); __release_region(& iomem_resource, pdev->resource[i].start, pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (pdev->resource[i].end - pdev->resource[i].start) + 1ULL : 0ULL); } ldv_36892: i = i - 1; if (i >= 0) { goto ldv_36891; } else { } return (ret); } } static int net2272_rdk2_probe(struct pci_dev *pdev , struct net2272 *dev ) { unsigned long resource ; unsigned long len ; void *mem_mapped_addr[2U] ; int ret ; int i ; struct _ddebug descriptor ; long tmp ; struct resource *tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; unsigned int tmp___2 ; { i = 0; goto ldv_36908; ldv_36907: { resource = (unsigned long )pdev->resource[i].start; len = pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (unsigned long )((pdev->resource[i].end - pdev->resource[i].start) + 1ULL) : 0UL; tmp___0 = __request_region(& iomem_resource, (resource_size_t )resource, (resource_size_t )len, (char const *)(& driver_name), 0); } if ((unsigned long )tmp___0 == (unsigned long )((struct resource *)0)) { { descriptor.modname = "net2272"; descriptor.function = "net2272_rdk2_probe"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "controller already in use\n"; descriptor.lineno = 2410U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "controller already in use\n"); } } else { } ret = -16; goto err; } else { } { mem_mapped_addr[i] = ldv_ioremap_nocache_134((resource_size_t )resource, len); } if ((unsigned long )mem_mapped_addr[i] == (unsigned long )((void *)0)) { { __release_region(& iomem_resource, (resource_size_t )resource, (resource_size_t )len); descriptor___0.modname = "net2272"; descriptor___0.function = "net2272_rdk2_probe"; descriptor___0.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___0.format = "can\'t map memory\n"; descriptor___0.lineno = 2418U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)dev->dev, "can\'t map memory\n"); } } else { } ret = -14; goto err; } else { } i = i + 1; ldv_36908: ; if (i <= 1) { goto ldv_36907; } else { } { dev->__annonCompField74.rdk2.fpga_base_addr = mem_mapped_addr[0]; dev->base_addr = (u16 *)mem_mapped_addr[1]; __asm__ volatile ("mfence": : : "memory"); writel(8U, (void volatile *)dev->__annonCompField74.rdk2.fpga_base_addr + 8U); __const_udelay(859000UL); writel(1U, (void volatile *)dev->__annonCompField74.rdk2.fpga_base_addr + 8U); tmp___2 = readl((void const volatile *)dev->__annonCompField74.rdk2.fpga_base_addr + 28U); _dev_info((struct device const *)dev->dev, "RDK2 FPGA version %08x\n", tmp___2); writel(1U, (void volatile *)dev->__annonCompField74.rdk2.fpga_base_addr); } return (0); err: ; goto ldv_36911; ldv_36910: { ldv_iounmap_135((void volatile *)mem_mapped_addr[i]); __release_region(& iomem_resource, pdev->resource[i].start, pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (pdev->resource[i].end - pdev->resource[i].start) + 1ULL : 0ULL); } ldv_36911: i = i - 1; if (i >= 0) { goto ldv_36910; } else { } return (ret); } } static int net2272_pci_probe(struct pci_dev *pdev , struct pci_device_id const *id ) { struct net2272 *dev ; int ret ; long tmp ; bool tmp___0 ; int tmp___1 ; { { dev = net2272_probe_init(& pdev->dev, pdev->irq); tmp___0 = IS_ERR((void const *)dev); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)dev); } return ((int )tmp); } else { } { dev->dev_id = pdev->device; tmp___1 = pci_enable_device(pdev); } if (tmp___1 < 0) { ret = -19; goto err_free; } else { } { pci_set_master(pdev); } { if ((int )pdev->device == 36948) { goto case_36948; } else { } if ((int )pdev->device == 12914) { goto case_12914; } else { } goto switch_default; case_36948: /* CIL Label */ { ret = net2272_rdk1_probe(pdev, dev); } goto ldv_36921; case_12914: /* CIL Label */ { ret = net2272_rdk2_probe(pdev, dev); } goto ldv_36921; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/usb/gadget/udc/net2272.c"), "i" (2471), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_36921: ; if (ret != 0) { goto err_pci; } else { } { ret = net2272_probe_fin(dev, 0U); } if (ret != 0) { goto err_pci; } else { } { pci_set_drvdata(pdev, (void *)dev); } return (0); err_pci: { pci_disable_device(pdev); } err_free: { kfree((void const *)dev); } return (ret); } } static void net2272_rdk1_remove(struct pci_dev *pdev , struct net2272 *dev ) { int i ; unsigned int tmp ; { { tmp = readl((void const volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 104U); writel(tmp & 4294967039U, (void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr + 104U); ldv_iounmap_136((void volatile *)dev->__annonCompField74.rdk1.plx9054_base_addr); ldv_iounmap_137((void volatile *)dev->__annonCompField74.rdk1.epld_base_addr); i = 0; } goto ldv_36932; ldv_36931: ; if (i == 1) { goto ldv_36930; } else { } { __release_region(& iomem_resource, pdev->resource[i].start, pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (pdev->resource[i].end - pdev->resource[i].start) + 1ULL : 0ULL); } ldv_36930: i = i + 1; ldv_36932: ; if (i <= 3) { goto ldv_36931; } else { } return; } } static void net2272_rdk2_remove(struct pci_dev *pdev , struct net2272 *dev ) { int i ; { { ldv_iounmap_138((void volatile *)dev->__annonCompField74.rdk2.fpga_base_addr); i = 0; } goto ldv_36940; ldv_36939: { __release_region(& iomem_resource, pdev->resource[i].start, pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (pdev->resource[i].end - pdev->resource[i].start) + 1ULL : 0ULL); i = i + 1; } ldv_36940: ; if (i <= 1) { goto ldv_36939; } else { } return; } } static void net2272_pci_remove(struct pci_dev *pdev ) { struct net2272 *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct net2272 *)tmp; net2272_remove(dev); } { if ((int )pdev->device == 36948) { goto case_36948; } else { } if ((int )pdev->device == 12914) { goto case_12914; } else { } goto switch_default; case_36948: /* CIL Label */ { net2272_rdk1_remove(pdev, dev); } goto ldv_36947; case_12914: /* CIL Label */ { net2272_rdk2_remove(pdev, dev); } goto ldv_36947; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/usb/gadget/udc/net2272.c"), "i" (2543), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_36947: { pci_disable_device(pdev); kfree((void const *)dev); } return; } } static struct pci_device_id pci_ids[3U] = { {4277U, 36948U, 4294967295U, 4294967295U, 426238U, 0U, 0UL}, {4277U, 12914U, 4294967295U, 4294967295U, 426238U, 0U, 0UL}}; struct pci_device_id const __mod_pci__pci_ids_device_table[3U] ; static struct pci_driver net2272_pci_driver = {{0, 0}, (char const *)(& driver_name), (struct pci_device_id const *)(& pci_ids), & net2272_pci_probe, & net2272_pci_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int net2272_pci_register(void) { int tmp ; { { tmp = ldv___pci_register_driver_139(& net2272_pci_driver, & __this_module, "net2272"); } return (tmp); } } static void net2272_pci_unregister(void) { { { ldv_pci_unregister_driver_140(& net2272_pci_driver); } return; } } static int net2272_plat_probe(struct platform_device *pdev ) { struct net2272 *dev ; int ret ; unsigned int irqflags ; resource_size_t base ; resource_size_t len ; struct resource *iomem ; struct resource *iomem_bus ; struct resource *irq_res ; long tmp ; bool tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; struct resource *tmp___2 ; void *tmp___3 ; struct _ddebug descriptor___0 ; long tmp___4 ; u8 tmp___5 ; { { irq_res = platform_get_resource(pdev, 1024U, 0U); iomem = platform_get_resource(pdev, 512U, 0U); iomem_bus = platform_get_resource(pdev, 4096U, 0U); } if ((unsigned long )irq_res == (unsigned long )((struct resource *)0) || (unsigned long )iomem == (unsigned long )((struct resource *)0)) { { dev_err((struct device const *)(& pdev->dev), "must provide irq/base addr"); } return (-22); } else { } { dev = net2272_probe_init(& pdev->dev, (unsigned int )irq_res->start); tmp___0 = IS_ERR((void const *)dev); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)dev); } return ((int )tmp); } else { } irqflags = 0U; if ((int )irq_res->flags & 1) { irqflags = irqflags | 1U; } else { } if ((irq_res->flags & 2UL) != 0UL) { irqflags = irqflags | 2U; } else { } if ((irq_res->flags & 4UL) != 0UL) { irqflags = irqflags | 4U; } else { } if ((irq_res->flags & 8UL) != 0UL) { irqflags = irqflags | 8U; } else { } { base = iomem->start; len = resource_size((struct resource const *)iomem); } if ((unsigned long )iomem_bus != (unsigned long )((struct resource *)0)) { dev->base_shift = (unsigned int )iomem_bus->start; } else { } { tmp___2 = __request_region(& iomem_resource, base, len, (char const *)(& driver_name), 0); } if ((unsigned long )tmp___2 == (unsigned long )((struct resource *)0)) { { descriptor.modname = "net2272"; descriptor.function = "net2272_plat_probe"; descriptor.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor.format = "get request memory region!\n"; descriptor.lineno = 2635U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dev->dev, "get request memory region!\n"); } } else { } ret = -16; goto err; } else { } { tmp___3 = ldv_ioremap_nocache_141(base, (unsigned long )len); dev->base_addr = (u16 *)tmp___3; } if ((unsigned long )dev->base_addr == (unsigned long )((u16 *)0U)) { { descriptor___0.modname = "net2272"; descriptor___0.function = "net2272_plat_probe"; descriptor___0.filename = "drivers/usb/gadget/udc/net2272.c"; descriptor___0.format = "can\'t map memory\n"; descriptor___0.lineno = 2641U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)dev->dev, "can\'t map memory\n"); } } else { } ret = -14; goto err_req; } else { } { ret = net2272_probe_fin(dev, 8U); } if (ret != 0) { goto err_io; } else { } { platform_set_drvdata(pdev, (void *)dev); tmp___5 = net2272_read(dev, 34U); _dev_info((struct device const *)(& pdev->dev), "running in 16-bit, %sbyte swap local bus mode\n", ((int )tmp___5 & 32) != 0 ? (char *)"" : (char *)"no "); } return (0); err_io: { ldv_iounmap_142((void volatile *)dev->base_addr); } err_req: { __release_region(& iomem_resource, base, len); } err: ; return (ret); } } static int net2272_plat_remove(struct platform_device *pdev ) { struct net2272 *dev ; void *tmp ; resource_size_t tmp___0 ; { { tmp = platform_get_drvdata((struct platform_device const *)pdev); dev = (struct net2272 *)tmp; net2272_remove(dev); tmp___0 = resource_size((struct resource const *)pdev->resource); __release_region(& iomem_resource, (pdev->resource)->start, tmp___0); kfree((void const *)dev); } return (0); } } static struct platform_driver net2272_plat_driver = {& net2272_plat_probe, & net2272_plat_remove, 0, 0, 0, {(char const *)(& driver_name), 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0, (_Bool)0}; static int net2272_init(void) { int ret ; { { ret = net2272_pci_register(); } if (ret != 0) { return (ret); } else { } { ret = ldv___platform_driver_register_143(& net2272_plat_driver, & __this_module); } if (ret != 0) { goto err_pci; } else { } return (ret); err_pci: { net2272_pci_unregister(); } return (ret); } } static void net2272_cleanup(void) { { { net2272_pci_unregister(); ldv_platform_driver_unregister_144(& net2272_plat_driver); } return; } } void ldv_EMGentry_exit_net2272_cleanup_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_net2272_init_14_15(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; int ldv___platform_driver_register(int arg0 , struct platform_driver *arg1 , struct module *arg2 ) ; void ldv_dispatch_deregister_10_1(struct platform_driver *arg0 ) ; void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_12_14_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_14_5(void) ; void ldv_dispatch_deregister_io_instance_13_14_6(void) ; void ldv_dispatch_deregister_rtc_class_instance_11_14_7(void) ; void ldv_dispatch_irq_deregister_9_1(int arg0 ) ; void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_2_5(void) ; void ldv_dispatch_pm_register_2_6(void) ; void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_8_2(struct platform_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_12_14_8(void) ; void ldv_dispatch_register_dummy_resourceless_instance_14_14_9(void) ; void ldv_dispatch_register_io_instance_13_14_10(void) ; void ldv_dispatch_register_rtc_class_instance_11_14_11(void) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_10(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_13(int (*arg0)(struct usb_gadget * , struct usb_gadget_driver * ) , struct usb_gadget *arg1 , struct usb_gadget_driver *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_14(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_15(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_7(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_io_instance_callback_6_19(int (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) ; void ldv_io_instance_callback_6_20(void (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; void ldv_io_instance_callback_6_21(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; void ldv_io_instance_callback_6_22(void (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) ; void ldv_io_instance_callback_6_23(int (*arg0)(struct usb_ep * , struct usb_request * , unsigned int ) , struct usb_ep *arg1 , struct usb_request *arg2 , unsigned int arg3 ) ; void ldv_io_instance_callback_6_26(int (*arg0)(struct usb_ep * , int ) , struct usb_ep *arg1 , int arg2 ) ; void ldv_io_instance_callback_6_29(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; void ldv_io_instance_callback_6_4(struct usb_request *(*arg0)(struct usb_ep * , unsigned int ) , struct usb_ep *arg1 , unsigned int arg2 ) ; int ldv_io_instance_probe_6_11(int (*arg0)(struct usb_ep * , struct usb_endpoint_descriptor * ) , struct usb_ep *arg1 , struct usb_endpoint_descriptor *arg2 ) ; void ldv_io_instance_release_6_2(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; void ldv_platform_driver_unregister(void *arg0 , struct platform_driver *arg1 ) ; int ldv_platform_instance_probe_2_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_2_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_platform_instance_2(void *arg0 ) ; void ldv_platform_pm_ops_instance_3(void *arg0 ) ; void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_rtc_class_instance_probe_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_rtc_class_instance_release_4_2(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_rtc_rtc_class_instance_4(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_usb_ep_ops_io_instance_6(void *arg0 ) ; void ldv_struct_usb_gadget_ops_dummy_resourceless_instance_7(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_net2272_cleanup_14_2(void (*arg0)(void) ) { { { net2272_cleanup(); } return; } } int ldv_EMGentry_init_net2272_init_14_15(int (*arg0)(void) ) { int tmp ; { { tmp = net2272_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_pci_driver_pci_driver = arg1; ldv_dispatch_register_13_2(ldv_13_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv___platform_driver_register(int arg0 , struct platform_driver *arg1 , struct module *arg2 ) { struct platform_driver *ldv_8_platform_driver_platform_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_platform_driver_platform_driver = arg1; ldv_dispatch_register_8_2(ldv_8_platform_driver_platform_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_10_1(struct platform_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_12_14_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_14_5(void) { { return; } } void ldv_dispatch_deregister_io_instance_13_14_6(void) { { return; } } void ldv_dispatch_deregister_rtc_class_instance_11_14_7(void) { { return; } } void ldv_dispatch_irq_deregister_9_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_pm_deregister_2_5(void) { { return; } } void ldv_dispatch_pm_register_2_6(void) { struct ldv_struct_platform_instance_2 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_platform_instance_2 *)tmp; ldv_platform_pm_ops_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_pci_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_pci_pci_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_8_2(struct platform_driver *arg0 ) { struct ldv_struct_platform_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_platform_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_platform_platform_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_12_14_8(void) { struct ldv_struct_platform_instance_2 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_platform_instance_2 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_14_9(void) { struct ldv_struct_platform_instance_2 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_platform_instance_2 *)tmp; ldv_struct_usb_gadget_ops_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_io_instance_13_14_10(void) { struct ldv_struct_platform_instance_2 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_platform_instance_2 *)tmp; ldv_struct_usb_ep_ops_io_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_rtc_class_instance_11_14_11(void) { struct ldv_struct_platform_instance_2 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_platform_instance_2 *)tmp; ldv_rtc_rtc_class_instance_4((void *)cf_arg_4); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { registers_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_10(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) { { { net2272_set_selfpowered(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_13(int (*arg0)(struct usb_gadget * , struct usb_gadget_driver * ) , struct usb_gadget *arg1 , struct usb_gadget_driver *arg2 ) { { { net2272_start(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_14(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) { { { net2272_stop(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_15(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) { { { net2272_wakeup(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) { { { net2272_get_frame(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_7(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) { { { net2272_pullup(arg1, arg2); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { void (*ldv_14_exit_net2272_cleanup_default)(void) ; int (*ldv_14_init_net2272_init_default)(void) ; int ldv_14_ret_default ; int tmp ; int tmp___0 ; { { ldv_14_ret_default = ldv_EMGentry_init_net2272_init_14_15(ldv_14_init_net2272_init_default); ldv_14_ret_default = ldv_ldv_post_init_145(ldv_14_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_14_ret_default != 0); ldv_ldv_check_final_state_146(); ldv_stop(); } return; } else { { ldv_assume(ldv_14_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_rtc_class_instance_11_14_11(); ldv_dispatch_register_io_instance_13_14_10(); ldv_dispatch_register_dummy_resourceless_instance_14_14_9(); ldv_dispatch_register_dummy_resourceless_instance_12_14_8(); ldv_dispatch_deregister_rtc_class_instance_11_14_7(); ldv_dispatch_deregister_io_instance_13_14_6(); ldv_dispatch_deregister_dummy_resourceless_instance_14_14_5(); ldv_dispatch_deregister_dummy_resourceless_instance_12_14_4(); } } else { } { ldv_EMGentry_exit_net2272_cleanup_14_2(ldv_14_exit_net2272_cleanup_default); ldv_ldv_check_final_state_147(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_148(); ldv_entry_EMGentry_14((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_9_line_line ; { { ldv_9_line_line = arg1; ldv_dispatch_irq_deregister_9_1(ldv_9_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = net2272_irq(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_io_instance_callback_6_19(int (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) { { { net2272_dequeue(arg1, arg2); } return; } } void ldv_io_instance_callback_6_20(void (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { net2272_fifo_flush(arg1); } return; } } void ldv_io_instance_callback_6_21(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { net2272_fifo_status(arg1); } return; } } void ldv_io_instance_callback_6_22(void (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) { { { net2272_free_request(arg1, arg2); } return; } } void ldv_io_instance_callback_6_23(int (*arg0)(struct usb_ep * , struct usb_request * , unsigned int ) , struct usb_ep *arg1 , struct usb_request *arg2 , unsigned int arg3 ) { { { net2272_queue(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_6_26(int (*arg0)(struct usb_ep * , int ) , struct usb_ep *arg1 , int arg2 ) { { { net2272_set_halt(arg1, arg2); } return; } } void ldv_io_instance_callback_6_29(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { net2272_set_wedge(arg1); } return; } } void ldv_io_instance_callback_6_4(struct usb_request *(*arg0)(struct usb_ep * , unsigned int ) , struct usb_ep *arg1 , unsigned int arg2 ) { { { net2272_alloc_request(arg1, arg2); } return; } } int ldv_io_instance_probe_6_11(int (*arg0)(struct usb_ep * , struct usb_endpoint_descriptor * ) , struct usb_ep *arg1 , struct usb_endpoint_descriptor *arg2 ) { int tmp ; { { tmp = net2272_enable(arg1, (struct usb_endpoint_descriptor const *)arg2); } return (tmp); } } void ldv_io_instance_release_6_2(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { net2272_disable(arg1); } return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = net2272_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { net2272_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; struct ldv_struct_pci_instance_1 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_1 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_1 *)0)) { { ldv_1_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_1_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_149(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_ldv_post_probe_150(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } goto ldv_call_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; { { ldv_12_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_12_1(ldv_12_pci_driver_pci_driver); } return; return; } } void ldv_platform_driver_unregister(void *arg0 , struct platform_driver *arg1 ) { struct platform_driver *ldv_10_platform_driver_platform_driver ; { { ldv_10_platform_driver_platform_driver = arg1; ldv_dispatch_deregister_10_1(ldv_10_platform_driver_platform_driver); } return; return; } } int ldv_platform_instance_probe_2_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = net2272_plat_probe(arg1); } return (tmp); } } void ldv_platform_instance_release_2_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { net2272_plat_remove(arg1); } return; } } void ldv_platform_platform_instance_2(void *arg0 ) { struct platform_driver *ldv_2_container_platform_driver ; int ldv_2_probed_default ; struct platform_device *ldv_2_resource_platform_device ; struct ldv_struct_platform_instance_2 *data ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_platform_instance_2 *)arg0; ldv_2_probed_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_platform_instance_2 *)0)) { { ldv_2_container_platform_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1464UL); ldv_2_resource_platform_device = (struct platform_device *)tmp; } goto ldv_main_2; return; ldv_main_2: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_ldv_pre_probe_151(); ldv_2_probed_default = ldv_platform_instance_probe_2_14(ldv_2_container_platform_driver->probe, ldv_2_resource_platform_device); ldv_2_probed_default = ldv_ldv_post_probe_152(ldv_2_probed_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_2_probed_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_probed_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_platform_device); } return; } return; ldv_call_2: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_2; case_2: /* CIL Label */ { ldv_dispatch_pm_register_2_6(); ldv_dispatch_pm_deregister_2_5(); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_platform_instance_release_2_3(ldv_2_container_platform_driver->remove, ldv_2_resource_platform_device); ldv_2_probed_default = 1; } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_platform_pm_ops_instance_3(void *arg0 ) { struct device *ldv_3_device_device ; struct dev_pm_ops *ldv_3_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_3; return; ldv_do_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_3_27(ldv_3_pm_ops_dev_pm_ops->runtime_idle, ldv_3_device_device); } } else { } goto ldv_do_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_3_25(ldv_3_pm_ops_dev_pm_ops->runtime_suspend, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_3_24(ldv_3_pm_ops_dev_pm_ops->runtime_resume, ldv_3_device_device); } } else { } goto ldv_do_3; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_3_22(ldv_3_pm_ops_dev_pm_ops->prepare, ldv_3_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_3_21(ldv_3_pm_ops_dev_pm_ops->suspend, ldv_3_device_device); } } else { } { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_3_20(ldv_3_pm_ops_dev_pm_ops->suspend_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_3_19(ldv_3_pm_ops_dev_pm_ops->resume_noirq, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_3_18(ldv_3_pm_ops_dev_pm_ops->suspend_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_3_17(ldv_3_pm_ops_dev_pm_ops->resume_early, ldv_3_device_device); } } else { } } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_3_16(ldv_3_pm_ops_dev_pm_ops->resume, ldv_3_device_device); } } else { } goto ldv_37719; case_2___0: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_3_15(ldv_3_pm_ops_dev_pm_ops->freeze, ldv_3_device_device); } } else { } { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_3_14(ldv_3_pm_ops_dev_pm_ops->freeze_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_3_13(ldv_3_pm_ops_dev_pm_ops->thaw_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_3_12(ldv_3_pm_ops_dev_pm_ops->freeze_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_3_11(ldv_3_pm_ops_dev_pm_ops->thaw_noirq, ldv_3_device_device); } } else { } } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_3_10(ldv_3_pm_ops_dev_pm_ops->thaw, ldv_3_device_device); } } else { } goto ldv_37719; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_3_9(ldv_3_pm_ops_dev_pm_ops->poweroff, ldv_3_device_device); } } else { } { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_3_8(ldv_3_pm_ops_dev_pm_ops->poweroff_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_3_7(ldv_3_pm_ops_dev_pm_ops->restore_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_3_6(ldv_3_pm_ops_dev_pm_ops->poweroff_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_3_5(ldv_3_pm_ops_dev_pm_ops->restore_noirq, ldv_3_device_device); } } else { } } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_3_4(ldv_3_pm_ops_dev_pm_ops->restore, ldv_3_device_device); } } else { } goto ldv_37719; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_37719: { ldv_pm_ops_instance_complete_3_3(ldv_3_pm_ops_dev_pm_ops->complete, ldv_3_device_device); } goto ldv_do_3; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { net2272_gadget_release(arg1); } return; } } void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_11_callback_handler)(int , void * ) ; void *ldv_11_data_data ; int ldv_11_line_line ; enum irqreturn (*ldv_11_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_line_line = (int )arg1; ldv_11_callback_handler = arg2; ldv_11_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_11_data_data = arg5; ldv_dispatch_irq_register_11_2(ldv_11_line_line, ldv_11_callback_handler, ldv_11_thread_thread, ldv_11_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_rtc_class_instance_probe_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_rtc_class_instance_release_4_2(void (*arg0)(struct device * ) , struct device *arg1 ) { { { net2272_gadget_release(arg1); } return; } } void ldv_rtc_rtc_class_instance_4(void *arg0 ) { struct device *ldv_4_device_device ; int ldv_4_ret_default ; struct rtc_class_ops *ldv_4_rtc_class_ops_rtc_class_ops ; int tmp ; int tmp___0 ; int tmp___1 ; { ldv_4_ret_default = 1; goto ldv_main_4; return; ldv_main_4: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_153(); } if ((unsigned long )ldv_4_rtc_class_ops_rtc_class_ops->open != (unsigned long )((int (*)(struct device * ))0)) { { ldv_4_ret_default = ldv_rtc_class_instance_probe_4_10(ldv_4_rtc_class_ops_rtc_class_ops->open, ldv_4_device_device); } } else { } { ldv_4_ret_default = ldv_ldv_post_probe_154(ldv_4_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { goto ldv_call_4; } else { { ldv_rtc_class_instance_release_4_2(ldv_4_rtc_class_ops_rtc_class_ops->release, ldv_4_device_device); } goto ldv_main_4; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) { long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) ; struct device_attribute *ldv_5_container_struct_device_attribute ; struct device *ldv_5_container_struct_device_ptr ; char *ldv_5_ldv_param_3_2_default ; void *tmp ; int tmp___0 ; { goto ldv_call_5; return; ldv_call_5: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_2_default = (char *)tmp; ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_show, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_3_2_default); ldv_free((void *)ldv_5_ldv_param_3_2_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_usb_ep_ops_io_instance_6(void *arg0 ) { struct usb_request *(*ldv_6_callback_alloc_request)(struct usb_ep * , unsigned int ) ; int (*ldv_6_callback_dequeue)(struct usb_ep * , struct usb_request * ) ; void (*ldv_6_callback_fifo_flush)(struct usb_ep * ) ; int (*ldv_6_callback_fifo_status)(struct usb_ep * ) ; void (*ldv_6_callback_free_request)(struct usb_ep * , struct usb_request * ) ; int (*ldv_6_callback_queue)(struct usb_ep * , struct usb_request * , unsigned int ) ; int (*ldv_6_callback_set_halt)(struct usb_ep * , int ) ; int (*ldv_6_callback_set_wedge)(struct usb_ep * ) ; struct usb_ep_ops *ldv_6_container_struct_usb_ep_ops ; unsigned int ldv_6_ldv_param_23_2_default ; int ldv_6_ldv_param_26_1_default ; unsigned int ldv_6_ldv_param_4_1_default ; struct usb_endpoint_descriptor *ldv_6_resource_struct_usb_endpoint_descriptor_ptr ; struct usb_ep *ldv_6_resource_struct_usb_ep_ptr ; struct usb_request *ldv_6_resource_struct_usb_request_ptr ; int ldv_6_ret_default ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { ldv_6_ret_default = 1; tmp = ldv_xmalloc(9UL); ldv_6_resource_struct_usb_endpoint_descriptor_ptr = (struct usb_endpoint_descriptor *)tmp; tmp___0 = ldv_xmalloc(64UL); ldv_6_resource_struct_usb_ep_ptr = (struct usb_ep *)tmp___0; tmp___1 = ldv_xmalloc(88UL); ldv_6_resource_struct_usb_request_ptr = (struct usb_request *)tmp___1; } goto ldv_main_6; return; ldv_main_6: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_6_ret_default = ldv_io_instance_probe_6_11((int (*)(struct usb_ep * , struct usb_endpoint_descriptor * ))ldv_6_container_struct_usb_ep_ops->enable, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_endpoint_descriptor_ptr); ldv_6_ret_default = ldv_filter_err_code(ldv_6_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_6_ret_default == 0); } goto ldv_call_6; } else { { ldv_assume(ldv_6_ret_default != 0); } goto ldv_main_6; } } else { { ldv_free((void *)ldv_6_resource_struct_usb_endpoint_descriptor_ptr); ldv_free((void *)ldv_6_resource_struct_usb_ep_ptr); ldv_free((void *)ldv_6_resource_struct_usb_request_ptr); } return; } return; ldv_call_6: { tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { ldv_io_instance_release_6_2(ldv_6_container_struct_usb_ep_ops->disable, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_main_6; } else { { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } if (tmp___4 == 4) { goto case_4; } else { } if (tmp___4 == 5) { goto case_5; } else { } if (tmp___4 == 6) { goto case_6; } else { } if (tmp___4 == 7) { goto case_7; } else { } if (tmp___4 == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_6_29(ldv_6_callback_set_wedge, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_37924; case_2: /* CIL Label */ { ldv_io_instance_callback_6_26(ldv_6_callback_set_halt, ldv_6_resource_struct_usb_ep_ptr, ldv_6_ldv_param_26_1_default); } goto ldv_37924; case_3: /* CIL Label */ { ldv_io_instance_callback_6_23(ldv_6_callback_queue, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_request_ptr, ldv_6_ldv_param_23_2_default); } goto ldv_37924; case_4: /* CIL Label */ { ldv_io_instance_callback_6_22(ldv_6_callback_free_request, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_request_ptr); } goto ldv_37924; case_5: /* CIL Label */ { ldv_io_instance_callback_6_21(ldv_6_callback_fifo_status, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_37924; case_6: /* CIL Label */ { ldv_io_instance_callback_6_20(ldv_6_callback_fifo_flush, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_37924; case_7: /* CIL Label */ { ldv_io_instance_callback_6_19(ldv_6_callback_dequeue, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_request_ptr); } goto ldv_37924; case_8: /* CIL Label */ { ldv_io_instance_callback_6_4(ldv_6_callback_alloc_request, ldv_6_resource_struct_usb_ep_ptr, ldv_6_ldv_param_4_1_default); } goto ldv_37924; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_37924: ; } goto ldv_call_6; return; } } void ldv_struct_usb_gadget_ops_dummy_resourceless_instance_7(void *arg0 ) { int (*ldv_7_callback_get_frame)(struct usb_gadget * ) ; int (*ldv_7_callback_pullup)(struct usb_gadget * , int ) ; int (*ldv_7_callback_set_selfpowered)(struct usb_gadget * , int ) ; int (*ldv_7_callback_udc_start)(struct usb_gadget * , struct usb_gadget_driver * ) ; int (*ldv_7_callback_udc_stop)(struct usb_gadget * ) ; int (*ldv_7_callback_wakeup)(struct usb_gadget * ) ; struct usb_gadget_driver *ldv_7_container_struct_usb_gadget_driver_ptr ; struct usb_gadget *ldv_7_container_struct_usb_gadget_ptr ; int ldv_7_ldv_param_10_1_default ; int ldv_7_ldv_param_7_1_default ; int tmp ; { goto ldv_call_7; return; ldv_call_7: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_15(ldv_7_callback_wakeup, ldv_7_container_struct_usb_gadget_ptr); } goto ldv_call_7; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_14(ldv_7_callback_udc_stop, ldv_7_container_struct_usb_gadget_ptr); } goto ldv_call_7; goto ldv_call_7; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_13(ldv_7_callback_udc_start, ldv_7_container_struct_usb_gadget_ptr, ldv_7_container_struct_usb_gadget_driver_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_10(ldv_7_callback_set_selfpowered, ldv_7_container_struct_usb_gadget_ptr, ldv_7_ldv_param_10_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_7(ldv_7_callback_pullup, ldv_7_container_struct_usb_gadget_ptr, ldv_7_ldv_param_7_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_get_frame, ldv_7_container_struct_usb_gadget_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_7: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_net2272(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_99(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_101(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_net2272(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_102(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); spin_lock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_120(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_free_irq_128(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_129(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } __inline static int ldv_request_irq_130(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void *ldv_ioremap_nocache_132(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } static void ldv_iounmap_133(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void *ldv_ioremap_nocache_134(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } static void ldv_iounmap_135(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_136(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_137(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_138(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static int ldv___pci_register_driver_139(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_140(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void *ldv_ioremap_nocache_141(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } static void ldv_iounmap_142(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static int ldv___platform_driver_register_143(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __platform_driver_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv___platform_driver_register(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_platform_driver_unregister_144(struct platform_driver *ldv_func_arg1 ) { { { platform_driver_unregister(ldv_func_arg1); ldv_platform_driver_unregister((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_145(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_146(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_147(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_148(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_149(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_150(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_151(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_152(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_153(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_154(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_net2272(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_net2272(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_net2272(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_net2272(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_net2272(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_net2272(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_net2272(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_net2272(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_net2272(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_net2272 == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }