/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct vm_area_struct; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __anonstruct_nodemask_t_46 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_46 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct __anonstruct_mm_context_t_111 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_111 mm_context_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_144 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_145 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_143 { struct __anonstruct____missing_field_name_144 __annonCompField32 ; struct __anonstruct____missing_field_name_145 __annonCompField33 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_143 __annonCompField34 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_146 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_148 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_152 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_151 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_152 __annonCompField37 ; int units ; }; struct __anonstruct____missing_field_name_150 { union __anonunion____missing_field_name_151 __annonCompField38 ; atomic_t _count ; }; union __anonunion____missing_field_name_149 { unsigned long counters ; struct __anonstruct____missing_field_name_150 __annonCompField39 ; unsigned int active ; }; struct __anonstruct____missing_field_name_147 { union __anonunion____missing_field_name_148 __annonCompField36 ; union __anonunion____missing_field_name_149 __annonCompField40 ; }; struct __anonstruct____missing_field_name_154 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_155 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_153 { struct list_head lru ; struct __anonstruct____missing_field_name_154 __annonCompField42 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_155 __annonCompField43 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_156 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_146 __annonCompField35 ; struct __anonstruct____missing_field_name_147 __annonCompField41 ; union __anonunion____missing_field_name_153 __annonCompField44 ; union __anonunion____missing_field_name_156 __annonCompField45 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_157 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_157 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_159 { uid_t val ; }; typedef struct __anonstruct_kuid_t_159 kuid_t; struct __anonstruct_kgid_t_160 { gid_t val ; }; typedef struct __anonstruct_kgid_t_160 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_161 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_161 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_163 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_164 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_166 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_168 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_167 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_168 _addr_bnd ; }; struct __anonstruct__sigpoll_169 { long _band ; int _fd ; }; struct __anonstruct__sigsys_170 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_162 { int _pad[28U] ; struct __anonstruct__kill_163 _kill ; struct __anonstruct__timer_164 _timer ; struct __anonstruct__rt_165 _rt ; struct __anonstruct__sigchld_166 _sigchld ; struct __anonstruct__sigfault_167 _sigfault ; struct __anonstruct__sigpoll_169 _sigpoll ; struct __anonstruct__sigsys_170 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_162 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_175 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_176 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_178 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_177 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_178 __annonCompField50 ; }; union __anonunion_type_data_179 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_181 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_180 { union __anonunion_payload_181 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_175 __annonCompField48 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_176 __annonCompField49 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_177 __annonCompField51 ; union __anonunion_type_data_179 type_data ; union __anonunion____missing_field_name_180 __annonCompField52 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; struct kref { atomic_t refcount ; }; union __anonunion____missing_field_name_190 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_190 __annonCompField59 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_191 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_191 __annonCompField60 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_196 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct snd_card; struct snd_info_entry; struct snd_shutdown_f_ops; struct snd_mixer_oss; struct snd_card { int number ; char id[16U] ; char driver[16U] ; char shortname[32U] ; char longname[80U] ; char mixername[80U] ; char components[128U] ; struct module *module ; void *private_data ; void (*private_free)(struct snd_card * ) ; struct list_head devices ; struct device ctl_dev ; unsigned int last_numid ; struct rw_semaphore controls_rwsem ; rwlock_t ctl_files_rwlock ; int controls_count ; int user_ctl_count ; struct list_head controls ; struct list_head ctl_files ; struct mutex user_ctl_lock ; struct snd_info_entry *proc_root ; struct snd_info_entry *proc_id ; struct proc_dir_entry *proc_root_link ; struct list_head files_list ; struct snd_shutdown_f_ops *s_f_ops ; spinlock_t files_lock ; int shutdown ; struct completion *release_completion ; struct device *dev ; struct device card_dev ; struct attribute_group const *dev_groups[4U] ; bool registered ; unsigned int power_state ; struct mutex power_lock ; wait_queue_head_t power_sleep ; struct snd_mixer_oss *mixer_oss ; int mixer_oss_change_count ; }; struct snd_hwdep_dsp_status { unsigned int version ; unsigned char id[32U] ; unsigned int num_dsps ; unsigned int dsp_loaded ; unsigned int chip_ready ; unsigned char reserved[16U] ; }; struct snd_hwdep_dsp_image { unsigned int index ; unsigned char name[64U] ; unsigned char *image ; size_t length ; unsigned long driver_data ; }; typedef unsigned long snd_pcm_uframes_t; typedef long snd_pcm_sframes_t; typedef int snd_pcm_access_t; typedef int snd_pcm_format_t; typedef int snd_pcm_subformat_t; typedef int snd_pcm_state_t; union snd_pcm_sync_id { unsigned char id[16U] ; unsigned short id16[8U] ; unsigned int id32[4U] ; }; struct snd_interval { unsigned int min ; unsigned int max ; unsigned char openmin : 1 ; unsigned char openmax : 1 ; unsigned char integer : 1 ; unsigned char empty : 1 ; }; struct snd_mask { __u32 bits[8U] ; }; struct snd_pcm_hw_params { unsigned int flags ; struct snd_mask masks[3U] ; struct snd_mask mres[5U] ; struct snd_interval intervals[12U] ; struct snd_interval ires[9U] ; unsigned int rmask ; unsigned int cmask ; unsigned int info ; unsigned int msbits ; unsigned int rate_num ; unsigned int rate_den ; snd_pcm_uframes_t fifo_size ; unsigned char reserved[64U] ; }; struct snd_pcm_mmap_status { snd_pcm_state_t state ; int pad1 ; snd_pcm_uframes_t hw_ptr ; struct timespec tstamp ; snd_pcm_state_t suspended_state ; struct timespec audio_tstamp ; }; struct snd_pcm_mmap_control { snd_pcm_uframes_t appl_ptr ; snd_pcm_uframes_t avail_min ; }; struct snd_dma_device { int type ; struct device *dev ; }; struct snd_dma_buffer { struct snd_dma_device dev ; unsigned char *area ; dma_addr_t addr ; size_t bytes ; void *private_data ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_212 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_211 { struct __anonstruct____missing_field_name_212 __annonCompField62 ; }; struct lockref { union __anonunion____missing_field_name_211 __annonCompField63 ; }; struct vfsmount; struct __anonstruct____missing_field_name_214 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField64 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_213 __annonCompField65 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_215 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_215 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_217 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_216 { struct __anonstruct____missing_field_name_217 __annonCompField66 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_216 __annonCompField67 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_219 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_219 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_220 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_220 __annonCompField69 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_223 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_224 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_225 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_223 __annonCompField70 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_224 __annonCompField71 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_225 __annonCompField72 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_226 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_226 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_228 { struct list_head link ; int state ; }; union __anonunion_fl_u_227 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_228 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_227 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; typedef struct poll_table_struct poll_table; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_230 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_230 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct snd_pcm_oss_setup { char *task_name ; unsigned char disable : 1 ; unsigned char direct : 1 ; unsigned char block : 1 ; unsigned char nonblock : 1 ; unsigned char partialfrag : 1 ; unsigned char nosilence : 1 ; unsigned char buggyptr : 1 ; unsigned int periods ; unsigned int period_size ; struct snd_pcm_oss_setup *next ; }; struct snd_pcm_plugin; struct snd_pcm_oss_runtime { unsigned char params : 1 ; unsigned char prepare : 1 ; unsigned char trigger : 1 ; unsigned char sync_trigger : 1 ; int rate ; int format ; unsigned int channels ; unsigned int fragshift ; unsigned int maxfrags ; unsigned int subdivision ; size_t period_bytes ; size_t period_frames ; size_t period_ptr ; unsigned int periods ; size_t buffer_bytes ; size_t bytes ; size_t mmap_bytes ; char *buffer ; size_t buffer_used ; struct mutex params_lock ; struct snd_pcm_plugin *plugin_first ; struct snd_pcm_plugin *plugin_last ; unsigned int prev_hw_ptr_period ; }; struct snd_pcm_substream; struct snd_pcm_oss_substream { unsigned char oss : 1 ; struct snd_pcm_oss_setup setup ; }; struct snd_pcm_oss_stream { struct snd_pcm_oss_setup *setup_list ; struct mutex setup_mutex ; struct snd_info_entry *proc_entry ; }; struct snd_pcm_oss { int reg ; unsigned int reg_mask ; }; struct snd_pcm_hardware { unsigned int info ; u64 formats ; unsigned int rates ; unsigned int rate_min ; unsigned int rate_max ; unsigned int channels_min ; unsigned int channels_max ; size_t buffer_bytes_max ; size_t period_bytes_min ; size_t period_bytes_max ; unsigned int periods_min ; unsigned int periods_max ; size_t fifo_size ; }; struct snd_pcm_ops { int (*open)(struct snd_pcm_substream * ) ; int (*close)(struct snd_pcm_substream * ) ; int (*ioctl)(struct snd_pcm_substream * , unsigned int , void * ) ; int (*hw_params)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) ; int (*hw_free)(struct snd_pcm_substream * ) ; int (*prepare)(struct snd_pcm_substream * ) ; int (*trigger)(struct snd_pcm_substream * , int ) ; snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream * ) ; int (*wall_clock)(struct snd_pcm_substream * , struct timespec * ) ; int (*copy)(struct snd_pcm_substream * , int , snd_pcm_uframes_t , void * , snd_pcm_uframes_t ) ; int (*silence)(struct snd_pcm_substream * , int , snd_pcm_uframes_t , snd_pcm_uframes_t ) ; struct page *(*page)(struct snd_pcm_substream * , unsigned long ) ; int (*mmap)(struct snd_pcm_substream * , struct vm_area_struct * ) ; int (*ack)(struct snd_pcm_substream * ) ; }; struct snd_pcm_hw_rule; struct snd_pcm_hw_rule { unsigned int cond ; int (*func)(struct snd_pcm_hw_params * , struct snd_pcm_hw_rule * ) ; int var ; int deps[4U] ; void *private ; }; struct snd_pcm_hw_constraints { struct snd_mask masks[3U] ; struct snd_interval intervals[12U] ; unsigned int rules_num ; unsigned int rules_all ; struct snd_pcm_hw_rule *rules ; }; struct snd_pcm_hwptr_log; struct snd_pcm_runtime { struct snd_pcm_substream *trigger_master ; struct timespec trigger_tstamp ; bool trigger_tstamp_latched ; int overrange ; snd_pcm_uframes_t avail_max ; snd_pcm_uframes_t hw_ptr_base ; snd_pcm_uframes_t hw_ptr_interrupt ; unsigned long hw_ptr_jiffies ; unsigned long hw_ptr_buffer_jiffies ; snd_pcm_sframes_t delay ; u64 hw_ptr_wrap ; snd_pcm_access_t access ; snd_pcm_format_t format ; snd_pcm_subformat_t subformat ; unsigned int rate ; unsigned int channels ; snd_pcm_uframes_t period_size ; unsigned int periods ; snd_pcm_uframes_t buffer_size ; snd_pcm_uframes_t min_align ; size_t byte_align ; unsigned int frame_bits ; unsigned int sample_bits ; unsigned int info ; unsigned int rate_num ; unsigned int rate_den ; unsigned char no_period_wakeup : 1 ; int tstamp_mode ; unsigned int period_step ; snd_pcm_uframes_t start_threshold ; snd_pcm_uframes_t stop_threshold ; snd_pcm_uframes_t silence_threshold ; snd_pcm_uframes_t silence_size ; snd_pcm_uframes_t boundary ; snd_pcm_uframes_t silence_start ; snd_pcm_uframes_t silence_filled ; union snd_pcm_sync_id sync ; struct snd_pcm_mmap_status *status ; struct snd_pcm_mmap_control *control ; snd_pcm_uframes_t twake ; wait_queue_head_t sleep ; wait_queue_head_t tsleep ; struct fasync_struct *fasync ; void *private_data ; void (*private_free)(struct snd_pcm_runtime * ) ; struct snd_pcm_hardware hw ; struct snd_pcm_hw_constraints hw_constraints ; void (*transfer_ack_begin)(struct snd_pcm_substream * ) ; void (*transfer_ack_end)(struct snd_pcm_substream * ) ; unsigned int timer_resolution ; int tstamp_type ; unsigned char *dma_area ; dma_addr_t dma_addr ; size_t dma_bytes ; struct snd_dma_buffer *dma_buffer_p ; struct snd_pcm_oss_runtime oss ; struct snd_pcm_hwptr_log *hwptr_log ; }; struct snd_pcm_group { spinlock_t lock ; struct mutex mutex ; struct list_head substreams ; int count ; }; struct snd_pcm; struct snd_pcm_str; struct snd_timer; struct snd_pcm_substream { struct snd_pcm *pcm ; struct snd_pcm_str *pstr ; void *private_data ; int number ; char name[32U] ; int stream ; struct pm_qos_request latency_pm_qos_req ; size_t buffer_bytes_max ; struct snd_dma_buffer dma_buffer ; size_t dma_max ; struct snd_pcm_ops const *ops ; struct snd_pcm_runtime *runtime ; struct snd_timer *timer ; unsigned char timer_running : 1 ; struct snd_pcm_substream *next ; struct list_head link_list ; struct snd_pcm_group self_group ; struct snd_pcm_group *group ; void *file ; int ref_count ; atomic_t mmap_count ; unsigned int f_flags ; void (*pcm_release)(struct snd_pcm_substream * ) ; struct pid *pid ; struct snd_pcm_oss_substream oss ; struct snd_info_entry *proc_root ; struct snd_info_entry *proc_info_entry ; struct snd_info_entry *proc_hw_params_entry ; struct snd_info_entry *proc_sw_params_entry ; struct snd_info_entry *proc_status_entry ; struct snd_info_entry *proc_prealloc_entry ; struct snd_info_entry *proc_prealloc_max_entry ; struct snd_info_entry *proc_xrun_injection_entry ; unsigned char hw_opened : 1 ; }; struct snd_kcontrol; struct snd_pcm_str { int stream ; struct snd_pcm *pcm ; unsigned int substream_count ; unsigned int substream_opened ; struct snd_pcm_substream *substream ; struct snd_pcm_oss_stream oss ; struct snd_info_entry *proc_root ; struct snd_info_entry *proc_info_entry ; unsigned int xrun_debug ; struct snd_info_entry *proc_xrun_debug_entry ; struct snd_kcontrol *chmap_kctl ; struct device dev ; }; struct snd_pcm { struct snd_card *card ; struct list_head list ; int device ; unsigned int info_flags ; unsigned short dev_class ; unsigned short dev_subclass ; char id[64U] ; char name[80U] ; struct snd_pcm_str streams[2U] ; struct mutex open_mutex ; wait_queue_head_t open_wait ; void *private_data ; void (*private_free)(struct snd_pcm * ) ; bool internal ; bool nonatomic ; struct snd_pcm_oss oss ; }; struct snd_info_buffer { char *buffer ; unsigned int curr ; unsigned int size ; unsigned int len ; int stop ; int error ; }; struct snd_info_entry_text { void (*read)(struct snd_info_entry * , struct snd_info_buffer * ) ; void (*write)(struct snd_info_entry * , struct snd_info_buffer * ) ; }; struct snd_info_entry_ops { int (*open)(struct snd_info_entry * , unsigned short , void ** ) ; int (*release)(struct snd_info_entry * , unsigned short , void * ) ; ssize_t (*read)(struct snd_info_entry * , void * , struct file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct snd_info_entry * , void * , struct file * , char const * , size_t , loff_t ) ; loff_t (*llseek)(struct snd_info_entry * , void * , struct file * , loff_t , int ) ; unsigned int (*poll)(struct snd_info_entry * , void * , struct file * , poll_table * ) ; int (*ioctl)(struct snd_info_entry * , void * , struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct snd_info_entry * , void * , struct inode * , struct file * , struct vm_area_struct * ) ; }; union __anonunion_c_231 { struct snd_info_entry_text text ; struct snd_info_entry_ops *ops ; }; struct snd_info_entry { char const *name ; umode_t mode ; long size ; unsigned short content ; union __anonunion_c_231 c ; struct snd_info_entry *parent ; struct snd_card *card ; struct module *module ; void *private_data ; void (*private_free)(struct snd_info_entry * ) ; struct proc_dir_entry *p ; struct mutex access ; struct list_head children ; struct list_head list ; }; struct snd_hwdep; struct snd_hwdep_ops { long long (*llseek)(struct snd_hwdep * , struct file * , long long , int ) ; long (*read)(struct snd_hwdep * , char * , long , loff_t * ) ; long (*write)(struct snd_hwdep * , char const * , long , loff_t * ) ; int (*open)(struct snd_hwdep * , struct file * ) ; int (*release)(struct snd_hwdep * , struct file * ) ; unsigned int (*poll)(struct snd_hwdep * , struct file * , poll_table * ) ; int (*ioctl)(struct snd_hwdep * , struct file * , unsigned int , unsigned long ) ; int (*ioctl_compat)(struct snd_hwdep * , struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct snd_hwdep * , struct file * , struct vm_area_struct * ) ; int (*dsp_status)(struct snd_hwdep * , struct snd_hwdep_dsp_status * ) ; int (*dsp_load)(struct snd_hwdep * , struct snd_hwdep_dsp_image * ) ; }; struct snd_hwdep { struct snd_card *card ; struct list_head list ; int device ; char id[32U] ; char name[80U] ; int iface ; int oss_type ; int ossreg ; struct snd_hwdep_ops ops ; wait_queue_head_t open_wait ; void *private_data ; void (*private_free)(struct snd_hwdep * ) ; struct device dev ; struct mutex open_mutex ; int used ; unsigned int dsp_loaded ; unsigned char exclusive : 1 ; }; struct vx_rmh { u16 LgCmd ; u16 LgStat ; u32 Cmd[16U] ; u32 Stat[16U] ; u16 DspStat ; }; typedef u64 pcx_time_t; struct vx_ibl_info { int size ; int max_size ; int min_size ; int granularity ; }; struct vx_pipe { int number ; unsigned char is_capture : 1 ; unsigned char data_mode : 1 ; unsigned char running : 1 ; unsigned char prepared : 1 ; int channels ; unsigned int differed_type ; pcx_time_t pcx_time ; struct snd_pcm_substream *substream ; int hbuf_size ; int buffer_bytes ; int period_bytes ; int hw_ptr ; int position ; int transferred ; int align ; u64 cur_count ; unsigned int references ; struct vx_pipe *monitoring_pipe ; }; struct vx_core; struct snd_vx_ops { unsigned char (*in8)(struct vx_core * , int ) ; unsigned int (*in32)(struct vx_core * , int ) ; void (*out8)(struct vx_core * , int , unsigned char ) ; void (*out32)(struct vx_core * , int , unsigned int ) ; int (*test_and_ack)(struct vx_core * ) ; void (*validate_irq)(struct vx_core * , int ) ; void (*write_codec)(struct vx_core * , int , unsigned int ) ; void (*akm_write)(struct vx_core * , int , unsigned int ) ; void (*reset_codec)(struct vx_core * ) ; void (*change_audio_source)(struct vx_core * , int ) ; void (*set_clock_source)(struct vx_core * , int ) ; int (*load_dsp)(struct vx_core * , int , struct firmware const * ) ; void (*reset_dsp)(struct vx_core * ) ; void (*reset_board)(struct vx_core * , int ) ; int (*add_controls)(struct vx_core * ) ; void (*dma_write)(struct vx_core * , struct snd_pcm_runtime * , struct vx_pipe * , int ) ; void (*dma_read)(struct vx_core * , struct snd_pcm_runtime * , struct vx_pipe * , int ) ; }; struct snd_vx_hardware { char const *name ; int type ; unsigned int num_codecs ; unsigned int num_ins ; unsigned int num_outs ; unsigned int output_level_max ; unsigned int const *output_level_db_scale ; }; struct vx_core { struct snd_card *card ; struct snd_pcm *pcm[2U] ; int type ; int irq ; struct snd_vx_hardware *hw ; struct snd_vx_ops *ops ; struct mutex lock ; unsigned int chip_status ; unsigned int pcm_running ; struct device *dev ; struct snd_hwdep *hwdep ; struct vx_rmh irq_rmh ; unsigned int audio_info ; unsigned int audio_ins ; unsigned int audio_outs ; struct vx_pipe **playback_pipes ; struct vx_pipe **capture_pipes ; unsigned int audio_source ; unsigned int audio_source_target ; unsigned int clock_mode ; unsigned int clock_source ; unsigned int freq ; unsigned int freq_detected ; unsigned int uer_detected ; unsigned int uer_bits ; struct vx_ibl_info ibl ; int output_level[2U][2U] ; int audio_gain[2U][4U] ; unsigned char audio_active[4U] ; int audio_monitor[4U] ; unsigned char audio_monitor_active[4U] ; struct mutex mixer_mutex ; struct firmware const *firmware[4U] ; }; struct ldv_struct_EMGentry_2 { int signal_pending ; }; enum hrtimer_restart; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; enum hrtimer_restart; typedef int snd_pcm_hw_param_t; enum hrtimer_restart; struct snd_aes_iec958 { unsigned char status[24U] ; unsigned char subcode[147U] ; unsigned char pad ; unsigned char dig_subframe[4U] ; }; typedef int snd_ctl_elem_type_t; typedef int snd_ctl_elem_iface_t; struct snd_ctl_elem_id { unsigned int numid ; snd_ctl_elem_iface_t iface ; unsigned int device ; unsigned int subdevice ; unsigned char name[44U] ; unsigned int index ; }; struct __anonstruct_integer_189 { long min ; long max ; long step ; }; struct __anonstruct_integer64_190 { long long min ; long long max ; long long step ; }; struct __anonstruct_enumerated_191 { unsigned int items ; unsigned int item ; char name[64U] ; __u64 names_ptr ; unsigned int names_length ; }; union __anonunion_value_188 { struct __anonstruct_integer_189 integer ; struct __anonstruct_integer64_190 integer64 ; struct __anonstruct_enumerated_191 enumerated ; unsigned char reserved[128U] ; }; union __anonunion_dimen_192 { unsigned short d[4U] ; unsigned short *d_ptr ; }; struct snd_ctl_elem_info { struct snd_ctl_elem_id id ; snd_ctl_elem_type_t type ; unsigned int access ; unsigned int count ; __kernel_pid_t owner ; union __anonunion_value_188 value ; union __anonunion_dimen_192 dimen ; unsigned char reserved[56U] ; }; union __anonunion_integer_194 { long value[128U] ; long *value_ptr ; }; union __anonunion_integer64_195 { long long value[64U] ; long long *value_ptr ; }; union __anonunion_enumerated_196 { unsigned int item[128U] ; unsigned int *item_ptr ; }; union __anonunion_bytes_197 { unsigned char data[512U] ; unsigned char *data_ptr ; }; union __anonunion_value_193 { union __anonunion_integer_194 integer ; union __anonunion_integer64_195 integer64 ; union __anonunion_enumerated_196 enumerated ; union __anonunion_bytes_197 bytes ; struct snd_aes_iec958 iec958 ; }; struct snd_ctl_elem_value { struct snd_ctl_elem_id id ; unsigned char indirect : 1 ; union __anonunion_value_193 value ; struct timespec tstamp ; unsigned char reserved[112U] ; }; typedef int snd_kcontrol_info_t(struct snd_kcontrol * , struct snd_ctl_elem_info * ); typedef int snd_kcontrol_get_t(struct snd_kcontrol * , struct snd_ctl_elem_value * ); typedef int snd_kcontrol_put_t(struct snd_kcontrol * , struct snd_ctl_elem_value * ); typedef int snd_kcontrol_tlv_rw_t(struct snd_kcontrol * , int , unsigned int , unsigned int * ); union __anonunion_tlv_200 { snd_kcontrol_tlv_rw_t *c ; unsigned int const *p ; }; struct snd_kcontrol_new { snd_ctl_elem_iface_t iface ; unsigned int device ; unsigned int subdevice ; unsigned char const *name ; unsigned int index ; unsigned int access ; unsigned int count ; snd_kcontrol_info_t *info ; snd_kcontrol_get_t *get ; snd_kcontrol_put_t *put ; union __anonunion_tlv_200 tlv ; unsigned long private_value ; }; struct snd_ctl_file; struct snd_kcontrol_volatile { struct snd_ctl_file *owner ; unsigned int access ; }; union __anonunion_tlv_201 { snd_kcontrol_tlv_rw_t *c ; unsigned int const *p ; }; struct snd_kcontrol { struct list_head list ; struct snd_ctl_elem_id id ; unsigned int count ; snd_kcontrol_info_t *info ; snd_kcontrol_get_t *get ; snd_kcontrol_put_t *put ; union __anonunion_tlv_201 tlv ; unsigned long private_value ; void *private_data ; void (*private_free)(struct snd_kcontrol * ) ; struct snd_kcontrol_volatile vd[0U] ; }; struct snd_ctl_file { struct list_head list ; struct snd_card *card ; struct pid *pid ; int preferred_subdevice[2U] ; wait_queue_head_t change_sleep ; spinlock_t read_lock ; struct fasync_struct *fasync ; int subscribed ; struct list_head events ; }; struct w { u16 l ; u16 h ; }; struct b { u8 ll ; u8 ml ; u8 mh ; u8 hh ; }; union vx_codec_data { u32 l ; struct w w ; struct b b ; }; struct vx_audio_level { unsigned char has_level : 1 ; unsigned char has_monitor_level : 1 ; unsigned char has_mute : 1 ; unsigned char has_monitor_mute : 1 ; unsigned int mute ; unsigned int monitor_mute ; short level ; short monitor_level ; }; struct vx_vu_meter { int saturated ; int vu_level ; int peak_level ; }; struct vx_cmd_info { unsigned int opcode ; int length ; int st_type ; int st_length ; }; enum hrtimer_restart; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_106(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_103(int ldv_func_arg1 ) ; static void ldv_ldv_check_final_state_104(void) ; static void ldv_ldv_check_final_state_105(void) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(struct mutex *lock ) ; extern int printk(char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern char *strcpy(char * , char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_98(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) ; extern unsigned long volatile jiffies ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void snd_power_change_state(struct snd_card *card , unsigned int state ) { { { card->power_state = state; __wake_up(& card->power_sleep, 3U, 1, (void *)0); } return; } } extern void __snd_printk(unsigned int , char const * , int , char const * , ...) ; extern int snd_pcm_suspend_all(struct snd_pcm * ) ; extern int snd_iprintf(struct snd_info_buffer * , char const * , ...) ; extern int snd_card_proc_new(struct snd_card * , char const * , struct snd_info_entry ** ) ; __inline static void snd_info_set_text_ops(struct snd_info_entry *entry , void *private_data , void (*read)(struct snd_info_entry * , struct snd_info_buffer * ) ) { { entry->private_data = private_data; entry->c.text.read = read; return; } } struct vx_core *snd_vx_create(struct snd_card *card , struct snd_vx_hardware *hw , struct snd_vx_ops *ops , int extra_size ) ; int snd_vx_load_boot_image(struct vx_core *chip , struct firmware const *boot ) ; int snd_vx_dsp_boot(struct vx_core *chip , struct firmware const *boot ) ; int snd_vx_dsp_load(struct vx_core *chip , struct firmware const *dsp ) ; irqreturn_t snd_vx_irq_handler(int irq , void *dev ) ; irqreturn_t snd_vx_threaded_irq_handler(int irq , void *dev ) ; __inline static int vx_test_and_ack(struct vx_core *chip ) { int tmp ; { { tmp = (*((chip->ops)->test_and_ack))(chip); } return (tmp); } } __inline static void vx_validate_irq(struct vx_core *chip , int enable ) { { { (*((chip->ops)->validate_irq))(chip, enable); } return; } } __inline static unsigned char snd_vx_inb(struct vx_core *chip , int reg ) { unsigned char tmp ; { { tmp = (*((chip->ops)->in8))(chip, reg); } return (tmp); } } __inline static void snd_vx_outb(struct vx_core *chip , int reg , unsigned char val ) { { { (*((chip->ops)->out8))(chip, reg, (int )val); } return; } } __inline static void vx_reset_dsp(struct vx_core *chip ) { { { (*((chip->ops)->reset_dsp))(chip); } return; } } int vx_send_msg(struct vx_core *chip , struct vx_rmh *rmh ) ; int vx_send_msg_nolock(struct vx_core *chip , struct vx_rmh *rmh ) ; int vx_send_rih(struct vx_core *chip , int cmd ) ; int vx_send_rih_nolock(struct vx_core *chip , int cmd ) ; void vx_reset_codec(struct vx_core *chip , int cold_reset ) ; int snd_vx_check_reg_bit(struct vx_core *chip , int reg , int mask , int bit , int time ) ; void vx_pcm_update_intr(struct vx_core *chip , unsigned int events ) ; void vx_toggle_dac_mute(struct vx_core *chip , int mute ) ; void vx_set_iec958_status(struct vx_core *chip , unsigned int bits ) ; void vx_set_internal_clock(struct vx_core *chip , unsigned int freq ) ; int vx_change_frequency(struct vx_core *chip ) ; int snd_vx_suspend(struct vx_core *chip ) ; int snd_vx_resume(struct vx_core *chip ) ; void vx_init_rmh(struct vx_rmh *rmh , unsigned int cmd ) ; int snd_vx_check_reg_bit(struct vx_core *chip , int reg , int mask , int bit , int time ) { unsigned long end_time ; char *reg_names[27U] ; unsigned char tmp ; unsigned char tmp___0 ; { end_time = (unsigned long )jiffies + (unsigned long )((time * 250 + 999) / 1000); reg_names[0] = (char *)"ICR"; reg_names[1] = (char *)"CVR"; reg_names[2] = (char *)"ISR"; reg_names[3] = (char *)"IVR"; reg_names[4] = (char *)"RXH"; reg_names[5] = (char *)"RXM"; reg_names[6] = (char *)"RXL"; reg_names[7] = (char *)"DMA"; reg_names[8] = (char *)"CDSP"; reg_names[9] = (char *)"RFREQ"; reg_names[10] = (char *)"RUER/V2"; reg_names[11] = (char *)"DATA"; reg_names[12] = (char *)"MEMIRQ"; reg_names[13] = (char *)"ACQ"; reg_names[14] = (char *)"BIT0"; reg_names[15] = (char *)"BIT1"; reg_names[16] = (char *)"MIC0"; reg_names[17] = (char *)"MIC1"; reg_names[18] = (char *)"MIC2"; reg_names[19] = (char *)"MIC3"; reg_names[20] = (char *)"INTCSR"; reg_names[21] = (char *)"CNTRL"; reg_names[22] = (char *)"GPIOC"; reg_names[23] = (char *)"LOFREQ"; reg_names[24] = (char *)"HIFREQ"; reg_names[25] = (char *)"CSUER"; reg_names[26] = (char *)"RUER"; ldv_32601: { tmp = snd_vx_inb(chip, reg); } if (((int )tmp & mask) == bit) { return (0); } else { } if ((long )(end_time - (unsigned long )jiffies) >= 0L) { goto ldv_32601; } else { } { tmp___0 = snd_vx_inb(chip, reg); __snd_printk(1U, "sound/drivers/vx/vx_core.c", 68, "\017vx_check_reg_bit: timeout, reg=%s, mask=0x%x, val=0x%x\n", reg_names[reg], mask, (int )tmp___0); } return (-5); } } static char const __kstrtab_snd_vx_check_reg_bit[21U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'c', 'h', 'e', 'c', 'k', '_', 'r', 'e', 'g', '_', 'b', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_check_reg_bit ; struct kernel_symbol const __ksymtab_snd_vx_check_reg_bit = {(unsigned long )(& snd_vx_check_reg_bit), (char const *)(& __kstrtab_snd_vx_check_reg_bit)}; static int vx_send_irq_dsp(struct vx_core *chip , int num ) { int nirq ; int tmp ; { { tmp = snd_vx_check_reg_bit(chip, 1, 128, 0, 200); } if (tmp < 0) { return (-5); } else { } nirq = num; if (chip->type != 0) { nirq = nirq + 64; } else { } { snd_vx_outb(chip, 1, (int )((unsigned char )((int )((signed char )(nirq >> 1)) | -128))); } return (0); } } static int vx_reset_chk(struct vx_core *chip ) { int tmp ; int tmp___0 ; { { tmp = vx_send_irq_dsp(chip, 58); } if (tmp < 0) { return (-5); } else { } { tmp___0 = snd_vx_check_reg_bit(chip, 2, 16, 0, 200); } if (tmp___0 < 0) { return (-5); } else { } return (0); } } static int vx_transfer_end(struct vx_core *chip , int cmd ) { int err ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; { { err = vx_reset_chk(chip); } if (err < 0) { return (err); } else { } { err = vx_send_irq_dsp(chip, cmd); } if (err < 0) { return (err); } else { } { err = snd_vx_check_reg_bit(chip, 2, 16, 16, 200); } if (err < 0) { return (err); } else { } { tmp___2 = snd_vx_inb(chip, 2); err = (int )tmp___2; } if ((err & 8) != 0) { { err = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 140, "\017transfer_end: error in rx_full\n"); } return (err); } else { } { tmp = snd_vx_inb(chip, 4); err = (int )tmp << 16; tmp___0 = snd_vx_inb(chip, 5); err = err | ((int )tmp___0 << 8); tmp___1 = snd_vx_inb(chip, 6); err = err | (int )tmp___1; __snd_printk(1U, "sound/drivers/vx/vx_core.c", 146, "\017transfer_end: error = 0x%x\n", err); } return (- (err | 16777216)); } else { } return (0); } } static int vx_read_status(struct vx_core *chip , struct vx_rmh *rmh ) { int i ; int err ; int val ; int size ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; int __ret_warn_on ; long tmp___2 ; long tmp___3 ; unsigned char tmp___4 ; unsigned char tmp___5 ; unsigned char tmp___6 ; int tmp___7 ; { if ((unsigned int )rmh->DspStat == 0U && (unsigned int )rmh->LgStat == 0U) { return (0); } else { } { err = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (err < 0) { return (err); } else { } { tmp = snd_vx_inb(chip, 4); val = (int )tmp << 16; tmp___0 = snd_vx_inb(chip, 5); val = val | ((int )tmp___0 << 8); tmp___1 = snd_vx_inb(chip, 6); val = val | (int )tmp___1; } { if ((int )rmh->DspStat == 1) { goto case_1; } else { } if ((int )rmh->DspStat == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ size = val & 255; rmh->Stat[0] = (u32 )val & 16776960U; rmh->LgStat = (unsigned int )((u16 )size) + 1U; goto ldv_32636; case_2: /* CIL Label */ rmh->Stat[0] = (u32 )val; size = 0; goto ldv_32639; ldv_32638: ; if (val & 1) { size = size + 1; } else { } val = val >> 1; ldv_32639: ; if (val != 0) { goto ldv_32638; } else { } rmh->LgStat = (unsigned int )((u16 )size) + 1U; goto ldv_32636; switch_default: /* CIL Label */ size = (int )rmh->LgStat; rmh->Stat[0] = (u32 )val; size = size - 1; goto ldv_32636; switch_break: /* CIL Label */ ; } ldv_32636: ; if (size <= 0) { return (0); } else { } { __ret_warn_on = size > 15; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_core.c", 208); } } else { } { tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___3 != 0L) { return (-22); } else { } i = 1; goto ldv_32645; ldv_32644: { err = vx_send_irq_dsp(chip, 50); } if (err < 0) { return (err); } else { } { err = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (err < 0) { return (err); } else { } { tmp___4 = snd_vx_inb(chip, 4); rmh->Stat[i] = (u32 )((int )tmp___4 << 16); tmp___5 = snd_vx_inb(chip, 5); rmh->Stat[i] = rmh->Stat[i] | (u32 )((int )tmp___5 << 8); tmp___6 = snd_vx_inb(chip, 6); rmh->Stat[i] = rmh->Stat[i] | (u32 )tmp___6; i = i + 1; } ldv_32645: ; if (i <= size) { goto ldv_32644; } else { } { tmp___7 = vx_transfer_end(chip, 48); } return (tmp___7); } } int vx_send_msg_nolock(struct vx_core *chip , struct vx_rmh *rmh ) { int i ; int err ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; int tmp___3 ; { if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { err = vx_reset_chk(chip); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 249, "\017vx_send_msg: vx_reset_chk error\n"); } return (err); } else { } if ((unsigned int )rmh->LgCmd > 1U) { rmh->Cmd[0] = rmh->Cmd[0] | 32768U; } else { rmh->Cmd[0] = rmh->Cmd[0] & 16744447U; } { err = snd_vx_check_reg_bit(chip, 2, 2, 2, 200); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 271, "\017vx_send_msg: wait tx empty error\n"); } return (err); } else { } { snd_vx_outb(chip, 4, (int )((unsigned char )(rmh->Cmd[0] >> 16))); snd_vx_outb(chip, 5, (int )((unsigned char )(rmh->Cmd[0] >> 8))); snd_vx_outb(chip, 6, (int )((unsigned char )rmh->Cmd[0])); err = vx_send_irq_dsp(chip, 56); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 282, "\017vx_send_msg: send IRQ_MESSAGE error\n"); } return (err); } else { } { err = snd_vx_check_reg_bit(chip, 2, 16, 16, 200); } if (err < 0) { return (err); } else { } { tmp___2 = snd_vx_inb(chip, 2); } if (((int )tmp___2 & 8) != 0) { { err = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 293, "\017vx_send_msg: rx_full read error\n"); } return (err); } else { } { tmp = snd_vx_inb(chip, 4); err = (int )tmp << 16; tmp___0 = snd_vx_inb(chip, 5); err = err | ((int )tmp___0 << 8); tmp___1 = snd_vx_inb(chip, 6); err = err | (int )tmp___1; __snd_printk(1U, "sound/drivers/vx/vx_core.c", 299, "\017msg got error = 0x%x at cmd[0]\n", err); err = - (err | 16777216); } return (err); } else { } if ((unsigned int )rmh->LgCmd > 1U) { i = 1; goto ldv_32654; ldv_32653: { err = snd_vx_check_reg_bit(chip, 2, 4, 4, 200); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 309, "\017vx_send_msg: tx_ready error\n"); } return (err); } else { } { snd_vx_outb(chip, 4, (int )((unsigned char )(rmh->Cmd[i] >> 16))); snd_vx_outb(chip, 5, (int )((unsigned char )(rmh->Cmd[i] >> 8))); snd_vx_outb(chip, 6, (int )((unsigned char )rmh->Cmd[i])); err = vx_send_irq_dsp(chip, 52); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 320, "\017vx_send_msg: IRQ_READ_NEXT error\n"); } return (err); } else { } i = i + 1; ldv_32654: ; if (i < (int )rmh->LgCmd) { goto ldv_32653; } else { } { err = snd_vx_check_reg_bit(chip, 2, 4, 4, 200); } if (err < 0) { { __snd_printk(1U, "sound/drivers/vx/vx_core.c", 326, "\017vx_send_msg: TX_READY error\n"); } return (err); } else { } { err = vx_transfer_end(chip, 54); } if (err < 0) { return (err); } else { } } else { } { tmp___3 = vx_read_status(chip, rmh); } return (tmp___3); } } int vx_send_msg(struct vx_core *chip , struct vx_rmh *rmh ) { int err ; { { ldv_mutex_lock_97(& chip->lock); err = vx_send_msg_nolock(chip, rmh); ldv_mutex_unlock_98(& chip->lock); } return (err); } } int vx_send_rih_nolock(struct vx_core *chip , int cmd ) { int err ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; { if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { err = vx_reset_chk(chip); } if (err < 0) { return (err); } else { } { err = vx_send_irq_dsp(chip, cmd); } if (err < 0) { return (err); } else { } { err = snd_vx_check_reg_bit(chip, 2, 16, 16, 200); } if (err < 0) { return (err); } else { } { tmp___2 = snd_vx_inb(chip, 2); } if (((int )tmp___2 & 8) != 0) { { err = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (err < 0) { return (err); } else { } { tmp = snd_vx_inb(chip, 4); err = (int )tmp << 16; tmp___0 = snd_vx_inb(chip, 5); err = err | ((int )tmp___0 << 8); tmp___1 = snd_vx_inb(chip, 6); err = err | (int )tmp___1; } return (- (err | 16777216)); } else { } return (0); } } int vx_send_rih(struct vx_core *chip , int cmd ) { int err ; { { ldv_mutex_lock_99(& chip->lock); err = vx_send_rih_nolock(chip, cmd); ldv_mutex_unlock_100(& chip->lock); } return (err); } } int snd_vx_load_boot_image(struct vx_core *chip , struct firmware const *boot ) { unsigned int i ; int no_fillup ; int tmp ; unsigned char const *image ; int tmp___0 ; { no_fillup = chip->type != 0; if ((unsigned long )boot->size == 0UL) { return (-22); } else { } if ((unsigned long )boot->size % 3UL != 0UL) { return (-22); } else { } { vx_reset_dsp(chip); __const_udelay(2147500UL); i = 0U; } goto ldv_32680; ldv_32679: ; if ((unsigned long )i >= (unsigned long )boot->size) { if (no_fillup != 0) { goto ldv_32677; } else { } { tmp = snd_vx_check_reg_bit(chip, 2, 2, 2, 200); } if (tmp < 0) { { __snd_printk(0U, "sound/drivers/vx/vx_core.c", 452, "\vdsp boot failed at %d\n", i); } return (-5); } else { } { snd_vx_outb(chip, 4, 0); snd_vx_outb(chip, 5, 0); snd_vx_outb(chip, 6, 0); } } else { { image = (unsigned char const *)boot->data + (unsigned long )i; tmp___0 = snd_vx_check_reg_bit(chip, 2, 2, 2, 200); } if (tmp___0 < 0) { { __snd_printk(0U, "sound/drivers/vx/vx_core.c", 461, "\vdsp boot failed at %d\n", i); } return (-5); } else { } { snd_vx_outb(chip, 4, (int )*image); snd_vx_outb(chip, 5, (int )*(image + 1UL)); snd_vx_outb(chip, 6, (int )*(image + 2UL)); } } i = i + 3U; ldv_32680: ; if (i <= 1535U) { goto ldv_32679; } else { } ldv_32677: ; return (0); } } static char const __kstrtab_snd_vx_load_boot_image[23U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'l', 'o', 'a', 'd', '_', 'b', 'o', 'o', 't', '_', 'i', 'm', 'a', 'g', 'e', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_load_boot_image ; struct kernel_symbol const __ksymtab_snd_vx_load_boot_image = {(unsigned long )(& snd_vx_load_boot_image), (char const *)(& __kstrtab_snd_vx_load_boot_image)}; static int vx_test_irq_src(struct vx_core *chip , unsigned int *ret ) { int err ; { { vx_init_rmh(& chip->irq_rmh, 2U); ldv_mutex_lock_101(& chip->lock); err = vx_send_msg_nolock(chip, & chip->irq_rmh); } if (err < 0) { *ret = 0U; } else { *ret = chip->irq_rmh.Stat[0]; } { ldv_mutex_unlock_102(& chip->lock); } return (err); } } irqreturn_t snd_vx_threaded_irq_handler(int irq , void *dev ) { struct vx_core *chip ; unsigned int events ; int tmp ; { chip = (struct vx_core *)dev; if ((chip->chip_status & 32768U) != 0U) { return (1); } else { } { tmp = vx_test_irq_src(chip, & events); } if (tmp < 0) { return (1); } else { } if ((events & 16711680U) != 0U) { { __snd_printk(0U, "sound/drivers/vx/vx_core.c", 520, "\vvx_core: fatal DSP error!!\n"); } return (1); } else { } if ((events & 2048U) != 0U) { { vx_change_frequency(chip); } } else { } { vx_pcm_update_intr(chip, events); } return (1); } } static char const __kstrtab_snd_vx_threaded_irq_handler[28U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 't', 'h', 'r', 'e', 'a', 'd', 'e', 'd', '_', 'i', 'r', 'q', '_', 'h', 'a', 'n', 'd', 'l', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_threaded_irq_handler ; struct kernel_symbol const __ksymtab_snd_vx_threaded_irq_handler = {(unsigned long )(& snd_vx_threaded_irq_handler), (char const *)(& __kstrtab_snd_vx_threaded_irq_handler)}; irqreturn_t snd_vx_irq_handler(int irq , void *dev ) { struct vx_core *chip ; int tmp ; { chip = (struct vx_core *)dev; if (*((unsigned int *)chip + 52UL) != 4U) { return (0); } else { } { tmp = vx_test_and_ack(chip); } if (tmp == 0) { return (2); } else { } return (0); } } static char const __kstrtab_snd_vx_irq_handler[19U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'i', 'r', 'q', '_', 'h', 'a', 'n', 'd', 'l', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_irq_handler ; struct kernel_symbol const __ksymtab_snd_vx_irq_handler = {(unsigned long )(& snd_vx_irq_handler), (char const *)(& __kstrtab_snd_vx_irq_handler)}; static void vx_reset_board(struct vx_core *chip , int cold_reset ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )(chip->ops)->reset_board == (unsigned long )((void (*)(struct vx_core * , int ))0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_core.c", 563); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return; } else { } chip->audio_source = 1U; if (cold_reset != 0) { chip->audio_source_target = chip->audio_source; chip->clock_source = 0U; chip->clock_mode = 0U; chip->freq = 48000U; chip->uer_detected = 2U; chip->uer_bits = 33587712U; } else { } { (*((chip->ops)->reset_board))(chip, cold_reset); vx_reset_codec(chip, cold_reset); vx_set_internal_clock(chip, chip->freq); vx_reset_dsp(chip); } if (chip->type > 2) { { vx_test_and_ack(chip); vx_validate_irq(chip, 1); } } else { } { vx_set_iec958_status(chip, chip->uer_bits); } return; } } static void vx_proc_read(struct snd_info_entry *entry , struct snd_info_buffer *buffer ) { struct vx_core *chip ; char *audio_src_vxp[3U] ; char *audio_src_vx2[3U] ; char *clock_mode[3U] ; char *clock_src[2U] ; char *uer_type[3U] ; { { chip = (struct vx_core *)entry->private_data; audio_src_vxp[0] = (char *)"Line"; audio_src_vxp[1] = (char *)"Mic"; audio_src_vxp[2] = (char *)"Digital"; audio_src_vx2[0] = (char *)"Analog"; audio_src_vx2[1] = (char *)"Analog"; audio_src_vx2[2] = (char *)"Digital"; clock_mode[0] = (char *)"Auto"; clock_mode[1] = (char *)"Internal"; clock_mode[2] = (char *)"External"; clock_src[0] = (char *)"Internal"; clock_src[1] = (char *)"External"; uer_type[0] = (char *)"Consumer"; uer_type[1] = (char *)"Professional"; uer_type[2] = (char *)"Not Present"; snd_iprintf(buffer, "%s\n", (char *)(& (chip->card)->longname)); snd_iprintf(buffer, "Xilinx Firmware: %s\n", (int )chip->chip_status & 1 ? (char *)"Loaded" : (char *)"No"); snd_iprintf(buffer, "Device Initialized: %s\n", (chip->chip_status & 2U) != 0U ? (char *)"Yes" : (char *)"No"); snd_iprintf(buffer, "DSP audio info:"); } if ((int )chip->audio_info & 1) { { snd_iprintf(buffer, " realtime"); } } else { } if ((chip->audio_info & 2U) != 0U) { { snd_iprintf(buffer, " offline"); } } else { } if ((chip->audio_info & 32U) != 0U) { { snd_iprintf(buffer, " mpeg1"); } } else { } if ((chip->audio_info & 64U) != 0U) { { snd_iprintf(buffer, " mpeg2"); } } else { } if ((chip->audio_info & 128U) != 0U) { { snd_iprintf(buffer, " linear8"); } } else { } if ((chip->audio_info & 256U) != 0U) { { snd_iprintf(buffer, " linear16"); } } else { } if ((chip->audio_info & 512U) != 0U) { { snd_iprintf(buffer, " linear24"); } } else { } { snd_iprintf(buffer, "\n"); snd_iprintf(buffer, "Input Source: %s\n", chip->type > 2 ? audio_src_vxp[chip->audio_source] : audio_src_vx2[chip->audio_source]); snd_iprintf(buffer, "Clock Mode: %s\n", clock_mode[chip->clock_mode]); snd_iprintf(buffer, "Clock Source: %s\n", clock_src[chip->clock_source]); snd_iprintf(buffer, "Frequency: %d\n", chip->freq); snd_iprintf(buffer, "Detected Frequency: %d\n", chip->freq_detected); snd_iprintf(buffer, "Detected UER type: %s\n", uer_type[chip->uer_detected]); snd_iprintf(buffer, "Min/Max/Cur IBL: %d/%d/%d (granularity=%d)\n", chip->ibl.min_size, chip->ibl.max_size, chip->ibl.size, chip->ibl.granularity); } return; } } static void vx_proc_init(struct vx_core *chip ) { struct snd_info_entry *entry ; int tmp ; { { tmp = snd_card_proc_new(chip->card, "vx-status", & entry); } if (tmp == 0) { { snd_info_set_text_ops(entry, (void *)chip, & vx_proc_read); } } else { } return; } } int snd_vx_dsp_boot(struct vx_core *chip , struct firmware const *boot ) { int err ; int cold_reset ; { { cold_reset = (chip->chip_status & 2U) == 0U; vx_reset_board(chip, cold_reset); vx_validate_irq(chip, 0); err = snd_vx_load_boot_image(chip, boot); } if (err < 0) { return (err); } else { } { msleep(10U); } return (0); } } static char const __kstrtab_snd_vx_dsp_boot[16U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'd', 's', 'p', '_', 'b', 'o', 'o', 't', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_dsp_boot ; struct kernel_symbol const __ksymtab_snd_vx_dsp_boot = {(unsigned long )(& snd_vx_dsp_boot), (char const *)(& __kstrtab_snd_vx_dsp_boot)}; int snd_vx_dsp_load(struct vx_core *chip , struct firmware const *dsp ) { unsigned int i ; int err ; unsigned int csum ; unsigned char const *image ; unsigned char const *cptr ; unsigned char const *tmp ; unsigned char const *tmp___0 ; unsigned char const *tmp___1 ; { csum = 0U; if ((unsigned long )dsp->size % 3UL != 0UL) { return (-22); } else { } { vx_toggle_dac_mute(chip, 1); i = 0U; } goto ldv_32765; ldv_32764: { image = (unsigned char const *)dsp->data + (unsigned long )i; err = snd_vx_check_reg_bit(chip, 2, 2, 2, 200); } if (err < 0) { { printk("\vdsp loading error at position %d\n", i); } return (err); } else { } { cptr = image; csum = csum ^ (unsigned int )*cptr; csum = (csum << 8) | (csum >> (8UL * sizeof(csum) - 8UL)); tmp = cptr; cptr = cptr + 1; snd_vx_outb(chip, 4, (int )*tmp); csum = csum ^ (unsigned int )*cptr; csum = (csum << 8) | (csum >> (8UL * sizeof(csum) - 8UL)); tmp___0 = cptr; cptr = cptr + 1; snd_vx_outb(chip, 5, (int )*tmp___0); csum = csum ^ (unsigned int )*cptr; csum = (csum << 8) | (csum >> (8UL * sizeof(csum) - 8UL)); tmp___1 = cptr; cptr = cptr + 1; snd_vx_outb(chip, 6, (int )*tmp___1); i = i + 3U; } ldv_32765: ; if ((unsigned long )i < (unsigned long )dsp->size) { goto ldv_32764; } else { } { __snd_printk(2U, "sound/drivers/vx/vx_core.c", 712, "\017checksum = 0x%08x\n", csum); msleep(200U); err = snd_vx_check_reg_bit(chip, 2, 16, 16, 200); } if (err < 0) { return (err); } else { } { vx_toggle_dac_mute(chip, 0); vx_test_and_ack(chip); vx_validate_irq(chip, 1); } return (0); } } static char const __kstrtab_snd_vx_dsp_load[16U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'd', 's', 'p', '_', 'l', 'o', 'a', 'd', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_dsp_load ; struct kernel_symbol const __ksymtab_snd_vx_dsp_load = {(unsigned long )(& snd_vx_dsp_load), (char const *)(& __kstrtab_snd_vx_dsp_load)}; int snd_vx_suspend(struct vx_core *chip ) { unsigned int i ; { { snd_power_change_state(chip->card, 768U); chip->chip_status = chip->chip_status | 1024U; i = 0U; } goto ldv_32780; ldv_32779: { snd_pcm_suspend_all(chip->pcm[i]); i = i + 1U; } ldv_32780: ; if (i < (chip->hw)->num_codecs) { goto ldv_32779; } else { } return (0); } } static char const __kstrtab_snd_vx_suspend[15U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 's', 'u', 's', 'p', 'e', 'n', 'd', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_suspend ; struct kernel_symbol const __ksymtab_snd_vx_suspend = {(unsigned long )(& snd_vx_suspend), (char const *)(& __kstrtab_snd_vx_suspend)}; int snd_vx_resume(struct vx_core *chip ) { int i ; int err ; { chip->chip_status = chip->chip_status & 4294967291U; i = 0; goto ldv_32796; ldv_32795: ; if ((unsigned long )chip->firmware[i] == (unsigned long )((struct firmware const *)0)) { goto ldv_32794; } else { } { err = (*((chip->ops)->load_dsp))(chip, i, chip->firmware[i]); } if (err < 0) { { __snd_printk(0U, "sound/drivers/vx/vx_core.c", 761, "\vvx: firmware resume error at DSP %d\n", i); } return (-5); } else { } ldv_32794: i = i + 1; ldv_32796: ; if (i <= 3) { goto ldv_32795; } else { } { chip->chip_status = chip->chip_status | 4U; chip->chip_status = chip->chip_status & 4294966271U; snd_power_change_state(chip->card, 0U); } return (0); } } static char const __kstrtab_snd_vx_resume[14U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'r', 'e', 's', 'u', 'm', 'e', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_resume ; struct kernel_symbol const __ksymtab_snd_vx_resume = {(unsigned long )(& snd_vx_resume), (char const *)(& __kstrtab_snd_vx_resume)}; struct vx_core *snd_vx_create(struct snd_card *card , struct snd_vx_hardware *hw , struct snd_vx_ops *ops , int extra_size ) { struct vx_core *chip ; int __ret_warn_on ; long tmp ; long tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { { __ret_warn_on = ((unsigned long )card == (unsigned long )((struct snd_card *)0) || (unsigned long )hw == (unsigned long )((struct snd_vx_hardware *)0)) || (unsigned long )ops == (unsigned long )((struct snd_vx_ops *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_core.c", 794); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return ((struct vx_core *)0); } else { } { tmp___1 = kzalloc((unsigned long )extra_size + 712UL, 208U); chip = (struct vx_core *)tmp___1; } if ((unsigned long )chip == (unsigned long )((struct vx_core *)0)) { { __snd_printk(0U, "sound/drivers/vx/vx_core.c", 799, "\vvx_core: no memory\n"); } return ((struct vx_core *)0); } else { } { __mutex_init(& chip->lock, "&chip->lock", & __key); chip->irq = -1; chip->hw = hw; chip->type = hw->type; chip->ops = ops; __mutex_init(& chip->mixer_mutex, "&chip->mixer_mutex", & __key___0); chip->card = card; card->private_data = (void *)chip; strcpy((char *)(& card->driver), hw->name); sprintf((char *)(& card->shortname), "Digigram %s", hw->name); vx_proc_init(chip); } return (chip); } } static char const __kstrtab_snd_vx_create[14U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'c', 'r', 'e', 'a', 't', 'e', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_create ; struct kernel_symbol const __ksymtab_snd_vx_create = {(unsigned long )(& snd_vx_create), (char const *)(& __kstrtab_snd_vx_create)}; static int alsa_vx_core_init(void) { { return (0); } } static void alsa_vx_core_exit(void) { { return; } } void ldv_EMGentry_exit_alsa_vx_core_exit_2_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_alsa_vx_core_init_2_9(int (*arg0)(void) ) ; void ldv_dispatch_deregister_io_instance_1_2_4(void) ; void ldv_dispatch_register_io_instance_1_2_5(void) ; void ldv_entry_EMGentry_2(void *arg0 ) ; int main(void) ; void ldv_struct_snd_pcm_ops_io_instance_0(void *arg0 ) ; void ldv_struct_snd_pcm_ops_io_instance_1(void *arg0 ) ; struct ldv_thread ldv_thread_2 ; void ldv_EMGentry_exit_alsa_vx_core_exit_2_2(void (*arg0)(void) ) { { { alsa_vx_core_exit(); } return; } } int ldv_EMGentry_init_alsa_vx_core_init_2_9(int (*arg0)(void) ) { int tmp ; { { tmp = alsa_vx_core_init(); } return (tmp); } } void ldv_dispatch_deregister_io_instance_1_2_4(void) { { return; } } void ldv_dispatch_register_io_instance_1_2_5(void) { struct ldv_struct_EMGentry_2 *cf_arg_0 ; struct ldv_struct_EMGentry_2 *cf_arg_1 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_2 *)tmp; ldv_struct_snd_pcm_ops_io_instance_0((void *)cf_arg_0); tmp___0 = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_2 *)tmp___0; ldv_struct_snd_pcm_ops_io_instance_1((void *)cf_arg_1); } return; } } void ldv_entry_EMGentry_2(void *arg0 ) { void (*ldv_2_exit_alsa_vx_core_exit_default)(void) ; int (*ldv_2_init_alsa_vx_core_init_default)(void) ; int ldv_2_ret_default ; int tmp ; int tmp___0 ; { { ldv_2_ret_default = ldv_EMGentry_init_alsa_vx_core_init_2_9(ldv_2_init_alsa_vx_core_init_default); ldv_2_ret_default = ldv_ldv_post_init_103(ldv_2_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_2_ret_default != 0); ldv_ldv_check_final_state_104(); ldv_stop(); } return; } else { { ldv_assume(ldv_2_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_io_instance_1_2_5(); ldv_dispatch_deregister_io_instance_1_2_4(); } } else { } { ldv_EMGentry_exit_alsa_vx_core_exit_2_2(ldv_2_exit_alsa_vx_core_exit_default); ldv_ldv_check_final_state_105(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_106(); ldv_entry_EMGentry_2((void *)0); } return 0; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv_mutex_lock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_98(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static int ldv_ldv_post_init_103(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_104(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_105(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_106(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern int snd_card_register(struct snd_card * ) ; int snd_vx_setup_firmware(struct vx_core *chip ) ; void snd_vx_free_firmware(struct vx_core *chip ) ; int snd_vx_pcm_new(struct vx_core *chip ) ; int snd_vx_mixer_new(struct vx_core *chip ) ; int snd_vx_setup_firmware(struct vx_core *chip ) { char *fw_files[5U][4U] ; int i ; int err ; char path[32U] ; struct firmware const *fw ; int tmp ; int tmp___0 ; { fw_files[0][0] = (char *)0; fw_files[0][1] = (char *)"x1_1_vx2.xlx"; fw_files[0][2] = (char *)"bd56002.boot"; fw_files[0][3] = (char *)"l_1_vx2.d56"; fw_files[1][0] = (char *)0; fw_files[1][1] = (char *)"x1_2_v22.xlx"; fw_files[1][2] = (char *)"bd563v2.boot"; fw_files[1][3] = (char *)"l_1_v22.d56"; fw_files[2][0] = (char *)0; fw_files[2][1] = (char *)"x1_2_v22.xlx"; fw_files[2][2] = (char *)"bd563v2.boot"; fw_files[2][3] = (char *)"l_1_v22.d56"; fw_files[3][0] = (char *)"bx_1_vxp.b56"; fw_files[3][1] = (char *)"x1_1_vxp.xlx"; fw_files[3][2] = (char *)"bd563s3.boot"; fw_files[3][3] = (char *)"l_1_vxp.d56"; fw_files[4][0] = (char *)"bx_1_vp4.b56"; fw_files[4][1] = (char *)"x1_1_vp4.xlx"; fw_files[4][2] = (char *)"bd563s3.boot"; fw_files[4][3] = (char *)"l_1_vp4.d56"; i = 0; goto ldv_32314; ldv_32313: ; if ((unsigned long )fw_files[chip->type][i] == (unsigned long )((char *)0)) { goto ldv_32312; } else { } { sprintf((char *)(& path), "vx/%s", fw_files[chip->type][i]); tmp = request_firmware(& fw, (char const *)(& path), chip->dev); } if (tmp != 0) { { __snd_printk(0U, "sound/drivers/vx/vx_hwdep.c", 75, "\vvx: can\'t load firmware %s\n", (char *)(& path)); } return (-2); } else { } { err = (*((chip->ops)->load_dsp))(chip, i, fw); } if (err < 0) { { release_firmware(fw); } return (err); } else { } if (i == 1) { chip->chip_status = chip->chip_status | 1U; } else { } chip->firmware[i] = fw; ldv_32312: i = i + 1; ldv_32314: ; if (i <= 3) { goto ldv_32313; } else { } { err = snd_vx_pcm_new(chip); } if (err < 0) { return (err); } else { } { err = snd_vx_mixer_new(chip); } if (err < 0) { return (err); } else { } if ((unsigned long )(chip->ops)->add_controls != (unsigned long )((int (*)(struct vx_core * ))0)) { { err = (*((chip->ops)->add_controls))(chip); } if (err < 0) { return (err); } else { } } else { } { chip->chip_status = chip->chip_status | 2U; chip->chip_status = chip->chip_status | 4U; tmp___0 = snd_card_register(chip->card); } return (tmp___0); } } void snd_vx_free_firmware(struct vx_core *chip ) { int i ; { i = 0; goto ldv_32321; ldv_32320: { release_firmware(chip->firmware[i]); i = i + 1; } ldv_32321: ; if (i <= 3) { goto ldv_32320; } else { } return; } } static char const __kstrtab_snd_vx_setup_firmware[22U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 's', 'e', 't', 'u', 'p', '_', 'f', 'i', 'r', 'm', 'w', 'a', 'r', 'e', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_setup_firmware ; struct kernel_symbol const __ksymtab_snd_vx_setup_firmware = {(unsigned long )(& snd_vx_setup_firmware), (char const *)(& __kstrtab_snd_vx_setup_firmware)}; static char const __kstrtab_snd_vx_free_firmware[21U] = { 's', 'n', 'd', '_', 'v', 'x', '_', 'f', 'r', 'e', 'e', '_', 'f', 'i', 'r', 'm', 'w', 'a', 'r', 'e', '\000'}; struct kernel_symbol const __ksymtab_snd_vx_free_firmware ; struct kernel_symbol const __ksymtab_snd_vx_free_firmware = {(unsigned long )(& snd_vx_free_firmware), (char const *)(& __kstrtab_snd_vx_free_firmware)}; int ldv_filter_err_code(int ret_val ) ; void ldv_free(void *s ) ; extern void ldv_after_alloc(void * ) ; static void ldv_mutex_lock_97___0(struct mutex *ldv_func_arg1 ) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; static void ldv_mutex_unlock_98___0(struct mutex *ldv_func_arg1 ) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int snd_pcm_new(struct snd_card * , char const * , int , int , int , struct snd_pcm ** ) ; __inline static snd_pcm_sframes_t bytes_to_frames(struct snd_pcm_runtime *runtime , ssize_t size ) { { return ((size * 8L) / (ssize_t )runtime->frame_bits); } } __inline static ssize_t frames_to_bytes(struct snd_pcm_runtime *runtime , snd_pcm_sframes_t size ) { { return ((size * (snd_pcm_sframes_t )runtime->frame_bits) / 8L); } } __inline static snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime *runtime ) { snd_pcm_sframes_t avail ; { avail = (snd_pcm_sframes_t )((runtime->status)->hw_ptr - (runtime->control)->appl_ptr); if (avail < 0L) { avail = (snd_pcm_sframes_t )((unsigned long )avail + runtime->boundary); } else { } return ((snd_pcm_uframes_t )avail); } } __inline static struct snd_interval const *hw_param_interval_c(struct snd_pcm_hw_params const *params , snd_pcm_hw_param_t var ) { { return ((struct snd_interval const *)(& params->intervals) + ((unsigned long )var + 0xfffffffffffffff8UL)); } } __inline static unsigned int params_buffer_bytes(struct snd_pcm_hw_params const *p ) { struct snd_interval const *tmp ; { { tmp = hw_param_interval_c(p, 18); } return ((unsigned int )tmp->min); } } extern int snd_pcm_hw_constraint_step(struct snd_pcm_runtime * , unsigned int , snd_pcm_hw_param_t , unsigned long ) ; extern int snd_pcm_format_little_endian(snd_pcm_format_t ) ; extern int snd_pcm_format_physical_width(snd_pcm_format_t ) ; extern void snd_pcm_set_ops(struct snd_pcm * , int , struct snd_pcm_ops const * ) ; extern int snd_pcm_lib_ioctl(struct snd_pcm_substream * , unsigned int , void * ) ; extern void snd_pcm_period_elapsed(struct snd_pcm_substream * ) ; extern int _snd_pcm_lib_alloc_vmalloc_buffer(struct snd_pcm_substream * , size_t , gfp_t ) ; extern int snd_pcm_lib_free_vmalloc_buffer(struct snd_pcm_substream * ) ; extern struct page *snd_pcm_lib_get_vmalloc_page(struct snd_pcm_substream * , unsigned long ) ; __inline static int snd_pcm_lib_alloc_vmalloc_32_buffer(struct snd_pcm_substream *substream , size_t size ) { int tmp ; { { tmp = _snd_pcm_lib_alloc_vmalloc_buffer(substream, size, 32980U); } return (tmp); } } __inline static void vx_pseudo_dma_write(struct vx_core *chip , struct snd_pcm_runtime *runtime , struct vx_pipe *pipe , int count ) { { { (*((chip->ops)->dma_write))(chip, runtime, pipe, count); } return; } } __inline static void vx_pseudo_dma_read(struct vx_core *chip , struct snd_pcm_runtime *runtime , struct vx_pipe *pipe , int count ) { { { (*((chip->ops)->dma_read))(chip, runtime, pipe, count); } return; } } int vx_set_monitor_level(struct vx_core *chip , int audio , int level , int active ) ; int vx_set_clock(struct vx_core *chip , unsigned int freq ) ; __inline static void vx_set_pipe_cmd_params(struct vx_rmh *rmh , int is_capture , int param1 , int param2 ) { { if (is_capture != 0) { rmh->Cmd[0] = rmh->Cmd[0] | 2048U; } else { } rmh->Cmd[0] = rmh->Cmd[0] | ((((unsigned int )param1 & 31U) << 5) & 16777215U); if (param2 != 0) { rmh->Cmd[0] = rmh->Cmd[0] | ((u32 )param2 & 31U); } else { } return; } } __inline static void vx_set_stream_cmd_params(struct vx_rmh *rmh , int is_capture , int pipe ) { { if (is_capture != 0) { rmh->Cmd[0] = rmh->Cmd[0] | 2048U; } else { } rmh->Cmd[0] = rmh->Cmd[0] | ((((unsigned int )pipe & 31U) << 5) & 16777215U); return; } } static void vx_pcm_read_per_bytes(struct vx_core *chip , struct snd_pcm_runtime *runtime , struct vx_pipe *pipe ) { int offset ; unsigned char *buf ; unsigned char *tmp ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; { { offset = pipe->hw_ptr; buf = runtime->dma_area + (unsigned long )offset; tmp = buf; buf = buf + 1; *tmp = snd_vx_inb(chip, 4); offset = offset + 1; } if (offset >= pipe->buffer_bytes) { offset = 0; buf = runtime->dma_area; } else { } { tmp___0 = buf; buf = buf + 1; *tmp___0 = snd_vx_inb(chip, 5); offset = offset + 1; } if (offset >= pipe->buffer_bytes) { offset = 0; buf = runtime->dma_area; } else { } { tmp___1 = buf; buf = buf + 1; *tmp___1 = snd_vx_inb(chip, 6); offset = offset + 1; } if (offset >= pipe->buffer_bytes) { offset = 0; buf = runtime->dma_area; } else { } pipe->hw_ptr = offset; return; } } static void vx_set_pcx_time(struct vx_core *chip , pcx_time_t *pc_time , unsigned int *dsp_time ) { { *dsp_time = (unsigned int )(*pc_time >> 24) & 1048575U; *(dsp_time + 1UL) = (unsigned int )*pc_time & 16777215U; return; } } static int vx_set_differed_time(struct vx_core *chip , struct vx_rmh *rmh , struct vx_pipe *pipe ) { { if ((pipe->differed_type & 1U) == 0U) { return (0); } else { } { rmh->Cmd[0] = rmh->Cmd[0] | 49152U; vx_set_pcx_time(chip, & pipe->pcx_time, (unsigned int *)(& rmh->Cmd) + 1U); } if ((pipe->differed_type & 2U) != 0U) { rmh->Cmd[1] = rmh->Cmd[1] | 4194304U; } else { } if ((pipe->differed_type & 8U) != 0U) { rmh->Cmd[1] = rmh->Cmd[1] | 1048576U; } else { } if ((pipe->differed_type & 16U) != 0U) { rmh->Cmd[1] = rmh->Cmd[1] | 8388608U; } else { } rmh->LgCmd = (unsigned int )rmh->LgCmd + 2U; return (2); } } static int vx_set_stream_format(struct vx_core *chip , struct vx_pipe *pipe , unsigned int data ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, (unsigned int )*((unsigned char *)pipe + 4UL) != 0U ? 23U : 22U); rmh.Cmd[0] = rmh.Cmd[0] | (u32 )(pipe->number << 5); vx_set_differed_time(chip, & rmh, pipe); rmh.Cmd[(int )rmh.LgCmd] = data >> 8; rmh.Cmd[(int )rmh.LgCmd + 1] = (data & 255U) << 16; rmh.LgCmd = (unsigned int )rmh.LgCmd + 2U; tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_set_format(struct vx_core *chip , struct vx_pipe *pipe , struct snd_pcm_runtime *runtime ) { unsigned int header ; int tmp ; int tmp___0 ; int __ret_warn_on ; long tmp___1 ; int tmp___2 ; { header = 4275044352U; if (runtime->channels == 1U) { header = header | 192U; } else { } { tmp = snd_pcm_format_little_endian(runtime->format); } if (tmp != 0) { header = header | 32768U; } else { } if (runtime->rate - 11026U <= 20973U) { header = header | 256U; } else if (runtime->rate <= 11025U) { header = header | 512U; } else { } { tmp___0 = snd_pcm_format_physical_width(runtime->format); } { if (tmp___0 == 16) { goto case_16; } else { } if (tmp___0 == 24) { goto case_24; } else { } goto switch_default; case_16: /* CIL Label */ header = header | 8192U; goto ldv_31633; case_24: /* CIL Label */ header = header | 16384U; goto ldv_31633; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_fmt("sound/drivers/vx/vx_pcm.c", 185, "BUG?\n"); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (-22); switch_break: /* CIL Label */ ; } ldv_31633: { tmp___2 = vx_set_stream_format(chip, pipe, header); } return (tmp___2); } } static int vx_set_ibl(struct vx_core *chip , struct vx_ibl_info *info ) { int err ; struct vx_rmh rmh ; { { vx_init_rmh(& rmh, 4U); rmh.Cmd[0] = rmh.Cmd[0] | ((u32 )info->size & 262143U); err = vx_send_msg(chip, & rmh); } if (err < 0) { return (err); } else { } { info->size = (int )rmh.Stat[0]; info->max_size = (int )rmh.Stat[1]; info->min_size = (int )rmh.Stat[2]; info->granularity = (int )rmh.Stat[3]; __snd_printk(2U, "sound/drivers/vx/vx_pcm.c", 210, "\017vx_set_ibl: size = %d, max = %d, min = %d, gran = %d\n", info->size, info->max_size, info->min_size, info->granularity); } return (0); } } static int vx_get_pipe_state(struct vx_core *chip , struct vx_pipe *pipe , int *state ) { int err ; struct vx_rmh rmh ; { { vx_init_rmh(& rmh, 12U); vx_set_pipe_cmd_params(& rmh, (int )pipe->is_capture, pipe->number, 0); err = vx_send_msg(chip, & rmh); } if (err == 0) { *state = (rmh.Stat[0] & (u32 )(1 << pipe->number)) != 0U; } else { } return (err); } } static int vx_query_hbuffer_size(struct vx_core *chip , struct vx_pipe *pipe ) { int result ; struct vx_rmh rmh ; { { vx_init_rmh(& rmh, 15U); vx_set_pipe_cmd_params(& rmh, (int )pipe->is_capture, pipe->number, 0); } if ((unsigned int )*((unsigned char *)pipe + 4UL) != 0U) { rmh.Cmd[0] = rmh.Cmd[0] | 1U; } else { } { result = vx_send_msg(chip, & rmh); } if (result == 0) { result = (int )rmh.Stat[0] & 65535; } else { } return (result); } } static int vx_pipe_can_start(struct vx_core *chip , struct vx_pipe *pipe ) { int err ; struct vx_rmh rmh ; { { vx_init_rmh(& rmh, 14U); vx_set_pipe_cmd_params(& rmh, (int )pipe->is_capture, pipe->number, 0); rmh.Cmd[0] = rmh.Cmd[0] | 1U; err = vx_send_msg(chip, & rmh); } if (err == 0) { if (rmh.Stat[0] != 0U) { err = 1; } else { } } else { } return (err); } } static int vx_conf_pipe(struct vx_core *chip , struct vx_pipe *pipe ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 8U); } if ((unsigned int )*((unsigned char *)pipe + 4UL) != 0U) { rmh.Cmd[0] = rmh.Cmd[0] | 2048U; } else { } { rmh.Cmd[1] = (u32 )(1 << pipe->number); tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_send_irqa(struct vx_core *chip ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 3U); tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_toggle_pipe(struct vx_core *chip , struct vx_pipe *pipe , int state ) { int err ; int i ; int cur_state ; int tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; { { tmp = vx_get_pipe_state(chip, pipe, & cur_state); } if (tmp < 0) { return (-77); } else { } if (state == cur_state) { return (0); } else { } if (state != 0) { i = 0; goto ldv_31686; ldv_31685: { err = vx_pipe_can_start(chip, pipe); } if (err > 0) { goto ldv_31680; } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_31683; ldv_31682: { __const_udelay(4295000UL); } ldv_31683: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_31682; } else { } } i = i + 1; ldv_31686: ; if (i <= 249) { goto ldv_31685; } else { } ldv_31680: ; } else { } { err = vx_conf_pipe(chip, pipe); } if (err < 0) { return (err); } else { } { err = vx_send_irqa(chip); } if (err < 0) { return (err); } else { } i = 0; goto ldv_31693; ldv_31692: { err = vx_get_pipe_state(chip, pipe, & cur_state); } if (err < 0 || cur_state == state) { goto ldv_31687; } else { } err = -5; if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_31690; ldv_31689: { __const_udelay(4295000UL); } ldv_31690: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_31689; } else { } } i = i + 1; ldv_31693: ; if (i <= 249) { goto ldv_31692; } else { } ldv_31687: ; return (err < 0 ? -5 : 0); } } static int vx_stop_pipe(struct vx_core *chip , struct vx_pipe *pipe ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 11U); vx_set_pipe_cmd_params(& rmh, (int )pipe->is_capture, pipe->number, 0); tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_alloc_pipe(struct vx_core *chip , int capture , int audioid , int num_audio , struct vx_pipe **pipep ) { int err ; struct vx_pipe *pipe ; struct vx_rmh rmh ; int data_mode ; void *tmp ; { { *pipep = (struct vx_pipe *)0; vx_init_rmh(& rmh, 6U); vx_set_pipe_cmd_params(& rmh, capture, audioid, num_audio); data_mode = (chip->uer_bits & 2U) != 0U; } if (capture == 0 && data_mode != 0) { rmh.Cmd[0] = rmh.Cmd[0] | 16U; } else { } { err = vx_send_msg(chip, & rmh); } if (err < 0) { return (err); } else { } { tmp = kzalloc(88UL, 208U); pipe = (struct vx_pipe *)tmp; } if ((unsigned long )pipe == (unsigned long )((struct vx_pipe *)0)) { { vx_init_rmh(& rmh, 7U); vx_set_pipe_cmd_params(& rmh, capture, audioid, 0); vx_send_msg(chip, & rmh); } return (-12); } else { } pipe->number = audioid; pipe->is_capture = (unsigned char )capture; pipe->channels = num_audio; pipe->differed_type = 0U; pipe->pcx_time = 0ULL; pipe->data_mode = (unsigned char )data_mode; *pipep = pipe; return (0); } } static int vx_free_pipe(struct vx_core *chip , struct vx_pipe *pipe ) { struct vx_rmh rmh ; { { vx_init_rmh(& rmh, 7U); vx_set_pipe_cmd_params(& rmh, (int )pipe->is_capture, pipe->number, 0); vx_send_msg(chip, & rmh); kfree((void const *)pipe); } return (0); } } static int vx_start_stream(struct vx_core *chip , struct vx_pipe *pipe ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 17U); vx_set_stream_cmd_params(& rmh, (int )pipe->is_capture, pipe->number); vx_set_differed_time(chip, & rmh, pipe); tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_stop_stream(struct vx_core *chip , struct vx_pipe *pipe ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 21U); vx_set_stream_cmd_params(& rmh, (int )pipe->is_capture, pipe->number); tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static struct snd_pcm_hardware vx_pcm_playback_hw = {524547U, 4294967300ULL, 1073742078U, 5000U, 48000U, 1U, 2U, 131072UL, 126UL, 131072UL, 2U, 32U, 126UL}; static int vx_pcm_playback_open(struct snd_pcm_substream *subs ) { struct snd_pcm_runtime *runtime ; struct vx_core *chip ; struct vx_pipe *pipe ; unsigned int audio ; int err ; int __ret_warn_on ; long tmp ; long tmp___0 ; { runtime = subs->runtime; chip = (struct vx_core *)subs->private_data; pipe = (struct vx_pipe *)0; if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { audio = (unsigned int )((subs->pcm)->device * 2); __ret_warn_on = audio >= chip->audio_outs; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_pcm.c", 538); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (-22); } else { } pipe = *(chip->playback_pipes + (unsigned long )audio); if ((unsigned long )pipe == (unsigned long )((struct vx_pipe *)0)) { { err = vx_alloc_pipe(chip, 0, (int )audio, 2, & pipe); } if (err < 0) { return (err); } else { } *(chip->playback_pipes + (unsigned long )audio) = pipe; } else { } { pipe->references = pipe->references + 1U; pipe->substream = subs; *(chip->playback_pipes + (unsigned long )audio) = pipe; runtime->hw = vx_pcm_playback_hw; runtime->hw.period_bytes_min = (size_t )chip->ibl.size; runtime->private_data = (void *)pipe; snd_pcm_hw_constraint_step(runtime, 0U, 18, 4UL); snd_pcm_hw_constraint_step(runtime, 0U, 14, 4UL); } return (0); } } static int vx_pcm_playback_close(struct snd_pcm_substream *subs ) { struct vx_core *chip ; struct vx_pipe *pipe ; { chip = (struct vx_core *)subs->private_data; if ((unsigned long )(subs->runtime)->private_data == (unsigned long )((void *)0)) { return (-22); } else { } pipe = (struct vx_pipe *)(subs->runtime)->private_data; pipe->references = pipe->references - 1U; if (pipe->references == 0U) { { *(chip->playback_pipes + (unsigned long )pipe->number) = (struct vx_pipe *)0; vx_free_pipe(chip, pipe); } } else { } return (0); } } static int vx_notify_end_of_buffer(struct vx_core *chip , struct vx_pipe *pipe ) { int err ; struct vx_rmh rmh ; { { vx_send_rih_nolock(chip, 42); vx_init_rmh(& rmh, 57U); vx_set_stream_cmd_params(& rmh, 0, pipe->number); err = vx_send_msg_nolock(chip, & rmh); } if (err < 0) { return (err); } else { } { vx_send_rih_nolock(chip, 42); } return (0); } } static int vx_pcm_playback_transfer_chunk(struct vx_core *chip , struct snd_pcm_runtime *runtime , struct vx_pipe *pipe , int size ) { int space ; int err ; { { err = 0; space = vx_query_hbuffer_size(chip, pipe); } if (space < 0) { { vx_send_rih(chip, 38); __snd_printk(1U, "sound/drivers/vx/vx_pcm.c", 634, "error hbuffer\n"); } return (space); } else { } if (space < size) { { vx_send_rih(chip, 38); __snd_printk(1U, "sound/drivers/vx/vx_pcm.c", 639, "no enough hbuffer space %d\n", space); } return (-5); } else { } { ldv_mutex_lock_97___0(& chip->lock); vx_pseudo_dma_write(chip, runtime, pipe, size); err = vx_notify_end_of_buffer(chip, pipe); vx_send_rih_nolock(chip, 38); ldv_mutex_unlock_98___0(& chip->lock); } return (err); } } static int vx_update_pipe_position(struct vx_core *chip , struct snd_pcm_runtime *runtime , struct vx_pipe *pipe ) { struct vx_rmh rmh ; int err ; int update ; u64 count ; { { vx_init_rmh(& rmh, 46U); vx_set_pipe_cmd_params(& rmh, (int )pipe->is_capture, pipe->number, 0); err = vx_send_msg(chip, & rmh); } if (err < 0) { return (err); } else { } count = (((unsigned long long )rmh.Stat[0] & 1048575ULL) << 24) | (unsigned long long )rmh.Stat[1]; update = (int )((unsigned int )count - (unsigned int )pipe->cur_count); pipe->cur_count = count; pipe->position = pipe->position + update; if (pipe->position >= (int )runtime->buffer_size) { pipe->position = (int )((snd_pcm_uframes_t )pipe->position % runtime->buffer_size); } else { } pipe->transferred = pipe->transferred + update; return (0); } } static void vx_pcm_playback_transfer(struct vx_core *chip , struct snd_pcm_substream *subs , struct vx_pipe *pipe , int nchunks ) { int i ; int err ; struct snd_pcm_runtime *runtime ; { runtime = subs->runtime; if ((unsigned int )*((unsigned char *)pipe + 4UL) == 0U || (chip->chip_status & 32768U) != 0U) { return; } else { } i = 0; goto ldv_31774; ldv_31773: { err = vx_pcm_playback_transfer_chunk(chip, runtime, pipe, chip->ibl.size); } if (err < 0) { return; } else { } i = i + 1; ldv_31774: ; if (i < nchunks) { goto ldv_31773; } else { } return; } } static void vx_pcm_playback_update(struct vx_core *chip , struct snd_pcm_substream *subs , struct vx_pipe *pipe ) { int err ; struct snd_pcm_runtime *runtime ; { runtime = subs->runtime; if ((unsigned int )*((unsigned char *)pipe + 4UL) != 0U && (chip->chip_status & 32768U) == 0U) { { err = vx_update_pipe_position(chip, runtime, pipe); } if (err < 0) { return; } else { } if (pipe->transferred >= (int )runtime->period_size) { { pipe->transferred = (int )((snd_pcm_uframes_t )pipe->transferred % runtime->period_size); snd_pcm_period_elapsed(subs); } } else { } } else { } return; } } static int vx_pcm_trigger(struct snd_pcm_substream *subs , int cmd ) { struct vx_core *chip ; struct vx_pipe *pipe ; int err ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { chip = (struct vx_core *)subs->private_data; pipe = (struct vx_pipe *)(subs->runtime)->private_data; if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { if (cmd == 1) { goto case_1; } else { } if (cmd == 6) { goto case_6; } else { } if (cmd == 0) { goto case_0; } else { } if (cmd == 5) { goto case_5; } else { } if (cmd == 3) { goto case_3; } else { } if (cmd == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; case_6: /* CIL Label */ ; if ((unsigned int )*((unsigned char *)pipe + 4UL) == 0U) { { vx_pcm_playback_transfer(chip, subs, pipe, 2); } } else { } { err = vx_start_stream(chip, pipe); } if (err < 0) { { descriptor.modname = "snd_vx_lib"; descriptor.function = "vx_pcm_trigger"; descriptor.filename = "sound/drivers/vx/vx_pcm.c"; descriptor.format = "vx: cannot start stream\n"; descriptor.lineno = 746U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "vx: cannot start stream\n"); } } else { } return (err); } else { } { err = vx_toggle_pipe(chip, pipe, 1); } if (err < 0) { { descriptor___0.modname = "snd_vx_lib"; descriptor___0.function = "vx_pcm_trigger"; descriptor___0.filename = "sound/drivers/vx/vx_pcm.c"; descriptor___0.format = "vx: cannot start pipe\n"; descriptor___0.lineno = 751U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "vx: cannot start pipe\n"); } } else { } { vx_stop_stream(chip, pipe); } return (err); } else { } chip->pcm_running = chip->pcm_running + 1U; pipe->running = 1U; goto ldv_31795; case_0: /* CIL Label */ ; case_5: /* CIL Label */ { vx_toggle_pipe(chip, pipe, 0); vx_stop_pipe(chip, pipe); vx_stop_stream(chip, pipe); chip->pcm_running = chip->pcm_running - 1U; pipe->running = 0U; } goto ldv_31795; case_3: /* CIL Label */ { err = vx_toggle_pipe(chip, pipe, 0); } if (err < 0) { return (err); } else { } goto ldv_31795; case_4: /* CIL Label */ { err = vx_toggle_pipe(chip, pipe, 1); } if (err < 0) { return (err); } else { } goto ldv_31795; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_31795: ; return (0); } } static snd_pcm_uframes_t vx_pcm_playback_pointer(struct snd_pcm_substream *subs ) { struct snd_pcm_runtime *runtime ; struct vx_pipe *pipe ; { runtime = subs->runtime; pipe = (struct vx_pipe *)runtime->private_data; return ((snd_pcm_uframes_t )pipe->position); } } static int vx_pcm_hw_params(struct snd_pcm_substream *subs , struct snd_pcm_hw_params *hw_params ) { unsigned int tmp ; int tmp___0 ; { { tmp = params_buffer_bytes((struct snd_pcm_hw_params const *)hw_params); tmp___0 = snd_pcm_lib_alloc_vmalloc_32_buffer(subs, (size_t )tmp); } return (tmp___0); } } static int vx_pcm_hw_free(struct snd_pcm_substream *subs ) { int tmp ; { { tmp = snd_pcm_lib_free_vmalloc_buffer(subs); } return (tmp); } } static int vx_pcm_prepare(struct snd_pcm_substream *subs ) { struct vx_core *chip ; struct snd_pcm_runtime *runtime ; struct vx_pipe *pipe ; int err ; int data_mode ; struct vx_rmh rmh ; ssize_t tmp ; ssize_t tmp___0 ; { chip = (struct vx_core *)subs->private_data; runtime = subs->runtime; pipe = (struct vx_pipe *)runtime->private_data; if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } data_mode = (chip->uer_bits & 2U) != 0U; if (data_mode != (int )pipe->data_mode && (unsigned int )*((unsigned char *)pipe + 4UL) == 0U) { { __snd_printk(2U, "sound/drivers/vx/vx_pcm.c", 827, "\017reopen the pipe with data_mode = %d\n", data_mode); vx_init_rmh(& rmh, 7U); vx_set_pipe_cmd_params(& rmh, 0, pipe->number, 0); err = vx_send_msg(chip, & rmh); } if (err < 0) { return (err); } else { } { vx_init_rmh(& rmh, 6U); vx_set_pipe_cmd_params(& rmh, 0, pipe->number, pipe->channels); } if (data_mode != 0) { rmh.Cmd[0] = rmh.Cmd[0] | 16U; } else { } { err = vx_send_msg(chip, & rmh); } if (err < 0) { return (err); } else { } pipe->data_mode = (unsigned char )data_mode; } else { } if (chip->pcm_running != 0U && chip->freq != runtime->rate) { { __snd_printk(0U, "sound/drivers/vx/vx_pcm.c", 843, "\vvx: cannot set different clock %d from the current %d\n", runtime->rate, chip->freq); } return (-22); } else { } { vx_set_clock(chip, runtime->rate); err = vx_set_format(chip, pipe, runtime); } if (err < 0) { return (err); } else { } if (chip->type > 2) { pipe->align = 2; } else { pipe->align = 4; } { tmp = frames_to_bytes(runtime, (snd_pcm_sframes_t )runtime->buffer_size); pipe->buffer_bytes = (int )tmp; tmp___0 = frames_to_bytes(runtime, (snd_pcm_sframes_t )runtime->period_size); pipe->period_bytes = (int )tmp___0; pipe->hw_ptr = 0; vx_update_pipe_position(chip, runtime, pipe); pipe->transferred = 0; pipe->position = 0; pipe->prepared = 1U; } return (0); } } static struct snd_pcm_ops vx_pcm_playback_ops = {& vx_pcm_playback_open, & vx_pcm_playback_close, & snd_pcm_lib_ioctl, & vx_pcm_hw_params, & vx_pcm_hw_free, & vx_pcm_prepare, & vx_pcm_trigger, & vx_pcm_playback_pointer, 0, 0, 0, & snd_pcm_lib_get_vmalloc_page, (int (*)(struct snd_pcm_substream * , struct vm_area_struct * ))0, 0}; static struct snd_pcm_hardware vx_pcm_capture_hw = {524547U, 4294967300ULL, 1073742078U, 5000U, 48000U, 1U, 2U, 131072UL, 126UL, 131072UL, 2U, 32U, 126UL}; static int vx_pcm_capture_open(struct snd_pcm_substream *subs ) { struct snd_pcm_runtime *runtime ; struct vx_core *chip ; struct vx_pipe *pipe ; struct vx_pipe *pipe_out_monitoring ; unsigned int audio ; int err ; int __ret_warn_on ; long tmp ; long tmp___0 ; { runtime = subs->runtime; chip = (struct vx_core *)subs->private_data; pipe_out_monitoring = (struct vx_pipe *)0; if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { audio = (unsigned int )((subs->pcm)->device * 2); __ret_warn_on = audio >= chip->audio_ins; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_pcm.c", 930); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (-22); } else { } { err = vx_alloc_pipe(chip, 1, (int )audio, 2, & pipe); } if (err < 0) { return (err); } else { } pipe->substream = subs; *(chip->capture_pipes + (unsigned long )audio) = pipe; if ((unsigned int )chip->audio_monitor_active[audio] != 0U) { pipe_out_monitoring = *(chip->playback_pipes + (unsigned long )audio); if ((unsigned long )pipe_out_monitoring == (unsigned long )((struct vx_pipe *)0)) { { err = vx_alloc_pipe(chip, 0, (int )audio, 2, & pipe_out_monitoring); } if (err < 0) { return (err); } else { } *(chip->playback_pipes + (unsigned long )audio) = pipe_out_monitoring; } else { } { pipe_out_monitoring->references = pipe_out_monitoring->references + 1U; vx_set_monitor_level(chip, (int )audio, chip->audio_monitor[audio], (int )chip->audio_monitor_active[audio]); vx_set_monitor_level(chip, (int )(audio + 1U), chip->audio_monitor[audio + 1U], (int )chip->audio_monitor_active[audio + 1U]); } } else { } { pipe->monitoring_pipe = pipe_out_monitoring; runtime->hw = vx_pcm_capture_hw; runtime->hw.period_bytes_min = (size_t )chip->ibl.size; runtime->private_data = (void *)pipe; snd_pcm_hw_constraint_step(runtime, 0U, 18, 4UL); snd_pcm_hw_constraint_step(runtime, 0U, 14, 4UL); } return (0); } } static int vx_pcm_capture_close(struct snd_pcm_substream *subs ) { struct vx_core *chip ; struct vx_pipe *pipe ; struct vx_pipe *pipe_out_monitoring ; { chip = (struct vx_core *)subs->private_data; if ((unsigned long )(subs->runtime)->private_data == (unsigned long )((void *)0)) { return (-22); } else { } pipe = (struct vx_pipe *)(subs->runtime)->private_data; *(chip->capture_pipes + (unsigned long )pipe->number) = (struct vx_pipe *)0; pipe_out_monitoring = pipe->monitoring_pipe; if ((unsigned long )pipe_out_monitoring != (unsigned long )((struct vx_pipe *)0)) { pipe_out_monitoring->references = pipe_out_monitoring->references - 1U; if (pipe_out_monitoring->references == 0U) { { vx_free_pipe(chip, pipe_out_monitoring); *(chip->playback_pipes + (unsigned long )pipe->number) = (struct vx_pipe *)0; pipe->monitoring_pipe = (struct vx_pipe *)0; } } else { } } else { } { vx_free_pipe(chip, pipe); } return (0); } } static void vx_pcm_capture_update(struct vx_core *chip , struct snd_pcm_substream *subs , struct vx_pipe *pipe ) { int size ; int space ; int count ; struct snd_pcm_runtime *runtime ; snd_pcm_uframes_t tmp ; ssize_t tmp___0 ; int tmp___1 ; int align ; int tmp___2 ; { runtime = subs->runtime; if ((unsigned int )*((unsigned char *)pipe + 4UL) == 0U || (chip->chip_status & 32768U) != 0U) { return; } else { } { tmp = snd_pcm_capture_avail(runtime); size = (int )((unsigned int )runtime->buffer_size - (unsigned int )tmp); } if (size == 0) { return; } else { } { tmp___0 = frames_to_bytes(runtime, (snd_pcm_sframes_t )size); size = (int )tmp___0; space = vx_query_hbuffer_size(chip, pipe); } if (space < 0) { goto _error; } else { } if (size > space) { size = space; } else { } size = (size / 3) * 3; if (size <= 5) { goto _error; } else { } count = size + -6; goto ldv_31853; ldv_31852: ; if (pipe->hw_ptr % pipe->align == 0) { goto ldv_31851; } else { } { tmp___1 = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (tmp___1 < 0) { goto _error; } else { } { vx_pcm_read_per_bytes(chip, runtime, pipe); count = count + -3; } ldv_31853: ; if (count > 0) { goto ldv_31852; } else { } ldv_31851: ; if (count > 0) { { align = pipe->align * 3; space = (count / align) * align; vx_pseudo_dma_read(chip, runtime, pipe, space); count = count - space; } } else { } goto ldv_31856; ldv_31855: { tmp___2 = snd_vx_check_reg_bit(chip, 2, 1, 1, 200); } if (tmp___2 < 0) { goto _error; } else { } { vx_pcm_read_per_bytes(chip, runtime, pipe); count = count + -3; } ldv_31856: ; if (count > 0) { goto ldv_31855; } else { } { vx_send_rih(chip, 38); count = 6; } goto ldv_31859; ldv_31858: { vx_pcm_read_per_bytes(chip, runtime, pipe); count = count + -3; } ldv_31859: ; if (count > 0) { goto ldv_31858; } else { } pipe->transferred = pipe->transferred + size; if (pipe->transferred >= pipe->period_bytes) { { pipe->transferred = pipe->transferred % pipe->period_bytes; snd_pcm_period_elapsed(subs); } } else { } return; _error: { vx_send_rih(chip, 38); } return; } } static snd_pcm_uframes_t vx_pcm_capture_pointer(struct snd_pcm_substream *subs ) { struct snd_pcm_runtime *runtime ; struct vx_pipe *pipe ; snd_pcm_sframes_t tmp ; { { runtime = subs->runtime; pipe = (struct vx_pipe *)runtime->private_data; tmp = bytes_to_frames(runtime, (ssize_t )pipe->hw_ptr); } return ((snd_pcm_uframes_t )tmp); } } static struct snd_pcm_ops vx_pcm_capture_ops = {& vx_pcm_capture_open, & vx_pcm_capture_close, & snd_pcm_lib_ioctl, & vx_pcm_hw_params, & vx_pcm_hw_free, & vx_pcm_prepare, & vx_pcm_trigger, & vx_pcm_capture_pointer, 0, 0, 0, & snd_pcm_lib_get_vmalloc_page, (int (*)(struct snd_pcm_substream * , struct vm_area_struct * ))0, 0}; void vx_pcm_update_intr(struct vx_core *chip , unsigned int events ) { unsigned int i ; struct vx_pipe *pipe ; int tmp ; int p ; int buf ; int capture ; int eob ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; { if ((events & 33792U) != 0U) { { vx_init_rmh(& chip->irq_rmh, 5U); } if ((events & 32768U) != 0U) { chip->irq_rmh.Cmd[0] = chip->irq_rmh.Cmd[0] | 1U; } else { } if ((events & 1024U) != 0U) { chip->irq_rmh.Cmd[0] = chip->irq_rmh.Cmd[0] | 2U; } else { } { tmp = vx_send_msg(chip, & chip->irq_rmh); } if (tmp < 0) { { __snd_printk(2U, "sound/drivers/vx/vx_pcm.c", 1128, "\vmsg send error!!\n"); } return; } else { } i = 1U; goto ldv_31877; ldv_31880: p = (int )chip->irq_rmh.Stat[i] & 31; capture = (chip->irq_rmh.Stat[i] & 4194304U) != 0U; eob = (chip->irq_rmh.Stat[i] & 8388608U) != 0U; i = i + 1U; if ((events & 32768U) != 0U) { i = i + 1U; } else { } buf = 1; if ((events & 1024U) != 0U) { if (eob != 0) { buf = (int )chip->irq_rmh.Stat[i]; } else { } i = i + 1U; } else { } if (capture != 0) { goto ldv_31877; } else { } { __ret_warn_on = p < 0 || (unsigned int )p >= chip->audio_outs; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_pcm.c", 1149); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { goto ldv_31877; } else { } pipe = *(chip->playback_pipes + (unsigned long )p); if ((unsigned long )pipe != (unsigned long )((struct vx_pipe *)0) && (unsigned long )pipe->substream != (unsigned long )((struct snd_pcm_substream *)0)) { { vx_pcm_playback_update(chip, pipe->substream, pipe); vx_pcm_playback_transfer(chip, pipe->substream, pipe, buf); } } else { } ldv_31877: ; if (i < (unsigned int )chip->irq_rmh.LgStat) { goto ldv_31880; } else { } } else { } i = 0U; goto ldv_31883; ldv_31882: pipe = *(chip->capture_pipes + (unsigned long )i); if ((unsigned long )pipe != (unsigned long )((struct vx_pipe *)0) && (unsigned long )pipe->substream != (unsigned long )((struct snd_pcm_substream *)0)) { { vx_pcm_capture_update(chip, pipe->substream, pipe); } } else { } i = i + 1U; ldv_31883: ; if (i < chip->audio_ins) { goto ldv_31882; } else { } return; } } static int vx_init_audio_io(struct vx_core *chip ) { struct vx_rmh rmh ; int preferred ; int tmp ; void *tmp___0 ; void *tmp___1 ; { { vx_init_rmh(& rmh, 1U); tmp = vx_send_msg(chip, & rmh); } if (tmp < 0) { { __snd_printk(0U, "sound/drivers/vx/vx_pcm.c", 1178, "\vvx: cannot get the supported audio data\n"); } return (-6); } else { } { chip->audio_outs = rmh.Stat[0] & 31U; chip->audio_ins = (rmh.Stat[0] >> 10) & 31U; chip->audio_info = rmh.Stat[1]; tmp___0 = kcalloc((size_t )chip->audio_outs, 8UL, 208U); chip->playback_pipes = (struct vx_pipe **)tmp___0; } if ((unsigned long )chip->playback_pipes == (unsigned long )((struct vx_pipe **)0)) { return (-12); } else { } { tmp___1 = kcalloc((size_t )chip->audio_ins, 8UL, 208U); chip->capture_pipes = (struct vx_pipe **)tmp___1; } if ((unsigned long )chip->capture_pipes == (unsigned long )((struct vx_pipe **)0)) { { kfree((void const *)chip->playback_pipes); } return (-12); } else { } { preferred = chip->ibl.size; chip->ibl.size = 0; vx_set_ibl(chip, & chip->ibl); } if (preferred > 0) { chip->ibl.size = (((preferred + chip->ibl.granularity) + -1) / chip->ibl.granularity) * chip->ibl.granularity; if (chip->ibl.size > chip->ibl.max_size) { chip->ibl.size = chip->ibl.max_size; } else { } } else { chip->ibl.size = chip->ibl.min_size; } { vx_set_ibl(chip, & chip->ibl); } return (0); } } static void snd_vx_pcm_free(struct snd_pcm *pcm ) { struct vx_core *chip ; { { chip = (struct vx_core *)pcm->private_data; chip->pcm[pcm->device] = (struct snd_pcm *)0; kfree((void const *)chip->playback_pipes); chip->playback_pipes = (struct vx_pipe **)0; kfree((void const *)chip->capture_pipes); chip->capture_pipes = (struct vx_pipe **)0; } return; } } int snd_vx_pcm_new(struct vx_core *chip ) { struct snd_pcm *pcm ; unsigned int i ; int err ; unsigned int outs ; unsigned int ins ; { { err = vx_init_audio_io(chip); } if (err < 0) { return (err); } else { } i = 0U; goto ldv_31904; ldv_31903: outs = chip->audio_outs > i * 2U; ins = chip->audio_ins > i * 2U; if ((outs | ins) == 0U) { goto ldv_31902; } else { } { err = snd_pcm_new(chip->card, "VX PCM", (int )i, (int )outs, (int )ins, & pcm); } if (err < 0) { return (err); } else { } if (outs != 0U) { { snd_pcm_set_ops(pcm, 0, (struct snd_pcm_ops const *)(& vx_pcm_playback_ops)); } } else { } if (ins != 0U) { { snd_pcm_set_ops(pcm, 1, (struct snd_pcm_ops const *)(& vx_pcm_capture_ops)); } } else { } { pcm->private_data = (void *)chip; pcm->private_free = & snd_vx_pcm_free; pcm->info_flags = 0U; pcm->nonatomic = 1; strcpy((char *)(& pcm->name), (char const *)(& (chip->card)->shortname)); chip->pcm[i] = pcm; i = i + 1U; } ldv_31904: ; if (i < (chip->hw)->num_codecs) { goto ldv_31903; } else { } ldv_31902: ; return (0); } } void ldv_io_instance_callback_0_17(int (*arg0)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) , struct snd_pcm_substream *arg1 , struct snd_pcm_hw_params *arg2 ) ; void ldv_io_instance_callback_0_18(int (*arg0)(struct snd_pcm_substream * , unsigned int , void * ) , struct snd_pcm_substream *arg1 , unsigned int arg2 , void *arg3 ) ; void ldv_io_instance_callback_0_21(struct page *(*arg0)(struct snd_pcm_substream * , unsigned long ) , struct snd_pcm_substream *arg1 , unsigned long arg2 ) ; void ldv_io_instance_callback_0_24(unsigned long (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_callback_0_25(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_callback_0_26(int (*arg0)(struct snd_pcm_substream * , int ) , struct snd_pcm_substream *arg1 , int arg2 ) ; void ldv_io_instance_callback_0_4(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_callback_1_17(int (*arg0)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) , struct snd_pcm_substream *arg1 , struct snd_pcm_hw_params *arg2 ) ; void ldv_io_instance_callback_1_18(int (*arg0)(struct snd_pcm_substream * , unsigned int , void * ) , struct snd_pcm_substream *arg1 , unsigned int arg2 , void *arg3 ) ; void ldv_io_instance_callback_1_21(struct page *(*arg0)(struct snd_pcm_substream * , unsigned long ) , struct snd_pcm_substream *arg1 , unsigned long arg2 ) ; void ldv_io_instance_callback_1_24(unsigned long (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_callback_1_25(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_callback_1_26(int (*arg0)(struct snd_pcm_substream * , int ) , struct snd_pcm_substream *arg1 , int arg2 ) ; void ldv_io_instance_callback_1_4(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; int ldv_io_instance_probe_0_11(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; int ldv_io_instance_probe_1_11(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_release_0_2(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; void ldv_io_instance_release_1_2(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; void ldv_io_instance_callback_0_17(int (*arg0)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) , struct snd_pcm_substream *arg1 , struct snd_pcm_hw_params *arg2 ) { { { vx_pcm_hw_params(arg1, arg2); } return; } } void ldv_io_instance_callback_0_18(int (*arg0)(struct snd_pcm_substream * , unsigned int , void * ) , struct snd_pcm_substream *arg1 , unsigned int arg2 , void *arg3 ) { { { snd_pcm_lib_ioctl(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_0_21(struct page *(*arg0)(struct snd_pcm_substream * , unsigned long ) , struct snd_pcm_substream *arg1 , unsigned long arg2 ) { { { snd_pcm_lib_get_vmalloc_page(arg1, arg2); } return; } } void ldv_io_instance_callback_0_24(unsigned long (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_capture_pointer(arg1); } return; } } void ldv_io_instance_callback_0_25(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_prepare(arg1); } return; } } void ldv_io_instance_callback_0_26(int (*arg0)(struct snd_pcm_substream * , int ) , struct snd_pcm_substream *arg1 , int arg2 ) { { { vx_pcm_trigger(arg1, arg2); } return; } } void ldv_io_instance_callback_0_4(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_hw_free(arg1); } return; } } void ldv_io_instance_callback_1_17(int (*arg0)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) , struct snd_pcm_substream *arg1 , struct snd_pcm_hw_params *arg2 ) { { { vx_pcm_hw_params(arg1, arg2); } return; } } void ldv_io_instance_callback_1_18(int (*arg0)(struct snd_pcm_substream * , unsigned int , void * ) , struct snd_pcm_substream *arg1 , unsigned int arg2 , void *arg3 ) { { { snd_pcm_lib_ioctl(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_1_21(struct page *(*arg0)(struct snd_pcm_substream * , unsigned long ) , struct snd_pcm_substream *arg1 , unsigned long arg2 ) { { { snd_pcm_lib_get_vmalloc_page(arg1, arg2); } return; } } void ldv_io_instance_callback_1_24(unsigned long (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_playback_pointer(arg1); } return; } } void ldv_io_instance_callback_1_25(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_prepare(arg1); } return; } } void ldv_io_instance_callback_1_26(int (*arg0)(struct snd_pcm_substream * , int ) , struct snd_pcm_substream *arg1 , int arg2 ) { { { vx_pcm_trigger(arg1, arg2); } return; } } void ldv_io_instance_callback_1_4(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_hw_free(arg1); } return; } } int ldv_io_instance_probe_0_11(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { int tmp ; { { tmp = vx_pcm_capture_open(arg1); } return (tmp); } } int ldv_io_instance_probe_1_11(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { int tmp ; { { tmp = vx_pcm_playback_open(arg1); } return (tmp); } } void ldv_io_instance_release_0_2(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_capture_close(arg1); } return; } } void ldv_io_instance_release_1_2(int (*arg0)(struct snd_pcm_substream * ) , struct snd_pcm_substream *arg1 ) { { { vx_pcm_playback_close(arg1); } return; } } void ldv_struct_snd_pcm_ops_io_instance_0(void *arg0 ) { int (*ldv_0_callback_hw_free)(struct snd_pcm_substream * ) ; int (*ldv_0_callback_hw_params)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) ; int (*ldv_0_callback_ioctl)(struct snd_pcm_substream * , unsigned int , void * ) ; struct page *(*ldv_0_callback_page)(struct snd_pcm_substream * , unsigned long ) ; unsigned long (*ldv_0_callback_pointer)(struct snd_pcm_substream * ) ; int (*ldv_0_callback_prepare)(struct snd_pcm_substream * ) ; int (*ldv_0_callback_trigger)(struct snd_pcm_substream * , int ) ; struct snd_pcm_ops *ldv_0_container_struct_snd_pcm_ops ; unsigned int ldv_0_ldv_param_18_1_default ; unsigned long ldv_0_ldv_param_21_1_default ; int ldv_0_ldv_param_26_1_default ; struct snd_pcm_hw_params *ldv_0_resource_struct_snd_pcm_hw_params_ptr ; struct snd_pcm_substream *ldv_0_resource_struct_snd_pcm_substream_ptr ; int ldv_0_ret_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(608UL); ldv_0_resource_struct_snd_pcm_hw_params_ptr = (struct snd_pcm_hw_params *)tmp; tmp___0 = ldv_xmalloc(872UL); ldv_0_resource_struct_snd_pcm_substream_ptr = (struct snd_pcm_substream *)tmp___0; } goto ldv_main_0; return; ldv_main_0: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_0_ret_default = ldv_io_instance_probe_0_11(ldv_0_container_struct_snd_pcm_ops->open, ldv_0_resource_struct_snd_pcm_substream_ptr); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_struct_snd_pcm_hw_params_ptr); ldv_free((void *)ldv_0_resource_struct_snd_pcm_substream_ptr); } return; } return; ldv_call_0: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } if (tmp___3 == 6) { goto case_6; } else { } if (tmp___3 == 7) { goto case_7; } else { } if (tmp___3 == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_0_26(ldv_0_callback_trigger, ldv_0_resource_struct_snd_pcm_substream_ptr, ldv_0_ldv_param_26_1_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_io_instance_callback_0_25(ldv_0_callback_prepare, ldv_0_resource_struct_snd_pcm_substream_ptr); } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ { ldv_io_instance_callback_0_24(ldv_0_callback_pointer, ldv_0_resource_struct_snd_pcm_substream_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_4: /* CIL Label */ { ldv_io_instance_callback_0_21(ldv_0_callback_page, ldv_0_resource_struct_snd_pcm_substream_ptr, ldv_0_ldv_param_21_1_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_5: /* CIL Label */ { ldv_io_instance_callback_0_18(ldv_0_callback_ioctl, ldv_0_resource_struct_snd_pcm_substream_ptr, ldv_0_ldv_param_18_1_default, (void *)ldv_0_resource_struct_snd_pcm_hw_params_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_6: /* CIL Label */ { ldv_io_instance_callback_0_17(ldv_0_callback_hw_params, ldv_0_resource_struct_snd_pcm_substream_ptr, ldv_0_resource_struct_snd_pcm_hw_params_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_7: /* CIL Label */ { ldv_io_instance_callback_0_4(ldv_0_callback_hw_free, ldv_0_resource_struct_snd_pcm_substream_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_8: /* CIL Label */ { ldv_io_instance_release_0_2(ldv_0_container_struct_snd_pcm_ops->close, ldv_0_resource_struct_snd_pcm_substream_ptr); } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_snd_pcm_ops_io_instance_1(void *arg0 ) { int (*ldv_1_callback_hw_free)(struct snd_pcm_substream * ) ; int (*ldv_1_callback_hw_params)(struct snd_pcm_substream * , struct snd_pcm_hw_params * ) ; int (*ldv_1_callback_ioctl)(struct snd_pcm_substream * , unsigned int , void * ) ; struct page *(*ldv_1_callback_page)(struct snd_pcm_substream * , unsigned long ) ; unsigned long (*ldv_1_callback_pointer)(struct snd_pcm_substream * ) ; int (*ldv_1_callback_prepare)(struct snd_pcm_substream * ) ; int (*ldv_1_callback_trigger)(struct snd_pcm_substream * , int ) ; struct snd_pcm_ops *ldv_1_container_struct_snd_pcm_ops ; unsigned int ldv_1_ldv_param_18_1_default ; unsigned long ldv_1_ldv_param_21_1_default ; int ldv_1_ldv_param_26_1_default ; struct snd_pcm_hw_params *ldv_1_resource_struct_snd_pcm_hw_params_ptr ; struct snd_pcm_substream *ldv_1_resource_struct_snd_pcm_substream_ptr ; int ldv_1_ret_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { ldv_1_ret_default = 1; tmp = ldv_xmalloc(608UL); ldv_1_resource_struct_snd_pcm_hw_params_ptr = (struct snd_pcm_hw_params *)tmp; tmp___0 = ldv_xmalloc(872UL); ldv_1_resource_struct_snd_pcm_substream_ptr = (struct snd_pcm_substream *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_1_ret_default = ldv_io_instance_probe_1_11(ldv_1_container_struct_snd_pcm_ops->open, ldv_1_resource_struct_snd_pcm_substream_ptr); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_struct_snd_pcm_hw_params_ptr); ldv_free((void *)ldv_1_resource_struct_snd_pcm_substream_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } if (tmp___3 == 6) { goto case_6; } else { } if (tmp___3 == 7) { goto case_7; } else { } if (tmp___3 == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_1_26(ldv_1_callback_trigger, ldv_1_resource_struct_snd_pcm_substream_ptr, ldv_1_ldv_param_26_1_default); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_io_instance_callback_1_25(ldv_1_callback_prepare, ldv_1_resource_struct_snd_pcm_substream_ptr); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_io_instance_callback_1_24(ldv_1_callback_pointer, ldv_1_resource_struct_snd_pcm_substream_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { ldv_io_instance_callback_1_21(ldv_1_callback_page, ldv_1_resource_struct_snd_pcm_substream_ptr, ldv_1_ldv_param_21_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_io_instance_callback_1_18(ldv_1_callback_ioctl, ldv_1_resource_struct_snd_pcm_substream_ptr, ldv_1_ldv_param_18_1_default, (void *)ldv_1_resource_struct_snd_pcm_hw_params_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { ldv_io_instance_callback_1_17(ldv_1_callback_hw_params, ldv_1_resource_struct_snd_pcm_substream_ptr, ldv_1_resource_struct_snd_pcm_hw_params_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_io_instance_callback_1_4(ldv_1_callback_hw_free, ldv_1_resource_struct_snd_pcm_substream_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ { ldv_io_instance_release_1_2(ldv_1_container_struct_snd_pcm_ops->close, ldv_1_resource_struct_snd_pcm_substream_ptr); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static void ldv_mutex_lock_97___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_98___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_89(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_91(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_93(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_95(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_101___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_104(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_111(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_119(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(struct mutex *lock ) ; extern void *__memset(void * , int , size_t ) ; static void ldv_mutex_unlock_90(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_92(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_94(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_96(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_100___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_102___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_108(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_110(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_118(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_120(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_128(struct mutex *ldv_func_arg1 ) ; extern struct snd_kcontrol *snd_ctl_new1(struct snd_kcontrol_new const * , void * ) ; extern int snd_ctl_add(struct snd_card * , struct snd_kcontrol * ) ; extern int snd_ctl_boolean_stereo_info(struct snd_kcontrol * , struct snd_ctl_elem_info * ) ; extern int snd_ctl_enum_info(struct snd_ctl_elem_info * , unsigned int , unsigned int , char const * const * ) ; int vx_sync_audio_source(struct vx_core *chip ) ; static void vx_write_codec_reg(struct vx_core *chip , int codec , unsigned int data ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )(chip->ops)->write_codec == (unsigned long )((void (*)(struct vx_core * , int , unsigned int ))0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_mixer.c", 35); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return; } else { } if ((chip->chip_status & 32768U) != 0U) { return; } else { } { ldv_mutex_lock_89(& chip->lock); (*((chip->ops)->write_codec))(chip, codec, data); ldv_mutex_unlock_90(& chip->lock); } return; } } static void vx_set_codec_reg(struct vx_core *chip , int codec , int reg , int val ) { union vx_codec_data data ; { { data.l = 0U; data.b.mh = 32U; data.b.ml = (unsigned char )reg; data.b.ll = (unsigned char )val; vx_write_codec_reg(chip, codec, data.l); } return; } } static void vx_set_analog_output_level(struct vx_core *chip , int codec , int left , int right ) { { left = (int )((chip->hw)->output_level_max - (unsigned int )left); right = (int )((chip->hw)->output_level_max - (unsigned int )right); if ((unsigned long )(chip->ops)->akm_write != (unsigned long )((void (*)(struct vx_core * , int , unsigned int ))0)) { { (*((chip->ops)->akm_write))(chip, 3, (unsigned int )left); (*((chip->ops)->akm_write))(chip, 4, (unsigned int )right); } } else { { vx_set_codec_reg(chip, codec, 3, left); vx_set_codec_reg(chip, codec, 4, right); } } return; } } void vx_toggle_dac_mute(struct vx_core *chip , int mute ) { unsigned int i ; { i = 0U; goto ldv_31631; ldv_31630: ; if ((unsigned long )(chip->ops)->akm_write != (unsigned long )((void (*)(struct vx_core * , int , unsigned int ))0)) { { (*((chip->ops)->akm_write))(chip, 2, (unsigned int )mute); } } else { { vx_set_codec_reg(chip, (int )i, 2, mute != 0 ? 56 : 8); } } i = i + 1U; ldv_31631: ; if (i < (chip->hw)->num_codecs) { goto ldv_31630; } else { } return; } } void vx_reset_codec(struct vx_core *chip , int cold_reset ) { unsigned int i ; int port ; { { port = chip->type > 2 ? 117 : 101; (*((chip->ops)->reset_codec))(chip); } if ((unsigned long )(chip->ops)->akm_write == (unsigned long )((void (*)(struct vx_core * , int , unsigned int ))0)) { i = 0U; goto ldv_31640; ldv_31639: { vx_set_codec_reg(chip, (int )i, 2, 56); vx_set_codec_reg(chip, (int )i, 1, 0); vx_set_codec_reg(chip, (int )i, 5, port); vx_set_codec_reg(chip, (int )i, 7, 0); i = i + 1U; } ldv_31640: ; if (i < (chip->hw)->num_codecs) { goto ldv_31639; } else { } } else { } i = 0U; goto ldv_31643; ldv_31642: { chip->output_level[i][0] = 0; chip->output_level[i][1] = 0; vx_set_analog_output_level(chip, (int )i, 0, 0); i = i + 1U; } ldv_31643: ; if (i < (chip->hw)->num_codecs) { goto ldv_31642; } else { } return; } } static void vx_change_audio_source(struct vx_core *chip , int src ) { { if ((chip->chip_status & 32768U) != 0U) { return; } else { } { ldv_mutex_lock_91(& chip->lock); (*((chip->ops)->change_audio_source))(chip, src); ldv_mutex_unlock_92(& chip->lock); } return; } } int vx_sync_audio_source(struct vx_core *chip ) { { if (chip->audio_source_target == chip->audio_source || chip->pcm_running != 0U) { return (0); } else { } { vx_change_audio_source(chip, (int )chip->audio_source_target); chip->audio_source = chip->audio_source_target; } return (1); } } static int vx_adjust_audio_level(struct vx_core *chip , int audio , int capture , struct vx_audio_level *info ) { struct vx_rmh rmh ; int tmp ; { if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { vx_init_rmh(& rmh, 28U); } if (capture != 0) { rmh.Cmd[0] = rmh.Cmd[0] | 2048U; } else { } rmh.Cmd[1] = (u32 )(1 << audio); rmh.Cmd[2] = 0U; if ((unsigned int )*((unsigned char *)info + 0UL) != 0U) { rmh.Cmd[0] = rmh.Cmd[0] | 1U; rmh.Cmd[2] = rmh.Cmd[2] | (u32 )info->level; } else { } if ((unsigned int )*((unsigned char *)info + 0UL) != 0U) { rmh.Cmd[0] = rmh.Cmd[0] | 2U; rmh.Cmd[2] = rmh.Cmd[2] | ((unsigned int )info->monitor_level << 10); } else { } if ((unsigned int )*((unsigned char *)info + 0UL) != 0U) { rmh.Cmd[0] = rmh.Cmd[0] | 4U; if (info->mute != 0U) { rmh.Cmd[2] = rmh.Cmd[2] | 4194304U; } else { } } else { } if ((unsigned int )*((unsigned char *)info + 0UL) != 0U) { rmh.Cmd[0] = rmh.Cmd[0] | 24U; if (info->monitor_mute != 0U) { rmh.Cmd[2] = rmh.Cmd[2] | 2097152U; } else { } } else { } { tmp = vx_send_msg(chip, & rmh); } return (tmp); } } int vx_set_monitor_level(struct vx_core *chip , int audio , int level , int active ) { struct vx_audio_level info ; int tmp ; { { __memset((void *)(& info), 0, 16UL); info.has_monitor_level = 1U; info.monitor_level = (short )level; info.has_monitor_mute = 1U; info.monitor_mute = active == 0; chip->audio_monitor[audio] = level; chip->audio_monitor_active[audio] = (unsigned char )active; tmp = vx_adjust_audio_level(chip, audio, 0, & info); } return (tmp); } } static int vx_set_audio_switch(struct vx_core *chip , int audio , int active ) { struct vx_audio_level info ; int tmp ; { { __memset((void *)(& info), 0, 16UL); info.has_mute = 1U; info.mute = active == 0; chip->audio_active[audio] = (unsigned char )active; tmp = vx_adjust_audio_level(chip, audio, 0, & info); } return (tmp); } } static int vx_set_audio_gain(struct vx_core *chip , int audio , int capture , int level ) { struct vx_audio_level info ; int tmp ; { { __memset((void *)(& info), 0, 16UL); info.has_level = 1U; info.level = (short )level; chip->audio_gain[capture][audio] = level; tmp = vx_adjust_audio_level(chip, audio, capture, & info); } return (tmp); } } static void vx_reset_audio_levels(struct vx_core *chip ) { unsigned int i ; unsigned int c ; struct vx_audio_level info ; { { __memset((void *)(& chip->audio_gain), 0, 32UL); __memset((void *)(& chip->audio_active), 0, 4UL); __memset((void *)(& chip->audio_monitor), 0, 16UL); __memset((void *)(& chip->audio_monitor_active), 0, 4UL); c = 0U; } goto ldv_31698; ldv_31697: i = 0U; goto ldv_31695; ldv_31694: { __memset((void *)(& info), 0, 16UL); } if (c == 0U) { info.has_monitor_level = 1U; info.has_mute = 1U; info.has_monitor_mute = 1U; } else { } { info.has_level = 1U; info.level = 439; vx_adjust_audio_level(chip, (int )i, (int )c, & info); chip->audio_gain[c][i] = 439; chip->audio_monitor[i] = 439; i = i + 1U; } ldv_31695: ; if (i < (chip->hw)->num_ins * 2U) { goto ldv_31694; } else { } c = c + 1U; ldv_31698: ; if (c <= 1U) { goto ldv_31697; } else { } return; } } static int vx_get_audio_vu_meter(struct vx_core *chip , int audio , int capture , struct vx_vu_meter *info ) { struct vx_rmh rmh ; int i ; int err ; { if ((chip->chip_status & 32768U) != 0U) { return (-16); } else { } { vx_init_rmh(& rmh, 29U); rmh.LgStat = (unsigned int )rmh.LgStat + 4U; } if (capture != 0) { rmh.Cmd[0] = rmh.Cmd[0] | 2048U; } else { } rmh.Cmd[1] = 0U; i = 0; goto ldv_31714; ldv_31713: rmh.Cmd[1] = rmh.Cmd[1] | (u32 )(1 << (audio + i)); i = i + 1; ldv_31714: ; if (i <= 1) { goto ldv_31713; } else { } { err = vx_send_msg(chip, & rmh); } if (err < 0) { return (err); } else { } i = 0; goto ldv_31717; ldv_31716: info->saturated = (rmh.Stat[0] & (u32 )(1 << (audio + i))) != 0U; info->vu_level = (int )rmh.Stat[i + 1]; info->peak_level = (int )rmh.Stat[i + 2]; info = info + 1; i = i + 2; ldv_31717: ; if (i <= 3) { goto ldv_31716; } else { } return (0); } } static int vx_output_level_info(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_info *uinfo ) { struct vx_core *chip ; { chip = (struct vx_core *)kcontrol->private_data; uinfo->type = 2; uinfo->count = 2U; uinfo->value.integer.min = 0L; uinfo->value.integer.max = (long )(chip->hw)->output_level_max; return (0); } } static int vx_output_level_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int codec ; { { chip = (struct vx_core *)kcontrol->private_data; codec = (int )kcontrol->id.index; ldv_mutex_lock_93(& chip->mixer_mutex); ucontrol->value.integer.value[0] = (long )chip->output_level[codec][0]; ucontrol->value.integer.value[1] = (long )chip->output_level[codec][1]; ldv_mutex_unlock_94(& chip->mixer_mutex); } return (0); } } static int vx_output_level_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int codec ; unsigned int val[2U] ; unsigned int vmax ; { chip = (struct vx_core *)kcontrol->private_data; codec = (int )kcontrol->id.index; vmax = (chip->hw)->output_level_max; val[0] = (unsigned int )ucontrol->value.integer.value[0]; val[1] = (unsigned int )ucontrol->value.integer.value[1]; if (val[0] > vmax || val[1] > vmax) { return (-22); } else { } { ldv_mutex_lock_95(& chip->mixer_mutex); } if (val[0] != (unsigned int )chip->output_level[codec][0] || val[1] != (unsigned int )chip->output_level[codec][1]) { { vx_set_analog_output_level(chip, codec, (int )val[0], (int )val[1]); chip->output_level[codec][0] = (int )val[0]; chip->output_level[codec][1] = (int )val[1]; ldv_mutex_unlock_96(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_97(& chip->mixer_mutex); } return (0); } } static struct snd_kcontrol_new vx_control_output_level = {2, 0U, 0U, (unsigned char const *)"Master Playback Volume", 0U, 19U, 0U, & vx_output_level_info, & vx_output_level_get, & vx_output_level_put, {0}, 0UL}; static int vx_audio_src_info(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_info *uinfo ) { char const *texts_mic[3U] ; char const *texts_vx2[2U] ; struct vx_core *chip ; int tmp ; int tmp___0 ; { texts_mic[0] = "Digital"; texts_mic[1] = "Line"; texts_mic[2] = "Mic"; texts_vx2[0] = "Digital"; texts_vx2[1] = "Analog"; chip = (struct vx_core *)kcontrol->private_data; if (chip->type > 2) { { tmp = snd_ctl_enum_info(uinfo, 1U, 3U, (char const * const *)(& texts_mic)); } return (tmp); } else { { tmp___0 = snd_ctl_enum_info(uinfo, 1U, 2U, (char const * const *)(& texts_vx2)); } return (tmp___0); } } } static int vx_audio_src_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; { chip = (struct vx_core *)kcontrol->private_data; ucontrol->value.enumerated.item[0] = chip->audio_source_target; return (0); } } static int vx_audio_src_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; { chip = (struct vx_core *)kcontrol->private_data; if (chip->type > 2) { if (ucontrol->value.enumerated.item[0] > 2U) { return (-22); } else { } } else if (ucontrol->value.enumerated.item[0] > 1U) { return (-22); } else { } { ldv_mutex_lock_98(& chip->mixer_mutex); } if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) { { chip->audio_source_target = ucontrol->value.enumerated.item[0]; vx_sync_audio_source(chip); ldv_mutex_unlock_99(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_100___0(& chip->mixer_mutex); } return (0); } } static struct snd_kcontrol_new vx_control_audio_src = {2, 0U, 0U, (unsigned char const *)"Capture Source", 0U, 0U, 0U, & vx_audio_src_info, & vx_audio_src_get, & vx_audio_src_put, {0}, 0UL}; static int vx_clock_mode_info(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_info *uinfo ) { char const *texts[3U] ; int tmp ; { { texts[0] = "Auto"; texts[1] = "Internal"; texts[2] = "External"; tmp = snd_ctl_enum_info(uinfo, 1U, 3U, (char const * const *)(& texts)); } return (tmp); } } static int vx_clock_mode_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; { chip = (struct vx_core *)kcontrol->private_data; ucontrol->value.enumerated.item[0] = chip->clock_mode; return (0); } } static int vx_clock_mode_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; { chip = (struct vx_core *)kcontrol->private_data; if (ucontrol->value.enumerated.item[0] > 2U) { return (-22); } else { } { ldv_mutex_lock_101___0(& chip->mixer_mutex); } if (chip->clock_mode != ucontrol->value.enumerated.item[0]) { { chip->clock_mode = ucontrol->value.enumerated.item[0]; vx_set_clock(chip, chip->freq); ldv_mutex_unlock_102___0(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_103(& chip->mixer_mutex); } return (0); } } static struct snd_kcontrol_new vx_control_clock_mode = {2, 0U, 0U, (unsigned char const *)"Clock Mode", 0U, 0U, 0U, & vx_clock_mode_info, & vx_clock_mode_get, & vx_clock_mode_put, {0}, 0UL}; static int vx_audio_gain_info(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_info *uinfo ) { { uinfo->type = 2; uinfo->count = 2U; uinfo->value.integer.min = 0L; uinfo->value.integer.max = 511L; return (0); } } static int vx_audio_gain_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; int capture ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; capture = (int )(kcontrol->private_value >> 8) & 1; ldv_mutex_lock_104(& chip->mixer_mutex); ucontrol->value.integer.value[0] = (long )chip->audio_gain[capture][audio]; ucontrol->value.integer.value[1] = (long )chip->audio_gain[capture][audio + 1]; ldv_mutex_unlock_105(& chip->mixer_mutex); } return (0); } } static int vx_audio_gain_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; int capture ; unsigned int val[2U] ; { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; capture = (int )(kcontrol->private_value >> 8) & 1; val[0] = (unsigned int )ucontrol->value.integer.value[0]; val[1] = (unsigned int )ucontrol->value.integer.value[1]; if (val[0] > 511U || val[1] > 511U) { return (-22); } else { } { ldv_mutex_lock_106(& chip->mixer_mutex); } if (val[0] != (unsigned int )chip->audio_gain[capture][audio] || val[1] != (unsigned int )chip->audio_gain[capture][audio + 1]) { { vx_set_audio_gain(chip, audio, capture, (int )val[0]); vx_set_audio_gain(chip, audio + 1, capture, (int )val[1]); ldv_mutex_unlock_107(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_108(& chip->mixer_mutex); } return (0); } } static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; ldv_mutex_lock_109(& chip->mixer_mutex); ucontrol->value.integer.value[0] = (long )chip->audio_monitor[audio]; ucontrol->value.integer.value[1] = (long )chip->audio_monitor[audio + 1]; ldv_mutex_unlock_110(& chip->mixer_mutex); } return (0); } } static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; unsigned int val[2U] ; { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; val[0] = (unsigned int )ucontrol->value.integer.value[0]; val[1] = (unsigned int )ucontrol->value.integer.value[1]; if (val[0] > 511U || val[1] > 511U) { return (-22); } else { } { ldv_mutex_lock_111(& chip->mixer_mutex); } if (val[0] != (unsigned int )chip->audio_monitor[audio] || val[1] != (unsigned int )chip->audio_monitor[audio + 1]) { { vx_set_monitor_level(chip, audio, (int )val[0], (int )chip->audio_monitor_active[audio]); vx_set_monitor_level(chip, audio + 1, (int )val[1], (int )chip->audio_monitor_active[audio + 1]); ldv_mutex_unlock_112(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_113(& chip->mixer_mutex); } return (0); } } static int vx_audio_sw_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; ldv_mutex_lock_114(& chip->mixer_mutex); ucontrol->value.integer.value[0] = (long )chip->audio_active[audio]; ucontrol->value.integer.value[1] = (long )chip->audio_active[audio + 1]; ldv_mutex_unlock_115(& chip->mixer_mutex); } return (0); } } static int vx_audio_sw_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; ldv_mutex_lock_116(& chip->mixer_mutex); } if (ucontrol->value.integer.value[0] != (long )chip->audio_active[audio] || ucontrol->value.integer.value[1] != (long )chip->audio_active[audio + 1]) { { vx_set_audio_switch(chip, audio, ucontrol->value.integer.value[0] != 0L); vx_set_audio_switch(chip, audio + 1, ucontrol->value.integer.value[1] != 0L); ldv_mutex_unlock_117(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_118(& chip->mixer_mutex); } return (0); } } static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; ldv_mutex_lock_119(& chip->mixer_mutex); ucontrol->value.integer.value[0] = (long )chip->audio_monitor_active[audio]; ucontrol->value.integer.value[1] = (long )chip->audio_monitor_active[audio + 1]; ldv_mutex_unlock_120(& chip->mixer_mutex); } return (0); } } static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; int audio ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; ldv_mutex_lock_121(& chip->mixer_mutex); } if (ucontrol->value.integer.value[0] != (long )chip->audio_monitor_active[audio] || ucontrol->value.integer.value[1] != (long )chip->audio_monitor_active[audio + 1]) { { vx_set_monitor_level(chip, audio, chip->audio_monitor[audio], ucontrol->value.integer.value[0] != 0L); vx_set_monitor_level(chip, audio + 1, chip->audio_monitor[audio + 1], ucontrol->value.integer.value[1] != 0L); ldv_mutex_unlock_122(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_123(& chip->mixer_mutex); } return (0); } } static unsigned int const db_scale_audio_gain[4U] = { 1U, 8U, 4294956321U, 25U}; static struct snd_kcontrol_new vx_control_audio_gain = {2, 0U, 0U, 0, 0U, 19U, 0U, & vx_audio_gain_info, & vx_audio_gain_get, & vx_audio_gain_put, {.p = (unsigned int const *)(& db_scale_audio_gain)}, 0UL}; static struct snd_kcontrol_new vx_control_output_switch = {2, 0U, 0U, (unsigned char const *)"PCM Playback Switch", 0U, 0U, 0U, & snd_ctl_boolean_stereo_info, & vx_audio_sw_get, & vx_audio_sw_put, {0}, 0UL}; static struct snd_kcontrol_new vx_control_monitor_gain = {2, 0U, 0U, (unsigned char const *)"Monitoring Volume", 0U, 19U, 0U, & vx_audio_gain_info, & vx_audio_monitor_get, & vx_audio_monitor_put, {.p = (unsigned int const *)(& db_scale_audio_gain)}, 0UL}; static struct snd_kcontrol_new vx_control_monitor_switch = {2, 0U, 0U, (unsigned char const *)"Monitoring Switch", 0U, 0U, 0U, & snd_ctl_boolean_stereo_info, & vx_monitor_sw_get, & vx_monitor_sw_put, {0}, 0UL}; static int vx_iec958_info(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_info *uinfo ) { { uinfo->type = 5; uinfo->count = 1U; return (0); } } static int vx_iec958_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; { { chip = (struct vx_core *)kcontrol->private_data; ldv_mutex_lock_124(& chip->mixer_mutex); ucontrol->value.iec958.status[0] = (unsigned char )chip->uer_bits; ucontrol->value.iec958.status[1] = (unsigned char )(chip->uer_bits >> 8); ucontrol->value.iec958.status[2] = (unsigned char )(chip->uer_bits >> 16); ucontrol->value.iec958.status[3] = (unsigned char )(chip->uer_bits >> 24); ldv_mutex_unlock_125(& chip->mixer_mutex); } return (0); } } static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { { ucontrol->value.iec958.status[0] = 255U; ucontrol->value.iec958.status[1] = 255U; ucontrol->value.iec958.status[2] = 255U; ucontrol->value.iec958.status[3] = 255U; return (0); } } static int vx_iec958_put(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; unsigned int val ; { { chip = (struct vx_core *)kcontrol->private_data; val = (unsigned int )((((int )ucontrol->value.iec958.status[0] | ((int )ucontrol->value.iec958.status[1] << 8)) | ((int )ucontrol->value.iec958.status[2] << 16)) | ((int )ucontrol->value.iec958.status[3] << 24)); ldv_mutex_lock_126(& chip->mixer_mutex); } if (chip->uer_bits != val) { { chip->uer_bits = val; vx_set_iec958_status(chip, val); ldv_mutex_unlock_127(& chip->mixer_mutex); } return (1); } else { } { ldv_mutex_unlock_128(& chip->mixer_mutex); } return (0); } } static struct snd_kcontrol_new vx_control_iec958_mask = {3, 0U, 0U, (unsigned char const *)"IEC958 Playback Mask", 0U, 1U, 0U, & vx_iec958_info, & vx_iec958_mask_get, 0, {0}, 0UL}; static struct snd_kcontrol_new vx_control_iec958 = {3, 0U, 0U, (unsigned char const *)"IEC958 Playback Default", 0U, 0U, 0U, & vx_iec958_info, & vx_iec958_get, & vx_iec958_put, {0}, 0UL}; static int vx_vu_meter_info(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_info *uinfo ) { { uinfo->type = 2; uinfo->count = 2U; uinfo->value.integer.min = 0L; uinfo->value.integer.max = 255L; return (0); } } static int vx_vu_meter_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; struct vx_vu_meter meter[2U] ; int audio ; int capture ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; capture = (int )(kcontrol->private_value >> 8) & 1; vx_get_audio_vu_meter(chip, audio, capture, (struct vx_vu_meter *)(& meter)); ucontrol->value.integer.value[0] = (long )(meter[0].vu_level >> 16); ucontrol->value.integer.value[1] = (long )(meter[1].vu_level >> 16); } return (0); } } static int vx_peak_meter_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; struct vx_vu_meter meter[2U] ; int audio ; int capture ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; capture = (int )(kcontrol->private_value >> 8) & 1; vx_get_audio_vu_meter(chip, audio, capture, (struct vx_vu_meter *)(& meter)); ucontrol->value.integer.value[0] = (long )(meter[0].peak_level >> 16); ucontrol->value.integer.value[1] = (long )(meter[1].peak_level >> 16); } return (0); } } static int vx_saturation_get(struct snd_kcontrol *kcontrol , struct snd_ctl_elem_value *ucontrol ) { struct vx_core *chip ; struct vx_vu_meter meter[2U] ; int audio ; { { chip = (struct vx_core *)kcontrol->private_data; audio = (int )kcontrol->private_value & 255; vx_get_audio_vu_meter(chip, audio, 1, (struct vx_vu_meter *)(& meter)); ucontrol->value.integer.value[0] = (long )meter[0].saturated; ucontrol->value.integer.value[1] = (long )meter[1].saturated; } return (0); } } static struct snd_kcontrol_new vx_control_vu_meter = {2, 0U, 0U, 0, 0U, 5U, 0U, & vx_vu_meter_info, & vx_vu_meter_get, 0, {0}, 0UL}; static struct snd_kcontrol_new vx_control_peak_meter = {2, 0U, 0U, 0, 0U, 5U, 0U, & vx_vu_meter_info, & vx_peak_meter_get, 0, {0}, 0UL}; static struct snd_kcontrol_new vx_control_saturation = {2, 0U, 0U, (unsigned char const *)"Input Saturation", 0U, 5U, 0U, & snd_ctl_boolean_stereo_info, & vx_saturation_get, 0, {0}, 0UL}; int snd_vx_mixer_new(struct vx_core *chip ) { unsigned int i ; unsigned int c ; int err ; struct snd_kcontrol_new temp ; struct snd_card *card ; char name[32U] ; struct snd_kcontrol *tmp ; int val ; struct snd_kcontrol *tmp___0 ; struct snd_kcontrol *tmp___1 ; struct snd_kcontrol *tmp___2 ; struct snd_kcontrol *tmp___3 ; struct snd_kcontrol *tmp___4 ; struct snd_kcontrol *tmp___5 ; struct snd_kcontrol *tmp___6 ; struct snd_kcontrol *tmp___7 ; struct snd_kcontrol *tmp___8 ; char *dir[2U] ; int val___0 ; struct snd_kcontrol *tmp___9 ; struct snd_kcontrol *tmp___10 ; struct snd_kcontrol *tmp___11 ; { { card = chip->card; strcpy((char *)(& card->mixername), (char const *)(& card->driver)); i = 0U; } goto ldv_31896; ldv_31895: { temp = vx_control_output_level; temp.index = i; temp.tlv.p = (chip->hw)->output_level_db_scale; tmp = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp); } if (err < 0) { return (err); } else { } i = i + 1U; ldv_31896: ; if (i < (chip->hw)->num_outs) { goto ldv_31895; } else { } i = 0U; goto ldv_31900; ldv_31899: { val = (int )(i * 2U); temp = vx_control_audio_gain; temp.index = i; temp.name = (unsigned char const *)"PCM Playback Volume"; temp.private_value = (unsigned long )val; tmp___0 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___0); } if (err < 0) { return (err); } else { } { temp = vx_control_output_switch; temp.index = i; temp.private_value = (unsigned long )val; tmp___1 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___1); } if (err < 0) { return (err); } else { } { temp = vx_control_monitor_gain; temp.index = i; temp.private_value = (unsigned long )val; tmp___2 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___2); } if (err < 0) { return (err); } else { } { temp = vx_control_monitor_switch; temp.index = i; temp.private_value = (unsigned long )val; tmp___3 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___3); } if (err < 0) { return (err); } else { } i = i + 1U; ldv_31900: ; if (i < (chip->hw)->num_outs) { goto ldv_31899; } else { } i = 0U; goto ldv_31903; ldv_31902: { temp = vx_control_audio_gain; temp.index = i; temp.name = (unsigned char const *)"PCM Capture Volume"; temp.private_value = (unsigned long )(i * 2U | 256U); tmp___4 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___4); } if (err < 0) { return (err); } else { } i = i + 1U; ldv_31903: ; if (i < (chip->hw)->num_outs) { goto ldv_31902; } else { } { tmp___5 = snd_ctl_new1((struct snd_kcontrol_new const *)(& vx_control_audio_src), (void *)chip); err = snd_ctl_add(card, tmp___5); } if (err < 0) { return (err); } else { } { tmp___6 = snd_ctl_new1((struct snd_kcontrol_new const *)(& vx_control_clock_mode), (void *)chip); err = snd_ctl_add(card, tmp___6); } if (err < 0) { return (err); } else { } { tmp___7 = snd_ctl_new1((struct snd_kcontrol_new const *)(& vx_control_iec958_mask), (void *)chip); err = snd_ctl_add(card, tmp___7); } if (err < 0) { return (err); } else { } { tmp___8 = snd_ctl_new1((struct snd_kcontrol_new const *)(& vx_control_iec958), (void *)chip); err = snd_ctl_add(card, tmp___8); } if (err < 0) { return (err); } else { } c = 0U; goto ldv_31911; ldv_31910: dir[0] = (char *)"Output"; dir[1] = (char *)"Input"; i = 0U; goto ldv_31908; ldv_31907: val___0 = (int )(i * 2U | (c << 8)); if (c == 1U) { { temp = vx_control_saturation; temp.index = i; temp.private_value = (unsigned long )val___0; tmp___9 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___9); } if (err < 0) { return (err); } else { } } else { } { sprintf((char *)(& name), "%s VU Meter", dir[c]); temp = vx_control_vu_meter; temp.index = i; temp.name = (unsigned char const *)(& name); temp.private_value = (unsigned long )val___0; tmp___10 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___10); } if (err < 0) { return (err); } else { } { sprintf((char *)(& name), "%s Peak Meter", dir[c]); temp = vx_control_peak_meter; temp.index = i; temp.name = (unsigned char const *)(& name); temp.private_value = (unsigned long )val___0; tmp___11 = snd_ctl_new1((struct snd_kcontrol_new const *)(& temp), (void *)chip); err = snd_ctl_add(card, tmp___11); } if (err < 0) { return (err); } else { } i = i + 1U; ldv_31908: ; if (i < (chip->hw)->num_ins) { goto ldv_31907; } else { } c = c + 1U; ldv_31911: ; if (c <= 1U) { goto ldv_31910; } else { } { vx_reset_audio_levels(chip); } return (0); } } static void ldv_mutex_lock_89(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_90(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_91(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_92(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_93(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_94(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_95(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_96(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_100___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_101___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_102___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_104(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_108(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_109(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_110(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_111(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_118(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_119(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_120(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_128(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(ldv_func_arg1); } return; } } static struct vx_cmd_info vx_dsp_cmds[59U] = { {65536U, 2, 0, 1}, {131072U, 1, 0, 2}, {262144U, 1, 0, 1}, {458753U, 1, 0, 0}, {524288U, 1, 0, 4}, {655360U, 1, 1, 0}, {4194304U, 1, 0, 0}, {4259840U, 1, 0, 0}, {4366593U, 2, 0, 0}, {4366592U, 2, 0, 0}, {4431872U, 2, 0, 0}, {4653060U, 1, 0, 0}, {4718592U, 1, 0, 1}, {4825088U, 2, 0, 2}, {4915200U, 1, 0, 1}, {4980736U, 1, 0, 1}, {8429568U, 2, 0, 0}, {8388608U, 1, 0, 0}, {8495104U, 2, 0, 0}, {8454144U, 1, 0, 0}, {8552448U, 2, 0, 0}, {8585216U, 1, 0, 0}, {8814592U, 1, 0, 0}, {8882176U, 1, 0, 0}, {8978433U, 2, 0, 1}, {9076736U, 2, 0, 0}, {9242624U, 1, 0, 2}, {12648448U, 1, 0, 0}, {12754944U, 3, 0, 0}, {12820483U, 2, 0, 1}, {12886016U, 2, 0, 0}, {5046272U, 1, 1, 0}, {720896U, 1, 0, 2}, {622592U, 1, 1, 0}, {4456448U, 1, 1, 0}, {8683520U, 4, 0, 0}, {819200U, 3, 0, 1}, {4554752U, 0, 0, 0}, {851968U, 1, 0, 0}, {8749056U, 3, 0, 0}, {9142272U, 3, 0, 0}, {5111808U, 1, 0, 0}, {819200U, 1, 0, 0}, {9308160U, 1, 0, 1}, {917504U, 1, 0, 0}, {9371648U, 1, 0, 0}, {9437184U, 1, 0, 2}, {327680U, 2, 0, 0}, {393216U, 1, 0, 5}, {983040U, 1, 0, 0}, {9543680U, 3, 0, 0}, {196608U, 1, 0, 2}, {9175040U, 1, 0, 3}, {5210112U, 3, 0, 0}, {12582912U, 1, 0, 0}, {9666560U, 3, 0, 0}, {9732096U, 4, 0, 0}, {9764864U, 1, 0, 0}, {9805824U, 2, 1, 0}}; void vx_init_rmh(struct vx_rmh *rmh , unsigned int cmd ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = cmd > 58U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_cmd.c", 102); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return; } else { } rmh->LgCmd = (u16 )vx_dsp_cmds[cmd].length; rmh->LgStat = (u16 )vx_dsp_cmds[cmd].st_length; rmh->DspStat = (u16 )vx_dsp_cmds[cmd].st_type; rmh->Cmd[0] = vx_dsp_cmds[cmd].opcode; return; } } static void ldv_mutex_lock_89___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_91___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_93___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_95___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_90___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_92___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_94___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_96___0(struct mutex *ldv_func_arg1 ) ; __inline static unsigned int snd_vx_inl(struct vx_core *chip , int reg ) { unsigned int tmp ; { { tmp = (*((chip->ops)->in32))(chip, reg); } return (tmp); } } __inline static void snd_vx_outl(struct vx_core *chip , int reg , unsigned int val ) { { { (*((chip->ops)->out32))(chip, reg, val); } return; } } static int vx_modify_board_clock(struct vx_core *chip , int sync ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 38U); } if (sync != 0) { rmh.Cmd[0] = rmh.Cmd[0] | 4U; } else { } { tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_modify_board_inputs(struct vx_core *chip ) { struct vx_rmh rmh ; int tmp ; { { vx_init_rmh(& rmh, 44U); rmh.Cmd[0] = rmh.Cmd[0] | 1U; tmp = vx_send_msg(chip, & rmh); } return (tmp); } } static int vx_read_one_cbit(struct vx_core *chip , int index ) { int val ; unsigned char tmp ; unsigned int tmp___0 ; { { ldv_mutex_lock_89___0(& chip->lock); } if (chip->type > 2) { { snd_vx_outb(chip, 25, 1); snd_vx_outb(chip, 26, (int )((unsigned char )index) & 31); tmp = snd_vx_inb(chip, 26); val = ((int )tmp >> 7) & 1; } } else { { snd_vx_outl(chip, 25, 1U); snd_vx_outl(chip, 26, (unsigned int )index & 31U); tmp___0 = snd_vx_inl(chip, 26); val = (int )(tmp___0 >> 7) & 1; } } { ldv_mutex_unlock_90___0(& chip->lock); } return (val); } } static void vx_write_one_cbit(struct vx_core *chip , int index , int val ) { { { val = val != 0; ldv_mutex_lock_91___0(& chip->lock); } if (chip->type > 2) { { snd_vx_outb(chip, 25, 0); snd_vx_outb(chip, 26, (int )((unsigned char )((int )((signed char )(val << 7)) | ((int )((signed char )index) & 31)))); } } else { { snd_vx_outl(chip, 25, 0U); snd_vx_outl(chip, 26, (unsigned int )((val << 7) | (index & 31))); } } { ldv_mutex_unlock_92___0(& chip->lock); } return; } } static int vx_read_uer_status(struct vx_core *chip , unsigned int *mode ) { int val ; int freq ; unsigned char tmp ; unsigned int tmp___0 ; int tmp___1 ; { freq = 0; if (chip->type > 2) { { tmp = snd_vx_inb(chip, 25); val = (int )tmp; } } else { { tmp___0 = snd_vx_inl(chip, 25); val = (int )tmp___0; } } if (val < 0) { return (val); } else { } if (val & 1) { { if ((val & 12) == 12) { goto case_12; } else { } if ((val & 12) == 0) { goto case_0; } else { } if ((val & 12) == 4) { goto case_4; } else { } goto switch_break; case_12: /* CIL Label */ freq = 32000; goto ldv_31335; case_0: /* CIL Label */ freq = 44100; goto ldv_31335; case_4: /* CIL Label */ freq = 48000; goto ldv_31335; switch_break: /* CIL Label */ ; } ldv_31335: ; } else { } if ((val & 2) != 0) { { tmp___1 = vx_read_one_cbit(chip, 0); *mode = tmp___1 != 0; } } else { *mode = 2U; } return (freq); } } static int vx_calc_clock_from_freq(struct vx_core *chip , int freq ) { int hexfreq ; int __ret_warn_on ; long tmp ; long tmp___0 ; int __ret_warn_on___0 ; long tmp___1 ; long tmp___2 ; { { __ret_warn_on = freq <= 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_uer.c", 165); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (0); } else { } { hexfreq = 282240000 / freq; hexfreq = (hexfreq + 5) / 10; __ret_warn_on___0 = hexfreq <= 512; tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("sound/drivers/vx/vx_uer.c", 172); } } else { } { tmp___2 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___2 != 0L) { return (0); } else { } if (hexfreq <= 1023) { return (hexfreq + -513); } else { } if (hexfreq <= 2047) { return (hexfreq / 2 + -1); } else { } if (hexfreq <= 4095) { return (hexfreq / 4 + 511); } else { } return (1534); } } static void vx_change_clock_source(struct vx_core *chip , int source ) { { { vx_toggle_dac_mute(chip, 1); ldv_mutex_lock_93___0(& chip->lock); (*((chip->ops)->set_clock_source))(chip, source); chip->clock_source = (unsigned int )source; ldv_mutex_unlock_94___0(& chip->lock); vx_toggle_dac_mute(chip, 0); } return; } } void vx_set_internal_clock(struct vx_core *chip , unsigned int freq ) { int clock ; { { clock = vx_calc_clock_from_freq(chip, (int )freq); __snd_printk(2U, "sound/drivers/vx/vx_uer.c", 212, "\017set internal clock to 0x%x from freq %d\n", clock, freq); ldv_mutex_lock_95___0(& chip->lock); } if (chip->type > 2) { { snd_vx_outb(chip, 24, (int )((unsigned char )(clock >> 8)) & 15); snd_vx_outb(chip, 23, (int )((unsigned char )clock)); } } else { { snd_vx_outl(chip, 24, (unsigned int )(clock >> 8) & 15U); snd_vx_outl(chip, 23, (unsigned int )clock & 255U); } } { ldv_mutex_unlock_96___0(& chip->lock); } return; } } void vx_set_iec958_status(struct vx_core *chip , unsigned int bits ) { int i ; { if ((chip->chip_status & 32768U) != 0U) { return; } else { } i = 0; goto ldv_31362; ldv_31361: { vx_write_one_cbit(chip, i, (int )(bits & (unsigned int )(1 << i))); i = i + 1; } ldv_31362: ; if (i <= 31) { goto ldv_31361; } else { } return; } } int vx_set_clock(struct vx_core *chip , unsigned int freq ) { int src_changed ; unsigned long __ms ; unsigned long tmp ; { src_changed = 0; if ((chip->chip_status & 32768U) != 0U) { return (0); } else { } { vx_sync_audio_source(chip); } if (chip->clock_mode == 2U || (chip->clock_mode == 0U && chip->audio_source == 0U)) { if (chip->clock_source != 1U) { { vx_change_clock_source(chip, 1); __ms = 6UL; } goto ldv_31371; ldv_31370: { __const_udelay(4295000UL); } ldv_31371: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_31370; } else { } src_changed = 1; } else { } } else if (chip->clock_mode == 1U || (chip->clock_mode == 0U && chip->audio_source != 0U)) { if (chip->clock_source != 0U) { { vx_change_clock_source(chip, 0); src_changed = 1; } } else { } if (chip->freq == freq) { return (0); } else { } { vx_set_internal_clock(chip, freq); } if (src_changed != 0) { { vx_modify_board_inputs(chip); } } else { } } else { } if (chip->freq == freq) { return (0); } else { } { chip->freq = freq; vx_modify_board_clock(chip, 1); } return (0); } } int vx_change_frequency(struct vx_core *chip ) { int freq ; { if ((chip->chip_status & 32768U) != 0U) { return (0); } else { } if (chip->clock_source == 0U) { return (0); } else { } { freq = vx_read_uer_status(chip, & chip->uer_detected); } if (freq < 0) { return (freq); } else { } if ((freq == 48000 || freq == 44100) || freq == 32000) { chip->freq_detected = (unsigned int )freq; } else { } return (0); } } static void ldv_mutex_lock_89___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_90___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_91___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_92___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_93___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_94___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_lock_95___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_96___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_vx_core(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_vx_core(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_vx_core(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_vx_core(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_vx_core(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_vx_core(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_vx_core(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core ; void ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mixer_mutex_of_vx_core(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mixer_mutex_of_vx_core(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mixer_mutex_of_vx_core(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mixer_mutex_of_vx_core(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mixer_mutex_of_vx_core(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mixer_mutex_of_vx_core(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mixer_mutex_of_vx_core(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card ; void ldv_linux_kernel_locking_mutex_mutex_lock_power_lock_of_snd_card(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_power_lock_of_snd_card(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_power_lock_of_snd_card(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_power_lock_of_snd_card(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_power_lock_of_snd_card(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_power_lock_of_snd_card(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_power_lock_of_snd_card(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_power_lock_of_snd_card(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_vx_core); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mixer_mutex_of_vx_core); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_power_lock_of_snd_card); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }