/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct dma_pool; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct exception_table_entry { int insn ; int fixup ; }; struct rtc_time { int tm_sec ; int tm_min ; int tm_hour ; int tm_mday ; int tm_mon ; int tm_year ; int tm_wday ; int tm_yday ; int tm_isdst ; }; struct rtc_wkalrm { unsigned char enabled ; unsigned char pending ; struct rtc_time time ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_197 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_196 { struct __anonstruct____missing_field_name_197 __annonCompField62 ; }; struct lockref { union __anonunion____missing_field_name_196 __annonCompField63 ; }; struct vfsmount; struct __anonstruct____missing_field_name_199 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_198 { struct __anonstruct____missing_field_name_199 __annonCompField64 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_198 __annonCompField65 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_200 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_200 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_202 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_201 { struct __anonstruct____missing_field_name_202 __annonCompField66 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_201 __annonCompField67 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_204 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_204 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_205 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_205 __annonCompField69 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_208 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_209 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_210 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_208 __annonCompField70 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_209 __annonCompField71 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_210 __annonCompField72 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_211 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_211 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_213 { struct list_head link ; int state ; }; union __anonunion_fl_u_212 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_213 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_212 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct rtc_class_ops { int (*open)(struct device * ) ; void (*release)(struct device * ) ; int (*ioctl)(struct device * , unsigned int , unsigned long ) ; int (*read_time)(struct device * , struct rtc_time * ) ; int (*set_time)(struct device * , struct rtc_time * ) ; int (*read_alarm)(struct device * , struct rtc_wkalrm * ) ; int (*set_alarm)(struct device * , struct rtc_wkalrm * ) ; int (*proc)(struct device * , struct seq_file * ) ; int (*set_mmss)(struct device * , unsigned long ) ; int (*read_callback)(struct device * , int ) ; int (*alarm_irq_enable)(struct device * , unsigned int ) ; }; struct rtc_task { void (*func)(void * ) ; void *private_data ; }; struct rtc_timer { struct rtc_task task ; struct timerqueue_node node ; ktime_t period ; int enabled ; }; struct rtc_device { struct device dev ; struct module *owner ; int id ; char name[20U] ; struct rtc_class_ops const *ops ; struct mutex ops_lock ; struct cdev char_dev ; unsigned long flags ; unsigned long irq_data ; spinlock_t irq_lock ; wait_queue_head_t irq_queue ; struct fasync_struct *async_queue ; struct rtc_task *irq_task ; spinlock_t irq_task_lock ; int irq_freq ; int max_user_freq ; struct timerqueue_head timerqueue ; struct rtc_timer aie_timer ; struct rtc_timer uie_rtctimer ; struct hrtimer pie_timer ; int pie_enabled ; struct work_struct irqwork ; int uie_unsupported ; struct work_struct uie_task ; struct timer_list uie_timer ; unsigned int oldsecs ; unsigned char uie_irq_active : 1 ; unsigned char stop_uie_polling : 1 ; unsigned char uie_task_active : 1 ; unsigned char uie_timer_active : 1 ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_219 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_219 __annonCompField73 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct usb_ctrlrequest { __u8 bRequestType ; __u8 bRequest ; __le16 wValue ; __le16 wIndex ; __le16 wLength ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct usb_ep; struct usb_request { void *buf ; unsigned int length ; dma_addr_t dma ; struct scatterlist *sg ; unsigned int num_sgs ; unsigned int num_mapped_sgs ; unsigned short stream_id ; unsigned char no_interrupt : 1 ; unsigned char zero : 1 ; unsigned char short_not_ok : 1 ; void (*complete)(struct usb_ep * , struct usb_request * ) ; void *context ; struct list_head list ; int status ; unsigned int actual ; }; struct usb_ep_ops { int (*enable)(struct usb_ep * , struct usb_endpoint_descriptor const * ) ; int (*disable)(struct usb_ep * ) ; struct usb_request *(*alloc_request)(struct usb_ep * , gfp_t ) ; void (*free_request)(struct usb_ep * , struct usb_request * ) ; int (*queue)(struct usb_ep * , struct usb_request * , gfp_t ) ; int (*dequeue)(struct usb_ep * , struct usb_request * ) ; int (*set_halt)(struct usb_ep * , int ) ; int (*set_wedge)(struct usb_ep * ) ; int (*fifo_status)(struct usb_ep * ) ; void (*fifo_flush)(struct usb_ep * ) ; }; struct usb_ep { void *driver_data ; char const *name ; struct usb_ep_ops const *ops ; struct list_head ep_list ; unsigned short maxpacket ; unsigned short maxpacket_limit ; unsigned short max_streams ; unsigned char mult : 2 ; unsigned char maxburst : 5 ; u8 address ; struct usb_endpoint_descriptor const *desc ; struct usb_ss_ep_comp_descriptor const *comp_desc ; }; struct usb_dcd_config_params { __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_gadget; struct usb_gadget_driver; struct usb_gadget_ops { int (*get_frame)(struct usb_gadget * ) ; int (*wakeup)(struct usb_gadget * ) ; int (*set_selfpowered)(struct usb_gadget * , int ) ; int (*vbus_session)(struct usb_gadget * , int ) ; int (*vbus_draw)(struct usb_gadget * , unsigned int ) ; int (*pullup)(struct usb_gadget * , int ) ; int (*ioctl)(struct usb_gadget * , unsigned int , unsigned long ) ; void (*get_config_params)(struct usb_dcd_config_params * ) ; int (*udc_start)(struct usb_gadget * , struct usb_gadget_driver * ) ; int (*udc_stop)(struct usb_gadget * ) ; }; struct usb_gadget { struct work_struct work ; struct usb_gadget_ops const *ops ; struct usb_ep *ep0 ; struct list_head ep_list ; enum usb_device_speed speed ; enum usb_device_speed max_speed ; enum usb_device_state state ; char const *name ; struct device dev ; unsigned int out_epnum ; unsigned int in_epnum ; unsigned char sg_supported : 1 ; unsigned char is_otg : 1 ; unsigned char is_a_peripheral : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char a_hnp_support : 1 ; unsigned char a_alt_hnp_support : 1 ; unsigned char quirk_ep_out_aligned_size : 1 ; unsigned char is_selfpowered : 1 ; }; struct usb_gadget_driver { char *function ; enum usb_device_speed max_speed ; int (*bind)(struct usb_gadget * , struct usb_gadget_driver * ) ; void (*unbind)(struct usb_gadget * ) ; int (*setup)(struct usb_gadget * , struct usb_ctrlrequest const * ) ; void (*disconnect)(struct usb_gadget * ) ; void (*suspend)(struct usb_gadget * ) ; void (*resume)(struct usb_gadget * ) ; void (*reset)(struct usb_gadget * ) ; struct device_driver driver ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct gpio_desc; struct pch_udc_data_dma_desc { u32 status ; u32 reserved ; u32 dataptr ; u32 next ; }; struct pch_udc_stp_dma_desc { u32 status ; u32 reserved ; struct usb_ctrlrequest request ; }; struct pch_udc_cfg_data { u16 cur_cfg ; u16 cur_intf ; u16 cur_alt ; }; struct pch_udc_dev; struct pch_udc_ep { struct usb_ep ep ; dma_addr_t td_stp_phys ; dma_addr_t td_data_phys ; struct pch_udc_stp_dma_desc *td_stp ; struct pch_udc_data_dma_desc *td_data ; struct pch_udc_dev *dev ; unsigned long offset_addr ; struct list_head queue ; unsigned char num : 5 ; unsigned char in : 1 ; unsigned char halted : 1 ; unsigned long epsts ; }; struct pch_vbus_gpio_data { int port ; int intr ; struct work_struct irq_work_fall ; struct work_struct irq_work_rise ; }; struct pch_udc_dev { struct usb_gadget gadget ; struct usb_gadget_driver *driver ; struct pci_dev *pdev ; struct pch_udc_ep ep[32U] ; spinlock_t lock ; unsigned char active : 1 ; unsigned char stall : 1 ; unsigned char prot_stall : 1 ; unsigned char irq_registered : 1 ; unsigned char mem_region : 1 ; unsigned char suspended : 1 ; unsigned char connected : 1 ; unsigned char vbus_session : 1 ; unsigned char set_cfg_not_acked : 1 ; unsigned char waiting_zlp_ack : 1 ; struct dma_pool *data_requests ; struct dma_pool *stp_requests ; dma_addr_t dma_addr ; void *ep0out_buf ; struct usb_ctrlrequest setup_data ; unsigned long phys_addr ; void *base_addr ; unsigned int bar ; unsigned int irq ; struct pch_udc_cfg_data cfg_data ; struct pch_vbus_gpio_data vbus_gpio ; }; struct pch_udc_request { struct usb_request req ; dma_addr_t td_data_phys ; struct pch_udc_data_dma_desc *td_data ; struct pch_udc_data_dma_desc *td_data_last ; struct list_head queue ; unsigned char dma_going : 1 ; unsigned char dma_mapped : 1 ; unsigned char dma_done : 1 ; unsigned int chain_len ; void *buf ; dma_addr_t dma ; }; struct ldv_struct_free_irq_8 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_2 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_4 { int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_145(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_142(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_146(void) ; static void ldv_ldv_pre_probe_148(void) ; static void ldv_ldv_pre_probe_150(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_147(int retval ) ; static int ldv_ldv_post_probe_149(int retval ) ; static int ldv_ldv_post_probe_151(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_143(void) ; static void ldv_ldv_check_final_state_144(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } extern struct module __this_module ; extern int printk(char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern unsigned long __phys_addr(unsigned long ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_pch_udc_dev(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_udc_stall_spinlock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_udc_stall_spinlock(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern struct resource iomem_resource ; extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void ldv_spin_lock_97(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_96(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_117(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_117(spinlock_t *lock , unsigned long flags ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static void *phys_to_virt(phys_addr_t address ) { { return ((void *)((unsigned long )address + 0xffff880000000000UL)); } } static void *ldv_ioremap_nocache_138(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void ldv_iounmap_137(void volatile *ldv_func_arg1 ) ; extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_try_set_mwi(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_140(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_141(struct pci_driver *ldv_func_arg1 ) ; extern struct dma_pool *dma_pool_create(char const * , struct device * , size_t , size_t , size_t ) ; extern void dma_pool_destroy(struct dma_pool * ) ; static void *ldv_dma_pool_alloc_106(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; static void *ldv_dma_pool_alloc_111(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; static void *ldv_dma_pool_alloc_134(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; static void *ldv_dma_pool_alloc_135(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; extern void dma_pool_free(struct dma_pool * , void * , dma_addr_t ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern int irq_set_irq_type(unsigned int , unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_102(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_139(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_103(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_136(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __const_udelay(unsigned long ) ; __inline static int usb_endpoint_maxp(struct usb_endpoint_descriptor const *epd ) { { return ((int )epd->wMaxPacketSize); } } __inline static void usb_ep_set_maxpacket_limit(struct usb_ep *ep , unsigned int maxpacket_limit ) { { ep->maxpacket_limit = (unsigned short )maxpacket_limit; ep->maxpacket = (unsigned short )maxpacket_limit; return; } } extern int usb_add_gadget_udc_release(struct device * , struct usb_gadget * , void (*)(struct device * ) ) ; extern void usb_del_gadget_udc(struct usb_gadget * ) ; extern void usb_gadget_udc_reset(struct usb_gadget * , struct usb_gadget_driver * ) ; extern void usb_gadget_giveback_request(struct usb_ep * , struct usb_request * ) ; extern int gpiod_direction_input(struct gpio_desc * ) ; extern int gpiod_get_raw_value(struct gpio_desc const * ) ; extern int gpiod_to_irq(struct gpio_desc const * ) ; extern struct gpio_desc *gpio_to_desc(unsigned int ) ; __inline static bool gpio_is_valid(int number ) { { return ((unsigned int )number <= 511U); } } extern int gpio_request(unsigned int , char const * ) ; extern void gpio_free(unsigned int ) ; __inline static int gpio_direction_input(unsigned int gpio ) { struct gpio_desc *tmp ; int tmp___0 ; { { tmp = gpio_to_desc(gpio); tmp___0 = gpiod_direction_input(tmp); } return (tmp___0); } } __inline static int __gpio_get_value(unsigned int gpio ) { struct gpio_desc *tmp ; int tmp___0 ; { { tmp = gpio_to_desc(gpio); tmp___0 = gpiod_get_raw_value((struct gpio_desc const *)tmp); } return (tmp___0); } } __inline static int __gpio_to_irq(unsigned int gpio ) { struct gpio_desc *tmp ; int tmp___0 ; { { tmp = gpio_to_desc(gpio); tmp___0 = gpiod_to_irq((struct gpio_desc const *)tmp); } return (tmp___0); } } __inline static int gpio_get_value(unsigned int gpio ) { int tmp ; { { tmp = __gpio_get_value(gpio); } return (tmp); } } __inline static int gpio_to_irq(unsigned int gpio ) { int tmp ; { { tmp = __gpio_to_irq(gpio); } return (tmp); } } static int vbus_gpio_port = -1; static char const ep0_string[6U] = { 'e', 'p', '0', 'i', 'n', '\000'}; static spinlock_t udc_stall_spinlock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "udc_stall_spinlock", 0, 0UL}}}}; static bool speed_fs ; __inline static u32 pch_udc_readl(struct pch_udc_dev *dev , unsigned long reg ) { unsigned int tmp ; { { tmp = ioread32(dev->base_addr + reg); } return (tmp); } } __inline static void pch_udc_writel(struct pch_udc_dev *dev , unsigned long val , unsigned long reg ) { { { iowrite32((u32 )val, dev->base_addr + reg); } return; } } __inline static void pch_udc_bit_set(struct pch_udc_dev *dev , unsigned long reg , unsigned long bitmask ) { u32 tmp ; { { tmp = pch_udc_readl(dev, reg); pch_udc_writel(dev, (unsigned long )tmp | bitmask, reg); } return; } } __inline static void pch_udc_bit_clr(struct pch_udc_dev *dev , unsigned long reg , unsigned long bitmask ) { u32 tmp ; { { tmp = pch_udc_readl(dev, reg); pch_udc_writel(dev, (unsigned long )tmp & ~ bitmask, reg); } return; } } __inline static u32 pch_udc_ep_readl(struct pch_udc_ep *ep , unsigned long reg ) { unsigned int tmp ; { { tmp = ioread32((ep->dev)->base_addr + (ep->offset_addr + reg)); } return (tmp); } } __inline static void pch_udc_ep_writel(struct pch_udc_ep *ep , unsigned long val , unsigned long reg ) { { { iowrite32((u32 )val, (ep->dev)->base_addr + (ep->offset_addr + reg)); } return; } } __inline static void pch_udc_ep_bit_set(struct pch_udc_ep *ep , unsigned long reg , unsigned long bitmask ) { u32 tmp ; { { tmp = pch_udc_ep_readl(ep, reg); pch_udc_ep_writel(ep, (unsigned long )tmp | bitmask, reg); } return; } } __inline static void pch_udc_ep_bit_clr(struct pch_udc_ep *ep , unsigned long reg , unsigned long bitmask ) { u32 tmp ; { { tmp = pch_udc_ep_readl(ep, reg); pch_udc_ep_writel(ep, (unsigned long )tmp & ~ bitmask, reg); } return; } } static void pch_udc_csr_busy(struct pch_udc_dev *dev ) { unsigned int count ; u32 tmp ; { count = 200U; goto ldv_35464; ldv_35463: { cpu_relax(); } ldv_35464: { tmp = pch_udc_readl(dev, 1264UL); } if ((int )tmp & 1) { count = count - 1U; if (count != 0U) { goto ldv_35463; } else { goto ldv_35465; } } else { } ldv_35465: ; if (count == 0U) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: wait error\n", "pch_udc_csr_busy"); } } else { } return; } } static void pch_udc_write_csr(struct pch_udc_dev *dev , unsigned long val , unsigned int ep ) { unsigned long reg ; { { reg = (unsigned long )((ep + 320U) * 4U); pch_udc_csr_busy(dev); pch_udc_writel(dev, val, reg); pch_udc_csr_busy(dev); } return; } } static u32 pch_udc_read_csr(struct pch_udc_dev *dev , unsigned int ep ) { unsigned long reg ; u32 tmp ; { { reg = (unsigned long )((ep + 320U) * 4U); pch_udc_csr_busy(dev); pch_udc_readl(dev, reg); pch_udc_csr_busy(dev); tmp = pch_udc_readl(dev, reg); } return (tmp); } } __inline static void pch_udc_rmt_wakeup(struct pch_udc_dev *dev ) { unsigned long __ms ; unsigned long tmp ; { { pch_udc_bit_set(dev, 1028UL, 1UL); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_35483; ldv_35482: { __const_udelay(4295000UL); } ldv_35483: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_35482; } else { } } { pch_udc_bit_clr(dev, 1028UL, 1UL); } return; } } __inline static int pch_udc_get_frame(struct pch_udc_dev *dev ) { u32 frame ; u32 tmp ; { { tmp = pch_udc_readl(dev, 1032UL); frame = tmp; } return ((int )(frame >> 18)); } } __inline static void pch_udc_clear_selfpowered(struct pch_udc_dev *dev ) { { { pch_udc_bit_clr(dev, 1024UL, 8UL); } return; } } __inline static void pch_udc_set_selfpowered(struct pch_udc_dev *dev ) { { { pch_udc_bit_set(dev, 1024UL, 8UL); } return; } } __inline static void pch_udc_set_disconnect(struct pch_udc_dev *dev ) { { { pch_udc_bit_set(dev, 1028UL, 1024UL); } return; } } static void pch_udc_clear_disconnect(struct pch_udc_dev *dev ) { unsigned long __ms ; unsigned long tmp ; { { pch_udc_bit_set(dev, 1028UL, 1UL); pch_udc_bit_clr(dev, 1028UL, 1024UL); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_35503; ldv_35502: { __const_udelay(4295000UL); } ldv_35503: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_35502; } else { } } { pch_udc_bit_clr(dev, 1028UL, 1UL); } return; } } static void pch_udc_init(struct pch_udc_dev *dev ) ; static void pch_udc_reconnect(struct pch_udc_dev *dev ) { unsigned long __ms ; unsigned long tmp ; { { pch_udc_init(dev); pch_udc_bit_clr(dev, 1040UL, 72UL); pch_udc_bit_set(dev, 1028UL, 1UL); pch_udc_bit_clr(dev, 1028UL, 1024UL); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_35512; ldv_35511: { __const_udelay(4295000UL); } ldv_35512: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_35511; } else { } } { pch_udc_bit_clr(dev, 1028UL, 1UL); } return; } } __inline static void pch_udc_vbus_session(struct pch_udc_dev *dev , int is_active ) { { if (is_active != 0) { { pch_udc_reconnect(dev); dev->vbus_session = 1U; } } else { if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0) && (unsigned long )(dev->driver)->disconnect != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { ldv_spin_unlock_96(& dev->lock); (*((dev->driver)->disconnect))(& dev->gadget); ldv_spin_lock_97(& dev->lock); } } else { } { pch_udc_set_disconnect(dev); dev->vbus_session = 0U; } } return; } } static void pch_udc_ep_set_stall(struct pch_udc_ep *ep ) { { if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { pch_udc_ep_bit_set(ep, 0UL, 2UL); pch_udc_ep_bit_set(ep, 0UL, 1UL); } } else { { pch_udc_ep_bit_set(ep, 0UL, 1UL); } } return; } } __inline static void pch_udc_ep_clear_stall(struct pch_udc_ep *ep ) { { { pch_udc_ep_bit_clr(ep, 0UL, 1UL); pch_udc_ep_bit_set(ep, 0UL, 256UL); } return; } } __inline static void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep , u8 type ) { { { pch_udc_ep_writel(ep, (unsigned long )((int )type << 4) & 48UL, 0UL); } return; } } static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep , u32 buf_size , u32 ep_in ) { u32 data ; { if (ep_in != 0U) { { data = pch_udc_ep_readl(ep, 8UL); data = (data & 4294901760U) | (buf_size & 65535U); pch_udc_ep_writel(ep, (unsigned long )data, 8UL); } } else { { data = pch_udc_ep_readl(ep, 12UL); data = (buf_size << 16) | (data & 65535U); pch_udc_ep_writel(ep, (unsigned long )data, 12UL); } } return; } } static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep , u32 pkt_size ) { u32 data ; u32 tmp ; { { tmp = pch_udc_ep_readl(ep, 12UL); data = tmp; data = (data & 4294901760U) | (pkt_size & 65535U); pch_udc_ep_writel(ep, (unsigned long )data, 12UL); } return; } } __inline static void pch_udc_ep_set_subptr(struct pch_udc_ep *ep , u32 addr ) { { { pch_udc_ep_writel(ep, (unsigned long )addr, 16UL); } return; } } __inline static void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep , u32 addr ) { { { pch_udc_ep_writel(ep, (unsigned long )addr, 20UL); } return; } } __inline static void pch_udc_ep_set_pd(struct pch_udc_ep *ep ) { { { pch_udc_ep_bit_set(ep, 0UL, 8UL); } return; } } __inline static void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep ) { { { pch_udc_ep_bit_set(ep, 0UL, 512UL); } return; } } __inline static void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep ) { { { pch_udc_ep_bit_clr(ep, 0UL, 512UL); } return; } } __inline static void pch_udc_set_dma(struct pch_udc_dev *dev , int dir ) { { if (dir == 1) { { pch_udc_bit_set(dev, 1028UL, 4UL); } } else if (dir == 2) { { pch_udc_bit_set(dev, 1028UL, 8UL); } } else { } return; } } __inline static void pch_udc_clear_dma(struct pch_udc_dev *dev , int dir ) { { if (dir == 1) { { pch_udc_bit_clr(dev, 1028UL, 4UL); } } else if (dir == 2) { { pch_udc_bit_clr(dev, 1028UL, 8UL); } } else { } return; } } __inline static void pch_udc_set_csr_done(struct pch_udc_dev *dev ) { { { pch_udc_bit_set(dev, 1028UL, 8192UL); } return; } } __inline static void pch_udc_disable_interrupts(struct pch_udc_dev *dev , u32 mask ) { { { pch_udc_bit_set(dev, 1040UL, (unsigned long )mask); } return; } } __inline static void pch_udc_enable_interrupts(struct pch_udc_dev *dev , u32 mask ) { { { pch_udc_bit_clr(dev, 1040UL, (unsigned long )mask); } return; } } __inline static void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev , u32 mask ) { { { pch_udc_bit_set(dev, 1048UL, (unsigned long )mask); } return; } } __inline static void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev , u32 mask ) { { { pch_udc_bit_clr(dev, 1048UL, (unsigned long )mask); } return; } } __inline static u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev ) { u32 tmp ; { { tmp = pch_udc_readl(dev, 1036UL); } return (tmp); } } __inline static void pch_udc_write_device_interrupts(struct pch_udc_dev *dev , u32 val ) { { { pch_udc_writel(dev, (unsigned long )val, 1036UL); } return; } } __inline static u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev ) { u32 tmp ; { { tmp = pch_udc_readl(dev, 1044UL); } return (tmp); } } __inline static void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev , u32 val ) { { { pch_udc_writel(dev, (unsigned long )val, 1044UL); } return; } } __inline static u32 pch_udc_read_device_status(struct pch_udc_dev *dev ) { u32 tmp ; { { tmp = pch_udc_readl(dev, 1032UL); } return (tmp); } } __inline static u32 pch_udc_read_ep_control(struct pch_udc_ep *ep ) { u32 tmp ; { { tmp = pch_udc_ep_readl(ep, 0UL); } return (tmp); } } __inline static void pch_udc_clear_ep_control(struct pch_udc_ep *ep ) { { return; } } __inline static u32 pch_udc_read_ep_status(struct pch_udc_ep *ep ) { u32 tmp ; { { tmp = pch_udc_ep_readl(ep, 4UL); } return (tmp); } } __inline static void pch_udc_clear_ep_status(struct pch_udc_ep *ep , u32 stat ) { { return; } } __inline static void pch_udc_ep_set_nak(struct pch_udc_ep *ep ) { { { pch_udc_ep_bit_set(ep, 0UL, 128UL); } return; } } static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep ) { unsigned int loopcnt ; struct pch_udc_dev *dev ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; { { loopcnt = 0U; dev = ep->dev; tmp = pch_udc_ep_readl(ep, 0UL); } if ((tmp & 64U) == 0U) { return; } else { } if ((unsigned int )*((unsigned char *)ep + 128UL) == 0U) { loopcnt = 10000U; goto ldv_35622; ldv_35621: { __const_udelay(21475UL); } ldv_35622: { tmp___0 = pch_udc_read_ep_status(ep); } if ((tmp___0 & 256U) == 0U) { loopcnt = loopcnt - 1U; if (loopcnt != 0U) { goto ldv_35621; } else { goto ldv_35623; } } else { } ldv_35623: ; if (loopcnt == 0U) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: RxFIFO not Empty\n", "pch_udc_ep_clear_nak"); } } else { } } else { } loopcnt = 10000U; goto ldv_35626; ldv_35625: { pch_udc_ep_bit_set(ep, 0UL, 256UL); __const_udelay(21475UL); } ldv_35626: { tmp___1 = pch_udc_read_ep_control(ep); } if ((tmp___1 & 64U) != 0U) { loopcnt = loopcnt - 1U; if (loopcnt != 0U) { goto ldv_35625; } else { goto ldv_35627; } } else { } ldv_35627: ; if (loopcnt == 0U) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: Clear NAK not set for ep%d%s\n", "pch_udc_ep_clear_nak", (int )ep->num, (unsigned int )*((unsigned char *)ep + 128UL) != 0U ? (char *)"in" : (char *)"out"); } } else { } return; } } static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep , int dir ) { { if (dir != 0) { { pch_udc_ep_bit_set(ep, 0UL, 2UL); } return; } else { } return; } } static void pch_udc_ep_enable(struct pch_udc_ep *ep , struct pch_udc_cfg_data *cfg , struct usb_endpoint_descriptor const *desc ) { u32 val ; u32 buff_size ; int tmp ; int tmp___0 ; { { val = 0U; buff_size = 0U; pch_udc_ep_set_trfr_type(ep, (int )desc->bmAttributes); } if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { buff_size = 256U; } else { buff_size = 256U; } { pch_udc_ep_set_bufsz(ep, buff_size, (u32 )ep->in); tmp = usb_endpoint_maxp(desc); pch_udc_ep_set_maxpkt(ep, (u32 )tmp); pch_udc_ep_set_nak(ep); pch_udc_ep_fifo_flush(ep, (int )ep->in); tmp___0 = usb_endpoint_maxp(desc); val = (u32 )(((((((int )ep->num | ((int )ep->in << 4)) | (((int )desc->bmAttributes & 3) << 5)) | ((int )cfg->cur_cfg << 7)) | ((int )cfg->cur_intf << 11)) | ((int )cfg->cur_alt << 15)) | (tmp___0 << 19)); } if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { pch_udc_write_csr(ep->dev, (unsigned long )val, (unsigned int )((int )ep->num * 2)); } } else { { pch_udc_write_csr(ep->dev, (unsigned long )val, (unsigned int )((int )ep->num * 2 + 1)); } } return; } } static void pch_udc_ep_disable(struct pch_udc_ep *ep ) { { if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { pch_udc_ep_writel(ep, 2UL, 0UL); pch_udc_ep_writel(ep, 128UL, 0UL); pch_udc_ep_bit_set(ep, 4UL, 64UL); } } else { { pch_udc_ep_writel(ep, 128UL, 0UL); } } { pch_udc_ep_writel(ep, 0UL, 20UL); } return; } } static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep ) { unsigned int count ; u32 tmp ; { count = 10000U; goto ldv_35647; ldv_35646: { __const_udelay(21475UL); } ldv_35647: { tmp = pch_udc_read_ep_control(ep); } if ((int )tmp & 1) { count = count - 1U; if (count != 0U) { goto ldv_35646; } else { goto ldv_35648; } } else { } ldv_35648: ; if (count == 0U) { { dev_err((struct device const *)(& ((ep->dev)->pdev)->dev), "%s: wait error\n", "pch_udc_wait_ep_stall"); } } else { } return; } } static void pch_udc_init(struct pch_udc_dev *dev ) { unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; { if ((unsigned long )dev == (unsigned long )((struct pch_udc_dev *)0)) { { printk("\vpch_udc: %s: Invalid address\n", "pch_udc_init"); } return; } else { } { pch_udc_writel(dev, 1UL, 1276UL); pch_udc_writel(dev, 3UL, 1276UL); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_35656; ldv_35655: { __const_udelay(4295000UL); } ldv_35656: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_35655; } else { } } { pch_udc_writel(dev, 1UL, 1276UL); pch_udc_writel(dev, 0UL, 1276UL); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_35660; ldv_35659: { __const_udelay(4295000UL); } ldv_35660: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_35659; } else { } } { pch_udc_bit_set(dev, 1040UL, 127UL); pch_udc_bit_set(dev, 1036UL, 127UL); pch_udc_bit_set(dev, 1048UL, 4294967295UL); pch_udc_bit_set(dev, 1044UL, 4294967295UL); } if ((int )speed_fs) { { pch_udc_bit_set(dev, 1024UL, 131081UL); } } else { { pch_udc_bit_set(dev, 1024UL, 131080UL); } } { pch_udc_bit_set(dev, 1028UL, 521077632UL); } return; } } static void pch_udc_exit(struct pch_udc_dev *dev ) { { { pch_udc_bit_set(dev, 1040UL, 127UL); pch_udc_bit_set(dev, 1048UL, 4294967295UL); pch_udc_set_disconnect(dev); } return; } } static int pch_udc_pcd_get_frame(struct usb_gadget *gadget ) { struct pch_udc_dev *dev ; struct usb_gadget const *__mptr ; int tmp ; { if ((unsigned long )gadget == (unsigned long )((struct usb_gadget *)0)) { return (-22); } else { } { __mptr = (struct usb_gadget const *)gadget; dev = (struct pch_udc_dev *)__mptr; tmp = pch_udc_get_frame(dev); } return (tmp); } } static int pch_udc_pcd_wakeup(struct usb_gadget *gadget ) { struct pch_udc_dev *dev ; unsigned long flags ; struct usb_gadget const *__mptr ; { if ((unsigned long )gadget == (unsigned long )((struct usb_gadget *)0)) { return (-22); } else { } { __mptr = (struct usb_gadget const *)gadget; dev = (struct pch_udc_dev *)__mptr; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(& dev->lock); pch_udc_rmt_wakeup(dev); ldv_spin_unlock_irqrestore_99(& dev->lock, flags); } return (0); } } static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget , int value ) { struct pch_udc_dev *dev ; struct usb_gadget const *__mptr ; { if ((unsigned long )gadget == (unsigned long )((struct usb_gadget *)0)) { return (-22); } else { } gadget->is_selfpowered = value != 0; __mptr = (struct usb_gadget const *)gadget; dev = (struct pch_udc_dev *)__mptr; if (value != 0) { { pch_udc_set_selfpowered(dev); } } else { { pch_udc_clear_selfpowered(dev); } } return (0); } } static int pch_udc_pcd_pullup(struct usb_gadget *gadget , int is_on ) { struct pch_udc_dev *dev ; struct usb_gadget const *__mptr ; { if ((unsigned long )gadget == (unsigned long )((struct usb_gadget *)0)) { return (-22); } else { } __mptr = (struct usb_gadget const *)gadget; dev = (struct pch_udc_dev *)__mptr; if (is_on != 0) { { pch_udc_reconnect(dev); } } else { if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0) && (unsigned long )(dev->driver)->disconnect != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { ldv_spin_unlock_96(& dev->lock); (*((dev->driver)->disconnect))(& dev->gadget); ldv_spin_lock_97(& dev->lock); } } else { } { pch_udc_set_disconnect(dev); } } return (0); } } static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget , int is_active ) { struct pch_udc_dev *dev ; struct usb_gadget const *__mptr ; { if ((unsigned long )gadget == (unsigned long )((struct usb_gadget *)0)) { return (-22); } else { } { __mptr = (struct usb_gadget const *)gadget; dev = (struct pch_udc_dev *)__mptr; pch_udc_vbus_session(dev, is_active); } return (0); } } static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget , unsigned int mA ) { { return (-95); } } static int pch_udc_start(struct usb_gadget *g , struct usb_gadget_driver *driver ) ; static int pch_udc_stop(struct usb_gadget *g ) ; static struct usb_gadget_ops const pch_udc_ops = {& pch_udc_pcd_get_frame, & pch_udc_pcd_wakeup, & pch_udc_pcd_selfpowered, & pch_udc_pcd_vbus_session, & pch_udc_pcd_vbus_draw, & pch_udc_pcd_pullup, 0, 0, & pch_udc_start, & pch_udc_stop}; static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev ) { int vbus ; int tmp ; { vbus = 0; if (dev->vbus_gpio.port != 0) { { tmp = gpio_get_value((unsigned int )dev->vbus_gpio.port); vbus = tmp != 0; } } else { vbus = -1; } return (vbus); } } static void pch_vbus_gpio_work_fall(struct work_struct *irq_work ) { struct pch_vbus_gpio_data *vbus_gpio ; struct work_struct const *__mptr ; struct pch_udc_dev *dev ; struct pch_vbus_gpio_data const *__mptr___0 ; int vbus_saved ; int vbus ; int count ; struct _ddebug descriptor ; long tmp ; unsigned long __ms ; unsigned long tmp___0 ; { __mptr = (struct work_struct const *)irq_work; vbus_gpio = (struct pch_vbus_gpio_data *)__mptr + 0xfffffffffffffff8UL; __mptr___0 = (struct pch_vbus_gpio_data const *)vbus_gpio; dev = (struct pch_udc_dev *)__mptr___0 + 0xffffffffffffe740UL; vbus_saved = -1; if (dev->vbus_gpio.port == 0) { return; } else { } count = 0; goto ldv_35732; ldv_35731: { vbus = pch_vbus_gpio_get_value(dev); } if (vbus_saved == vbus && vbus == 0) { { descriptor.modname = "pch_udc"; descriptor.function = "pch_vbus_gpio_work_fall"; descriptor.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor.format = "VBUS fell"; descriptor.lineno = 1302U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (dev->pdev)->dev), "VBUS fell"); } } else { } if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0) && (unsigned long )(dev->driver)->disconnect != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { (*((dev->driver)->disconnect))(& dev->gadget); } } else { } if (dev->vbus_gpio.intr != 0) { { pch_udc_init(dev); } } else { { pch_udc_reconnect(dev); } } return; } else { } vbus_saved = vbus; __ms = 10UL; goto ldv_35729; ldv_35728: { __const_udelay(4295000UL); } ldv_35729: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_35728; } else { } count = count + 1; ldv_35732: ; if (count <= 299) { goto ldv_35731; } else { } return; } } static void pch_vbus_gpio_work_rise(struct work_struct *irq_work ) { struct pch_vbus_gpio_data *vbus_gpio ; struct work_struct const *__mptr ; struct pch_udc_dev *dev ; struct pch_vbus_gpio_data const *__mptr___0 ; int vbus ; unsigned long __ms ; unsigned long tmp ; struct _ddebug descriptor ; long tmp___0 ; { __mptr = (struct work_struct const *)irq_work; vbus_gpio = (struct pch_vbus_gpio_data *)__mptr + 0xffffffffffffffa8UL; __mptr___0 = (struct pch_vbus_gpio_data const *)vbus_gpio; dev = (struct pch_udc_dev *)__mptr___0 + 0xffffffffffffe740UL; if (dev->vbus_gpio.port == 0) { return; } else { } __ms = 10UL; goto ldv_35746; ldv_35745: { __const_udelay(4295000UL); } ldv_35746: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_35745; } else { } { vbus = pch_vbus_gpio_get_value(dev); } if (vbus == 1) { { descriptor.modname = "pch_udc"; descriptor.function = "pch_vbus_gpio_work_rise"; descriptor.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor.format = "VBUS rose"; descriptor.lineno = 1340U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (dev->pdev)->dev), "VBUS rose"); } } else { } { pch_udc_reconnect(dev); } return; } else { } return; } } static irqreturn_t pch_vbus_gpio_irq(int irq , void *data ) { struct pch_udc_dev *dev ; int tmp ; { dev = (struct pch_udc_dev *)data; if (dev->vbus_gpio.port == 0 || dev->vbus_gpio.intr == 0) { return (0); } else { } { tmp = pch_vbus_gpio_get_value(dev); } if (tmp != 0) { { schedule_work(& dev->vbus_gpio.irq_work_rise); } } else { { schedule_work(& dev->vbus_gpio.irq_work_fall); } } return (1); } } static int pch_vbus_gpio_init(struct pch_udc_dev *dev , int vbus_gpio_port___0 ) { int err ; int irq_num ; bool tmp ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_1 ; { irq_num = 0; dev->vbus_gpio.port = 0; dev->vbus_gpio.intr = 0; if (vbus_gpio_port___0 < 0) { return (-22); } else { } { tmp = gpio_is_valid(vbus_gpio_port___0); err = (int )tmp; } if (err == 0) { { printk("\vpch_udc: %s: gpio port %d is invalid\n", "pch_vbus_gpio_init", vbus_gpio_port___0); } return (-22); } else { } { err = gpio_request((unsigned int )vbus_gpio_port___0, "pch_vbus"); } if (err != 0) { { printk("\vpch_udc: %s: can\'t request gpio port %d, err: %d\n", "pch_vbus_gpio_init", vbus_gpio_port___0, err); } return (-22); } else { } { dev->vbus_gpio.port = vbus_gpio_port___0; gpio_direction_input((unsigned int )vbus_gpio_port___0); __init_work(& dev->vbus_gpio.irq_work_fall, 0); __constr_expr_0.counter = 137438953408L; dev->vbus_gpio.irq_work_fall.data = __constr_expr_0; lockdep_init_map(& dev->vbus_gpio.irq_work_fall.lockdep_map, "(&dev->vbus_gpio.irq_work_fall)", & __key, 0); INIT_LIST_HEAD(& dev->vbus_gpio.irq_work_fall.entry); dev->vbus_gpio.irq_work_fall.func = & pch_vbus_gpio_work_fall; irq_num = gpio_to_irq((unsigned int )vbus_gpio_port___0); } if (irq_num > 0) { { irq_set_irq_type((unsigned int )irq_num, 3U); err = ldv_request_irq_102((unsigned int )irq_num, & pch_vbus_gpio_irq, 0UL, "vbus_detect", (void *)dev); } if (err == 0) { { dev->vbus_gpio.intr = irq_num; __init_work(& dev->vbus_gpio.irq_work_rise, 0); __constr_expr_1.counter = 137438953408L; dev->vbus_gpio.irq_work_rise.data = __constr_expr_1; lockdep_init_map(& dev->vbus_gpio.irq_work_rise.lockdep_map, "(&dev->vbus_gpio.irq_work_rise)", & __key___0, 0); INIT_LIST_HEAD(& dev->vbus_gpio.irq_work_rise.entry); dev->vbus_gpio.irq_work_rise.func = & pch_vbus_gpio_work_rise; } } else { { printk("\vpch_udc: %s: can\'t request irq %d, err: %d\n", "pch_vbus_gpio_init", irq_num, err); } } } else { } return (0); } } static void pch_vbus_gpio_free(struct pch_udc_dev *dev ) { { if (dev->vbus_gpio.intr != 0) { { ldv_free_irq_103((unsigned int )dev->vbus_gpio.intr, (void *)dev); } } else { } if (dev->vbus_gpio.port != 0) { { gpio_free((unsigned int )dev->vbus_gpio.port); } } else { } return; } } static void complete_req(struct pch_udc_ep *ep , struct pch_udc_request *req , int status ) { struct pch_udc_dev *dev ; unsigned int halted ; { { halted = (unsigned int )ep->halted; list_del_init(& req->queue); } if (req->req.status == -115) { req->req.status = status; } else { status = req->req.status; } dev = ep->dev; if ((unsigned int )*((unsigned char *)req + 128UL) != 0U) { if (req->dma == 0xffffffffffffffffULL) { if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { dma_unmap_single_attrs(& (dev->pdev)->dev, req->req.dma, (size_t )req->req.length, 1, (struct dma_attrs *)0); } } else { { dma_unmap_single_attrs(& (dev->pdev)->dev, req->req.dma, (size_t )req->req.length, 2, (struct dma_attrs *)0); } } req->req.dma = 0xffffffffffffffffULL; } else { if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { dma_unmap_single_attrs(& (dev->pdev)->dev, req->dma, (size_t )req->req.length, 1, (struct dma_attrs *)0); } } else { { dma_unmap_single_attrs(& (dev->pdev)->dev, req->dma, (size_t )req->req.length, 2, (struct dma_attrs *)0); __memcpy(req->req.buf, (void const *)req->buf, (size_t )req->req.length); } } { kfree((void const *)req->buf); req->dma = 0xffffffffffffffffULL; } } req->dma_mapped = 0U; } else { } { ep->halted = 1U; ldv_spin_unlock_96(& dev->lock); } if ((unsigned int )*((unsigned char *)ep + 128UL) == 0U) { { pch_udc_ep_clear_rrdy(ep); } } else { } { usb_gadget_giveback_request(& ep->ep, & req->req); ldv_spin_lock_97(& dev->lock); ep->halted = (unsigned char )halted; } return; } } static void empty_req_queue(struct pch_udc_ep *ep ) { struct pch_udc_request *req ; struct list_head const *__mptr ; int tmp ; { ep->halted = 1U; goto ldv_35783; ldv_35782: { __mptr = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr + 0xffffffffffffff90UL; complete_req(ep, req, -108); } ldv_35783: { tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { goto ldv_35782; } else { } return; } } static void pch_udc_free_dma_chain(struct pch_udc_dev *dev , struct pch_udc_request *req ) { struct pch_udc_data_dma_desc *td ; unsigned int i ; dma_addr_t addr2 ; dma_addr_t addr ; void *tmp ; { td = req->td_data; i = req->chain_len; addr = (unsigned long long )td->next; td->next = 0U; goto ldv_35794; ldv_35793: { tmp = phys_to_virt(addr); td = (struct pch_udc_data_dma_desc *)tmp; addr2 = (unsigned long long )td->next; dma_pool_free(dev->data_requests, (void *)td, addr); td->next = 0U; addr = addr2; i = i - 1U; } ldv_35794: ; if (i > 1U) { goto ldv_35793; } else { } req->chain_len = 1U; return; } } static int pch_udc_create_dma_chain(struct pch_udc_ep *ep , struct pch_udc_request *req , unsigned long buf_len , gfp_t gfp_flags ) { struct pch_udc_data_dma_desc *td ; struct pch_udc_data_dma_desc *last ; unsigned long bytes ; unsigned long i ; dma_addr_t dma_addr ; unsigned int len ; unsigned long _min1 ; unsigned long _min2 ; void *tmp ; { td = req->td_data; bytes = (unsigned long )req->req.length; i = 0UL; len = 1U; if (req->chain_len > 1U) { { pch_udc_free_dma_chain(ep->dev, req); } } else { } if (req->dma == 0xffffffffffffffffULL) { td->dataptr = (u32 )req->req.dma; } else { td->dataptr = (u32 )req->dma; } td->status = 3221225472U; ldv_35813: _min1 = buf_len; _min2 = bytes; td->status = (u32 )(_min1 < _min2 ? _min1 : _min2) | 3221225472U; if (bytes <= buf_len) { goto ldv_35811; } else { } { last = td; tmp = ldv_dma_pool_alloc_106((ep->dev)->data_requests, gfp_flags, & dma_addr); td = (struct pch_udc_data_dma_desc *)tmp; } if ((unsigned long )td == (unsigned long )((struct pch_udc_data_dma_desc *)0)) { goto nomem; } else { } i = i + buf_len; td->dataptr = (req->td_data)->dataptr + (u32 )i; last->next = (u32 )dma_addr; bytes = bytes - buf_len; len = len + 1U; goto ldv_35813; ldv_35811: req->td_data_last = td; td->status = td->status | 134217728U; td->next = (u32 )req->td_data_phys; req->chain_len = len; return (0); nomem: ; if (len > 1U) { { req->chain_len = len; pch_udc_free_dma_chain(ep->dev, req); } } else { } req->chain_len = 1U; return (-12); } } static int prepare_dma(struct pch_udc_ep *ep , struct pch_udc_request *req , gfp_t gfp ) { int retval ; { { retval = pch_udc_create_dma_chain(ep, req, (unsigned long )ep->ep.maxpacket, gfp); } if (retval != 0) { { printk("\vpch_udc: %s: could not create DMA chain:%d\n", "prepare_dma", retval); } return (retval); } else { } if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { (req->td_data)->status = (req->td_data)->status & 1073741823U; } else { } return (0); } } static void process_zlp(struct pch_udc_ep *ep , struct pch_udc_request *req ) { struct pch_udc_dev *dev ; { { dev = ep->dev; complete_req(ep, req, 0); } if ((unsigned int )*((unsigned char *)dev + 6257UL) != 0U) { { pch_udc_set_csr_done(dev); dev->set_cfg_not_acked = 0U; } } else { } if ((unsigned int )*((unsigned short *)dev + 3128UL) == 512U) { { pch_udc_ep_clear_nak((struct pch_udc_ep *)(& dev->ep)); dev->waiting_zlp_ack = 0U; } } else { } return; } } static void pch_udc_start_rxrequest(struct pch_udc_ep *ep , struct pch_udc_request *req ) { struct pch_udc_data_dma_desc *td_data ; void *tmp ; { { pch_udc_clear_dma(ep->dev, 1); td_data = req->td_data; } ldv_35832: td_data->status = td_data->status & 1073741823U; if ((td_data->status & 134217728U) != 0U) { goto ldv_35831; } else { } { tmp = phys_to_virt((phys_addr_t )td_data->next); td_data = (struct pch_udc_data_dma_desc *)tmp; } goto ldv_35832; ldv_35831: { pch_udc_ep_set_ddptr(ep, (u32 )req->td_data_phys); req->dma_going = 1U; pch_udc_enable_ep_interrupts(ep->dev, (u32 )(65536 << (int )ep->num)); pch_udc_set_dma(ep->dev, 1); pch_udc_ep_clear_nak(ep); pch_udc_ep_set_rrdy(ep); } return; } } static int pch_udc_pcd_ep_enable(struct usb_ep *usbep , struct usb_endpoint_descriptor const *desc ) { struct pch_udc_ep *ep ; struct pch_udc_dev *dev ; unsigned long iflags ; struct usb_ep const *__mptr ; int tmp ; { if ((((unsigned long )usbep == (unsigned long )((struct usb_ep *)0) || ((unsigned long )usbep->name == (unsigned long )((char const *)(& ep0_string)) || (unsigned long )desc == (unsigned long )((struct usb_endpoint_descriptor const *)0))) || (unsigned int )((unsigned char )desc->bDescriptorType) != 5U) || (unsigned int )((unsigned short )desc->wMaxPacketSize) == 0U) { return (-22); } else { } __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; if ((unsigned long )dev->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )dev->gadget.speed == 0U) { return (-108); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(& dev->lock); ep->ep.desc = desc; ep->halted = 0U; pch_udc_ep_enable(ep, & (ep->dev)->cfg_data, desc); tmp = usb_endpoint_maxp(desc); ep->ep.maxpacket = (unsigned short )tmp; pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); ldv_spin_unlock_irqrestore_99(& dev->lock, iflags); } return (0); } } static int pch_udc_pcd_ep_disable(struct usb_ep *usbep ) { struct pch_udc_ep *ep ; struct pch_udc_dev *dev ; unsigned long iflags ; struct usb_ep const *__mptr ; { if ((unsigned long )usbep == (unsigned long )((struct usb_ep *)0)) { return (-22); } else { } __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; if ((unsigned long )usbep->name == (unsigned long )((char const *)(& ep0_string)) || (unsigned long )ep->ep.desc == (unsigned long )((struct usb_endpoint_descriptor const *)0)) { return (-22); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(& (ep->dev)->lock); empty_req_queue(ep); ep->halted = 1U; pch_udc_ep_disable(ep); pch_udc_disable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); ep->ep.desc = (struct usb_endpoint_descriptor const *)0; INIT_LIST_HEAD(& ep->queue); ldv_spin_unlock_irqrestore_99(& (ep->dev)->lock, iflags); } return (0); } } static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep , gfp_t gfp ) { struct pch_udc_request *req ; struct pch_udc_ep *ep ; struct pch_udc_data_dma_desc *dma_desc ; struct pch_udc_dev *dev ; struct usb_ep const *__mptr ; void *tmp ; void *tmp___0 ; { if ((unsigned long )usbep == (unsigned long )((struct usb_ep *)0)) { return ((struct usb_request *)0); } else { } { __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; tmp = kzalloc(152UL, gfp); req = (struct pch_udc_request *)tmp; } if ((unsigned long )req == (unsigned long )((struct pch_udc_request *)0)) { return ((struct usb_request *)0); } else { } { req->req.dma = 0xffffffffffffffffULL; req->dma = 0xffffffffffffffffULL; INIT_LIST_HEAD(& req->queue); } if ((ep->dev)->dma_addr == 0ULL) { return (& req->req); } else { } { tmp___0 = ldv_dma_pool_alloc_111((ep->dev)->data_requests, gfp, & req->td_data_phys); dma_desc = (struct pch_udc_data_dma_desc *)tmp___0; } if ((unsigned long )dma_desc == (unsigned long )((struct pch_udc_data_dma_desc *)0)) { { kfree((void const *)req); } return ((struct usb_request *)0); } else { } dma_desc->status = dma_desc->status | 3221225472U; dma_desc->dataptr = 4294967295U; req->td_data = dma_desc; req->td_data_last = dma_desc; req->chain_len = 1U; return (& req->req); } } static void pch_udc_free_request(struct usb_ep *usbep , struct usb_request *usbreq ) { struct pch_udc_ep *ep ; struct pch_udc_request *req ; struct pch_udc_dev *dev ; struct usb_ep const *__mptr ; struct usb_request const *__mptr___0 ; int tmp ; { if ((unsigned long )usbep == (unsigned long )((struct usb_ep *)0) || (unsigned long )usbreq == (unsigned long )((struct usb_request *)0)) { return; } else { } { __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; __mptr___0 = (struct usb_request const *)usbreq; req = (struct pch_udc_request *)__mptr___0; dev = ep->dev; tmp = list_empty((struct list_head const *)(& req->queue)); } if (tmp == 0) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: %s req=0x%p queue not empty\n", "pch_udc_free_request", usbep->name, req); } } else { } if ((unsigned long )req->td_data != (unsigned long )((struct pch_udc_data_dma_desc *)0)) { if (req->chain_len > 1U) { { pch_udc_free_dma_chain(ep->dev, req); } } else { } { dma_pool_free((ep->dev)->data_requests, (void *)req->td_data, req->td_data_phys); } } else { } { kfree((void const *)req); } return; } } static int pch_udc_pcd_queue(struct usb_ep *usbep , struct usb_request *usbreq , gfp_t gfp ) { int retval ; struct pch_udc_ep *ep ; struct pch_udc_dev *dev ; struct pch_udc_request *req ; unsigned long iflags ; struct usb_ep const *__mptr ; struct usb_request const *__mptr___0 ; int tmp ; int tmp___0 ; { retval = 0; if ((((unsigned long )usbep == (unsigned long )((struct usb_ep *)0) || (unsigned long )usbreq == (unsigned long )((struct usb_request *)0)) || (unsigned long )usbreq->complete == (unsigned long )((void (*)(struct usb_ep * , struct usb_request * ))0)) || (unsigned long )usbreq->buf == (unsigned long )((void *)0)) { return (-22); } else { } __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; if ((unsigned long )ep->ep.desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )*((unsigned char *)ep + 128UL) != 0U) { return (-22); } else { } { __mptr___0 = (struct usb_request const *)usbreq; req = (struct pch_udc_request *)__mptr___0; tmp = list_empty((struct list_head const *)(& req->queue)); } if (tmp == 0) { return (-22); } else { } if ((unsigned long )dev->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )dev->gadget.speed == 0U) { return (-108); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(& dev->lock); } if (usbreq->length != 0U && usbreq->dma - 1ULL > 0xfffffffffffffffdULL) { if (((unsigned long )usbreq->buf & 3UL) == 0UL) { if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { usbreq->dma = dma_map_single_attrs(& (dev->pdev)->dev, usbreq->buf, (size_t )usbreq->length, 1, (struct dma_attrs *)0); } } else { { usbreq->dma = dma_map_single_attrs(& (dev->pdev)->dev, usbreq->buf, (size_t )usbreq->length, 2, (struct dma_attrs *)0); } } } else { { req->buf = kzalloc((size_t )usbreq->length, 32U); } if ((unsigned long )req->buf == (unsigned long )((void *)0)) { retval = -12; goto probe_end; } else { } if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { { __memcpy(req->buf, (void const *)usbreq->buf, (size_t )usbreq->length); req->dma = dma_map_single_attrs(& (dev->pdev)->dev, req->buf, (size_t )usbreq->length, 1, (struct dma_attrs *)0); } } else { { req->dma = dma_map_single_attrs(& (dev->pdev)->dev, req->buf, (size_t )usbreq->length, 2, (struct dma_attrs *)0); } } } req->dma_mapped = 1U; } else { } if (usbreq->length != 0U) { { retval = prepare_dma(ep, req, 32U); } if (retval != 0) { goto probe_end; } else { } } else { } { usbreq->actual = 0U; usbreq->status = -115; req->dma_done = 0U; tmp___0 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___0 != 0 && (unsigned int )*((unsigned char *)ep + 128UL) == 0U) { if (usbreq->length == 0U) { { process_zlp(ep, req); retval = 0; } goto probe_end; } else { } if ((unsigned int )*((unsigned char *)ep + 128UL) == 0U) { { pch_udc_start_rxrequest(ep, req); } } else { { pch_udc_wait_ep_stall(ep); pch_udc_ep_clear_nak(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << (int )ep->num)); } } } else { } if ((unsigned long )req != (unsigned long )((struct pch_udc_request *)0)) { { list_add_tail(& req->queue, & ep->queue); } } else { } probe_end: { ldv_spin_unlock_irqrestore_99(& dev->lock, iflags); } return (retval); } } static int pch_udc_pcd_dequeue(struct usb_ep *usbep , struct usb_request *usbreq ) { struct pch_udc_ep *ep ; struct pch_udc_request *req ; struct pch_udc_dev *dev ; unsigned long flags ; int ret ; struct usb_ep const *__mptr ; struct usb_request const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp ; struct list_head const *__mptr___2 ; { ret = -22; __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; if (((unsigned long )usbep == (unsigned long )((struct usb_ep *)0) || (unsigned long )usbreq == (unsigned long )((struct usb_request *)0)) || ((unsigned long )ep->ep.desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )*((unsigned char *)ep + 128UL) != 0U)) { return (ret); } else { } { __mptr___0 = (struct usb_request const *)usbreq; req = (struct pch_udc_request *)__mptr___0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(& (ep->dev)->lock); __mptr___1 = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr___1 + 0xffffffffffffff90UL; } goto ldv_35906; ldv_35905: ; if ((unsigned long )(& req->req) == (unsigned long )usbreq) { { pch_udc_ep_set_nak(ep); tmp = list_empty((struct list_head const *)(& req->queue)); } if (tmp == 0) { { complete_req(ep, req, -104); } } else { } ret = 0; goto ldv_35904; } else { } __mptr___2 = (struct list_head const *)req->queue.next; req = (struct pch_udc_request *)__mptr___2 + 0xffffffffffffff90UL; ldv_35906: ; if ((unsigned long )req != (unsigned long )ep) { goto ldv_35905; } else { } ldv_35904: { ldv_spin_unlock_irqrestore_99(& (ep->dev)->lock, flags); } return (ret); } } static int pch_udc_pcd_set_halt(struct usb_ep *usbep , int halt___0 ) { struct pch_udc_ep *ep ; struct pch_udc_dev *dev ; unsigned long iflags ; int ret ; struct usb_ep const *__mptr ; int tmp ; { if ((unsigned long )usbep == (unsigned long )((struct usb_ep *)0)) { return (-22); } else { } __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; if ((unsigned long )ep->ep.desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )*((unsigned char *)ep + 128UL) == 0U) { return (-22); } else { } if ((unsigned long )(ep->dev)->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )(ep->dev)->gadget.speed == 0U) { return (-108); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(& udc_stall_spinlock); tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp != 0) { if (halt___0 != 0) { if ((unsigned int )*((unsigned char *)ep + 128UL) == 0U) { (ep->dev)->stall = 1U; } else { } { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } else { { pch_udc_ep_clear_stall(ep); } } ret = 0; } else { ret = -11; } { ldv_spin_unlock_irqrestore_117(& udc_stall_spinlock, iflags); } return (ret); } } static int pch_udc_pcd_set_wedge(struct usb_ep *usbep ) { struct pch_udc_ep *ep ; struct pch_udc_dev *dev ; unsigned long iflags ; int ret ; struct usb_ep const *__mptr ; int tmp ; { if ((unsigned long )usbep == (unsigned long )((struct usb_ep *)0)) { return (-22); } else { } __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; dev = ep->dev; if ((unsigned long )ep->ep.desc == (unsigned long )((struct usb_endpoint_descriptor const *)0) && (unsigned int )*((unsigned char *)ep + 128UL) == 0U) { return (-22); } else { } if ((unsigned long )(ep->dev)->driver == (unsigned long )((struct usb_gadget_driver *)0) || (unsigned int )(ep->dev)->gadget.speed == 0U) { return (-108); } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(& udc_stall_spinlock); tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { ret = -11; } else { if ((unsigned int )*((unsigned char *)ep + 128UL) == 0U) { (ep->dev)->stall = 1U; } else { } { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); (ep->dev)->prot_stall = 1U; ret = 0; } } { ldv_spin_unlock_irqrestore_117(& udc_stall_spinlock, iflags); } return (ret); } } static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep ) { struct pch_udc_ep *ep ; struct usb_ep const *__mptr ; { if ((unsigned long )usbep == (unsigned long )((struct usb_ep *)0)) { return; } else { } __mptr = (struct usb_ep const *)usbep; ep = (struct pch_udc_ep *)__mptr; if ((unsigned long )ep->ep.desc != (unsigned long )((struct usb_endpoint_descriptor const *)0) || (unsigned int )*((unsigned char *)ep + 128UL) == 0U) { { pch_udc_ep_fifo_flush(ep, (int )ep->in); } } else { } return; } } static struct usb_ep_ops const pch_udc_ep_ops = {& pch_udc_pcd_ep_enable, & pch_udc_pcd_ep_disable, & pch_udc_alloc_request, & pch_udc_free_request, & pch_udc_pcd_queue, & pch_udc_pcd_dequeue, & pch_udc_pcd_set_halt, & pch_udc_pcd_set_wedge, (int (*)(struct usb_ep * ))0, & pch_udc_pcd_fifo_flush}; static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp ) { u32 pky_marker ; { if ((unsigned long )td_stp == (unsigned long )((struct pch_udc_stp_dma_desc *)0)) { return; } else { } { pky_marker = pky_marker + 1U; td_stp->reserved = pky_marker; __memset((void *)(& td_stp->request), 255, 8UL); td_stp->status = 0U; } return; } } static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep ) { struct pch_udc_request *req ; struct pch_udc_data_dma_desc *td_data ; u32 tmp ; int tmp___0 ; struct list_head const *__mptr ; void *tmp___1 ; { { tmp = pch_udc_read_ep_control(ep); } if ((tmp & 8U) != 0U) { return; } else { } { tmp___0 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___0 != 0) { return; } else { } __mptr = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr + 0xffffffffffffff90UL; if ((unsigned int )*((unsigned char *)req + 128UL) != 0U) { return; } else { } if ((unsigned long )req->td_data == (unsigned long )((struct pch_udc_data_dma_desc *)0)) { return; } else { } { pch_udc_wait_ep_stall(ep); req->dma_going = 1U; pch_udc_ep_set_ddptr(ep, 0U); td_data = req->td_data; } ldv_35945: td_data->status = td_data->status & 1073741823U; if ((td_data->status & 134217728U) != 0U) { goto ldv_35944; } else { } { tmp___1 = phys_to_virt((phys_addr_t )td_data->next); td_data = (struct pch_udc_data_dma_desc *)tmp___1; } goto ldv_35945; ldv_35944: { pch_udc_ep_set_ddptr(ep, (u32 )req->td_data_phys); pch_udc_set_dma(ep->dev, 2); pch_udc_ep_set_pd(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); pch_udc_ep_clear_nak(ep); } return; } } static void pch_udc_complete_transfer(struct pch_udc_ep *ep ) { struct pch_udc_request *req ; struct pch_udc_dev *dev ; int tmp ; struct list_head const *__mptr ; int tmp___0 ; { { dev = ep->dev; tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp != 0) { return; } else { } __mptr = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr + 0xffffffffffffff90UL; if (((req->td_data_last)->status & 3221225472U) != 2147483648U) { return; } else { } if (((req->td_data_last)->status & 805306368U) != 0U) { { dev_err((struct device const *)(& (dev->pdev)->dev), "Invalid RXTX status (0x%08x) epstatus=0x%08x\n", (req->td_data_last)->status & 805306368U, (int )ep->epsts); } return; } else { } { req->req.actual = req->req.length; (req->td_data_last)->status = 3355443200U; (req->td_data)->status = 3355443200U; complete_req(ep, req, 0); req->dma_going = 0U; tmp___0 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___0 == 0) { { pch_udc_wait_ep_stall(ep); pch_udc_ep_clear_nak(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } else { { pch_udc_disable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } return; } } static void pch_udc_complete_receiver(struct pch_udc_ep *ep ) { struct pch_udc_request *req ; struct pch_udc_dev *dev ; unsigned int count ; struct pch_udc_data_dma_desc *td ; dma_addr_t addr ; int tmp ; struct list_head const *__mptr ; void *tmp___0 ; struct list_head const *__mptr___0 ; int tmp___1 ; { { dev = ep->dev; tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp != 0) { return; } else { } { __mptr = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr + 0xffffffffffffff90UL; pch_udc_clear_dma(ep->dev, 1); pch_udc_ep_set_ddptr(ep, 0U); } if (((req->td_data_last)->status & 3221225472U) == 2147483648U) { td = req->td_data_last; } else { td = req->td_data; } ldv_35964: ; if ((td->status & 805306368U) != 0U) { { dev_err((struct device const *)(& (dev->pdev)->dev), "Invalid RXTX status=0x%08x epstatus=0x%08x\n", (req->td_data)->status & 805306368U, (int )ep->epsts); } return; } else { } if ((td->status & 3221225472U) == 2147483648U) { if ((td->status & 134217728U) != 0U) { count = td->status & 65535U; goto ldv_35963; } else { } } else { } if ((unsigned long )td == (unsigned long )req->td_data_last) { { dev_err((struct device const *)(& (dev->pdev)->dev), "Not complete RX descriptor"); } return; } else { } { addr = (unsigned long long )td->next; tmp___0 = phys_to_virt(addr); td = (struct pch_udc_data_dma_desc *)tmp___0; } goto ldv_35964; ldv_35963: ; if (count == 0U && req->req.length == 65536U) { count = 65536U; } else { } { (req->td_data)->status = (req->td_data)->status | 134217728U; td->status = td->status | 3221225472U; req->dma_going = 0U; req->req.actual = count; complete_req(ep, req, 0); tmp___1 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___1 == 0) { { __mptr___0 = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr___0 + 0xffffffffffffff90UL; pch_udc_start_rxrequest(ep, req); } } else { } return; } } static void pch_udc_svc_data_in(struct pch_udc_dev *dev , int ep_num ) { u32 epsts ; struct pch_udc_ep *ep ; { ep = (struct pch_udc_ep *)(& dev->ep) + (unsigned long )(ep_num * 2); epsts = (u32 )ep->epsts; ep->epsts = 0UL; if ((epsts & 251659968U) == 0U) { return; } else { } if ((epsts & 128U) != 0U) { return; } else { } if ((epsts & 512U) != 0U) { return; } else { } if ((epsts & 67108864U) != 0U) { { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } else { } if ((epsts & 33554432U) != 0U) { if ((unsigned int )*((unsigned char *)dev + 6256UL) == 0U) { { pch_udc_ep_clear_stall(ep); } } else { { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } } else { } if ((epsts & 1024U) != 0U) { { pch_udc_complete_transfer(ep); } } else { } if ((epsts & 83887168U) == 64U) { { pch_udc_start_next_txrequest(ep); } } else { } return; } } static void pch_udc_svc_data_out(struct pch_udc_dev *dev , int ep_num ) { u32 epsts ; struct pch_udc_ep *ep ; struct pch_udc_request *req ; struct list_head const *__mptr ; int tmp ; int tmp___0 ; { req = (struct pch_udc_request *)0; ep = (struct pch_udc_ep *)(& dev->ep) + ((unsigned long )(ep_num * 2) + 1UL); epsts = (u32 )ep->epsts; ep->epsts = 0UL; if ((epsts & 128U) != 0U) { { tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { __mptr = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr + 0xffffffffffffff90UL; if (((req->td_data_last)->status & 3221225472U) != 2147483648U) { if ((unsigned int )*((unsigned char *)req + 128UL) == 0U) { { pch_udc_start_rxrequest(ep, req); } } else { } return; } else { } } else { } } else { } if ((epsts & 512U) != 0U) { return; } else { } if ((epsts & 67108864U) != 0U) { { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } else { } if ((epsts & 33554432U) != 0U) { if ((unsigned int )*((unsigned char *)dev + 6256UL) == 0U) { { pch_udc_ep_clear_stall(ep); } } else { { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } } else { } if ((epsts & 48U) >> 4 == 1U) { if ((unsigned int )*((unsigned char *)ep->dev + 6256UL) != 0U) { { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); } } else { { pch_udc_complete_receiver(ep); } } } else { } { tmp___0 = list_empty((struct list_head const *)(& ep->queue)); } if (tmp___0 != 0) { { pch_udc_set_dma(dev, 1); } } else { } return; } } static void pch_udc_svc_control_in(struct pch_udc_dev *dev ) { u32 epsts ; struct pch_udc_ep *ep ; struct pch_udc_ep *ep_out ; { ep = (struct pch_udc_ep *)(& dev->ep); ep_out = (struct pch_udc_ep *)(& dev->ep) + 1UL; epsts = (u32 )ep->epsts; ep->epsts = 0UL; if ((epsts & 184551104U) == 0U) { return; } else { } if ((epsts & 128U) != 0U) { return; } else { } if ((epsts & 512U) != 0U) { return; } else { } if ((epsts & 1024U) != 0U && (unsigned int )*((unsigned char *)dev + 6256UL) == 0U) { { pch_udc_complete_transfer(ep); pch_udc_clear_dma(dev, 1); (ep_out->td_data)->status = (ep_out->td_data)->status & 1073741823U; pch_udc_ep_clear_nak(ep_out); pch_udc_set_dma(dev, 1); pch_udc_ep_set_rrdy(ep_out); } } else { } if ((epsts & 16778304U) == 64U) { { pch_udc_start_next_txrequest(ep); } } else { } return; } } static void pch_udc_svc_control_out(struct pch_udc_dev *dev ) { u32 stat ; int setup_supported ; struct pch_udc_ep *ep ; int tmp ; { ep = (struct pch_udc_ep *)(& dev->ep) + 1UL; stat = (u32 )ep->epsts; ep->epsts = 0UL; if ((stat & 48U) >> 4 == 2U) { { dev->stall = 0U; dev->ep[0].halted = 0U; dev->ep[1].halted = 0U; dev->setup_data = (ep->td_stp)->request; pch_udc_init_setup_buff(ep->td_stp); pch_udc_clear_dma(dev, 1); pch_udc_ep_fifo_flush((struct pch_udc_ep *)(& dev->ep), (int )dev->ep[0].in); } if ((int )((signed char )dev->setup_data.bRequestType) < 0) { dev->gadget.ep0 = & dev->ep[0].ep; } else { dev->gadget.ep0 = & ep->ep; } { ldv_spin_unlock_96(& dev->lock); } if ((unsigned int )*((unsigned short *)dev + 3148UL) == 65313U) { dev->prot_stall = 0U; } else { } { setup_supported = (*((dev->driver)->setup))(& dev->gadget, (struct usb_ctrlrequest const *)(& dev->setup_data)); ldv_spin_lock_97(& dev->lock); } if ((int )((signed char )dev->setup_data.bRequestType) < 0) { { (ep->td_data)->status = (ep->td_data)->status & 1073741823U; pch_udc_ep_set_ddptr(ep, (u32 )ep->td_data_phys); } } else { } if ((unsigned int )setup_supported <= 63U) { { pch_udc_ep_clear_nak((struct pch_udc_ep *)(& dev->ep)); } if ((int )((signed char )dev->setup_data.bRequestType) >= 0) { { pch_udc_set_dma(dev, 1); pch_udc_ep_clear_nak(ep); } } else { } } else if (setup_supported < 0) { { pch_udc_ep_set_stall((struct pch_udc_ep *)(& dev->ep)); pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); dev->stall = 0U; pch_udc_set_dma(dev, 1); } } else { dev->waiting_zlp_ack = 1U; } } else if ((stat & 48U) >> 4 == 1U && (unsigned int )*((unsigned char *)dev + 6256UL) == 0U) { { pch_udc_clear_dma(dev, 1); pch_udc_ep_set_ddptr(ep, 0U); tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { { ep->epsts = (unsigned long )stat; pch_udc_svc_data_out(dev, 0); } } else { } { pch_udc_set_dma(dev, 1); } } else { } { pch_udc_ep_set_rrdy(ep); } return; } } static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev , int ep_num ) { struct pch_udc_ep *ep ; struct pch_udc_request *req ; struct list_head const *__mptr ; int tmp ; { { ep = (struct pch_udc_ep *)(& dev->ep) + (unsigned long )(ep_num * 2); tmp = list_empty((struct list_head const *)(& ep->queue)); } if (tmp == 0) { { __mptr = (struct list_head const *)ep->queue.next; req = (struct pch_udc_request *)__mptr + 0xffffffffffffff90UL; pch_udc_enable_ep_interrupts(ep->dev, (u32 )(1 << ((int )ep->num + ((unsigned int )*((unsigned char *)ep + 128UL) != 0U ? 0 : 16)))); pch_udc_ep_clear_nak(ep); } } else { } return; } } static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev , u32 ep_intr ) { int i ; struct pch_udc_ep *ep ; u32 tmp ; u32 tmp___0 ; { i = 0; goto ldv_36009; ldv_36008: ; if ((ep_intr & (u32 )(1 << i)) != 0U) { { ep = (struct pch_udc_ep *)(& dev->ep) + (unsigned long )(i * 2); tmp = pch_udc_read_ep_status(ep); ep->epsts = (unsigned long )tmp; pch_udc_clear_ep_status(ep, (u32 )ep->epsts); } } else { } if ((ep_intr & (u32 )(65536 << i)) != 0U) { { ep = (struct pch_udc_ep *)(& dev->ep) + ((unsigned long )(i * 2) + 1UL); tmp___0 = pch_udc_read_ep_status(ep); ep->epsts = (unsigned long )tmp___0; pch_udc_clear_ep_status(ep, (u32 )ep->epsts); } } else { } i = i + 1; ldv_36009: ; if (i <= 3) { goto ldv_36008; } else { } return; } } static void pch_udc_activate_control_ep(struct pch_udc_dev *dev ) { struct pch_udc_ep *ep ; u32 val ; { { ep = (struct pch_udc_ep *)(& dev->ep); pch_udc_clear_ep_control(ep); pch_udc_ep_fifo_flush(ep, (int )ep->in); pch_udc_ep_set_bufsz(ep, 16U, (u32 )ep->in); pch_udc_ep_set_maxpkt(ep, 64U); ep->td_data = (struct pch_udc_data_dma_desc *)0; ep->td_stp = (struct pch_udc_stp_dma_desc *)0; ep->td_data_phys = 0ULL; ep->td_stp_phys = 0ULL; ep = (struct pch_udc_ep *)(& dev->ep) + 1UL; pch_udc_clear_ep_control(ep); pch_udc_ep_fifo_flush(ep, (int )ep->in); pch_udc_ep_set_bufsz(ep, 16U, (u32 )ep->in); pch_udc_ep_set_maxpkt(ep, 64U); val = 33554432U; pch_udc_write_csr(ep->dev, (unsigned long )val, 1U); pch_udc_init_setup_buff(ep->td_stp); pch_udc_ep_set_subptr(ep, (u32 )ep->td_stp_phys); pch_udc_ep_set_ddptr(ep, (u32 )ep->td_data_phys); (ep->td_data)->status = 134217728U; (ep->td_data)->dataptr = (u32 )dev->dma_addr; (ep->td_data)->next = (u32 )ep->td_data_phys; pch_udc_ep_clear_nak(ep); } return; } } static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev ) { struct pch_udc_ep *ep ; int i ; { { pch_udc_clear_dma(dev, 2); pch_udc_clear_dma(dev, 1); pch_udc_disable_ep_interrupts(dev, 4294967295U); pch_udc_write_ep_interrupts(dev, 4294967295U); i = 0; } goto ldv_36022; ldv_36021: { ep = (struct pch_udc_ep *)(& dev->ep) + (unsigned long )i; pch_udc_clear_ep_status(ep, 520095472U); pch_udc_clear_ep_control(ep); pch_udc_ep_set_ddptr(ep, 0U); pch_udc_write_csr(ep->dev, 0UL, (unsigned int )i); i = i + 1; } ldv_36022: ; if (i <= 31) { goto ldv_36021; } else { } dev->stall = 0U; dev->prot_stall = 0U; dev->waiting_zlp_ack = 0U; dev->set_cfg_not_acked = 0U; i = 0; goto ldv_36025; ldv_36024: { ep = (struct pch_udc_ep *)(& dev->ep) + (unsigned long )i; pch_udc_ep_set_nak(ep); pch_udc_ep_fifo_flush(ep, (int )ep->in); empty_req_queue(ep); i = i + 1; } ldv_36025: ; if (i <= 7) { goto ldv_36024; } else { } if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0)) { { ldv_spin_unlock_96(& dev->lock); usb_gadget_udc_reset(& dev->gadget, dev->driver); ldv_spin_lock_97(& dev->lock); } } else { } return; } } static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev ) { u32 dev_stat ; u32 dev_speed ; u32 speed ; { { speed = 2U; dev_stat = pch_udc_read_device_status(dev); dev_speed = (dev_stat & 24576U) >> 13; } { if (dev_speed == 0U) { goto case_0; } else { } if (dev_speed == 1U) { goto case_1; } else { } if (dev_speed == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ speed = 3U; goto ldv_36034; case_1: /* CIL Label */ speed = 2U; goto ldv_36034; case_2: /* CIL Label */ speed = 1U; goto ldv_36034; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/usb/gadget/udc/pch_udc.c"), "i" (2627), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_36034: { dev->gadget.speed = (enum usb_device_speed )speed; pch_udc_activate_control_ep(dev); pch_udc_enable_ep_interrupts(dev, 65537U); pch_udc_set_dma(dev, 2); pch_udc_set_dma(dev, 1); pch_udc_ep_set_rrdy((struct pch_udc_ep *)(& dev->ep) + 1UL); pch_udc_enable_interrupts(dev, 95U); } return; } } static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev ) { u32 reg ; u32 dev_stat ; int i ; int ret ; { { dev_stat = 0U; dev_stat = pch_udc_read_device_status(dev); dev->cfg_data.cur_intf = (u16 )((dev_stat & 240U) >> 4); dev->cfg_data.cur_alt = (u16 )((dev_stat & 3840U) >> 8); dev->set_cfg_not_acked = 1U; __memset((void *)(& dev->setup_data), 0, 8UL); dev->setup_data.bRequest = 11U; dev->setup_data.bRequestType = 1U; dev->setup_data.wValue = dev->cfg_data.cur_alt; dev->setup_data.wIndex = dev->cfg_data.cur_intf; reg = pch_udc_read_csr(dev, 1U); reg = (reg & 4294936575U) | (u32 )((int )dev->cfg_data.cur_intf << 11); reg = (reg & 4294475775U) | (u32 )((int )dev->cfg_data.cur_alt << 15); pch_udc_write_csr(dev, (unsigned long )reg, 1U); i = 0; } goto ldv_36046; ldv_36045: { pch_udc_ep_clear_stall((struct pch_udc_ep *)(& dev->ep) + (unsigned long )i); dev->ep[i].halted = 0U; i = i + 1; } ldv_36046: ; if (i <= 7) { goto ldv_36045; } else { } { dev->stall = 0U; ldv_spin_unlock_96(& dev->lock); ret = (*((dev->driver)->setup))(& dev->gadget, (struct usb_ctrlrequest const *)(& dev->setup_data)); ldv_spin_lock_97(& dev->lock); } return; } } static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev ) { int i ; int ret ; u32 reg ; u32 dev_stat ; { { dev_stat = 0U; dev_stat = pch_udc_read_device_status(dev); dev->set_cfg_not_acked = 1U; dev->cfg_data.cur_cfg = (unsigned int )((u16 )dev_stat) & 15U; __memset((void *)(& dev->setup_data), 0, 8UL); dev->setup_data.bRequest = 9U; dev->setup_data.wValue = dev->cfg_data.cur_cfg; reg = pch_udc_read_csr(dev, 1U); reg = (reg & 4294965375U) | (u32 )((int )dev->cfg_data.cur_cfg << 7); pch_udc_write_csr(dev, (unsigned long )reg, 1U); i = 0; } goto ldv_36056; ldv_36055: { pch_udc_ep_clear_stall((struct pch_udc_ep *)(& dev->ep) + (unsigned long )i); dev->ep[i].halted = 0U; i = i + 1; } ldv_36056: ; if (i <= 7) { goto ldv_36055; } else { } { dev->stall = 0U; ldv_spin_unlock_96(& dev->lock); ret = (*((dev->driver)->setup))(& dev->gadget, (struct usb_ctrlrequest const *)(& dev->setup_data)); ldv_spin_lock_97(& dev->lock); } return; } } static void pch_udc_dev_isr(struct pch_udc_dev *dev , u32 dev_intr ) { int vbus ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; { if ((dev_intr & 8U) != 0U) { { pch_udc_svc_ur_interrupt(dev); descriptor.modname = "pch_udc"; descriptor.function = "pch_udc_dev_isr"; descriptor.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor.format = "USB_RESET\n"; descriptor.lineno = 2733U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (dev->pdev)->dev), "USB_RESET\n"); } } else { } } else { } if ((dev_intr & 64U) != 0U) { { pch_udc_svc_enum_interrupt(dev); descriptor___0.modname = "pch_udc"; descriptor___0.function = "pch_udc_dev_isr"; descriptor___0.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor___0.format = "USB_ENUM\n"; descriptor___0.lineno = 2738U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (dev->pdev)->dev), "USB_ENUM\n"); } } else { } } else { } if ((dev_intr & 2U) != 0U) { { pch_udc_svc_intf_interrupt(dev); } } else { } if ((int )dev_intr & 1) { { pch_udc_svc_cfg_interrupt(dev); } } else { } if ((dev_intr & 16U) != 0U) { if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0) && (unsigned long )(dev->driver)->suspend != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { ldv_spin_unlock_96(& dev->lock); (*((dev->driver)->suspend))(& dev->gadget); ldv_spin_lock_97(& dev->lock); } } else { } { vbus = pch_vbus_gpio_get_value(dev); } if ((unsigned int )*((unsigned char *)dev + 6256UL) == 0U && vbus != 1) { if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0) && (unsigned long )(dev->driver)->disconnect != (unsigned long )((void (*)(struct usb_gadget * ))0)) { { ldv_spin_unlock_96(& dev->lock); (*((dev->driver)->disconnect))(& dev->gadget); ldv_spin_lock_97(& dev->lock); } } else { } { pch_udc_reconnect(dev); } } else if (((unsigned int )*((unsigned char *)dev + 6256UL) == 0U && vbus == 1) && dev->vbus_gpio.intr == 0) { { schedule_work(& dev->vbus_gpio.irq_work_fall); } } else { } { descriptor___1.modname = "pch_udc"; descriptor___1.function = "pch_udc_dev_isr"; descriptor___1.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor___1.format = "USB_SUSPEND\n"; descriptor___1.lineno = 2769U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (dev->pdev)->dev), "USB_SUSPEND\n"); } } else { } } else { } if ((dev_intr & 32U) != 0U) { { descriptor___2.modname = "pch_udc"; descriptor___2.function = "pch_udc_dev_isr"; descriptor___2.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor___2.format = "SOF\n"; descriptor___2.lineno = 2773U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (dev->pdev)->dev), "SOF\n"); } } else { } } else { } if ((dev_intr & 4U) != 0U) { { descriptor___3.modname = "pch_udc"; descriptor___3.function = "pch_udc_dev_isr"; descriptor___3.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor___3.format = "ES\n"; descriptor___3.lineno = 2776U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (dev->pdev)->dev), "ES\n"); } } else { } } else { } if ((dev_intr & 128U) != 0U) { { descriptor___4.modname = "pch_udc"; descriptor___4.function = "pch_udc_dev_isr"; descriptor___4.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor___4.format = "RWKP\n"; descriptor___4.lineno = 2779U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(& (dev->pdev)->dev), "RWKP\n"); } } else { } } else { } return; } } static irqreturn_t pch_udc_isr(int irq , void *pdev ) { struct pch_udc_dev *dev ; u32 dev_intr ; u32 ep_intr ; int i ; struct _ddebug descriptor ; long tmp ; u32 tmp___0 ; { { dev = (struct pch_udc_dev *)pdev; dev_intr = pch_udc_read_device_interrupts(dev); ep_intr = pch_udc_read_ep_interrupts(dev); } if (dev_intr == ep_intr) { { tmp___0 = pch_udc_readl(dev, 1024UL); } if (dev_intr == tmp___0) { { descriptor.modname = "pch_udc"; descriptor.function = "pch_udc_isr"; descriptor.filename = "drivers/usb/gadget/udc/pch_udc.c"; descriptor.format = "UDC: Hung up\n"; descriptor.lineno = 2799U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (dev->pdev)->dev), "UDC: Hung up\n"); } } else { } { pch_udc_writel(dev, 1UL, 1276UL); } return (1); } else { } } else { } if (dev_intr != 0U) { { pch_udc_write_device_interrupts(dev, dev_intr); } } else { } if (ep_intr != 0U) { { pch_udc_write_ep_interrupts(dev, ep_intr); } } else { } if ((dev_intr | ep_intr) == 0U) { return (0); } else { } { ldv_spin_lock_97(& dev->lock); } if (dev_intr != 0U) { { pch_udc_dev_isr(dev, dev_intr); } } else { } if (ep_intr != 0U) { { pch_udc_read_all_epstatus(dev, ep_intr); } if ((int )ep_intr & 1) { { pch_udc_svc_control_in(dev); pch_udc_postsvc_epinters(dev, 0); } } else { } if ((ep_intr & 65536U) != 0U) { { pch_udc_svc_control_out(dev); } } else { } i = 1; goto ldv_36081; ldv_36080: ; if ((ep_intr & (u32 )(1 << i)) != 0U) { { pch_udc_svc_data_in(dev, i); pch_udc_postsvc_epinters(dev, i); } } else { } i = i + 1; ldv_36081: ; if (i <= 3) { goto ldv_36080; } else { } i = 17; goto ldv_36084; ldv_36083: ; if ((ep_intr & (u32 )(1 << i)) != 0U) { { pch_udc_svc_data_out(dev, i + -16); } } else { } i = i + 1; ldv_36084: ; if (i <= 19) { goto ldv_36083; } else { } } else { } { ldv_spin_unlock_96(& dev->lock); } return (1); } } static void pch_udc_setup_ep0(struct pch_udc_dev *dev ) { { { pch_udc_enable_ep_interrupts(dev, 65537U); pch_udc_enable_interrupts(dev, 95U); } return; } } static void gadget_release(struct device *pdev ) { struct pch_udc_dev *dev ; void *tmp ; { { tmp = dev_get_drvdata((struct device const *)pdev); dev = (struct pch_udc_dev *)tmp; kfree((void const *)dev); } return; } } static void pch_udc_pcd_reinit(struct pch_udc_dev *dev ) { char const *ep_string[32U] ; int i ; struct pch_udc_ep *ep ; { { ep_string[0] = (char const *)(& ep0_string); ep_string[1] = "ep0out"; ep_string[2] = "ep1in"; ep_string[3] = "ep1out"; ep_string[4] = "ep2in"; ep_string[5] = "ep2out"; ep_string[6] = "ep3in"; ep_string[7] = "ep3out"; ep_string[8] = "ep4in"; ep_string[9] = "ep4out"; ep_string[10] = "ep5in"; ep_string[11] = "ep5out"; ep_string[12] = "ep6in"; ep_string[13] = "ep6out"; ep_string[14] = "ep7in"; ep_string[15] = "ep7out"; ep_string[16] = "ep8in"; ep_string[17] = "ep8out"; ep_string[18] = "ep9in"; ep_string[19] = "ep9out"; ep_string[20] = "ep10in"; ep_string[21] = "ep10out"; ep_string[22] = "ep11in"; ep_string[23] = "ep11out"; ep_string[24] = "ep12in"; ep_string[25] = "ep12out"; ep_string[26] = "ep13in"; ep_string[27] = "ep13out"; ep_string[28] = "ep14in"; ep_string[29] = "ep14out"; ep_string[30] = "ep15in"; ep_string[31] = "ep15out"; dev->gadget.speed = 0; INIT_LIST_HEAD(& dev->gadget.ep_list); __memset((void *)(& dev->ep), 0, 4608UL); i = 0; } goto ldv_36100; ldv_36099: ep = (struct pch_udc_ep *)(& dev->ep) + (unsigned long )i; ep->dev = dev; ep->halted = 1U; ep->num = (unsigned char )(i / 2); ep->in = (i & 1) == 0; ep->ep.name = ep_string[i]; ep->ep.ops = & pch_udc_ep_ops; if ((unsigned int )*((unsigned char *)ep + 128UL) != 0U) { ep->offset_addr = (unsigned long )((int )ep->num * 32); } else { ep->offset_addr = (unsigned long )(((int )ep->num + 16) * 32); } { usb_ep_set_maxpacket_limit(& ep->ep, 512U); list_add_tail(& ep->ep.ep_list, & dev->gadget.ep_list); INIT_LIST_HEAD(& ep->queue); i = i + 1; } ldv_36100: ; if (i <= 31) { goto ldv_36099; } else { } { usb_ep_set_maxpacket_limit(& dev->ep[0].ep, 64U); usb_ep_set_maxpacket_limit(& dev->ep[1].ep, 64U); list_del_init(& dev->ep[0].ep.ep_list); list_del_init(& dev->ep[1].ep.ep_list); dev->gadget.ep0 = & dev->ep[0].ep; INIT_LIST_HEAD(& (dev->gadget.ep0)->ep_list); } return; } } static int pch_udc_pcd_init(struct pch_udc_dev *dev ) { { { pch_udc_init(dev); pch_udc_pcd_reinit(dev); pch_vbus_gpio_init(dev, vbus_gpio_port); } return (0); } } static int init_dma_pools(struct pch_udc_dev *dev ) { struct pch_udc_stp_dma_desc *td_stp ; struct pch_udc_data_dma_desc *td_data ; void *tmp ; void *tmp___0 ; { { dev->data_requests = dma_pool_create("data_requests", & (dev->pdev)->dev, 16UL, 0UL, 0UL); } if ((unsigned long )dev->data_requests == (unsigned long )((struct dma_pool *)0)) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: can\'t get request data pool\n", "init_dma_pools"); } return (-12); } else { } { dev->stp_requests = dma_pool_create("setup requests", & (dev->pdev)->dev, 16UL, 0UL, 0UL); } if ((unsigned long )dev->stp_requests == (unsigned long )((struct dma_pool *)0)) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: can\'t get setup request pool\n", "init_dma_pools"); } return (-12); } else { } { tmp = ldv_dma_pool_alloc_134(dev->stp_requests, 208U, & dev->ep[1].td_stp_phys); td_stp = (struct pch_udc_stp_dma_desc *)tmp; } if ((unsigned long )td_stp == (unsigned long )((struct pch_udc_stp_dma_desc *)0)) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: can\'t allocate setup dma descriptor\n", "init_dma_pools"); } return (-12); } else { } { dev->ep[1].td_stp = td_stp; tmp___0 = ldv_dma_pool_alloc_135(dev->data_requests, 208U, & dev->ep[1].td_data_phys); td_data = (struct pch_udc_data_dma_desc *)tmp___0; } if ((unsigned long )td_data == (unsigned long )((struct pch_udc_data_dma_desc *)0)) { { dev_err((struct device const *)(& (dev->pdev)->dev), "%s: can\'t allocate data dma descriptor\n", "init_dma_pools"); } return (-12); } else { } { dev->ep[1].td_data = td_data; dev->ep[0].td_stp = (struct pch_udc_stp_dma_desc *)0; dev->ep[0].td_stp_phys = 0ULL; dev->ep[0].td_data = (struct pch_udc_data_dma_desc *)0; dev->ep[0].td_data_phys = 0ULL; dev->ep0out_buf = kzalloc(64UL, 208U); } if ((unsigned long )dev->ep0out_buf == (unsigned long )((void *)0)) { return (-12); } else { } { dev->dma_addr = dma_map_single_attrs(& (dev->pdev)->dev, dev->ep0out_buf, 64UL, 2, (struct dma_attrs *)0); } return (0); } } static int pch_udc_start(struct usb_gadget *g , struct usb_gadget_driver *driver ) { struct pch_udc_dev *dev ; struct usb_gadget const *__mptr ; int tmp ; { { __mptr = (struct usb_gadget const *)g; dev = (struct pch_udc_dev *)__mptr; driver->driver.bus = (struct bus_type *)0; dev->driver = driver; pch_udc_setup_ep0(dev); tmp = pch_vbus_gpio_get_value(dev); } if (tmp != 0 || dev->vbus_gpio.intr == 0) { { pch_udc_clear_disconnect(dev); } } else { } dev->connected = 1U; return (0); } } static int pch_udc_stop(struct usb_gadget *g ) { struct pch_udc_dev *dev ; struct usb_gadget const *__mptr ; { { __mptr = (struct usb_gadget const *)g; dev = (struct pch_udc_dev *)__mptr; pch_udc_disable_interrupts(dev, 127U); dev->driver = (struct usb_gadget_driver *)0; dev->connected = 0U; pch_udc_set_disconnect(dev); } return (0); } } static void pch_udc_shutdown(struct pci_dev *pdev ) { struct pch_udc_dev *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct pch_udc_dev *)tmp; pch_udc_disable_interrupts(dev, 127U); pch_udc_disable_ep_interrupts(dev, 4294967295U); pch_udc_set_disconnect(dev); } return; } } static void pch_udc_remove(struct pci_dev *pdev ) { struct pch_udc_dev *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct pch_udc_dev *)tmp; usb_del_gadget_udc(& dev->gadget); } if ((unsigned long )dev->driver != (unsigned long )((struct usb_gadget_driver *)0)) { { dev_err((struct device const *)(& pdev->dev), "%s: gadget driver still bound!!!\n", "pch_udc_remove"); } } else { } if ((unsigned long )dev->data_requests != (unsigned long )((struct dma_pool *)0)) { { dma_pool_destroy(dev->data_requests); } } else { } if ((unsigned long )dev->stp_requests != (unsigned long )((struct dma_pool *)0)) { if ((unsigned long )dev->ep[1].td_stp != (unsigned long )((struct pch_udc_stp_dma_desc *)0)) { { dma_pool_free(dev->stp_requests, (void *)dev->ep[1].td_stp, dev->ep[1].td_stp_phys); } } else { } if ((unsigned long )dev->ep[1].td_data != (unsigned long )((struct pch_udc_data_dma_desc *)0)) { { dma_pool_free(dev->stp_requests, (void *)dev->ep[1].td_data, dev->ep[1].td_data_phys); } } else { } { dma_pool_destroy(dev->stp_requests); } } else { } if (dev->dma_addr != 0ULL) { { dma_unmap_single_attrs(& (dev->pdev)->dev, dev->dma_addr, 64UL, 2, (struct dma_attrs *)0); } } else { } { kfree((void const *)dev->ep0out_buf); pch_vbus_gpio_free(dev); pch_udc_exit(dev); } if ((unsigned int )*((unsigned char *)dev + 6256UL) != 0U) { { ldv_free_irq_136(pdev->irq, (void *)dev); } } else { } if ((unsigned long )dev->base_addr != (unsigned long )((void *)0)) { { ldv_iounmap_137((void volatile *)dev->base_addr); } } else { } if ((unsigned int )*((unsigned char *)dev + 6256UL) != 0U) { { __release_region(& iomem_resource, (resource_size_t )dev->phys_addr, pdev->resource[dev->bar].start != 0ULL || pdev->resource[dev->bar].end != pdev->resource[dev->bar].start ? (pdev->resource[dev->bar].end - pdev->resource[dev->bar].start) + 1ULL : 0ULL); } } else { } if ((unsigned int )*((unsigned char *)dev + 6256UL) != 0U) { { pci_disable_device(pdev); } } else { } { kfree((void const *)dev); } return; } } static int pch_udc_suspend(struct pci_dev *pdev , pm_message_t state ) { struct pch_udc_dev *dev ; void *tmp ; int tmp___0 ; pci_power_t tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct pch_udc_dev *)tmp; pch_udc_disable_interrupts(dev, 127U); pch_udc_disable_ep_interrupts(dev, 4294967295U); pci_disable_device(pdev); pci_enable_wake(pdev, 3, 0); tmp___0 = pci_save_state(pdev); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "%s: could not save PCI config state\n", "pch_udc_suspend"); } return (-12); } else { } { tmp___1 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___1); } return (0); } } static int pch_udc_resume(struct pci_dev *pdev ) { int ret ; { { pci_set_power_state(pdev, 0); pci_restore_state(pdev); ret = pci_enable_device(pdev); } if (ret != 0) { { dev_err((struct device const *)(& pdev->dev), "%s: pci_enable_device failed\n", "pch_udc_resume"); } return (ret); } else { } { pci_enable_wake(pdev, 3, 0); } return (0); } } static int pch_udc_probe(struct pci_dev *pdev , struct pci_device_id const *id ) { unsigned long resource ; unsigned long len ; int retval ; struct pch_udc_dev *dev ; void *tmp ; int tmp___0 ; struct resource *tmp___1 ; int tmp___2 ; int tmp___3 ; struct lock_class_key __key ; { { tmp = kzalloc(6504UL, 208U); dev = (struct pch_udc_dev *)tmp; } if ((unsigned long )dev == (unsigned long )((struct pch_udc_dev *)0)) { { printk("\vpch_udc: %s: no memory for device structure\n", "pch_udc_probe"); } return (-12); } else { } { tmp___0 = pci_enable_device(pdev); } if (tmp___0 < 0) { { kfree((void const *)dev); printk("\vpch_udc: %s: pci_enable_device failed\n", "pch_udc_probe"); } return (-19); } else { } { dev->active = 1U; pci_set_drvdata(pdev, (void *)dev); } if ((unsigned int )id->device == 2361U) { dev->bar = 0U; } else { dev->bar = 1U; } { resource = (unsigned long )pdev->resource[dev->bar].start; len = pdev->resource[dev->bar].start != 0ULL || pdev->resource[dev->bar].end != pdev->resource[dev->bar].start ? (unsigned long )((pdev->resource[dev->bar].end - pdev->resource[dev->bar].start) + 1ULL) : 0UL; tmp___1 = __request_region(& iomem_resource, (resource_size_t )resource, (resource_size_t )len, "pch_udc", 0); } if ((unsigned long )tmp___1 == (unsigned long )((struct resource *)0)) { { dev_err((struct device const *)(& pdev->dev), "%s: pci device used already\n", "pch_udc_probe"); retval = -16; } goto finished; } else { } { dev->phys_addr = resource; dev->mem_region = 1U; dev->base_addr = ldv_ioremap_nocache_138((resource_size_t )resource, len); } if ((unsigned long )dev->base_addr == (unsigned long )((void *)0)) { { printk("\vpch_udc: %s: device memory cannot be mapped\n", "pch_udc_probe"); retval = -12; } goto finished; } else { } if (pdev->irq == 0U) { { dev_err((struct device const *)(& pdev->dev), "%s: irq not set\n", "pch_udc_probe"); retval = -19; } goto finished; } else { } { tmp___2 = pch_udc_pcd_init(dev); } if (tmp___2 != 0) { retval = -19; goto finished; } else { } { tmp___3 = ldv_request_irq_139(pdev->irq, & pch_udc_isr, 128UL, "pch_udc", (void *)dev); } if (tmp___3 != 0) { { dev_err((struct device const *)(& pdev->dev), "%s: request_irq(%d) fail\n", "pch_udc_probe", pdev->irq); retval = -19; } goto finished; } else { } { dev->irq = pdev->irq; dev->irq_registered = 1U; pci_set_master(pdev); pci_try_set_mwi(pdev); spinlock_check(& dev->lock); __raw_spin_lock_init(& dev->lock.__annonCompField18.rlock, "&(&dev->lock)->rlock", & __key); dev->pdev = pdev; dev->gadget.ops = & pch_udc_ops; retval = init_dma_pools(dev); } if (retval != 0) { goto finished; } else { } { dev->gadget.name = "pch_udc"; dev->gadget.max_speed = 3; pch_udc_set_disconnect(dev); retval = usb_add_gadget_udc_release(& pdev->dev, & dev->gadget, & gadget_release); } if (retval != 0) { goto finished; } else { } return (0); finished: { pch_udc_remove(pdev); } return (retval); } } static struct pci_device_id const pch_udc_pcidev_id[5U] = { {32902U, 2361U, 4294967295U, 4294967295U, 787454U, 4294967295U, 0UL}, {32902U, 34824U, 4294967295U, 4294967295U, 787454U, 4294967295U, 0UL}, {4315U, 32797U, 4294967295U, 4294967295U, 787454U, 4294967295U, 0UL}, {4315U, 34824U, 4294967295U, 4294967295U, 787454U, 4294967295U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__pch_udc_pcidev_id_device_table[5U] ; static struct pci_driver pch_udc_driver = {{0, 0}, "pch_udc", (struct pci_device_id const *)(& pch_udc_pcidev_id), & pch_udc_probe, & pch_udc_remove, & pch_udc_suspend, 0, 0, & pch_udc_resume, & pch_udc_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int pch_udc_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_140(& pch_udc_driver, & __this_module, "pch_udc"); } return (tmp); } } static void pch_udc_driver_exit(void) { { { ldv_pci_unregister_driver_141(& pch_udc_driver); } return; } } void ldv_EMGentry_exit_pch_udc_driver_exit_13_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_pch_udc_driver_init_13_15(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_11_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_11_13_4(void) ; void ldv_dispatch_deregister_io_instance_10_13_5(void) ; void ldv_dispatch_deregister_platform_instance_8_13_6(void) ; void ldv_dispatch_deregister_rtc_class_instance_9_13_7(void) ; void ldv_dispatch_irq_deregister_8_1(int arg0 ) ; void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_4_5(void) ; void ldv_dispatch_pm_register_4_6(void) ; void ldv_dispatch_register_12_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_11_13_8(void) ; void ldv_dispatch_register_io_instance_10_13_9(void) ; void ldv_dispatch_register_platform_instance_8_13_10(void) ; void ldv_dispatch_register_rtc_class_instance_9_13_11(void) ; void ldv_dummy_resourceless_instance_callback_7_10(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_13(int (*arg0)(struct usb_gadget * , struct usb_gadget_driver * ) , struct usb_gadget *arg1 , struct usb_gadget_driver *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_14(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_15(int (*arg0)(struct usb_gadget * , unsigned int ) , struct usb_gadget *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_18(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_21(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_7(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) ; void ldv_entry_EMGentry_13(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_io_instance_callback_6_19(int (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) ; void ldv_io_instance_callback_6_20(void (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; void ldv_io_instance_callback_6_21(void (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) ; void ldv_io_instance_callback_6_22(int (*arg0)(struct usb_ep * , struct usb_request * , unsigned int ) , struct usb_ep *arg1 , struct usb_request *arg2 , unsigned int arg3 ) ; void ldv_io_instance_callback_6_25(int (*arg0)(struct usb_ep * , int ) , struct usb_ep *arg1 , int arg2 ) ; void ldv_io_instance_callback_6_28(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; void ldv_io_instance_callback_6_4(struct usb_request *(*arg0)(struct usb_ep * , unsigned int ) , struct usb_ep *arg1 , unsigned int arg2 ) ; int ldv_io_instance_probe_6_11(int (*arg0)(struct usb_ep * , struct usb_endpoint_descriptor * ) , struct usb_ep *arg1 , struct usb_endpoint_descriptor *arg2 ) ; void ldv_io_instance_release_6_2(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_4(void *arg0 ) ; void ldv_pm_pm_ops_instance_3(void *arg0 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_rtc_class_instance_probe_5_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_rtc_class_instance_release_5_2(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_rtc_rtc_class_instance_5(void *arg0 ) ; void ldv_struct_usb_ep_ops_io_instance_6(void *arg0 ) ; void ldv_struct_usb_gadget_ops_dummy_resourceless_instance_7(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_13 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_pch_udc_driver_exit_13_2(void (*arg0)(void) ) { { { pch_udc_driver_exit(); } return; } } int ldv_EMGentry_init_pch_udc_driver_init_13_15(int (*arg0)(void) ) { int tmp ; { { tmp = pch_udc_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_pci_driver_pci_driver = arg1; ldv_dispatch_register_12_2(ldv_12_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_11_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_11_13_4(void) { { return; } } void ldv_dispatch_deregister_io_instance_10_13_5(void) { { return; } } void ldv_dispatch_deregister_platform_instance_8_13_6(void) { { return; } } void ldv_dispatch_deregister_rtc_class_instance_9_13_7(void) { { return; } } void ldv_dispatch_irq_deregister_8_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_pm_deregister_4_5(void) { { return; } } void ldv_dispatch_pm_register_4_6(void) { struct ldv_struct_platform_instance_4 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_pm_pm_ops_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_12_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_pci_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_pci_pci_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_11_13_8(void) { struct ldv_struct_platform_instance_4 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_struct_usb_gadget_ops_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_io_instance_10_13_9(void) { struct ldv_struct_platform_instance_4 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_struct_usb_ep_ops_io_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_platform_instance_8_13_10(void) { struct ldv_struct_platform_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_pm_platform_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_rtc_class_instance_9_13_11(void) { struct ldv_struct_platform_instance_4 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_rtc_rtc_class_instance_5((void *)cf_arg_5); } return; } } void ldv_dummy_resourceless_instance_callback_7_10(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) { { { pch_udc_pcd_selfpowered(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_13(int (*arg0)(struct usb_gadget * , struct usb_gadget_driver * ) , struct usb_gadget *arg1 , struct usb_gadget_driver *arg2 ) { { { pch_udc_start(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_14(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) { { { pch_udc_stop(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_15(int (*arg0)(struct usb_gadget * , unsigned int ) , struct usb_gadget *arg1 , unsigned int arg2 ) { { { pch_udc_pcd_vbus_draw(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_18(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) { { { pch_udc_pcd_vbus_session(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_21(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) { { { pch_udc_pcd_wakeup(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct usb_gadget * ) , struct usb_gadget *arg1 ) { { { pch_udc_pcd_get_frame(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_7(int (*arg0)(struct usb_gadget * , int ) , struct usb_gadget *arg1 , int arg2 ) { { { pch_udc_pcd_pullup(arg1, arg2); } return; } } void ldv_entry_EMGentry_13(void *arg0 ) { void (*ldv_13_exit_pch_udc_driver_exit_default)(void) ; int (*ldv_13_init_pch_udc_driver_init_default)(void) ; int ldv_13_ret_default ; int tmp ; int tmp___0 ; { { ldv_13_ret_default = ldv_EMGentry_init_pch_udc_driver_init_13_15(ldv_13_init_pch_udc_driver_init_default); ldv_13_ret_default = ldv_ldv_post_init_142(ldv_13_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_13_ret_default != 0); ldv_ldv_check_final_state_143(); ldv_stop(); } return; } else { { ldv_assume(ldv_13_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_rtc_class_instance_9_13_11(); ldv_dispatch_register_platform_instance_8_13_10(); ldv_dispatch_register_io_instance_10_13_9(); ldv_dispatch_register_dummy_resourceless_instance_11_13_8(); ldv_dispatch_deregister_rtc_class_instance_9_13_7(); ldv_dispatch_deregister_platform_instance_8_13_6(); ldv_dispatch_deregister_io_instance_10_13_5(); ldv_dispatch_deregister_dummy_resourceless_instance_11_13_4(); } } else { } { ldv_EMGentry_exit_pch_udc_driver_exit_13_2(ldv_13_exit_pch_udc_driver_exit_default); ldv_ldv_check_final_state_144(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_145(); ldv_entry_EMGentry_13((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_8_line_line ; { { ldv_8_line_line = arg1; ldv_dispatch_irq_deregister_8_1(ldv_8_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = pch_udc_isr(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = pch_vbus_gpio_irq(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_io_instance_callback_6_19(int (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) { { { pch_udc_pcd_dequeue(arg1, arg2); } return; } } void ldv_io_instance_callback_6_20(void (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { pch_udc_pcd_fifo_flush(arg1); } return; } } void ldv_io_instance_callback_6_21(void (*arg0)(struct usb_ep * , struct usb_request * ) , struct usb_ep *arg1 , struct usb_request *arg2 ) { { { pch_udc_free_request(arg1, arg2); } return; } } void ldv_io_instance_callback_6_22(int (*arg0)(struct usb_ep * , struct usb_request * , unsigned int ) , struct usb_ep *arg1 , struct usb_request *arg2 , unsigned int arg3 ) { { { pch_udc_pcd_queue(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_6_25(int (*arg0)(struct usb_ep * , int ) , struct usb_ep *arg1 , int arg2 ) { { { pch_udc_pcd_set_halt(arg1, arg2); } return; } } void ldv_io_instance_callback_6_28(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { pch_udc_pcd_set_wedge(arg1); } return; } } void ldv_io_instance_callback_6_4(struct usb_request *(*arg0)(struct usb_ep * , unsigned int ) , struct usb_ep *arg1 , unsigned int arg2 ) { { { pch_udc_alloc_request(arg1, arg2); } return; } } int ldv_io_instance_probe_6_11(int (*arg0)(struct usb_ep * , struct usb_endpoint_descriptor * ) , struct usb_ep *arg1 , struct usb_endpoint_descriptor *arg2 ) { int tmp ; { { tmp = pch_udc_pcd_ep_enable(arg1, (struct usb_endpoint_descriptor const *)arg2); } return (tmp); } } void ldv_io_instance_release_6_2(int (*arg0)(struct usb_ep * ) , struct usb_ep *arg1 ) { { { pch_udc_pcd_ep_disable(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = pch_udc_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pch_udc_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pch_udc_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pch_udc_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = pch_udc_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct ldv_struct_pci_instance_2 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_2 *)0)) { { ldv_2_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_2_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_146(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_ldv_post_probe_147(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_2; case_2: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } goto ldv_call_2; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_11_pci_driver_pci_driver ; { { ldv_11_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_11_1(ldv_11_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { gadget_release(arg1); } return; } } void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_4(void *arg0 ) { struct platform_driver *ldv_4_container_platform_driver ; struct platform_device *ldv_4_ldv_param_14_0_default ; struct platform_device *ldv_4_ldv_param_3_0_default ; int ldv_4_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_4_probed_default = 1; goto ldv_main_4; return; ldv_main_4: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1464UL); ldv_4_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_ldv_pre_probe_148(); } if ((unsigned long )ldv_4_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_4_probed_default = ldv_platform_instance_probe_4_14(ldv_4_container_platform_driver->probe, ldv_4_ldv_param_14_0_default); } } else { } { ldv_4_probed_default = ldv_ldv_post_probe_149(ldv_4_probed_default); ldv_free((void *)ldv_4_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_4_probed_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_probed_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1464UL); ldv_4_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_4_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_4_3(ldv_4_container_platform_driver->remove, ldv_4_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_3_0_default); ldv_4_probed_default = 1; } goto ldv_main_4; case_2: /* CIL Label */ ; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dispatch_pm_register_4_6(); ldv_dispatch_pm_deregister_4_5(); } goto ldv_call_4; goto ldv_call_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_3(void *arg0 ) { struct device *ldv_3_device_device ; struct dev_pm_ops *ldv_3_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_3; return; ldv_do_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_3_27(ldv_3_pm_ops_dev_pm_ops->runtime_idle, ldv_3_device_device); } } else { } goto ldv_do_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_3_25(ldv_3_pm_ops_dev_pm_ops->runtime_suspend, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_3_24(ldv_3_pm_ops_dev_pm_ops->runtime_resume, ldv_3_device_device); } } else { } goto ldv_do_3; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_3_22(ldv_3_pm_ops_dev_pm_ops->prepare, ldv_3_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_3_21(ldv_3_pm_ops_dev_pm_ops->suspend, ldv_3_device_device); } } else { } { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_3_20(ldv_3_pm_ops_dev_pm_ops->suspend_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_3_19(ldv_3_pm_ops_dev_pm_ops->resume_noirq, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_3_18(ldv_3_pm_ops_dev_pm_ops->suspend_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_3_17(ldv_3_pm_ops_dev_pm_ops->resume_early, ldv_3_device_device); } } else { } } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_3_16(ldv_3_pm_ops_dev_pm_ops->resume, ldv_3_device_device); } } else { } goto ldv_37038; case_2___0: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_3_15(ldv_3_pm_ops_dev_pm_ops->freeze, ldv_3_device_device); } } else { } { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_3_14(ldv_3_pm_ops_dev_pm_ops->freeze_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_3_13(ldv_3_pm_ops_dev_pm_ops->thaw_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_3_12(ldv_3_pm_ops_dev_pm_ops->freeze_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_3_11(ldv_3_pm_ops_dev_pm_ops->thaw_noirq, ldv_3_device_device); } } else { } } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_3_10(ldv_3_pm_ops_dev_pm_ops->thaw, ldv_3_device_device); } } else { } goto ldv_37038; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_3_9(ldv_3_pm_ops_dev_pm_ops->poweroff, ldv_3_device_device); } } else { } { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_3_8(ldv_3_pm_ops_dev_pm_ops->poweroff_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_3_7(ldv_3_pm_ops_dev_pm_ops->restore_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_3_6(ldv_3_pm_ops_dev_pm_ops->poweroff_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_3_5(ldv_3_pm_ops_dev_pm_ops->restore_noirq, ldv_3_device_device); } } else { } } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_3_4(ldv_3_pm_ops_dev_pm_ops->restore, ldv_3_device_device); } } else { } goto ldv_37038; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_37038: { ldv_pm_ops_instance_complete_3_3(ldv_3_pm_ops_dev_pm_ops->complete, ldv_3_device_device); } goto ldv_do_3; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_10_callback_handler)(int , void * ) ; void *ldv_10_data_data ; int ldv_10_line_line ; enum irqreturn (*ldv_10_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_line_line = (int )arg1; ldv_10_callback_handler = arg2; ldv_10_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_10_data_data = arg5; ldv_dispatch_irq_register_10_2(ldv_10_line_line, ldv_10_callback_handler, ldv_10_thread_thread, ldv_10_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_rtc_class_instance_probe_5_10(int (*arg0)(struct device * ) , struct device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_rtc_class_instance_release_5_2(void (*arg0)(struct device * ) , struct device *arg1 ) { { { gadget_release(arg1); } return; } } void ldv_rtc_rtc_class_instance_5(void *arg0 ) { struct device *ldv_5_device_device ; int ldv_5_ret_default ; struct rtc_class_ops *ldv_5_rtc_class_ops_rtc_class_ops ; int tmp ; int tmp___0 ; int tmp___1 ; { ldv_5_ret_default = 1; goto ldv_main_5; return; ldv_main_5: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_150(); } if ((unsigned long )ldv_5_rtc_class_ops_rtc_class_ops->open != (unsigned long )((int (*)(struct device * ))0)) { { ldv_5_ret_default = ldv_rtc_class_instance_probe_5_10(ldv_5_rtc_class_ops_rtc_class_ops->open, ldv_5_device_device); } } else { } { ldv_5_ret_default = ldv_ldv_post_probe_151(ldv_5_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { return; } return; ldv_call_5: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { goto ldv_call_5; } else { { ldv_rtc_class_instance_release_5_2(ldv_5_rtc_class_ops_rtc_class_ops->release, ldv_5_device_device); } goto ldv_main_5; } return; } } void ldv_struct_usb_ep_ops_io_instance_6(void *arg0 ) { struct usb_request *(*ldv_6_callback_alloc_request)(struct usb_ep * , unsigned int ) ; int (*ldv_6_callback_dequeue)(struct usb_ep * , struct usb_request * ) ; void (*ldv_6_callback_fifo_flush)(struct usb_ep * ) ; void (*ldv_6_callback_free_request)(struct usb_ep * , struct usb_request * ) ; int (*ldv_6_callback_queue)(struct usb_ep * , struct usb_request * , unsigned int ) ; int (*ldv_6_callback_set_halt)(struct usb_ep * , int ) ; int (*ldv_6_callback_set_wedge)(struct usb_ep * ) ; struct usb_ep_ops *ldv_6_container_struct_usb_ep_ops ; unsigned int ldv_6_ldv_param_22_2_default ; int ldv_6_ldv_param_25_1_default ; unsigned int ldv_6_ldv_param_4_1_default ; struct usb_endpoint_descriptor *ldv_6_resource_struct_usb_endpoint_descriptor_ptr ; struct usb_ep *ldv_6_resource_struct_usb_ep_ptr ; struct usb_request *ldv_6_resource_struct_usb_request_ptr ; int ldv_6_ret_default ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { ldv_6_ret_default = 1; tmp = ldv_xmalloc(9UL); ldv_6_resource_struct_usb_endpoint_descriptor_ptr = (struct usb_endpoint_descriptor *)tmp; tmp___0 = ldv_xmalloc(64UL); ldv_6_resource_struct_usb_ep_ptr = (struct usb_ep *)tmp___0; tmp___1 = ldv_xmalloc(88UL); ldv_6_resource_struct_usb_request_ptr = (struct usb_request *)tmp___1; } goto ldv_main_6; return; ldv_main_6: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_6_ret_default = ldv_io_instance_probe_6_11((int (*)(struct usb_ep * , struct usb_endpoint_descriptor * ))ldv_6_container_struct_usb_ep_ops->enable, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_endpoint_descriptor_ptr); ldv_6_ret_default = ldv_filter_err_code(ldv_6_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_6_ret_default == 0); } goto ldv_call_6; } else { { ldv_assume(ldv_6_ret_default != 0); } goto ldv_main_6; } } else { { ldv_free((void *)ldv_6_resource_struct_usb_endpoint_descriptor_ptr); ldv_free((void *)ldv_6_resource_struct_usb_ep_ptr); ldv_free((void *)ldv_6_resource_struct_usb_request_ptr); } return; } return; ldv_call_6: { tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { ldv_io_instance_release_6_2(ldv_6_container_struct_usb_ep_ops->disable, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_main_6; } else { { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } if (tmp___4 == 4) { goto case_4; } else { } if (tmp___4 == 5) { goto case_5; } else { } if (tmp___4 == 6) { goto case_6; } else { } if (tmp___4 == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_6_28(ldv_6_callback_set_wedge, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_37115; case_2: /* CIL Label */ { ldv_io_instance_callback_6_25(ldv_6_callback_set_halt, ldv_6_resource_struct_usb_ep_ptr, ldv_6_ldv_param_25_1_default); } goto ldv_37115; case_3: /* CIL Label */ { ldv_io_instance_callback_6_22(ldv_6_callback_queue, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_request_ptr, ldv_6_ldv_param_22_2_default); } goto ldv_37115; case_4: /* CIL Label */ { ldv_io_instance_callback_6_21(ldv_6_callback_free_request, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_request_ptr); } goto ldv_37115; case_5: /* CIL Label */ { ldv_io_instance_callback_6_20(ldv_6_callback_fifo_flush, ldv_6_resource_struct_usb_ep_ptr); } goto ldv_37115; case_6: /* CIL Label */ { ldv_io_instance_callback_6_19(ldv_6_callback_dequeue, ldv_6_resource_struct_usb_ep_ptr, ldv_6_resource_struct_usb_request_ptr); } goto ldv_37115; case_7: /* CIL Label */ { ldv_io_instance_callback_6_4(ldv_6_callback_alloc_request, ldv_6_resource_struct_usb_ep_ptr, ldv_6_ldv_param_4_1_default); } goto ldv_37115; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_37115: ; } goto ldv_call_6; return; } } void ldv_struct_usb_gadget_ops_dummy_resourceless_instance_7(void *arg0 ) { int (*ldv_7_callback_get_frame)(struct usb_gadget * ) ; int (*ldv_7_callback_pullup)(struct usb_gadget * , int ) ; int (*ldv_7_callback_set_selfpowered)(struct usb_gadget * , int ) ; int (*ldv_7_callback_udc_start)(struct usb_gadget * , struct usb_gadget_driver * ) ; int (*ldv_7_callback_udc_stop)(struct usb_gadget * ) ; int (*ldv_7_callback_vbus_draw)(struct usb_gadget * , unsigned int ) ; int (*ldv_7_callback_vbus_session)(struct usb_gadget * , int ) ; int (*ldv_7_callback_wakeup)(struct usb_gadget * ) ; struct usb_gadget_driver *ldv_7_container_struct_usb_gadget_driver_ptr ; struct usb_gadget *ldv_7_container_struct_usb_gadget_ptr ; int ldv_7_ldv_param_10_1_default ; unsigned int ldv_7_ldv_param_15_1_default ; int ldv_7_ldv_param_18_1_default ; int ldv_7_ldv_param_7_1_default ; int tmp ; { goto ldv_call_7; return; ldv_call_7: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_21(ldv_7_callback_wakeup, ldv_7_container_struct_usb_gadget_ptr); } goto ldv_call_7; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_18(ldv_7_callback_vbus_session, ldv_7_container_struct_usb_gadget_ptr, ldv_7_ldv_param_18_1_default); } goto ldv_call_7; goto ldv_call_7; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_15(ldv_7_callback_vbus_draw, ldv_7_container_struct_usb_gadget_ptr, ldv_7_ldv_param_15_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_14(ldv_7_callback_udc_stop, ldv_7_container_struct_usb_gadget_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_13(ldv_7_callback_udc_start, ldv_7_container_struct_usb_gadget_ptr, ldv_7_container_struct_usb_gadget_driver_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_10(ldv_7_callback_set_selfpowered, ldv_7_container_struct_usb_gadget_ptr, ldv_7_ldv_param_10_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_7(ldv_7_callback_pullup, ldv_7_container_struct_usb_gadget_ptr, ldv_7_ldv_param_7_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_get_frame, ldv_7_container_struct_usb_gadget_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_9: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_unlock_96(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_pch_udc_dev(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_97(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(); spin_lock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_pch_udc_dev(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static int ldv_request_irq_102(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_103(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void *ldv_dma_pool_alloc_106(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_107(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void *ldv_dma_pool_alloc_111(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_udc_stall_spinlock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_117(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_udc_stall_spinlock(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_118(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_udc_stall_spinlock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void *ldv_dma_pool_alloc_134(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_dma_pool_alloc_135(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_free_irq_136(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_137(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void *ldv_ioremap_nocache_138(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } __inline static int ldv_request_irq_139(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_140(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_141(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_142(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_143(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_144(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_145(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_146(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_147(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_148(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_149(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_150(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_151(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_pch_udc_dev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_pch_udc_dev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_pch_udc_dev(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_pch_udc_dev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_pch_udc_dev(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_pch_udc_dev(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_pch_udc_dev(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_pch_udc_dev(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_pch_udc_dev(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_udc_stall_spinlock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_udc_stall_spinlock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 2); ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_udc_stall_spinlock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_udc_stall_spinlock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_udc_stall_spinlock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_udc_stall_spinlock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_udc_stall_spinlock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_udc_stall_spinlock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_udc_stall_spinlock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_pch_udc_dev == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_udc_stall_spinlock == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }