/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; enum page_cache_mode { _PAGE_CACHE_MODE_WB = 0, _PAGE_CACHE_MODE_WC = 1, _PAGE_CACHE_MODE_UC_MINUS = 2, _PAGE_CACHE_MODE_UC = 3, _PAGE_CACHE_MODE_WT = 4, _PAGE_CACHE_MODE_WP = 5, _PAGE_CACHE_MODE_NUM = 8 } ; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct cpuinfo_x86; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct cpuinfo_x86 { __u8 x86 ; __u8 x86_vendor ; __u8 x86_model ; __u8 x86_mask ; int x86_tlbsize ; __u8 x86_virt_bits ; __u8 x86_phys_bits ; __u8 x86_coreid_bits ; __u32 extended_cpuid_level ; int cpuid_level ; __u32 x86_capability[12U] ; char x86_vendor_id[16U] ; char x86_model_id[64U] ; int x86_cache_size ; int x86_cache_alignment ; int x86_power ; unsigned long loops_per_jiffy ; u16 x86_max_cores ; u16 apicid ; u16 initial_apicid ; u16 x86_clflush_size ; u16 booted_cores ; u16 phys_proc_id ; u16 cpu_core_id ; u8 compute_unit_id ; u16 cpu_index ; u32 microcode ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_51 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_50 { struct __anonstruct____missing_field_name_51 __annonCompField22 ; }; struct lockref { union __anonunion____missing_field_name_50 __annonCompField23 ; }; struct path; struct vfsmount; struct __anonstruct____missing_field_name_53 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_52 { struct __anonstruct____missing_field_name_53 __annonCompField24 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_52 __annonCompField25 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_54 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_54 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct __anonstruct_nodemask_t_55 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_55 nodemask_t; struct mem_cgroup; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct __anonstruct____missing_field_name_57 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_56 { struct __anonstruct____missing_field_name_57 __annonCompField26 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_56 __annonCompField27 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct __anonstruct_mm_context_t_123 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_123 mm_context_t; struct bio_vec; struct device_node; struct block_device; struct io_context; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_151 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_151 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_152 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_152 __annonCompField39 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_155 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_156 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_157 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_155 __annonCompField40 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_156 __annonCompField41 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_157 __annonCompField42 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_158 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_158 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_160 { struct list_head link ; int state ; }; union __anonunion_fl_u_159 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_160 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_159 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_166 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_167 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_165 { struct __anonstruct____missing_field_name_166 __annonCompField45 ; struct __anonstruct____missing_field_name_167 __annonCompField46 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_165 __annonCompField47 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_168 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_170 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_174 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_173 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_174 __annonCompField50 ; int units ; }; struct __anonstruct____missing_field_name_172 { union __anonunion____missing_field_name_173 __annonCompField51 ; atomic_t _count ; }; union __anonunion____missing_field_name_171 { unsigned long counters ; struct __anonstruct____missing_field_name_172 __annonCompField52 ; unsigned int active ; }; struct __anonstruct____missing_field_name_169 { union __anonunion____missing_field_name_170 __annonCompField49 ; union __anonunion____missing_field_name_171 __annonCompField53 ; }; struct __anonstruct____missing_field_name_176 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_177 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_175 { struct list_head lru ; struct __anonstruct____missing_field_name_176 __annonCompField55 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_177 __annonCompField56 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_178 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_168 __annonCompField48 ; struct __anonstruct____missing_field_name_169 __annonCompField54 ; union __anonunion____missing_field_name_175 __annonCompField57 ; union __anonunion____missing_field_name_178 __annonCompField58 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_179 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_179 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct user_struct; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct exception_table_entry { int insn ; int fixup ; }; struct proc_dir_entry; struct nsproxy; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_191 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_191 __annonCompField64 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_192 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_192 __annonCompField65 ; unsigned long nr_segs ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_204 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_204 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_206 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_207 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_208 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_209 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_211 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_210 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_211 _addr_bnd ; }; struct __anonstruct__sigpoll_212 { long _band ; int _fd ; }; struct __anonstruct__sigsys_213 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_205 { int _pad[28U] ; struct __anonstruct__kill_206 _kill ; struct __anonstruct__timer_207 _timer ; struct __anonstruct__rt_208 _rt ; struct __anonstruct__sigchld_209 _sigchld ; struct __anonstruct__sigfault_210 _sigfault ; struct __anonstruct__sigpoll_212 _sigpoll ; struct __anonstruct__sigsys_213 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_205 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_216 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_217 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_219 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_218 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_219 __annonCompField68 ; }; union __anonunion_type_data_220 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_222 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_221 { union __anonunion_payload_222 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_216 __annonCompField66 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_217 __annonCompField67 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_218 __annonCompField69 ; union __anonunion_type_data_220 type_data ; union __anonunion____missing_field_name_221 __annonCompField70 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; typedef s32 compat_time_t; typedef u32 compat_caddr_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct linux_logo { int type ; unsigned int width ; unsigned int height ; unsigned int clutsize ; unsigned char const *clut ; unsigned char const *data ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct fb_fix_screeninfo { char id[16U] ; unsigned long smem_start ; __u32 smem_len ; __u32 type ; __u32 type_aux ; __u32 visual ; __u16 xpanstep ; __u16 ypanstep ; __u16 ywrapstep ; __u32 line_length ; unsigned long mmio_start ; __u32 mmio_len ; __u32 accel ; __u16 capabilities ; __u16 reserved[2U] ; }; struct fb_bitfield { __u32 offset ; __u32 length ; __u32 msb_right ; }; struct fb_var_screeninfo { __u32 xres ; __u32 yres ; __u32 xres_virtual ; __u32 yres_virtual ; __u32 xoffset ; __u32 yoffset ; __u32 bits_per_pixel ; __u32 grayscale ; struct fb_bitfield red ; struct fb_bitfield green ; struct fb_bitfield blue ; struct fb_bitfield transp ; __u32 nonstd ; __u32 activate ; __u32 height ; __u32 width ; __u32 accel_flags ; __u32 pixclock ; __u32 left_margin ; __u32 right_margin ; __u32 upper_margin ; __u32 lower_margin ; __u32 hsync_len ; __u32 vsync_len ; __u32 sync ; __u32 vmode ; __u32 rotate ; __u32 colorspace ; __u32 reserved[4U] ; }; struct fb_cmap { __u32 start ; __u32 len ; __u16 *red ; __u16 *green ; __u16 *blue ; __u16 *transp ; }; struct fb_con2fbmap { __u32 console ; __u32 framebuffer ; }; struct fb_copyarea { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 sx ; __u32 sy ; }; struct fb_fillrect { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 color ; __u32 rop ; }; struct fb_image { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 fg_color ; __u32 bg_color ; __u8 depth ; char const *data ; struct fb_cmap cmap ; }; struct fbcurpos { __u16 x ; __u16 y ; }; struct fb_cursor { __u16 set ; __u16 enable ; __u16 rop ; char const *mask ; struct fbcurpos hot ; struct fb_image image ; }; enum backlight_type { BACKLIGHT_RAW = 1, BACKLIGHT_PLATFORM = 2, BACKLIGHT_FIRMWARE = 3, BACKLIGHT_TYPE_MAX = 4 } ; struct backlight_device; struct fb_info; struct backlight_ops { unsigned int options ; int (*update_status)(struct backlight_device * ) ; int (*get_brightness)(struct backlight_device * ) ; int (*check_fb)(struct backlight_device * , struct fb_info * ) ; }; struct backlight_properties { int brightness ; int max_brightness ; int power ; int fb_blank ; enum backlight_type type ; unsigned int state ; }; struct backlight_device { struct backlight_properties props ; struct mutex update_lock ; struct mutex ops_lock ; struct backlight_ops const *ops ; struct notifier_block fb_notif ; struct list_head entry ; struct device dev ; bool fb_bl_on[32U] ; int use_count ; }; struct fb_chroma { __u32 redx ; __u32 greenx ; __u32 bluex ; __u32 whitex ; __u32 redy ; __u32 greeny ; __u32 bluey ; __u32 whitey ; }; struct fb_videomode; struct fb_monspecs { struct fb_chroma chroma ; struct fb_videomode *modedb ; __u8 manufacturer[4U] ; __u8 monitor[14U] ; __u8 serial_no[14U] ; __u8 ascii[14U] ; __u32 modedb_len ; __u32 model ; __u32 serial ; __u32 year ; __u32 week ; __u32 hfmin ; __u32 hfmax ; __u32 dclkmin ; __u32 dclkmax ; __u16 input ; __u16 dpms ; __u16 signal ; __u16 vfmin ; __u16 vfmax ; __u16 gamma ; unsigned char gtf : 1 ; __u16 misc ; __u8 version ; __u8 revision ; __u8 max_x ; __u8 max_y ; }; struct fb_cmap_user { __u32 start ; __u32 len ; __u16 *red ; __u16 *green ; __u16 *blue ; __u16 *transp ; }; struct fb_event { struct fb_info *info ; void *data ; }; struct fb_blit_caps { u32 x ; u32 y ; u32 len ; u32 flags ; }; struct fb_pixmap { u8 *addr ; u32 size ; u32 offset ; u32 buf_align ; u32 scan_align ; u32 access_align ; u32 flags ; u32 blit_x ; u32 blit_y ; void (*writeio)(struct fb_info * , void * , void * , unsigned int ) ; void (*readio)(struct fb_info * , void * , void * , unsigned int ) ; }; struct fb_deferred_io { unsigned long delay ; struct mutex lock ; struct list_head pagelist ; void (*first_io)(struct fb_info * ) ; void (*deferred_io)(struct fb_info * , struct list_head * ) ; }; struct fb_ops { struct module *owner ; int (*fb_open)(struct fb_info * , int ) ; int (*fb_release)(struct fb_info * , int ) ; ssize_t (*fb_read)(struct fb_info * , char * , size_t , loff_t * ) ; ssize_t (*fb_write)(struct fb_info * , char const * , size_t , loff_t * ) ; int (*fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; int (*fb_set_par)(struct fb_info * ) ; int (*fb_setcolreg)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) ; int (*fb_setcmap)(struct fb_cmap * , struct fb_info * ) ; int (*fb_blank)(int , struct fb_info * ) ; int (*fb_pan_display)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*fb_fillrect)(struct fb_info * , struct fb_fillrect const * ) ; void (*fb_copyarea)(struct fb_info * , struct fb_copyarea const * ) ; void (*fb_imageblit)(struct fb_info * , struct fb_image const * ) ; int (*fb_cursor)(struct fb_info * , struct fb_cursor * ) ; void (*fb_rotate)(struct fb_info * , int ) ; int (*fb_sync)(struct fb_info * ) ; int (*fb_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_compat_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_mmap)(struct fb_info * , struct vm_area_struct * ) ; void (*fb_get_caps)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) ; void (*fb_destroy)(struct fb_info * ) ; int (*fb_debug_enter)(struct fb_info * ) ; int (*fb_debug_leave)(struct fb_info * ) ; }; struct fb_tilemap { __u32 width ; __u32 height ; __u32 depth ; __u32 length ; __u8 const *data ; }; struct fb_tilerect { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 index ; __u32 fg ; __u32 bg ; __u32 rop ; }; struct fb_tilearea { __u32 sx ; __u32 sy ; __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; }; struct fb_tileblit { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 fg ; __u32 bg ; __u32 length ; __u32 *indices ; }; struct fb_tilecursor { __u32 sx ; __u32 sy ; __u32 mode ; __u32 shape ; __u32 fg ; __u32 bg ; }; struct fb_tile_ops { void (*fb_settile)(struct fb_info * , struct fb_tilemap * ) ; void (*fb_tilecopy)(struct fb_info * , struct fb_tilearea * ) ; void (*fb_tilefill)(struct fb_info * , struct fb_tilerect * ) ; void (*fb_tileblit)(struct fb_info * , struct fb_tileblit * ) ; void (*fb_tilecursor)(struct fb_info * , struct fb_tilecursor * ) ; int (*fb_get_tilemax)(struct fb_info * ) ; }; struct aperture { resource_size_t base ; resource_size_t size ; }; struct apertures_struct { unsigned int count ; struct aperture ranges[0U] ; }; struct fb_info { atomic_t count ; int node ; int flags ; struct mutex lock ; struct mutex mm_lock ; struct fb_var_screeninfo var ; struct fb_fix_screeninfo fix ; struct fb_monspecs monspecs ; struct work_struct queue ; struct fb_pixmap pixmap ; struct fb_pixmap sprite ; struct fb_cmap cmap ; struct list_head modelist ; struct fb_videomode *mode ; struct backlight_device *bl_dev ; struct mutex bl_curve_mutex ; u8 bl_curve[128U] ; struct delayed_work deferred_work ; struct fb_deferred_io *fbdefio ; struct fb_ops *fbops ; struct device *device ; struct device *dev ; int class_flag ; struct fb_tile_ops *tileops ; char *screen_base ; unsigned long screen_size ; void *pseudo_palette ; u32 state ; void *fbcon_par ; void *par ; struct apertures_struct *apertures ; bool skip_vt_switch ; }; struct fb_videomode { char const *name ; u32 refresh ; u32 xres ; u32 yres ; u32 pixclock ; u32 left_margin ; u32 right_margin ; u32 upper_margin ; u32 lower_margin ; u32 hsync_len ; u32 vsync_len ; u32 sync ; u32 vmode ; u32 flag ; }; struct fb_modelist { struct list_head list ; struct fb_videomode mode ; }; struct logo_data { int depth ; int needs_directpalette ; int needs_truepalette ; int needs_cmapreset ; struct linux_logo const *logo ; }; struct fb_fix_screeninfo32 { char id[16U] ; compat_caddr_t smem_start ; u32 smem_len ; u32 type ; u32 type_aux ; u32 visual ; u16 xpanstep ; u16 ypanstep ; u16 ywrapstep ; u32 line_length ; compat_caddr_t mmio_start ; u32 mmio_len ; u32 accel ; u16 reserved[3U] ; }; struct fb_cmap32 { u32 start ; u32 len ; compat_caddr_t red ; compat_caddr_t green ; compat_caddr_t blue ; compat_caddr_t transp ; }; struct ldv_struct_EMGentry_19 { int signal_pending ; }; struct ldv_struct_file_operations_instance_0 { struct file_operations *arg0 ; int signal_pending ; }; struct ldv_struct_seq_instance_2 { struct seq_file *arg0 ; struct seq_operations *arg1 ; int signal_pending ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef u64 dma_addr_t; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; enum hrtimer_restart; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct edid_info { unsigned char dummy[128U] ; }; struct pci_dev; struct pci_bus; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct videomode; struct dmt_videomode { u32 dmt_id ; u32 std_2byte_code ; u32 cvt_3byte_code ; struct fb_videomode const *mode ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_218___0 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_218___0 __annonCompField73 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; enum display_flags { DISPLAY_FLAGS_HSYNC_LOW = 1, DISPLAY_FLAGS_HSYNC_HIGH = 2, DISPLAY_FLAGS_VSYNC_LOW = 4, DISPLAY_FLAGS_VSYNC_HIGH = 8, DISPLAY_FLAGS_DE_LOW = 16, DISPLAY_FLAGS_DE_HIGH = 32, DISPLAY_FLAGS_PIXDATA_POSEDGE = 64, DISPLAY_FLAGS_PIXDATA_NEGEDGE = 128, DISPLAY_FLAGS_INTERLACED = 256, DISPLAY_FLAGS_DOUBLESCAN = 512, DISPLAY_FLAGS_DOUBLECLK = 1024 } ; struct videomode { unsigned long pixelclock ; u32 hactive ; u32 hfront_porch ; u32 hback_porch ; u32 hsync_len ; u32 vactive ; u32 vfront_porch ; u32 vback_porch ; u32 vsync_len ; enum display_flags flags ; }; struct broken_edid { u8 manufacturer[4U] ; u32 model ; u32 fix ; }; struct __fb_timings { u32 dclk ; u32 hfreq ; u32 vfreq ; u32 hactive ; u32 vactive ; u32 hblank ; u32 vblank ; u32 htotal ; u32 vtotal ; }; typedef unsigned int u_int; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct fb_cvt_data { u32 xres ; u32 yres ; u32 refresh ; u32 f_refresh ; u32 pixclock ; u32 hperiod ; u32 hblank ; u32 hfreq ; u32 htotal ; u32 vtotal ; u32 vsync ; u32 hsync ; u32 h_front_porch ; u32 h_back_porch ; u32 v_front_porch ; u32 v_back_porch ; u32 h_margin ; u32 v_margin ; u32 interlace ; u32 aspect_ratio ; u32 active_pixels ; u32 flags ; u32 status ; }; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) ; void ldv_linux_drivers_base_class_check_final_state(void) ; int ldv_linux_fs_char_dev_register_chrdev(int major ) ; void ldv_linux_fs_char_dev_unregister_chrdev_region(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_destroy_class(struct class *cls ) ; int ldv_linux_usb_gadget_register_chrdev(int major ) ; void ldv_linux_usb_gadget_unregister_chrdev_region(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_128(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_125(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_126(void) ; static void ldv_ldv_check_final_state_127(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } int ldv_linux_kernel_module_try_module_get(struct module *module ) ; void ldv_linux_kernel_module_module_put(struct module *module ) ; static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_102(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_105(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_113(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_118(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_120(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mm_lock_of_fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mm_lock_of_fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(struct mutex *lock ) ; extern struct module __this_module ; extern uint16_t __cachemode2pte_tbl[8U] ; __inline static unsigned long cachemode2protval(enum page_cache_mode pcm ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned int )pcm == 0U, 1L); } if (tmp != 0L) { return (0UL); } else { } return ((unsigned long )__cachemode2pte_tbl[(unsigned int )pcm]); } } extern int printk(char const * , ...) ; extern void might_fault(void) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void __bad_percpu_size(void) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } extern struct cpuinfo_x86 boot_cpu_data ; __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) ; __inline static int atomic_dec_and_test(atomic_t *v ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_106(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_108(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_119(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_121(struct mutex *ldv_func_arg1 ) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7146; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7146; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7146; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7146; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7146: ti = (struct thread_info *)(pfo_ret__ - 32728UL); return (ti); } } extern void pm_vt_switch_required(struct device * , bool ) ; extern void pm_vt_switch_unregister(struct device * ) ; __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { { __memcpy(dst, (void const *)src, count); } return; } } __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { { __memcpy((void *)dst, src, count); } return; } } __inline static unsigned int iminor(struct inode const *inode ) { { return ((unsigned int )inode->i_rdev & 1048575U); } } __inline static struct inode *file_inode(struct file const *f ) { { return ((struct inode *)f->f_inode); } } extern int __register_chrdev(unsigned int , unsigned int , unsigned int , char const * , struct file_operations const * ) ; extern void __unregister_chrdev(unsigned int , unsigned int , unsigned int , char const * ) ; __inline static int ldv_register_chrdev_72(unsigned int major , char const *name , struct file_operations const *fops ) { int tmp ; { { tmp = __register_chrdev(major, 0U, 256U, name, fops); } return (tmp); } } __inline static int register_chrdev(unsigned int major , char const *name , struct file_operations const *fops ) ; __inline static int ldv_register_chrdev_122(unsigned int major , char const *name , struct file_operations const *fops ) ; __inline static void ldv_unregister_chrdev_73(unsigned int major , char const *name ) { { { __unregister_chrdev(major, 0U, 256U, name); } return; } } __inline static void unregister_chrdev(unsigned int major , char const *name ) ; __inline static void ldv_unregister_chrdev_124(unsigned int major , char const *name ) ; extern loff_t default_llseek(struct file * , loff_t , int ) ; extern pgprot_t vm_get_page_prot(unsigned long ) ; extern int vm_iomap_memory(struct vm_area_struct * , phys_addr_t , unsigned long ) ; extern unsigned long copy_in_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern int __request_module(bool , char const * , ...) ; static bool ldv_try_module_get_110(struct module *ldv_func_arg1 ) ; static void ldv_module_put_111(struct module *ldv_func_arg1 ) ; static void ldv_module_put_114(struct module *ldv_func_arg1 ) ; __inline static void *compat_ptr(compat_uptr_t uptr ) { { return ((void *)((unsigned long )uptr)); } } extern void *compat_alloc_user_space(unsigned long ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; extern struct linux_logo const *fb_find_logo(int ) ; extern struct proc_dir_entry *proc_create_data(char const * , umode_t , struct proc_dir_entry * , struct file_operations const * , void * ) ; __inline static struct proc_dir_entry *proc_create(char const *name , umode_t mode , struct proc_dir_entry *parent , struct file_operations const *proc_fops ) { struct proc_dir_entry *tmp ; { { tmp = proc_create_data(name, (int )mode, parent, proc_fops, (void *)0); } return (tmp); } } extern void remove_proc_entry(char const * , struct proc_dir_entry * ) ; extern int seq_open(struct file * , struct seq_operations const * ) ; static int ldv_seq_open_104(struct file *ldv_func_arg1 , struct seq_operations const *ldv_func_arg2 ) ; extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_release(struct inode * , struct file * ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern void console_lock(void) ; extern void console_unlock(void) ; static void ldv_class_destroy_123(struct class *cls ) ; extern struct device *device_create(struct class * , struct device * , dev_t , void * , char const * , ...) ; extern void device_destroy(struct class * , dev_t ) ; extern int fb_notifier_call_chain(unsigned long , void * ) ; int fb_set_var(struct fb_info *info , struct fb_var_screeninfo *var ) ; int fb_pan_display(struct fb_info *info , struct fb_var_screeninfo *var ) ; int fb_blank(struct fb_info *info , int blank ) ; int register_framebuffer(struct fb_info *fb_info ) ; int unregister_framebuffer(struct fb_info *fb_info ) ; int unlink_framebuffer(struct fb_info *fb_info ) ; int remove_conflicting_framebuffers(struct apertures_struct *a , char const *name , bool primary ) ; int fb_prepare_logo(struct fb_info *info , int rotate ) ; int fb_show_logo(struct fb_info *info , int rotate ) ; char *fb_get_buffer_offset(struct fb_info *info , struct fb_pixmap *buf , u32 size ) ; void fb_pad_unaligned_buffer(u8 *dst , u32 d_pitch , u8 *src , u32 idx , u32 height , u32 shift_high , u32 shift_low , u32 mod ) ; void fb_pad_aligned_buffer(u8 *dst , u32 d_pitch , u8 *src , u32 s_pitch , u32 height ) ; void fb_set_suspend(struct fb_info *info , int state ) ; int fb_get_color_depth(struct fb_var_screeninfo *var , struct fb_fix_screeninfo *fix ) ; int fb_new_modelist(struct fb_info *info ) ; struct fb_info *registered_fb[32U] ; int num_registered_fb ; struct class *fb_class ; int lock_fb_info(struct fb_info *info ) ; __inline static void unlock_fb_info(struct fb_info *info ) { { { ldv_mutex_unlock_97(& info->lock); } return; } } __inline static void __fb_pad_aligned_buffer(u8 *dst , u32 d_pitch , u8 *src , u32 s_pitch , u32 height ) { u32 i ; u32 j ; u8 *tmp ; u8 *tmp___0 ; u32 tmp___1 ; { d_pitch = d_pitch - s_pitch; i = height; goto ldv_35836; ldv_35835: j = 0U; goto ldv_35833; ldv_35832: tmp = dst; dst = dst + 1; tmp___0 = src; src = src + 1; *tmp = *tmp___0; j = j + 1U; ldv_35833: ; if (j < s_pitch) { goto ldv_35832; } else { } dst = dst + (unsigned long )d_pitch; ldv_35836: tmp___1 = i; i = i - 1U; if (tmp___1 != 0U) { goto ldv_35835; } else { } return; } } extern void fb_deferred_io_open(struct fb_info * , struct inode * , struct file * ) ; extern int fb_deferred_io_fsync(struct file * , loff_t , loff_t , int ) ; __inline static bool fb_be_math(struct fb_info *info ) { { return ((info->flags & 1048576) != 0); } } int fb_init_device(struct fb_info *fb_info ) ; void fb_cleanup_device(struct fb_info *fb_info ) ; void fb_var_to_videomode(struct fb_videomode *mode , struct fb_var_screeninfo const *var ) ; void fb_videomode_to_var(struct fb_var_screeninfo *var , struct fb_videomode const *mode ) ; int fb_mode_is_equal(struct fb_videomode const *mode1 , struct fb_videomode const *mode2 ) ; int fb_add_videomode(struct fb_videomode const *mode , struct list_head *head ) ; void fb_delete_videomode(struct fb_videomode const *mode , struct list_head *head ) ; void fb_destroy_modelist(struct list_head *head ) ; int fb_cmap_to_user(struct fb_cmap const *from , struct fb_cmap_user *to ) ; int fb_set_cmap(struct fb_cmap *cmap , struct fb_info *info ) ; int fb_set_user_cmap(struct fb_cmap_user *cmap , struct fb_info *info ) ; __inline static void fb_pgprotect(struct file *file , struct vm_area_struct *vma , unsigned long off ) { unsigned long prot ; unsigned long tmp ; { prot = vma->vm_page_prot.pgprot & 0xffffffffffffff67UL; if ((unsigned int )boot_cpu_data.x86 > 3U) { { tmp = cachemode2protval(2); vma->vm_page_prot.pgprot = prot | tmp; } } else { } return; } } extern int fb_is_primary_device(struct fb_info * ) ; static struct mutex registration_lock = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "registration_lock.wait_lock", 0, 0UL}}}}, {& registration_lock.wait_list, & registration_lock.wait_list}, 0, (void *)(& registration_lock), {0, {0, 0}, "registration_lock", 0, 0UL}}; static char const __kstrtab_registered_fb[14U] = { 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', 'e', 'd', '_', 'f', 'b', '\000'}; struct kernel_symbol const __ksymtab_registered_fb ; struct kernel_symbol const __ksymtab_registered_fb = {(unsigned long )(& registered_fb), (char const *)(& __kstrtab_registered_fb)}; static char const __kstrtab_num_registered_fb[18U] = { 'n', 'u', 'm', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', 'e', 'd', '_', 'f', 'b', '\000'}; struct kernel_symbol const __ksymtab_num_registered_fb ; struct kernel_symbol const __ksymtab_num_registered_fb = {(unsigned long )(& num_registered_fb), (char const *)(& __kstrtab_num_registered_fb)}; static struct fb_info *get_fb_info(unsigned int idx ) { struct fb_info *fb_info ; void *tmp ; { if (idx > 31U) { { tmp = ERR_PTR(-19L); } return ((struct fb_info *)tmp); } else { } { ldv_mutex_lock_98(& registration_lock); fb_info = registered_fb[idx]; } if ((unsigned long )fb_info != (unsigned long )((struct fb_info *)0)) { { atomic_inc(& fb_info->count); } } else { } { ldv_mutex_unlock_99(& registration_lock); } return (fb_info); } } static void put_fb_info(struct fb_info *fb_info ) { int tmp ; { { tmp = atomic_dec_and_test(& fb_info->count); } if (tmp == 0) { return; } else { } if ((unsigned long )(fb_info->fbops)->fb_destroy != (unsigned long )((void (*)(struct fb_info * ))0)) { { (*((fb_info->fbops)->fb_destroy))(fb_info); } } else { } return; } } int lock_fb_info(struct fb_info *info ) { { { ldv_mutex_lock_100(& info->lock); } if ((unsigned long )info->fbops == (unsigned long )((struct fb_ops *)0)) { { ldv_mutex_unlock_101(& info->lock); } return (0); } else { } return (1); } } static char const __kstrtab_lock_fb_info[13U] = { 'l', 'o', 'c', 'k', '_', 'f', 'b', '_', 'i', 'n', 'f', 'o', '\000'}; struct kernel_symbol const __ksymtab_lock_fb_info ; struct kernel_symbol const __ksymtab_lock_fb_info = {(unsigned long )(& lock_fb_info), (char const *)(& __kstrtab_lock_fb_info)}; int fb_get_color_depth(struct fb_var_screeninfo *var , struct fb_fix_screeninfo *fix ) { int depth ; { depth = 0; if (fix->visual <= 1U) { depth = 1; } else if (((var->green.length == var->blue.length && var->green.length == var->red.length) && var->green.offset == var->blue.offset) && var->green.offset == var->red.offset) { depth = (int )var->green.length; } else { depth = (int )((var->green.length + var->red.length) + var->blue.length); } return (depth); } } static char const __kstrtab_fb_get_color_depth[19U] = { 'f', 'b', '_', 'g', 'e', 't', '_', 'c', 'o', 'l', 'o', 'r', '_', 'd', 'e', 'p', 't', 'h', '\000'}; struct kernel_symbol const __ksymtab_fb_get_color_depth ; struct kernel_symbol const __ksymtab_fb_get_color_depth = {(unsigned long )(& fb_get_color_depth), (char const *)(& __kstrtab_fb_get_color_depth)}; void fb_pad_aligned_buffer(u8 *dst , u32 d_pitch , u8 *src , u32 s_pitch , u32 height ) { { { __fb_pad_aligned_buffer(dst, d_pitch, src, s_pitch, height); } return; } } static char const __kstrtab_fb_pad_aligned_buffer[22U] = { 'f', 'b', '_', 'p', 'a', 'd', '_', 'a', 'l', 'i', 'g', 'n', 'e', 'd', '_', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_fb_pad_aligned_buffer ; struct kernel_symbol const __ksymtab_fb_pad_aligned_buffer = {(unsigned long )(& fb_pad_aligned_buffer), (char const *)(& __kstrtab_fb_pad_aligned_buffer)}; void fb_pad_unaligned_buffer(u8 *dst , u32 d_pitch , u8 *src , u32 idx , u32 height , u32 shift_high , u32 shift_low , u32 mod ) { u8 mask ; u8 tmp ; int i ; int j ; int tmp___0 ; { mask = (unsigned char )(4095 << (int )shift_high); i = (int )height; goto ldv_36088; ldv_36087: j = 0; goto ldv_36085; ldv_36084: tmp = *(dst + (unsigned long )j); tmp = (u8 )((int )tmp & (int )mask); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )*src >> (int )shift_low))); *(dst + (unsigned long )j) = tmp; tmp = (u8 )((int )*src << (int )shift_high); *(dst + ((unsigned long )j + 1UL)) = tmp; src = src + 1; j = j + 1; ldv_36085: ; if ((u32 )j < idx) { goto ldv_36084; } else { } tmp = *(dst + (unsigned long )idx); tmp = (u8 )((int )tmp & (int )mask); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )*src >> (int )shift_low))); *(dst + (unsigned long )idx) = tmp; if (shift_high < mod) { tmp = (u8 )((int )*src << (int )shift_high); *(dst + (unsigned long )(idx + 1U)) = tmp; } else { } src = src + 1; dst = dst + (unsigned long )d_pitch; ldv_36088: tmp___0 = i; i = i - 1; if (tmp___0 != 0) { goto ldv_36087; } else { } return; } } static char const __kstrtab_fb_pad_unaligned_buffer[24U] = { 'f', 'b', '_', 'p', 'a', 'd', '_', 'u', 'n', 'a', 'l', 'i', 'g', 'n', 'e', 'd', '_', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_fb_pad_unaligned_buffer ; struct kernel_symbol const __ksymtab_fb_pad_unaligned_buffer = {(unsigned long )(& fb_pad_unaligned_buffer), (char const *)(& __kstrtab_fb_pad_unaligned_buffer)}; char *fb_get_buffer_offset(struct fb_info *info , struct fb_pixmap *buf , u32 size ) { u32 align ; u32 offset ; char *addr ; { align = buf->buf_align - 1U; addr = (char *)buf->addr; if ((buf->flags & 4U) != 0U) { if ((unsigned long )(info->fbops)->fb_sync != (unsigned long )((int (*)(struct fb_info * ))0) && (buf->flags & 256U) != 0U) { { (*((info->fbops)->fb_sync))(info); } } else { } return (addr); } else { } offset = buf->offset + align; offset = offset & ~ align; if (offset + size > buf->size) { if ((unsigned long )(info->fbops)->fb_sync != (unsigned long )((int (*)(struct fb_info * ))0) && (buf->flags & 256U) != 0U) { { (*((info->fbops)->fb_sync))(info); } } else { } offset = 0U; } else { } buf->offset = offset + size; addr = addr + (unsigned long )offset; return (addr); } } static char const __kstrtab_fb_get_buffer_offset[21U] = { 'f', 'b', '_', 'g', 'e', 't', '_', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'o', 'f', 'f', 's', 'e', 't', '\000'}; struct kernel_symbol const __ksymtab_fb_get_buffer_offset ; struct kernel_symbol const __ksymtab_fb_get_buffer_offset = {(unsigned long )(& fb_get_buffer_offset), (char const *)(& __kstrtab_fb_get_buffer_offset)}; __inline static unsigned int safe_shift(unsigned int d , int n ) { { return (n < 0 ? d >> - n : d << n); } } static void fb_set_logocmap(struct fb_info *info , struct linux_logo const *logo ) { struct fb_cmap palette_cmap ; u16 palette_green[16U] ; u16 palette_blue[16U] ; u16 palette_red[16U] ; int i ; int j ; int n ; unsigned char const *clut ; { clut = logo->clut; palette_cmap.start = 0U; palette_cmap.len = 16U; palette_cmap.red = (__u16 *)(& palette_red); palette_cmap.green = (__u16 *)(& palette_green); palette_cmap.blue = (__u16 *)(& palette_blue); palette_cmap.transp = (__u16 *)0U; i = 0; goto ldv_36141; ldv_36140: n = (int )((unsigned int )logo->clutsize - (unsigned int )i); if (n > 16) { n = 16; } else { } palette_cmap.start = (__u32 )(i + 32); palette_cmap.len = (__u32 )n; j = 0; goto ldv_36138; ldv_36137: *(palette_cmap.red + (unsigned long )j) = (__u16 )((int )((short )((int )*clut << 8)) | (int )((short )*clut)); *(palette_cmap.green + (unsigned long )j) = (__u16 )((int )((short )((int )*(clut + 1UL) << 8)) | (int )((short )*(clut + 1UL))); *(palette_cmap.blue + (unsigned long )j) = (__u16 )((int )((short )((int )*(clut + 2UL) << 8)) | (int )((short )*(clut + 2UL))); clut = clut + 3UL; j = j + 1; ldv_36138: ; if (j < n) { goto ldv_36137; } else { } { fb_set_cmap(& palette_cmap, info); i = i + n; } ldv_36141: ; if ((unsigned int )i < (unsigned int )logo->clutsize) { goto ldv_36140; } else { } return; } } static void fb_set_logo_truepalette(struct fb_info *info , struct linux_logo const *logo , u32 *palette ) { unsigned char mask[9U] ; unsigned char redmask ; unsigned char greenmask ; unsigned char bluemask ; int redshift ; int greenshift ; int blueshift ; int i ; unsigned char const *clut ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { mask[0] = 0U; mask[1] = 128U; mask[2] = 192U; mask[3] = 224U; mask[4] = 240U; mask[5] = 248U; mask[6] = 252U; mask[7] = 254U; mask[8] = 255U; clut = logo->clut; redmask = mask[8U < info->var.red.length ? 8U : info->var.red.length]; greenmask = mask[8U < info->var.green.length ? 8U : info->var.green.length]; bluemask = mask[8U < info->var.blue.length ? 8U : info->var.blue.length]; redshift = (int )((info->var.red.offset + info->var.red.length) - 8U); greenshift = (int )((info->var.green.offset + info->var.green.length) - 8U); blueshift = (int )((info->var.blue.offset + info->var.blue.length) - 8U); i = 0; goto ldv_36158; ldv_36157: { tmp = safe_shift((unsigned int )((int )((unsigned char )*clut) & (int )redmask), redshift); tmp___0 = safe_shift((unsigned int )((int )((unsigned char )*(clut + 1UL)) & (int )greenmask), greenshift); tmp___1 = safe_shift((unsigned int )((int )((unsigned char )*(clut + 2UL)) & (int )bluemask), blueshift); *(palette + ((unsigned long )i + 32UL)) = (tmp | tmp___0) | tmp___1; clut = clut + 3UL; i = i + 1; } ldv_36158: ; if ((unsigned int )i < (unsigned int )logo->clutsize) { goto ldv_36157; } else { } return; } } static void fb_set_logo_directpalette(struct fb_info *info , struct linux_logo const *logo , u32 *palette ) { int redshift ; int greenshift ; int blueshift ; int i ; { redshift = (int )info->var.red.offset; greenshift = (int )info->var.green.offset; blueshift = (int )info->var.blue.offset; i = 32; goto ldv_36170; ldv_36169: *(palette + (unsigned long )i) = (u32 )(((i << redshift) | (i << greenshift)) | (i << blueshift)); i = i + 1; ldv_36170: ; if ((unsigned int )i < (unsigned int )logo->clutsize + 32U) { goto ldv_36169; } else { } return; } } static void fb_set_logo(struct fb_info *info , struct linux_logo const *logo , u8 *dst , int depth ) { int i ; int j ; int k ; u8 const *src ; u8 xor ; u8 fg ; u8 d ; int tmp ; u8 *tmp___0 ; u8 *tmp___1 ; u8 *tmp___2 ; { { src = (u8 const *)logo->data; xor = info->fix.visual == 0U ? 255U : 0U; fg = 1U; tmp = fb_get_color_depth(& info->var, & info->fix); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ fg = 1U; goto ldv_36186; case_2: /* CIL Label */ fg = 3U; goto ldv_36186; switch_default: /* CIL Label */ fg = 7U; goto ldv_36186; switch_break: /* CIL Label */ ; } ldv_36186: ; if (info->fix.visual <= 1U) { fg = ~ ((int )((u8 )(4095 << (int )info->var.green.length))); } else { } { if (depth == 4) { goto case_4; } else { } if (depth == 1) { goto case_1___0; } else { } goto switch_break___0; case_4: /* CIL Label */ i = 0; goto ldv_36194; ldv_36193: j = 0; goto ldv_36191; ldv_36190: tmp___0 = dst; dst = dst + 1; *tmp___0 = (u8 )((int )((unsigned char )*src) >> 4); j = j + 1; if ((unsigned int )j < (unsigned int )logo->width) { tmp___1 = dst; dst = dst + 1; *tmp___1 = (unsigned int )((u8 )*src) & 15U; j = j + 1; } else { } src = src + 1; ldv_36191: ; if ((unsigned int )j < (unsigned int )logo->width) { goto ldv_36190; } else { } i = i + 1; ldv_36194: ; if ((unsigned int )i < (unsigned int )logo->height) { goto ldv_36193; } else { } goto ldv_36196; case_1___0: /* CIL Label */ i = 0; goto ldv_36205; ldv_36204: j = 0; goto ldv_36202; ldv_36201: d = (u8 )((int )((unsigned char )*src) ^ (int )xor); k = 7; goto ldv_36199; ldv_36198: tmp___2 = dst; dst = dst + 1; *tmp___2 = ((int )d >> k) & 1 ? fg : 0U; j = j + 1; k = k - 1; ldv_36199: ; if (k >= 0) { goto ldv_36198; } else { } src = src + 1; ldv_36202: ; if ((unsigned int )j < (unsigned int )logo->width) { goto ldv_36201; } else { } i = i + 1; ldv_36205: ; if ((unsigned int )i < (unsigned int )logo->height) { goto ldv_36204; } else { } goto ldv_36196; switch_break___0: /* CIL Label */ ; } ldv_36196: ; return; } } static struct logo_data fb_logo ; static void fb_rotate_logo_ud(u8 const *in , u8 *out , u32 width , u32 height ) { u32 size ; u32 i ; u8 *tmp ; u8 const *tmp___0 ; u32 tmp___1 ; { size = width * height; out = out + (unsigned long )(size - 1U); i = size; goto ldv_36223; ldv_36222: tmp = out; out = out - 1; tmp___0 = in; in = in + 1; *tmp = *tmp___0; ldv_36223: tmp___1 = i; i = i - 1U; if (tmp___1 != 0U) { goto ldv_36222; } else { } return; } } static void fb_rotate_logo_cw(u8 const *in , u8 *out , u32 width , u32 height ) { int i ; int j ; int h ; u8 const *tmp ; { h = (int )(height - 1U); i = 0; goto ldv_36238; ldv_36237: j = 0; goto ldv_36235; ldv_36234: tmp = in; in = in + 1; *(out + (unsigned long )((height * (u32 )j + (u32 )h) - (u32 )i)) = *tmp; j = j + 1; ldv_36235: ; if ((u32 )j < width) { goto ldv_36234; } else { } i = i + 1; ldv_36238: ; if ((u32 )i < height) { goto ldv_36237; } else { } return; } } static void fb_rotate_logo_ccw(u8 const *in , u8 *out , u32 width , u32 height ) { int i ; int j ; int w ; u8 const *tmp ; { w = (int )(width - 1U); i = 0; goto ldv_36253; ldv_36252: j = 0; goto ldv_36250; ldv_36249: tmp = in; in = in + 1; *(out + (unsigned long )(height * (u32 )(w - j) + (u32 )i)) = *tmp; j = j + 1; ldv_36250: ; if ((u32 )j < width) { goto ldv_36249; } else { } i = i + 1; ldv_36253: ; if ((u32 )i < height) { goto ldv_36252; } else { } return; } } static void fb_rotate_logo(struct fb_info *info , u8 *dst , struct fb_image *image , int rotate ) { u32 tmp ; { if (rotate == 2) { { fb_rotate_logo_ud((u8 const *)image->data, dst, image->width, image->height); image->dx = (info->var.xres - image->width) - image->dx; image->dy = (info->var.yres - image->height) - image->dy; } } else if (rotate == 1) { { fb_rotate_logo_cw((u8 const *)image->data, dst, image->width, image->height); tmp = image->width; image->width = image->height; image->height = tmp; tmp = image->dy; image->dy = image->dx; image->dx = (info->var.xres - image->width) - tmp; } } else if (rotate == 3) { { fb_rotate_logo_ccw((u8 const *)image->data, dst, image->width, image->height); tmp = image->width; image->width = image->height; image->height = tmp; tmp = image->dx; image->dx = image->dy; image->dy = (info->var.yres - image->height) - tmp; } } else { } image->data = (char const *)dst; return; } } static void fb_do_show_logo(struct fb_info *info , struct fb_image *image , int rotate , unsigned int num ) { unsigned int x ; { if (rotate == 0) { x = 0U; goto ldv_36270; ldv_36269: { (*((info->fbops)->fb_imageblit))(info, (struct fb_image const *)image); image->dx = (image->dx + image->width) + 8U; x = x + 1U; } ldv_36270: ; if (x < num && image->dx + image->width <= info->var.xres) { goto ldv_36269; } else { } } else if (rotate == 2) { x = 0U; goto ldv_36273; ldv_36272: { (*((info->fbops)->fb_imageblit))(info, (struct fb_image const *)image); image->dx = (image->dx - image->width) - 8U; x = x + 1U; } ldv_36273: ; if (x < num) { goto ldv_36272; } else { } } else if (rotate == 1) { x = 0U; goto ldv_36276; ldv_36275: { (*((info->fbops)->fb_imageblit))(info, (struct fb_image const *)image); image->dy = (image->dy + image->height) + 8U; x = x + 1U; } ldv_36276: ; if (x < num && image->dy + image->height <= info->var.yres) { goto ldv_36275; } else { } } else if (rotate == 3) { x = 0U; goto ldv_36279; ldv_36278: { (*((info->fbops)->fb_imageblit))(info, (struct fb_image const *)image); image->dy = (image->dy - image->height) - 8U; x = x + 1U; } ldv_36279: ; if (x < num) { goto ldv_36278; } else { } } else { } return; } } static int fb_show_logo_line(struct fb_info *info , int rotate , struct linux_logo const *logo , int y , unsigned int n ) { u32 *palette ; u32 *saved_pseudo_palette ; unsigned char *logo_new ; unsigned char *logo_rotate ; struct fb_image image ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { palette = (u32 *)0U; saved_pseudo_palette = (u32 *)0U; logo_new = (unsigned char *)0U; logo_rotate = (unsigned char *)0U; if (((unsigned long )logo == (unsigned long )((struct linux_logo const *)0) || info->state != 0U) || info->flags & 1) { return (0); } else { } image.depth = 8U; image.data = (char const *)logo->data; if (fb_logo.needs_cmapreset != 0) { { fb_set_logocmap(info, logo); } } else { } if (fb_logo.needs_truepalette != 0 || fb_logo.needs_directpalette != 0) { { tmp = kmalloc(1024UL, 208U); palette = (u32 *)tmp; } if ((unsigned long )palette == (unsigned long )((u32 *)0U)) { return (0); } else { } if (fb_logo.needs_truepalette != 0) { { fb_set_logo_truepalette(info, logo, palette); } } else { { fb_set_logo_directpalette(info, logo, palette); } } saved_pseudo_palette = (u32 *)info->pseudo_palette; info->pseudo_palette = (void *)palette; } else { } if (fb_logo.depth <= 4) { { tmp___0 = kmalloc((size_t )((unsigned int )logo->width * (unsigned int )logo->height), 208U); logo_new = (unsigned char *)tmp___0; } if ((unsigned long )logo_new == (unsigned long )((unsigned char *)0U)) { { kfree((void const *)palette); } if ((unsigned long )saved_pseudo_palette != (unsigned long )((u32 *)0U)) { info->pseudo_palette = (void *)saved_pseudo_palette; } else { } return (0); } else { } { image.data = (char const *)logo_new; fb_set_logo(info, logo, logo_new, fb_logo.depth); } } else { } image.dx = 0U; image.dy = (__u32 )y; image.width = logo->width; image.height = logo->height; if (rotate != 0) { { tmp___1 = kmalloc((size_t )((unsigned int )logo->width * (unsigned int )logo->height), 208U); logo_rotate = (unsigned char *)tmp___1; } if ((unsigned long )logo_rotate != (unsigned long )((unsigned char *)0U)) { { fb_rotate_logo(info, logo_rotate, & image, rotate); } } else { } } else { } { fb_do_show_logo(info, & image, rotate, n); kfree((void const *)palette); } if ((unsigned long )saved_pseudo_palette != (unsigned long )((u32 *)0U)) { info->pseudo_palette = (void *)saved_pseudo_palette; } else { } { kfree((void const *)logo_new); kfree((void const *)logo_rotate); } return ((int )logo->height); } } __inline static int fb_prepare_extra_logos(struct fb_info *info , unsigned int height , unsigned int yres ) { { return ((int )height); } } __inline static int fb_show_extra_logos(struct fb_info *info , int y , int rotate ) { { return (y); } } int fb_prepare_logo(struct fb_info *info , int rotate ) { int depth ; int tmp ; unsigned int yres ; int tmp___0 ; { { tmp = fb_get_color_depth(& info->var, & info->fix); depth = tmp; __memset((void *)(& fb_logo), 0, 24UL); } if (((unsigned int )*((int *)info + 2UL) & 131073U) != 0U) { return (0); } else { } if (info->fix.visual == 4U) { depth = (int )info->var.blue.length; if (info->var.red.length < (__u32 )depth) { depth = (int )info->var.red.length; } else { } if (info->var.green.length < (__u32 )depth) { depth = (int )info->var.green.length; } else { } } else { } if (info->fix.visual == 5U && depth > 4) { depth = 4; } else { } { fb_logo.logo = fb_find_logo(depth); } if ((unsigned long )fb_logo.logo == (unsigned long )((struct linux_logo const *)0)) { return (0); } else { } if (rotate == 0 || rotate == 2) { yres = info->var.yres; } else { yres = info->var.xres; } if ((unsigned int )(fb_logo.logo)->height > yres) { fb_logo.logo = (struct linux_logo const *)0; return (0); } else { } if ((int )(fb_logo.logo)->type == 3) { fb_logo.depth = 8; } else if ((int )(fb_logo.logo)->type == 2) { fb_logo.depth = 4; } else { fb_logo.depth = 1; } if (fb_logo.depth > 4 && depth > 4) { { if (info->fix.visual == 2U) { goto case_2; } else { } if (info->fix.visual == 4U) { goto case_4; } else { } if (info->fix.visual == 3U) { goto case_3; } else { } goto switch_break; case_2: /* CIL Label */ fb_logo.needs_truepalette = 1; goto ldv_36310; case_4: /* CIL Label */ fb_logo.needs_directpalette = 1; fb_logo.needs_cmapreset = 1; goto ldv_36310; case_3: /* CIL Label */ fb_logo.needs_cmapreset = 1; goto ldv_36310; switch_break: /* CIL Label */ ; } ldv_36310: ; } else { } { tmp___0 = fb_prepare_extra_logos(info, (fb_logo.logo)->height, yres); } return (tmp___0); } } int fb_show_logo(struct fb_info *info , int rotate ) { int y ; unsigned int tmp ; { { tmp = cpumask_weight(cpu_online_mask); y = fb_show_logo_line(info, rotate, fb_logo.logo, 0, tmp); y = fb_show_extra_logos(info, y, rotate); } return (y); } } static char const __kstrtab_fb_prepare_logo[16U] = { 'f', 'b', '_', 'p', 'r', 'e', 'p', 'a', 'r', 'e', '_', 'l', 'o', 'g', 'o', '\000'}; struct kernel_symbol const __ksymtab_fb_prepare_logo ; struct kernel_symbol const __ksymtab_fb_prepare_logo = {(unsigned long )(& fb_prepare_logo), (char const *)(& __kstrtab_fb_prepare_logo)}; static char const __kstrtab_fb_show_logo[13U] = { 'f', 'b', '_', 's', 'h', 'o', 'w', '_', 'l', 'o', 'g', 'o', '\000'}; struct kernel_symbol const __ksymtab_fb_show_logo ; struct kernel_symbol const __ksymtab_fb_show_logo = {(unsigned long )(& fb_show_logo), (char const *)(& __kstrtab_fb_show_logo)}; static void *fb_seq_start(struct seq_file *m , loff_t *pos ) { { { ldv_mutex_lock_102(& registration_lock); } return (*pos <= 31LL ? (void *)pos : (void *)0); } } static void *fb_seq_next(struct seq_file *m , void *v , loff_t *pos ) { { *pos = *pos + 1LL; return (*pos <= 31LL ? (void *)pos : (void *)0); } } static void fb_seq_stop(struct seq_file *m , void *v ) { { { ldv_mutex_unlock_103(& registration_lock); } return; } } static int fb_seq_show(struct seq_file *m , void *v ) { int i ; struct fb_info *fi ; { i = (int )*((loff_t *)v); fi = registered_fb[i]; if ((unsigned long )fi != (unsigned long )((struct fb_info *)0)) { { seq_printf(m, "%d %s\n", fi->node, (char *)(& fi->fix.id)); } } else { } return (0); } } static struct seq_operations const proc_fb_seq_ops = {& fb_seq_start, & fb_seq_stop, & fb_seq_next, & fb_seq_show}; static int proc_fb_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = ldv_seq_open_104(file, & proc_fb_seq_ops); } return (tmp); } } static struct file_operations const fb_proc_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & proc_fb_open, 0, & seq_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct fb_info *file_fb_info(struct file *file ) { struct inode *inode ; struct inode *tmp ; int fbidx ; unsigned int tmp___0 ; struct fb_info *info ; { { tmp = file_inode((struct file const *)file); inode = tmp; tmp___0 = iminor((struct inode const *)inode); fbidx = (int )tmp___0; info = registered_fb[fbidx]; } if ((unsigned long )((void *)info) != (unsigned long )file->private_data) { info = (struct fb_info *)0; } else { } return (info); } } static ssize_t fb_read(struct file *file , char *buf , size_t count , loff_t *ppos ) { unsigned long p ; struct fb_info *info ; struct fb_info *tmp ; u8 *buffer ; u8 *dst ; u8 *src ; int c ; int cnt ; int err ; unsigned long total_size ; ssize_t tmp___0 ; void *tmp___1 ; unsigned long tmp___2 ; { { p = (unsigned long )*ppos; tmp = file_fb_info(file); info = tmp; cnt = 0; err = 0; } if ((unsigned long )info == (unsigned long )((struct fb_info *)0) || (unsigned long )info->screen_base == (unsigned long )((char *)0)) { return (-19L); } else { } if (info->state != 0U) { return (-1L); } else { } if ((unsigned long )(info->fbops)->fb_read != (unsigned long )((ssize_t (*)(struct fb_info * , char * , size_t , loff_t * ))0)) { { tmp___0 = (*((info->fbops)->fb_read))(info, buf, count, ppos); } return (tmp___0); } else { } total_size = info->screen_size; if (total_size == 0UL) { total_size = (unsigned long )info->fix.smem_len; } else { } if (p >= total_size) { return (0L); } else { } if (count >= total_size) { count = total_size; } else { } if (count + p > total_size) { count = total_size - p; } else { } { tmp___1 = kmalloc(4096UL < count ? 4096UL : count, 208U); buffer = (u8 *)tmp___1; } if ((unsigned long )buffer == (unsigned long )((u8 *)0U)) { return (-12L); } else { } src = (u8 *)(info->screen_base + p); if ((unsigned long )(info->fbops)->fb_sync != (unsigned long )((int (*)(struct fb_info * ))0)) { { (*((info->fbops)->fb_sync))(info); } } else { } goto ldv_36382; ldv_36381: { c = (int )(4096UL < count ? 4096UL : count); dst = buffer; memcpy_fromio((void *)dst, (void const volatile *)src, (size_t )c); dst = dst + (unsigned long )c; src = src + (unsigned long )c; tmp___2 = copy_to_user((void *)buf, (void const *)buffer, (unsigned long )c); } if (tmp___2 != 0UL) { err = -14; goto ldv_36380; } else { } *ppos = *ppos + (loff_t )c; buf = buf + (unsigned long )c; cnt = cnt + c; count = count - (size_t )c; ldv_36382: ; if (count != 0UL) { goto ldv_36381; } else { } ldv_36380: { kfree((void const *)buffer); } return ((ssize_t )(err != 0 ? err : cnt)); } } static ssize_t fb_write(struct file *file , char const *buf , size_t count , loff_t *ppos ) { unsigned long p ; struct fb_info *info ; struct fb_info *tmp ; u8 *buffer ; u8 *src ; u8 *dst ; int c ; int cnt ; int err ; unsigned long total_size ; ssize_t tmp___0 ; void *tmp___1 ; unsigned long tmp___2 ; { { p = (unsigned long )*ppos; tmp = file_fb_info(file); info = tmp; cnt = 0; err = 0; } if ((unsigned long )info == (unsigned long )((struct fb_info *)0) || (unsigned long )info->screen_base == (unsigned long )((char *)0)) { return (-19L); } else { } if (info->state != 0U) { return (-1L); } else { } if ((unsigned long )(info->fbops)->fb_write != (unsigned long )((ssize_t (*)(struct fb_info * , char const * , size_t , loff_t * ))0)) { { tmp___0 = (*((info->fbops)->fb_write))(info, buf, count, ppos); } return (tmp___0); } else { } total_size = info->screen_size; if (total_size == 0UL) { total_size = (unsigned long )info->fix.smem_len; } else { } if (p > total_size) { return (-27L); } else { } if (count > total_size) { err = -27; count = total_size; } else { } if (count + p > total_size) { if (err == 0) { err = -28; } else { } count = total_size - p; } else { } { tmp___1 = kmalloc(4096UL < count ? 4096UL : count, 208U); buffer = (u8 *)tmp___1; } if ((unsigned long )buffer == (unsigned long )((u8 *)0U)) { return (-12L); } else { } dst = (u8 *)(info->screen_base + p); if ((unsigned long )(info->fbops)->fb_sync != (unsigned long )((int (*)(struct fb_info * ))0)) { { (*((info->fbops)->fb_sync))(info); } } else { } goto ldv_36400; ldv_36399: { c = (int )(4096UL < count ? 4096UL : count); src = buffer; tmp___2 = copy_from_user((void *)src, (void const *)buf, (unsigned long )c); } if (tmp___2 != 0UL) { err = -14; goto ldv_36398; } else { } { memcpy_toio((void volatile *)dst, (void const *)src, (size_t )c); dst = dst + (unsigned long )c; src = src + (unsigned long )c; *ppos = *ppos + (loff_t )c; buf = buf + (unsigned long )c; cnt = cnt + c; count = count - (size_t )c; } ldv_36400: ; if (count != 0UL) { goto ldv_36399; } else { } ldv_36398: { kfree((void const *)buffer); } return ((ssize_t )(cnt != 0 ? cnt : err)); } } int fb_pan_display(struct fb_info *info , struct fb_var_screeninfo *var ) { struct fb_fix_screeninfo *fix ; unsigned int yres ; int err ; { fix = & info->fix; yres = info->var.yres; err = 0; if (var->yoffset != 0U) { if ((var->vmode & 256U) != 0U) { if ((unsigned int )fix->ywrapstep == 0U || var->yoffset % (__u32 )fix->ywrapstep != 0U) { err = -22; } else { yres = 0U; } } else if ((unsigned int )fix->ypanstep == 0U || var->yoffset % (__u32 )fix->ypanstep != 0U) { err = -22; } else { } } else { } if (var->xoffset != 0U && ((unsigned int )fix->xpanstep == 0U || var->xoffset % (__u32 )fix->xpanstep != 0U)) { err = -22; } else { } if (((err != 0 || (unsigned long )(info->fbops)->fb_pan_display == (unsigned long )((int (*)(struct fb_var_screeninfo * , struct fb_info * ))0)) || var->yoffset > info->var.yres_virtual - yres) || var->xoffset > info->var.xres_virtual - info->var.xres) { return (-22); } else { } { err = (*((info->fbops)->fb_pan_display))(var, info); } if (err != 0) { return (err); } else { } info->var.xoffset = var->xoffset; info->var.yoffset = var->yoffset; if ((var->vmode & 256U) != 0U) { info->var.vmode = info->var.vmode | 256U; } else { info->var.vmode = info->var.vmode & 4294967039U; } return (0); } } static char const __kstrtab_fb_pan_display[15U] = { 'f', 'b', '_', 'p', 'a', 'n', '_', 'd', 'i', 's', 'p', 'l', 'a', 'y', '\000'}; struct kernel_symbol const __ksymtab_fb_pan_display ; struct kernel_symbol const __ksymtab_fb_pan_display = {(unsigned long )(& fb_pan_display), (char const *)(& __kstrtab_fb_pan_display)}; static int fb_check_caps(struct fb_info *info , struct fb_var_screeninfo *var , u32 activate___0 ) { struct fb_event event ; struct fb_blit_caps caps ; struct fb_blit_caps fbcaps ; int err ; { { err = 0; __memset((void *)(& caps), 0, 16UL); __memset((void *)(& fbcaps), 0, 16UL); caps.flags = (activate___0 & 64U) != 0U; event.info = info; event.data = (void *)(& caps); fb_notifier_call_chain(13UL, (void *)(& event)); (*((info->fbops)->fb_get_caps))(info, & fbcaps, var); } if (((~ fbcaps.x & caps.x) != 0U || (~ fbcaps.y & caps.y) != 0U) || fbcaps.len < caps.len) { err = -22; } else { } return (err); } } int fb_set_var(struct fb_info *info , struct fb_var_screeninfo *var ) { int flags ; int ret ; struct fb_videomode mode1 ; struct fb_videomode mode2 ; struct fb_event event ; u32 activate___0 ; struct fb_var_screeninfo old_var ; struct fb_videomode mode ; int tmp ; struct fb_event event___0 ; int evnt ; int tmp___0 ; { flags = info->flags; ret = 0; if ((var->activate & 256U) != 0U) { { fb_var_to_videomode(& mode1, (struct fb_var_screeninfo const *)var); fb_var_to_videomode(& mode2, (struct fb_var_screeninfo const *)(& info->var)); ret = fb_mode_is_equal((struct fb_videomode const *)(& mode1), (struct fb_videomode const *)(& mode2)); } if (ret == 0) { { event.info = info; event.data = (void *)(& mode1); ret = fb_notifier_call_chain(4UL, (void *)(& event)); } } else { } if (ret == 0) { { fb_delete_videomode((struct fb_videomode const *)(& mode1), & info->modelist); } } else { } ret = ret != 0 ? -22 : 0; goto done; } else { } if ((var->activate & 128U) != 0U) { goto _L; } else { { tmp___0 = memcmp((void const *)(& info->var), (void const *)var, 160UL); } if (tmp___0 != 0) { _L: /* CIL Label */ activate___0 = var->activate; if ((int )info->fix.capabilities & 1 && var->grayscale > 1U) { if (((((((((((var->red.offset != 0U || var->green.offset != 0U) || var->blue.offset != 0U) || var->transp.offset != 0U) || var->red.length != 0U) || var->green.length != 0U) || var->blue.length != 0U) || var->transp.length != 0U) || var->red.msb_right != 0U) || var->green.msb_right != 0U) || var->blue.msb_right != 0U) || var->transp.msb_right != 0U) { return (-22); } else { } } else { } if ((unsigned long )(info->fbops)->fb_check_var == (unsigned long )((int (*)(struct fb_var_screeninfo * , struct fb_info * ))0)) { *var = info->var; goto done; } else { } { ret = (*((info->fbops)->fb_check_var))(var, info); } if (ret != 0) { goto done; } else { } if ((var->activate & 15U) == 0U) { if ((unsigned long )(info->fbops)->fb_get_caps != (unsigned long )((void (*)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ))0)) { { ret = fb_check_caps(info, var, activate___0); } if (ret != 0) { goto done; } else { } } else { } old_var = info->var; info->var = *var; if ((unsigned long )(info->fbops)->fb_set_par != (unsigned long )((int (*)(struct fb_info * ))0)) { { ret = (*((info->fbops)->fb_set_par))(info); } if (ret != 0) { { info->var = old_var; printk("\fdetected fb_set_par error, error code: %d\n", ret); } goto done; } else { } } else { } { fb_pan_display(info, & info->var); fb_set_cmap(& info->cmap, info); fb_var_to_videomode(& mode, (struct fb_var_screeninfo const *)(& info->var)); } if ((unsigned long )info->modelist.prev != (unsigned long )((struct list_head *)0) && (unsigned long )info->modelist.next != (unsigned long )((struct list_head *)0)) { { tmp = list_empty((struct list_head const *)(& info->modelist)); } if (tmp == 0) { { ret = fb_add_videomode((struct fb_videomode const *)(& mode), & info->modelist); } } else { } } else { } if (ret == 0 && (flags & 65536) != 0) { { evnt = (activate___0 & 64U) != 0U ? 11 : 1; info->flags = info->flags & -65537; event___0.info = info; event___0.data = (void *)(& mode); fb_notifier_call_chain((unsigned long )evnt, (void *)(& event___0)); } } else { } } else { } } else { } } done: ; return (ret); } } static char const __kstrtab_fb_set_var[11U] = { 'f', 'b', '_', 's', 'e', 't', '_', 'v', 'a', 'r', '\000'}; struct kernel_symbol const __ksymtab_fb_set_var ; struct kernel_symbol const __ksymtab_fb_set_var = {(unsigned long )(& fb_set_var), (char const *)(& __kstrtab_fb_set_var)}; int fb_blank(struct fb_info *info , int blank ) { struct fb_event event ; int ret ; int early_ret ; { ret = -22; if (blank > 4) { blank = 4; } else { } { event.info = info; event.data = (void *)(& blank); early_ret = fb_notifier_call_chain(16UL, (void *)(& event)); } if ((unsigned long )(info->fbops)->fb_blank != (unsigned long )((int (*)(int , struct fb_info * ))0)) { { ret = (*((info->fbops)->fb_blank))(blank, info); } } else { } if (ret == 0) { { fb_notifier_call_chain(9UL, (void *)(& event)); } } else if (early_ret == 0) { { fb_notifier_call_chain(17UL, (void *)(& event)); } } else { } return (ret); } } static char const __kstrtab_fb_blank[9U] = { 'f', 'b', '_', 'b', 'l', 'a', 'n', 'k', '\000'}; struct kernel_symbol const __ksymtab_fb_blank ; struct kernel_symbol const __ksymtab_fb_blank = {(unsigned long )(& fb_blank), (char const *)(& __kstrtab_fb_blank)}; static long do_fb_ioctl(struct fb_info *info , unsigned int cmd , unsigned long arg ) { struct fb_ops *fb ; struct fb_var_screeninfo var ; struct fb_fix_screeninfo fix ; struct fb_con2fbmap con2fb ; struct fb_cmap cmap_from ; struct fb_cmap_user cmap ; struct fb_event event ; void *argp ; long ret ; int tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; int tmp___3 ; unsigned long tmp___4 ; int tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; int tmp___8 ; unsigned long tmp___9 ; int tmp___10 ; int tmp___11 ; unsigned long tmp___12 ; int tmp___13 ; int tmp___14 ; unsigned long tmp___15 ; unsigned long tmp___16 ; int tmp___17 ; unsigned long tmp___18 ; unsigned long tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; { argp = (void *)arg; ret = 0L; { if (cmd == 17920U) { goto case_17920; } else { } if (cmd == 17921U) { goto case_17921; } else { } if (cmd == 17922U) { goto case_17922; } else { } if (cmd == 17925U) { goto case_17925; } else { } if (cmd == 17924U) { goto case_17924; } else { } if (cmd == 17926U) { goto case_17926; } else { } if (cmd == 3228059144U) { goto case_3228059144; } else { } if (cmd == 17935U) { goto case_17935; } else { } if (cmd == 17936U) { goto case_17936; } else { } if (cmd == 17937U) { goto case_17937; } else { } goto switch_default; case_17920: /* CIL Label */ { tmp = lock_fb_info(info); } if (tmp == 0) { return (-19L); } else { } { var = info->var; unlock_fb_info(info); tmp___0 = copy_to_user(argp, (void const *)(& var), 160UL); ret = tmp___0 != 0UL ? -14L : 0L; } goto ldv_36478; case_17921: /* CIL Label */ { tmp___1 = copy_from_user((void *)(& var), (void const *)argp, 160UL); } if (tmp___1 != 0UL) { return (-14L); } else { } { console_lock(); tmp___2 = lock_fb_info(info); } if (tmp___2 == 0) { { console_unlock(); } return (-19L); } else { } { info->flags = info->flags | 65536; tmp___3 = fb_set_var(info, & var); ret = (long )tmp___3; info->flags = info->flags & -65537; unlock_fb_info(info); console_unlock(); } if (ret == 0L) { { tmp___4 = copy_to_user(argp, (void const *)(& var), 160UL); } if (tmp___4 != 0UL) { ret = -14L; } else { } } else { } goto ldv_36478; case_17922: /* CIL Label */ { tmp___5 = lock_fb_info(info); } if (tmp___5 == 0) { return (-19L); } else { } { fix = info->fix; unlock_fb_info(info); tmp___6 = copy_to_user(argp, (void const *)(& fix), 80UL); ret = tmp___6 != 0UL ? -14L : 0L; } goto ldv_36478; case_17925: /* CIL Label */ { tmp___7 = copy_from_user((void *)(& cmap), (void const *)argp, 40UL); } if (tmp___7 != 0UL) { return (-14L); } else { } { tmp___8 = fb_set_user_cmap(& cmap, info); ret = (long )tmp___8; } goto ldv_36478; case_17924: /* CIL Label */ { tmp___9 = copy_from_user((void *)(& cmap), (void const *)argp, 40UL); } if (tmp___9 != 0UL) { return (-14L); } else { } { tmp___10 = lock_fb_info(info); } if (tmp___10 == 0) { return (-19L); } else { } { cmap_from = info->cmap; unlock_fb_info(info); tmp___11 = fb_cmap_to_user((struct fb_cmap const *)(& cmap_from), & cmap); ret = (long )tmp___11; } goto ldv_36478; case_17926: /* CIL Label */ { tmp___12 = copy_from_user((void *)(& var), (void const *)argp, 160UL); } if (tmp___12 != 0UL) { return (-14L); } else { } { console_lock(); tmp___13 = lock_fb_info(info); } if (tmp___13 == 0) { { console_unlock(); } return (-19L); } else { } { tmp___14 = fb_pan_display(info, & var); ret = (long )tmp___14; unlock_fb_info(info); console_unlock(); } if (ret == 0L) { { tmp___15 = copy_to_user(argp, (void const *)(& var), 160UL); } if (tmp___15 != 0UL) { return (-14L); } else { } } else { } goto ldv_36478; case_3228059144: /* CIL Label */ ret = -22L; goto ldv_36478; case_17935: /* CIL Label */ { tmp___16 = copy_from_user((void *)(& con2fb), (void const *)argp, 8UL); } if (tmp___16 != 0UL) { return (-14L); } else { } if (con2fb.console - 1U > 62U) { return (-22L); } else { } { con2fb.framebuffer = 4294967295U; event.data = (void *)(& con2fb); tmp___17 = lock_fb_info(info); } if (tmp___17 == 0) { return (-19L); } else { } { event.info = info; fb_notifier_call_chain(7UL, (void *)(& event)); unlock_fb_info(info); tmp___18 = copy_to_user(argp, (void const *)(& con2fb), 8UL); ret = tmp___18 != 0UL ? -14L : 0L; } goto ldv_36478; case_17936: /* CIL Label */ { tmp___19 = copy_from_user((void *)(& con2fb), (void const *)argp, 8UL); } if (tmp___19 != 0UL) { return (-14L); } else { } if (con2fb.console - 1U > 62U) { return (-22L); } else { } if (con2fb.framebuffer > 31U) { return (-22L); } else { } if ((unsigned long )registered_fb[con2fb.framebuffer] == (unsigned long )((struct fb_info *)0)) { { __request_module(1, "fb%d", con2fb.framebuffer); } } else { } if ((unsigned long )registered_fb[con2fb.framebuffer] == (unsigned long )((struct fb_info *)0)) { ret = -22L; goto ldv_36478; } else { } { event.data = (void *)(& con2fb); console_lock(); tmp___20 = lock_fb_info(info); } if (tmp___20 == 0) { { console_unlock(); } return (-19L); } else { } { event.info = info; tmp___21 = fb_notifier_call_chain(8UL, (void *)(& event)); ret = (long )tmp___21; unlock_fb_info(info); console_unlock(); } goto ldv_36478; case_17937: /* CIL Label */ { console_lock(); tmp___22 = lock_fb_info(info); } if (tmp___22 == 0) { { console_unlock(); } return (-19L); } else { } { info->flags = info->flags | 65536; tmp___23 = fb_blank(info, (int )arg); ret = (long )tmp___23; info->flags = info->flags & -65537; unlock_fb_info(info); console_unlock(); } goto ldv_36478; switch_default: /* CIL Label */ { tmp___24 = lock_fb_info(info); } if (tmp___24 == 0) { return (-19L); } else { } fb = info->fbops; if ((unsigned long )fb->fb_ioctl != (unsigned long )((int (*)(struct fb_info * , unsigned int , unsigned long ))0)) { { tmp___25 = (*(fb->fb_ioctl))(info, cmd, arg); ret = (long )tmp___25; } } else { ret = -25L; } { unlock_fb_info(info); } switch_break: /* CIL Label */ ; } ldv_36478: ; return (ret); } } static long fb_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { struct fb_info *info ; struct fb_info *tmp ; long tmp___0 ; { { tmp = file_fb_info(file); info = tmp; } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { return (-19L); } else { } { tmp___0 = do_fb_ioctl(info, cmd, arg); } return (tmp___0); } } static int fb_getput_cmap(struct fb_info *info , unsigned int cmd , unsigned long arg ) { struct fb_cmap_user *cmap ; struct fb_cmap32 *cmap32 ; __u32 data ; int err ; void *tmp ; void *tmp___0 ; unsigned long tmp___1 ; int __ret_gu ; register unsigned long __val_gu ; int __ret_pu ; __u16 *__pu_val ; void *tmp___2 ; int __ret_gu___0 ; register unsigned long __val_gu___0 ; int __ret_pu___0 ; __u16 *__pu_val___0 ; void *tmp___3 ; int __ret_gu___1 ; register unsigned long __val_gu___1 ; int __ret_pu___1 ; __u16 *__pu_val___1 ; void *tmp___4 ; int __ret_gu___2 ; register unsigned long __val_gu___2 ; int __ret_pu___2 ; __u16 *__pu_val___2 ; void *tmp___5 ; long tmp___6 ; unsigned long tmp___7 ; { { tmp = compat_alloc_user_space(40UL); cmap = (struct fb_cmap_user *)tmp; tmp___0 = compat_ptr((compat_uptr_t )arg); cmap32 = (struct fb_cmap32 *)tmp___0; tmp___1 = copy_in_user((void *)(& cmap->start), (void const *)(& cmap32->start), 8U); } if (tmp___1 != 0UL) { return (-14); } else { } { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (& cmap32->red), "i" (4UL)); data = (unsigned int )__val_gu; } if (__ret_gu != 0) { return (-14); } else { { might_fault(); tmp___2 = compat_ptr(data); __pu_val = (__u16 *)tmp___2; } { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (& cmap->red): "ebx"); goto ldv_36532; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (& cmap->red): "ebx"); goto ldv_36532; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (& cmap->red): "ebx"); goto ldv_36532; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (& cmap->red): "ebx"); goto ldv_36532; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (& cmap->red): "ebx"); goto ldv_36532; switch_break: /* CIL Label */ ; } ldv_36532: ; if (__ret_pu != 0) { return (-14); } else { { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___0), "=r" (__val_gu___0): "0" (& cmap32->green), "i" (4UL)); data = (unsigned int )__val_gu___0; } if (__ret_gu___0 != 0) { return (-14); } else { { might_fault(); tmp___3 = compat_ptr(data); __pu_val___0 = (__u16 *)tmp___3; } { if (8UL == 1UL) { goto case_1___0; } else { } if (8UL == 2UL) { goto case_2___0; } else { } if (8UL == 4UL) { goto case_4___0; } else { } if (8UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& cmap->green): "ebx"); goto ldv_36544; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& cmap->green): "ebx"); goto ldv_36544; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& cmap->green): "ebx"); goto ldv_36544; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& cmap->green): "ebx"); goto ldv_36544; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& cmap->green): "ebx"); goto ldv_36544; switch_break___0: /* CIL Label */ ; } ldv_36544: ; if (__ret_pu___0 != 0) { return (-14); } else { { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___1), "=r" (__val_gu___1): "0" (& cmap32->blue), "i" (4UL)); data = (unsigned int )__val_gu___1; } if (__ret_gu___1 != 0) { return (-14); } else { { might_fault(); tmp___4 = compat_ptr(data); __pu_val___1 = (__u16 *)tmp___4; } { if (8UL == 1UL) { goto case_1___1; } else { } if (8UL == 2UL) { goto case_2___1; } else { } if (8UL == 4UL) { goto case_4___1; } else { } if (8UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& cmap->blue): "ebx"); goto ldv_36556; case_2___1: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& cmap->blue): "ebx"); goto ldv_36556; case_4___1: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& cmap->blue): "ebx"); goto ldv_36556; case_8___1: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& cmap->blue): "ebx"); goto ldv_36556; switch_default___1: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& cmap->blue): "ebx"); goto ldv_36556; switch_break___1: /* CIL Label */ ; } ldv_36556: ; if (__ret_pu___1 != 0) { return (-14); } else { { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___2), "=r" (__val_gu___2): "0" (& cmap32->transp), "i" (4UL)); data = (unsigned int )__val_gu___2; } if (__ret_gu___2 != 0) { return (-14); } else { { might_fault(); tmp___5 = compat_ptr(data); __pu_val___2 = (__u16 *)tmp___5; } { if (8UL == 1UL) { goto case_1___2; } else { } if (8UL == 2UL) { goto case_2___2; } else { } if (8UL == 4UL) { goto case_4___2; } else { } if (8UL == 8UL) { goto case_8___2; } else { } goto switch_default___2; case_1___2: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& cmap->transp): "ebx"); goto ldv_36568; case_2___2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& cmap->transp): "ebx"); goto ldv_36568; case_4___2: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& cmap->transp): "ebx"); goto ldv_36568; case_8___2: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& cmap->transp): "ebx"); goto ldv_36568; switch_default___2: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& cmap->transp): "ebx"); goto ldv_36568; switch_break___2: /* CIL Label */ ; } ldv_36568: ; if (__ret_pu___2 != 0) { return (-14); } else { } } } } } } } } { tmp___6 = do_fb_ioctl(info, cmd, (unsigned long )cmap); err = (int )tmp___6; } if (err == 0) { { tmp___7 = copy_in_user((void *)(& cmap32->start), (void const *)(& cmap->start), 8U); } if (tmp___7 != 0UL) { err = -14; } else { } } else { } return (err); } } static int do_fscreeninfo_to_user(struct fb_fix_screeninfo *fix , struct fb_fix_screeninfo32 *fix32 ) { __u32 data ; int err ; unsigned long tmp ; int __ret_pu ; compat_caddr_t __pu_val ; int __ret_pu___0 ; u32 __pu_val___0 ; int __ret_pu___1 ; u32 __pu_val___1 ; int __ret_pu___2 ; u32 __pu_val___2 ; int __ret_pu___3 ; u32 __pu_val___3 ; int __ret_pu___4 ; u16 __pu_val___4 ; int __ret_pu___5 ; u16 __pu_val___5 ; int __ret_pu___6 ; u16 __pu_val___6 ; int __ret_pu___7 ; u32 __pu_val___7 ; int __ret_pu___8 ; compat_caddr_t __pu_val___8 ; int __ret_pu___9 ; u32 __pu_val___9 ; int __ret_pu___10 ; u32 __pu_val___10 ; unsigned long tmp___0 ; { { tmp = copy_to_user((void *)(& fix32->id), (void const *)(& fix->id), 16UL); err = (int )tmp; data = (unsigned int )fix->smem_start; might_fault(); __pu_val = data; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (& fix32->smem_start): "ebx"); goto ldv_36583; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (& fix32->smem_start): "ebx"); goto ldv_36583; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (& fix32->smem_start): "ebx"); goto ldv_36583; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (& fix32->smem_start): "ebx"); goto ldv_36583; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (& fix32->smem_start): "ebx"); goto ldv_36583; switch_break: /* CIL Label */ ; } ldv_36583: { err = err | __ret_pu; might_fault(); __pu_val___0 = fix->smem_len; } { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& fix32->smem_len): "ebx"); goto ldv_36592; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& fix32->smem_len): "ebx"); goto ldv_36592; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& fix32->smem_len): "ebx"); goto ldv_36592; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& fix32->smem_len): "ebx"); goto ldv_36592; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& fix32->smem_len): "ebx"); goto ldv_36592; switch_break___0: /* CIL Label */ ; } ldv_36592: { err = err | __ret_pu___0; might_fault(); __pu_val___1 = fix->type; } { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& fix32->type): "ebx"); goto ldv_36601; case_2___1: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& fix32->type): "ebx"); goto ldv_36601; case_4___1: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& fix32->type): "ebx"); goto ldv_36601; case_8___1: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& fix32->type): "ebx"); goto ldv_36601; switch_default___1: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" (& fix32->type): "ebx"); goto ldv_36601; switch_break___1: /* CIL Label */ ; } ldv_36601: { err = err | __ret_pu___1; might_fault(); __pu_val___2 = fix->type_aux; } { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___2; case_1___2: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& fix32->type_aux): "ebx"); goto ldv_36610; case_2___2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& fix32->type_aux): "ebx"); goto ldv_36610; case_4___2: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& fix32->type_aux): "ebx"); goto ldv_36610; case_8___2: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& fix32->type_aux): "ebx"); goto ldv_36610; switch_default___2: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& fix32->type_aux): "ebx"); goto ldv_36610; switch_break___2: /* CIL Label */ ; } ldv_36610: { err = err | __ret_pu___2; might_fault(); __pu_val___3 = fix->visual; } { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___3; case_1___3: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___3): "0" (__pu_val___3), "c" (& fix32->visual): "ebx"); goto ldv_36619; case_2___3: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___3): "0" (__pu_val___3), "c" (& fix32->visual): "ebx"); goto ldv_36619; case_4___3: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___3): "0" (__pu_val___3), "c" (& fix32->visual): "ebx"); goto ldv_36619; case_8___3: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___3): "0" (__pu_val___3), "c" (& fix32->visual): "ebx"); goto ldv_36619; switch_default___3: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___3): "0" (__pu_val___3), "c" (& fix32->visual): "ebx"); goto ldv_36619; switch_break___3: /* CIL Label */ ; } ldv_36619: { err = err | __ret_pu___3; might_fault(); __pu_val___4 = fix->xpanstep; } { if (2UL == 1UL) { goto case_1___4; } else { } if (2UL == 2UL) { goto case_2___4; } else { } if (2UL == 4UL) { goto case_4___4; } else { } if (2UL == 8UL) { goto case_8___4; } else { } goto switch_default___4; case_1___4: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___4): "0" (__pu_val___4), "c" (& fix32->xpanstep): "ebx"); goto ldv_36628; case_2___4: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___4): "0" (__pu_val___4), "c" (& fix32->xpanstep): "ebx"); goto ldv_36628; case_4___4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___4): "0" (__pu_val___4), "c" (& fix32->xpanstep): "ebx"); goto ldv_36628; case_8___4: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___4): "0" (__pu_val___4), "c" (& fix32->xpanstep): "ebx"); goto ldv_36628; switch_default___4: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___4): "0" (__pu_val___4), "c" (& fix32->xpanstep): "ebx"); goto ldv_36628; switch_break___4: /* CIL Label */ ; } ldv_36628: { err = err | __ret_pu___4; might_fault(); __pu_val___5 = fix->ypanstep; } { if (2UL == 1UL) { goto case_1___5; } else { } if (2UL == 2UL) { goto case_2___5; } else { } if (2UL == 4UL) { goto case_4___5; } else { } if (2UL == 8UL) { goto case_8___5; } else { } goto switch_default___5; case_1___5: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___5): "0" (__pu_val___5), "c" (& fix32->ypanstep): "ebx"); goto ldv_36637; case_2___5: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___5): "0" (__pu_val___5), "c" (& fix32->ypanstep): "ebx"); goto ldv_36637; case_4___5: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___5): "0" (__pu_val___5), "c" (& fix32->ypanstep): "ebx"); goto ldv_36637; case_8___5: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___5): "0" (__pu_val___5), "c" (& fix32->ypanstep): "ebx"); goto ldv_36637; switch_default___5: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___5): "0" (__pu_val___5), "c" (& fix32->ypanstep): "ebx"); goto ldv_36637; switch_break___5: /* CIL Label */ ; } ldv_36637: { err = err | __ret_pu___5; might_fault(); __pu_val___6 = fix->ywrapstep; } { if (2UL == 1UL) { goto case_1___6; } else { } if (2UL == 2UL) { goto case_2___6; } else { } if (2UL == 4UL) { goto case_4___6; } else { } if (2UL == 8UL) { goto case_8___6; } else { } goto switch_default___6; case_1___6: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___6): "0" (__pu_val___6), "c" (& fix32->ywrapstep): "ebx"); goto ldv_36646; case_2___6: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___6): "0" (__pu_val___6), "c" (& fix32->ywrapstep): "ebx"); goto ldv_36646; case_4___6: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___6): "0" (__pu_val___6), "c" (& fix32->ywrapstep): "ebx"); goto ldv_36646; case_8___6: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___6): "0" (__pu_val___6), "c" (& fix32->ywrapstep): "ebx"); goto ldv_36646; switch_default___6: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___6): "0" (__pu_val___6), "c" (& fix32->ywrapstep): "ebx"); goto ldv_36646; switch_break___6: /* CIL Label */ ; } ldv_36646: { err = err | __ret_pu___6; might_fault(); __pu_val___7 = fix->line_length; } { if (4UL == 1UL) { goto case_1___7; } else { } if (4UL == 2UL) { goto case_2___7; } else { } if (4UL == 4UL) { goto case_4___7; } else { } if (4UL == 8UL) { goto case_8___7; } else { } goto switch_default___7; case_1___7: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___7): "0" (__pu_val___7), "c" (& fix32->line_length): "ebx"); goto ldv_36655; case_2___7: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___7): "0" (__pu_val___7), "c" (& fix32->line_length): "ebx"); goto ldv_36655; case_4___7: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___7): "0" (__pu_val___7), "c" (& fix32->line_length): "ebx"); goto ldv_36655; case_8___7: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___7): "0" (__pu_val___7), "c" (& fix32->line_length): "ebx"); goto ldv_36655; switch_default___7: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___7): "0" (__pu_val___7), "c" (& fix32->line_length): "ebx"); goto ldv_36655; switch_break___7: /* CIL Label */ ; } ldv_36655: { err = err | __ret_pu___7; data = (unsigned int )fix->mmio_start; might_fault(); __pu_val___8 = data; } { if (4UL == 1UL) { goto case_1___8; } else { } if (4UL == 2UL) { goto case_2___8; } else { } if (4UL == 4UL) { goto case_4___8; } else { } if (4UL == 8UL) { goto case_8___8; } else { } goto switch_default___8; case_1___8: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___8): "0" (__pu_val___8), "c" (& fix32->mmio_start): "ebx"); goto ldv_36664; case_2___8: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___8): "0" (__pu_val___8), "c" (& fix32->mmio_start): "ebx"); goto ldv_36664; case_4___8: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___8): "0" (__pu_val___8), "c" (& fix32->mmio_start): "ebx"); goto ldv_36664; case_8___8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___8): "0" (__pu_val___8), "c" (& fix32->mmio_start): "ebx"); goto ldv_36664; switch_default___8: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___8): "0" (__pu_val___8), "c" (& fix32->mmio_start): "ebx"); goto ldv_36664; switch_break___8: /* CIL Label */ ; } ldv_36664: { err = err | __ret_pu___8; might_fault(); __pu_val___9 = fix->mmio_len; } { if (4UL == 1UL) { goto case_1___9; } else { } if (4UL == 2UL) { goto case_2___9; } else { } if (4UL == 4UL) { goto case_4___9; } else { } if (4UL == 8UL) { goto case_8___9; } else { } goto switch_default___9; case_1___9: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___9): "0" (__pu_val___9), "c" (& fix32->mmio_len): "ebx"); goto ldv_36673; case_2___9: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___9): "0" (__pu_val___9), "c" (& fix32->mmio_len): "ebx"); goto ldv_36673; case_4___9: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___9): "0" (__pu_val___9), "c" (& fix32->mmio_len): "ebx"); goto ldv_36673; case_8___9: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___9): "0" (__pu_val___9), "c" (& fix32->mmio_len): "ebx"); goto ldv_36673; switch_default___9: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___9): "0" (__pu_val___9), "c" (& fix32->mmio_len): "ebx"); goto ldv_36673; switch_break___9: /* CIL Label */ ; } ldv_36673: { err = err | __ret_pu___9; might_fault(); __pu_val___10 = fix->accel; } { if (4UL == 1UL) { goto case_1___10; } else { } if (4UL == 2UL) { goto case_2___10; } else { } if (4UL == 4UL) { goto case_4___10; } else { } if (4UL == 8UL) { goto case_8___10; } else { } goto switch_default___10; case_1___10: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___10): "0" (__pu_val___10), "c" (& fix32->accel): "ebx"); goto ldv_36682; case_2___10: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___10): "0" (__pu_val___10), "c" (& fix32->accel): "ebx"); goto ldv_36682; case_4___10: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___10): "0" (__pu_val___10), "c" (& fix32->accel): "ebx"); goto ldv_36682; case_8___10: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___10): "0" (__pu_val___10), "c" (& fix32->accel): "ebx"); goto ldv_36682; switch_default___10: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___10): "0" (__pu_val___10), "c" (& fix32->accel): "ebx"); goto ldv_36682; switch_break___10: /* CIL Label */ ; } ldv_36682: { err = err | __ret_pu___10; tmp___0 = copy_to_user((void *)(& fix32->reserved), (void const *)(& fix->reserved), 4UL); err = (int )((unsigned int )err | (unsigned int )tmp___0); } if (err != 0) { return (-14); } else { } return (0); } } static int fb_get_fscreeninfo(struct fb_info *info , unsigned int cmd , unsigned long arg ) { mm_segment_t old_fs ; struct fb_fix_screeninfo fix ; struct fb_fix_screeninfo32 *fix32 ; int err ; void *tmp ; struct thread_info *tmp___0 ; struct thread_info *tmp___1 ; mm_segment_t __constr_expr_0 ; long tmp___2 ; struct thread_info *tmp___3 ; { { tmp = compat_ptr((compat_uptr_t )arg); fix32 = (struct fb_fix_screeninfo32 *)tmp; tmp___0 = current_thread_info(); old_fs = tmp___0->addr_limit; tmp___1 = current_thread_info(); __constr_expr_0.seg = 0xffffffffffffffffUL; tmp___1->addr_limit = __constr_expr_0; tmp___2 = do_fb_ioctl(info, cmd, (unsigned long )(& fix)); err = (int )tmp___2; tmp___3 = current_thread_info(); tmp___3->addr_limit = old_fs; } if (err == 0) { { err = do_fscreeninfo_to_user(& fix, fix32); } } else { } return (err); } } static long fb_compat_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { struct fb_info *info ; struct fb_info *tmp ; struct fb_ops *fb ; long ret ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = file_fb_info(file); info = tmp; ret = -515L; } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { return (-19L); } else { } fb = info->fbops; { if (cmd == 17920U) { goto case_17920; } else { } if (cmd == 17921U) { goto case_17921; } else { } if (cmd == 17926U) { goto case_17926; } else { } if (cmd == 17935U) { goto case_17935; } else { } if (cmd == 17936U) { goto case_17936; } else { } if (cmd == 17937U) { goto case_17937; } else { } if (cmd == 17922U) { goto case_17922; } else { } if (cmd == 17924U) { goto case_17924; } else { } if (cmd == 17925U) { goto case_17925; } else { } goto switch_default; case_17920: /* CIL Label */ ; case_17921: /* CIL Label */ ; case_17926: /* CIL Label */ ; case_17935: /* CIL Label */ ; case_17936: /* CIL Label */ { tmp___0 = compat_ptr((compat_uptr_t )arg); arg = (unsigned long )tmp___0; } case_17937: /* CIL Label */ { ret = do_fb_ioctl(info, cmd, arg); } goto ldv_36712; case_17922: /* CIL Label */ { tmp___1 = fb_get_fscreeninfo(info, cmd, arg); ret = (long )tmp___1; } goto ldv_36712; case_17924: /* CIL Label */ ; case_17925: /* CIL Label */ { tmp___2 = fb_getput_cmap(info, cmd, arg); ret = (long )tmp___2; } goto ldv_36712; switch_default: /* CIL Label */ ; if ((unsigned long )fb->fb_compat_ioctl != (unsigned long )((int (*)(struct fb_info * , unsigned int , unsigned long ))0)) { { tmp___3 = (*(fb->fb_compat_ioctl))(info, cmd, arg); ret = (long )tmp___3; } } else { } goto ldv_36712; switch_break: /* CIL Label */ ; } ldv_36712: ; return (ret); } } static int fb_mmap(struct file *file , struct vm_area_struct *vma ) { struct fb_info *info ; struct fb_info *tmp ; struct fb_ops *fb ; unsigned long mmio_pgoff ; unsigned long start ; u32 len ; int res ; int tmp___0 ; { { tmp = file_fb_info(file); info = tmp; } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { return (-19); } else { } fb = info->fbops; if ((unsigned long )fb == (unsigned long )((struct fb_ops *)0)) { return (-19); } else { } { ldv_mutex_lock_105(& info->mm_lock); } if ((unsigned long )fb->fb_mmap != (unsigned long )((int (*)(struct fb_info * , struct vm_area_struct * ))0)) { { res = (*(fb->fb_mmap))(info, vma); ldv_mutex_unlock_106(& info->mm_lock); } return (res); } else { } start = info->fix.smem_start; len = info->fix.smem_len; mmio_pgoff = (((start & 4095UL) + (unsigned long )len) + 4095UL) >> 12; if (vma->vm_pgoff >= mmio_pgoff) { if (info->var.accel_flags != 0U) { { ldv_mutex_unlock_107(& info->mm_lock); } return (-22); } else { } vma->vm_pgoff = vma->vm_pgoff - mmio_pgoff; start = info->fix.mmio_start; len = info->fix.mmio_len; } else { } { ldv_mutex_unlock_108(& info->mm_lock); vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); fb_pgprotect(file, vma, start); tmp___0 = vm_iomap_memory(vma, (phys_addr_t )start, (unsigned long )len); } return (tmp___0); } } static int fb_open(struct inode *inode , struct file *file ) { int fbidx ; unsigned int tmp ; struct fb_info *info ; int res ; long tmp___0 ; bool tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = iminor((struct inode const *)inode); fbidx = (int )tmp; res = 0; info = get_fb_info((unsigned int )fbidx); } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { { __request_module(1, "fb%d", fbidx); info = get_fb_info((unsigned int )fbidx); } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { return (-19); } else { } } else { } { tmp___1 = IS_ERR((void const *)info); } if ((int )tmp___1) { { tmp___0 = PTR_ERR((void const *)info); } return ((int )tmp___0); } else { } { ldv_mutex_lock_109(& info->lock); tmp___2 = ldv_try_module_get_110((info->fbops)->owner); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { res = -19; goto out; } else { } file->private_data = (void *)info; if ((unsigned long )(info->fbops)->fb_open != (unsigned long )((int (*)(struct fb_info * , int ))0)) { { res = (*((info->fbops)->fb_open))(info, 1); } if (res != 0) { { ldv_module_put_111((info->fbops)->owner); } } else { } } else { } if ((unsigned long )info->fbdefio != (unsigned long )((struct fb_deferred_io *)0)) { { fb_deferred_io_open(info, inode, file); } } else { } out: { ldv_mutex_unlock_112(& info->lock); } if (res != 0) { { put_fb_info(info); } } else { } return (res); } } static int fb_release(struct inode *inode , struct file *file ) { struct fb_info *info ; { { info = (struct fb_info */* const */)file->private_data; ldv_mutex_lock_113(& info->lock); } if ((unsigned long )(info->fbops)->fb_release != (unsigned long )((int (*)(struct fb_info * , int ))0)) { { (*((info->fbops)->fb_release))(info, 1); } } else { } { ldv_module_put_114((info->fbops)->owner); ldv_mutex_unlock_115(& info->lock); put_fb_info(info); } return (0); } } static struct file_operations const fb_fops = {& __this_module, & default_llseek, & fb_read, & fb_write, 0, 0, 0, 0, 0, 0, & fb_ioctl, & fb_compat_ioctl, & fb_mmap, 0, & fb_open, 0, & fb_release, & fb_deferred_io_fsync, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static char const __kstrtab_fb_class[9U] = { 'f', 'b', '_', 'c', 'l', 'a', 's', 's', '\000'}; struct kernel_symbol const __ksymtab_fb_class ; struct kernel_symbol const __ksymtab_fb_class = {(unsigned long )(& fb_class), (char const *)(& __kstrtab_fb_class)}; static int fb_check_foreignness(struct fb_info *fi ) { bool foreign_endian ; bool tmp ; bool tmp___0 ; int tmp___1 ; { foreign_endian = (fi->flags & 1048576) != 0; fi->flags = fi->flags & -1048577; fi->flags = fi->flags | ((int )foreign_endian ? 1048576 : 0); if ((fi->flags & 1048576) != 0) { { tmp___0 = fb_be_math(fi); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { printk("\v%s: enable CONFIG_FB_BIG_ENDIAN to support this framebuffer\n", (char *)(& fi->fix.id)); } return (-38); } else { goto _L; } } else _L: /* CIL Label */ if ((fi->flags & 1048576) == 0) { { tmp = fb_be_math(fi); } if ((int )tmp) { { printk("\v%s: enable CONFIG_FB_LITTLE_ENDIAN to support this framebuffer\n", (char *)(& fi->fix.id)); } return (-38); } else { } } else { } return (0); } } static bool apertures_overlap(struct aperture *gen , struct aperture *hw ) { { if (gen->base == hw->base) { return (1); } else { } if (gen->base > hw->base && gen->base < hw->base + hw->size) { return (1); } else { } return (0); } } static bool fb_do_apertures_overlap(struct apertures_struct *gena , struct apertures_struct *hwa ) { int i ; int j ; struct aperture *h ; struct aperture *g ; bool tmp ; { if ((unsigned long )hwa == (unsigned long )((struct apertures_struct *)0) || (unsigned long )gena == (unsigned long )((struct apertures_struct *)0)) { return (0); } else { } i = 0; goto ldv_36768; ldv_36767: h = (struct aperture *)(& hwa->ranges) + (unsigned long )i; j = 0; goto ldv_36765; ldv_36764: { g = (struct aperture *)(& gena->ranges) + (unsigned long )j; printk("\017checking generic (%llx %llx) vs hw (%llx %llx)\n", g->base, g->size, h->base, h->size); tmp = apertures_overlap(g, h); } if ((int )tmp) { return (1); } else { } j = j + 1; ldv_36765: ; if ((unsigned int )j < gena->count) { goto ldv_36764; } else { } i = i + 1; ldv_36768: ; if ((unsigned int )i < hwa->count) { goto ldv_36767; } else { } return (0); } } static int do_unregister_framebuffer(struct fb_info *fb_info ) ; static int do_remove_conflicting_framebuffers(struct apertures_struct *a , char const *name , bool primary ) { int i ; int ret ; struct apertures_struct *gen_aper ; bool tmp ; { i = 0; goto ldv_36782; ldv_36781: ; if ((unsigned long )registered_fb[i] == (unsigned long )((struct fb_info *)0)) { goto ldv_36780; } else { } if (((registered_fb[i])->flags & 524288) == 0) { goto ldv_36780; } else { } { gen_aper = (registered_fb[i])->apertures; tmp = fb_do_apertures_overlap(gen_aper, a); } if ((int )tmp || ((((int )primary && (unsigned long )gen_aper != (unsigned long )((struct apertures_struct *)0)) && gen_aper->count != 0U) && gen_aper->ranges[0].base == 655360ULL)) { { printk("\016fb: switching to %s from %s\n", name, (char *)(& (registered_fb[i])->fix.id)); ret = do_unregister_framebuffer(registered_fb[i]); } if (ret != 0) { return (ret); } else { } } else { } ldv_36780: i = i + 1; ldv_36782: ; if (i <= 31) { goto ldv_36781; } else { } return (0); } } static int do_register_framebuffer(struct fb_info *fb_info ) { int i ; int ret ; struct fb_event event ; struct fb_videomode mode ; int tmp ; int tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; long tmp___1 ; bool tmp___2 ; void *tmp___3 ; int tmp___4 ; { { tmp = fb_check_foreignness(fb_info); } if (tmp != 0) { return (-38); } else { } { tmp___0 = fb_is_primary_device(fb_info); ret = do_remove_conflicting_framebuffers(fb_info->apertures, (char const *)(& fb_info->fix.id), tmp___0 != 0); } if (ret != 0) { return (ret); } else { } if (num_registered_fb == 32) { return (-6); } else { } num_registered_fb = num_registered_fb + 1; i = 0; goto ldv_36793; ldv_36792: ; if ((unsigned long )registered_fb[i] == (unsigned long )((struct fb_info *)0)) { goto ldv_36791; } else { } i = i + 1; ldv_36793: ; if (i <= 31) { goto ldv_36792; } else { } ldv_36791: { fb_info->node = i; atomic_set(& fb_info->count, 1); __mutex_init(& fb_info->lock, "&fb_info->lock", & __key); __mutex_init(& fb_info->mm_lock, "&fb_info->mm_lock", & __key___0); fb_info->dev = device_create(fb_class, fb_info->device, (dev_t )(i | 30408704), (void *)0, "fb%d", i); tmp___2 = IS_ERR((void const *)fb_info->dev); } if ((int )tmp___2) { { tmp___1 = PTR_ERR((void const *)fb_info->dev); printk("\fUnable to create device for framebuffer %d; errno = %ld\n", i, tmp___1); fb_info->dev = (struct device *)0; } } else { { fb_init_device(fb_info); } } if ((unsigned long )fb_info->pixmap.addr == (unsigned long )((u8 *)0U)) { { tmp___3 = kmalloc(8192UL, 208U); fb_info->pixmap.addr = (u8 *)tmp___3; } if ((unsigned long )fb_info->pixmap.addr != (unsigned long )((u8 *)0U)) { fb_info->pixmap.size = 8192U; fb_info->pixmap.buf_align = 1U; fb_info->pixmap.scan_align = 1U; fb_info->pixmap.access_align = 32U; fb_info->pixmap.flags = 1U; } else { } } else { } fb_info->pixmap.offset = 0U; if (fb_info->pixmap.blit_x == 0U) { fb_info->pixmap.blit_x = 4294967295U; } else { } if (fb_info->pixmap.blit_y == 0U) { fb_info->pixmap.blit_y = 4294967295U; } else { } if ((unsigned long )fb_info->modelist.prev == (unsigned long )((struct list_head *)0) || (unsigned long )fb_info->modelist.next == (unsigned long )((struct list_head *)0)) { { INIT_LIST_HEAD(& fb_info->modelist); } } else { } if ((int )fb_info->skip_vt_switch) { { pm_vt_switch_required(fb_info->dev, 0); } } else { { pm_vt_switch_required(fb_info->dev, 1); } } { fb_var_to_videomode(& mode, (struct fb_var_screeninfo const *)(& fb_info->var)); fb_add_videomode((struct fb_videomode const *)(& mode), & fb_info->modelist); registered_fb[i] = fb_info; event.info = fb_info; console_lock(); tmp___4 = lock_fb_info(fb_info); } if (tmp___4 == 0) { { console_unlock(); } return (-19); } else { } { fb_notifier_call_chain(5UL, (void *)(& event)); unlock_fb_info(fb_info); console_unlock(); } return (0); } } static int do_unregister_framebuffer(struct fb_info *fb_info ) { struct fb_event event ; int i ; int ret ; int tmp ; { ret = 0; i = fb_info->node; if ((unsigned int )i > 31U || (unsigned long )registered_fb[i] != (unsigned long )fb_info) { return (-22); } else { } { console_lock(); tmp = lock_fb_info(fb_info); } if (tmp == 0) { { console_unlock(); } return (-19); } else { } { event.info = fb_info; ret = fb_notifier_call_chain(14UL, (void *)(& event)); unlock_fb_info(fb_info); console_unlock(); } if (ret != 0) { return (-22); } else { } { pm_vt_switch_unregister(fb_info->dev); unlink_framebuffer(fb_info); } if ((unsigned long )fb_info->pixmap.addr != (unsigned long )((u8 *)0U) && (int )fb_info->pixmap.flags & 1) { { kfree((void const *)fb_info->pixmap.addr); } } else { } { fb_destroy_modelist(& fb_info->modelist); registered_fb[i] = (struct fb_info *)0; num_registered_fb = num_registered_fb - 1; fb_cleanup_device(fb_info); event.info = fb_info; console_lock(); fb_notifier_call_chain(6UL, (void *)(& event)); console_unlock(); put_fb_info(fb_info); } return (0); } } int unlink_framebuffer(struct fb_info *fb_info ) { int i ; { i = fb_info->node; if ((unsigned int )i > 31U || (unsigned long )registered_fb[i] != (unsigned long )fb_info) { return (-22); } else { } if ((unsigned long )fb_info->dev != (unsigned long )((struct device *)0)) { { device_destroy(fb_class, (dev_t )(i | 30408704)); fb_info->dev = (struct device *)0; } } else { } return (0); } } static char const __kstrtab_unlink_framebuffer[19U] = { 'u', 'n', 'l', 'i', 'n', 'k', '_', 'f', 'r', 'a', 'm', 'e', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_unlink_framebuffer ; struct kernel_symbol const __ksymtab_unlink_framebuffer = {(unsigned long )(& unlink_framebuffer), (char const *)(& __kstrtab_unlink_framebuffer)}; int remove_conflicting_framebuffers(struct apertures_struct *a , char const *name , bool primary ) { int ret ; { { ldv_mutex_lock_116(& registration_lock); ret = do_remove_conflicting_framebuffers(a, name, (int )primary); ldv_mutex_unlock_117(& registration_lock); } return (ret); } } static char const __kstrtab_remove_conflicting_framebuffers[32U] = { 'r', 'e', 'm', 'o', 'v', 'e', '_', 'c', 'o', 'n', 'f', 'l', 'i', 'c', 't', 'i', 'n', 'g', '_', 'f', 'r', 'a', 'm', 'e', 'b', 'u', 'f', 'f', 'e', 'r', 's', '\000'}; struct kernel_symbol const __ksymtab_remove_conflicting_framebuffers ; struct kernel_symbol const __ksymtab_remove_conflicting_framebuffers = {(unsigned long )(& remove_conflicting_framebuffers), (char const *)(& __kstrtab_remove_conflicting_framebuffers)}; int register_framebuffer(struct fb_info *fb_info ) { int ret ; { { ldv_mutex_lock_118(& registration_lock); ret = do_register_framebuffer(fb_info); ldv_mutex_unlock_119(& registration_lock); } return (ret); } } static char const __kstrtab_register_framebuffer[21U] = { 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'f', 'r', 'a', 'm', 'e', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_register_framebuffer ; struct kernel_symbol const __ksymtab_register_framebuffer = {(unsigned long )(& register_framebuffer), (char const *)(& __kstrtab_register_framebuffer)}; int unregister_framebuffer(struct fb_info *fb_info ) { int ret ; { { ldv_mutex_lock_120(& registration_lock); ret = do_unregister_framebuffer(fb_info); ldv_mutex_unlock_121(& registration_lock); } return (ret); } } static char const __kstrtab_unregister_framebuffer[23U] = { 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'f', 'r', 'a', 'm', 'e', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_unregister_framebuffer ; struct kernel_symbol const __ksymtab_unregister_framebuffer = {(unsigned long )(& unregister_framebuffer), (char const *)(& __kstrtab_unregister_framebuffer)}; void fb_set_suspend(struct fb_info *info , int state ) { struct fb_event event ; { event.info = info; if (state != 0) { { fb_notifier_call_chain(2UL, (void *)(& event)); info->state = 1U; } } else { { info->state = 0U; fb_notifier_call_chain(3UL, (void *)(& event)); } } return; } } static char const __kstrtab_fb_set_suspend[15U] = { 'f', 'b', '_', 's', 'e', 't', '_', 's', 'u', 's', 'p', 'e', 'n', 'd', '\000'}; struct kernel_symbol const __ksymtab_fb_set_suspend ; struct kernel_symbol const __ksymtab_fb_set_suspend = {(unsigned long )(& fb_set_suspend), (char const *)(& __kstrtab_fb_set_suspend)}; static int fbmem_init(void) { int tmp ; void *tmp___0 ; long tmp___1 ; bool tmp___2 ; { { proc_create("fb", 0, (struct proc_dir_entry *)0, & fb_proc_fops); tmp = ldv_register_chrdev_122(29U, "fb", & fb_fops); } if (tmp != 0) { { printk("unable to get major %d for fb devs\n", 29); } } else { } { tmp___0 = ldv_create_class(); fb_class = (struct class *)tmp___0; tmp___2 = IS_ERR((void const *)fb_class); } if ((int )tmp___2) { { tmp___1 = PTR_ERR((void const *)fb_class); printk("\fUnable to create fb class; errno = %ld\n", tmp___1); fb_class = (struct class *)0; } } else { } return (0); } } static void fbmem_exit(void) { { { remove_proc_entry("fb", (struct proc_dir_entry *)0); ldv_class_destroy_123(fb_class); ldv_unregister_chrdev_124(29U, "fb"); } return; } } int fb_new_modelist(struct fb_info *info ) { struct fb_event event ; struct fb_var_screeninfo var ; struct list_head *pos ; struct list_head *n ; struct fb_modelist *modelist ; struct fb_videomode *m ; struct fb_videomode mode ; int err ; struct list_head const *__mptr ; int tmp ; int tmp___0 ; { var = info->var; err = 1; pos = info->modelist.next; n = pos->next; goto ldv_36895; ldv_36894: { __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; m = & modelist->mode; fb_videomode_to_var(& var, (struct fb_videomode const *)m); var.activate = 2U; err = fb_set_var(info, & var); fb_var_to_videomode(& mode, (struct fb_var_screeninfo const *)(& var)); } if (err != 0) { { list_del(pos); kfree((void const *)pos); } } else { { tmp = fb_mode_is_equal((struct fb_videomode const *)m, (struct fb_videomode const *)(& mode)); } if (tmp == 0) { { list_del(pos); kfree((void const *)pos); } } else { } } pos = n; n = pos->next; ldv_36895: ; if ((unsigned long )pos != (unsigned long )(& info->modelist)) { goto ldv_36894; } else { } { err = 1; tmp___0 = list_empty((struct list_head const *)(& info->modelist)); } if (tmp___0 == 0) { { event.info = info; err = fb_notifier_call_chain(10UL, (void *)(& event)); } } else { } return (err); } } void ldv_EMGentry_exit_fbmem_exit_19_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_fbmem_init_19_10(int (*arg0)(void) ) ; void ldv_dispatch_deregister_17_1(struct file_operations *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_6_19_4(void) ; void ldv_dispatch_deregister_seq_instance_5_19_5(void) ; void ldv_dispatch_register_16_1(struct seq_file *arg0 , struct seq_operations *arg1 ) ; void ldv_dispatch_register_18_2(struct file_operations *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_6_19_6(void) ; void ldv_dummy_resourceless_instance_callback_10_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_10_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_11_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_11_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_12_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_12_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_13_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_13_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_14_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_14_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_15_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_15_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_entry_EMGentry_19(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct file * , long long , long long , int ) , struct file *arg1 , long long arg2 , long long arg3 , int arg4 ) ; void ldv_file_operations_instance_callback_0_25(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_0_28(int (*arg0)(struct file * , struct vm_area_struct * ) , struct file *arg1 , struct vm_area_struct *arg2 ) ; void ldv_file_operations_instance_callback_0_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_1_22(int (*arg0)(struct file * , long long , long long , int ) , struct file *arg1 , long long arg2 , long long arg3 , int arg4 ) ; void ldv_file_operations_instance_callback_1_25(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_1_28(int (*arg0)(struct file * , struct vm_area_struct * ) , struct file *arg1 , struct vm_area_struct *arg2 ) ; void ldv_file_operations_instance_callback_1_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_1_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; int ldv_register_chrdev(int arg0 , unsigned int arg1 , char *arg2 , struct file_operations *arg3 ) ; void ldv_seq_instance_next_2_7(void *(*arg0)(struct seq_file * , void * , long long * ) , struct seq_file *arg1 , void *arg2 , long long *arg3 ) ; void ldv_seq_instance_show_2_8(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_seq_instance_start_2_4(void *(*arg0)(struct seq_file * , long long * ) , struct seq_file *arg1 , long long *arg2 ) ; void ldv_seq_instance_stop_2_10(void (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; int ldv_seq_open(int arg0 , struct file *arg1 , struct seq_operations *arg2 ) ; void ldv_seq_operations_seq_instance_2(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_11(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_12(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_13(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_14(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_15(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_9(void *arg0 ) ; void ldv_unregister_chrdev(void *arg0 , unsigned int arg1 , char *arg2 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_12 ; struct ldv_thread ldv_thread_13 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_15 ; struct ldv_thread ldv_thread_19 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_fbmem_exit_19_2(void (*arg0)(void) ) { { { fbmem_exit(); } return; } } int ldv_EMGentry_init_fbmem_init_19_10(int (*arg0)(void) ) { int tmp ; { { tmp = fbmem_init(); } return (tmp); } } void ldv_dispatch_deregister_17_1(struct file_operations *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_6_19_4(void) { { return; } } void ldv_dispatch_deregister_seq_instance_5_19_5(void) { { return; } } void ldv_dispatch_register_16_1(struct seq_file *arg0 , struct seq_operations *arg1 ) { struct ldv_struct_seq_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(24UL); cf_arg_2 = (struct ldv_struct_seq_instance_2 *)tmp; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; ldv_seq_operations_seq_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_18_2(struct file_operations *arg0 ) { struct ldv_struct_file_operations_instance_0 *cf_arg_0 ; struct ldv_struct_file_operations_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_file_operations_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_file_operations_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_register_dummy_resourceless_instance_6_19_6(void) { struct ldv_struct_EMGentry_19 *cf_arg_3 ; struct ldv_struct_EMGentry_19 *cf_arg_4 ; struct ldv_struct_EMGentry_19 *cf_arg_5 ; struct ldv_struct_EMGentry_19 *cf_arg_6 ; struct ldv_struct_EMGentry_19 *cf_arg_7 ; struct ldv_struct_EMGentry_19 *cf_arg_8 ; struct ldv_struct_EMGentry_19 *cf_arg_9 ; struct ldv_struct_EMGentry_19 *cf_arg_10 ; struct ldv_struct_EMGentry_19 *cf_arg_11 ; struct ldv_struct_EMGentry_19 *cf_arg_12 ; struct ldv_struct_EMGentry_19 *cf_arg_13 ; struct ldv_struct_EMGentry_19 *cf_arg_14 ; struct ldv_struct_EMGentry_19 *cf_arg_15 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_19 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___0 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_19 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_4((void *)cf_arg_4); tmp___1 = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_EMGentry_19 *)tmp___1; ldv_struct_device_attribute_dummy_resourceless_instance_5((void *)cf_arg_5); tmp___2 = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_19 *)tmp___2; ldv_struct_device_attribute_dummy_resourceless_instance_6((void *)cf_arg_6); tmp___3 = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_19 *)tmp___3; ldv_struct_device_attribute_dummy_resourceless_instance_7((void *)cf_arg_7); tmp___4 = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_EMGentry_19 *)tmp___4; ldv_struct_device_attribute_dummy_resourceless_instance_8((void *)cf_arg_8); tmp___5 = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_19 *)tmp___5; ldv_struct_device_attribute_dummy_resourceless_instance_9((void *)cf_arg_9); tmp___6 = ldv_xmalloc(4UL); cf_arg_10 = (struct ldv_struct_EMGentry_19 *)tmp___6; ldv_struct_device_attribute_dummy_resourceless_instance_10((void *)cf_arg_10); tmp___7 = ldv_xmalloc(4UL); cf_arg_11 = (struct ldv_struct_EMGentry_19 *)tmp___7; ldv_struct_device_attribute_dummy_resourceless_instance_11((void *)cf_arg_11); tmp___8 = ldv_xmalloc(4UL); cf_arg_12 = (struct ldv_struct_EMGentry_19 *)tmp___8; ldv_struct_device_attribute_dummy_resourceless_instance_12((void *)cf_arg_12); tmp___9 = ldv_xmalloc(4UL); cf_arg_13 = (struct ldv_struct_EMGentry_19 *)tmp___9; ldv_struct_device_attribute_dummy_resourceless_instance_13((void *)cf_arg_13); tmp___10 = ldv_xmalloc(4UL); cf_arg_14 = (struct ldv_struct_EMGentry_19 *)tmp___10; ldv_struct_device_attribute_dummy_resourceless_instance_14((void *)cf_arg_14); tmp___11 = ldv_xmalloc(4UL); cf_arg_15 = (struct ldv_struct_EMGentry_19 *)tmp___11; ldv_struct_device_attribute_dummy_resourceless_instance_15((void *)cf_arg_15); } return; } } void ldv_entry_EMGentry_19(void *arg0 ) { void (*ldv_19_exit_fbmem_exit_default)(void) ; int (*ldv_19_init_fbmem_init_default)(void) ; int ldv_19_ret_default ; int tmp ; int tmp___0 ; { { ldv_19_ret_default = ldv_EMGentry_init_fbmem_init_19_10(ldv_19_init_fbmem_init_default); ldv_19_ret_default = ldv_ldv_post_init_125(ldv_19_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_19_ret_default != 0); ldv_ldv_check_final_state_126(); ldv_stop(); } return; } else { { ldv_assume(ldv_19_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_6_19_6(); ldv_dispatch_deregister_seq_instance_5_19_5(); ldv_dispatch_deregister_dummy_resourceless_instance_6_19_4(); } } else { } { ldv_EMGentry_exit_fbmem_exit_19_2(ldv_19_exit_fbmem_exit_default); ldv_ldv_check_final_state_127(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_128(); ldv_entry_EMGentry_19((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_0_callback_fsync)(struct file * , long long , long long , int ) ; long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; int (*ldv_0_callback_mmap)(struct file * , struct vm_area_struct * ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; long long ldv_0_ldv_param_22_1_default ; long long ldv_0_ldv_param_22_2_default ; int ldv_0_ldv_param_22_3_default ; long long ldv_0_ldv_param_25_1_default ; int ldv_0_ldv_param_25_2_default ; char *ldv_0_ldv_param_29_1_default ; long long *ldv_0_ldv_param_29_3_default ; unsigned int ldv_0_ldv_param_32_1_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; unsigned int ldv_0_ldv_param_5_1_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; struct vm_area_struct *ldv_0_size_cnt_struct_vm_area_struct_ptr ; unsigned long ldv_0_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_0_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_struct_vm_area_struct_ptr = (struct vm_area_struct *)((long )tmp___1); } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_0_size_cnt_struct_vm_area_struct_ptr <= (unsigned long )((struct vm_area_struct *)2147479552)); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } if (tmp___7 == 5) { goto case_5; } else { } if (tmp___7 == 6) { goto case_6; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_32(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_32_1_default, ldv_0_size_cnt_write_size); } goto ldv_37520; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_0_ldv_param_29_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_0_ldv_param_29_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_0_29(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_29_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_29_3_default); ldv_free((void *)ldv_0_ldv_param_29_1_default); ldv_free((void *)ldv_0_ldv_param_29_3_default); } goto ldv_37520; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_28(ldv_0_callback_mmap, ldv_0_resource_file, ldv_0_size_cnt_struct_vm_area_struct_ptr); } goto ldv_37520; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_0_25(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_25_1_default, ldv_0_ldv_param_25_2_default); } goto ldv_37520; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_22(ldv_0_callback_fsync, ldv_0_resource_file, ldv_0_ldv_param_22_1_default, ldv_0_ldv_param_22_2_default, ldv_0_ldv_param_22_3_default); } goto ldv_37520; case_6: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size); } goto ldv_37520; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_37520: ; goto ldv_37527; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_37527: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { long (*ldv_1_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_1_callback_fsync)(struct file * , long long , long long , int ) ; long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; int (*ldv_1_callback_mmap)(struct file * , struct vm_area_struct * ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_1_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_1_container_file_operations ; long long ldv_1_ldv_param_22_1_default ; long long ldv_1_ldv_param_22_2_default ; int ldv_1_ldv_param_22_3_default ; long long ldv_1_ldv_param_25_1_default ; int ldv_1_ldv_param_25_2_default ; char *ldv_1_ldv_param_29_1_default ; long long *ldv_1_ldv_param_29_3_default ; unsigned int ldv_1_ldv_param_32_1_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; unsigned int ldv_1_ldv_param_5_1_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; struct vm_area_struct *ldv_1_size_cnt_struct_vm_area_struct_ptr ; unsigned long ldv_1_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_1_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_1_size_cnt_struct_vm_area_struct_ptr = (struct vm_area_struct *)((long )tmp___1); } goto ldv_main_1; return; ldv_main_1: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); } return; } return; ldv_call_1: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_1_size_cnt_struct_vm_area_struct_ptr <= (unsigned long )((struct vm_area_struct *)2147479552)); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_file_operations_instance_release_1_2(ldv_1_container_file_operations->release, ldv_1_resource_inode, ldv_1_resource_file); } goto ldv_main_1; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } if (tmp___7 == 5) { goto case_5; } else { } if (tmp___7 == 6) { goto case_6; } else { } goto switch_default; case_1___0: /* CIL Label */ ; if ((unsigned long )ldv_1_callback_unlocked_ioctl != (unsigned long )((long (*)(struct file * , unsigned int , unsigned long ))0)) { { ldv_file_operations_instance_callback_1_32(ldv_1_callback_unlocked_ioctl, ldv_1_resource_file, ldv_1_ldv_param_32_1_default, ldv_1_size_cnt_write_size); } } else { } goto ldv_37581; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_1_ldv_param_29_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_1_ldv_param_29_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_1_29(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_29_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_29_3_default); ldv_free((void *)ldv_1_ldv_param_29_1_default); ldv_free((void *)ldv_1_ldv_param_29_3_default); } goto ldv_37581; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_1_callback_mmap != (unsigned long )((int (*)(struct file * , struct vm_area_struct * ))0)) { { ldv_file_operations_instance_callback_1_28(ldv_1_callback_mmap, ldv_1_resource_file, ldv_1_size_cnt_struct_vm_area_struct_ptr); } } else { } goto ldv_37581; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_1_25(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_25_1_default, ldv_1_ldv_param_25_2_default); } goto ldv_37581; case_5: /* CIL Label */ ; if ((unsigned long )ldv_1_callback_fsync != (unsigned long )((int (*)(struct file * , long long , long long , int ))0)) { { ldv_file_operations_instance_callback_1_22(ldv_1_callback_fsync, ldv_1_resource_file, ldv_1_ldv_param_22_1_default, ldv_1_ldv_param_22_2_default, ldv_1_ldv_param_22_3_default); } } else { } goto ldv_37581; case_6: /* CIL Label */ ; if ((unsigned long )ldv_1_callback_compat_ioctl != (unsigned long )((long (*)(struct file * , unsigned int , unsigned long ))0)) { { ldv_file_operations_instance_callback_1_5(ldv_1_callback_compat_ioctl, ldv_1_resource_file, ldv_1_ldv_param_5_1_default, ldv_1_size_cnt_write_size); } } else { } goto ldv_37581; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_37581: ; goto ldv_37588; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_37588: ; goto ldv_call_1; goto ldv_call_1; return; } } void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct file * , long long , long long , int ) , struct file *arg1 , long long arg2 , long long arg3 , int arg4 ) { { { fb_deferred_io_fsync(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_25(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_28(int (*arg0)(struct file * , struct vm_area_struct * ) , struct file *arg1 , struct vm_area_struct *arg2 ) { { { fb_mmap(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { fb_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { fb_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { fb_compat_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_22(int (*arg0)(struct file * , long long , long long , int ) , struct file *arg1 , long long arg2 , long long arg3 , int arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_25(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_28(int (*arg0)(struct file * , struct vm_area_struct * ) , struct file *arg1 , struct vm_area_struct *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_1_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { (*arg0)(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { (*arg0)(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = fb_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_fb_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { fb_release(arg1, arg2); } return; } } void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { seq_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { fb_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } int ldv_register_chrdev(int arg0 , unsigned int arg1 , char *arg2 , struct file_operations *arg3 ) { struct file_operations *ldv_18_file_operations_file_operations ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_18_file_operations_file_operations = arg3; ldv_dispatch_register_18_2(ldv_18_file_operations_file_operations); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_seq_instance_next_2_7(void *(*arg0)(struct seq_file * , void * , long long * ) , struct seq_file *arg1 , void *arg2 , long long *arg3 ) { { { fb_seq_next(arg1, arg2, arg3); } return; } } void ldv_seq_instance_show_2_8(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { fb_seq_show(arg1, arg2); } return; } } void ldv_seq_instance_start_2_4(void *(*arg0)(struct seq_file * , long long * ) , struct seq_file *arg1 , long long *arg2 ) { { { fb_seq_start(arg1, arg2); } return; } } void ldv_seq_instance_stop_2_10(void (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { fb_seq_stop(arg1, arg2); } return; } } int ldv_seq_open(int arg0 , struct file *arg1 , struct seq_operations *arg2 ) { struct seq_operations *ldv_16_ops_seq_operations ; struct seq_file *ldv_16_seq_file_seq_file ; void *tmp ; { { tmp = ldv_xmalloc(256UL); ldv_16_seq_file_seq_file = (struct seq_file *)tmp; ldv_16_ops_seq_operations = arg2; ldv_dispatch_register_16_1(ldv_16_seq_file_seq_file, ldv_16_ops_seq_operations); } return (arg0); return (arg0); } } void ldv_seq_operations_seq_instance_2(void *arg0 ) { void *ldv_2_ldv_param_10_1_default ; long long *ldv_2_ldv_param_4_1_default ; void *ldv_2_ldv_param_7_1_default ; long long *ldv_2_ldv_param_7_2_default ; void *ldv_2_ldv_param_8_1_default ; struct seq_operations *ldv_2_ops_seq_operations ; struct seq_file *ldv_2_seq_file_seq_file ; int ldv_2_started_default ; struct ldv_struct_seq_instance_2 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_seq_instance_2 *)arg0; ldv_2_started_default = 0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_seq_instance_2 *)0)) { { ldv_2_seq_file_seq_file = data->arg0; ldv_2_ops_seq_operations = data->arg1; ldv_free((void *)data); } } else { } goto ldv_do_2; return; ldv_do_2: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_2_started_default == 1); tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_2_ldv_param_10_1_default = ldv_xmalloc(1UL); ldv_seq_instance_stop_2_10(ldv_2_ops_seq_operations->stop, ldv_2_seq_file_seq_file, ldv_2_ldv_param_10_1_default); ldv_free(ldv_2_ldv_param_10_1_default); ldv_2_started_default = 0; } goto ldv_do_2; case_2: /* CIL Label */ { ldv_2_ldv_param_8_1_default = ldv_xmalloc(1UL); ldv_seq_instance_show_2_8(ldv_2_ops_seq_operations->show, ldv_2_seq_file_seq_file, ldv_2_ldv_param_8_1_default); ldv_free(ldv_2_ldv_param_8_1_default); } goto ldv_do_2; goto ldv_do_2; case_3: /* CIL Label */ { ldv_2_ldv_param_7_1_default = ldv_xmalloc(1UL); tmp___0 = ldv_xmalloc(8UL); ldv_2_ldv_param_7_2_default = (long long *)tmp___0; ldv_seq_instance_next_2_7(ldv_2_ops_seq_operations->next, ldv_2_seq_file_seq_file, ldv_2_ldv_param_7_1_default, ldv_2_ldv_param_7_2_default); ldv_free(ldv_2_ldv_param_7_1_default); ldv_free((void *)ldv_2_ldv_param_7_2_default); } goto ldv_do_2; goto ldv_do_2; goto ldv_do_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } } else { { ldv_assume(ldv_2_started_default == 0); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp___1 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_1_default = (long long *)tmp___1; ldv_seq_instance_start_2_4(ldv_2_ops_seq_operations->start, ldv_2_seq_file_seq_file, ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_2_started_default = 1; } goto ldv_do_2; } else { return; } } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_10(void *arg0 ) { long (*ldv_10_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_10_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_10_container_struct_device_attribute ; struct device *ldv_10_container_struct_device_ptr ; char *ldv_10_ldv_param_3_2_default ; char *ldv_10_ldv_param_9_2_default ; unsigned long ldv_10_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_10; return; ldv_call_10: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_10_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_10_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_10_9(ldv_10_callback_store, ldv_10_container_struct_device_ptr, ldv_10_container_struct_device_attribute, ldv_10_ldv_param_9_2_default, ldv_10_ldv_param_9_3_default); ldv_free((void *)ldv_10_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_show, ldv_10_container_struct_device_ptr, ldv_10_container_struct_device_attribute, ldv_10_ldv_param_3_2_default); } } { ldv_free((void *)ldv_10_ldv_param_3_2_default); } goto ldv_call_10; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_11(void *arg0 ) { long (*ldv_11_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_11_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_11_container_struct_device_attribute ; struct device *ldv_11_container_struct_device_ptr ; char *ldv_11_ldv_param_3_2_default ; char *ldv_11_ldv_param_9_2_default ; unsigned long ldv_11_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_11; return; ldv_call_11: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_11_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_11_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_11_9(ldv_11_callback_store, ldv_11_container_struct_device_ptr, ldv_11_container_struct_device_attribute, ldv_11_ldv_param_9_2_default, ldv_11_ldv_param_9_3_default); ldv_free((void *)ldv_11_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_11_3(ldv_11_callback_show, ldv_11_container_struct_device_ptr, ldv_11_container_struct_device_attribute, ldv_11_ldv_param_3_2_default); } } { ldv_free((void *)ldv_11_ldv_param_3_2_default); } goto ldv_call_11; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_12(void *arg0 ) { long (*ldv_12_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_12_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_12_container_struct_device_attribute ; struct device *ldv_12_container_struct_device_ptr ; char *ldv_12_ldv_param_3_2_default ; char *ldv_12_ldv_param_9_2_default ; unsigned long ldv_12_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_12; return; ldv_call_12: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_12_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_12_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_12_9(ldv_12_callback_store, ldv_12_container_struct_device_ptr, ldv_12_container_struct_device_attribute, ldv_12_ldv_param_9_2_default, ldv_12_ldv_param_9_3_default); ldv_free((void *)ldv_12_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_12_3(ldv_12_callback_show, ldv_12_container_struct_device_ptr, ldv_12_container_struct_device_attribute, ldv_12_ldv_param_3_2_default); } } { ldv_free((void *)ldv_12_ldv_param_3_2_default); } goto ldv_call_12; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_13(void *arg0 ) { long (*ldv_13_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_13_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_13_container_struct_device_attribute ; struct device *ldv_13_container_struct_device_ptr ; char *ldv_13_ldv_param_3_2_default ; char *ldv_13_ldv_param_9_2_default ; unsigned long ldv_13_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_13; return; ldv_call_13: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_13_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_13_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_13_9(ldv_13_callback_store, ldv_13_container_struct_device_ptr, ldv_13_container_struct_device_attribute, ldv_13_ldv_param_9_2_default, ldv_13_ldv_param_9_3_default); ldv_free((void *)ldv_13_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_13_3(ldv_13_callback_show, ldv_13_container_struct_device_ptr, ldv_13_container_struct_device_attribute, ldv_13_ldv_param_3_2_default); } } { ldv_free((void *)ldv_13_ldv_param_3_2_default); } goto ldv_call_13; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_14(void *arg0 ) { long (*ldv_14_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_14_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_14_container_struct_device_attribute ; struct device *ldv_14_container_struct_device_ptr ; char *ldv_14_ldv_param_3_2_default ; char *ldv_14_ldv_param_9_2_default ; unsigned long ldv_14_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_14; return; ldv_call_14: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_14_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_14_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_14_9(ldv_14_callback_store, ldv_14_container_struct_device_ptr, ldv_14_container_struct_device_attribute, ldv_14_ldv_param_9_2_default, ldv_14_ldv_param_9_3_default); ldv_free((void *)ldv_14_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_14_3(ldv_14_callback_show, ldv_14_container_struct_device_ptr, ldv_14_container_struct_device_attribute, ldv_14_ldv_param_3_2_default); } } { ldv_free((void *)ldv_14_ldv_param_3_2_default); } goto ldv_call_14; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_15(void *arg0 ) { long (*ldv_15_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_15_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_15_container_struct_device_attribute ; struct device *ldv_15_container_struct_device_ptr ; char *ldv_15_ldv_param_3_2_default ; char *ldv_15_ldv_param_9_2_default ; unsigned long ldv_15_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_15; return; ldv_call_15: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_15_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_15_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_15_9(ldv_15_callback_store, ldv_15_container_struct_device_ptr, ldv_15_container_struct_device_attribute, ldv_15_ldv_param_9_2_default, ldv_15_ldv_param_9_3_default); ldv_free((void *)ldv_15_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_15_3(ldv_15_callback_show, ldv_15_container_struct_device_ptr, ldv_15_container_struct_device_attribute, ldv_15_ldv_param_3_2_default); } } { ldv_free((void *)ldv_15_ldv_param_3_2_default); } goto ldv_call_15; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) { long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; char *ldv_3_ldv_param_3_2_default ; char *ldv_3_ldv_param_9_2_default ; unsigned long ldv_3_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_3; return; ldv_call_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_3_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default, ldv_3_ldv_param_9_3_default); ldv_free((void *)ldv_3_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_3_2_default); } } { ldv_free((void *)ldv_3_ldv_param_3_2_default); } goto ldv_call_3; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; char *ldv_4_ldv_param_3_2_default ; char *ldv_4_ldv_param_9_2_default ; unsigned long ldv_4_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_4; return; ldv_call_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default, ldv_4_ldv_param_9_3_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_3_2_default); } } { ldv_free((void *)ldv_4_ldv_param_3_2_default); } goto ldv_call_4; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) { long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_5_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_5_container_struct_device_attribute ; struct device *ldv_5_container_struct_device_ptr ; char *ldv_5_ldv_param_3_2_default ; char *ldv_5_ldv_param_9_2_default ; unsigned long ldv_5_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_5; return; ldv_call_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_store, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_9_2_default, ldv_5_ldv_param_9_3_default); ldv_free((void *)ldv_5_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_show, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_3_2_default); } } { ldv_free((void *)ldv_5_ldv_param_3_2_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_6_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_6_container_struct_device_attribute ; struct device *ldv_6_container_struct_device_ptr ; char *ldv_6_ldv_param_3_2_default ; char *ldv_6_ldv_param_9_2_default ; unsigned long ldv_6_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_6; return; ldv_call_6: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_store, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_9_2_default, ldv_6_ldv_param_9_3_default); ldv_free((void *)ldv_6_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_3_2_default); } } { ldv_free((void *)ldv_6_ldv_param_3_2_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) { long (*ldv_7_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_7_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_7_container_struct_device_attribute ; struct device *ldv_7_container_struct_device_ptr ; char *ldv_7_ldv_param_3_2_default ; char *ldv_7_ldv_param_9_2_default ; unsigned long ldv_7_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_7_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_store, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_9_2_default, ldv_7_ldv_param_9_3_default); ldv_free((void *)ldv_7_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_3_2_default); } } { ldv_free((void *)ldv_7_ldv_param_3_2_default); } goto ldv_call_7; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_8(void *arg0 ) { long (*ldv_8_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_8_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_8_container_struct_device_attribute ; struct device *ldv_8_container_struct_device_ptr ; char *ldv_8_ldv_param_3_2_default ; char *ldv_8_ldv_param_9_2_default ; unsigned long ldv_8_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_8; return; ldv_call_8: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_8_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_8_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_8_9(ldv_8_callback_store, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_9_2_default, ldv_8_ldv_param_9_3_default); ldv_free((void *)ldv_8_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_show, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_3_2_default); } } { ldv_free((void *)ldv_8_ldv_param_3_2_default); } goto ldv_call_8; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_9(void *arg0 ) { long (*ldv_9_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_9_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_9_container_struct_device_attribute ; struct device *ldv_9_container_struct_device_ptr ; char *ldv_9_ldv_param_3_2_default ; char *ldv_9_ldv_param_9_2_default ; unsigned long ldv_9_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_9; return; ldv_call_9: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_9_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_9_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_store, ldv_9_container_struct_device_ptr, ldv_9_container_struct_device_attribute, ldv_9_ldv_param_9_2_default, ldv_9_ldv_param_9_3_default); ldv_free((void *)ldv_9_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_show, ldv_9_container_struct_device_ptr, ldv_9_container_struct_device_attribute, ldv_9_ldv_param_3_2_default); } } { ldv_free((void *)ldv_9_ldv_param_3_2_default); } goto ldv_call_9; } else { return; } return; } } void ldv_unregister_chrdev(void *arg0 , unsigned int arg1 , char *arg2 ) { struct file_operations *ldv_17_file_operations_file_operations ; { { ldv_dispatch_deregister_17_1(ldv_17_file_operations_file_operations); } return; return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_dec_and_test(v); } return (tmp); } } __inline static int register_chrdev(unsigned int major , char const *name , struct file_operations const *fops ) { ldv_func_ret_type ldv_func_res ; int tmp ; int res1 ; int tmp___0 ; int res2 ; int tmp___1 ; { { tmp = ldv_register_chrdev_72(major, name, fops); ldv_func_res = tmp; tmp___0 = ldv_linux_fs_char_dev_register_chrdev((int )major); res1 = tmp___0; tmp___1 = ldv_linux_usb_gadget_register_chrdev((int )major); res2 = tmp___1; ldv_assume(res1 == res2); } return (res1); return (ldv_func_res); } } __inline static void unregister_chrdev(unsigned int major , char const *name ) { { { ldv_unregister_chrdev_73(major, name); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(ldv_func_arg1); } return; } } static int ldv_seq_open_104(struct file *ldv_func_arg1 , struct seq_operations const *ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = seq_open(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_seq_open(ldv_func_res, ldv_func_arg1, (struct seq_operations *)ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_mutex_lock_105(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mm_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_106(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mm_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mm_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_108(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mm_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_109(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(ldv_func_arg1); } return; } } static bool ldv_try_module_get_110(struct module *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_module_try_module_get(ldv_func_arg1); } return (tmp != 0); } } static void ldv_module_put_111(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_module_put_114(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_118(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_119(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_120(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(ldv_func_arg1); } return; } } __inline static int ldv_register_chrdev_122(unsigned int major , char const *name , struct file_operations const *fops ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_chrdev(major, name, fops); ldv_func_res = tmp; tmp___0 = ldv_register_chrdev(ldv_func_res, major, (char *)name, (struct file_operations *)fops); } return (tmp___0); return (ldv_func_res); } } static void ldv_class_destroy_123(struct class *cls ) { { { ldv_linux_drivers_base_class_destroy_class(cls); ldv_linux_usb_gadget_destroy_class(cls); } return; } } __inline static void ldv_unregister_chrdev_124(unsigned int major , char const *name ) { { { unregister_chrdev(major, name); ldv_unregister_chrdev((void *)0, major, (char *)name); } return; } } static int ldv_ldv_post_init_125(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_126(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_127(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_128(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern unsigned long int_sqrt(unsigned long ) ; extern void *__memmove(void * , void const * , size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern struct edid_info edid_info ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; int fb_get_mode(int flags , u32 val , struct fb_var_screeninfo *var , struct fb_info *info ) ; int fb_validate_mode(struct fb_var_screeninfo const *var , struct fb_info *info ) ; int fb_parse_edid(unsigned char *edid , struct fb_var_screeninfo *var ) ; unsigned char const *fb_firmware_edid(struct device *device ) ; void fb_edid_to_monspecs(unsigned char *edid , struct fb_monspecs *specs ) ; void fb_edid_add_monspecs(unsigned char *edid , struct fb_monspecs *specs ) ; void fb_destroy_modedb(struct fb_videomode *modedb___0 ) ; int fb_videomode_from_videomode(struct videomode const *vm , struct fb_videomode *fbmode ) ; struct fb_videomode const vesa_modes[43U] ; struct fb_videomode const cea_modes[64U] ; struct dmt_videomode const dmt_modes[80U] ; static struct broken_edid const brokendb[3U] = { {{'D', 'E', 'C', '\000'}, 1850U, 1U}, {{'V', 'S', 'C', '\000'}, 23108U, 2U}, {{'S', 'H', 'P', '\000'}, 5006U, 3U}}; static unsigned char const edid_v1_header[8U] = { 0U, 255U, 255U, 255U, 255U, 255U, 255U, 0U}; static void copy_string(unsigned char *c , unsigned char *s ) { int i ; unsigned char *tmp ; unsigned char *tmp___0 ; int tmp___1 ; { c = c + 5UL; i = 0; goto ldv_34959; ldv_34958: tmp = s; s = s + 1; tmp___0 = c; c = c + 1; *tmp = *tmp___0; i = i + 1; ldv_34959: ; if (i <= 12 && (unsigned int )*c != 10U) { goto ldv_34958; } else { } *s = 0U; goto ldv_34962; ldv_34961: *s = 0U; ldv_34962: tmp___1 = i; i = i - 1; if (tmp___1 != 0) { s = s - 1; if ((unsigned int )*s == 32U) { goto ldv_34961; } else { goto ldv_34963; } } else { } ldv_34963: ; return; } } static int edid_is_serial_block(unsigned char *block ) { { if (((((unsigned int )*block == 0U && (unsigned int )*(block + 1UL) == 0U) && (unsigned int )*(block + 2UL) == 0U) && (unsigned int )*(block + 3UL) == 255U) && (unsigned int )*(block + 4UL) == 0U) { return (1); } else { return (0); } } } static int edid_is_ascii_block(unsigned char *block ) { { if (((((unsigned int )*block == 0U && (unsigned int )*(block + 1UL) == 0U) && (unsigned int )*(block + 2UL) == 0U) && (unsigned int )*(block + 3UL) == 254U) && (unsigned int )*(block + 4UL) == 0U) { return (1); } else { return (0); } } } static int edid_is_limits_block(unsigned char *block ) { { if (((((unsigned int )*block == 0U && (unsigned int )*(block + 1UL) == 0U) && (unsigned int )*(block + 2UL) == 0U) && (unsigned int )*(block + 3UL) == 253U) && (unsigned int )*(block + 4UL) == 0U) { return (1); } else { return (0); } } } static int edid_is_monitor_block(unsigned char *block ) { { if (((((unsigned int )*block == 0U && (unsigned int )*(block + 1UL) == 0U) && (unsigned int )*(block + 2UL) == 0U) && (unsigned int )*(block + 3UL) == 252U) && (unsigned int )*(block + 4UL) == 0U) { return (1); } else { return (0); } } } static int edid_is_timing_block(unsigned char *block ) { { if ((((unsigned int )*block != 0U || (unsigned int )*(block + 1UL) != 0U) || (unsigned int )*(block + 2UL) != 0U) || (unsigned int )*(block + 4UL) != 0U) { return (1); } else { return (0); } } } static int check_edid(unsigned char *edid ) { unsigned char *block ; unsigned char manufacturer[4U] ; unsigned char *b ; u32 model ; int i ; int fix ; int ret ; int tmp ; int tmp___0 ; { block = edid + 8UL; fix = 0; ret = 0; manufacturer[0] = (unsigned int )((unsigned char )(((int )*block & 124) >> 2)) + 64U; manufacturer[1] = ((((unsigned int )*block & 3U) << 3U) + (unsigned int )((int )*(block + 1UL) >> 5)) + 64U; manufacturer[2] = ((unsigned int )*(block + 1UL) & 31U) + 64U; manufacturer[3] = 0U; model = (u32 )((int )*(block + 2UL) + ((int )*(block + 3UL) << 8)); i = 0; goto ldv_34993; ldv_34992: { tmp = strncmp((char const *)(& manufacturer), (char const *)(& brokendb[i].manufacturer), 4UL); } if (tmp == 0 && (unsigned int )brokendb[i].model == model) { fix = (int )brokendb[i].fix; goto ldv_34991; } else { } i = i + 1; ldv_34993: ; if ((unsigned int )i <= 2U) { goto ldv_34992; } else { } ldv_34991: ; { if (fix == 1) { goto case_1; } else { } if (fix == 2) { goto case_2; } else { } if (fix == 3) { goto case_3; } else { } goto switch_break; case_1: /* CIL Label */ i = 0; goto ldv_34997; ldv_34996: ; if ((int )*(edid + (unsigned long )i) != (int )((unsigned char )edid_v1_header[i])) { ret = fix; goto ldv_34995; } else { } i = i + 1; ldv_34997: ; if (i <= 7) { goto ldv_34996; } else { } ldv_34995: ; goto ldv_34998; case_2: /* CIL Label */ b = edid + 20UL; if ((int )*(b + 4UL) & 1 && (int )((signed char )*b) < 0) { ret = fix; } else { } goto ldv_34998; case_3: /* CIL Label */ b = edid + 54UL; ret = fix; i = 0; goto ldv_35003; ldv_35002: { tmp___0 = edid_is_limits_block(b); } if (tmp___0 != 0) { ret = 0; goto ldv_35001; } else { } b = b + 18UL; i = i + 1; ldv_35003: ; if (i <= 3) { goto ldv_35002; } else { } ldv_35001: ; goto ldv_34998; switch_break: /* CIL Label */ ; } ldv_34998: ; if (ret != 0) { { printk("fbmon: The EDID Block of Manufacturer: %s Model: 0x%x is known to be broken,\n", (unsigned char *)(& manufacturer), model); } } else { } return (ret); } } static void fix_edid(unsigned char *edid , int fix ) { int i ; unsigned char *b ; unsigned char csum ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { csum = 0U; { if (fix == 1) { goto case_1; } else { } if (fix == 2) { goto case_2; } else { } if (fix == 3) { goto case_3; } else { } goto switch_break; case_1: /* CIL Label */ { printk("fbmon: trying a header reconstruct\n"); __memcpy((void *)edid, (void const *)(& edid_v1_header), 8UL); } goto ldv_35012; case_2: /* CIL Label */ { printk("fbmon: trying to fix input type\n"); b = edid + 20UL; *b = (unsigned int )*b & 127U; *(edid + 127UL) = (unsigned int )*(edid + 127UL) + 128U; } goto ldv_35012; case_3: /* CIL Label */ { printk("fbmon: trying to fix monitor timings\n"); b = edid + 54UL; i = 0; } goto ldv_35017; ldv_35016: { tmp = edid_is_serial_block(b); } if (tmp == 0) { { tmp___0 = edid_is_ascii_block(b); } if (tmp___0 == 0) { { tmp___1 = edid_is_monitor_block(b); } if (tmp___1 == 0) { { tmp___2 = edid_is_timing_block(b); } if (tmp___2 == 0) { *b = 0U; *(b + 1UL) = 0U; *(b + 2UL) = 0U; *(b + 3UL) = 253U; *(b + 4UL) = 0U; *(b + 5UL) = 60U; *(b + 6UL) = 60U; *(b + 7UL) = 30U; *(b + 8UL) = 75U; *(b + 9UL) = 17U; *(b + 10UL) = 0U; goto ldv_35015; } else { } } else { } } else { } } else { } b = b + 18UL; i = i + 1; ldv_35017: ; if (i <= 3) { goto ldv_35016; } else { } ldv_35015: i = 0; goto ldv_35019; ldv_35018: csum = (int )csum + (int )*(edid + (unsigned long )i); i = i + 1; ldv_35019: ; if (i <= 126) { goto ldv_35018; } else { } *(edid + 127UL) = - ((int )csum); goto ldv_35012; switch_break: /* CIL Label */ ; } ldv_35012: ; return; } } static int edid_checksum(unsigned char *edid ) { unsigned char csum ; unsigned char all_null ; int i ; int err ; int fix ; int tmp ; { { csum = 0U; all_null = 0U; err = 0; tmp = check_edid(edid); fix = tmp; } if (fix != 0) { { fix_edid(edid, fix); } } else { } i = 0; goto ldv_35030; ldv_35029: csum = (int )csum + (int )*(edid + (unsigned long )i); all_null = (int )all_null | (int )*(edid + (unsigned long )i); i = i + 1; ldv_35030: ; if (i <= 127) { goto ldv_35029; } else { } if ((unsigned int )csum == 0U && (unsigned int )all_null != 0U) { err = 1; } else { } return (err); } } static int edid_check_header(unsigned char *edid ) { int i ; int err ; int fix ; int tmp ; { { err = 1; tmp = check_edid(edid); fix = tmp; } if (fix != 0) { { fix_edid(edid, fix); } } else { } i = 0; goto ldv_35039; ldv_35038: ; if ((int )*(edid + (unsigned long )i) != (int )((unsigned char )edid_v1_header[i])) { err = 0; } else { } i = i + 1; ldv_35039: ; if (i <= 7) { goto ldv_35038; } else { } return (err); } } static void parse_vendor_block(unsigned char *block , struct fb_monspecs *specs ) { { specs->manufacturer[0] = (unsigned int )((__u8 )(((int )*block & 124) >> 2)) + 64U; specs->manufacturer[1] = ((((unsigned int )*block & 3U) << 3U) + (unsigned int )((__u8 )((int )*(block + 1UL) >> 5))) + 64U; specs->manufacturer[2] = ((unsigned int )*(block + 1UL) & 31U) + 64U; specs->manufacturer[3] = 0U; specs->model = (__u32 )((int )*(block + 2UL) + ((int )*(block + 3UL) << 8)); specs->serial = (__u32 )((((int )*(block + 4UL) + ((int )*(block + 5UL) << 8)) + ((int )*(block + 6UL) << 16)) + ((int )*(block + 7UL) << 24)); specs->year = (__u32 )((int )*(block + 9UL) + 1990); specs->week = (__u32 )*(block + 8UL); return; } } static void get_dpms_capabilities(unsigned char flags , struct fb_monspecs *specs ) { { specs->dpms = 0U; if (((int )flags & 32) != 0) { specs->dpms = (__u16 )((unsigned int )specs->dpms | 1U); } else { } if (((int )flags & 64) != 0) { specs->dpms = (__u16 )((unsigned int )specs->dpms | 2U); } else { } if ((int )((signed char )flags) < 0) { specs->dpms = (__u16 )((unsigned int )specs->dpms | 4U); } else { } return; } } static void get_chroma(unsigned char *block , struct fb_monspecs *specs ) { int tmp ; { tmp = ((int )*(block + 5UL) >> 6) | ((int )*(block + 7UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.redx = (__u32 )(tmp / 1024); tmp = (((int )*(block + 5UL) & 48) >> 4) | ((int )*(block + 8UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.redy = (__u32 )(tmp / 1024); tmp = (((int )*(block + 5UL) & 12) >> 2) | ((int )*(block + 9UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.greenx = (__u32 )(tmp / 1024); tmp = ((int )*(block + 5UL) & 3) | ((int )*(block + 10UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.greeny = (__u32 )(tmp / 1024); tmp = ((int )*(block + 6UL) >> 6) | ((int )*(block + 11UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.bluex = (__u32 )(tmp / 1024); tmp = (((int )*(block + 6UL) & 48) >> 4) | ((int )*(block + 12UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.bluey = (__u32 )(tmp / 1024); tmp = (((int )*(block + 6UL) & 12) >> 2) | ((int )*(block + 13UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.whitex = (__u32 )(tmp / 1024); tmp = ((int )*(block + 6UL) & 3) | ((int )*(block + 14UL) << 2); tmp = tmp * 1000; tmp = tmp + 512; specs->chroma.whitey = (__u32 )(tmp / 1024); return; } } static void calc_mode_timings(int xres , int yres , int refresh , struct fb_videomode *mode ) { struct fb_var_screeninfo *var ; void *tmp ; { { tmp = kzalloc(160UL, 208U); var = (struct fb_var_screeninfo *)tmp; } if ((unsigned long )var != (unsigned long )((struct fb_var_screeninfo *)0)) { { var->xres = (__u32 )xres; var->yres = (__u32 )yres; fb_get_mode(257, (u32 )refresh, var, (struct fb_info *)0); mode->xres = (u32 )xres; mode->yres = (u32 )yres; mode->pixclock = var->pixclock; mode->refresh = (u32 )refresh; mode->left_margin = var->left_margin; mode->right_margin = var->right_margin; mode->upper_margin = var->upper_margin; mode->lower_margin = var->lower_margin; mode->hsync_len = var->hsync_len; mode->vsync_len = var->vsync_len; mode->vmode = 0U; mode->sync = 0U; kfree((void const *)var); } } else { } return; } } static int get_est_timing(unsigned char *block , struct fb_videomode *mode ) { int num ; unsigned char c ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; { num = 0; c = *block; if ((int )((signed char )c) < 0) { { calc_mode_timings(720, 400, 70, mode + (unsigned long )num); tmp = num; num = num + 1; (mode + (unsigned long )tmp)->flag = 8U; } } else { } if (((int )c & 64) != 0) { { calc_mode_timings(720, 400, 88, mode + (unsigned long )num); tmp___0 = num; num = num + 1; (mode + (unsigned long )tmp___0)->flag = 8U; } } else { } if (((int )c & 32) != 0) { tmp___1 = num; num = num + 1; *(mode + (unsigned long )tmp___1) = vesa_modes[3]; } else { } if (((int )c & 16) != 0) { { calc_mode_timings(640, 480, 67, mode + (unsigned long )num); tmp___2 = num; num = num + 1; (mode + (unsigned long )tmp___2)->flag = 8U; } } else { } if (((int )c & 8) != 0) { tmp___3 = num; num = num + 1; *(mode + (unsigned long )tmp___3) = vesa_modes[4]; } else { } if (((int )c & 4) != 0) { tmp___4 = num; num = num + 1; *(mode + (unsigned long )tmp___4) = vesa_modes[5]; } else { } if (((int )c & 2) != 0) { tmp___5 = num; num = num + 1; *(mode + (unsigned long )tmp___5) = vesa_modes[7]; } else { } if ((int )c & 1) { tmp___6 = num; num = num + 1; *(mode + (unsigned long )tmp___6) = vesa_modes[8]; } else { } c = *(block + 1UL); if ((int )((signed char )c) < 0) { tmp___7 = num; num = num + 1; *(mode + (unsigned long )tmp___7) = vesa_modes[9]; } else { } if (((int )c & 64) != 0) { tmp___8 = num; num = num + 1; *(mode + (unsigned long )tmp___8) = vesa_modes[10]; } else { } if (((int )c & 32) != 0) { { calc_mode_timings(832, 624, 75, mode + (unsigned long )num); tmp___9 = num; num = num + 1; (mode + (unsigned long )tmp___9)->flag = 8U; } } else { } if (((int )c & 16) != 0) { tmp___10 = num; num = num + 1; *(mode + (unsigned long )tmp___10) = vesa_modes[12]; } else { } if (((int )c & 8) != 0) { tmp___11 = num; num = num + 1; *(mode + (unsigned long )tmp___11) = vesa_modes[13]; } else { } if (((int )c & 4) != 0) { tmp___12 = num; num = num + 1; *(mode + (unsigned long )tmp___12) = vesa_modes[14]; } else { } if (((int )c & 2) != 0) { tmp___13 = num; num = num + 1; *(mode + (unsigned long )tmp___13) = vesa_modes[15]; } else { } if ((int )c & 1) { tmp___14 = num; num = num + 1; *(mode + (unsigned long )tmp___14) = vesa_modes[21]; } else { } c = *(block + 2UL); if ((int )((signed char )c) < 0) { tmp___15 = num; num = num + 1; *(mode + (unsigned long )tmp___15) = vesa_modes[17]; } else { } return (num); } } static int get_std_timing(unsigned char *block , struct fb_videomode *mode , int ver , int rev , struct fb_monspecs const *specs ) { int i ; u32 std_2byte_code ; int xres ; int yres ; int refresh ; int ratio ; { i = 0; goto ldv_35078; ldv_35077: std_2byte_code = (u32 )(((int )*block << 8) | (int )*(block + 1UL)); if (std_2byte_code == (u32 )dmt_modes[i].std_2byte_code) { goto ldv_35076; } else { } i = i + 1; ldv_35078: ; if (i <= 79) { goto ldv_35077; } else { } ldv_35076: ; if (i <= 79 && (unsigned long )dmt_modes[i].mode != (unsigned long )((struct fb_videomode const */* const */)0)) { *mode = *(dmt_modes[i].mode); mode->flag = mode->flag | 2U; } else { yres = 0; xres = ((int )*block + 31) * 8; if (xres <= 256) { return (0); } else { } ratio = (int )*(block + 1UL) >> 6; { if (ratio == 0) { goto case_0; } else { } if (ratio == 1) { goto case_1; } else { } if (ratio == 2) { goto case_2; } else { } if (ratio == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; if (ver <= 0 || (ver == 1 && rev <= 2)) { yres = xres; } else { yres = (xres * 10) / 16; } goto ldv_35084; case_1: /* CIL Label */ yres = (xres * 3) / 4; goto ldv_35084; case_2: /* CIL Label */ yres = (xres * 4) / 5; goto ldv_35084; case_3: /* CIL Label */ yres = (xres * 9) / 16; goto ldv_35084; switch_break: /* CIL Label */ ; } ldv_35084: { refresh = ((int )*(block + 1UL) & 63) + 60; calc_mode_timings(xres, yres, refresh, mode); } } if (((unsigned long )specs != (unsigned long )((struct fb_monspecs const *)0) && (unsigned int )specs->dclkmax != 0U) && (unsigned long )(1000000000U / mode->pixclock) * 1000UL > (unsigned long )specs->dclkmax) { return (0); } else { } return (1); } } static int get_dst_timing(unsigned char *block , struct fb_videomode *mode , int ver , int rev , struct fb_monspecs const *specs ) { int j ; int num ; int tmp ; { num = 0; j = 0; goto ldv_35098; ldv_35097: { tmp = get_std_timing(block, mode + (unsigned long )num, ver, rev, specs); num = num + tmp; j = j + 1; block = block + 2UL; } ldv_35098: ; if (j <= 5) { goto ldv_35097; } else { } return (num); } } static void get_detailed_timing(unsigned char *block , struct fb_videomode *mode ) { { mode->xres = ((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL); mode->yres = ((unsigned int )((int )*(block + 7UL) >> 4) << 8) | (unsigned int )*(block + 5UL); mode->pixclock = (((unsigned int )*(block + 1UL) << 8) | (unsigned int )*block) * 10000U; mode->pixclock = mode->pixclock / 1000U; mode->pixclock = 1000000000U / mode->pixclock; mode->right_margin = ((unsigned int )((int )*(block + 11UL) >> 6) << 8) | (unsigned int )*(block + 8UL); mode->left_margin = ((((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL)) + ((((unsigned int )*(block + 4UL) & 15U) << 8) | (unsigned int )*(block + 3UL))) - (((((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL)) + (((unsigned int )((int )*(block + 11UL) >> 6) << 8) | (unsigned int )*(block + 8UL))) + (((((unsigned int )*(block + 11UL) & 48U) >> 4) << 8) | (unsigned int )*(block + 9UL))); mode->upper_margin = (((((unsigned int )*(block + 7UL) & 15U) << 8) | (unsigned int )*(block + 6UL)) - (((((unsigned int )*(block + 11UL) & 12U) >> 2) << 4) | (unsigned int )((int )*(block + 10UL) >> 4))) - ((((unsigned int )*(block + 11UL) & 3U) << 4) | ((unsigned int )*(block + 10UL) & 15U)); mode->lower_margin = ((((unsigned int )*(block + 11UL) & 12U) >> 2) << 4) | (unsigned int )((int )*(block + 10UL) >> 4); mode->hsync_len = ((((unsigned int )*(block + 11UL) & 48U) >> 4) << 8) | (unsigned int )*(block + 9UL); mode->vsync_len = (((unsigned int )*(block + 11UL) & 3U) << 4) | ((unsigned int )*(block + 10UL) & 15U); if (((unsigned int )*(block + 17UL) & 4U) != 0U) { mode->sync = mode->sync | 1U; } else { } if (((unsigned int )*(block + 17UL) & 2U) != 0U) { mode->sync = mode->sync | 2U; } else { } mode->refresh = ((((unsigned int )*(block + 1UL) << 8) | (unsigned int )*block) * 10000U) / (((((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL)) + ((((unsigned int )*(block + 4UL) & 15U) << 8) | (unsigned int )*(block + 3UL))) * ((((unsigned int )((int )*(block + 7UL) >> 4) << 8) | (unsigned int )*(block + 5UL)) + ((((unsigned int )*(block + 7UL) & 15U) << 8) | (unsigned int )*(block + 6UL)))); if ((int )((signed char )*(block + 17UL)) < 0) { mode->yres = mode->yres * 2U; mode->upper_margin = mode->upper_margin * 2U; mode->lower_margin = mode->lower_margin * 2U; mode->vsync_len = mode->vsync_len * 2U; mode->vmode = mode->vmode | 1U; } else { } mode->flag = 1U; return; } } static struct fb_videomode *fb_create_modedb(unsigned char *edid , int *dbsize , struct fb_monspecs const *specs ) { struct fb_videomode *mode ; struct fb_videomode *m ; unsigned char *block ; int num ; int i ; int first ; int ver ; int rev ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; { { num = 0; first = 1; ver = (int )*(edid + 18UL); rev = (int )*(edid + 19UL); tmp = kzalloc(3200UL, 208U); mode = (struct fb_videomode *)tmp; } if ((unsigned long )mode == (unsigned long )((struct fb_videomode *)0)) { return ((struct fb_videomode *)0); } else { } if ((unsigned long )edid == (unsigned long )((unsigned char *)0U)) { { kfree((void const *)mode); } return ((struct fb_videomode *)0); } else { { tmp___0 = edid_checksum(edid); } if (tmp___0 == 0) { { kfree((void const *)mode); } return ((struct fb_videomode *)0); } else { { tmp___1 = edid_check_header(edid); } if (tmp___1 == 0) { { kfree((void const *)mode); } return ((struct fb_videomode *)0); } else { } } } *dbsize = 0; block = edid + 54UL; i = 0; goto ldv_35118; ldv_35117: ; if ((unsigned int )*block != 0U || (unsigned int )*(block + 1UL) != 0U) { { get_detailed_timing(block, mode + (unsigned long )num); } if (first != 0) { (mode + (unsigned long )num)->flag = (mode + (unsigned long )num)->flag | 16U; first = 0; } else { } num = num + 1; } else { } i = i + 1; block = block + 18UL; ldv_35118: ; if (i <= 3) { goto ldv_35117; } else { } { block = edid + 35UL; tmp___2 = get_est_timing(block, mode + (unsigned long )num); num = num + tmp___2; block = edid + 38UL; i = 0; } goto ldv_35121; ldv_35120: { tmp___3 = get_std_timing(block, mode + (unsigned long )num, ver, rev, specs); num = num + tmp___3; i = i + 1; block = block + 2UL; } ldv_35121: ; if (i <= 7) { goto ldv_35120; } else { } block = edid + 54UL; i = 0; goto ldv_35124; ldv_35123: ; if (((unsigned int )*block == 0U && (unsigned int )*(block + 1UL) == 0U) && (unsigned int )*(block + 3UL) == 250U) { { tmp___4 = get_dst_timing(block + 5UL, mode + (unsigned long )num, ver, rev, specs); num = num + tmp___4; } } else { } i = i + 1; block = block + 18UL; ldv_35124: ; if (i <= 3) { goto ldv_35123; } else { } if (num == 0) { { kfree((void const *)mode); } return ((struct fb_videomode *)0); } else { } { *dbsize = num; tmp___5 = kmalloc((unsigned long )num * 64UL, 208U); m = (struct fb_videomode *)tmp___5; } if ((unsigned long )m == (unsigned long )((struct fb_videomode *)0)) { return (mode); } else { } { __memmove((void *)m, (void const *)mode, (unsigned long )num * 64UL); kfree((void const *)mode); } return (m); } } void fb_destroy_modedb(struct fb_videomode *modedb___0 ) { { { kfree((void const *)modedb___0); } return; } } static int fb_get_monitor_limits(unsigned char *edid , struct fb_monspecs *specs ) { int i ; int retval ; unsigned char *block ; int tmp ; struct fb_videomode *modes ; struct fb_videomode *mode ; int num_modes ; int hz ; int hscan ; int pixclock ; int vtotal ; int htotal ; { retval = 1; block = edid + 54UL; i = 0; goto ldv_35138; ldv_35137: { tmp = edid_is_limits_block(block); } if (tmp != 0) { specs->hfmin = (__u32 )((int )*(block + 7UL) * 1000); specs->hfmax = (__u32 )((int )*(block + 8UL) * 1000); specs->vfmin = (__u16 )*(block + 5UL); specs->vfmax = (__u16 )*(block + 6UL); specs->dclkmax = (__u32 )((int )*(block + 9UL) * 10000000); specs->gtf = (unsigned int )*(block + 10UL) != 0U; retval = 0; goto ldv_35136; } else { } i = i + 1; block = block + 18UL; ldv_35138: ; if (i <= 3) { goto ldv_35137; } else { } ldv_35136: ; if (retval != 0) { { modes = fb_create_modedb(edid, & num_modes, (struct fb_monspecs const *)specs); } if ((unsigned long )modes == (unsigned long )((struct fb_videomode *)0)) { return (1); } else { } retval = 0; i = 0; goto ldv_35148; ldv_35147: mode = modes + (unsigned long )i; pixclock = (int )((1000000000U / (modes + (unsigned long )i)->pixclock) * 1000U); htotal = (int )(((mode->xres + mode->right_margin) + mode->hsync_len) + mode->left_margin); vtotal = (int )(((mode->yres + mode->lower_margin) + mode->vsync_len) + mode->upper_margin); if ((int )mode->vmode & 1) { vtotal = vtotal / 2; } else { } if ((mode->vmode & 2U) != 0U) { vtotal = vtotal * 2; } else { } hscan = (pixclock + htotal / 2) / htotal; hscan = ((hscan + 500) / 1000) * 1000; hz = (hscan + vtotal / 2) / vtotal; if (specs->dclkmax == 0U || specs->dclkmax < (__u32 )pixclock) { specs->dclkmax = (__u32 )pixclock; } else { } if (specs->dclkmin == 0U || specs->dclkmin > (__u32 )pixclock) { specs->dclkmin = (__u32 )pixclock; } else { } if (specs->hfmax == 0U || specs->hfmax < (__u32 )hscan) { specs->hfmax = (__u32 )hscan; } else { } if (specs->hfmin == 0U || specs->hfmin > (__u32 )hscan) { specs->hfmin = (__u32 )hscan; } else { } if ((unsigned int )specs->vfmax == 0U || (int )specs->vfmax < hz) { specs->vfmax = (__u16 )hz; } else { } if ((unsigned int )specs->vfmin == 0U || (int )specs->vfmin > hz) { specs->vfmin = (__u16 )hz; } else { } i = i + 1; ldv_35148: ; if (i < num_modes) { goto ldv_35147; } else { } { fb_destroy_modedb(modes); } } else { } return (retval); } } static void get_monspecs(unsigned char *edid , struct fb_monspecs *specs ) { unsigned char c ; unsigned char *block ; { { block = edid + 20UL; fb_get_monitor_limits(edid, specs); c = (unsigned int )*block & 128U; specs->input = 0U; } if ((unsigned int )c != 0U) { specs->input = (__u16 )((unsigned int )specs->input | 1U); } else { { if (((int )*block & 96) >> 5 == 0) { goto case_0; } else { } if (((int )*block & 96) >> 5 == 1) { goto case_1; } else { } if (((int )*block & 96) >> 5 == 2) { goto case_2; } else { } if (((int )*block & 96) >> 5 == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 2U); goto ldv_35157; case_1: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 4U); goto ldv_35157; case_2: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 8U); goto ldv_35157; case_3: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 16U); goto ldv_35157; switch_break: /* CIL Label */ ; } ldv_35157: ; } c = (unsigned int )*block & 16U; c = (unsigned int )*block & 15U; specs->signal = 0U; if (((int )c & 16) != 0) { specs->signal = (__u16 )((unsigned int )specs->signal | 1U); } else { } if (((int )c & 8) != 0) { specs->signal = (__u16 )((unsigned int )specs->signal | 2U); } else { } if (((int )c & 4) != 0) { specs->signal = (__u16 )((unsigned int )specs->signal | 4U); } else { } if (((int )c & 2) != 0) { specs->signal = (__u16 )((unsigned int )specs->signal | 8U); } else { } if ((int )c & 1) { specs->signal = (__u16 )((unsigned int )specs->signal | 16U); } else { } { specs->max_x = *(block + 1UL); specs->max_y = *(block + 2UL); c = *(block + 3UL); specs->gamma = (unsigned int )((__u16 )c) + 100U; get_dpms_capabilities((int )*(block + 4UL), specs); } { if (((int )*(block + 4UL) & 24) >> 3 == 0) { goto case_0___0; } else { } if (((int )*(block + 4UL) & 24) >> 3 == 1) { goto case_1___0; } else { } if (((int )*(block + 4UL) & 24) >> 3 == 2) { goto case_2___0; } else { } goto switch_default; case_0___0: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 32U); goto ldv_35162; case_1___0: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 64U); goto ldv_35162; case_2___0: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 128U); goto ldv_35162; switch_default: /* CIL Label */ specs->input = (__u16 )((unsigned int )specs->input | 256U); goto ldv_35162; switch_break___0: /* CIL Label */ ; } ldv_35162: { get_chroma(block, specs); specs->misc = 0U; c = (unsigned int )*(block + 4UL) & 7U; } if (((int )c & 4) != 0) { specs->misc = (__u16 )((unsigned int )specs->misc | 1U); } else { } if (((int )c & 2) != 0) { specs->misc = (__u16 )((unsigned int )specs->misc | 2U); } else { } if ((int )c & 1) { { printk(" Display is GTF capable\n"); specs->gtf = 1U; } } else { } return; } } int fb_parse_edid(unsigned char *edid , struct fb_var_screeninfo *var ) { int i ; unsigned char *block ; int tmp ; int tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; __u32 tmp___3 ; int tmp___4 ; { if ((unsigned long )edid == (unsigned long )((unsigned char *)0U) || (unsigned long )var == (unsigned long )((struct fb_var_screeninfo *)0)) { return (1); } else { } { tmp = edid_checksum(edid); } if (tmp == 0) { return (1); } else { } { tmp___0 = edid_check_header(edid); } if (tmp___0 == 0) { return (1); } else { } block = edid + 54UL; i = 0; goto ldv_35173; ldv_35172: { tmp___4 = edid_is_timing_block(block); } if (tmp___4 != 0) { tmp___1 = ((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL); var->xres_virtual = tmp___1; var->xres = tmp___1; tmp___2 = ((unsigned int )((int )*(block + 7UL) >> 4) << 8) | (unsigned int )*(block + 5UL); var->yres_virtual = tmp___2; var->yres = tmp___2; tmp___3 = 0U; var->width = tmp___3; var->height = tmp___3; var->right_margin = ((unsigned int )((int )*(block + 11UL) >> 6) << 8) | (unsigned int )*(block + 8UL); var->left_margin = ((((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL)) + ((((unsigned int )*(block + 4UL) & 15U) << 8) | (unsigned int )*(block + 3UL))) - (((((unsigned int )((int )*(block + 4UL) >> 4) << 8) | (unsigned int )*(block + 2UL)) + (((unsigned int )((int )*(block + 11UL) >> 6) << 8) | (unsigned int )*(block + 8UL))) + (((((unsigned int )*(block + 11UL) & 48U) >> 4) << 8) | (unsigned int )*(block + 9UL))); var->upper_margin = (((((unsigned int )*(block + 7UL) & 15U) << 8) | (unsigned int )*(block + 6UL)) - (((((unsigned int )*(block + 11UL) & 12U) >> 2) << 4) | (unsigned int )((int )*(block + 10UL) >> 4))) - ((((unsigned int )*(block + 11UL) & 3U) << 4) | ((unsigned int )*(block + 10UL) & 15U)); var->lower_margin = ((((unsigned int )*(block + 11UL) & 12U) >> 2) << 4) | (unsigned int )((int )*(block + 10UL) >> 4); var->hsync_len = ((((unsigned int )*(block + 11UL) & 48U) >> 4) << 8) | (unsigned int )*(block + 9UL); var->vsync_len = (((unsigned int )*(block + 11UL) & 3U) << 4) | ((unsigned int )*(block + 10UL) & 15U); var->pixclock = (((unsigned int )*(block + 1UL) << 8) | (unsigned int )*block) * 10000U; var->pixclock = var->pixclock / 1000U; var->pixclock = 1000000000U / var->pixclock; if (((unsigned int )*(block + 17UL) & 4U) != 0U) { var->sync = var->sync | 1U; } else { } if (((unsigned int )*(block + 17UL) & 2U) != 0U) { var->sync = var->sync | 2U; } else { } return (0); } else { } i = i + 1; block = block + 18UL; ldv_35173: ; if (i <= 3) { goto ldv_35172; } else { } return (1); } } void fb_edid_to_monspecs(unsigned char *edid , struct fb_monspecs *specs ) { unsigned char *block ; int i ; int found ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { found = 0; if ((unsigned long )edid == (unsigned long )((unsigned char *)0U)) { return; } else { } { tmp = edid_checksum(edid); } if (tmp == 0) { return; } else { } { tmp___0 = edid_check_header(edid); } if (tmp___0 == 0) { return; } else { } { __memset((void *)specs, 0, 144UL); specs->version = *(edid + 18UL); specs->revision = *(edid + 19UL); parse_vendor_block(edid + 8UL, specs); block = edid + 54UL; i = 0; } goto ldv_35183; ldv_35182: { tmp___3 = edid_is_serial_block(block); } if (tmp___3 != 0) { { copy_string(block, (unsigned char *)(& specs->serial_no)); } } else { { tmp___2 = edid_is_ascii_block(block); } if (tmp___2 != 0) { { copy_string(block, (unsigned char *)(& specs->ascii)); } } else { { tmp___1 = edid_is_monitor_block(block); } if (tmp___1 != 0) { { copy_string(block, (unsigned char *)(& specs->monitor)); } } else { } } } i = i + 1; block = block + 18UL; ldv_35183: ; if (i <= 3) { goto ldv_35182; } else { } { get_monspecs(edid, specs); specs->modedb = fb_create_modedb(edid, (int *)(& specs->modedb_len), (struct fb_monspecs const *)specs); i = 0; } goto ldv_35187; ldv_35186: ; if ((int )(specs->modedb + (unsigned long )i)->flag & 1) { found = 1; goto ldv_35185; } else { } i = i + 1; ldv_35187: ; if ((__u32 )i < specs->modedb_len) { goto ldv_35186; } else { } ldv_35185: ; if (found == 0) { specs->misc = (unsigned int )specs->misc & 65533U; } else { } return; } } void fb_edid_add_monspecs(unsigned char *edid , struct fb_monspecs *specs ) { unsigned char *block ; struct fb_videomode *m ; int num ; int i ; u8 svd[64U] ; u8 edt[6U] ; u8 pos ; u8 svd_n ; int tmp ; u8 len ; u8 type ; struct _ddebug descriptor ; long tmp___0 ; u8 idx ; u8 tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; int tmp___3 ; void *tmp___4 ; struct _ddebug descriptor___1 ; long tmp___5 ; int idx___0 ; struct _ddebug descriptor___2 ; long tmp___6 ; { num = 0; pos = 4U; svd_n = 0U; if ((unsigned long )edid == (unsigned long )((unsigned char *)0U)) { return; } else { } { tmp = edid_checksum(edid); } if (tmp == 0) { return; } else { } if (((unsigned int )*edid != 2U || (unsigned int )*(edid + 2UL) <= 3U) || (unsigned int )*(edid + 2UL) > 110U) { return; } else { } goto ldv_35210; ldv_35209: { len = (unsigned int )*(edid + (unsigned long )pos) & 31U; type = (u8 )((int )*(edid + (unsigned long )pos) >> 5); descriptor.modname = "fb"; descriptor.function = "fb_edid_add_monspecs"; descriptor.filename = "drivers/video/fbdev/core/fbmon.c"; descriptor.format = "Data block %u of %u bytes\n"; descriptor.lineno = 1031U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "Data block %u of %u bytes\n", (int )type, (int )len); } } else { } if ((unsigned int )type == 2U) { i = (int )pos; goto ldv_35207; ldv_35206: { idx = (unsigned int )*(edid + (unsigned long )((int )pos + i)) & 127U; tmp___1 = svd_n; svd_n = (u8 )((int )svd_n + 1); svd[(int )tmp___1] = idx; descriptor___0.modname = "fb"; descriptor___0.function = "fb_edid_add_monspecs"; descriptor___0.filename = "drivers/video/fbdev/core/fbmon.c"; descriptor___0.format = "N%sative mode #%d\n"; descriptor___0.lineno = 1037U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___0, "N%sative mode #%d\n", (int )((signed char )*(edid + (unsigned long )((int )pos + i))) < 0 ? (char *)"" : (char *)"on-n", (int )idx); } } else { } i = i + 1; ldv_35207: ; if (i < (int )pos + (int )len) { goto ldv_35206; } else { } } else if ((unsigned int )type == 3U && (unsigned int )len > 2U) { if (((unsigned int )*(edid + ((unsigned long )pos + 1UL)) == 3U && (unsigned int )*(edid + ((unsigned long )pos + 2UL)) == 12U) && (unsigned int )*(edid + ((unsigned long )pos + 3UL)) == 0U) { specs->misc = (__u16 )((unsigned int )specs->misc | 4U); } else { } } else { } pos = (unsigned int )((int )pos + (int )len) + 1U; ldv_35210: ; if ((int )pos < (int )*(edid + 2UL)) { goto ldv_35209; } else { } block = edid + (unsigned long )*(edid + 2UL); i = 0; goto ldv_35213; ldv_35212: ; if ((((unsigned int )*(block + 1UL) << 8) | (unsigned int )*block) * 10000U != 0U) { tmp___3 = num; num = num + 1; edt[tmp___3] = (int )((u8 )((long )block)) - (int )((u8 )((long )edid)); } else { } i = i + 1; block = block + 18UL; ldv_35213: ; if (i < (128 - (int )*(edid + 2UL)) / 18) { goto ldv_35212; } else { } if (num + (int )svd_n == 0) { return; } else { } { tmp___4 = kzalloc((unsigned long )((specs->modedb_len + (__u32 )num) + (__u32 )svd_n) * 64UL, 208U); m = (struct fb_videomode *)tmp___4; } if ((unsigned long )m == (unsigned long )((struct fb_videomode *)0)) { return; } else { } { __memcpy((void *)m, (void const *)specs->modedb, (unsigned long )specs->modedb_len * 64UL); i = (int )specs->modedb_len; } goto ldv_35217; ldv_35216: { get_detailed_timing(edid + (unsigned long )edt[(__u32 )i - specs->modedb_len], m + (unsigned long )i); } if ((__u32 )i == specs->modedb_len) { (m + (unsigned long )i)->flag = (m + (unsigned long )i)->flag | 16U; } else { } { descriptor___1.modname = "fb"; descriptor___1.function = "fb_edid_add_monspecs"; descriptor___1.filename = "drivers/video/fbdev/core/fbmon.c"; descriptor___1.format = "Adding %ux%u@%u\n"; descriptor___1.lineno = 1074U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Adding %ux%u@%u\n", (m + (unsigned long )i)->xres, (m + (unsigned long )i)->yres, (m + (unsigned long )i)->refresh); } } else { } i = i + 1; ldv_35217: ; if ((__u32 )i < specs->modedb_len + (__u32 )num) { goto ldv_35216; } else { } i = (int )(specs->modedb_len + (__u32 )num); goto ldv_35224; ldv_35223: idx___0 = (int )svd[((__u32 )i - specs->modedb_len) - (__u32 )num]; if (idx___0 == 0 || idx___0 > 63) { { printk("\fReserved SVD code %d\n", idx___0); } } else if ((unsigned int )idx___0 > 64U || (unsigned int )cea_modes[idx___0].xres == 0U) { { printk("\fUnimplemented SVD code %d\n", idx___0); } } else { { __memcpy((void *)m + (unsigned long )i, (void const *)(& cea_modes) + (unsigned long )idx___0, 64UL); descriptor___2.modname = "fb"; descriptor___2.function = "fb_edid_add_monspecs"; descriptor___2.filename = "drivers/video/fbdev/core/fbmon.c"; descriptor___2.format = "Adding SVD #%d: %ux%u@%u\n"; descriptor___2.lineno = 1086U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_pr_debug(& descriptor___2, "Adding SVD #%d: %ux%u@%u\n", idx___0, (m + (unsigned long )i)->xres, (m + (unsigned long )i)->yres, (m + (unsigned long )i)->refresh); } } else { } } i = i + 1; ldv_35224: ; if ((__u32 )i < (specs->modedb_len + (__u32 )num) + (__u32 )svd_n) { goto ldv_35223; } else { } { kfree((void const *)specs->modedb); specs->modedb = m; specs->modedb_len = (specs->modedb_len + (__u32 )num) + (__u32 )svd_n; } return; } } static u32 fb_get_vblank(u32 hfreq ) { u32 vblank ; { vblank = (hfreq * 550U) / 1000U; vblank = (vblank + 500U) / 1000U; return (vblank + 1U); } } static u32 fb_get_hblank_by_hfreq(u32 hfreq , u32 xres ) { u32 c_val ; u32 m_val ; u32 duty_cycle ; u32 hblank ; { c_val = 30000U; m_val = 300U; m_val = (m_val * 1000000U) / hfreq; duty_cycle = c_val - m_val; hblank = (xres * duty_cycle) / (100000U - duty_cycle); return (hblank); } } static u32 fb_get_hblank_by_dclk(u32 dclk , u32 xres ) { u32 duty_cycle ; u32 h_period ; u32 hblank ; unsigned long tmp ; { { dclk = dclk / 1000U; h_period = 70U; h_period = h_period * h_period; h_period = h_period + (xres * 600000U) / (dclk * 5U); h_period = h_period * 10000U; tmp = int_sqrt((unsigned long )h_period); h_period = (u32 )tmp; h_period = h_period - 7000U; h_period = h_period * 1000U; h_period = h_period / 600U; duty_cycle = 30000U - (h_period * 300U) / 100U; hblank = (xres * duty_cycle) / (100000U - duty_cycle) + 8U; hblank = hblank & 4294967280U; } return (hblank); } } static u32 fb_get_hfreq(u32 vfreq , u32 yres ) { u32 divisor ; u32 hfreq ; { divisor = (1000000U - vfreq * 550U) / 1000U; hfreq = ((yres + 1U) * vfreq) * 1000U; return (hfreq / divisor); } } static void fb_timings_vfreq(struct __fb_timings *timings ) { { { timings->hfreq = fb_get_hfreq(timings->vfreq, timings->vactive); timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->dclk = timings->htotal * timings->hfreq; } return; } } static void fb_timings_hfreq(struct __fb_timings *timings ) { { { timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->vfreq = timings->hfreq / timings->vtotal; timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->dclk = timings->htotal * timings->hfreq; } return; } } static void fb_timings_dclk(struct __fb_timings *timings ) { { { timings->hblank = fb_get_hblank_by_dclk(timings->dclk, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->hfreq = timings->dclk / timings->htotal; timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->vfreq = timings->hfreq / timings->vtotal; } return; } } int fb_get_mode(int flags , u32 val , struct fb_var_screeninfo *var , struct fb_info *info ) { struct __fb_timings *timings ; u32 interlace ; u32 dscan ; u32 hfmin ; u32 hfmax ; u32 vfmin ; u32 vfmax ; u32 dclkmin ; u32 dclkmax ; u32 err ; void *tmp ; { { interlace = 1U; dscan = 1U; err = 0U; tmp = kzalloc(36UL, 208U); timings = (struct __fb_timings *)tmp; } if ((unsigned long )timings == (unsigned long )((struct __fb_timings *)0)) { return (-12); } else { } if (((((((unsigned long )info == (unsigned long )((struct fb_info *)0) || info->monspecs.hfmax == 0U) || (unsigned int )info->monspecs.vfmax == 0U) || info->monspecs.dclkmax == 0U) || info->monspecs.hfmax < info->monspecs.hfmin) || (int )info->monspecs.vfmax < (int )info->monspecs.vfmin) || info->monspecs.dclkmax < info->monspecs.dclkmin) { hfmin = 29000U; hfmax = 30000U; vfmin = 60U; vfmax = 60U; dclkmin = 0U; dclkmax = 25000000U; } else { hfmin = info->monspecs.hfmin; hfmax = info->monspecs.hfmax; vfmin = (u32 )info->monspecs.vfmin; vfmax = (u32 )info->monspecs.vfmax; dclkmin = info->monspecs.dclkmin; dclkmax = info->monspecs.dclkmax; } timings->hactive = var->xres; timings->vactive = var->yres; if ((int )var->vmode & 1) { timings->vactive = timings->vactive / 2U; interlace = 2U; } else { } if ((var->vmode & 2U) != 0U) { timings->vactive = timings->vactive * 2U; dscan = 2U; } else { } { if ((flags & -257) == 0) { goto case_0; } else { } if ((flags & -257) == 1) { goto case_1; } else { } if ((flags & -257) == 2) { goto case_2; } else { } if ((flags & -257) == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { timings->hfreq = hfmax; fb_timings_hfreq(timings); } if (timings->vfreq > vfmax) { { timings->vfreq = vfmax; fb_timings_vfreq(timings); } } else { } if (timings->dclk > dclkmax) { { timings->dclk = dclkmax; fb_timings_dclk(timings); } } else { } goto ldv_35287; case_1: /* CIL Label */ { timings->vfreq = val; fb_timings_vfreq(timings); } goto ldv_35287; case_2: /* CIL Label */ { timings->hfreq = val; fb_timings_hfreq(timings); } goto ldv_35287; case_3: /* CIL Label */ { timings->dclk = (1000000000U / val) * 1000U; fb_timings_dclk(timings); } goto ldv_35287; switch_default: /* CIL Label */ err = 4294967274U; switch_break: /* CIL Label */ ; } ldv_35287: ; if (err != 0U || ((flags & 256) == 0 && (((((timings->vfreq < vfmin || timings->vfreq > vfmax) || timings->hfreq < hfmin) || timings->hfreq > hfmax) || timings->dclk < dclkmin) || timings->dclk > dclkmax))) { err = 4294967274U; } else { var->pixclock = 1000000000U / (timings->dclk / 1000U); var->hsync_len = (timings->htotal * 8U) / 100U; var->right_margin = timings->hblank / 2U - var->hsync_len; var->left_margin = (timings->hblank - var->right_margin) - var->hsync_len; var->vsync_len = (interlace * 3U) / dscan; var->lower_margin = interlace / dscan; var->upper_margin = (timings->vblank * interlace) / dscan - (var->vsync_len + var->lower_margin); } { kfree((void const *)timings); } return ((int )err); } } int fb_videomode_from_videomode(struct videomode const *vm , struct fb_videomode *fbmode ) { unsigned int htotal ; unsigned int vtotal ; { fbmode->xres = vm->hactive; fbmode->left_margin = vm->hback_porch; fbmode->right_margin = vm->hfront_porch; fbmode->hsync_len = vm->hsync_len; fbmode->yres = vm->vactive; fbmode->upper_margin = vm->vback_porch; fbmode->lower_margin = vm->vfront_porch; fbmode->vsync_len = vm->vsync_len; fbmode->pixclock = (unsigned long )vm->pixelclock != 0UL ? (u32 )(1000000000UL / ((unsigned long )vm->pixelclock / 1000UL)) : 0U; fbmode->sync = 0U; fbmode->vmode = 0U; if (((unsigned int )vm->flags & 2U) != 0U) { fbmode->sync = fbmode->sync | 1U; } else { } if (((unsigned int )vm->flags & 8U) != 0U) { fbmode->sync = fbmode->sync | 2U; } else { } if (((unsigned int )vm->flags & 256U) != 0U) { fbmode->vmode = fbmode->vmode | 1U; } else { } if (((unsigned int )vm->flags & 512U) != 0U) { fbmode->vmode = fbmode->vmode | 2U; } else { } fbmode->flag = 0U; htotal = (((unsigned int )vm->hactive + (unsigned int )vm->hfront_porch) + (unsigned int )vm->hback_porch) + (unsigned int )vm->hsync_len; vtotal = (((unsigned int )vm->vactive + (unsigned int )vm->vfront_porch) + (unsigned int )vm->vback_porch) + (unsigned int )vm->vsync_len; if (htotal != 0U && vtotal != 0U) { fbmode->refresh = (u32 )((unsigned long )vm->pixelclock / (unsigned long )(htotal * vtotal)); } else { fbmode->refresh = 0U; return (-22); } return (0); } } static char const __kstrtab_fb_videomode_from_videomode[28U] = { 'f', 'b', '_', 'v', 'i', 'd', 'e', 'o', 'm', 'o', 'd', 'e', '_', 'f', 'r', 'o', 'm', '_', 'v', 'i', 'd', 'e', 'o', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_videomode_from_videomode ; struct kernel_symbol const __ksymtab_fb_videomode_from_videomode = {(unsigned long )(& fb_videomode_from_videomode), (char const *)(& __kstrtab_fb_videomode_from_videomode)}; int fb_validate_mode(struct fb_var_screeninfo const *var , struct fb_info *info ) { u32 hfreq ; u32 vfreq ; u32 htotal ; u32 vtotal ; u32 pixclock ; u32 hfmin ; u32 hfmax ; u32 vfmin ; u32 vfmax ; u32 dclkmin ; u32 dclkmax ; { if (((((info->monspecs.hfmax == 0U || (unsigned int )info->monspecs.vfmax == 0U) || info->monspecs.dclkmax == 0U) || info->monspecs.hfmax < info->monspecs.hfmin) || (int )info->monspecs.vfmax < (int )info->monspecs.vfmin) || info->monspecs.dclkmax < info->monspecs.dclkmin) { hfmin = 29000U; hfmax = 30000U; vfmin = 60U; vfmax = 60U; dclkmin = 0U; dclkmax = 25000000U; } else { hfmin = info->monspecs.hfmin; hfmax = info->monspecs.hfmax; vfmin = (u32 )info->monspecs.vfmin; vfmax = (u32 )info->monspecs.vfmax; dclkmin = info->monspecs.dclkmin; dclkmax = info->monspecs.dclkmax; } if ((unsigned int )var->pixclock == 0U) { return (-22); } else { } pixclock = (1000000000U / (unsigned int )var->pixclock) * 1000U; htotal = (((unsigned int )var->xres + (unsigned int )var->right_margin) + (unsigned int )var->hsync_len) + (unsigned int )var->left_margin; vtotal = (((unsigned int )var->yres + (unsigned int )var->lower_margin) + (unsigned int )var->vsync_len) + (unsigned int )var->upper_margin; if ((int )var->vmode & 1) { vtotal = vtotal / 2U; } else { } if (((unsigned int )var->vmode & 2U) != 0U) { vtotal = vtotal * 2U; } else { } hfreq = pixclock / htotal; hfreq = ((hfreq + 500U) / 1000U) * 1000U; vfreq = hfreq / vtotal; return (((vfreq < vfmin || vfreq > vfmax) || (hfreq < hfmin || hfreq > hfmax)) || (pixclock < dclkmin || pixclock > dclkmax) ? -22 : 0); } } unsigned char const *fb_firmware_edid(struct device *device ) { struct pci_dev *dev ; struct resource *res ; unsigned char *edid ; struct device const *__mptr ; { dev = (struct pci_dev *)0; res = (struct resource *)0; edid = (unsigned char *)0U; if ((unsigned long )device != (unsigned long )((struct device *)0)) { __mptr = (struct device const *)device; dev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; } else { } if ((unsigned long )dev != (unsigned long )((struct pci_dev *)0)) { res = (struct resource *)(& dev->resource) + 6UL; } else { } if ((unsigned long )res != (unsigned long )((struct resource *)0) && (res->flags & 2UL) != 0UL) { edid = (unsigned char *)(& edid_info.dummy); } else { } return ((unsigned char const *)edid); } } static char const __kstrtab_fb_firmware_edid[17U] = { 'f', 'b', '_', 'f', 'i', 'r', 'm', 'w', 'a', 'r', 'e', '_', 'e', 'd', 'i', 'd', '\000'}; struct kernel_symbol const __ksymtab_fb_firmware_edid ; struct kernel_symbol const __ksymtab_fb_firmware_edid = {(unsigned long )(& fb_firmware_edid), (char const *)(& __kstrtab_fb_firmware_edid)}; static char const __kstrtab_fb_parse_edid[14U] = { 'f', 'b', '_', 'p', 'a', 'r', 's', 'e', '_', 'e', 'd', 'i', 'd', '\000'}; struct kernel_symbol const __ksymtab_fb_parse_edid ; struct kernel_symbol const __ksymtab_fb_parse_edid = {(unsigned long )(& fb_parse_edid), (char const *)(& __kstrtab_fb_parse_edid)}; static char const __kstrtab_fb_edid_to_monspecs[20U] = { 'f', 'b', '_', 'e', 'd', 'i', 'd', '_', 't', 'o', '_', 'm', 'o', 'n', 's', 'p', 'e', 'c', 's', '\000'}; struct kernel_symbol const __ksymtab_fb_edid_to_monspecs ; struct kernel_symbol const __ksymtab_fb_edid_to_monspecs = {(unsigned long )(& fb_edid_to_monspecs), (char const *)(& __kstrtab_fb_edid_to_monspecs)}; static char const __kstrtab_fb_edid_add_monspecs[21U] = { 'f', 'b', '_', 'e', 'd', 'i', 'd', '_', 'a', 'd', 'd', '_', 'm', 'o', 'n', 's', 'p', 'e', 'c', 's', '\000'}; struct kernel_symbol const __ksymtab_fb_edid_add_monspecs ; struct kernel_symbol const __ksymtab_fb_edid_add_monspecs = {(unsigned long )(& fb_edid_add_monspecs), (char const *)(& __kstrtab_fb_edid_add_monspecs)}; static char const __kstrtab_fb_get_mode[12U] = { 'f', 'b', '_', 'g', 'e', 't', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_get_mode ; struct kernel_symbol const __ksymtab_fb_get_mode = {(unsigned long )(& fb_get_mode), (char const *)(& __kstrtab_fb_get_mode)}; static char const __kstrtab_fb_validate_mode[17U] = { 'f', 'b', '_', 'v', 'a', 'l', 'i', 'd', 'a', 't', 'e', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_validate_mode ; struct kernel_symbol const __ksymtab_fb_validate_mode = {(unsigned long )(& fb_validate_mode), (char const *)(& __kstrtab_fb_validate_mode)}; static char const __kstrtab_fb_destroy_modedb[18U] = { 'f', 'b', '_', 'd', 'e', 's', 't', 'r', 'o', 'y', '_', 'm', 'o', 'd', 'e', 'd', 'b', '\000'}; struct kernel_symbol const __ksymtab_fb_destroy_modedb ; struct kernel_symbol const __ksymtab_fb_destroy_modedb = {(unsigned long )(& fb_destroy_modedb), (char const *)(& __kstrtab_fb_destroy_modedb)}; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv_mutex_unlock_97___0(struct mutex *ldv_func_arg1 ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void unlock_fb_info___0(struct fb_info *info ) { { { ldv_mutex_unlock_97___0(& info->lock); } return; } } int fb_alloc_cmap(struct fb_cmap *cmap , int len , int transp ) ; int fb_alloc_cmap_gfp(struct fb_cmap *cmap , int len , int transp , gfp_t flags ) ; void fb_dealloc_cmap(struct fb_cmap *cmap ) ; int fb_copy_cmap(struct fb_cmap const *from , struct fb_cmap *to ) ; struct fb_cmap const *fb_default_cmap(int len ) ; void fb_invert_cmaps(void) ; static u16 red2[2U] = { 0U, 43690U}; static u16 green2[2U] = { 0U, 43690U}; static u16 blue2[2U] = { 0U, 43690U}; static u16 red4[4U] = { 0U, 43690U, 21845U, 65535U}; static u16 green4[4U] = { 0U, 43690U, 21845U, 65535U}; static u16 blue4[4U] = { 0U, 43690U, 21845U, 65535U}; static u16 red8[8U] = { 0U, 0U, 0U, 0U, 43690U, 43690U, 43690U, 43690U}; static u16 green8[8U] = { 0U, 0U, 43690U, 43690U, 0U, 0U, 21845U, 43690U}; static u16 blue8[8U] = { 0U, 43690U, 0U, 43690U, 0U, 43690U, 0U, 43690U}; static u16 red16[16U] = { 0U, 0U, 0U, 0U, 43690U, 43690U, 43690U, 43690U, 21845U, 21845U, 21845U, 21845U, 65535U, 65535U, 65535U, 65535U}; static u16 green16[16U] = { 0U, 0U, 43690U, 43690U, 0U, 0U, 21845U, 43690U, 21845U, 21845U, 65535U, 65535U, 21845U, 21845U, 65535U, 65535U}; static u16 blue16[16U] = { 0U, 43690U, 0U, 43690U, 0U, 43690U, 0U, 43690U, 21845U, 65535U, 21845U, 65535U, 21845U, 65535U, 21845U, 65535U}; static struct fb_cmap const default_2_colors = {0U, 2U, (__u16 *)(& red2), (__u16 *)(& green2), (__u16 *)(& blue2), 0}; static struct fb_cmap const default_8_colors = {0U, 8U, (__u16 *)(& red8), (__u16 *)(& green8), (__u16 *)(& blue8), 0}; static struct fb_cmap const default_4_colors = {0U, 4U, (__u16 *)(& red4), (__u16 *)(& green4), (__u16 *)(& blue4), 0}; static struct fb_cmap const default_16_colors = {0U, 16U, (__u16 *)(& red16), (__u16 *)(& green16), (__u16 *)(& blue16), 0}; int fb_alloc_cmap_gfp(struct fb_cmap *cmap , int len , int transp , gfp_t flags ) { int size ; int ret ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; struct fb_cmap const *tmp___3 ; { size = (int )((unsigned int )len * 2U); ret = -12; if (cmap->len != (__u32 )len) { { fb_dealloc_cmap(cmap); } if (len == 0) { return (0); } else { } { tmp = kmalloc((size_t )size, flags); cmap->red = (__u16 *)tmp; } if ((unsigned long )cmap->red == (unsigned long )((__u16 *)0U)) { goto fail; } else { } { tmp___0 = kmalloc((size_t )size, flags); cmap->green = (__u16 *)tmp___0; } if ((unsigned long )cmap->green == (unsigned long )((__u16 *)0U)) { goto fail; } else { } { tmp___1 = kmalloc((size_t )size, flags); cmap->blue = (__u16 *)tmp___1; } if ((unsigned long )cmap->blue == (unsigned long )((__u16 *)0U)) { goto fail; } else { } if (transp != 0) { { tmp___2 = kmalloc((size_t )size, flags); cmap->transp = (__u16 *)tmp___2; } if ((unsigned long )cmap->transp == (unsigned long )((__u16 *)0U)) { goto fail; } else { } } else { cmap->transp = (__u16 *)0U; } } else { } { cmap->start = 0U; cmap->len = (__u32 )len; tmp___3 = fb_default_cmap(len); ret = fb_copy_cmap(tmp___3, cmap); } if (ret != 0) { goto fail; } else { } return (0); fail: { fb_dealloc_cmap(cmap); } return (ret); } } int fb_alloc_cmap(struct fb_cmap *cmap , int len , int transp ) { int tmp ; { { tmp = fb_alloc_cmap_gfp(cmap, len, transp, 32U); } return (tmp); } } void fb_dealloc_cmap(struct fb_cmap *cmap ) { __u16 *tmp ; __u16 *tmp___0 ; __u16 *tmp___1 ; { { kfree((void const *)cmap->red); kfree((void const *)cmap->green); kfree((void const *)cmap->blue); kfree((void const *)cmap->transp); tmp___1 = (__u16 *)0U; cmap->transp = tmp___1; tmp___0 = tmp___1; cmap->blue = tmp___0; tmp = tmp___0; cmap->green = tmp; cmap->red = tmp; cmap->len = 0U; } return; } } int fb_copy_cmap(struct fb_cmap const *from , struct fb_cmap *to ) { int tooff ; int fromoff ; int size ; { tooff = 0; fromoff = 0; if (to->start > (__u32 )from->start) { fromoff = (int )(to->start - (__u32 )from->start); } else { tooff = (int )((unsigned int )from->start - to->start); } size = (int )(to->len - (__u32 )tooff); if (size > (int )((unsigned int )from->len - (unsigned int )fromoff)) { size = (int )((unsigned int )from->len - (unsigned int )fromoff); } else { } if (size <= 0) { return (-22); } else { } { size = (int )((unsigned int )size * 2U); __memcpy((void *)to->red + (unsigned long )tooff, (void const *)from->red + (unsigned long )fromoff, (size_t )size); __memcpy((void *)to->green + (unsigned long )tooff, (void const *)from->green + (unsigned long )fromoff, (size_t )size); __memcpy((void *)to->blue + (unsigned long )tooff, (void const *)from->blue + (unsigned long )fromoff, (size_t )size); } if ((unsigned long )from->transp != (unsigned long )((__u16 */* const */)0U) && (unsigned long )to->transp != (unsigned long )((__u16 *)0U)) { { __memcpy((void *)to->transp + (unsigned long )tooff, (void const *)from->transp + (unsigned long )fromoff, (size_t )size); } } else { } return (0); } } int fb_cmap_to_user(struct fb_cmap const *from , struct fb_cmap_user *to ) { int tooff ; int fromoff ; int size ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; { tooff = 0; fromoff = 0; if (to->start > (__u32 )from->start) { fromoff = (int )(to->start - (__u32 )from->start); } else { tooff = (int )((unsigned int )from->start - to->start); } size = (int )(to->len - (__u32 )tooff); if (size > (int )((unsigned int )from->len - (unsigned int )fromoff)) { size = (int )((unsigned int )from->len - (unsigned int )fromoff); } else { } if (size <= 0) { return (-22); } else { } { size = (int )((unsigned int )size * 2U); tmp = copy_to_user((void *)to->red + (unsigned long )tooff, (void const *)from->red + (unsigned long )fromoff, (unsigned long )size); } if (tmp != 0UL) { return (-14); } else { } { tmp___0 = copy_to_user((void *)to->green + (unsigned long )tooff, (void const *)from->green + (unsigned long )fromoff, (unsigned long )size); } if (tmp___0 != 0UL) { return (-14); } else { } { tmp___1 = copy_to_user((void *)to->blue + (unsigned long )tooff, (void const *)from->blue + (unsigned long )fromoff, (unsigned long )size); } if (tmp___1 != 0UL) { return (-14); } else { } if ((unsigned long )from->transp != (unsigned long )((__u16 */* const */)0U) && (unsigned long )to->transp != (unsigned long )((__u16 *)0U)) { { tmp___2 = copy_to_user((void *)to->transp + (unsigned long )tooff, (void const *)from->transp + (unsigned long )fromoff, (unsigned long )size); } if (tmp___2 != 0UL) { return (-14); } else { } } else { } return (0); } } int fb_set_cmap(struct fb_cmap *cmap , struct fb_info *info ) { int i ; int start ; int rc ; u16 *red ; u16 *green ; u16 *blue ; u16 *transp ; u_int hred ; u_int hgreen ; u_int hblue ; u_int htransp ; u16 *tmp ; u16 *tmp___0 ; u16 *tmp___1 ; u16 *tmp___2 ; int tmp___3 ; int tmp___4 ; { rc = 0; htransp = 65535U; red = cmap->red; green = cmap->green; blue = cmap->blue; transp = cmap->transp; start = (int )cmap->start; if (start < 0 || ((unsigned long )(info->fbops)->fb_setcolreg == (unsigned long )((int (*)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ))0) && (unsigned long )(info->fbops)->fb_setcmap == (unsigned long )((int (*)(struct fb_cmap * , struct fb_info * ))0))) { return (-22); } else { } if ((unsigned long )(info->fbops)->fb_setcmap != (unsigned long )((int (*)(struct fb_cmap * , struct fb_info * ))0)) { { rc = (*((info->fbops)->fb_setcmap))(cmap, info); } } else { i = 0; goto ldv_32379; ldv_32378: tmp = red; red = red + 1; hred = (u_int )*tmp; tmp___0 = green; green = green + 1; hgreen = (u_int )*tmp___0; tmp___1 = blue; blue = blue + 1; hblue = (u_int )*tmp___1; if ((unsigned long )transp != (unsigned long )((u16 *)0U)) { tmp___2 = transp; transp = transp + 1; htransp = (u_int )*tmp___2; } else { } { tmp___3 = start; start = start + 1; tmp___4 = (*((info->fbops)->fb_setcolreg))((unsigned int )tmp___3, hred, hgreen, hblue, htransp, info); } if (tmp___4 != 0) { goto ldv_32377; } else { } i = i + 1; ldv_32379: ; if ((__u32 )i < cmap->len) { goto ldv_32378; } else { } ldv_32377: ; } if (rc == 0) { { fb_copy_cmap((struct fb_cmap const *)cmap, & info->cmap); } } else { } return (rc); } } int fb_set_user_cmap(struct fb_cmap_user *cmap , struct fb_info *info ) { int rc ; int size ; struct fb_cmap umap ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; int tmp___3 ; { size = (int )(cmap->len * 2U); if (size < 0 || (__u32 )size < cmap->len) { return (-7); } else { } { __memset((void *)(& umap), 0, 40UL); rc = fb_alloc_cmap_gfp(& umap, (int )cmap->len, (unsigned long )cmap->transp != (unsigned long )((__u16 *)0U), 208U); } if (rc != 0) { return (rc); } else { } { tmp = copy_from_user((void *)umap.red, (void const *)cmap->red, (unsigned long )size); } if (tmp != 0UL) { rc = -14; goto out; } else { { tmp___0 = copy_from_user((void *)umap.green, (void const *)cmap->green, (unsigned long )size); } if (tmp___0 != 0UL) { rc = -14; goto out; } else { { tmp___1 = copy_from_user((void *)umap.blue, (void const *)cmap->blue, (unsigned long )size); } if (tmp___1 != 0UL) { rc = -14; goto out; } else if ((unsigned long )cmap->transp != (unsigned long )((__u16 *)0U)) { { tmp___2 = copy_from_user((void *)umap.transp, (void const *)cmap->transp, (unsigned long )size); } if (tmp___2 != 0UL) { rc = -14; goto out; } else { } } else { } } } { umap.start = cmap->start; tmp___3 = lock_fb_info(info); } if (tmp___3 == 0) { rc = -19; goto out; } else { } { rc = fb_set_cmap(& umap, info); unlock_fb_info___0(info); } out: { fb_dealloc_cmap(& umap); } return (rc); } } struct fb_cmap const *fb_default_cmap(int len ) { { if (len <= 2) { return (& default_2_colors); } else { } if (len <= 4) { return (& default_4_colors); } else { } if (len <= 8) { return (& default_8_colors); } else { } return (& default_16_colors); } } void fb_invert_cmaps(void) { u_int i ; { i = 0U; goto ldv_32398; ldv_32397: red2[i] = ~ ((int )red2[i]); green2[i] = ~ ((int )green2[i]); blue2[i] = ~ ((int )blue2[i]); i = i + 1U; ldv_32398: ; if (i <= 1U) { goto ldv_32397; } else { } i = 0U; goto ldv_32403; ldv_32402: red4[i] = ~ ((int )red4[i]); green4[i] = ~ ((int )green4[i]); blue4[i] = ~ ((int )blue4[i]); i = i + 1U; ldv_32403: ; if (i <= 3U) { goto ldv_32402; } else { } i = 0U; goto ldv_32408; ldv_32407: red8[i] = ~ ((int )red8[i]); green8[i] = ~ ((int )green8[i]); blue8[i] = ~ ((int )blue8[i]); i = i + 1U; ldv_32408: ; if (i <= 7U) { goto ldv_32407; } else { } i = 0U; goto ldv_32413; ldv_32412: red16[i] = ~ ((int )red16[i]); green16[i] = ~ ((int )green16[i]); blue16[i] = ~ ((int )blue16[i]); i = i + 1U; ldv_32413: ; if (i <= 15U) { goto ldv_32412; } else { } return; } } static char const __kstrtab_fb_alloc_cmap[14U] = { 'f', 'b', '_', 'a', 'l', 'l', 'o', 'c', '_', 'c', 'm', 'a', 'p', '\000'}; struct kernel_symbol const __ksymtab_fb_alloc_cmap ; struct kernel_symbol const __ksymtab_fb_alloc_cmap = {(unsigned long )(& fb_alloc_cmap), (char const *)(& __kstrtab_fb_alloc_cmap)}; static char const __kstrtab_fb_dealloc_cmap[16U] = { 'f', 'b', '_', 'd', 'e', 'a', 'l', 'l', 'o', 'c', '_', 'c', 'm', 'a', 'p', '\000'}; struct kernel_symbol const __ksymtab_fb_dealloc_cmap ; struct kernel_symbol const __ksymtab_fb_dealloc_cmap = {(unsigned long )(& fb_dealloc_cmap), (char const *)(& __kstrtab_fb_dealloc_cmap)}; static char const __kstrtab_fb_copy_cmap[13U] = { 'f', 'b', '_', 'c', 'o', 'p', 'y', '_', 'c', 'm', 'a', 'p', '\000'}; struct kernel_symbol const __ksymtab_fb_copy_cmap ; struct kernel_symbol const __ksymtab_fb_copy_cmap = {(unsigned long )(& fb_copy_cmap), (char const *)(& __kstrtab_fb_copy_cmap)}; static char const __kstrtab_fb_set_cmap[12U] = { 'f', 'b', '_', 's', 'e', 't', '_', 'c', 'm', 'a', 'p', '\000'}; struct kernel_symbol const __ksymtab_fb_set_cmap ; struct kernel_symbol const __ksymtab_fb_set_cmap = {(unsigned long )(& fb_set_cmap), (char const *)(& __kstrtab_fb_set_cmap)}; static char const __kstrtab_fb_default_cmap[16U] = { 'f', 'b', '_', 'd', 'e', 'f', 'a', 'u', 'l', 't', '_', 'c', 'm', 'a', 'p', '\000'}; struct kernel_symbol const __ksymtab_fb_default_cmap ; struct kernel_symbol const __ksymtab_fb_default_cmap = {(unsigned long )(& fb_default_cmap), (char const *)(& __kstrtab_fb_default_cmap)}; static char const __kstrtab_fb_invert_cmaps[16U] = { 'f', 'b', '_', 'i', 'n', 'v', 'e', 'r', 't', '_', 'c', 'm', 'a', 'p', 's', '\000'}; struct kernel_symbol const __ksymtab_fb_invert_cmaps ; struct kernel_symbol const __ksymtab_fb_invert_cmaps = {(unsigned long )(& fb_invert_cmaps), (char const *)(& __kstrtab_fb_invert_cmaps)}; static void ldv_mutex_unlock_97___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_98___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_100___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_102___0(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_bl_curve_mutex_of_fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_bl_curve_mutex_of_fb_info(struct mutex *lock ) ; extern unsigned long simple_strtoul(char const * , char ** , unsigned int ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice(struct list_head const *list , struct list_head *head ) { int tmp ; { { tmp = list_empty(list); } if (tmp == 0) { { __list_splice(list, head, head->next); } } else { } return; } } static void ldv_mutex_unlock_97___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_99___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_101___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_103___0(struct mutex *ldv_func_arg1 ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } __inline static void unlock_fb_info___1(struct fb_info *info ) { { { ldv_mutex_unlock_97___1(& info->lock); } return; } } struct fb_info *framebuffer_alloc(size_t size , struct device *dev ) ; void framebuffer_release(struct fb_info *info ) ; void fb_bl_default_curve(struct fb_info *fb_info , u8 off , u8 min , u8 max ) ; void fb_videomode_to_modelist(struct fb_videomode const *modedb___0 , int num , struct list_head *head ) ; struct fb_info *framebuffer_alloc(size_t size , struct device *dev ) { int fb_info_size ; struct fb_info *info ; char *p ; void *tmp ; struct lock_class_key __key ; { fb_info_size = 1608; if (size != 0UL) { fb_info_size = (int )((unsigned int )fb_info_size + 8U); } else { } { tmp = kzalloc((size_t )fb_info_size + size, 208U); p = (char *)tmp; } if ((unsigned long )p == (unsigned long )((char *)0)) { return ((struct fb_info *)0); } else { } info = (struct fb_info *)p; if (size != 0UL) { info->par = (void *)p + (unsigned long )fb_info_size; } else { } { info->device = dev; __mutex_init(& info->bl_curve_mutex, "&info->bl_curve_mutex", & __key); } return (info); } } static char const __kstrtab_framebuffer_alloc[18U] = { 'f', 'r', 'a', 'm', 'e', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'a', 'l', 'l', 'o', 'c', '\000'}; struct kernel_symbol const __ksymtab_framebuffer_alloc ; struct kernel_symbol const __ksymtab_framebuffer_alloc = {(unsigned long )(& framebuffer_alloc), (char const *)(& __kstrtab_framebuffer_alloc)}; void framebuffer_release(struct fb_info *info ) { { if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { return; } else { } { kfree((void const *)info->apertures); kfree((void const *)info); } return; } } static char const __kstrtab_framebuffer_release[20U] = { 'f', 'r', 'a', 'm', 'e', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'r', 'e', 'l', 'e', 'a', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_framebuffer_release ; struct kernel_symbol const __ksymtab_framebuffer_release = {(unsigned long )(& framebuffer_release), (char const *)(& __kstrtab_framebuffer_release)}; static int activate(struct fb_info *fb_info , struct fb_var_screeninfo *var ) { int err ; { { var->activate = var->activate | 128U; console_lock(); fb_info->flags = fb_info->flags | 65536; err = fb_set_var(fb_info, var); fb_info->flags = fb_info->flags & -65537; console_unlock(); } if (err != 0) { return (err); } else { } return (0); } } static int mode_string(char *buf , unsigned int offset , struct fb_videomode const *mode ) { char m ; char v ; int tmp ; { m = 85; v = 112; if ((int )mode->flag & 1) { m = 68; } else { } if (((unsigned int )mode->flag & 4U) != 0U) { m = 86; } else { } if (((unsigned int )mode->flag & 2U) != 0U) { m = 83; } else { } if ((int )mode->vmode & 1) { v = 105; } else { } if (((unsigned int )mode->vmode & 2U) != 0U) { v = 100; } else { } { tmp = snprintf(buf + (unsigned long )offset, 4096UL - (unsigned long )offset, "%c:%dx%d%c-%d\n", (int )m, mode->xres, mode->yres, (int )v, mode->refresh); } return (tmp); } } static ssize_t store_mode(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; char mstr[100U] ; struct fb_var_screeninfo var ; struct fb_modelist *modelist ; struct fb_videomode *mode ; struct list_head *pos ; size_t i ; int err ; struct list_head const *__mptr ; int tmp___0 ; size_t _max1 ; size_t _max2 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; __memset((void *)(& var), 0, 160UL); pos = fb_info->modelist.next; } goto ldv_32607; ldv_32606: { __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; mode = & modelist->mode; tmp___0 = mode_string((char *)(& mstr), 0U, (struct fb_videomode const *)mode); i = (size_t )tmp___0; _max1 = count; _max2 = i; tmp___1 = strncmp((char const *)(& mstr), buf, _max1 > _max2 ? _max1 : _max2); } if (tmp___1 == 0) { { var = fb_info->var; fb_videomode_to_var(& var, (struct fb_videomode const *)mode); err = activate(fb_info, & var); } if (err != 0) { return ((ssize_t )err); } else { } fb_info->mode = mode; return ((ssize_t )count); } else { } pos = pos->next; ldv_32607: ; if ((unsigned long )pos != (unsigned long )(& fb_info->modelist)) { goto ldv_32606; } else { } return (-22L); } } static ssize_t show_mode(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; } if ((unsigned long )fb_info->mode == (unsigned long )((struct fb_videomode *)0)) { return (0L); } else { } { tmp___0 = mode_string(buf, 0U, (struct fb_videomode const *)fb_info->mode); } return ((ssize_t )tmp___0); } } static ssize_t store_modes(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; struct list_head old_list ; int i ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; old_list.next = & old_list; old_list.prev = & old_list; i = (int )(count / 64UL); } if ((unsigned long )i * 64UL != count) { return (-22L); } else { } { console_lock(); tmp___0 = lock_fb_info(fb_info); } if (tmp___0 == 0) { { console_unlock(); } return (-19L); } else { } { list_splice((struct list_head const *)(& fb_info->modelist), & old_list); fb_videomode_to_modelist((struct fb_videomode const *)buf, i, & fb_info->modelist); tmp___1 = fb_new_modelist(fb_info); } if (tmp___1 != 0) { { fb_destroy_modelist(& fb_info->modelist); list_splice((struct list_head const *)(& old_list), & fb_info->modelist); } } else { { fb_destroy_modelist(& old_list); } } { unlock_fb_info___1(fb_info); console_unlock(); } return (0L); } } static ssize_t show_modes(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; unsigned int i ; struct list_head *pos ; struct fb_modelist *modelist ; struct fb_videomode const *mode ; struct list_head const *__mptr ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; i = 0U; pos = fb_info->modelist.next; } goto ldv_32637; ldv_32636: { __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; mode = (struct fb_videomode const *)(& modelist->mode); tmp___0 = mode_string(buf, i, mode); i = i + (unsigned int )tmp___0; pos = pos->next; } ldv_32637: ; if ((unsigned long )pos != (unsigned long )(& fb_info->modelist)) { goto ldv_32636; } else { } return ((ssize_t )i); } } static ssize_t store_bpp(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; struct fb_var_screeninfo var ; char **last ; int err ; unsigned long tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; last = (char **)0; var = fb_info->var; tmp___0 = simple_strtoul(buf, last, 0U); var.bits_per_pixel = (__u32 )tmp___0; err = activate(fb_info, & var); } if (err != 0) { return ((ssize_t )err); } else { } return ((ssize_t )count); } } static ssize_t show_bpp(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%d\n", fb_info->var.bits_per_pixel); } return ((ssize_t )tmp___0); } } static ssize_t store_rotate(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; struct fb_var_screeninfo var ; char **last ; int err ; unsigned long tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; last = (char **)0; var = fb_info->var; tmp___0 = simple_strtoul(buf, last, 0U); var.rotate = (__u32 )tmp___0; err = activate(fb_info, & var); } if (err != 0) { return ((ssize_t )err); } else { } return ((ssize_t )count); } } static ssize_t show_rotate(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%d\n", fb_info->var.rotate); } return ((ssize_t )tmp___0); } } static ssize_t store_virtual(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; struct fb_var_screeninfo var ; char *last ; int err ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; last = (char *)0; var = fb_info->var; tmp___0 = simple_strtoul(buf, & last, 0U); var.xres_virtual = (__u32 )tmp___0; last = last + 1; } if ((unsigned long )((long )last - (long )buf) >= count) { return (-22L); } else { } { tmp___1 = simple_strtoul((char const *)last, & last, 0U); var.yres_virtual = (__u32 )tmp___1; err = activate(fb_info, & var); } if (err != 0) { return ((ssize_t )err); } else { } return ((ssize_t )count); } } static ssize_t show_virtual(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%d,%d\n", fb_info->var.xres_virtual, fb_info->var.yres_virtual); } return ((ssize_t )tmp___0); } } static ssize_t show_stride(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%d\n", fb_info->fix.line_length); } return ((ssize_t )tmp___0); } } static ssize_t store_blank(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; char *last ; int err ; unsigned long tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; last = (char *)0; console_lock(); fb_info->flags = fb_info->flags | 65536; tmp___0 = simple_strtoul(buf, & last, 0U); err = fb_blank(fb_info, (int )tmp___0); fb_info->flags = fb_info->flags & -65537; console_unlock(); } if (err < 0) { return ((ssize_t )err); } else { } return ((ssize_t )count); } } static ssize_t show_blank(struct device *device , struct device_attribute *attr , char *buf ) { { return (0L); } } static ssize_t store_console(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { { return (0L); } } static ssize_t show_console(struct device *device , struct device_attribute *attr , char *buf ) { { return (0L); } } static ssize_t store_cursor(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { { return (0L); } } static ssize_t show_cursor(struct device *device , struct device_attribute *attr , char *buf ) { { return (0L); } } static ssize_t store_pan(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; struct fb_var_screeninfo var ; char *last ; int err ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; last = (char *)0; var = fb_info->var; tmp___0 = simple_strtoul(buf, & last, 0U); var.xoffset = (__u32 )tmp___0; last = last + 1; } if ((unsigned long )((long )last - (long )buf) >= count) { return (-22L); } else { } { tmp___1 = simple_strtoul((char const *)last, & last, 0U); var.yoffset = (__u32 )tmp___1; console_lock(); err = fb_pan_display(fb_info, & var); console_unlock(); } if (err < 0) { return ((ssize_t )err); } else { } return ((ssize_t )count); } } static ssize_t show_pan(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%d,%d\n", fb_info->var.xoffset, fb_info->var.yoffset); } return ((ssize_t )tmp___0); } } static ssize_t show_name(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%s\n", (char *)(& fb_info->fix.id)); } return ((ssize_t )tmp___0); } } static ssize_t store_fbstate(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; u32 state ; char *last ; unsigned long tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; last = (char *)0; tmp___0 = simple_strtoul(buf, & last, 0U); state = (u32 )tmp___0; console_lock(); tmp___1 = lock_fb_info(fb_info); } if (tmp___1 == 0) { { console_unlock(); } return (-19L); } else { } { fb_set_suspend(fb_info, (int )state); unlock_fb_info___1(fb_info); console_unlock(); } return ((ssize_t )count); } } static ssize_t show_fbstate(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; tmp___0 = snprintf(buf, 4096UL, "%d\n", fb_info->state); } return ((ssize_t )tmp___0); } } static ssize_t store_bl_curve(struct device *device , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; u8 tmp_curve[128U] ; unsigned int i ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; } if ((unsigned long )fb_info == (unsigned long )((struct fb_info *)0) || (unsigned long )fb_info->bl_dev == (unsigned long )((struct backlight_device *)0)) { return (-19L); } else { } if (count != 384UL) { return (-22L); } else { } i = 0U; goto ldv_32776; ldv_32775: { tmp___0 = sscanf(buf + (unsigned long )(i * 24U), "%2hhx %2hhx %2hhx %2hhx %2hhx %2hhx %2hhx %2hhx\n", (u8 *)(& tmp_curve) + (unsigned long )(i * 8U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 1U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 2U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 3U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 4U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 5U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 6U), (u8 *)(& tmp_curve) + (unsigned long )(i * 8U + 7U)); } if (tmp___0 != 8) { return (-22L); } else { } i = i + 1U; ldv_32776: ; if (i <= 15U) { goto ldv_32775; } else { } { ldv_mutex_lock_98___0(& fb_info->bl_curve_mutex); i = 0U; } goto ldv_32779; ldv_32778: fb_info->bl_curve[i] = tmp_curve[i]; i = i + 1U; ldv_32779: ; if (i <= 127U) { goto ldv_32778; } else { } { ldv_mutex_unlock_99___0(& fb_info->bl_curve_mutex); } return ((ssize_t )count); } } static ssize_t show_bl_curve(struct device *device , struct device_attribute *attr , char *buf ) { struct fb_info *fb_info ; void *tmp ; ssize_t len ; unsigned int i ; int tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)device); fb_info = (struct fb_info *)tmp; len = 0L; } if ((unsigned long )fb_info == (unsigned long )((struct fb_info *)0) || (unsigned long )fb_info->bl_dev == (unsigned long )((struct backlight_device *)0)) { return (-19L); } else { } { ldv_mutex_lock_100___0(& fb_info->bl_curve_mutex); i = 0U; } goto ldv_32790; ldv_32789: { tmp___0 = snprintf(buf + (unsigned long )len, 4096UL, "%8ph\n", (u8 *)(& fb_info->bl_curve) + (unsigned long )i); len = len + (ssize_t )tmp___0; i = i + 8U; } ldv_32790: ; if (i <= 127U) { goto ldv_32789; } else { } { ldv_mutex_unlock_101___0(& fb_info->bl_curve_mutex); } return (len); } } static struct device_attribute device_attrs[13U] = { {{"bits_per_pixel", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bpp, & store_bpp}, {{"blank", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_blank, & store_blank}, {{"console", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_console, & store_console}, {{"cursor", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_cursor, & store_cursor}, {{"mode", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_mode, & store_mode}, {{"modes", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_modes, & store_modes}, {{"pan", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pan, & store_pan}, {{"virtual_size", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_virtual, & store_virtual}, {{"name", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_name, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"stride", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_stride, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"rotate", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rotate, & store_rotate}, {{"state", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fbstate, & store_fbstate}, {{"bl_curve", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bl_curve, & store_bl_curve}}; int fb_init_device(struct fb_info *fb_info ) { int i ; int error ; { { error = 0; dev_set_drvdata(fb_info->dev, (void *)fb_info); fb_info->class_flag = fb_info->class_flag | 1; i = 0; } goto ldv_32932; ldv_32931: { error = device_create_file(fb_info->dev, (struct device_attribute const *)(& device_attrs) + (unsigned long )i); } if (error != 0) { goto ldv_32930; } else { } i = i + 1; ldv_32932: ; if ((unsigned int )i <= 12U) { goto ldv_32931; } else { } ldv_32930: ; if (error != 0) { goto ldv_32934; ldv_32933: { device_remove_file(fb_info->dev, (struct device_attribute const *)(& device_attrs) + (unsigned long )i); } ldv_32934: i = i - 1; if (i >= 0) { goto ldv_32933; } else { } fb_info->class_flag = fb_info->class_flag & -2; } else { } return (0); } } void fb_cleanup_device(struct fb_info *fb_info ) { unsigned int i ; { if (fb_info->class_flag & 1) { i = 0U; goto ldv_32943; ldv_32942: { device_remove_file(fb_info->dev, (struct device_attribute const *)(& device_attrs) + (unsigned long )i); i = i + 1U; } ldv_32943: ; if (i <= 12U) { goto ldv_32942; } else { } fb_info->class_flag = fb_info->class_flag & -2; } else { } return; } } void fb_bl_default_curve(struct fb_info *fb_info , u8 off , u8 min , u8 max ) { unsigned int i ; unsigned int flat ; unsigned int count ; unsigned int range ; { { range = (unsigned int )((int )max - (int )min); ldv_mutex_lock_102___0(& fb_info->bl_curve_mutex); fb_info->bl_curve[0] = off; flat = 1U; } goto ldv_32956; ldv_32955: fb_info->bl_curve[flat] = min; flat = flat + 1U; ldv_32956: ; if (flat <= 7U) { goto ldv_32955; } else { } count = 120U; i = 0U; goto ldv_32959; ldv_32958: fb_info->bl_curve[flat + i] = (int )min + (int )((u8 )((range * (i + 1U)) / count)); i = i + 1U; ldv_32959: ; if (i < count) { goto ldv_32958; } else { } { ldv_mutex_unlock_103___0(& fb_info->bl_curve_mutex); } return; } } static char const __kstrtab_fb_bl_default_curve[20U] = { 'f', 'b', '_', 'b', 'l', '_', 'd', 'e', 'f', 'a', 'u', 'l', 't', '_', 'c', 'u', 'r', 'v', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_bl_default_curve ; struct kernel_symbol const __ksymtab_fb_bl_default_curve = {(unsigned long )(& fb_bl_default_curve), (char const *)(& __kstrtab_fb_bl_default_curve)}; void ldv_dummy_resourceless_instance_callback_10_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_modes(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_10_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_modes(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_11_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_name(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_11_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_virtual(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_12_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_pan(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_12_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_pan(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_13_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_rotate(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_13_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_rotate(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_14_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_stride(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_14_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_virtual(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_15_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_virtual(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_15_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_virtual(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_bl_curve(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_bl_curve(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_blank(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_blank(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_bpp(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_bpp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_console(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_console(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_cursor(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_cursor(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_fbstate(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_fbstate(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_mode(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_mode(arg1, arg2, (char const *)arg3, arg4); } return; } } static void ldv_mutex_unlock_97___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_98___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_bl_curve_mutex_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_99___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_bl_curve_mutex_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_100___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_bl_curve_mutex_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_101___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_bl_curve_mutex_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_102___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_bl_curve_mutex_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_103___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_bl_curve_mutex_of_fb_info(ldv_func_arg1); } return; } } extern long simple_strtol(char const * , char ** , unsigned int ) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern size_t strlen(char const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; int fb_find_mode_cvt(struct fb_videomode *mode , int margins , int rb ) ; struct fb_videomode const *fb_match_mode(struct fb_var_screeninfo const *var , struct list_head *head ) ; struct fb_videomode const *fb_find_best_mode(struct fb_var_screeninfo const *var , struct list_head *head ) ; struct fb_videomode const *fb_find_nearest_mode(struct fb_videomode const *mode , struct list_head *head ) ; struct fb_videomode const *fb_find_best_display(struct fb_monspecs const *specs , struct list_head *head ) ; extern char const *fb_mode_option ; int fb_find_mode(struct fb_var_screeninfo *var , struct fb_info *info , char const *mode_option , struct fb_videomode const *db , unsigned int dbsize , struct fb_videomode const *default_mode , unsigned int default_bpp ) ; static struct fb_videomode const modedb[60U] = { {(char const *)0, 70U, 640U, 400U, 39721U, 40U, 24U, 39U, 9U, 96U, 2U, 0U, 0U, 0U}, {(char const *)0, 60U, 640U, 480U, 39721U, 40U, 24U, 32U, 11U, 96U, 2U, 0U, 0U, 0U}, {(char const *)0, 56U, 800U, 600U, 27777U, 128U, 24U, 22U, 1U, 72U, 2U, 0U, 0U, 0U}, {(char const *)0, 87U, 1024U, 768U, 22271U, 56U, 24U, 33U, 8U, 160U, 8U, 0U, 1U, 0U}, {(char const *)0, 85U, 640U, 400U, 31746U, 96U, 32U, 41U, 1U, 64U, 3U, 2U, 0U, 0U}, {(char const *)0, 72U, 640U, 480U, 31746U, 144U, 40U, 30U, 8U, 40U, 3U, 0U, 0U, 0U}, {(char const *)0, 75U, 640U, 480U, 31746U, 120U, 16U, 16U, 1U, 64U, 3U, 0U, 0U, 0U}, {(char const *)0, 60U, 800U, 600U, 25000U, 88U, 40U, 23U, 1U, 128U, 4U, 3U, 0U, 0U}, {(char const *)0, 85U, 640U, 480U, 27777U, 80U, 56U, 25U, 1U, 56U, 3U, 0U, 0U, 0U}, {(char const *)0, 89U, 1152U, 864U, 15384U, 96U, 16U, 110U, 1U, 216U, 10U, 0U, 1U, 0U}, {(char const *)0, 72U, 800U, 600U, 20000U, 64U, 56U, 23U, 37U, 120U, 6U, 3U, 0U, 0U}, {(char const *)0, 60U, 1024U, 768U, 15384U, 168U, 8U, 29U, 3U, 144U, 6U, 0U, 0U, 0U}, {(char const *)0, 100U, 640U, 480U, 21834U, 96U, 32U, 36U, 8U, 96U, 6U, 0U, 0U, 0U}, {(char const *)0, 60U, 1152U, 864U, 11123U, 208U, 64U, 16U, 4U, 256U, 8U, 0U, 0U, 0U}, {(char const *)0, 85U, 800U, 600U, 16460U, 160U, 64U, 36U, 16U, 64U, 5U, 0U, 0U, 0U}, {(char const *)0, 70U, 1024U, 768U, 13333U, 144U, 24U, 29U, 3U, 136U, 6U, 0U, 0U, 0U}, {(char const *)0, 87U, 1280U, 1024U, 12500U, 56U, 16U, 128U, 1U, 216U, 12U, 0U, 1U, 0U}, {(char const *)0, 100U, 800U, 600U, 14357U, 160U, 64U, 30U, 4U, 64U, 6U, 0U, 0U, 0U}, {(char const *)0, 76U, 1024U, 768U, 11764U, 208U, 8U, 36U, 16U, 120U, 3U, 0U, 0U, 0U}, {(char const *)0, 70U, 1152U, 864U, 10869U, 106U, 56U, 20U, 1U, 160U, 10U, 0U, 0U, 0U}, {(char const *)0, 61U, 1280U, 1024U, 9090U, 200U, 48U, 26U, 1U, 184U, 3U, 0U, 0U, 0U}, {(char const *)0, 60U, 1400U, 1050U, 9259U, 136U, 40U, 13U, 1U, 112U, 3U, 0U, 0U, 0U}, {(char const *)0, 75U, 1400U, 1050U, 7190U, 120U, 56U, 23U, 10U, 112U, 13U, 3U, 0U, 0U}, {(char const *)0, 60U, 1400U, 1050U, 9259U, 128U, 40U, 12U, 0U, 112U, 3U, 3U, 0U, 0U}, {(char const *)0, 85U, 1024U, 768U, 10111U, 192U, 32U, 34U, 14U, 160U, 6U, 0U, 0U, 0U}, {(char const *)0, 78U, 1152U, 864U, 9090U, 228U, 88U, 32U, 0U, 84U, 12U, 0U, 0U, 0U}, {(char const *)0, 70U, 1280U, 1024U, 7905U, 224U, 32U, 28U, 8U, 160U, 8U, 0U, 0U, 0U}, {(char const *)0, 60U, 1600U, 1200U, 6172U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 0U}, {(char const *)0, 84U, 1152U, 864U, 7407U, 184U, 312U, 32U, 0U, 128U, 12U, 0U, 0U, 0U}, {(char const *)0, 74U, 1280U, 1024U, 7407U, 256U, 32U, 34U, 3U, 144U, 3U, 0U, 0U, 0U}, {(char const *)0, 100U, 1024U, 768U, 8658U, 192U, 32U, 21U, 3U, 192U, 10U, 0U, 0U, 0U}, {(char const *)0, 76U, 1280U, 1024U, 7407U, 248U, 32U, 34U, 3U, 104U, 3U, 0U, 0U, 0U}, {(char const *)0, 70U, 1600U, 1200U, 5291U, 304U, 64U, 46U, 1U, 192U, 3U, 0U, 0U, 0U}, {(char const *)0, 100U, 1152U, 864U, 7264U, 224U, 32U, 17U, 2U, 128U, 19U, 0U, 0U, 0U}, {(char const *)0, 85U, 1280U, 1024U, 6349U, 224U, 64U, 44U, 1U, 160U, 3U, 3U, 0U, 0U}, {(char const *)0, 75U, 1600U, 1200U, 4938U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 0U}, {(char const *)0, 60U, 1680U, 1050U, 6848U, 280U, 104U, 30U, 3U, 176U, 6U, 3U, 0U, 0U}, {(char const *)0, 85U, 1600U, 1200U, 4545U, 272U, 16U, 37U, 4U, 192U, 3U, 3U, 0U, 0U}, {(char const *)0, 100U, 1280U, 1024U, 5502U, 256U, 32U, 26U, 7U, 128U, 15U, 0U, 0U, 0U}, {(char const *)0, 64U, 1800U, 1440U, 4347U, 304U, 96U, 46U, 1U, 192U, 3U, 3U, 0U, 0U}, {(char const *)0, 70U, 1800U, 1440U, 4000U, 304U, 96U, 46U, 1U, 192U, 3U, 3U, 0U, 0U}, {(char const *)0, 78U, 512U, 384U, 49603U, 48U, 16U, 16U, 1U, 64U, 3U, 0U, 0U, 0U}, {(char const *)0, 85U, 512U, 384U, 45454U, 48U, 16U, 16U, 1U, 64U, 3U, 0U, 0U, 0U}, {(char const *)0, 70U, 320U, 200U, 79440U, 16U, 16U, 20U, 4U, 48U, 1U, 0U, 2U, 0U}, {(char const *)0, 60U, 320U, 240U, 79440U, 16U, 16U, 16U, 5U, 48U, 1U, 0U, 2U, 0U}, {(char const *)0, 72U, 320U, 240U, 63492U, 16U, 16U, 16U, 4U, 48U, 2U, 0U, 2U, 0U}, {(char const *)0, 56U, 400U, 300U, 55555U, 64U, 16U, 10U, 1U, 32U, 1U, 0U, 2U, 0U}, {(char const *)0, 60U, 400U, 300U, 50000U, 48U, 16U, 11U, 1U, 64U, 2U, 0U, 2U, 0U}, {(char const *)0, 72U, 400U, 300U, 40000U, 32U, 24U, 11U, 19U, 64U, 3U, 0U, 2U, 0U}, {(char const *)0, 56U, 480U, 300U, 46176U, 80U, 16U, 10U, 1U, 40U, 1U, 0U, 2U, 0U}, {(char const *)0, 60U, 480U, 300U, 41858U, 56U, 16U, 11U, 1U, 80U, 2U, 0U, 2U, 0U}, {(char const *)0, 63U, 480U, 300U, 40000U, 56U, 16U, 11U, 1U, 80U, 2U, 0U, 2U, 0U}, {(char const *)0, 72U, 480U, 300U, 33386U, 40U, 24U, 11U, 19U, 80U, 3U, 0U, 2U, 0U}, {(char const *)0, 60U, 1920U, 1200U, 5177U, 128U, 336U, 1U, 38U, 208U, 3U, 3U, 0U, 0U}, {(char const *)0, 60U, 1152U, 768U, 14047U, 158U, 26U, 29U, 3U, 136U, 6U, 3U, 0U, 0U}, {(char const *)0, 60U, 1366U, 768U, 13806U, 120U, 10U, 14U, 3U, 32U, 5U, 0U, 0U, 0U}, {(char const *)0, 60U, 1280U, 800U, 12048U, 200U, 64U, 24U, 1U, 136U, 3U, 0U, 0U, 0U}, {(char const *)0, 50U, 720U, 576U, 74074U, 64U, 16U, 39U, 5U, 64U, 5U, 0U, 1U, 0U}, {(char const *)0, 50U, 800U, 520U, 58823U, 144U, 64U, 72U, 28U, 80U, 5U, 0U, 1U, 0U}, {(char const *)0, 60U, 864U, 480U, 27777U, 1U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 0U}}; struct fb_videomode const cea_modes[64U] = { {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 60U, 640U, 480U, 39722U, 48U, 16U, 33U, 10U, 96U, 2U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 60U, 720U, 480U, 37037U, 60U, 16U, 30U, 9U, 62U, 6U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 60U, 1920U, 1080U, 13763U, 148U, 88U, 15U, 2U, 44U, 5U, 3U, 1U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 60U, 1440U, 480U, 18554U, 114U, 38U, 15U, 4U, 124U, 3U, 0U, 1U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 60U, 1440U, 240U, 18554U, 114U, 38U, 16U, 4U, 124U, 3U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 50U, 720U, 576U, 37037U, 68U, 12U, 39U, 5U, 64U, 5U, 0U, 0U, 0U}, {(char const *)0, 50U, 1280U, 720U, 13468U, 220U, 440U, 20U, 5U, 40U, 5U, 3U, 0U, 0U}, {(char const *)0, 50U, 1920U, 1080U, 13480U, 148U, 528U, 15U, 5U, 528U, 5U, 3U, 1U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 24U, 1920U, 1080U, 13468U, 148U, 638U, 36U, 4U, 44U, 5U, 3U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {(char const *)0, 60U, 2880U, 480U, 9250U, 240U, 64U, 30U, 9U, 248U, 6U, 0U, 0U, 0U}}; struct fb_videomode const vesa_modes[43U] = { {(char const *)0, 85U, 640U, 350U, 31746U, 96U, 32U, 60U, 32U, 64U, 3U, 1U, 0U, 4U}, {(char const *)0, 85U, 640U, 400U, 31746U, 96U, 32U, 41U, 1U, 64U, 3U, 2U, 0U, 4U}, {(char const *)0, 85U, 721U, 400U, 28169U, 108U, 36U, 42U, 1U, 72U, 3U, 2U, 0U, 4U}, {(char const *)0, 60U, 640U, 480U, 39682U, 48U, 16U, 33U, 10U, 96U, 2U, 0U, 0U, 4U}, {(char const *)0, 72U, 640U, 480U, 31746U, 128U, 24U, 29U, 9U, 40U, 2U, 0U, 0U, 4U}, {(char const *)0, 75U, 640U, 480U, 31746U, 120U, 16U, 16U, 1U, 64U, 3U, 0U, 0U, 4U}, {(char const *)0, 85U, 640U, 480U, 27777U, 80U, 56U, 25U, 1U, 56U, 3U, 0U, 0U, 4U}, {(char const *)0, 56U, 800U, 600U, 27777U, 128U, 24U, 22U, 1U, 72U, 2U, 3U, 0U, 4U}, {(char const *)0, 60U, 800U, 600U, 25000U, 88U, 40U, 23U, 1U, 128U, 4U, 3U, 0U, 4U}, {(char const *)0, 72U, 800U, 600U, 20000U, 64U, 56U, 23U, 37U, 120U, 6U, 3U, 0U, 4U}, {(char const *)0, 75U, 800U, 600U, 20202U, 160U, 16U, 21U, 1U, 80U, 3U, 3U, 0U, 4U}, {(char const *)0, 85U, 800U, 600U, 17761U, 152U, 32U, 27U, 1U, 64U, 3U, 3U, 0U, 4U}, {(char const *)0, 43U, 1024U, 768U, 22271U, 56U, 8U, 41U, 0U, 176U, 8U, 3U, 1U, 4U}, {(char const *)0, 60U, 1024U, 768U, 15384U, 160U, 24U, 29U, 3U, 136U, 6U, 0U, 0U, 4U}, {(char const *)0, 70U, 1024U, 768U, 13333U, 144U, 24U, 29U, 3U, 136U, 6U, 0U, 0U, 4U}, {(char const *)0, 75U, 1024U, 768U, 12690U, 176U, 16U, 28U, 1U, 96U, 3U, 3U, 0U, 4U}, {(char const *)0, 85U, 1024U, 768U, 10582U, 208U, 48U, 36U, 1U, 96U, 3U, 3U, 0U, 4U}, {(char const *)0, 75U, 1152U, 864U, 9259U, 256U, 64U, 32U, 1U, 128U, 3U, 3U, 0U, 4U}, {(char const *)0, 60U, 1280U, 960U, 9259U, 312U, 96U, 36U, 1U, 112U, 3U, 3U, 0U, 4U}, {(char const *)0, 85U, 1280U, 960U, 6734U, 224U, 64U, 47U, 1U, 160U, 3U, 3U, 0U, 4U}, {(char const *)0, 60U, 1280U, 1024U, 9259U, 248U, 48U, 38U, 1U, 112U, 3U, 3U, 0U, 4U}, {(char const *)0, 75U, 1280U, 1024U, 7407U, 248U, 16U, 38U, 1U, 144U, 3U, 3U, 0U, 4U}, {(char const *)0, 85U, 1280U, 1024U, 6349U, 224U, 64U, 44U, 1U, 160U, 3U, 3U, 0U, 4U}, {(char const *)0, 60U, 1600U, 1200U, 6172U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 4U}, {(char const *)0, 65U, 1600U, 1200U, 5698U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 4U}, {(char const *)0, 70U, 1600U, 1200U, 5291U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 4U}, {(char const *)0, 75U, 1600U, 1200U, 4938U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 4U}, {(char const *)0, 85U, 1600U, 1200U, 4357U, 304U, 64U, 46U, 1U, 192U, 3U, 3U, 0U, 4U}, {(char const *)0, 60U, 1792U, 1344U, 4882U, 328U, 128U, 46U, 1U, 200U, 3U, 2U, 0U, 4U}, {(char const *)0, 75U, 1792U, 1344U, 3831U, 352U, 96U, 69U, 1U, 216U, 3U, 2U, 0U, 4U}, {(char const *)0, 60U, 1856U, 1392U, 4580U, 352U, 96U, 43U, 1U, 224U, 3U, 2U, 0U, 4U}, {(char const *)0, 75U, 1856U, 1392U, 3472U, 352U, 128U, 104U, 1U, 224U, 3U, 2U, 0U, 4U}, {(char const *)0, 60U, 1920U, 1440U, 4273U, 344U, 128U, 56U, 1U, 200U, 3U, 2U, 0U, 4U}, {(char const *)0, 75U, 1920U, 1440U, 3367U, 352U, 144U, 56U, 1U, 224U, 3U, 2U, 0U, 4U}, {(char const *)0, 60U, 1920U, 1200U, 6493U, 80U, 48U, 26U, 3U, 32U, 6U, 2U, 0U, 4U}, {(char const *)0, 60U, 1920U, 1200U, 5174U, 336U, 136U, 36U, 3U, 200U, 6U, 2U, 0U, 4U}, {(char const *)0, 75U, 1920U, 1200U, 4077U, 344U, 136U, 46U, 3U, 208U, 6U, 2U, 0U, 4U}, {(char const *)0, 85U, 1920U, 1200U, 3555U, 352U, 144U, 53U, 3U, 208U, 6U, 2U, 0U, 4U}, {(char const *)0, 60U, 2560U, 1600U, 3724U, 80U, 48U, 37U, 3U, 32U, 6U, 1U, 0U, 4U}, {(char const *)0, 60U, 2560U, 1600U, 2869U, 472U, 192U, 49U, 3U, 280U, 6U, 2U, 0U, 4U}, {(char const *)0, 75U, 2560U, 1600U, 2256U, 488U, 208U, 63U, 3U, 280U, 6U, 2U, 0U, 4U}, {(char const *)0, 85U, 2560U, 1600U, 1979U, 488U, 208U, 73U, 3U, 280U, 6U, 2U, 0U, 4U}, {(char const *)0, 120U, 2560U, 1600U, 1809U, 80U, 48U, 85U, 3U, 32U, 6U, 1U, 0U, 4U}}; static char const __kstrtab_vesa_modes[11U] = { 'v', 'e', 's', 'a', '_', 'm', 'o', 'd', 'e', 's', '\000'}; struct kernel_symbol const __ksymtab_vesa_modes ; struct kernel_symbol const __ksymtab_vesa_modes = {(unsigned long )(& vesa_modes), (char const *)(& __kstrtab_vesa_modes)}; struct dmt_videomode const dmt_modes[80U] = { {1U, 0U, 0U, (struct fb_videomode const *)(& vesa_modes)}, {2U, 12569U, 0U, (struct fb_videomode const *)(& vesa_modes) + 1UL}, {3U, 0U, 0U, (struct fb_videomode const *)(& vesa_modes) + 2UL}, {4U, 12608U, 0U, (struct fb_videomode const *)(& vesa_modes) + 3UL}, {5U, 12620U, 0U, (struct fb_videomode const *)(& vesa_modes) + 4UL}, {6U, 12623U, 0U, (struct fb_videomode const *)(& vesa_modes) + 5UL}, {7U, 12633U, 0U, (struct fb_videomode const *)(& vesa_modes) + 6UL}, {8U, 0U, 0U, (struct fb_videomode const *)(& vesa_modes) + 7UL}, {9U, 17728U, 0U, (struct fb_videomode const *)(& vesa_modes) + 8UL}, {10U, 17740U, 0U, (struct fb_videomode const *)(& vesa_modes) + 9UL}, {11U, 17743U, 0U, (struct fb_videomode const *)(& vesa_modes) + 10UL}, {12U, 17753U, 0U, (struct fb_videomode const *)(& vesa_modes) + 11UL}, {13U, 0U, 0U, (struct fb_videomode const *)0}, {14U, 0U, 0U, (struct fb_videomode const *)0}, {15U, 0U, 0U, (struct fb_videomode const *)(& vesa_modes) + 12UL}, {16U, 24896U, 0U, (struct fb_videomode const *)(& vesa_modes) + 13UL}, {17U, 24906U, 0U, (struct fb_videomode const *)(& vesa_modes) + 14UL}, {18U, 24911U, 0U, (struct fb_videomode const *)(& vesa_modes) + 15UL}, {19U, 24921U, 0U, (struct fb_videomode const *)(& vesa_modes) + 16UL}, {20U, 0U, 0U, (struct fb_videomode const *)0}, {21U, 29007U, 0U, (struct fb_videomode const *)(& vesa_modes) + 17UL}, {22U, 0U, 8330273U, (struct fb_videomode const *)0}, {23U, 0U, 8330280U, (struct fb_videomode const *)0}, {24U, 0U, 8330308U, (struct fb_videomode const *)0}, {25U, 0U, 8330338U, (struct fb_videomode const *)0}, {26U, 0U, 0U, (struct fb_videomode const *)0}, {27U, 0U, 9377825U, (struct fb_videomode const *)0}, {28U, 33024U, 9377832U, (struct fb_videomode const *)0}, {29U, 33039U, 9377860U, (struct fb_videomode const *)0}, {30U, 33049U, 9377890U, (struct fb_videomode const *)0}, {31U, 0U, 0U, (struct fb_videomode const *)0}, {32U, 33088U, 0U, (struct fb_videomode const *)(& vesa_modes) + 18UL}, {33U, 33113U, 0U, (struct fb_videomode const *)(& vesa_modes) + 19UL}, {34U, 0U, 0U, (struct fb_videomode const *)0}, {35U, 33152U, 0U, (struct fb_videomode const *)(& vesa_modes) + 20UL}, {36U, 33167U, 0U, (struct fb_videomode const *)(& vesa_modes) + 21UL}, {37U, 33177U, 0U, (struct fb_videomode const *)(& vesa_modes) + 22UL}, {38U, 0U, 0U, (struct fb_videomode const *)0}, {39U, 0U, 0U, (struct fb_videomode const *)0}, {40U, 0U, 0U, (struct fb_videomode const *)0}, {41U, 0U, 794657U, (struct fb_videomode const *)0}, {42U, 36928U, 794664U, (struct fb_videomode const *)0}, {43U, 36943U, 794692U, (struct fb_videomode const *)0}, {44U, 36953U, 794722U, (struct fb_videomode const *)0}, {45U, 0U, 0U, (struct fb_videomode const *)0}, {46U, 38144U, 12654625U, (struct fb_videomode const *)0}, {47U, 38144U, 12654632U, (struct fb_videomode const *)0}, {48U, 38159U, 12654660U, (struct fb_videomode const *)0}, {49U, 38169U, 12654696U, (struct fb_videomode const *)0}, {50U, 0U, 0U, (struct fb_videomode const *)0}, {51U, 43328U, 0U, (struct fb_videomode const *)(& vesa_modes) + 23UL}, {52U, 43333U, 0U, (struct fb_videomode const *)(& vesa_modes) + 24UL}, {53U, 43338U, 0U, (struct fb_videomode const *)(& vesa_modes) + 25UL}, {54U, 43343U, 0U, (struct fb_videomode const *)(& vesa_modes) + 26UL}, {55U, 43353U, 0U, (struct fb_videomode const *)(& vesa_modes) + 27UL}, {56U, 0U, 0U, (struct fb_videomode const *)0}, {57U, 0U, 796705U, (struct fb_videomode const *)0}, {58U, 45824U, 796712U, (struct fb_videomode const *)0}, {59U, 45839U, 796740U, (struct fb_videomode const *)0}, {60U, 45849U, 796776U, (struct fb_videomode const *)0}, {61U, 0U, 0U, (struct fb_videomode const *)0}, {62U, 49472U, 0U, (struct fb_videomode const *)(& vesa_modes) + 28UL}, {63U, 49487U, 0U, (struct fb_videomode const *)(& vesa_modes) + 29UL}, {64U, 0U, 0U, (struct fb_videomode const *)0}, {65U, 51520U, 0U, (struct fb_videomode const *)(& vesa_modes) + 30UL}, {66U, 51535U, 0U, (struct fb_videomode const *)(& vesa_modes) + 31UL}, {67U, 0U, 0U, (struct fb_videomode const *)0}, {68U, 0U, 5711905U, (struct fb_videomode const *)(& vesa_modes) + 34UL}, {69U, 53504U, 5711912U, (struct fb_videomode const *)(& vesa_modes) + 35UL}, {70U, 53519U, 5711940U, (struct fb_videomode const *)(& vesa_modes) + 36UL}, {71U, 53529U, 5711970U, (struct fb_videomode const *)(& vesa_modes) + 37UL}, {72U, 0U, 0U, (struct fb_videomode const *)0}, {73U, 53568U, 0U, (struct fb_videomode const *)(& vesa_modes) + 32UL}, {74U, 53583U, 0U, (struct fb_videomode const *)(& vesa_modes) + 33UL}, {75U, 0U, 0U, (struct fb_videomode const *)0}, {76U, 0U, 2045985U, (struct fb_videomode const *)(& vesa_modes) + 38UL}, {77U, 0U, 2045992U, (struct fb_videomode const *)(& vesa_modes) + 39UL}, {78U, 0U, 2046020U, (struct fb_videomode const *)(& vesa_modes) + 40UL}, {79U, 0U, 2046050U, (struct fb_videomode const *)(& vesa_modes) + 41UL}, {80U, 0U, 0U, (struct fb_videomode const *)(& vesa_modes) + 42UL}}; static char const __kstrtab_dmt_modes[10U] = { 'd', 'm', 't', '_', 'm', 'o', 'd', 'e', 's', '\000'}; struct kernel_symbol const __ksymtab_dmt_modes ; struct kernel_symbol const __ksymtab_dmt_modes = {(unsigned long )(& dmt_modes), (char const *)(& __kstrtab_dmt_modes)}; static int fb_try_mode(struct fb_var_screeninfo *var , struct fb_info *info , struct fb_videomode const *mode , unsigned int bpp ) { int err ; { err = 0; var->xres = mode->xres; var->yres = mode->yres; var->xres_virtual = mode->xres; var->yres_virtual = mode->yres; var->xoffset = 0U; var->yoffset = 0U; var->bits_per_pixel = bpp; var->activate = var->activate | 2U; var->pixclock = mode->pixclock; var->left_margin = mode->left_margin; var->right_margin = mode->right_margin; var->upper_margin = mode->upper_margin; var->lower_margin = mode->lower_margin; var->hsync_len = mode->hsync_len; var->vsync_len = mode->vsync_len; var->sync = mode->sync; var->vmode = mode->vmode; if ((unsigned long )(info->fbops)->fb_check_var != (unsigned long )((int (*)(struct fb_var_screeninfo * , struct fb_info * ))0)) { { err = (*((info->fbops)->fb_check_var))(var, info); } } else { } var->activate = var->activate & 4294967293U; return (err); } } int fb_find_mode(struct fb_var_screeninfo *var , struct fb_info *info , char const *mode_option , struct fb_videomode const *db , unsigned int dbsize , struct fb_videomode const *default_mode , unsigned int default_bpp ) { int i ; char const *name ; unsigned int namelen ; size_t tmp ; int res_specified ; int bpp_specified ; int refresh_specified ; unsigned int xres ; unsigned int yres ; unsigned int bpp ; unsigned int refresh ; int yres_specified ; int cvt ; int rb ; int interlace ; int margins ; u32 best ; u32 diff ; u32 tdiff ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; struct fb_videomode cvt_mode ; int ret ; int tmp___4 ; long ret___0 ; int __x___0 ; long ret___1 ; int __x___2 ; int tmp___5 ; size_t tmp___6 ; int tmp___7 ; long ret___2 ; int __x___4 ; long ret___3 ; int __x___6 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { if ((unsigned long )db == (unsigned long )((struct fb_videomode const *)0)) { db = (struct fb_videomode const *)(& modedb); dbsize = 60U; } else { } if ((unsigned long )default_mode == (unsigned long )((struct fb_videomode const *)0)) { default_mode = db; } else { } if (default_bpp == 0U) { default_bpp = 8U; } else { } if ((unsigned long )mode_option == (unsigned long )((char const *)0)) { mode_option = fb_mode_option; } else { } if ((unsigned long )mode_option != (unsigned long )((char const *)0)) { { name = mode_option; tmp = strlen(name); namelen = (unsigned int )tmp; res_specified = 0; bpp_specified = 0; refresh_specified = 0; xres = 0U; yres = 0U; bpp = default_bpp; refresh = 0U; yres_specified = 0; cvt = 0; rb = 0; interlace = 0; margins = 0; i = (int )(namelen - 1U); } goto ldv_32379; ldv_32378: ; { if ((int )*(name + (unsigned long )i) == 64) { goto case_64; } else { } if ((int )*(name + (unsigned long )i) == 45) { goto case_45; } else { } if ((int )*(name + (unsigned long )i) == 120) { goto case_120; } else { } if ((((((((((int )*(name + (unsigned long )i) == 57 || (int )*(name + (unsigned long )i) == 56) || (int )*(name + (unsigned long )i) == 55) || (int )*(name + (unsigned long )i) == 54) || (int )*(name + (unsigned long )i) == 53) || (int )*(name + (unsigned long )i) == 52) || (int )*(name + (unsigned long )i) == 51) || (int )*(name + (unsigned long )i) == 50) || (int )*(name + (unsigned long )i) == 49) || (int )*(name + (unsigned long )i) == 48) { goto case_57; } else { } if ((int )*(name + (unsigned long )i) == 77) { goto case_77; } else { } if ((int )*(name + (unsigned long )i) == 82) { goto case_82; } else { } if ((int )*(name + (unsigned long )i) == 109) { goto case_109; } else { } if ((int )*(name + (unsigned long )i) == 105) { goto case_105; } else { } goto switch_default; case_64: /* CIL Label */ namelen = (unsigned int )i; if (((refresh_specified | bpp_specified) | yres_specified) == 0) { { tmp___0 = simple_strtol(name + ((unsigned long )i + 1UL), (char **)0, 10U); refresh = (unsigned int )tmp___0; refresh_specified = 1; } if ((cvt | rb) != 0) { cvt = 0; } else { } } else { goto done; } goto ldv_32369; case_45: /* CIL Label */ namelen = (unsigned int )i; if ((bpp_specified | yres_specified) == 0) { { tmp___1 = simple_strtol(name + ((unsigned long )i + 1UL), (char **)0, 10U); bpp = (unsigned int )tmp___1; bpp_specified = 1; } if ((cvt | rb) != 0) { cvt = 0; } else { } } else { goto done; } goto ldv_32369; case_120: /* CIL Label */ ; if (yres_specified == 0) { { tmp___2 = simple_strtol(name + ((unsigned long )i + 1UL), (char **)0, 10U); yres = (unsigned int )tmp___2; yres_specified = 1; } } else { goto done; } goto ldv_32369; case_57: /* CIL Label */ case_56: /* CIL Label */ case_55: /* CIL Label */ case_54: /* CIL Label */ case_53: /* CIL Label */ case_52: /* CIL Label */ case_51: /* CIL Label */ case_50: /* CIL Label */ case_49: /* CIL Label */ case_48: /* CIL Label */ ; goto ldv_32369; case_77: /* CIL Label */ ; if (yres_specified == 0) { cvt = 1; } else { } goto ldv_32369; case_82: /* CIL Label */ ; if (cvt == 0) { rb = 1; } else { } goto ldv_32369; case_109: /* CIL Label */ ; if (cvt == 0) { margins = 1; } else { } goto ldv_32369; case_105: /* CIL Label */ ; if (cvt == 0) { interlace = 1; } else { } goto ldv_32369; switch_default: /* CIL Label */ ; goto done; switch_break: /* CIL Label */ ; } ldv_32369: i = i - 1; ldv_32379: ; if (i >= 0) { goto ldv_32378; } else { } if (i < 0 && yres_specified != 0) { { tmp___3 = simple_strtol(name, (char **)0, 10U); xres = (unsigned int )tmp___3; res_specified = 1; } } else { } done: ; if (cvt != 0) { { __memset((void *)(& cvt_mode), 0, 64UL); cvt_mode.xres = xres; cvt_mode.yres = yres; cvt_mode.refresh = refresh != 0U ? refresh : 60U; } if (interlace != 0) { cvt_mode.vmode = cvt_mode.vmode | 1U; } else { cvt_mode.vmode = cvt_mode.vmode & 4294967294U; } { ret = fb_find_mode_cvt(& cvt_mode, margins, rb); } if (ret == 0) { { tmp___4 = fb_try_mode(var, info, (struct fb_videomode const *)(& cvt_mode), bpp); } if (tmp___4 == 0) { return (1); } else { } } else { } } else { } if (refresh_specified == 0) { if ((((((unsigned long )db != (unsigned long )((struct fb_videomode const *)(& modedb)) && (unsigned int )info->monspecs.vfmin != 0U) && (unsigned int )info->monspecs.vfmax != 0U) && info->monspecs.hfmin != 0U) && info->monspecs.hfmax != 0U) && info->monspecs.dclkmax != 0U) { refresh = 1000U; } else { refresh = 60U; } } else { } diff = 4294967295U; best = 4294967295U; i = 0; goto ldv_32392; ldv_32391: ; if ((unsigned long )(db + (unsigned long )i)->name != (unsigned long )((char const */* const */)0)) { { tmp___5 = strncmp(name, (db + (unsigned long )i)->name, (__kernel_size_t )namelen); } if (tmp___5 == 0) { { tmp___6 = strlen((db + (unsigned long )i)->name); } if (tmp___6 == (size_t )namelen) { goto _L; } else { goto _L___1; } } else { goto _L___1; } } else _L___1: /* CIL Label */ if (res_specified != 0 && ((unsigned int )(db + (unsigned long )i)->xres == xres && (unsigned int )(db + (unsigned long )i)->yres == yres)) { _L: /* CIL Label */ { tmp___7 = fb_try_mode(var, info, db + (unsigned long )i, bpp); } if (tmp___7 == 0) { if (refresh_specified != 0 && (unsigned int )(db + (unsigned long )i)->refresh == refresh) { return (1); } else { } __x___2 = (int )((unsigned int )(db + (unsigned long )i)->refresh - refresh); ret___1 = (long )(__x___2 < 0 ? - __x___2 : __x___2); if (ret___1 < (long )diff) { __x___0 = (int )((unsigned int )(db + (unsigned long )i)->refresh - refresh); ret___0 = (long )(__x___0 < 0 ? - __x___0 : __x___0); diff = (u32 )ret___0; best = (u32 )i; } else { } } else { } } else { } i = i + 1; ldv_32392: ; if ((unsigned int )i < dbsize) { goto ldv_32391; } else { } if (best != 4294967295U) { { fb_try_mode(var, info, db + (unsigned long )best, bpp); } return (refresh_specified != 0 ? 2 : 1); } else { } diff = (xres + yres) * 2U; best = 4294967295U; i = 0; goto ldv_32403; ldv_32402: { tmp___8 = fb_try_mode(var, info, db + (unsigned long )i, bpp); } if (tmp___8 == 0) { __x___4 = (int )((unsigned int )(db + (unsigned long )i)->xres - xres); ret___2 = (long )(__x___4 < 0 ? - __x___4 : __x___4); __x___6 = (int )((unsigned int )(db + (unsigned long )i)->yres - yres); ret___3 = (long )(__x___6 < 0 ? - __x___6 : __x___6); tdiff = (u32 )ret___2 + (u32 )ret___3; if (xres > (unsigned int )(db + (unsigned long )i)->xres || yres > (unsigned int )(db + (unsigned long )i)->yres) { tdiff = tdiff + (xres + yres); } else { } if (diff > tdiff) { diff = tdiff; best = (u32 )i; } else { } } else { } i = i + 1; ldv_32403: ; if ((unsigned int )i < dbsize) { goto ldv_32402; } else { } if (best != 4294967295U) { { fb_try_mode(var, info, db + (unsigned long )best, bpp); } return (5); } else { } } else { } { tmp___9 = fb_try_mode(var, info, default_mode, default_bpp); } if (tmp___9 == 0) { return (3); } else { } i = 0; goto ldv_32406; ldv_32405: { tmp___10 = fb_try_mode(var, info, db + (unsigned long )i, default_bpp); } if (tmp___10 == 0) { return (4); } else { } i = i + 1; ldv_32406: ; if ((unsigned int )i < dbsize) { goto ldv_32405; } else { } return (0); } } void fb_var_to_videomode(struct fb_videomode *mode , struct fb_var_screeninfo const *var ) { u32 pixclock ; u32 hfreq ; u32 htotal ; u32 vtotal ; { mode->name = (char const *)0; mode->xres = var->xres; mode->yres = var->yres; mode->pixclock = var->pixclock; mode->hsync_len = var->hsync_len; mode->vsync_len = var->vsync_len; mode->left_margin = var->left_margin; mode->right_margin = var->right_margin; mode->upper_margin = var->upper_margin; mode->lower_margin = var->lower_margin; mode->sync = var->sync; mode->vmode = (unsigned int )var->vmode & 255U; mode->flag = 32U; mode->refresh = 0U; if ((unsigned int )var->pixclock == 0U) { return; } else { } pixclock = (1000000000U / (unsigned int )var->pixclock) * 1000U; htotal = (((unsigned int )var->xres + (unsigned int )var->right_margin) + (unsigned int )var->hsync_len) + (unsigned int )var->left_margin; vtotal = (((unsigned int )var->yres + (unsigned int )var->lower_margin) + (unsigned int )var->vsync_len) + (unsigned int )var->upper_margin; if ((int )var->vmode & 1) { vtotal = vtotal / 2U; } else { } if (((unsigned int )var->vmode & 2U) != 0U) { vtotal = vtotal * 2U; } else { } hfreq = pixclock / htotal; mode->refresh = hfreq / vtotal; return; } } void fb_videomode_to_var(struct fb_var_screeninfo *var , struct fb_videomode const *mode ) { { var->xres = mode->xres; var->yres = mode->yres; var->xres_virtual = mode->xres; var->yres_virtual = mode->yres; var->xoffset = 0U; var->yoffset = 0U; var->pixclock = mode->pixclock; var->left_margin = mode->left_margin; var->right_margin = mode->right_margin; var->upper_margin = mode->upper_margin; var->lower_margin = mode->lower_margin; var->hsync_len = mode->hsync_len; var->vsync_len = mode->vsync_len; var->sync = mode->sync; var->vmode = (unsigned int )mode->vmode & 255U; return; } } int fb_mode_is_equal(struct fb_videomode const *mode1 , struct fb_videomode const *mode2 ) { { return ((((((unsigned int )mode1->xres == (unsigned int )mode2->xres && *((unsigned long *)mode1 + 2UL) == *((unsigned long *)mode2 + 2UL)) && *((unsigned long *)mode1 + 5UL) == *((unsigned long *)mode2 + 5UL)) && *((unsigned long *)mode1 + 3UL) == *((unsigned long *)mode2 + 3UL)) && *((unsigned long *)mode1 + 4UL) == *((unsigned long *)mode2 + 4UL)) && *((unsigned long *)mode1 + 6UL) == *((unsigned long *)mode2 + 6UL)); } } struct fb_videomode const *fb_find_best_mode(struct fb_var_screeninfo const *var , struct list_head *head ) { struct list_head *pos ; struct fb_modelist *modelist ; struct fb_videomode *mode ; struct fb_videomode *best ; u32 diff ; u32 d ; struct list_head const *__mptr ; { best = (struct fb_videomode *)0; diff = 4294967295U; pos = head->next; goto ldv_32437; ldv_32436: __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; mode = & modelist->mode; if (mode->xres >= (u32 )var->xres && mode->yres >= (u32 )var->yres) { d = (mode->xres - (u32 )var->xres) + (mode->yres - (u32 )var->yres); if (diff > d) { diff = d; best = mode; } else if ((diff == d && (unsigned long )best != (unsigned long )((struct fb_videomode *)0)) && mode->refresh > best->refresh) { best = mode; } else { } } else { } pos = pos->next; ldv_32437: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32436; } else { } return ((struct fb_videomode const *)best); } } struct fb_videomode const *fb_find_nearest_mode(struct fb_videomode const *mode , struct list_head *head ) { struct list_head *pos ; struct fb_modelist *modelist ; struct fb_videomode *cmode ; struct fb_videomode *best ; u32 diff ; u32 diff_refresh ; u32 d ; struct list_head const *__mptr ; long ret ; int __x___0 ; long ret___0 ; int __x___2 ; long ret___1 ; int __x___4 ; long ret___2 ; int __x___6 ; { best = (struct fb_videomode *)0; diff = 4294967295U; diff_refresh = 4294967295U; pos = head->next; goto ldv_32469; ldv_32468: __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; cmode = & modelist->mode; __x___0 = (int )(cmode->xres - (u32 )mode->xres); ret = (long )(__x___0 < 0 ? - __x___0 : __x___0); __x___2 = (int )(cmode->yres - (u32 )mode->yres); ret___0 = (long )(__x___2 < 0 ? - __x___2 : __x___2); d = (u32 )ret + (u32 )ret___0; if (diff > d) { diff = d; __x___4 = (int )(cmode->refresh - (u32 )mode->refresh); ret___1 = (long )(__x___4 < 0 ? - __x___4 : __x___4); diff_refresh = (u32 )ret___1; best = cmode; } else if (diff == d) { __x___6 = (int )(cmode->refresh - (u32 )mode->refresh); ret___2 = (long )(__x___6 < 0 ? - __x___6 : __x___6); d = (u32 )ret___2; if (diff_refresh > d) { diff_refresh = d; best = cmode; } else { } } else { } pos = pos->next; ldv_32469: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32468; } else { } return ((struct fb_videomode const *)best); } } struct fb_videomode const *fb_match_mode(struct fb_var_screeninfo const *var , struct list_head *head ) { struct list_head *pos ; struct fb_modelist *modelist ; struct fb_videomode *m ; struct fb_videomode mode ; struct list_head const *__mptr ; int tmp ; { { fb_var_to_videomode(& mode, var); pos = head->next; } goto ldv_32482; ldv_32481: { __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; m = & modelist->mode; tmp = fb_mode_is_equal((struct fb_videomode const *)m, (struct fb_videomode const *)(& mode)); } if (tmp != 0) { return ((struct fb_videomode const *)m); } else { } pos = pos->next; ldv_32482: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32481; } else { } return ((struct fb_videomode const *)0); } } int fb_add_videomode(struct fb_videomode const *mode , struct list_head *head ) { struct list_head *pos ; struct fb_modelist *modelist ; struct fb_videomode *m ; int found ; struct list_head const *__mptr ; int tmp ; void *tmp___0 ; { found = 0; pos = head->next; goto ldv_32496; ldv_32495: { __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; m = & modelist->mode; tmp = fb_mode_is_equal((struct fb_videomode const *)m, mode); } if (tmp != 0) { found = 1; goto ldv_32494; } else { } pos = pos->next; ldv_32496: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32495; } else { } ldv_32494: ; if (found == 0) { { tmp___0 = kmalloc(80UL, 208U); modelist = (struct fb_modelist *)tmp___0; } if ((unsigned long )modelist == (unsigned long )((struct fb_modelist *)0)) { return (-12); } else { } { modelist->mode = *mode; list_add(& modelist->list, head); } } else { } return (0); } } void fb_delete_videomode(struct fb_videomode const *mode , struct list_head *head ) { struct list_head *pos ; struct list_head *n ; struct fb_modelist *modelist ; struct fb_videomode *m ; struct list_head const *__mptr ; int tmp ; { pos = head->next; n = pos->next; goto ldv_32508; ldv_32507: { __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; m = & modelist->mode; tmp = fb_mode_is_equal((struct fb_videomode const *)m, mode); } if (tmp != 0) { { list_del(pos); kfree((void const *)pos); } } else { } pos = n; n = pos->next; ldv_32508: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32507; } else { } return; } } void fb_destroy_modelist(struct list_head *head ) { struct list_head *pos ; struct list_head *n ; { pos = head->next; n = pos->next; goto ldv_32516; ldv_32515: { list_del(pos); kfree((void const *)pos); pos = n; n = pos->next; } ldv_32516: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32515; } else { } return; } } static char const __kstrtab_fb_destroy_modelist[20U] = { 'f', 'b', '_', 'd', 'e', 's', 't', 'r', 'o', 'y', '_', 'm', 'o', 'd', 'e', 'l', 'i', 's', 't', '\000'}; struct kernel_symbol const __ksymtab_fb_destroy_modelist ; struct kernel_symbol const __ksymtab_fb_destroy_modelist = {(unsigned long )(& fb_destroy_modelist), (char const *)(& __kstrtab_fb_destroy_modelist)}; void fb_videomode_to_modelist(struct fb_videomode const *modedb___0 , int num , struct list_head *head ) { int i ; int tmp ; { { INIT_LIST_HEAD(head); i = 0; } goto ldv_32532; ldv_32531: { tmp = fb_add_videomode(modedb___0 + (unsigned long )i, head); } if (tmp != 0) { return; } else { } i = i + 1; ldv_32532: ; if (i < num) { goto ldv_32531; } else { } return; } } struct fb_videomode const *fb_find_best_display(struct fb_monspecs const *specs , struct list_head *head ) { struct list_head *pos ; struct fb_modelist *modelist ; struct fb_videomode const *m ; struct fb_videomode const *m1 ; struct fb_videomode const *md ; struct fb_videomode const *best ; int first ; int tmp ; struct list_head const *__mptr ; struct fb_var_screeninfo var ; { m1 = (struct fb_videomode const *)0; md = (struct fb_videomode const *)0; best = (struct fb_videomode const *)0; first = 0; if ((unsigned long )head->prev == (unsigned long )((struct list_head *)0) || (unsigned long )head->next == (unsigned long )((struct list_head *)0)) { goto finished; } else { { tmp = list_empty((struct list_head const *)head); } if (tmp != 0) { goto finished; } else { } } pos = head->next; goto ldv_32550; ldv_32549: __mptr = (struct list_head const *)pos; modelist = (struct fb_modelist *)__mptr; m = (struct fb_videomode const *)(& modelist->mode); if (first == 0) { m1 = m; first = 1; } else { } if (((unsigned int )m->flag & 16U) != 0U) { md = m; goto ldv_32548; } else { } pos = pos->next; ldv_32550: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_32549; } else { } ldv_32548: ; if (((int )specs->misc & 2) != 0) { best = md; goto finished; } else { } if ((unsigned int )((unsigned char )specs->max_x) != 0U && (unsigned int )((unsigned char )specs->max_y) != 0U) { { __memset((void *)(& var), 0, 160UL); var.xres = (__u32 )(((int )specs->max_x * 7200) / 254); var.yres = (__u32 )(((int )specs->max_y * 7200) / 254); m = fb_find_best_mode((struct fb_var_screeninfo const *)(& var), head); } if ((unsigned long )m != (unsigned long )((struct fb_videomode const *)0)) { best = m; goto finished; } else { } } else { } if ((unsigned long )md != (unsigned long )((struct fb_videomode const *)0)) { best = md; goto finished; } else { } best = m1; finished: ; return (best); } } static char const __kstrtab_fb_find_best_display[21U] = { 'f', 'b', '_', 'f', 'i', 'n', 'd', '_', 'b', 'e', 's', 't', '_', 'd', 'i', 's', 'p', 'l', 'a', 'y', '\000'}; struct kernel_symbol const __ksymtab_fb_find_best_display ; struct kernel_symbol const __ksymtab_fb_find_best_display = {(unsigned long )(& fb_find_best_display), (char const *)(& __kstrtab_fb_find_best_display)}; static char const __kstrtab_fb_videomode_to_var[20U] = { 'f', 'b', '_', 'v', 'i', 'd', 'e', 'o', 'm', 'o', 'd', 'e', '_', 't', 'o', '_', 'v', 'a', 'r', '\000'}; struct kernel_symbol const __ksymtab_fb_videomode_to_var ; struct kernel_symbol const __ksymtab_fb_videomode_to_var = {(unsigned long )(& fb_videomode_to_var), (char const *)(& __kstrtab_fb_videomode_to_var)}; static char const __kstrtab_fb_var_to_videomode[20U] = { 'f', 'b', '_', 'v', 'a', 'r', '_', 't', 'o', '_', 'v', 'i', 'd', 'e', 'o', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_var_to_videomode ; struct kernel_symbol const __ksymtab_fb_var_to_videomode = {(unsigned long )(& fb_var_to_videomode), (char const *)(& __kstrtab_fb_var_to_videomode)}; static char const __kstrtab_fb_mode_is_equal[17U] = { 'f', 'b', '_', 'm', 'o', 'd', 'e', '_', 'i', 's', '_', 'e', 'q', 'u', 'a', 'l', '\000'}; struct kernel_symbol const __ksymtab_fb_mode_is_equal ; struct kernel_symbol const __ksymtab_fb_mode_is_equal = {(unsigned long )(& fb_mode_is_equal), (char const *)(& __kstrtab_fb_mode_is_equal)}; static char const __kstrtab_fb_add_videomode[17U] = { 'f', 'b', '_', 'a', 'd', 'd', '_', 'v', 'i', 'd', 'e', 'o', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_add_videomode ; struct kernel_symbol const __ksymtab_fb_add_videomode = {(unsigned long )(& fb_add_videomode), (char const *)(& __kstrtab_fb_add_videomode)}; static char const __kstrtab_fb_match_mode[14U] = { 'f', 'b', '_', 'm', 'a', 't', 'c', 'h', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_match_mode ; struct kernel_symbol const __ksymtab_fb_match_mode = {(unsigned long )(& fb_match_mode), (char const *)(& __kstrtab_fb_match_mode)}; static char const __kstrtab_fb_find_best_mode[18U] = { 'f', 'b', '_', 'f', 'i', 'n', 'd', '_', 'b', 'e', 's', 't', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_find_best_mode ; struct kernel_symbol const __ksymtab_fb_find_best_mode = {(unsigned long )(& fb_find_best_mode), (char const *)(& __kstrtab_fb_find_best_mode)}; static char const __kstrtab_fb_find_nearest_mode[21U] = { 'f', 'b', '_', 'f', 'i', 'n', 'd', '_', 'n', 'e', 'a', 'r', 'e', 's', 't', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_find_nearest_mode ; struct kernel_symbol const __ksymtab_fb_find_nearest_mode = {(unsigned long )(& fb_find_nearest_mode), (char const *)(& __kstrtab_fb_find_nearest_mode)}; static char const __kstrtab_fb_videomode_to_modelist[25U] = { 'f', 'b', '_', 'v', 'i', 'd', 'e', 'o', 'm', 'o', 'd', 'e', '_', 't', 'o', '_', 'm', 'o', 'd', 'e', 'l', 'i', 's', 't', '\000'}; struct kernel_symbol const __ksymtab_fb_videomode_to_modelist ; struct kernel_symbol const __ksymtab_fb_videomode_to_modelist = {(unsigned long )(& fb_videomode_to_modelist), (char const *)(& __kstrtab_fb_videomode_to_modelist)}; static char const __kstrtab_fb_find_mode[13U] = { 'f', 'b', '_', 'f', 'i', 'n', 'd', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_fb_find_mode ; struct kernel_symbol const __ksymtab_fb_find_mode = {(unsigned long )(& fb_find_mode), (char const *)(& __kstrtab_fb_find_mode)}; static char const __kstrtab_fb_find_mode_cvt[17U] = { 'f', 'b', '_', 'f', 'i', 'n', 'd', '_', 'm', 'o', 'd', 'e', '_', 'c', 'v', 't', '\000'}; struct kernel_symbol const __ksymtab_fb_find_mode_cvt ; struct kernel_symbol const __ksymtab_fb_find_mode_cvt = {(unsigned long )(& fb_find_mode_cvt), (char const *)(& __kstrtab_fb_find_mode_cvt)}; __inline static void *kzalloc(size_t size , gfp_t flags ) ; static unsigned char const fb_cvt_vbi_tab[8U] = { 4U, 5U, 6U, 7U, 7U, 8U, 9U, 10U}; static u32 fb_cvt_hperiod(struct fb_cvt_data *cvt ) { u32 num ; u32 den ; { num = 1000000000U / cvt->f_refresh; if ((int )cvt->flags & 1) { num = num - 460000U; den = (cvt->yres / cvt->interlace + cvt->v_margin * 2U) * 2U; } else { num = num - 550000U; den = (((cvt->yres / cvt->interlace + cvt->v_margin * 2U) + cvt->interlace / 2U) + 3U) * 2U; } return ((num / den) * 2U); } } static u32 fb_cvt_ideal_duty_cycle(struct fb_cvt_data *cvt ) { u32 c_prime ; u32 m_prime ; u32 h_period_est ; { c_prime = 7680U; m_prime = 76800U; h_period_est = cvt->hperiod; return ((c_prime * 1000U - (m_prime * h_period_est) / 1000U) / 256U); } } static u32 fb_cvt_hblank(struct fb_cvt_data *cvt ) { u32 hblank ; u32 ideal_duty_cycle ; u32 tmp ; u32 active_pixels ; { hblank = 0U; if ((int )cvt->flags & 1) { hblank = 160U; } else { { tmp = fb_cvt_ideal_duty_cycle(cvt); ideal_duty_cycle = tmp; active_pixels = cvt->active_pixels; } if (ideal_duty_cycle <= 19999U) { hblank = (active_pixels * 20000U) / 80000U; } else { hblank = (active_pixels * ideal_duty_cycle) / (100000U - ideal_duty_cycle); } } hblank = hblank & 4294967280U; return (hblank); } } static u32 fb_cvt_hsync(struct fb_cvt_data *cvt ) { u32 hsync ; { if ((int )cvt->flags & 1) { hsync = 32U; } else { hsync = (cvt->htotal * 8U) / 100U; } hsync = hsync & 4294967288U; return (hsync); } } static u32 fb_cvt_vbi_lines(struct fb_cvt_data *cvt ) { u32 vbi_lines ; u32 min_vbi_lines ; u32 act_vbi_lines ; { if ((int )cvt->flags & 1) { vbi_lines = 460000U / cvt->hperiod + 1U; min_vbi_lines = cvt->vsync + 9U; } else { vbi_lines = 550000U / cvt->hperiod + 4U; min_vbi_lines = cvt->vsync + 9U; } if (vbi_lines < min_vbi_lines) { act_vbi_lines = min_vbi_lines; } else { act_vbi_lines = vbi_lines; } return (act_vbi_lines); } } static u32 fb_cvt_vtotal(struct fb_cvt_data *cvt ) { u32 vtotal ; u32 tmp ; { { vtotal = cvt->yres / cvt->interlace; tmp = fb_cvt_vbi_lines(cvt); vtotal = vtotal + ((cvt->v_margin * 2U + cvt->interlace / 2U) + tmp); vtotal = vtotal | cvt->interlace / 2U; } return (vtotal); } } static u32 fb_cvt_pixclock(struct fb_cvt_data *cvt ) { u32 pixclock ; { if ((int )cvt->flags & 1) { pixclock = ((cvt->f_refresh * cvt->vtotal) * cvt->htotal) / 1000U; } else { pixclock = (cvt->htotal * 1000000U) / cvt->hperiod; } pixclock = pixclock / 250U; pixclock = pixclock * 250U; pixclock = pixclock * 1000U; return (pixclock); } } static u32 fb_cvt_aspect_ratio(struct fb_cvt_data *cvt ) { u32 xres ; u32 yres ; u32 aspect ; { xres = cvt->xres; yres = cvt->yres; aspect = 4294967295U; if (xres == (yres * 4U) / 3U && (yres * 4U) % 3U == 0U) { aspect = 0U; } else if (xres == (yres * 16U) / 9U && (yres * 16U) % 9U == 0U) { aspect = 1U; } else if (xres == (yres * 16U) / 10U && (yres * 16U) % 10U == 0U) { aspect = 2U; } else if (xres == (yres * 5U) / 4U && (yres * 5U & 3U) == 0U) { aspect = 3U; } else if (xres == (yres * 15U) / 9U && (yres * 15U) % 9U == 0U) { aspect = 4U; } else { { printk("\016fbcvt: Aspect ratio not CVT standard\n"); aspect = 7U; cvt->status = 1U; } } return (aspect); } } static void fb_cvt_print_name(struct fb_cvt_data *cvt ) { u32 pixcount ; u32 pixcount_mod ; int cnt ; int offset ; int read ; u8 *buf ; void *tmp ; { { cnt = 255; offset = 0; read = 0; tmp = kzalloc(256UL, 208U); buf = (u8 *)tmp; } if ((unsigned long )buf == (unsigned long )((u8 *)0U)) { return; } else { } { pixcount = (cvt->xres * (cvt->yres / cvt->interlace)) / 1000000U; pixcount_mod = (cvt->xres * (cvt->yres / cvt->interlace)) % 1000000U; pixcount_mod = pixcount_mod / 1000U; read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "fbcvt: %dx%d@%d: CVT Name - ", cvt->xres, cvt->yres, cvt->refresh); offset = offset + read; cnt = cnt - read; } if (cvt->status != 0U) { { snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "Not a CVT standard - %d.%03d Mega Pixel Image\n", pixcount, pixcount_mod); } } else { if (pixcount != 0U) { { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "%d", pixcount); cnt = cnt - read; offset = offset + read; } } else { } { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, ".%03dM", pixcount_mod); cnt = cnt - read; offset = offset + read; } if (cvt->aspect_ratio == 0U) { { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "3"); } } else if (cvt->aspect_ratio == 3U) { { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "4"); } } else if (cvt->aspect_ratio == 1U || cvt->aspect_ratio == 4U) { { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "9"); } } else if (cvt->aspect_ratio == 2U) { { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "A"); } } else { read = 0; } cnt = cnt - read; offset = offset + read; if ((int )cvt->flags & 1) { { read = snprintf((char *)buf + (unsigned long )offset, (size_t )cnt, "-R"); cnt = cnt - read; offset = offset + read; } } else { } } { printk("\016%s\n", buf); kfree((void const *)buf); } return; } } static void fb_cvt_convert_to_mode(struct fb_cvt_data *cvt , struct fb_videomode *mode ) { { mode->refresh = cvt->f_refresh; mode->pixclock = 1000000000U / (cvt->pixclock / 1000U); mode->left_margin = cvt->h_back_porch; mode->right_margin = cvt->h_front_porch; mode->hsync_len = cvt->hsync; mode->upper_margin = cvt->v_back_porch; mode->lower_margin = cvt->v_front_porch; mode->vsync_len = cvt->vsync; mode->sync = mode->sync & 4294967292U; if ((int )cvt->flags & 1) { mode->sync = mode->sync | 1U; } else { mode->sync = mode->sync | 2U; } return; } } int fb_find_mode_cvt(struct fb_videomode *mode , int margins , int rb ) { struct fb_cvt_data cvt ; { { __memset((void *)(& cvt), 0, 92UL); } if (margins != 0) { cvt.flags = cvt.flags | 2U; } else { } if (rb != 0) { cvt.flags = cvt.flags | 1U; } else { } if ((int )mode->vmode & 1) { cvt.flags = cvt.flags | 4U; } else { } cvt.xres = mode->xres; cvt.yres = mode->yres; cvt.refresh = mode->refresh; cvt.f_refresh = cvt.refresh; cvt.interlace = 1U; if ((cvt.xres == 0U || cvt.yres == 0U) || cvt.refresh == 0U) { { printk("\016fbcvt: Invalid input parameters\n"); } return (1); } else { } if (((cvt.refresh != 50U && cvt.refresh != 60U) && cvt.refresh != 70U) && cvt.refresh != 85U) { { printk("\016fbcvt: Refresh rate not CVT standard\n"); cvt.status = 1U; } } else { } cvt.xres = cvt.xres & 4294967288U; if ((cvt.flags & 4U) != 0U) { cvt.interlace = 2U; cvt.f_refresh = cvt.f_refresh * 2U; } else { } if ((int )cvt.flags & 1) { if (cvt.refresh != 60U) { { printk("\016fbcvt: 60Hz refresh rate advised for reduced blanking\n"); cvt.status = 1U; } } else { } } else { } if ((cvt.flags & 2U) != 0U) { cvt.h_margin = (cvt.xres * 18U) / 1000U; cvt.h_margin = cvt.h_margin & 4294967288U; cvt.v_margin = ((cvt.yres / cvt.interlace) * 18U) / 1000U; } else { } { cvt.aspect_ratio = fb_cvt_aspect_ratio(& cvt); cvt.active_pixels = cvt.xres + cvt.h_margin * 2U; cvt.hperiod = fb_cvt_hperiod(& cvt); cvt.vsync = (u32 )fb_cvt_vbi_tab[cvt.aspect_ratio]; cvt.vtotal = fb_cvt_vtotal(& cvt); cvt.hblank = fb_cvt_hblank(& cvt); cvt.htotal = cvt.active_pixels + cvt.hblank; cvt.hsync = fb_cvt_hsync(& cvt); cvt.pixclock = fb_cvt_pixclock(& cvt); cvt.hfreq = cvt.pixclock / cvt.htotal; cvt.h_back_porch = cvt.hblank / 2U + cvt.h_margin; cvt.h_front_porch = ((cvt.hblank - cvt.hsync) - cvt.h_back_porch) + cvt.h_margin * 2U; cvt.v_front_porch = cvt.v_margin + 3U; cvt.v_back_porch = ((cvt.vtotal - cvt.yres / cvt.interlace) - cvt.v_front_porch) - cvt.vsync; fb_cvt_print_name(& cvt); fb_cvt_convert_to_mode(& cvt, mode); } return (0); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_bl_curve_mutex_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_bl_curve_mutex_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_bl_curve_mutex_of_fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_bl_curve_mutex_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_bl_curve_mutex_of_fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_bl_curve_mutex_of_fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_bl_curve_mutex_of_fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_bl_curve_mutex_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_mm_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mm_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mm_lock_of_fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mm_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mm_lock_of_fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mm_lock_of_fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mm_lock_of_fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mm_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_registration_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_registration_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_registration_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_registration_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_registration_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_registration_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_registration_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_update_lock_of_backlight_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bl_curve_mutex_of_fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mm_lock_of_fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_registration_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }