/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef unsigned long uintptr_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct urb; struct device; struct completion; struct usb_device; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; struct gate_struct64 { u16 offset_low ; u16 segment ; unsigned char ist : 3 ; unsigned char zero0 : 5 ; unsigned char type : 5 ; unsigned char dpl : 2 ; unsigned char p : 1 ; u16 offset_middle ; u32 offset_high ; u32 zero1 ; }; typedef struct gate_struct64 gate_desc; struct desc_ptr { unsigned short size ; unsigned long address ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct tss_struct; struct mm_struct; struct cpumask; struct pv_cpu_ops { unsigned long (*get_debugreg)(int ) ; void (*set_debugreg)(int , unsigned long ) ; void (*clts)(void) ; unsigned long (*read_cr0)(void) ; void (*write_cr0)(unsigned long ) ; unsigned long (*read_cr4_safe)(void) ; unsigned long (*read_cr4)(void) ; void (*write_cr4)(unsigned long ) ; unsigned long (*read_cr8)(void) ; void (*write_cr8)(unsigned long ) ; void (*load_tr_desc)(void) ; void (*load_gdt)(struct desc_ptr const * ) ; void (*load_idt)(struct desc_ptr const * ) ; void (*store_idt)(struct desc_ptr * ) ; void (*set_ldt)(void const * , unsigned int ) ; unsigned long (*store_tr)(void) ; void (*load_tls)(struct thread_struct * , unsigned int ) ; void (*load_gs_index)(unsigned int ) ; void (*write_ldt_entry)(struct desc_struct * , int , void const * ) ; void (*write_gdt_entry)(struct desc_struct * , int , void const * , int ) ; void (*write_idt_entry)(gate_desc * , int , gate_desc const * ) ; void (*alloc_ldt)(struct desc_struct * , unsigned int ) ; void (*free_ldt)(struct desc_struct * , unsigned int ) ; void (*load_sp0)(struct tss_struct * , struct thread_struct * ) ; void (*set_iopl_mask)(unsigned int ) ; void (*wbinvd)(void) ; void (*io_delay)(void) ; void (*cpuid)(unsigned int * , unsigned int * , unsigned int * , unsigned int * ) ; u64 (*read_msr)(unsigned int , int * ) ; int (*write_msr)(unsigned int , unsigned int , unsigned int ) ; u64 (*read_tsc)(void) ; u64 (*read_pmc)(int ) ; unsigned long long (*read_tscp)(unsigned int * ) ; void (*irq_enable_sysexit)(void) ; void (*usergs_sysret64)(void) ; void (*usergs_sysret32)(void) ; void (*iret)(void) ; void (*swapgs)(void) ; void (*start_context_switch)(struct task_struct * ) ; void (*end_context_switch)(struct task_struct * ) ; }; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long stack[64U] ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; typedef unsigned long long cycles_t; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; enum iio_chan_type { IIO_VOLTAGE = 0, IIO_CURRENT = 1, IIO_POWER = 2, IIO_ACCEL = 3, IIO_ANGL_VEL = 4, IIO_MAGN = 5, IIO_LIGHT = 6, IIO_INTENSITY = 7, IIO_PROXIMITY = 8, IIO_TEMP = 9, IIO_INCLI = 10, IIO_ROT = 11, IIO_ANGL = 12, IIO_TIMESTAMP = 13, IIO_CAPACITANCE = 14, IIO_ALTVOLTAGE = 15, IIO_CCT = 16, IIO_PRESSURE = 17, IIO_HUMIDITYRELATIVE = 18, IIO_ACTIVITY = 19, IIO_STEPS = 20, IIO_ENERGY = 21, IIO_DISTANCE = 22, IIO_VELOCITY = 23 } ; enum iio_event_type { IIO_EV_TYPE_THRESH = 0, IIO_EV_TYPE_MAG = 1, IIO_EV_TYPE_ROC = 2, IIO_EV_TYPE_THRESH_ADAPTIVE = 3, IIO_EV_TYPE_MAG_ADAPTIVE = 4, IIO_EV_TYPE_CHANGE = 5 } ; enum iio_event_info { IIO_EV_INFO_ENABLE = 0, IIO_EV_INFO_VALUE = 1, IIO_EV_INFO_HYSTERESIS = 2, IIO_EV_INFO_PERIOD = 3 } ; enum iio_event_direction { IIO_EV_DIR_EITHER = 0, IIO_EV_DIR_RISING = 1, IIO_EV_DIR_FALLING = 2, IIO_EV_DIR_NONE = 3 } ; typedef unsigned long kernel_ulong_t; struct usb_device_id { __u16 match_flags ; __u16 idVendor ; __u16 idProduct ; __u16 bcdDevice_lo ; __u16 bcdDevice_hi ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 bInterfaceNumber ; kernel_ulong_t driver_info ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct of_phandle_args { struct device_node *np ; int args_count ; uint32_t args[16U] ; }; enum iio_shared_by { IIO_SEPARATE = 0, IIO_SHARED_BY_TYPE = 1, IIO_SHARED_BY_DIR = 2, IIO_SHARED_BY_ALL = 3 } ; enum iio_endian { IIO_CPU = 0, IIO_BE = 1, IIO_LE = 2 } ; struct iio_chan_spec; struct iio_dev; struct iio_chan_spec_ext_info { char const *name ; enum iio_shared_by shared ; ssize_t (*read)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char * ) ; ssize_t (*write)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char const * , size_t ) ; uintptr_t private ; }; struct iio_event_spec { enum iio_event_type type ; enum iio_event_direction dir ; unsigned long mask_separate ; unsigned long mask_shared_by_type ; unsigned long mask_shared_by_dir ; unsigned long mask_shared_by_all ; }; struct __anonstruct_scan_type_145 { char sign ; u8 realbits ; u8 storagebits ; u8 shift ; u8 repeat ; enum iio_endian endianness ; }; struct iio_chan_spec { enum iio_chan_type type ; int channel ; int channel2 ; unsigned long address ; int scan_index ; struct __anonstruct_scan_type_145 scan_type ; long info_mask_separate ; long info_mask_shared_by_type ; long info_mask_shared_by_dir ; long info_mask_shared_by_all ; struct iio_event_spec const *event_spec ; unsigned int num_event_specs ; struct iio_chan_spec_ext_info const *ext_info ; char const *extend_name ; char const *datasheet_name ; unsigned char modified : 1 ; unsigned char indexed : 1 ; unsigned char output : 1 ; unsigned char differential : 1 ; }; struct iio_trigger; struct iio_info { struct module *driver_module ; struct attribute_group *event_attrs ; struct attribute_group const *attrs ; int (*read_raw)(struct iio_dev * , struct iio_chan_spec const * , int * , int * , long ) ; int (*read_raw_multi)(struct iio_dev * , struct iio_chan_spec const * , int , int * , int * , long ) ; int (*write_raw)(struct iio_dev * , struct iio_chan_spec const * , int , int , long ) ; int (*write_raw_get_fmt)(struct iio_dev * , struct iio_chan_spec const * , long ) ; int (*read_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction ) ; int (*write_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , int ) ; int (*read_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int * , int * ) ; int (*write_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int , int ) ; int (*validate_trigger)(struct iio_dev * , struct iio_trigger * ) ; int (*update_scan_mode)(struct iio_dev * , unsigned long const * ) ; int (*debugfs_reg_access)(struct iio_dev * , unsigned int , unsigned int , unsigned int * ) ; int (*of_xlate)(struct iio_dev * , struct of_phandle_args const * ) ; }; struct iio_buffer_setup_ops { int (*preenable)(struct iio_dev * ) ; int (*postenable)(struct iio_dev * ) ; int (*predisable)(struct iio_dev * ) ; int (*postdisable)(struct iio_dev * ) ; bool (*validate_scan_mask)(struct iio_dev * , unsigned long const * ) ; }; struct iio_event_interface; struct iio_buffer; struct iio_poll_func; struct iio_dev { int id ; int modes ; int currentmode ; struct device dev ; struct iio_event_interface *event_interface ; struct iio_buffer *buffer ; struct list_head buffer_list ; int scan_bytes ; struct mutex mlock ; unsigned long const *available_scan_masks ; unsigned int masklength ; unsigned long const *active_scan_mask ; bool scan_timestamp ; unsigned int scan_index_timestamp ; struct iio_trigger *trig ; struct iio_poll_func *pollfunc ; struct iio_chan_spec const *channels ; int num_channels ; struct list_head channel_attr_list ; struct attribute_group chan_attr_group ; char const *name ; struct iio_info const *info ; struct mutex info_exist_lock ; struct iio_buffer_setup_ops const *setup_ops ; struct cdev chrdev ; struct attribute_group const *groups[7U] ; int groupcounter ; unsigned long flags ; struct dentry *debugfs_dentry ; unsigned int cached_reg_addr ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_151 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField35 ; }; struct lockref { union __anonunion____missing_field_name_150 __annonCompField36 ; }; struct vfsmount; struct __anonstruct____missing_field_name_153 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_152 { struct __anonstruct____missing_field_name_153 __annonCompField37 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_152 __annonCompField38 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_154 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_154 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct mem_cgroup; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_156 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_155 { struct __anonstruct____missing_field_name_156 __annonCompField39 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_155 __annonCompField40 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct backing_dev_info; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_159 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_159 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_160 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_160 __annonCompField42 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_163 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_164 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_165 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_163 __annonCompField43 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_164 __annonCompField44 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_165 __annonCompField45 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_166 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_166 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_168 { struct list_head link ; int state ; }; union __anonunion_fl_u_167 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_168 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_167 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_174 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_175 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_173 { struct __anonstruct____missing_field_name_174 __annonCompField48 ; struct __anonstruct____missing_field_name_175 __annonCompField49 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_173 __annonCompField50 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_176 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_178 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_182 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_181 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_182 __annonCompField53 ; int units ; }; struct __anonstruct____missing_field_name_180 { union __anonunion____missing_field_name_181 __annonCompField54 ; atomic_t _count ; }; union __anonunion____missing_field_name_179 { unsigned long counters ; struct __anonstruct____missing_field_name_180 __annonCompField55 ; unsigned int active ; }; struct __anonstruct____missing_field_name_177 { union __anonunion____missing_field_name_178 __annonCompField52 ; union __anonunion____missing_field_name_179 __annonCompField56 ; }; struct __anonstruct____missing_field_name_184 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_185 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_183 { struct list_head lru ; struct __anonstruct____missing_field_name_184 __annonCompField58 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_185 __annonCompField59 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_186 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_176 __annonCompField51 ; struct __anonstruct____missing_field_name_177 __annonCompField57 ; union __anonunion____missing_field_name_183 __annonCompField60 ; union __anonunion____missing_field_name_186 __annonCompField61 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_187 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_187 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_189 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_189 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_191 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_192 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_193 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_194 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_196 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_195 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_196 _addr_bnd ; }; struct __anonstruct__sigpoll_197 { long _band ; int _fd ; }; struct __anonstruct__sigsys_198 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_190 { int _pad[28U] ; struct __anonstruct__kill_191 _kill ; struct __anonstruct__timer_192 _timer ; struct __anonstruct__rt_193 _rt ; struct __anonstruct__sigchld_194 _sigchld ; struct __anonstruct__sigfault_195 _sigfault ; struct __anonstruct__sigpoll_197 _sigpoll ; struct __anonstruct__sigsys_198 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_190 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_203 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_204 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_206 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_205 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_206 __annonCompField66 ; }; union __anonunion_type_data_207 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_209 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_208 { union __anonunion_payload_209 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_203 __annonCompField64 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_204 __annonCompField65 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_205 __annonCompField67 ; union __anonunion_type_data_207 type_data ; union __anonunion____missing_field_name_208 __annonCompField68 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct usb_driver; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_dynids { spinlock_t lock ; struct list_head list ; }; struct usbdrv_wrap { struct device_driver driver ; int for_devices ; }; struct usb_driver { char const *name ; int (*probe)(struct usb_interface * , struct usb_device_id const * ) ; void (*disconnect)(struct usb_interface * ) ; int (*unlocked_ioctl)(struct usb_interface * , unsigned int , void * ) ; int (*suspend)(struct usb_interface * , pm_message_t ) ; int (*resume)(struct usb_interface * ) ; int (*reset_resume)(struct usb_interface * ) ; int (*pre_reset)(struct usb_interface * ) ; int (*post_reset)(struct usb_interface * ) ; struct usb_device_id const *id_table ; struct usb_dynids dynids ; struct usbdrv_wrap drvwrap ; unsigned char no_dynamic_id : 1 ; unsigned char supports_autosuspend : 1 ; unsigned char disable_hub_initiated_lpm : 1 ; unsigned char soft_unbind : 1 ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct scatterlist; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_216 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_216 __annonCompField70 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct fb_fix_screeninfo { char id[16U] ; unsigned long smem_start ; __u32 smem_len ; __u32 type ; __u32 type_aux ; __u32 visual ; __u16 xpanstep ; __u16 ypanstep ; __u16 ywrapstep ; __u32 line_length ; unsigned long mmio_start ; __u32 mmio_len ; __u32 accel ; __u16 capabilities ; __u16 reserved[2U] ; }; struct fb_bitfield { __u32 offset ; __u32 length ; __u32 msb_right ; }; struct fb_var_screeninfo { __u32 xres ; __u32 yres ; __u32 xres_virtual ; __u32 yres_virtual ; __u32 xoffset ; __u32 yoffset ; __u32 bits_per_pixel ; __u32 grayscale ; struct fb_bitfield red ; struct fb_bitfield green ; struct fb_bitfield blue ; struct fb_bitfield transp ; __u32 nonstd ; __u32 activate ; __u32 height ; __u32 width ; __u32 accel_flags ; __u32 pixclock ; __u32 left_margin ; __u32 right_margin ; __u32 upper_margin ; __u32 lower_margin ; __u32 hsync_len ; __u32 vsync_len ; __u32 sync ; __u32 vmode ; __u32 rotate ; __u32 colorspace ; __u32 reserved[4U] ; }; struct fb_cmap { __u32 start ; __u32 len ; __u16 *red ; __u16 *green ; __u16 *blue ; __u16 *transp ; }; struct fb_copyarea { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 sx ; __u32 sy ; }; struct fb_fillrect { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 color ; __u32 rop ; }; struct fb_image { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 fg_color ; __u32 bg_color ; __u8 depth ; char const *data ; struct fb_cmap cmap ; }; struct fbcurpos { __u16 x ; __u16 y ; }; struct fb_cursor { __u16 set ; __u16 enable ; __u16 rop ; char const *mask ; struct fbcurpos hot ; struct fb_image image ; }; enum backlight_type { BACKLIGHT_RAW = 1, BACKLIGHT_PLATFORM = 2, BACKLIGHT_FIRMWARE = 3, BACKLIGHT_TYPE_MAX = 4 } ; struct backlight_device; struct fb_info; struct backlight_ops { unsigned int options ; int (*update_status)(struct backlight_device * ) ; int (*get_brightness)(struct backlight_device * ) ; int (*check_fb)(struct backlight_device * , struct fb_info * ) ; }; struct backlight_properties { int brightness ; int max_brightness ; int power ; int fb_blank ; enum backlight_type type ; unsigned int state ; }; struct backlight_device { struct backlight_properties props ; struct mutex update_lock ; struct mutex ops_lock ; struct backlight_ops const *ops ; struct notifier_block fb_notif ; struct list_head entry ; struct device dev ; bool fb_bl_on[32U] ; int use_count ; }; struct fb_chroma { __u32 redx ; __u32 greenx ; __u32 bluex ; __u32 whitex ; __u32 redy ; __u32 greeny ; __u32 bluey ; __u32 whitey ; }; struct fb_videomode; struct fb_monspecs { struct fb_chroma chroma ; struct fb_videomode *modedb ; __u8 manufacturer[4U] ; __u8 monitor[14U] ; __u8 serial_no[14U] ; __u8 ascii[14U] ; __u32 modedb_len ; __u32 model ; __u32 serial ; __u32 year ; __u32 week ; __u32 hfmin ; __u32 hfmax ; __u32 dclkmin ; __u32 dclkmax ; __u16 input ; __u16 dpms ; __u16 signal ; __u16 vfmin ; __u16 vfmax ; __u16 gamma ; unsigned char gtf : 1 ; __u16 misc ; __u8 version ; __u8 revision ; __u8 max_x ; __u8 max_y ; }; struct fb_blit_caps { u32 x ; u32 y ; u32 len ; u32 flags ; }; struct fb_pixmap { u8 *addr ; u32 size ; u32 offset ; u32 buf_align ; u32 scan_align ; u32 access_align ; u32 flags ; u32 blit_x ; u32 blit_y ; void (*writeio)(struct fb_info * , void * , void * , unsigned int ) ; void (*readio)(struct fb_info * , void * , void * , unsigned int ) ; }; struct fb_deferred_io { unsigned long delay ; struct mutex lock ; struct list_head pagelist ; void (*first_io)(struct fb_info * ) ; void (*deferred_io)(struct fb_info * , struct list_head * ) ; }; struct fb_ops { struct module *owner ; int (*fb_open)(struct fb_info * , int ) ; int (*fb_release)(struct fb_info * , int ) ; ssize_t (*fb_read)(struct fb_info * , char * , size_t , loff_t * ) ; ssize_t (*fb_write)(struct fb_info * , char const * , size_t , loff_t * ) ; int (*fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; int (*fb_set_par)(struct fb_info * ) ; int (*fb_setcolreg)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) ; int (*fb_setcmap)(struct fb_cmap * , struct fb_info * ) ; int (*fb_blank)(int , struct fb_info * ) ; int (*fb_pan_display)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*fb_fillrect)(struct fb_info * , struct fb_fillrect const * ) ; void (*fb_copyarea)(struct fb_info * , struct fb_copyarea const * ) ; void (*fb_imageblit)(struct fb_info * , struct fb_image const * ) ; int (*fb_cursor)(struct fb_info * , struct fb_cursor * ) ; void (*fb_rotate)(struct fb_info * , int ) ; int (*fb_sync)(struct fb_info * ) ; int (*fb_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_compat_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_mmap)(struct fb_info * , struct vm_area_struct * ) ; void (*fb_get_caps)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) ; void (*fb_destroy)(struct fb_info * ) ; int (*fb_debug_enter)(struct fb_info * ) ; int (*fb_debug_leave)(struct fb_info * ) ; }; struct fb_tilemap { __u32 width ; __u32 height ; __u32 depth ; __u32 length ; __u8 const *data ; }; struct fb_tilerect { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 index ; __u32 fg ; __u32 bg ; __u32 rop ; }; struct fb_tilearea { __u32 sx ; __u32 sy ; __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; }; struct fb_tileblit { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 fg ; __u32 bg ; __u32 length ; __u32 *indices ; }; struct fb_tilecursor { __u32 sx ; __u32 sy ; __u32 mode ; __u32 shape ; __u32 fg ; __u32 bg ; }; struct fb_tile_ops { void (*fb_settile)(struct fb_info * , struct fb_tilemap * ) ; void (*fb_tilecopy)(struct fb_info * , struct fb_tilearea * ) ; void (*fb_tilefill)(struct fb_info * , struct fb_tilerect * ) ; void (*fb_tileblit)(struct fb_info * , struct fb_tileblit * ) ; void (*fb_tilecursor)(struct fb_info * , struct fb_tilecursor * ) ; int (*fb_get_tilemax)(struct fb_info * ) ; }; struct aperture { resource_size_t base ; resource_size_t size ; }; struct apertures_struct { unsigned int count ; struct aperture ranges[0U] ; }; struct fb_info { atomic_t count ; int node ; int flags ; struct mutex lock ; struct mutex mm_lock ; struct fb_var_screeninfo var ; struct fb_fix_screeninfo fix ; struct fb_monspecs monspecs ; struct work_struct queue ; struct fb_pixmap pixmap ; struct fb_pixmap sprite ; struct fb_cmap cmap ; struct list_head modelist ; struct fb_videomode *mode ; struct backlight_device *bl_dev ; struct mutex bl_curve_mutex ; u8 bl_curve[128U] ; struct delayed_work deferred_work ; struct fb_deferred_io *fbdefio ; struct fb_ops *fbops ; struct device *device ; struct device *dev ; int class_flag ; struct fb_tile_ops *tileops ; char *screen_base ; unsigned long screen_size ; void *pseudo_palette ; u32 state ; void *fbcon_par ; void *par ; struct apertures_struct *apertures ; bool skip_vt_switch ; }; struct fb_videomode { char const *name ; u32 refresh ; u32 xres ; u32 yres ; u32 pixclock ; u32 left_margin ; u32 right_margin ; u32 upper_margin ; u32 lower_margin ; u32 hsync_len ; u32 vsync_len ; u32 sync ; u32 vmode ; u32 flag ; }; struct dloarea { int x ; int y ; int w ; int h ; int x2 ; int y2 ; }; struct dlfb_data; struct urb_node { struct list_head entry ; struct dlfb_data *dev ; struct delayed_work release_urb_work ; struct urb *urb ; }; struct urb_list { struct list_head list ; spinlock_t lock ; struct semaphore limit_sem ; int available ; int count ; size_t size ; }; struct dlfb_data { struct usb_device *udev ; struct device *gdev ; struct fb_info *info ; struct urb_list urbs ; struct kref kref ; char *backing_buffer ; int fb_count ; bool virtualized ; struct delayed_work init_framebuffer_work ; struct delayed_work free_framebuffer_work ; atomic_t usb_active ; atomic_t lost_pixels ; char *edid ; size_t edid_size ; int sku_pixel_limit ; int base16 ; int base8 ; u32 pseudo_palette[256U] ; int blank_mode ; atomic_t bytes_rendered ; atomic_t bytes_identical ; atomic_t bytes_sent ; atomic_t cpu_kcycles_used ; }; struct ldv_struct_EMGentry_14 { int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_5 { struct fb_info *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_6 { struct timer_list *arg0 ; int signal_pending ; }; struct ldv_struct_usb_instance_8 { struct usb_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } long ldv_is_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) ; int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) ; int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_121(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_118(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_122(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_123(int retval ) ; int ldv_pre_usb_register_driver(void) ; static void ldv_ldv_check_final_state_119(void) ; static void ldv_ldv_check_final_state_120(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_cpu_ops pv_cpu_ops ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u16 __swab16p(__u16 const *p ) { __u16 tmp ; { { tmp = __fswab16((int )*p); } return (tmp); } } __inline static __be16 __cpu_to_be16p(__u16 const *p ) { __u16 tmp ; { { tmp = __swab16p(p); } return (tmp); } } extern int printk(char const * , ...) ; extern void might_fault(void) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static u64 paravirt_read_tsc(void) { u64 __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_cpu_ops.read_tsc == (unsigned long )((u64 (*)(void))0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (179), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c6;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c5\n .byte 772b-771b\n .short %c7\n.popsection\n": "=D" (__edi), "=S" (__esi), "=d" (__edx), "=c" (__ecx), "=a" (__eax): [paravirt_typenum] "i" (34UL), [paravirt_opptr] "i" (& pv_cpu_ops.read_tsc), [paravirt_clobber] "i" (511): "memory", "cc", "r8", "r9", "r10", "r11"); __ret = (unsigned long long )__eax; return (__ret); } } __inline static void prefetchw(void const *x ) { { __asm__ volatile ("661:\n\tprefetcht0 (%1)\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 1*32+31)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\tprefetchw (%1)\n6641:\n\t.popsection": : "i" (0), "r" (x)); return; } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_add(int i , atomic_t *v ) ; __inline static int atomic_sub_and_test(int i , atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_urb_list(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_urb_list(void) ; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void kref_init(struct kref *kref ) { { { atomic_set(& kref->refcount, 1); } return; } } __inline static void kref_get(struct kref *kref ) { bool __warned ; int __ret_warn_once ; int tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { tmp = atomic_add_return(1, & kref->refcount); __ret_warn_once = tmp <= 1; tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { { __ret_warn_on = ! __warned; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("include/linux/kref.h", 47); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return; } } __inline static int kref_sub(struct kref *kref , unsigned int count , void (*release)(struct kref * ) ) { int __ret_warn_on ; long tmp ; int tmp___0 ; { { __ret_warn_on = (unsigned long )release == (unsigned long )((void (*)(struct kref * ))0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/kref.h", 71); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___0 = atomic_sub_and_test((int )count, & kref->refcount); } if (tmp___0 != 0) { { (*release)(kref); } return (1); } else { } return (0); } } __inline static int kref_put(struct kref *kref , void (*release)(struct kref * ) ) { int tmp ; { { tmp = kref_sub(kref, 1U, release); } return (tmp); } } __inline static cycles_t get_cycles(void) { unsigned long long ret ; { { ret = 0ULL; ret = paravirt_read_tsc(); } return (ret); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } static void *ldv_vmalloc_99(unsigned long ldv_func_arg1 ) ; static void *ldv_vzalloc_100(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; extern int device_create_bin_file(struct device * , struct bin_attribute const * ) ; extern void device_remove_bin_file(struct device * , struct bin_attribute const * ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern int down_interruptible(struct semaphore * ) ; extern int down_timeout(struct semaphore * , long ) ; extern void up(struct semaphore * ) ; __inline static void *usb_get_intfdata(struct usb_interface *intf ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& intf->dev)); } return (tmp); } } __inline static void usb_set_intfdata(struct usb_interface *intf , void *data ) { { { dev_set_drvdata(& intf->dev, data); } return; } } extern int __usb_get_extra_descriptor(char * , unsigned int , unsigned char , void ** ) ; __inline static struct usb_device *interface_to_usbdev(struct usb_interface *intf ) { struct device const *__mptr ; { __mptr = (struct device const *)intf->dev.parent; return ((struct usb_device *)__mptr + 0xffffffffffffff70UL); } } extern int usb_register_driver(struct usb_driver * , struct module * , char const * ) ; static int ldv_usb_register_driver_104(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void usb_deregister(struct usb_driver * ) ; static void ldv_usb_deregister_105(struct usb_driver *ldv_func_arg1 ) ; __inline static void usb_fill_bulk_urb(struct urb *urb , struct usb_device *dev , unsigned int pipe , void *transfer_buffer , int buffer_length , void (*complete_fn)(struct urb * ) , void *context ) { { urb->dev = dev; urb->pipe = pipe; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = (u32 )buffer_length; urb->complete = complete_fn; urb->context = context; return; } } static struct urb *ldv_usb_alloc_urb_112(int ldv_func_arg1 , gfp_t flags ) ; static void ldv_usb_free_urb_111(struct urb *urb ) ; static void ldv_usb_free_urb_114(struct urb *urb ) ; static int ldv_usb_submit_urb_117(struct urb *ldv_func_arg1 , gfp_t flags ) ; static void *ldv_usb_alloc_coherent_113(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) ; static void ldv_usb_free_coherent_110(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) ; extern int usb_control_msg(struct usb_device * , unsigned int , __u8 , __u8 , __u16 , __u16 , void * , __u16 , int ) ; extern int usb_get_descriptor(struct usb_device * , unsigned char , unsigned char , void * , int ) ; __inline static unsigned int __create_pipe(struct usb_device *dev , unsigned int endpoint ) { { return ((unsigned int )(dev->devnum << 8) | (endpoint << 15)); } } extern unsigned long vmalloc_to_pfn(void const * ) ; extern int remap_pfn_range(struct vm_area_struct * , unsigned long , unsigned long , unsigned long , pgprot_t ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void sys_fillrect(struct fb_info * , struct fb_fillrect const * ) ; extern void sys_copyarea(struct fb_info * , struct fb_copyarea const * ) ; extern void sys_imageblit(struct fb_info * , struct fb_image const * ) ; extern ssize_t fb_sys_read(struct fb_info * , char * , size_t , loff_t * ) ; extern ssize_t fb_sys_write(struct fb_info * , char const * , size_t , loff_t * ) ; extern int register_framebuffer(struct fb_info * ) ; static int ldv_register_framebuffer_103(struct fb_info *ldv_func_arg1 ) ; extern int unregister_framebuffer(struct fb_info * ) ; static int ldv_unregister_framebuffer_98(struct fb_info *ldv_func_arg1 ) ; extern int unlink_framebuffer(struct fb_info * ) ; extern void fb_deferred_io_init(struct fb_info * ) ; extern void fb_deferred_io_cleanup(struct fb_info * ) ; extern struct fb_info *framebuffer_alloc(size_t , struct device * ) ; extern void framebuffer_release(struct fb_info * ) ; extern void fb_edid_to_monspecs(unsigned char * , struct fb_monspecs * ) ; extern void fb_destroy_modedb(struct fb_videomode * ) ; extern void fb_var_to_videomode(struct fb_videomode * , struct fb_var_screeninfo const * ) ; extern void fb_videomode_to_var(struct fb_var_screeninfo * , struct fb_videomode const * ) ; extern int fb_add_videomode(struct fb_videomode const * , struct list_head * ) ; extern struct fb_videomode const *fb_find_nearest_mode(struct fb_videomode const * , struct list_head * ) ; extern void fb_destroy_modelist(struct list_head * ) ; extern struct fb_videomode const *fb_find_best_display(struct fb_monspecs const * , struct list_head * ) ; extern int fb_alloc_cmap(struct fb_cmap * , int , int ) ; extern void fb_dealloc_cmap(struct fb_cmap * ) ; extern struct fb_videomode const vesa_modes[] ; __inline static void prefetch_range(void *addr , size_t len ) { { return; } } static struct fb_fix_screeninfo dlfb_fix = {{'u', 'd', 'l', 'f', 'b', '\000'}, 0UL, 0U, 0U, 0U, 2U, 0U, 0U, 0U, 0U, 0UL, 0U, 0U, (unsigned short)0, {(unsigned short)0, (unsigned short)0}}; static unsigned int const udlfb_info_flags = 264069U; static struct usb_device_id id_table[2U] = { {897U, 6121U, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 255U, 0U, 0U, (unsigned char)0, 0UL}}; struct usb_device_id const __mod_usb__id_table_device_table[2U] ; static bool console = 1; static bool fb_defio = 1; static bool shadow = 1; static int pixel_limit ; static void dlfb_urb_completion(struct urb *urb ) ; static struct urb *dlfb_get_urb(struct dlfb_data *dev ) ; static int dlfb_submit_urb(struct dlfb_data *dev , struct urb *urb , size_t len ) ; static int dlfb_alloc_urb_list(struct dlfb_data *dev , int count , size_t size ) ; static void dlfb_free_urb_list(struct dlfb_data *dev ) ; static char *dlfb_set_register(char *buf , u8 reg , u8 val ) { char *tmp ; char *tmp___0 ; char *tmp___1 ; char *tmp___2 ; { tmp = buf; buf = buf + 1; *tmp = -81; tmp___0 = buf; buf = buf + 1; *tmp___0 = 32; tmp___1 = buf; buf = buf + 1; *tmp___1 = (char )reg; tmp___2 = buf; buf = buf + 1; *tmp___2 = (char )val; return (buf); } } static char *dlfb_vidreg_lock(char *buf ) { char *tmp ; { { tmp = dlfb_set_register(buf, 255, 0); } return (tmp); } } static char *dlfb_vidreg_unlock(char *buf ) { char *tmp ; { { tmp = dlfb_set_register(buf, 255, 255); } return (tmp); } } static char *dlfb_blanking(char *buf , int fb_blank___0 ) { u8 reg ; { { if (fb_blank___0 == 4) { goto case_4; } else { } if (fb_blank___0 == 3) { goto case_3; } else { } if (fb_blank___0 == 2) { goto case_2; } else { } if (fb_blank___0 == 1) { goto case_1; } else { } goto switch_default; case_4: /* CIL Label */ reg = 7U; goto ldv_33748; case_3: /* CIL Label */ reg = 5U; goto ldv_33748; case_2: /* CIL Label */ reg = 3U; goto ldv_33748; case_1: /* CIL Label */ reg = 1U; goto ldv_33748; switch_default: /* CIL Label */ reg = 0U; switch_break: /* CIL Label */ ; } ldv_33748: { buf = dlfb_set_register(buf, 31, (int )reg); } return (buf); } } static char *dlfb_set_color_depth(char *buf , u8 selection ) { char *tmp ; { { tmp = dlfb_set_register(buf, 0, (int )selection); } return (tmp); } } static char *dlfb_set_base16bpp(char *wrptr , u32 base ) { char *tmp ; { { wrptr = dlfb_set_register(wrptr, 32, (int )((u8 )(base >> 16))); wrptr = dlfb_set_register(wrptr, 33, (int )((u8 )(base >> 8))); tmp = dlfb_set_register(wrptr, 34, (int )((u8 )base)); } return (tmp); } } static char *dlfb_set_base8bpp(char *wrptr , u32 base ) { char *tmp ; { { wrptr = dlfb_set_register(wrptr, 38, (int )((u8 )(base >> 16))); wrptr = dlfb_set_register(wrptr, 39, (int )((u8 )(base >> 8))); tmp = dlfb_set_register(wrptr, 40, (int )((u8 )base)); } return (tmp); } } static char *dlfb_set_register_16(char *wrptr , u8 reg , u16 value ) { char *tmp ; { { wrptr = dlfb_set_register(wrptr, (int )reg, (int )((u8 )((int )value >> 8))); tmp = dlfb_set_register(wrptr, (int )((unsigned int )reg + 1U), (int )((u8 )value)); } return (tmp); } } static char *dlfb_set_register_16be(char *wrptr , u8 reg , u16 value ) { char *tmp ; { { wrptr = dlfb_set_register(wrptr, (int )reg, (int )((u8 )value)); tmp = dlfb_set_register(wrptr, (int )((unsigned int )reg + 1U), (int )((u8 )((int )value >> 8))); } return (tmp); } } static u16 dlfb_lfsr16(u16 actual_count ) { u32 lv ; u16 tmp ; { lv = 65535U; goto ldv_33780; ldv_33779: lv = ((lv << 1) | (((((lv >> 15) ^ (lv >> 4)) ^ (lv >> 2)) ^ (lv >> 1)) & 1U)) & 65535U; ldv_33780: tmp = actual_count; actual_count = (u16 )((int )actual_count - 1); if ((unsigned int )tmp != 0U) { goto ldv_33779; } else { } return ((u16 )lv); } } static char *dlfb_set_register_lfsr16(char *wrptr , u8 reg , u16 value ) { u16 tmp ; char *tmp___0 ; { { tmp = dlfb_lfsr16((int )value); tmp___0 = dlfb_set_register_16(wrptr, (int )reg, (int )tmp); } return (tmp___0); } } static char *dlfb_set_vid_cmds(char *wrptr , struct fb_var_screeninfo *var ) { u16 xds ; u16 yds ; u16 xde ; u16 yde ; u16 yec ; { { xds = (int )((u16 )var->left_margin) + (int )((u16 )var->hsync_len); wrptr = dlfb_set_register_lfsr16(wrptr, 1, (int )xds); xde = (int )xds + (int )((u16 )var->xres); wrptr = dlfb_set_register_lfsr16(wrptr, 3, (int )xde); yds = (int )((u16 )var->upper_margin) + (int )((u16 )var->vsync_len); wrptr = dlfb_set_register_lfsr16(wrptr, 5, (int )yds); yde = (int )yds + (int )((u16 )var->yres); wrptr = dlfb_set_register_lfsr16(wrptr, 7, (int )yde); wrptr = dlfb_set_register_lfsr16(wrptr, 9, (int )((unsigned int )((int )xde + (int )((u16 )var->right_margin)) - 1U)); wrptr = dlfb_set_register_lfsr16(wrptr, 11, 1); wrptr = dlfb_set_register_lfsr16(wrptr, 13, (int )((unsigned int )((u16 )var->hsync_len) + 1U)); wrptr = dlfb_set_register_16(wrptr, 15, (int )((u16 )var->xres)); yec = (((int )((u16 )var->yres) + (int )((u16 )var->upper_margin)) + (int )((u16 )var->lower_margin)) + (int )((u16 )var->vsync_len); wrptr = dlfb_set_register_lfsr16(wrptr, 17, (int )yec); wrptr = dlfb_set_register_lfsr16(wrptr, 19, 0); wrptr = dlfb_set_register_lfsr16(wrptr, 21, (int )((u16 )var->vsync_len)); wrptr = dlfb_set_register_16(wrptr, 23, (int )((u16 )var->yres)); wrptr = dlfb_set_register_16be(wrptr, 27, (int )((u16 )(200000000U / var->pixclock))); } return (wrptr); } } static int dlfb_set_video_mode(struct dlfb_data *dev , struct fb_var_screeninfo *var ) { char *buf ; char *wrptr ; int retval ; int writesize ; struct urb *urb ; int tmp ; { { retval = 0; tmp = atomic_read((atomic_t const *)(& dev->usb_active)); } if (tmp == 0) { return (-1); } else { } { urb = dlfb_get_urb(dev); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { return (-12); } else { } { buf = (char *)urb->transfer_buffer; wrptr = dlfb_vidreg_lock(buf); wrptr = dlfb_set_color_depth(wrptr, 0); wrptr = dlfb_set_base16bpp(wrptr, 0U); wrptr = dlfb_set_base8bpp(wrptr, (dev->info)->fix.smem_len); wrptr = dlfb_set_vid_cmds(wrptr, var); wrptr = dlfb_blanking(wrptr, 0); wrptr = dlfb_vidreg_unlock(wrptr); writesize = (int )((unsigned int )((long )wrptr) - (unsigned int )((long )buf)); retval = dlfb_submit_urb(dev, urb, (size_t )writesize); dev->blank_mode = 0; } return (retval); } } static int dlfb_ops_mmap(struct fb_info *info , struct vm_area_struct *vma ) { unsigned long start ; unsigned long size ; unsigned long offset ; unsigned long page ; unsigned long pos ; pgprot_t __constr_expr_0 ; int tmp ; { start = vma->vm_start; size = vma->vm_end - vma->vm_start; offset = vma->vm_pgoff << 12; if (vma->vm_pgoff > 4503599627370495UL) { return (-22); } else { } if (size > (unsigned long )info->fix.smem_len) { return (-22); } else { } if (offset > (unsigned long )info->fix.smem_len - size) { return (-22); } else { } { pos = info->fix.smem_start + offset; printk("\rudlfb: mmap() framebuffer addr:%lu size:%lu\n", pos, size); } goto ldv_33816; ldv_33815: { page = vmalloc_to_pfn((void const *)pos); __constr_expr_0.pgprot = 0x8000000000000027UL; tmp = remap_pfn_range(vma, start, page, 4096UL, __constr_expr_0); } if (tmp != 0) { return (-11); } else { } start = start + 4096UL; pos = pos + 4096UL; if (size > 4096UL) { size = size - 4096UL; } else { size = 0UL; } ldv_33816: ; if (size != 0UL) { goto ldv_33815; } else { } return (0); } } static int dlfb_trim_hline(u8 const *bback , u8 const **bfront , int *width_bytes ) { int j ; int k ; unsigned long const *back ; unsigned long const *front ; int width ; int identical ; int start ; int end ; { { back = (unsigned long const *)bback; front = (unsigned long const *)*bfront; width = (int const )((unsigned long )*width_bytes / 8UL); identical = width; start = width; end = width; __builtin_prefetch((void const *)front); __builtin_prefetch((void const *)back); j = 0; } goto ldv_33833; ldv_33832: ; if ((unsigned long )*(back + (unsigned long )j) != (unsigned long )*(front + (unsigned long )j)) { start = j; goto ldv_33831; } else { } j = j + 1; ldv_33833: ; if (j < width) { goto ldv_33832; } else { } ldv_33831: k = width + -1; goto ldv_33836; ldv_33835: ; if ((unsigned long )*(back + (unsigned long )k) != (unsigned long )*(front + (unsigned long )k)) { end = k + 1; goto ldv_33834; } else { } k = k - 1; ldv_33836: ; if (k > j) { goto ldv_33835; } else { } ldv_33834: identical = start + (width - end); *bfront = (u8 const *)front + (unsigned long )start; *width_bytes = (int )((unsigned int )(end - start) * 8U); return ((int )((unsigned int )identical * 8U)); } } static void dlfb_compress_hline(uint16_t const **pixel_start_ptr , uint16_t const * const pixel_end , uint32_t *device_address_ptr , uint8_t **command_buffer_ptr , uint8_t const * const cmd_buffer_end ) { uint16_t const *pixel ; uint32_t dev_addr ; uint8_t *cmd ; int bpp ; uint8_t *raw_pixels_count_byte ; uint8_t *cmd_pixels_count_byte ; uint16_t const *raw_pixel_start ; uint16_t const *cmd_pixel_start ; uint16_t const *cmd_pixel_end ; uint8_t *tmp ; uint8_t *tmp___0 ; uint8_t *tmp___1 ; uint8_t *tmp___2 ; uint8_t *tmp___3 ; uint8_t *tmp___4 ; uint8_t *tmp___5 ; int _min1 ; int _min2 ; int _min1___0 ; int _min2___0 ; uint16_t const *repeating_pixel ; uint8_t *tmp___6 ; uint8_t *tmp___7 ; long tmp___8 ; long tmp___9 ; { pixel = *pixel_start_ptr; dev_addr = *device_address_ptr; cmd = *command_buffer_ptr; bpp = 2; goto ldv_33870; ldv_33869: { raw_pixels_count_byte = (uint8_t *)0U; cmd_pixels_count_byte = (uint8_t *)0U; raw_pixel_start = (uint16_t const *)0U; cmd_pixel_end = (uint16_t const *)0U; prefetchw((void const *)cmd); tmp = cmd; cmd = cmd + 1; *tmp = 175U; tmp___0 = cmd; cmd = cmd + 1; *tmp___0 = 107U; tmp___1 = cmd; cmd = cmd + 1; *tmp___1 = (unsigned char )(dev_addr >> 16); tmp___2 = cmd; cmd = cmd + 1; *tmp___2 = (unsigned char )(dev_addr >> 8); tmp___3 = cmd; cmd = cmd + 1; *tmp___3 = (unsigned char )dev_addr; tmp___4 = cmd; cmd = cmd + 1; cmd_pixels_count_byte = tmp___4; cmd_pixel_start = pixel; tmp___5 = cmd; cmd = cmd + 1; raw_pixels_count_byte = tmp___5; raw_pixel_start = pixel; _min1 = 256; _min1___0 = (int )(((long )pixel_end - (long )pixel) / 2L); _min2___0 = (int )((unsigned int )((long )cmd_buffer_end) - (unsigned int )((long )cmd)) / 2; _min2 = _min1___0 < _min2___0 ? _min1___0 : _min2___0; cmd_pixel_end = pixel + (unsigned long )(_min1 < _min2 ? _min1 : _min2); prefetch_range((void *)pixel, (size_t )((((long )cmd_pixel_end - (long )pixel) / 2L) * 2L)); } goto ldv_33867; ldv_33866: { repeating_pixel = pixel; *((uint16_t *)cmd) = __cpu_to_be16p(pixel); cmd = cmd + 2UL; pixel = pixel + 1; tmp___8 = ldv__builtin_expect((unsigned long )pixel < (unsigned long )cmd_pixel_end, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect((int )((unsigned short )*pixel) == (int )((unsigned short )*repeating_pixel), 0L); } if (tmp___9 != 0L) { *raw_pixels_count_byte = (uint8_t )((unsigned int )((unsigned char )(((long )repeating_pixel - (long )raw_pixel_start) / 2L)) + 1U); goto ldv_33864; ldv_33863: pixel = pixel + 1; ldv_33864: ; if ((unsigned long )pixel < (unsigned long )cmd_pixel_end && (int )((unsigned short )*pixel) == (int )((unsigned short )*repeating_pixel)) { goto ldv_33863; } else { } tmp___6 = cmd; cmd = cmd + 1; *tmp___6 = (uint8_t )((unsigned int )((unsigned char )(((long )pixel - (long )repeating_pixel) / 2L)) + 255U); raw_pixel_start = pixel; tmp___7 = cmd; cmd = cmd + 1; raw_pixels_count_byte = tmp___7; } else { } } else { } ldv_33867: ; if ((unsigned long )pixel < (unsigned long )cmd_pixel_end) { goto ldv_33866; } else { } if ((unsigned long )pixel > (unsigned long )raw_pixel_start) { *raw_pixels_count_byte = (uint8_t )(((long )pixel - (long )raw_pixel_start) / 2L); } else { } *cmd_pixels_count_byte = (uint8_t )(((long )pixel - (long )cmd_pixel_start) / 2L); dev_addr = dev_addr + (uint32_t )(((long )pixel - (long )cmd_pixel_start) / 2L) * 2U; ldv_33870: ; if ((unsigned long )((unsigned short const *)pixel_end) > (unsigned long )pixel && (unsigned long )((unsigned char const *)cmd_buffer_end + 0xfffffffffffffff5UL) > (unsigned long )((unsigned char const *)cmd)) { goto ldv_33869; } else { } if ((unsigned long )((unsigned char const *)cmd_buffer_end) <= (unsigned long )((unsigned char const *)cmd + 11U)) { if ((unsigned long )((unsigned char const *)cmd_buffer_end) > (unsigned long )((unsigned char const *)cmd)) { { __memset((void *)cmd, 175, (size_t )((long )cmd_buffer_end - (long )cmd)); } } else { } cmd = (uint8_t *)cmd_buffer_end; } else { } *command_buffer_ptr = cmd; *pixel_start_ptr = pixel; *device_address_ptr = dev_addr; return; } } static int dlfb_render_hline(struct dlfb_data *dev , struct urb **urb_ptr , char const *front , char **urb_buf_ptr , u32 byte_offset , u32 byte_width , int *ident_ptr , int *sent_ptr ) { u8 const *line_start ; u8 const *line_end ; u8 const *next_pixel ; u32 dev_addr ; struct urb *urb ; u8 *cmd ; u8 *cmd_end ; int offset ; u8 const *back_start ; int tmp ; int len ; int tmp___0 ; { dev_addr = (u32 )dev->base16 + byte_offset; urb = *urb_ptr; cmd = (u8 *)*urb_buf_ptr; cmd_end = (u8 *)urb->transfer_buffer + (unsigned long )urb->transfer_buffer_length; line_start = (u8 const *)front + (unsigned long )byte_offset; next_pixel = line_start; line_end = next_pixel + (unsigned long )byte_width; if ((unsigned long )dev->backing_buffer != (unsigned long )((char *)0)) { { back_start = (u8 const *)dev->backing_buffer + (unsigned long )byte_offset; tmp = dlfb_trim_hline(back_start, & next_pixel, (int *)(& byte_width)); *ident_ptr = *ident_ptr + tmp; offset = (int )((unsigned int )((long )next_pixel) - (unsigned int )((long )line_start)); line_end = next_pixel + (unsigned long )byte_width; dev_addr = dev_addr + (u32 )offset; back_start = back_start + (unsigned long )offset; line_start = line_start + (unsigned long )offset; __memcpy((void *)back_start, (void const *)line_start, (size_t )byte_width); } } else { } goto ldv_33893; ldv_33892: { dlfb_compress_hline((uint16_t const **)(& next_pixel), (uint16_t const *)line_end, & dev_addr, & cmd, (uint8_t const */* const */)cmd_end); } if ((unsigned long )cmd >= (unsigned long )cmd_end) { { len = (int )((unsigned int )((long )cmd) - (unsigned int )((long )urb->transfer_buffer)); tmp___0 = dlfb_submit_urb(dev, urb, (size_t )len); } if (tmp___0 != 0) { return (1); } else { } { *sent_ptr = *sent_ptr + len; urb = dlfb_get_urb(dev); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { return (1); } else { } *urb_ptr = urb; cmd = (u8 *)urb->transfer_buffer; cmd_end = cmd + (unsigned long )urb->transfer_buffer_length; } else { } ldv_33893: ; if ((unsigned long )next_pixel < (unsigned long )line_end) { goto ldv_33892; } else { } *urb_buf_ptr = (char *)cmd; return (0); } } static int dlfb_handle_damage(struct dlfb_data *dev , int x , int y , int width , int height , char *data ) { int i ; int ret ; char *cmd ; cycles_t start_cycles ; cycles_t end_cycles ; int bytes_sent ; int bytes_identical ; struct urb *urb ; int aligned_x ; int tmp ; int line_offset ; int byte_offset ; int tmp___0 ; int len ; { { bytes_sent = 0; bytes_identical = 0; start_cycles = get_cycles(); aligned_x = x & -8; width = ((width + (x - aligned_x)) + 7) & -8; x = aligned_x; } if ((width <= 0 || (__u32 )(x + width) > (dev->info)->var.xres) || (__u32 )(y + height) > (dev->info)->var.yres) { return (-22); } else { } { tmp = atomic_read((atomic_t const *)(& dev->usb_active)); } if (tmp == 0) { return (0); } else { } { urb = dlfb_get_urb(dev); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { return (0); } else { } cmd = (char *)urb->transfer_buffer; i = y; goto ldv_33916; ldv_33915: { line_offset = (int const )((dev->info)->fix.line_length * (__u32 )i); byte_offset = line_offset + x * 2; tmp___0 = dlfb_render_hline(dev, & urb, (char const *)(dev->info)->fix.smem_start, & cmd, (u32 )byte_offset, (u32 )(width * 2), & bytes_identical, & bytes_sent); } if (tmp___0 != 0) { goto error; } else { } i = i + 1; ldv_33916: ; if (i < y + height) { goto ldv_33915; } else { } if ((unsigned long )cmd > (unsigned long )((char *)urb->transfer_buffer)) { { len = (int )((unsigned int )((long )cmd) - (unsigned int )((long )urb->transfer_buffer)); ret = dlfb_submit_urb(dev, urb, (size_t )len); bytes_sent = bytes_sent + len; } } else { { dlfb_urb_completion(urb); } } error: { atomic_add(bytes_sent, & dev->bytes_sent); atomic_add(bytes_identical, & dev->bytes_identical); atomic_add((width * height) * 2, & dev->bytes_rendered); end_cycles = get_cycles(); atomic_add((int )((end_cycles - start_cycles) >> 10), & dev->cpu_kcycles_used); } return (0); } } static ssize_t dlfb_ops_write(struct fb_info *info , char const *buf , size_t count , loff_t *ppos ) { ssize_t result ; struct dlfb_data *dev ; u32 offset ; int start ; int _max1 ; int _max2 ; int lines ; unsigned int _min1 ; __u32 _min2 ; { { dev = (struct dlfb_data *)info->par; offset = (unsigned int )*ppos; result = fb_sys_write(info, buf, count, ppos); } if (result > 0L) { { _max1 = (int )(offset / info->fix.line_length); _max2 = 0; start = _max1 > _max2 ? _max1 : _max2; _min1 = (unsigned int )(result / (ssize_t )info->fix.line_length) + 1U; _min2 = info->var.yres; lines = (int )(_min1 < _min2 ? _min1 : _min2); dlfb_handle_damage(dev, 0, start, (int )info->var.xres, lines, info->screen_base); } } else { } return (result); } } static void dlfb_ops_copyarea(struct fb_info *info , struct fb_copyarea const *area ) { struct dlfb_data *dev ; { { dev = (struct dlfb_data *)info->par; sys_copyarea(info, area); dlfb_handle_damage(dev, (int )area->dx, (int )area->dy, (int )area->width, (int )area->height, info->screen_base); } return; } } static void dlfb_ops_imageblit(struct fb_info *info , struct fb_image const *image ) { struct dlfb_data *dev ; { { dev = (struct dlfb_data *)info->par; sys_imageblit(info, image); dlfb_handle_damage(dev, (int )image->dx, (int )image->dy, (int )image->width, (int )image->height, info->screen_base); } return; } } static void dlfb_ops_fillrect(struct fb_info *info , struct fb_fillrect const *rect ) { struct dlfb_data *dev ; { { dev = (struct dlfb_data *)info->par; sys_fillrect(info, rect); dlfb_handle_damage(dev, (int )rect->dx, (int )rect->dy, (int )rect->width, (int )rect->height, info->screen_base); } return; } } static void dlfb_dpy_deferred_io(struct fb_info *info , struct list_head *pagelist ) { struct page *cur ; struct fb_deferred_io *fbdefio ; struct dlfb_data *dev ; struct urb *urb ; char *cmd ; cycles_t start_cycles ; cycles_t end_cycles ; int bytes_sent ; int bytes_identical ; int bytes_rendered ; int tmp ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; int len ; { fbdefio = info->fbdefio; dev = (struct dlfb_data *)info->par; bytes_sent = 0; bytes_identical = 0; bytes_rendered = 0; if (! fb_defio) { return; } else { } { tmp = atomic_read((atomic_t const *)(& dev->usb_active)); } if (tmp == 0) { return; } else { } { start_cycles = get_cycles(); urb = dlfb_get_urb(dev); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { return; } else { } cmd = (char *)urb->transfer_buffer; __mptr = (struct list_head const *)fbdefio->pagelist.next; cur = (struct page *)__mptr + 0xffffffffffffffe0UL; goto ldv_33971; ldv_33970: { tmp___0 = dlfb_render_hline(dev, & urb, (char const *)info->fix.smem_start, & cmd, (u32 )cur->__annonCompField57.__annonCompField52.index << 12U, 4096U, & bytes_identical, & bytes_sent); } if (tmp___0 != 0) { goto error; } else { } bytes_rendered = (int )((unsigned int )bytes_rendered + 4096U); __mptr___0 = (struct list_head const *)cur->__annonCompField60.lru.next; cur = (struct page *)__mptr___0 + 0xffffffffffffffe0UL; ldv_33971: ; if ((unsigned long )(& cur->__annonCompField60.lru) != (unsigned long )(& fbdefio->pagelist)) { goto ldv_33970; } else { } if ((unsigned long )cmd > (unsigned long )((char *)urb->transfer_buffer)) { { len = (int )((unsigned int )((long )cmd) - (unsigned int )((long )urb->transfer_buffer)); dlfb_submit_urb(dev, urb, (size_t )len); bytes_sent = bytes_sent + len; } } else { { dlfb_urb_completion(urb); } } error: { atomic_add(bytes_sent, & dev->bytes_sent); atomic_add(bytes_identical, & dev->bytes_identical); atomic_add(bytes_rendered, & dev->bytes_rendered); end_cycles = get_cycles(); atomic_add((int )((end_cycles - start_cycles) >> 10), & dev->cpu_kcycles_used); } return; } } static int dlfb_get_edid(struct dlfb_data *dev , char *edid , int len ) { int i ; int ret ; char *rbuf ; void *tmp ; unsigned int tmp___0 ; { { tmp = kmalloc(2UL, 208U); rbuf = (char *)tmp; } if ((unsigned long )rbuf == (unsigned long )((char *)0)) { return (0); } else { } i = 0; goto ldv_33984; ldv_33983: { tmp___0 = __create_pipe(dev->udev, 0U); ret = usb_control_msg(dev->udev, tmp___0 | 2147483776U, 2, 192, (int )((__u16 )i) << 8U, 161, (void *)rbuf, 2, 250); } if (ret <= 0) { { printk("\vudlfb: Read EDID byte %d failed err %x\n", i, ret); i = i - 1; } goto ldv_33982; } else { } *(edid + (unsigned long )i) = *(rbuf + 1UL); i = i + 1; ldv_33984: ; if (i < len) { goto ldv_33983; } else { } ldv_33982: { kfree((void const *)rbuf); } return (i); } } static int dlfb_ops_ioctl(struct fb_info *info , unsigned int cmd , unsigned long arg ) { struct dlfb_data *dev ; int tmp ; void *edid ; unsigned long tmp___0 ; struct dloarea area ; unsigned long tmp___1 ; { { dev = (struct dlfb_data *)info->par; tmp = atomic_read((atomic_t const *)(& dev->usb_active)); } if (tmp == 0) { return (0); } else { } if (cmd == 173U) { { edid = (void *)arg; tmp___0 = copy_to_user(edid, (void const *)dev->edid, dev->edid_size); } if (tmp___0 != 0UL) { return (-14); } else { } return (0); } else { } if (cmd == 170U) { { tmp___1 = copy_from_user((void *)(& area), (void const *)arg, 24UL); } if (tmp___1 != 0UL) { return (-14); } else { } if ((unsigned long )info->fbdefio != (unsigned long )((struct fb_deferred_io *)0)) { (info->fbdefio)->delay = 15000UL; } else { } if (area.x < 0) { area.x = 0; } else { } if ((__u32 )area.x > info->var.xres) { area.x = (int )info->var.xres; } else { } if (area.y < 0) { area.y = 0; } else { } if ((__u32 )area.y > info->var.yres) { area.y = (int )info->var.yres; } else { } { dlfb_handle_damage(dev, area.x, area.y, area.w, area.h, info->screen_base); } } else { } return (0); } } static int dlfb_ops_setcolreg(unsigned int regno , unsigned int red , unsigned int green , unsigned int blue , unsigned int transp , struct fb_info *info ) { int err ; { err = 0; if (regno >= info->cmap.len) { return (1); } else { } if (regno <= 15U) { if (info->var.red.offset == 10U) { *((u32 *)info->pseudo_palette + (unsigned long )regno) = (((red & 63488U) >> 1) | ((green & 63488U) >> 6)) | ((blue & 63488U) >> 11); } else { *((u32 *)info->pseudo_palette + (unsigned long )regno) = ((red & 63488U) | ((green & 64512U) >> 5)) | ((blue & 63488U) >> 11); } } else { } return (err); } } static int dlfb_ops_open(struct fb_info *info , int user ) { struct dlfb_data *dev ; struct fb_deferred_io *fbdefio ; void *tmp ; { dev = (struct dlfb_data *)info->par; if (user == 0 && ! console) { return (-16); } else { } if ((int )dev->virtualized) { return (-19); } else { } { dev->fb_count = dev->fb_count + 1; kref_get(& dev->kref); } if ((int )fb_defio && (unsigned long )info->fbdefio == (unsigned long )((struct fb_deferred_io *)0)) { { tmp = kzalloc(200UL, 208U); fbdefio = (struct fb_deferred_io *)tmp; } if ((unsigned long )fbdefio != (unsigned long )((struct fb_deferred_io *)0)) { fbdefio->delay = 5UL; fbdefio->deferred_io = & dlfb_dpy_deferred_io; } else { } { info->fbdefio = fbdefio; fb_deferred_io_init(info); } } else { } { printk("\rudlfb: open /dev/fb%d user=%d fb_info=%p count=%d\n", info->node, user, info, dev->fb_count); } return (0); } } static void dlfb_free(struct kref *kref ) { struct dlfb_data *dev ; struct kref const *__mptr ; { { __mptr = (struct kref const *)kref; dev = (struct dlfb_data *)__mptr + 0xffffffffffffff20UL; vfree((void const *)dev->backing_buffer); kfree((void const *)dev->edid); printk("\fudlfb: freeing dlfb_data %p\n", dev); kfree((void const *)dev); } return; } } static void dlfb_release_urb_work(struct work_struct *work ) { struct urb_node *unode ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; unode = (struct urb_node *)__mptr + 0xffffffffffffffe8UL; up(& (unode->dev)->urbs.limit_sem); } return; } } static void dlfb_free_framebuffer(struct dlfb_data *dev ) { struct fb_info *info ; int node ; { info = dev->info; if ((unsigned long )info != (unsigned long )((struct fb_info *)0)) { { node = info->node; ldv_unregister_framebuffer_98(info); } if (info->cmap.len != 0U) { { fb_dealloc_cmap(& info->cmap); } } else { } if ((unsigned long )info->monspecs.modedb != (unsigned long )((struct fb_videomode *)0)) { { fb_destroy_modedb(info->monspecs.modedb); } } else { } { vfree((void const *)info->screen_base); fb_destroy_modelist(& info->modelist); dev->info = (struct fb_info *)0; framebuffer_release(info); printk("\fudlfb: fb_info for /dev/fb%d has been freed\n", node); } } else { } { kref_put(& dev->kref, & dlfb_free); } return; } } static void dlfb_free_framebuffer_work(struct work_struct *work ) { struct dlfb_data *dev ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; dev = (struct dlfb_data *)__mptr + 0xfffffffffffffe28UL; dlfb_free_framebuffer(dev); } return; } } static int dlfb_ops_release(struct fb_info *info , int user ) { struct dlfb_data *dev ; { dev = (struct dlfb_data *)info->par; dev->fb_count = dev->fb_count - 1; if ((int )dev->virtualized && dev->fb_count == 0) { { schedule_delayed_work(& dev->free_framebuffer_work, 250UL); } } else { } if (dev->fb_count == 0 && (unsigned long )info->fbdefio != (unsigned long )((struct fb_deferred_io *)0)) { { fb_deferred_io_cleanup(info); kfree((void const *)info->fbdefio); info->fbdefio = (struct fb_deferred_io *)0; (info->fbops)->fb_mmap = & dlfb_ops_mmap; } } else { } { printk("\fudlfb: released /dev/fb%d user=%d count=%d\n", info->node, user, dev->fb_count); kref_put(& dev->kref, & dlfb_free); } return (0); } } static int dlfb_is_valid_mode(struct fb_videomode *mode , struct fb_info *info ) { struct dlfb_data *dev ; { dev = (struct dlfb_data *)info->par; if (mode->xres * mode->yres > (u32 )dev->sku_pixel_limit) { { printk("\fudlfb: %dx%d beyond chip capabilities\n", mode->xres, mode->yres); } return (0); } else { } { printk("\016udlfb: %dx%d @ %d Hz valid mode\n", mode->xres, mode->yres, mode->refresh); } return (1); } } static void dlfb_var_color_format(struct fb_var_screeninfo *var ) { struct fb_bitfield red ; struct fb_bitfield green ; struct fb_bitfield blue ; { red.offset = 11U; red.length = 5U; red.msb_right = 0U; green.offset = 5U; green.length = 6U; green.msb_right = 0U; blue.offset = 0U; blue.length = 5U; blue.msb_right = 0U; var->bits_per_pixel = 16U; var->red = red; var->green = green; var->blue = blue; return; } } static int dlfb_ops_check_var(struct fb_var_screeninfo *var , struct fb_info *info ) { struct fb_videomode mode ; int tmp ; { if ((var->xres * var->yres) * 2U > info->fix.smem_len) { return (-22); } else { } { dlfb_var_color_format(var); fb_var_to_videomode(& mode, (struct fb_var_screeninfo const *)var); tmp = dlfb_is_valid_mode(& mode, info); } if (tmp == 0) { return (-22); } else { } return (0); } } static int dlfb_ops_set_par(struct fb_info *info ) { struct dlfb_data *dev ; int result ; u16 *pix_framebuffer ; int i ; { { dev = (struct dlfb_data *)info->par; printk("\rudlfb: set_par mode %dx%d\n", info->var.xres, info->var.yres); result = dlfb_set_video_mode(dev, & info->var); } if (result == 0 && dev->fb_count == 0) { pix_framebuffer = (u16 *)info->screen_base; i = 0; goto ldv_34060; ldv_34059: *(pix_framebuffer + (unsigned long )i) = 14310U; i = i + 1; ldv_34060: ; if ((__u32 )i < info->fix.smem_len / 2U) { goto ldv_34059; } else { } { dlfb_handle_damage(dev, 0, 0, (int )info->var.xres, (int )info->var.yres, info->screen_base); } } else { } return (result); } } static char *dlfb_dummy_render(char *buf ) { char *tmp ; char *tmp___0 ; char *tmp___1 ; char *tmp___2 ; char *tmp___3 ; char *tmp___4 ; char *tmp___5 ; char *tmp___6 ; char *tmp___7 ; { tmp = buf; buf = buf + 1; *tmp = -81; tmp___0 = buf; buf = buf + 1; *tmp___0 = 106; tmp___1 = buf; buf = buf + 1; *tmp___1 = 0; tmp___2 = buf; buf = buf + 1; *tmp___2 = 0; tmp___3 = buf; buf = buf + 1; *tmp___3 = 0; tmp___4 = buf; buf = buf + 1; *tmp___4 = 1; tmp___5 = buf; buf = buf + 1; *tmp___5 = 0; tmp___6 = buf; buf = buf + 1; *tmp___6 = 0; tmp___7 = buf; buf = buf + 1; *tmp___7 = 0; return (buf); } } static int dlfb_ops_blank(int blank_mode , struct fb_info *info ) { struct dlfb_data *dev ; char *bufptr ; struct urb *urb ; { { dev = (struct dlfb_data *)info->par; printk("\016udlfb: /dev/fb%d FB_BLANK mode %d --> %d\n", info->node, dev->blank_mode, blank_mode); } if (dev->blank_mode == 4 && blank_mode != 4) { { dlfb_set_video_mode(dev, & info->var); } } else { } { urb = dlfb_get_urb(dev); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { return (0); } else { } { bufptr = (char *)urb->transfer_buffer; bufptr = dlfb_vidreg_lock(bufptr); bufptr = dlfb_blanking(bufptr, blank_mode); bufptr = dlfb_vidreg_unlock(bufptr); bufptr = dlfb_dummy_render(bufptr); dlfb_submit_urb(dev, urb, (size_t )((long )bufptr - (long )urb->transfer_buffer)); dev->blank_mode = blank_mode; } return (0); } } static struct fb_ops dlfb_ops = {& __this_module, & dlfb_ops_open, & dlfb_ops_release, & fb_sys_read, & dlfb_ops_write, & dlfb_ops_check_var, & dlfb_ops_set_par, & dlfb_ops_setcolreg, 0, & dlfb_ops_blank, 0, & dlfb_ops_fillrect, & dlfb_ops_copyarea, & dlfb_ops_imageblit, 0, 0, 0, & dlfb_ops_ioctl, 0, & dlfb_ops_mmap, 0, 0, 0, 0}; static int dlfb_realloc_framebuffer(struct dlfb_data *dev , struct fb_info *info ) { int retval ; int old_len ; int new_len ; unsigned char *old_fb ; unsigned char *new_fb ; unsigned char *new_back ; void *tmp ; void *tmp___0 ; { { retval = -12; old_len = (int )info->fix.smem_len; old_fb = (unsigned char *)info->screen_base; new_back = (unsigned char *)0U; printk("\fudlfb: Reallocating framebuffer. Addresses will change!\n"); new_len = (int )(info->fix.line_length * info->var.yres); } if (((new_len + 4095) & -4096) > old_len) { { tmp = ldv_vmalloc_99((unsigned long )new_len); new_fb = (unsigned char *)tmp; } if ((unsigned long )new_fb == (unsigned long )((unsigned char *)0U)) { { printk("\vudlfb: Virtual framebuffer alloc failed\n"); } goto error; } else { } if ((unsigned long )info->screen_base != (unsigned long )((char *)0)) { { __memcpy((void *)new_fb, (void const *)old_fb, (size_t )old_len); vfree((void const *)info->screen_base); } } else { } info->screen_base = (char *)new_fb; info->fix.smem_len = (__u32 )(new_len + 4095) & 4294963200U; info->fix.smem_start = (unsigned long )new_fb; info->flags = (int )udlfb_info_flags; if ((int )shadow) { { tmp___0 = ldv_vzalloc_100((unsigned long )new_len); new_back = (unsigned char *)tmp___0; } } else { } if ((unsigned long )new_back == (unsigned long )((unsigned char *)0U)) { { printk("\016udlfb: No shadow/backing buffer allocated\n"); } } else { { vfree((void const *)dev->backing_buffer); dev->backing_buffer = (char *)new_back; } } } else { } retval = 0; error: ; return (retval); } } static int dlfb_setup_modes(struct dlfb_data *dev , struct fb_info *info , char *default_edid , size_t default_edid_size ) { int i ; struct fb_videomode const *default_vmode ; int result ; char *edid ; int tries ; void *tmp ; int tmp___0 ; int tmp___1 ; struct fb_videomode fb_vmode ; int tmp___2 ; { default_vmode = (struct fb_videomode const *)0; result = 0; tries = 3; if ((unsigned long )info->dev != (unsigned long )((struct device *)0)) { { ldv_mutex_lock_101(& info->lock); } } else { } { tmp = kmalloc(128UL, 208U); edid = (char *)tmp; } if ((unsigned long )edid == (unsigned long )((char *)0)) { result = -12; goto error; } else { } { fb_destroy_modelist(& info->modelist); __memset((void *)(& info->monspecs), 0, 144UL); } goto ldv_34098; ldv_34097: { i = dlfb_get_edid(dev, edid, 128); } if (i > 127) { { fb_edid_to_monspecs((unsigned char *)edid, & info->monspecs); } } else { } if (info->monspecs.modedb_len != 0U) { dev->edid = edid; dev->edid_size = (size_t )i; goto ldv_34096; } else { } ldv_34098: tmp___0 = tries; tries = tries - 1; if (tmp___0 != 0) { goto ldv_34097; } else { } ldv_34096: ; if (info->monspecs.modedb_len == 0U) { { printk("\vudlfb: Unable to get valid EDID from device/display\n"); } if ((unsigned long )dev->edid != (unsigned long )((char *)0)) { { fb_edid_to_monspecs((unsigned char *)dev->edid, & info->monspecs); } if (info->monspecs.modedb_len != 0U) { { printk("\vudlfb: Using previously queried EDID\n"); } } else { } } else { } } else { } if (info->monspecs.modedb_len == 0U) { if (default_edid_size > 127UL) { { fb_edid_to_monspecs((unsigned char *)default_edid, & info->monspecs); } if (info->monspecs.modedb_len != 0U) { { __memcpy((void *)edid, (void const *)default_edid, default_edid_size); dev->edid = edid; dev->edid_size = default_edid_size; printk("\vudlfb: Using default/backup EDID\n"); } } else { } } else { } } else { } if (info->monspecs.modedb_len != 0U) { i = 0; goto ldv_34100; ldv_34099: { tmp___1 = dlfb_is_valid_mode(info->monspecs.modedb + (unsigned long )i, info); } if (tmp___1 != 0) { { fb_add_videomode((struct fb_videomode const *)info->monspecs.modedb + (unsigned long )i, & info->modelist); } } else if (i == 0) { info->monspecs.misc = (unsigned int )info->monspecs.misc & 65533U; } else { } i = i + 1; ldv_34100: ; if ((__u32 )i < info->monspecs.modedb_len) { goto ldv_34099; } else { } { default_vmode = fb_find_best_display((struct fb_monspecs const *)(& info->monspecs), & info->modelist); } } else { } if ((unsigned long )default_vmode == (unsigned long )((struct fb_videomode const *)0)) { fb_vmode.name = (char const *)0; fb_vmode.refresh = 0U; fb_vmode.xres = 0U; fb_vmode.yres = 0U; fb_vmode.pixclock = 0U; fb_vmode.left_margin = 0U; fb_vmode.right_margin = 0U; fb_vmode.upper_margin = 0U; fb_vmode.lower_margin = 0U; fb_vmode.hsync_len = 0U; fb_vmode.vsync_len = 0U; fb_vmode.sync = 0U; fb_vmode.vmode = 0U; fb_vmode.flag = 0U; i = 0; goto ldv_34104; ldv_34103: { tmp___2 = dlfb_is_valid_mode((struct fb_videomode *)(& vesa_modes) + (unsigned long )i, info); } if (tmp___2 != 0) { { fb_add_videomode((struct fb_videomode const *)(& vesa_modes) + (unsigned long )i, & info->modelist); } } else { } i = i + 1; ldv_34104: ; if (i <= 42) { goto ldv_34103; } else { } { fb_vmode.xres = 800U; fb_vmode.yres = 600U; fb_vmode.refresh = 60U; default_vmode = fb_find_nearest_mode((struct fb_videomode const *)(& fb_vmode), & info->modelist); } } else { } if ((unsigned long )default_vmode != (unsigned long )((struct fb_videomode const *)0) && dev->fb_count == 0) { { fb_videomode_to_var(& info->var, default_vmode); dlfb_var_color_format(& info->var); __memcpy((void *)(& info->fix), (void const *)(& dlfb_fix), 80UL); info->fix.line_length = info->var.xres * (info->var.bits_per_pixel / 8U); result = dlfb_realloc_framebuffer(dev, info); } } else { result = -22; } error: ; if ((unsigned long )edid != (unsigned long )((char *)0) && (unsigned long )dev->edid != (unsigned long )edid) { { kfree((void const *)edid); } } else { } if ((unsigned long )info->dev != (unsigned long )((struct device *)0)) { { ldv_mutex_unlock_102(& info->lock); } } else { } return (result); } } static ssize_t metrics_bytes_rendered_show(struct device *fbdev , struct device_attribute *a , char *buf ) { struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; tmp___0 = atomic_read((atomic_t const *)(& dev->bytes_rendered)); tmp___1 = snprintf(buf, 4096UL, "%u\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t metrics_bytes_identical_show(struct device *fbdev , struct device_attribute *a , char *buf ) { struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; tmp___0 = atomic_read((atomic_t const *)(& dev->bytes_identical)); tmp___1 = snprintf(buf, 4096UL, "%u\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t metrics_bytes_sent_show(struct device *fbdev , struct device_attribute *a , char *buf ) { struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; tmp___0 = atomic_read((atomic_t const *)(& dev->bytes_sent)); tmp___1 = snprintf(buf, 4096UL, "%u\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t metrics_cpu_kcycles_used_show(struct device *fbdev , struct device_attribute *a , char *buf ) { struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; tmp___0 = atomic_read((atomic_t const *)(& dev->cpu_kcycles_used)); tmp___1 = snprintf(buf, 4096UL, "%u\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t edid_show(struct file *filp , struct kobject *kobj , struct bin_attribute *a , char *buf , loff_t off , size_t count ) { struct device *fbdev ; struct kobject const *__mptr ; struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; { { __mptr = (struct kobject const *)kobj; fbdev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; } if ((unsigned long )dev->edid == (unsigned long )((char *)0)) { return (0L); } else { } if ((unsigned long long )off >= (unsigned long long )dev->edid_size || count > dev->edid_size) { return (0L); } else { } if ((unsigned long long )off + (unsigned long long )count > (unsigned long long )dev->edid_size) { count = (size_t )((unsigned long long )dev->edid_size - (unsigned long long )off); } else { } { printk("\016udlfb: sysfs edid copy %p to %p, %d bytes\n", dev->edid, buf, (int )count); __memcpy((void *)buf, (void const *)dev->edid, count); } return ((ssize_t )count); } } static ssize_t edid_store(struct file *filp , struct kobject *kobj , struct bin_attribute *a , char *src , loff_t src_off , size_t src_size ) { struct device *fbdev ; struct kobject const *__mptr ; struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; int ret ; int tmp___0 ; { { __mptr = (struct kobject const *)kobj; fbdev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; } if (src_size != 128UL || src_off != 0LL) { return (-22L); } else { } { ret = dlfb_setup_modes(dev, fb_info, src, src_size); } if (ret != 0) { return ((ssize_t )ret); } else { } if ((unsigned long )dev->edid == (unsigned long )((char *)0)) { return (-22L); } else { { tmp___0 = memcmp((void const *)src, (void const *)dev->edid, src_size); } if (tmp___0 != 0) { return (-22L); } else { } } { printk("\016udlfb: sysfs written EDID is new default\n"); dlfb_ops_set_par(fb_info); } return ((ssize_t )src_size); } } static ssize_t metrics_reset_store(struct device *fbdev , struct device_attribute *attr , char const *buf , size_t count ) { struct fb_info *fb_info ; void *tmp ; struct dlfb_data *dev ; { { tmp = dev_get_drvdata((struct device const *)fbdev); fb_info = (struct fb_info *)tmp; dev = (struct dlfb_data *)fb_info->par; atomic_set(& dev->bytes_rendered, 0); atomic_set(& dev->bytes_identical, 0); atomic_set(& dev->bytes_sent, 0); atomic_set(& dev->cpu_kcycles_used, 0); } return ((ssize_t )count); } } static struct bin_attribute edid_attr = {{"edid", 438U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 128UL, 0, & edid_show, & edid_store, 0}; static struct device_attribute fb_device_attrs[5U] = { {{"metrics_bytes_rendered", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & metrics_bytes_rendered_show, 0}, {{"metrics_bytes_identical", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & metrics_bytes_identical_show, 0}, {{"metrics_bytes_sent", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & metrics_bytes_sent_show, 0}, {{"metrics_cpu_kcycles_used", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & metrics_cpu_kcycles_used_show, 0}, {{"metrics_reset", 128U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & metrics_reset_store}}; static int dlfb_select_std_channel(struct dlfb_data *dev ) { int ret ; u8 set_def_chn[16U] ; unsigned int tmp ; { { set_def_chn[0] = 87U; set_def_chn[1] = 205U; set_def_chn[2] = 220U; set_def_chn[3] = 167U; set_def_chn[4] = 28U; set_def_chn[5] = 136U; set_def_chn[6] = 94U; set_def_chn[7] = 21U; set_def_chn[8] = 96U; set_def_chn[9] = 254U; set_def_chn[10] = 198U; set_def_chn[11] = 151U; set_def_chn[12] = 22U; set_def_chn[13] = 61U; set_def_chn[14] = 71U; set_def_chn[15] = 242U; tmp = __create_pipe(dev->udev, 0U); ret = usb_control_msg(dev->udev, tmp | 2147483648U, 18, 64, 0, 0, (void *)(& set_def_chn), 16, 5000); } return (ret); } } static int dlfb_parse_vendor_descriptor(struct dlfb_data *dev , struct usb_interface *interface ) { char *desc ; char *buf ; char *desc_end ; int total_len ; void *tmp ; struct usb_device *tmp___0 ; int tmp___1 ; u8 length ; u16 key ; u32 max_area ; { { total_len = 0; tmp = kzalloc(256UL, 208U); buf = (char *)tmp; } if ((unsigned long )buf == (unsigned long )((char *)0)) { return (0); } else { } { desc = buf; tmp___0 = interface_to_usbdev(interface); total_len = usb_get_descriptor(tmp___0, 95, 0, (void *)desc, 256); } if (total_len < 0) { { tmp___1 = __usb_get_extra_descriptor((char *)(interface->cur_altsetting)->extra, (unsigned int )(interface->cur_altsetting)->extralen, 95, (void **)(& desc)); } if (tmp___1 == 0) { total_len = (int )*desc; } else { } } else { } if (total_len > 5) { { printk("\016udlfb: vendor descriptor length:%x data:%11ph\n", total_len, desc); } if (((((int )*desc != total_len || (int )((signed char )*(desc + 1UL)) != 95) || (int )((signed char )*(desc + 2UL)) != 1) || (int )((signed char )*(desc + 3UL)) != 0) || (int )*(desc + 4UL) != total_len + -2) { goto unrecognized; } else { } desc_end = desc + (unsigned long )total_len; desc = desc + 5UL; goto ldv_34202; ldv_34201: key = *((u16 *)desc); desc = desc + 2UL; length = (u8 )*desc; desc = desc + 1; { if ((int )key == 512) { goto case_512; } else { } goto switch_default; case_512: /* CIL Label */ { max_area = *((u32 *)desc); printk("\fudlfb: DL chip limited to %d pixel modes\n", max_area); dev->sku_pixel_limit = (int )max_area; } goto ldv_34199; switch_default: /* CIL Label */ ; goto ldv_34199; switch_break: /* CIL Label */ ; } ldv_34199: desc = desc + (unsigned long )length; ldv_34202: ; if ((unsigned long )desc < (unsigned long )desc_end) { goto ldv_34201; } else { } } else { { printk("\016udlfb: vendor descriptor not available (%d)\n", total_len); } } goto success; unrecognized: { printk("\vudlfb: Unrecognized vendor firmware descriptor\n"); } success: { kfree((void const *)buf); } return (1); } } static void dlfb_init_framebuffer_work(struct work_struct *work ) ; static int dlfb_usb_probe(struct usb_interface *interface , struct usb_device_id const *id ) { struct usb_device *usbdev ; struct dlfb_data *dev ; int retval ; void *tmp ; int tmp___0 ; int tmp___1 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { { dev = (struct dlfb_data *)0; retval = -12; usbdev = interface_to_usbdev(interface); tmp = kzalloc(1776UL, 208U); dev = (struct dlfb_data *)tmp; } if ((unsigned long )dev == (unsigned long )((struct dlfb_data *)0)) { { dev_err((struct device const *)(& interface->dev), "dlfb_usb_probe: failed alloc of dev struct\n"); } goto error; } else { } { kref_init(& dev->kref); dev->udev = usbdev; dev->gdev = & usbdev->dev; usb_set_intfdata(interface, (void *)dev); printk("\016udlfb: %s %s - serial #%s\n", usbdev->manufacturer, usbdev->product, usbdev->serial); printk("\016udlfb: vid_%04x&pid_%04x&rev_%04x driver\'s dlfb_data struct at %p\n", (int )usbdev->descriptor.idVendor, (int )usbdev->descriptor.idProduct, (int )usbdev->descriptor.bcdDevice, dev); printk("\016udlfb: console enable=%d\n", (int )console); printk("\016udlfb: fb_defio enable=%d\n", (int )fb_defio); printk("\016udlfb: shadow enable=%d\n", (int )shadow); dev->sku_pixel_limit = 2359296; tmp___0 = dlfb_parse_vendor_descriptor(dev, interface); } if (tmp___0 == 0) { { printk("\vudlfb: firmware not recognized. Assume incompatible device\n"); } goto error; } else { } if (pixel_limit != 0) { { printk("\fudlfb: DL chip limit of %d overridden by module param to %d\n", dev->sku_pixel_limit, pixel_limit); dev->sku_pixel_limit = pixel_limit; } } else { } { tmp___1 = dlfb_alloc_urb_list(dev, 4, 65024UL); } if (tmp___1 == 0) { { retval = -12; printk("\vudlfb: dlfb_alloc_urb_list failed\n"); } goto error; } else { } { kref_get(& dev->kref); __init_work(& dev->init_framebuffer_work.work, 0); __constr_expr_0.counter = 137438953408L; dev->init_framebuffer_work.work.data = __constr_expr_0; lockdep_init_map(& dev->init_framebuffer_work.work.lockdep_map, "(&(&dev->init_framebuffer_work)->work)", & __key, 0); INIT_LIST_HEAD(& dev->init_framebuffer_work.work.entry); dev->init_framebuffer_work.work.func = & dlfb_init_framebuffer_work; init_timer_key(& dev->init_framebuffer_work.timer, 2U, "(&(&dev->init_framebuffer_work)->timer)", & __key___0); dev->init_framebuffer_work.timer.function = & delayed_work_timer_fn; dev->init_framebuffer_work.timer.data = (unsigned long )(& dev->init_framebuffer_work); schedule_delayed_work(& dev->init_framebuffer_work, 0UL); } return (0); error: ; if ((unsigned long )dev != (unsigned long )((struct dlfb_data *)0)) { { kref_put(& dev->kref, & dlfb_free); kref_put(& dev->kref, & dlfb_free); } } else { } return (retval); } } static void dlfb_init_framebuffer_work(struct work_struct *work ) { struct dlfb_data *dev ; struct work_struct const *__mptr ; struct fb_info *info ; int retval ; int i ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { { __mptr = (struct work_struct const *)work; dev = (struct dlfb_data *)__mptr + 0xffffffffffffff08UL; info = framebuffer_alloc(0UL, dev->gdev); } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { { retval = -12; printk("\vudlfb: framebuffer_alloc failed\n"); } goto error; } else { } { dev->info = info; info->par = (void *)dev; info->pseudo_palette = (void *)(& dev->pseudo_palette); info->fbops = & dlfb_ops; retval = fb_alloc_cmap(& info->cmap, 256, 0); } if (retval < 0) { { printk("\vudlfb: fb_alloc_cmap failed %x\n", retval); } goto error; } else { } { __init_work(& dev->free_framebuffer_work.work, 0); __constr_expr_0.counter = 137438953408L; dev->free_framebuffer_work.work.data = __constr_expr_0; lockdep_init_map(& dev->free_framebuffer_work.work.lockdep_map, "(&(&dev->free_framebuffer_work)->work)", & __key, 0); INIT_LIST_HEAD(& dev->free_framebuffer_work.work.entry); dev->free_framebuffer_work.work.func = & dlfb_free_framebuffer_work; init_timer_key(& dev->free_framebuffer_work.timer, 2U, "(&(&dev->free_framebuffer_work)->timer)", & __key___0); dev->free_framebuffer_work.timer.function = & delayed_work_timer_fn; dev->free_framebuffer_work.timer.data = (unsigned long )(& dev->free_framebuffer_work); INIT_LIST_HEAD(& info->modelist); retval = dlfb_setup_modes(dev, info, (char *)0, 0UL); } if (retval != 0) { { printk("\vudlfb: unable to find common mode for display and adapter\n"); } goto error; } else { } { atomic_set(& dev->usb_active, 1); dlfb_select_std_channel(dev); dlfb_ops_check_var(& info->var, info); dlfb_ops_set_par(info); retval = ldv_register_framebuffer_103(info); } if (retval < 0) { { printk("\vudlfb: register_framebuffer failed %d\n", retval); } goto error; } else { } i = 0; goto ldv_34234; ldv_34233: { retval = device_create_file(info->dev, (struct device_attribute const *)(& fb_device_attrs) + (unsigned long )i); } if (retval != 0) { { printk("\fudlfb: device_create_file failed %d\n", retval); } } else { } i = i + 1; ldv_34234: ; if ((unsigned int )i <= 4U) { goto ldv_34233; } else { } { retval = device_create_bin_file(info->dev, (struct bin_attribute const *)(& edid_attr)); } if (retval != 0) { { printk("\fudlfb: device_create_bin_file failed %d\n", retval); } } else { } { printk("\016udlfb: DisplayLink USB device /dev/fb%d attached. %dx%d resolution. Using %dK framebuffer memory\n", info->node, info->var.xres, info->var.yres, (unsigned long )dev->backing_buffer != (unsigned long )((char *)0) ? info->fix.smem_len * 2U >> 10 : info->fix.smem_len >> 10); } return; error: { dlfb_free_framebuffer(dev); } return; } } static void dlfb_usb_disconnect(struct usb_interface *interface ) { struct dlfb_data *dev ; struct fb_info *info ; int i ; void *tmp ; { { tmp = usb_get_intfdata(interface); dev = (struct dlfb_data *)tmp; info = dev->info; printk("\016udlfb: USB disconnect starting\n"); dev->virtualized = 1; atomic_set(& dev->usb_active, 0); dlfb_free_urb_list(dev); } if ((unsigned long )info != (unsigned long )((struct fb_info *)0)) { i = 0; goto ldv_34245; ldv_34244: { device_remove_file(info->dev, (struct device_attribute const *)(& fb_device_attrs) + (unsigned long )i); i = i + 1; } ldv_34245: ; if ((unsigned int )i <= 4U) { goto ldv_34244; } else { } { device_remove_bin_file(info->dev, (struct bin_attribute const *)(& edid_attr)); unlink_framebuffer(info); } } else { } { usb_set_intfdata(interface, (void *)0); dev->udev = (struct usb_device *)0; dev->gdev = (struct device *)0; } if (dev->fb_count == 0) { { schedule_delayed_work(& dev->free_framebuffer_work, 0UL); } } else { } { kref_put(& dev->kref, & dlfb_free); } return; } } static struct usb_driver dlfb_driver = {"udlfb", & dlfb_usb_probe, & dlfb_usb_disconnect, 0, 0, 0, 0, 0, 0, (struct usb_device_id const *)(& id_table), {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {{0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}; static int dlfb_driver_init(void) { int tmp ; { { tmp = ldv_usb_register_driver_104(& dlfb_driver, & __this_module, "udlfb"); } return (tmp); } } static void dlfb_driver_exit(void) { { { ldv_usb_deregister_105(& dlfb_driver); } return; } } static void dlfb_urb_completion(struct urb *urb ) { struct urb_node *unode ; struct dlfb_data *dev ; unsigned long flags ; { unode = (struct urb_node *)urb->context; dev = unode->dev; if (urb->status != 0) { if ((urb->status != -2 && urb->status != -104) && urb->status != -108) { { printk("\vudlfb: %s - nonzero write bulk status received: %d\n", "dlfb_urb_completion", urb->status); atomic_set(& dev->lost_pixels, 1); } } else { } } else { } { urb->transfer_buffer_length = (u32 )dev->urbs.size; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(& dev->urbs.lock); list_add_tail(& unode->entry, & dev->urbs.list); dev->urbs.available = dev->urbs.available + 1; ldv_spin_unlock_irqrestore_107(& dev->urbs.lock, flags); } if ((int )fb_defio) { { schedule_delayed_work(& unode->release_urb_work, 0UL); } } else { { up(& dev->urbs.limit_sem); } } return; } } static void dlfb_free_urb_list(struct dlfb_data *dev ) { int count ; struct list_head *node ; struct urb_node *unode ; struct urb *urb ; int ret ; unsigned long flags ; struct list_head const *__mptr ; int tmp ; { { count = dev->urbs.count; printk("\rudlfb: Freeing all render urbs\n"); } goto ldv_34284; ldv_34283: { ret = down_interruptible(& dev->urbs.limit_sem); } if (ret != 0) { goto ldv_34280; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(& dev->urbs.lock); node = dev->urbs.list.next; list_del_init(node); ldv_spin_unlock_irqrestore_107(& dev->urbs.lock, flags); __mptr = (struct list_head const *)node; unode = (struct urb_node *)__mptr; urb = unode->urb; ldv_usb_free_coherent_110(urb->dev, dev->urbs.size, urb->transfer_buffer, urb->transfer_dma); ldv_usb_free_urb_111(urb); kfree((void const *)node); } ldv_34284: tmp = count; count = count - 1; if (tmp != 0) { goto ldv_34283; } else { } ldv_34280: dev->urbs.count = 0; return; } } static int dlfb_alloc_urb_list(struct dlfb_data *dev , int count , size_t size ) { int i ; struct urb *urb ; struct urb_node *unode ; char *buf ; struct lock_class_key __key ; void *tmp ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; void *tmp___0 ; unsigned int tmp___1 ; { { i = 0; spinlock_check(& dev->urbs.lock); __raw_spin_lock_init(& dev->urbs.lock.__annonCompField18.rlock, "&(&dev->urbs.lock)->rlock", & __key); dev->urbs.size = size; INIT_LIST_HEAD(& dev->urbs.list); } goto ldv_34300; ldv_34299: { tmp = kzalloc(256UL, 208U); unode = (struct urb_node *)tmp; } if ((unsigned long )unode == (unsigned long )((struct urb_node *)0)) { goto ldv_34295; } else { } { unode->dev = dev; __init_work(& unode->release_urb_work.work, 0); __constr_expr_0.counter = 137438953408L; unode->release_urb_work.work.data = __constr_expr_0; lockdep_init_map(& unode->release_urb_work.work.lockdep_map, "(&(&unode->release_urb_work)->work)", & __key___0, 0); INIT_LIST_HEAD(& unode->release_urb_work.work.entry); unode->release_urb_work.work.func = & dlfb_release_urb_work; init_timer_key(& unode->release_urb_work.timer, 2U, "(&(&unode->release_urb_work)->timer)", & __key___1); unode->release_urb_work.timer.function = & delayed_work_timer_fn; unode->release_urb_work.timer.data = (unsigned long )(& unode->release_urb_work); urb = ldv_usb_alloc_urb_112(0, 208U); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { { kfree((void const *)unode); } goto ldv_34295; } else { } { unode->urb = urb; tmp___0 = ldv_usb_alloc_coherent_113(dev->udev, 65024UL, 208U, & urb->transfer_dma); buf = (char *)tmp___0; } if ((unsigned long )buf == (unsigned long )((char *)0)) { { kfree((void const *)unode); ldv_usb_free_urb_114(urb); } goto ldv_34295; } else { } { tmp___1 = __create_pipe(dev->udev, 1U); usb_fill_bulk_urb(urb, dev->udev, tmp___1 | 3221225472U, (void *)buf, (int )size, & dlfb_urb_completion, (void *)unode); urb->transfer_flags = urb->transfer_flags | 4U; list_add_tail(& unode->entry, & dev->urbs.list); i = i + 1; } ldv_34300: ; if (i < count) { goto ldv_34299; } else { } ldv_34295: { sema_init(& dev->urbs.limit_sem, i); dev->urbs.count = i; dev->urbs.available = i; printk("\rudlfb: allocated %d %d byte urbs\n", i, (int )size); } return (i); } } static struct urb *dlfb_get_urb(struct dlfb_data *dev ) { int ret ; struct list_head *entry ; struct urb_node *unode ; struct urb *urb ; unsigned long flags ; int tmp ; long tmp___0 ; struct list_head const *__mptr ; { { ret = 0; urb = (struct urb *)0; ret = down_timeout(& dev->urbs.limit_sem, 250L); } if (ret != 0) { { atomic_set(& dev->lost_pixels, 1); printk("\fudlfb: wait for urb interrupted: %x available: %d\n", ret, dev->urbs.available); } goto error; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(& dev->urbs.lock); tmp = list_empty((struct list_head const *)(& dev->urbs.list)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/video/fbdev/udlfb.c"), "i" (1932), "i" (12UL)); __builtin_unreachable(); } } else { } { entry = dev->urbs.list.next; list_del_init(entry); dev->urbs.available = dev->urbs.available - 1; ldv_spin_unlock_irqrestore_107(& dev->urbs.lock, flags); __mptr = (struct list_head const *)entry; unode = (struct urb_node *)__mptr; urb = unode->urb; } error: ; return (urb); } } static int dlfb_submit_urb(struct dlfb_data *dev , struct urb *urb , size_t len ) { int ret ; long tmp ; { { tmp = ldv__builtin_expect(len > dev->urbs.size, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/video/fbdev/udlfb.c"), "i" (1950), "i" (12UL)); __builtin_unreachable(); } } else { } { urb->transfer_buffer_length = (u32 )len; ret = ldv_usb_submit_urb_117(urb, 208U); } if (ret != 0) { { dlfb_urb_completion(urb); atomic_set(& dev->lost_pixels, 1); printk("\vudlfb: usb_submit_urb error %x\n", ret); } } else { } return (ret); } } void ldv_EMGentry_exit_dlfb_driver_exit_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_dlfb_driver_init_14_11(int (*arg0)(void) ) ; void ldv_dispatch_deregister_10_1(struct usb_driver *arg0 ) ; void ldv_dispatch_deregister_12_1(struct fb_info *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_9_14_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_4_14_5(void) ; void ldv_dispatch_instance_deregister_7_2(struct timer_list *arg0 ) ; void ldv_dispatch_instance_deregister_9_2(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_register_7_3(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_3(struct usb_driver *arg0 ) ; void ldv_dispatch_register_11_2(struct usb_driver *arg0 ) ; void ldv_dispatch_register_13_2(struct fb_info *arg0 ) ; void ldv_dispatch_register_dummy_factory_9_14_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_4_14_7(void) ; void ldv_dummy_resourceless_instance_callback_1_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_1_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_1_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_1_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_2_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_2_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_2_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_10(void (*arg0)(struct fb_info * , struct fb_copyarea * ) , struct fb_info *arg1 , struct fb_copyarea *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_11(void (*arg0)(struct fb_info * , struct fb_fillrect * ) , struct fb_info *arg1 , struct fb_fillrect *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_12(void (*arg0)(struct fb_info * , struct fb_image * ) , struct fb_info *arg1 , struct fb_image *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_13(int (*arg0)(struct fb_info * , unsigned int , unsigned long ) , struct fb_info *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_16(int (*arg0)(struct fb_info * , struct vm_area_struct * ) , struct fb_info *arg1 , struct vm_area_struct *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_17(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_20(long (*arg0)(struct fb_info * , char * , unsigned long , long long * ) , struct fb_info *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_23(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_26(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_27(int (*arg0)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) , unsigned int arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 , struct fb_info *arg6 ) ; void ldv_dummy_resourceless_instance_callback_5_3(int (*arg0)(int , struct fb_info * ) , int arg1 , struct fb_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_30(long (*arg0)(struct fb_info * , char * , unsigned long , long long * ) , struct fb_info *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_9(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_0(void *arg0 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; int ldv_register_framebuffer(int arg0 , struct fb_info *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_fb_ops_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_timer_dummy_factory_7(void *arg0 ) ; void ldv_timer_instance_callback_6_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_6(void *arg0 ) ; int ldv_unregister_framebuffer(int arg0 , struct fb_info *arg1 ) ; void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) ; void ldv_usb_dummy_factory_9(void *arg0 ) ; void ldv_usb_instance_post_8_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_pre_8_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_instance_probe_8_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) ; void ldv_usb_instance_release_8_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_resume_8_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_usb_usb_instance_8(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_dlfb_driver_exit_14_2(void (*arg0)(void) ) { { { dlfb_driver_exit(); } return; } } int ldv_EMGentry_init_dlfb_driver_init_14_11(int (*arg0)(void) ) { int tmp ; { { tmp = dlfb_driver_init(); } return (tmp); } } void ldv_dispatch_deregister_10_1(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_12_1(struct fb_info *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_9_14_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_4_14_5(void) { { return; } } void ldv_dispatch_instance_deregister_7_2(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_deregister_9_2(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_instance_register_7_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_6 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_timer_instance_6 *)tmp; cf_arg_6->arg0 = arg0; ldv_timer_timer_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_instance_register_9_3(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_8 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_usb_instance_8 *)tmp; cf_arg_8->arg0 = arg0; ldv_usb_usb_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_register_11_2(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_8 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_9 = (struct ldv_struct_usb_instance_8 *)tmp; cf_arg_9->arg0 = arg0; ldv_usb_dummy_factory_9((void *)cf_arg_9); } return; } } void ldv_dispatch_register_13_2(struct fb_info *arg0 ) { struct ldv_struct_dummy_resourceless_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_dummy_resourceless_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_struct_fb_ops_dummy_resourceless_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_dummy_factory_9_14_6(void) { struct ldv_struct_EMGentry_14 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_14 *)tmp; ldv_timer_dummy_factory_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_4_14_7(void) { struct ldv_struct_EMGentry_14 *cf_arg_1 ; struct ldv_struct_EMGentry_14 *cf_arg_2 ; struct ldv_struct_EMGentry_14 *cf_arg_3 ; struct ldv_struct_EMGentry_14 *cf_arg_4 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_14 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_1((void *)cf_arg_1); tmp___0 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_14 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_2((void *)cf_arg_2); tmp___1 = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_14 *)tmp___1; ldv_struct_device_attribute_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___2 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_14 *)tmp___2; ldv_struct_device_attribute_dummy_resourceless_instance_4((void *)cf_arg_4); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { metrics_reset_store(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_store(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_show(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { metrics_bytes_identical_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { metrics_reset_store(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_2_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_store(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_show(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_2_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { metrics_bytes_rendered_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { metrics_reset_store(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_store(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_show(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { metrics_bytes_sent_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { metrics_reset_store(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_store(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { edid_show(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { metrics_cpu_kcycles_used_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_10(void (*arg0)(struct fb_info * , struct fb_copyarea * ) , struct fb_info *arg1 , struct fb_copyarea *arg2 ) { { { dlfb_ops_copyarea(arg1, (struct fb_copyarea const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_11(void (*arg0)(struct fb_info * , struct fb_fillrect * ) , struct fb_info *arg1 , struct fb_fillrect *arg2 ) { { { dlfb_ops_fillrect(arg1, (struct fb_fillrect const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_12(void (*arg0)(struct fb_info * , struct fb_image * ) , struct fb_info *arg1 , struct fb_image *arg2 ) { { { dlfb_ops_imageblit(arg1, (struct fb_image const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_13(int (*arg0)(struct fb_info * , unsigned int , unsigned long ) , struct fb_info *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { dlfb_ops_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_16(int (*arg0)(struct fb_info * , struct vm_area_struct * ) , struct fb_info *arg1 , struct vm_area_struct *arg2 ) { { { dlfb_ops_mmap(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_17(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) { { { dlfb_ops_open(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_20(long (*arg0)(struct fb_info * , char * , unsigned long , long long * ) , struct fb_info *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { fb_sys_read(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_5_23(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) { { { dlfb_ops_release(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_26(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) { { { dlfb_ops_set_par(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_27(int (*arg0)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) , unsigned int arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 , struct fb_info *arg6 ) { { { dlfb_ops_setcolreg(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(int (*arg0)(int , struct fb_info * ) , int arg1 , struct fb_info *arg2 ) { { { dlfb_ops_blank(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_30(long (*arg0)(struct fb_info * , char * , unsigned long , long long * ) , struct fb_info *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { dlfb_ops_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) { { { dlfb_ops_check_var(arg1, arg2); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { void (*ldv_14_exit_dlfb_driver_exit_default)(void) ; int (*ldv_14_init_dlfb_driver_init_default)(void) ; int ldv_14_ret_default ; int tmp ; int tmp___0 ; { { ldv_14_ret_default = ldv_EMGentry_init_dlfb_driver_init_14_11(ldv_14_init_dlfb_driver_init_default); ldv_14_ret_default = ldv_ldv_post_init_118(ldv_14_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_14_ret_default != 0); ldv_ldv_check_final_state_119(); ldv_stop(); } return; } else { { ldv_assume(ldv_14_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_4_14_7(); ldv_dispatch_register_dummy_factory_9_14_6(); ldv_dispatch_deregister_dummy_resourceless_instance_4_14_5(); ldv_dispatch_deregister_dummy_factory_9_14_4(); } } else { } { ldv_EMGentry_exit_dlfb_driver_exit_14_2(ldv_14_exit_dlfb_driver_exit_default); ldv_ldv_check_final_state_120(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_121(); ldv_entry_EMGentry_14((void *)0); } return 0; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_0_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_0_ret_val_default = ldv_iio_triggered_buffer_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_iio_triggered_buffer_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_iio_triggered_buffer_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } int ldv_register_framebuffer(int arg0 , struct fb_info *arg1 ) { struct fb_info *ldv_13_struct_fb_info_ptr_struct_fb_info_ptr ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_struct_fb_info_ptr_struct_fb_info_ptr = arg1; ldv_dispatch_register_13_2(ldv_13_struct_fb_info_ptr_struct_fb_info_ptr); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_device_attribute_dummy_resourceless_instance_1(void *arg0 ) { long (*ldv_1_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_1_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_1_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_1_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_1_container_struct_bin_attribute ; struct device_attribute *ldv_1_container_struct_device_attribute ; struct device *ldv_1_container_struct_device_ptr ; struct file *ldv_1_container_struct_file_ptr ; struct kobject *ldv_1_container_struct_kobject_ptr ; char *ldv_1_ldv_param_12_2_default ; unsigned long ldv_1_ldv_param_12_3_default ; char *ldv_1_ldv_param_15_3_default ; long long ldv_1_ldv_param_15_4_default ; unsigned long ldv_1_ldv_param_15_5_default ; char *ldv_1_ldv_param_3_3_default ; long long ldv_1_ldv_param_3_4_default ; unsigned long ldv_1_ldv_param_3_5_default ; char *ldv_1_ldv_param_9_2_default ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { goto ldv_call_1; return; ldv_call_1: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_3_3_default = (char *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_1_ldv_param_15_3_default = (char *)tmp___1; ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_write, ldv_1_container_struct_file_ptr, ldv_1_container_struct_kobject_ptr, ldv_1_container_struct_bin_attribute, ldv_1_ldv_param_15_3_default, ldv_1_ldv_param_15_4_default, ldv_1_ldv_param_15_5_default); ldv_free((void *)ldv_1_ldv_param_15_3_default); } goto ldv_35256; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_1_ldv_param_12_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_store, ldv_1_container_struct_device_ptr, ldv_1_container_struct_device_attribute, ldv_1_ldv_param_12_2_default, ldv_1_ldv_param_12_3_default); ldv_free((void *)ldv_1_ldv_param_12_2_default); } goto ldv_35256; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_1_ldv_param_9_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_show, ldv_1_container_struct_device_ptr, ldv_1_container_struct_device_attribute, ldv_1_ldv_param_9_2_default); ldv_free((void *)ldv_1_ldv_param_9_2_default); } goto ldv_35256; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_read, ldv_1_container_struct_file_ptr, ldv_1_container_struct_kobject_ptr, ldv_1_container_struct_bin_attribute, ldv_1_ldv_param_3_3_default, ldv_1_ldv_param_3_4_default, ldv_1_ldv_param_3_5_default); } goto ldv_35256; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35256: { ldv_free((void *)ldv_1_ldv_param_3_3_default); } goto ldv_call_1; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_2(void *arg0 ) { long (*ldv_2_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_2_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_2_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_2_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_2_container_struct_bin_attribute ; struct device_attribute *ldv_2_container_struct_device_attribute ; struct device *ldv_2_container_struct_device_ptr ; struct file *ldv_2_container_struct_file_ptr ; struct kobject *ldv_2_container_struct_kobject_ptr ; char *ldv_2_ldv_param_12_2_default ; unsigned long ldv_2_ldv_param_12_3_default ; char *ldv_2_ldv_param_15_3_default ; long long ldv_2_ldv_param_15_4_default ; unsigned long ldv_2_ldv_param_15_5_default ; char *ldv_2_ldv_param_3_3_default ; long long ldv_2_ldv_param_3_4_default ; unsigned long ldv_2_ldv_param_3_5_default ; char *ldv_2_ldv_param_9_2_default ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { goto ldv_call_2; return; ldv_call_2: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { tmp = ldv_xmalloc(1UL); ldv_2_ldv_param_3_3_default = (char *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_2_ldv_param_15_3_default = (char *)tmp___1; ldv_dummy_resourceless_instance_callback_2_15(ldv_2_callback_write, ldv_2_container_struct_file_ptr, ldv_2_container_struct_kobject_ptr, ldv_2_container_struct_bin_attribute, ldv_2_ldv_param_15_3_default, ldv_2_ldv_param_15_4_default, ldv_2_ldv_param_15_5_default); ldv_free((void *)ldv_2_ldv_param_15_3_default); } goto ldv_35303; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_2_ldv_param_12_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_store, ldv_2_container_struct_device_ptr, ldv_2_container_struct_device_attribute, ldv_2_ldv_param_12_2_default, ldv_2_ldv_param_12_3_default); ldv_free((void *)ldv_2_ldv_param_12_2_default); } goto ldv_35303; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_2_ldv_param_9_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_2_9(ldv_2_callback_show, ldv_2_container_struct_device_ptr, ldv_2_container_struct_device_attribute, ldv_2_ldv_param_9_2_default); ldv_free((void *)ldv_2_ldv_param_9_2_default); } goto ldv_35303; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_read, ldv_2_container_struct_file_ptr, ldv_2_container_struct_kobject_ptr, ldv_2_container_struct_bin_attribute, ldv_2_ldv_param_3_3_default, ldv_2_ldv_param_3_4_default, ldv_2_ldv_param_3_5_default); } goto ldv_35303; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35303: { ldv_free((void *)ldv_2_ldv_param_3_3_default); } goto ldv_call_2; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) { long (*ldv_3_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_3_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_3_container_struct_bin_attribute ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; struct file *ldv_3_container_struct_file_ptr ; struct kobject *ldv_3_container_struct_kobject_ptr ; char *ldv_3_ldv_param_12_2_default ; unsigned long ldv_3_ldv_param_12_3_default ; char *ldv_3_ldv_param_15_3_default ; long long ldv_3_ldv_param_15_4_default ; unsigned long ldv_3_ldv_param_15_5_default ; char *ldv_3_ldv_param_3_3_default ; long long ldv_3_ldv_param_3_4_default ; unsigned long ldv_3_ldv_param_3_5_default ; char *ldv_3_ldv_param_9_2_default ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { goto ldv_call_3; return; ldv_call_3: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { tmp = ldv_xmalloc(1UL); ldv_3_ldv_param_3_3_default = (char *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_3_ldv_param_15_3_default = (char *)tmp___1; ldv_dummy_resourceless_instance_callback_3_15(ldv_3_callback_write, ldv_3_container_struct_file_ptr, ldv_3_container_struct_kobject_ptr, ldv_3_container_struct_bin_attribute, ldv_3_ldv_param_15_3_default, ldv_3_ldv_param_15_4_default, ldv_3_ldv_param_15_5_default); ldv_free((void *)ldv_3_ldv_param_15_3_default); } goto ldv_35350; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_3_ldv_param_12_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_12_2_default, ldv_3_ldv_param_12_3_default); ldv_free((void *)ldv_3_ldv_param_12_2_default); } goto ldv_35350; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default); ldv_free((void *)ldv_3_ldv_param_9_2_default); } goto ldv_35350; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_read, ldv_3_container_struct_file_ptr, ldv_3_container_struct_kobject_ptr, ldv_3_container_struct_bin_attribute, ldv_3_ldv_param_3_3_default, ldv_3_ldv_param_3_4_default, ldv_3_ldv_param_3_5_default); } goto ldv_35350; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35350: { ldv_free((void *)ldv_3_ldv_param_3_3_default); } goto ldv_call_3; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_4_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_4_container_struct_bin_attribute ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; struct file *ldv_4_container_struct_file_ptr ; struct kobject *ldv_4_container_struct_kobject_ptr ; char *ldv_4_ldv_param_12_2_default ; unsigned long ldv_4_ldv_param_12_3_default ; char *ldv_4_ldv_param_15_3_default ; long long ldv_4_ldv_param_15_4_default ; unsigned long ldv_4_ldv_param_15_5_default ; char *ldv_4_ldv_param_3_3_default ; long long ldv_4_ldv_param_3_4_default ; unsigned long ldv_4_ldv_param_3_5_default ; char *ldv_4_ldv_param_9_2_default ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { goto ldv_call_4; return; ldv_call_4: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_3_default = (char *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_4_ldv_param_15_3_default = (char *)tmp___1; ldv_dummy_resourceless_instance_callback_4_15(ldv_4_callback_write, ldv_4_container_struct_file_ptr, ldv_4_container_struct_kobject_ptr, ldv_4_container_struct_bin_attribute, ldv_4_ldv_param_15_3_default, ldv_4_ldv_param_15_4_default, ldv_4_ldv_param_15_5_default); ldv_free((void *)ldv_4_ldv_param_15_3_default); } goto ldv_35397; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_4_ldv_param_12_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_4_12(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_12_2_default, ldv_4_ldv_param_12_3_default); ldv_free((void *)ldv_4_ldv_param_12_2_default); } goto ldv_35397; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); } goto ldv_35397; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_read, ldv_4_container_struct_file_ptr, ldv_4_container_struct_kobject_ptr, ldv_4_container_struct_bin_attribute, ldv_4_ldv_param_3_3_default, ldv_4_ldv_param_3_4_default, ldv_4_ldv_param_3_5_default); } goto ldv_35397; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35397: { ldv_free((void *)ldv_4_ldv_param_3_3_default); } goto ldv_call_4; } else { return; } return; } } void ldv_struct_fb_ops_dummy_resourceless_instance_5(void *arg0 ) { int (*ldv_5_callback_fb_blank)(int , struct fb_info * ) ; int (*ldv_5_callback_fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*ldv_5_callback_fb_copyarea)(struct fb_info * , struct fb_copyarea * ) ; void (*ldv_5_callback_fb_fillrect)(struct fb_info * , struct fb_fillrect * ) ; void (*ldv_5_callback_fb_imageblit)(struct fb_info * , struct fb_image * ) ; int (*ldv_5_callback_fb_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*ldv_5_callback_fb_mmap)(struct fb_info * , struct vm_area_struct * ) ; int (*ldv_5_callback_fb_open)(struct fb_info * , int ) ; long (*ldv_5_callback_fb_read)(struct fb_info * , char * , unsigned long , long long * ) ; int (*ldv_5_callback_fb_release)(struct fb_info * , int ) ; int (*ldv_5_callback_fb_set_par)(struct fb_info * ) ; int (*ldv_5_callback_fb_setcolreg)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) ; long (*ldv_5_callback_fb_write)(struct fb_info * , char * , unsigned long , long long * ) ; struct fb_copyarea *ldv_5_container_struct_fb_copyarea_ptr ; struct fb_fillrect *ldv_5_container_struct_fb_fillrect_ptr ; struct fb_image *ldv_5_container_struct_fb_image_ptr ; struct fb_info *ldv_5_container_struct_fb_info_ptr ; struct fb_var_screeninfo *ldv_5_container_struct_fb_var_screeninfo_ptr ; struct vm_area_struct *ldv_5_container_struct_vm_area_struct_ptr ; unsigned int ldv_5_ldv_param_13_1_default ; unsigned long ldv_5_ldv_param_13_2_default ; int ldv_5_ldv_param_17_1_default ; char *ldv_5_ldv_param_20_1_default ; unsigned long ldv_5_ldv_param_20_2_default ; long long *ldv_5_ldv_param_20_3_default ; int ldv_5_ldv_param_23_1_default ; unsigned int ldv_5_ldv_param_27_0_default ; unsigned int ldv_5_ldv_param_27_1_default ; unsigned int ldv_5_ldv_param_27_2_default ; unsigned int ldv_5_ldv_param_27_3_default ; unsigned int ldv_5_ldv_param_27_4_default ; char *ldv_5_ldv_param_30_1_default ; unsigned long ldv_5_ldv_param_30_2_default ; long long *ldv_5_ldv_param_30_3_default ; int ldv_5_ldv_param_3_0_default ; struct ldv_struct_dummy_resourceless_instance_5 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { data = (struct ldv_struct_dummy_resourceless_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_5 *)0)) { { ldv_5_container_struct_fb_info_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_5; return; ldv_call_5: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_30_1_default = (char *)tmp___0; tmp___1 = ldv_xmalloc(8UL); ldv_5_ldv_param_30_3_default = (long long *)tmp___1; ldv_dummy_resourceless_instance_callback_5_30(ldv_5_callback_fb_write, ldv_5_container_struct_fb_info_ptr, ldv_5_ldv_param_30_1_default, ldv_5_ldv_param_30_2_default, ldv_5_ldv_param_30_3_default); ldv_free((void *)ldv_5_ldv_param_30_1_default); ldv_free((void *)ldv_5_ldv_param_30_3_default); } goto ldv_35477; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_27(ldv_5_callback_fb_setcolreg, ldv_5_ldv_param_27_0_default, ldv_5_ldv_param_27_1_default, ldv_5_ldv_param_27_2_default, ldv_5_ldv_param_27_3_default, ldv_5_ldv_param_27_4_default, ldv_5_container_struct_fb_info_ptr); } goto ldv_35477; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_26(ldv_5_callback_fb_set_par, ldv_5_container_struct_fb_info_ptr); } goto ldv_35477; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_23(ldv_5_callback_fb_release, ldv_5_container_struct_fb_info_ptr, ldv_5_ldv_param_23_1_default); } goto ldv_35477; case_5: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_5_ldv_param_20_1_default = (char *)tmp___2; tmp___3 = ldv_xmalloc(8UL); ldv_5_ldv_param_20_3_default = (long long *)tmp___3; ldv_dummy_resourceless_instance_callback_5_20(ldv_5_callback_fb_read, ldv_5_container_struct_fb_info_ptr, ldv_5_ldv_param_20_1_default, ldv_5_ldv_param_20_2_default, ldv_5_ldv_param_20_3_default); ldv_free((void *)ldv_5_ldv_param_20_1_default); ldv_free((void *)ldv_5_ldv_param_20_3_default); } goto ldv_35477; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_17(ldv_5_callback_fb_open, ldv_5_container_struct_fb_info_ptr, ldv_5_ldv_param_17_1_default); } goto ldv_35477; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_16(ldv_5_callback_fb_mmap, ldv_5_container_struct_fb_info_ptr, ldv_5_container_struct_vm_area_struct_ptr); } goto ldv_35477; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_13(ldv_5_callback_fb_ioctl, ldv_5_container_struct_fb_info_ptr, ldv_5_ldv_param_13_1_default, ldv_5_ldv_param_13_2_default); } goto ldv_35477; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_12(ldv_5_callback_fb_imageblit, ldv_5_container_struct_fb_info_ptr, ldv_5_container_struct_fb_image_ptr); } goto ldv_35477; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_11(ldv_5_callback_fb_fillrect, ldv_5_container_struct_fb_info_ptr, ldv_5_container_struct_fb_fillrect_ptr); } goto ldv_35477; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_10(ldv_5_callback_fb_copyarea, ldv_5_container_struct_fb_info_ptr, ldv_5_container_struct_fb_copyarea_ptr); } goto ldv_35477; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_fb_check_var, ldv_5_container_struct_fb_var_screeninfo_ptr, ldv_5_container_struct_fb_info_ptr); } goto ldv_35477; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_fb_blank, ldv_5_ldv_param_3_0_default, ldv_5_container_struct_fb_info_ptr); } goto ldv_35477; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35477: ; goto ldv_call_5; } else { return; } return; } } void ldv_timer_dummy_factory_7(void *arg0 ) { struct timer_list *ldv_7_container_timer_list ; { { ldv_dispatch_instance_register_7_3(ldv_7_container_timer_list); ldv_dispatch_instance_deregister_7_2(ldv_7_container_timer_list); } return; return; } } void ldv_timer_instance_callback_6_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_6(void *arg0 ) { struct timer_list *ldv_6_container_timer_list ; struct ldv_struct_timer_instance_6 *data ; { data = (struct ldv_struct_timer_instance_6 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_6 *)0)) { { ldv_6_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_6_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_6_2(ldv_6_container_timer_list->function, ldv_6_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } int ldv_unregister_framebuffer(int arg0 , struct fb_info *arg1 ) { struct fb_info *ldv_12_struct_fb_info_ptr_struct_fb_info_ptr ; { { ldv_12_struct_fb_info_ptr_struct_fb_info_ptr = arg1; ldv_dispatch_deregister_12_1(ldv_12_struct_fb_info_ptr_struct_fb_info_ptr); } return (arg0); return (arg0); } } void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) { struct usb_driver *ldv_10_usb_driver_usb_driver ; { { ldv_10_usb_driver_usb_driver = arg1; ldv_dispatch_deregister_10_1(ldv_10_usb_driver_usb_driver); } return; return; } } void ldv_usb_dummy_factory_9(void *arg0 ) { struct usb_driver *ldv_9_container_usb_driver ; struct ldv_struct_usb_instance_8 *data ; { data = (struct ldv_struct_usb_instance_8 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_8 *)0)) { { ldv_9_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { ldv_dispatch_instance_register_9_3(ldv_9_container_usb_driver); ldv_dispatch_instance_deregister_9_2(ldv_9_container_usb_driver); } return; return; } } void ldv_usb_instance_post_8_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_usb_instance_pre_8_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_usb_instance_probe_8_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) { int tmp ; { { tmp = dlfb_usb_probe(arg1, (struct usb_device_id const *)arg2); } return (tmp); } } void ldv_usb_instance_release_8_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { dlfb_usb_disconnect(arg1); } return; } } void ldv_usb_instance_resume_8_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) { struct usb_driver *ldv_11_usb_driver_usb_driver ; int tmp ; { { arg0 = ldv_pre_usb_register_driver(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_usb_driver_usb_driver = arg1; ldv_dispatch_register_11_2(ldv_11_usb_driver_usb_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_usb_usb_instance_8(void *arg0 ) { struct usb_driver *ldv_8_container_usb_driver ; struct usb_device_id *ldv_8_ldv_param_13_1_default ; int ldv_8_probe_retval_default ; _Bool ldv_8_reset_flag_default ; struct usb_interface *ldv_8_resource_usb_interface ; struct usb_device *ldv_8_usb_device_usb_device ; struct ldv_struct_usb_instance_8 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_usb_instance_8 *)arg0; ldv_8_reset_flag_default = 0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_8 *)0)) { { ldv_8_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1552UL); ldv_8_resource_usb_interface = (struct usb_interface *)tmp; tmp___0 = ldv_xmalloc(2024UL); ldv_8_usb_device_usb_device = (struct usb_device *)tmp___0; ldv_8_resource_usb_interface->dev.parent = & ldv_8_usb_device_usb_device->dev; tmp___1 = ldv_xmalloc(32UL); ldv_8_ldv_param_13_1_default = (struct usb_device_id *)tmp___1; ldv_ldv_pre_probe_122(); ldv_8_probe_retval_default = ldv_usb_instance_probe_8_13((int (*)(struct usb_interface * , struct usb_device_id * ))ldv_8_container_usb_driver->probe, ldv_8_resource_usb_interface, ldv_8_ldv_param_13_1_default); ldv_8_probe_retval_default = ldv_ldv_post_probe_123(ldv_8_probe_retval_default); ldv_free((void *)ldv_8_ldv_param_13_1_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_8_probe_retval_default == 0); tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } if (tmp___2 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned long )ldv_8_container_usb_driver->pre_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_pre_8_10(ldv_8_container_usb_driver->pre_reset, ldv_8_resource_usb_interface); } } else { } if ((unsigned long )ldv_8_container_usb_driver->post_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_post_8_9(ldv_8_container_usb_driver->post_reset, ldv_8_resource_usb_interface); } } else { } goto ldv_35565; case_2: /* CIL Label */ ; if ((unsigned long )ldv_8_container_usb_driver->resume != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_resume_8_7(ldv_8_container_usb_driver->resume, ldv_8_resource_usb_interface); } } else { } goto ldv_35565; case_3: /* CIL Label */ ; goto ldv_35565; case_4: /* CIL Label */ ; goto ldv_35565; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35565: { ldv_usb_instance_release_8_4(ldv_8_container_usb_driver->disconnect, ldv_8_resource_usb_interface); } } else { { ldv_assume(ldv_8_probe_retval_default != 0); } } { ldv_free((void *)ldv_8_resource_usb_interface); ldv_free((void *)ldv_8_usb_device_usb_device); } return; return; } } __inline static void atomic_add(int i , atomic_t *v ) { { { ldv_linux_usb_dev_atomic_add(i, v); } return; } } __inline static int atomic_sub_and_test(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_sub_and_test(i, v); } return (tmp); } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static int ldv_unregister_framebuffer_98(struct fb_info *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_framebuffer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_framebuffer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void *ldv_vmalloc_99(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vzalloc_100(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(ldv_func_arg1); } return; } } static int ldv_register_framebuffer_103(struct fb_info *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_framebuffer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_framebuffer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_usb_register_driver_104(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = usb_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_usb_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_usb_deregister_105(struct usb_driver *ldv_func_arg1 ) { { { usb_deregister(ldv_func_arg1); ldv_usb_deregister((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_urb_list(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_urb_list(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_urb_list(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_usb_free_coherent_110(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { { ldv_linux_usb_coherent_usb_free_coherent(addr); } return; } } static void ldv_usb_free_urb_111(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static struct urb *ldv_usb_alloc_urb_112(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void *ldv_usb_alloc_coherent_113(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_coherent_usb_alloc_coherent(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void ldv_usb_free_urb_114(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_urb_list(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_usb_submit_urb_117(struct urb *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } static int ldv_ldv_post_init_118(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_119(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_120(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_121(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_122(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_123(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_filter_err_code(int ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_update_lock_of_backlight_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_urb_list(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_urb_list(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_urb_list(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_urb_list(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_urb_list(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_urb_list(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_urb_list(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_urb_list(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_urb_list(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_urb_list == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }