extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct va_list; typedef __builtin_va_list __gnuc_va_list; typedef __gnuc_va_list va_list; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct file_operations; struct completion; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_16 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_17 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_18 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_15 { struct __anonstruct_futex_16 futex ; struct __anonstruct_nanosleep_17 nanosleep ; struct __anonstruct_poll_18 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_19 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_19 __annonCompField8 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_29 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_30 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_28 { struct __anonstruct____missing_field_name_29 __annonCompField12 ; struct __anonstruct____missing_field_name_30 __annonCompField13 ; }; union __anonunion____missing_field_name_31 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_28 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_31 __annonCompField15 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_35 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_34 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_35 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_34 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_36 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_36 rwlock_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_46 { uid_t val ; }; typedef struct __anonstruct_kuid_t_46 kuid_t; struct __anonstruct_kgid_t_47 { gid_t val ; }; typedef struct __anonstruct_kgid_t_47 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct vm_area_struct; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct execute_work { struct work_struct work ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; unsigned int flags ; }; struct cred; struct inode; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_148 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_149 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_147 { struct __anonstruct____missing_field_name_148 __annonCompField33 ; struct __anonstruct____missing_field_name_149 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_147 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_150 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_152 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_156 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_155 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_156 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_153 { unsigned long counters ; struct __anonstruct____missing_field_name_154 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_151 { union __anonunion____missing_field_name_152 __annonCompField37 ; union __anonunion____missing_field_name_153 __annonCompField41 ; }; struct __anonstruct____missing_field_name_158 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_159 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_157 { struct list_head lru ; struct __anonstruct____missing_field_name_158 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_159 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; struct kmem_cache; union __anonunion____missing_field_name_160 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct __anonstruct____missing_field_name_151 __annonCompField42 ; union __anonunion____missing_field_name_157 __annonCompField45 ; union __anonunion____missing_field_name_160 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_161 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_161 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; union __anonunion____missing_field_name_166 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_166 __annonCompField47 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_171 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_171 __annonCompField48 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_172 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_172 __annonCompField49 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_180 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_180 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_183 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_185 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_187 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_186 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_187 _addr_bnd ; }; struct __anonstruct__sigpoll_188 { long _band ; int _fd ; }; struct __anonstruct__sigsys_189 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_181 { int _pad[28U] ; struct __anonstruct__kill_182 _kill ; struct __anonstruct__timer_183 _timer ; struct __anonstruct__rt_184 _rt ; struct __anonstruct__sigchld_185 _sigchld ; struct __anonstruct__sigfault_186 _sigfault ; struct __anonstruct__sigpoll_188 _sigpoll ; struct __anonstruct__sigsys_189 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_181 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_196 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_197 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_199 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_198 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_199 __annonCompField52 ; }; union __anonunion_type_data_200 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_202 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_201 { union __anonunion_payload_202 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_196 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_197 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_198 __annonCompField53 ; union __anonunion_type_data_200 type_data ; union __anonunion____missing_field_name_201 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct Scsi_Host; struct scsi_device; struct scsi_cmnd; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct proc_dir_entry; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_224 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_223 { struct __anonstruct____missing_field_name_224 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_223 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_226 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_225 { struct __anonstruct____missing_field_name_226 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_225 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_227 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_227 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_231 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_230 { struct __anonstruct____missing_field_name_231 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_230 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_234 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t __bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_234 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t __bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_235 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_235 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_236 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_236 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_239 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_240 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_241 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_239 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_240 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_241 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_242 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_242 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_244 { struct list_head link ; int state ; }; union __anonunion_fl_u_243 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_244 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_243 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; struct scsi_sense_hdr { u8 response_code ; u8 sense_key ; u8 asc ; u8 ascq ; u8 byte4 ; u8 byte5 ; u8 byte6 ; u8 additional_length ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; typedef int congested_fn(void * , int ); struct bdi_writeback_congested { unsigned long state ; atomic_t refcnt ; struct backing_dev_info *bdi ; int blkcg_id ; struct rb_node rb_node ; }; union __anonunion____missing_field_name_253 { struct work_struct release_work ; struct callback_head rcu ; }; struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long state ; unsigned long last_old_flush ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; struct percpu_counter stat[4U] ; struct bdi_writeback_congested *congested ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; spinlock_t work_lock ; struct list_head work_list ; struct delayed_work dwork ; struct percpu_ref refcnt ; struct fprop_local_percpu memcg_completions ; struct cgroup_subsys_state *memcg_css ; struct cgroup_subsys_state *blkcg_css ; struct list_head memcg_node ; struct list_head blkcg_node ; union __anonunion____missing_field_name_253 __annonCompField77 ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; atomic_long_t tot_write_bandwidth ; struct bdi_writeback wb ; struct radix_tree_root cgwb_tree ; struct rb_root cgwb_congested_tree ; atomic_t usage_cnt ; wait_queue_head_t wb_waitq ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_254 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_255 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_254 __annonCompField78 ; union __anonunion____missing_field_name_255 __annonCompField79 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct blk_trace; struct request; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; union __anonunion____missing_field_name_256 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_257 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_258 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_260 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_261 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_259 { struct __anonstruct_elv_260 elv ; struct __anonstruct_flush_261 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_256 __annonCompField80 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; unsigned int cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_257 __annonCompField81 ; union __anonunion____missing_field_name_258 __annonCompField82 ; union __anonunion____missing_field_name_259 __annonCompField83 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); typedef void elevator_registered_fn(struct request_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; elevator_registered_fn *elevator_registered_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; atomic_t mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_263 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_263 __annonCompField84 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct scsi_host_cmd_pool; struct scsi_target; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_264 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_264 __annonCompField85 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; enum hrtimer_restart; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pci_bus; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_220 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_220 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct atto_dev_addr { u64 dev_port ; u64 hba_port ; u8 lun ; u8 flags ; u8 link_speed ; u8 pad[1U] ; }; struct atto_vda_sge { u32 length ; u64 address ; }; union __anonunion____missing_field_name_267 { u8 dev_status ; u8 op_ctrl ; }; union __anonunion____missing_field_name_268 { u16 target_id ; u16 features_mask ; }; struct atto_vda_devinfo { struct atto_dev_addr dev_addr ; u8 vendor_id[8U] ; u8 product_id[16U] ; u8 revision[4U] ; u64 capacity ; u32 block_size ; u8 dev_type ; union __anonunion____missing_field_name_267 __annonCompField86 ; u8 member_state ; u8 operation ; u8 op_status ; u8 progress ; u16 ses_dev_index ; u8 serial_no[32U] ; union __anonunion____missing_field_name_268 __annonCompField87 ; u16 lun ; u16 features ; u8 ses_element_id ; u8 link_speed ; u16 phys_target_id ; u8 reserved[2U] ; }; union __anonunion____missing_field_name_270 { u8 status ; u8 op_ctrl ; }; union __anonunion____missing_field_name_271 { u16 members[32U] ; u16 features_mask ; }; struct atto_vda_grp_info { u8 grp_index ; char grp_name[15U] ; u64 capacity ; u32 block_size ; u32 interleave ; u8 type ; union __anonunion____missing_field_name_270 __annonCompField89 ; u8 rebuild_state ; u8 span_depth ; u8 progress ; u8 mirror_width ; u8 stripe_width ; u8 member_cnt ; union __anonunion____missing_field_name_271 __annonCompField90 ; u16 features ; u8 prefetch ; u8 op_status ; u8 over_provision ; u8 reserved[3U] ; }; struct atto_vdapart_info { u8 part_no ; char grp_name[15U] ; u64 part_size ; u64 start_lba ; u32 block_size ; u16 target_id ; u8 LUN ; char serial_no[41U] ; u8 features ; u8 reserved[7U] ; }; struct atto_vda_dh_info { u8 req_type ; u8 req_qual ; u8 num_smart_attribs ; u8 status ; u32 med_defect_cnt ; u32 info_exc_cnt ; u8 smart_status ; u8 reserved[35U] ; struct atto_vda_sge sge[1U] ; }; struct atto_vda_metrics_info { u8 data_version ; u8 metrics_action ; u8 test_action ; u8 num_dev_indexes ; u16 dev_indexes[32U] ; u8 reserved[12U] ; struct atto_vda_sge sge[1U] ; }; struct atto_vda_schedule_info { u8 schedule_type ; u8 operation ; u8 hour ; u8 minute ; u8 day ; u8 progress ; u8 event_type ; u8 recurrences ; u32 id ; char grp_name[15U] ; u8 reserved[85U] ; }; struct atto_vda_n_vcache_info { u8 super_cap_status ; u8 nvcache_module_status ; u8 protection_mode ; u8 reserved[109U] ; }; struct atto_vda_buzzer_info { u8 status ; u8 reserved[3U] ; u32 duration ; u8 reserved2[104U] ; }; struct atto_vda_ae_hdr { u8 bylength ; u8 byflags ; u8 byversion ; u8 bytype ; }; struct atto_vda_ae_lu_tgt_lun { u16 wtarget_id ; u8 bylun ; u8 byreserved ; }; struct atto_vda_ae_lu_tgt_lun_raid { u16 wtarget_id ; u8 bylun ; u8 byreserved ; u32 dwinterleave ; u32 dwblock_size ; }; union __anonunion_id_272 { struct atto_vda_ae_lu_tgt_lun tgtlun ; struct atto_vda_ae_lu_tgt_lun_raid tgtlun_raid ; }; struct atto_vda_ae_lu { struct atto_vda_ae_hdr hdr ; u32 dwevent ; u8 bystate ; u8 byreserved ; u16 wphys_target_id ; union __anonunion_id_272 id ; }; struct atto_vda_date_and_time { u8 flags ; u8 seconds ; u8 minutes ; u8 hours ; u8 day ; u8 month ; u16 year ; }; struct atto_vda_cfg_init { struct atto_vda_date_and_time date_time ; u32 sgl_page_size ; u32 vda_version ; u32 fw_version ; u32 fw_build ; u32 fw_release ; u32 epoch_time ; u32 ioctl_tunnel ; u32 num_targets_backend ; u8 reserved[72U] ; }; struct atto_physical_region_description { u64 address ; u32 ctl_len ; }; struct __anonstruct____missing_field_name_274 { u64 ppsense_buf ; u16 target_id ; u8 iblk_cnt_prd ; u8 reserved ; }; union __anonunion____missing_field_name_273 { struct __anonstruct____missing_field_name_274 __annonCompField91 ; struct atto_physical_region_description sense_buff_prd ; }; union __anonunion_u_275 { struct atto_vda_sge sge[1U] ; u32 abort_handle ; u32 dwords[245U] ; struct atto_physical_region_description prd[1U] ; }; struct atto_vda_scsi_req { u32 length ; u8 function ; u8 sense_len ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 flags ; u8 cdb[16U] ; union __anonunion____missing_field_name_273 __annonCompField92 ; union __anonunion_u_275 u ; }; struct __anonstruct_file_277 { char file_name[16U] ; struct atto_vda_sge sge[1U] ; }; union __anonunion_data_276 { struct __anonstruct_file_277 file ; struct atto_vda_sge sge[1U] ; struct atto_physical_region_description prde[2U] ; }; struct atto_vda_flash_req { u32 length ; u8 function ; u8 sub_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 flash_addr ; u8 checksum ; u8 rsvd[3U] ; union __anonunion_data_276 data ; }; struct atto_vda_diag_req { u32 length ; u8 function ; u8 sub_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 rsvd ; u64 local_addr ; struct atto_vda_sge sge[1U] ; }; union __anonunion____missing_field_name_278 { struct atto_vda_sge sge[1U] ; struct atto_physical_region_description prde[1U] ; }; struct atto_vda_ae_req { u32 length ; u8 function ; u8 reserved1 ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; union __anonunion____missing_field_name_278 __annonCompField93 ; }; struct atto_vda_cli_req { u32 length ; u8 function ; u8 reserved1 ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u32 cmd_rsp_len ; struct atto_vda_sge sge[1U] ; }; union __anonunion____missing_field_name_279 { struct atto_vda_sge reserved_sge ; struct atto_physical_region_description reserved_prde ; }; struct __anonstruct_csmi_281 { u32 ctrl_code ; u16 target_id ; u8 lun ; u8 reserved ; }; union __anonunion____missing_field_name_280 { struct __anonstruct_csmi_281 csmi ; }; union __anonunion____missing_field_name_282 { struct atto_vda_sge sge[1U] ; struct atto_physical_region_description prde[1U] ; }; struct atto_vda_ioctl_req { u32 length ; u8 function ; u8 sub_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; union __anonunion____missing_field_name_279 __annonCompField94 ; union __anonunion____missing_field_name_280 __annonCompField95 ; union __anonunion____missing_field_name_282 __annonCompField96 ; }; union __anonunion_data_283 { u8 bytes[116U] ; struct atto_vda_cfg_init init ; struct atto_vda_sge sge ; struct atto_physical_region_description prde ; }; struct atto_vda_cfg_req { u32 length ; u8 function ; u8 sub_func ; u8 rsvd1 ; u8 sg_list_offset ; u32 handle ; union __anonunion_data_283 data ; }; union __anonunion____missing_field_name_284 { struct atto_vda_sge sge[2U] ; struct atto_physical_region_description prde[2U] ; }; struct atto_vda_mgmt_req { u32 length ; u8 function ; u8 mgt_func ; u8 chain_offset ; u8 sg_list_offset ; u32 handle ; u8 scan_generation ; u8 payld_sglst_offset ; u16 dev_index ; u32 payld_length ; u32 pad ; union __anonunion____missing_field_name_284 __annonCompField97 ; struct atto_vda_sge payld_sge[1U] ; }; union atto_vda_req { struct atto_vda_scsi_req scsi ; struct atto_vda_flash_req flash ; struct atto_vda_diag_req diag ; struct atto_vda_ae_req ae ; struct atto_vda_cli_req cli ; struct atto_vda_ioctl_req ioctl ; struct atto_vda_cfg_req cfg ; struct atto_vda_mgmt_req mgt ; u8 bytes[1024U] ; }; struct atto_vda_scsi_rsp { u8 scsi_stat ; u8 sense_len ; u8 rsvd[2U] ; u32 residual_length ; }; struct atto_vda_flash_rsp { u32 file_size ; }; struct atto_vda_ae_rsp { u32 length ; }; struct atto_vda_cli_rsp { u32 cmd_rsp_len ; }; struct __anonstruct_csmi_286 { u32 csmi_status ; u16 target_id ; u8 lun ; u8 reserved ; }; union __anonunion____missing_field_name_285 { struct __anonstruct_csmi_286 csmi ; }; struct atto_vda_ioctl_rsp { union __anonunion____missing_field_name_285 __annonCompField98 ; }; struct atto_vda_cfg_rsp { u16 vda_version ; u16 fw_release ; u32 fw_build ; }; struct atto_vda_mgmt_rsp { u32 length ; u16 dev_index ; u8 scan_generation ; }; union atto_vda_func_rsp { struct atto_vda_scsi_rsp scsi_rsp ; struct atto_vda_flash_rsp flash_rsp ; struct atto_vda_ae_rsp ae_rsp ; struct atto_vda_cli_rsp cli_rsp ; struct atto_vda_ioctl_rsp ioctl_rsp ; struct atto_vda_cfg_rsp cfg_rsp ; struct atto_vda_mgmt_rsp mgt_rsp ; u32 dwords[2U] ; }; struct atto_vda_ae_data { u8 event_data[256U] ; }; union __anonunion_data_287 { u8 bytes[112U] ; struct atto_vda_devinfo dev_info ; struct atto_vda_grp_info grp_info ; struct atto_vdapart_info part_info ; struct atto_vda_dh_info dev_health_info ; struct atto_vda_metrics_info metrics_info ; struct atto_vda_schedule_info sched_info ; struct atto_vda_n_vcache_info nvcache_info ; struct atto_vda_buzzer_info buzzer_info ; }; struct atto_vda_mgmt_data { union __anonunion_data_287 data ; }; union atto_vda_rsp_data { struct atto_vda_ae_data ae_data ; struct atto_vda_mgmt_data mgt_data ; u8 sense_data[252U] ; u8 bytes[256U] ; }; struct __anonstruct_pci_292 { u16 vendor_id ; u16 device_id ; u16 ss_vendor_id ; u16 ss_device_id ; u8 class_code[3U] ; u8 rev_id ; u8 bus_num ; u8 dev_num ; u8 func_num ; u8 link_width_max ; u8 link_width_curr ; u8 link_speed_max ; u8 link_speed_curr ; u8 interrupt_mode ; u8 msi_vector_cnt ; u8 reserved[19U] ; }; struct atto_hba_get_adapter_info { struct __anonstruct_pci_292 pci ; u8 adap_type ; u8 adap_flags ; u8 num_ports ; u8 num_phys ; u8 drvr_rev_major ; u8 drvr_rev_minor ; u8 drvr_revsub_minor ; u8 drvr_rev_build ; char drvr_rev_ascii[16U] ; char drvr_name[32U] ; char firmware_rev[16U] ; char flash_rev[16U] ; char model_name_short[16U] ; char model_name[32U] ; u32 num_targets ; u32 num_targsper_bus ; u32 num_lunsper_targ ; u8 num_busses ; u8 num_connectors ; u8 adap_flags2 ; u8 num_temp_sensors ; u32 num_targets_backend ; u32 tunnel_flags ; u8 reserved3[312U] ; }; struct atto_hba_get_adapter_address { u8 addr_type ; u8 port_id ; u16 addr_len ; u8 address[256U] ; }; struct atto_hba_trace { u8 trace_func ; u8 trace_type ; u8 reserved[2U] ; u32 current_offset ; u32 total_length ; u32 trace_mask ; u8 reserved2[48U] ; }; struct atto_hba_scsi_pass_thru { u8 cdb[32U] ; u8 cdb_length ; u8 req_status ; u8 scsi_status ; u8 sense_length ; u32 flags ; u32 timeout ; u32 target_id ; u8 lun[8U] ; u32 residual_length ; u8 sense_data[252U] ; u8 reserved[40U] ; }; struct atto_hba_get_device_address { u8 addr_type ; u8 reserved ; u16 addr_len ; u32 target_id ; u8 address[256U] ; }; struct __anonstruct____missing_field_name_295 { u8 temp_sensor ; u8 temp_state ; short temp_value ; short temp_lower_lim ; short temp_upper_lim ; char temp_desc[32U] ; u8 reserved2[20U] ; }; union __anonunion____missing_field_name_294 { struct __anonstruct____missing_field_name_295 __annonCompField104 ; }; struct atto_hba_adap_ctrl { u8 adap_func ; u8 adap_state ; u8 reserved[2U] ; union __anonunion____missing_field_name_294 __annonCompField105 ; }; struct atto_hba_sas_device_info { u8 phy_id[16U] ; u32 exp_target_id ; u32 sas_port_mask ; u8 sas_level ; u8 slot_num ; u8 dev_type ; u8 ini_flags ; u8 tgt_flags ; u8 link_rate ; u8 loc_flags ; u8 pm_port ; u8 reserved[96U] ; }; union atto_hba_device_info { struct atto_hba_sas_device_info sas_dev_info ; }; struct atto_hba_get_device_info { u32 target_id ; u8 info_type ; u8 reserved[11U] ; union atto_hba_device_info dev_info ; }; union __anonunion_data_296 { u8 byte[1U] ; struct atto_hba_get_adapter_info get_adap_info ; struct atto_hba_get_adapter_address get_adap_addr ; struct atto_hba_scsi_pass_thru scsi_pass_thru ; struct atto_hba_get_device_address get_dev_addr ; struct atto_hba_adap_ctrl adap_ctrl ; struct atto_hba_get_device_info get_dev_info ; struct atto_hba_trace trace ; }; struct atto_ioctl { u8 version ; u8 function ; u8 status ; u8 flags ; u32 data_length ; u8 reserved2[56U] ; union __anonunion_data_296 data ; }; struct esas2r_adapter; struct esas2r_sg_context; struct esas2r_request; struct esas2r_component_header { u8 img_type ; u8 status ; u8 pad[2U] ; u32 version ; u32 length ; u32 image_offset ; }; struct esas2r_flash_img { u8 fi_version ; u8 status ; u8 adap_typ ; u8 action ; u32 length ; u16 checksum ; u16 driver_error ; u16 flags ; u16 num_comps ; u8 rel_version[16U] ; struct esas2r_component_header cmp_hdr[6U] ; u8 scratch_buf[2048U] ; }; struct esas2r_sas_nvram { u8 signature[4U] ; u8 version ; u8 checksum ; u8 max_lun_for_target ; u8 pci_latency ; u8 options1 ; u8 options2 ; u8 int_coalescing ; u8 cmd_throttle ; u8 dev_wait_time ; u8 dev_wait_count ; u8 spin_up_delay ; u8 ssp_align_rate ; u8 sas_addr[8U] ; u8 phy_speed[16U] ; u8 phy_mux[16U] ; u8 phy_flags[16U] ; u8 sort_type ; u8 dpm_reqcmd_lmt ; u8 dpm_stndby_time ; u8 dpm_active_time ; u8 phy_target_id[16U] ; u8 virt_ses_mode ; u8 read_write_mode ; u8 link_down_to ; u8 reserved[161U] ; }; struct __anonstruct_a64_307 { struct atto_vda_sge *curr ; struct atto_vda_sge *last ; struct atto_vda_sge *limit ; struct atto_vda_sge *chain ; }; struct __anonstruct_prd_308 { struct atto_physical_region_description *curr ; struct atto_physical_region_description *chain ; u32 sgl_max_cnt ; u32 sge_cnt ; }; union __anonunion_sge_306 { struct __anonstruct_a64_307 a64 ; struct __anonstruct_prd_308 prd ; }; struct esas2r_sg_context { struct esas2r_adapter *adapter ; struct esas2r_request *first_req ; u32 length ; u8 *cur_offset ; u32 (*get_phys_addr)(struct esas2r_sg_context * , u64 * ) ; union __anonunion_sge_306 sge ; struct scatterlist *cur_sgel ; u8 *exp_offset ; int num_sgel ; int sgel_count ; }; struct esas2r_target { u8 flags ; u8 new_target_state ; u8 target_state ; u8 buffered_target_state ; u32 block_size ; u32 inter_block ; u32 inter_byte ; u16 virt_targ_id ; u16 phys_targ_id ; u8 identifier_len ; u64 sas_addr ; u8 identifier[60U] ; struct atto_vda_ae_lu lu_event ; }; struct esas2r_mem_desc; union __anonunion____missing_field_name_309 { void *data_buf ; union atto_vda_rsp_data *vda_rsp_data ; }; union __anonunion____missing_field_name_310 { struct scsi_cmnd *cmd ; u8 *task_management_status_ptr ; }; struct esas2r_request { struct list_head comp_list ; struct list_head req_list ; union atto_vda_req *vrq ; struct esas2r_mem_desc *vrq_md ; union __anonunion____missing_field_name_309 __annonCompField106 ; u8 *sense_buf ; struct list_head sg_table_head ; struct esas2r_mem_desc *sg_table ; u32 timeout ; u16 target_id ; u8 req_type ; u8 sense_len ; union atto_vda_func_rsp func_rsp ; void (*comp_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; void (*interrupt_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; void *interrupt_cx ; u8 flags ; u8 req_stat ; u16 vda_req_sz ; u64 lba ; void (*aux_req_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; void *aux_req_cx ; u32 blk_len ; u32 max_blk_len ; union __anonunion____missing_field_name_310 __annonCompField107 ; }; struct esas2r_flash_context { struct esas2r_flash_img *fi ; void (*interrupt_cb)(struct esas2r_adapter * , struct esas2r_request * ) ; u8 *sgc_offset ; u8 *scratch ; u32 fi_hdr_len ; u8 task ; u8 func ; u16 num_comps ; u32 cmp_len ; u32 flsh_addr ; u32 curr_len ; u8 comp_typ ; struct esas2r_sg_context sgc ; }; struct esas2r_disc_context { u8 disc_evt ; u8 state ; u16 flags ; u32 interleave ; u32 block_size ; u16 dev_ix ; u8 part_num ; u8 raid_grp_ix ; char raid_grp_name[16U] ; struct esas2r_target *curr_targ ; u16 curr_virt_id ; u16 curr_phys_id ; u8 scan_gen ; u8 dev_addr_type ; u64 sas_addr ; }; struct esas2r_mem_desc { struct list_head next_desc ; void *virt_addr ; u64 phys_addr ; void *pad ; void *esas2r_data ; u32 esas2r_param ; u32 size ; }; enum state { FW_INVALID_ST = 0, FW_STATUS_ST = 1, FW_COMMAND_ST = 2 } ; struct esas2r_firmware { enum state state ; struct esas2r_flash_img header ; u8 *data ; u64 phys ; int orig_len ; void *header_buff ; u64 header_buff_phys ; }; union __anonunion____missing_field_name_311 { u16 prev_dev_cnt ; u32 heartbeat_time ; }; struct esas2r_adapter { struct esas2r_target targetdb[256U] ; struct esas2r_target *targetdb_end ; unsigned char *regs ; unsigned char *data_window ; long flags ; long flags2 ; atomic_t disable_cnt ; atomic_t dis_ints_cnt ; u32 int_stat ; u32 int_mask ; u32 volatile *outbound_copy ; struct list_head avail_request ; spinlock_t request_lock ; spinlock_t sg_list_lock ; spinlock_t queue_lock ; spinlock_t mem_lock ; struct list_head free_sg_list_head ; struct esas2r_mem_desc *sg_list_mds ; struct list_head active_list ; struct list_head defer_list ; struct esas2r_request **req_table ; union __anonunion____missing_field_name_311 __annonCompField108 ; u32 chip_uptime ; u64 uncached_phys ; u8 *uncached ; struct esas2r_sas_nvram *nvram ; struct esas2r_request general_req ; u8 init_msg ; u16 cmd_ref_no ; u32 fw_version ; u32 fw_build ; u32 chip_init_time ; u32 last_tick_time ; u32 window_base ; bool (*build_sgl)(struct esas2r_adapter * , struct esas2r_sg_context * ) ; struct esas2r_request *first_ae_req ; u32 list_size ; u32 last_write ; u32 last_read ; u16 max_vdareq_size ; u16 disc_wait_cnt ; struct esas2r_mem_desc inbound_list_md ; struct esas2r_mem_desc outbound_list_md ; struct esas2r_disc_context disc_ctx ; u8 *disc_buffer ; u32 disc_start_time ; u32 disc_wait_time ; u32 flash_ver ; char flash_rev[16U] ; char fw_rev[16U] ; char image_type[16U] ; struct esas2r_flash_context flash_context ; u32 num_targets_backend ; u32 ioctl_tunnel ; struct tasklet_struct tasklet ; struct pci_dev *pcid ; struct Scsi_Host *host ; unsigned int index ; char name[32U] ; struct timer_list timer ; struct esas2r_firmware firmware ; wait_queue_head_t nvram_waiter ; int nvram_command_done ; wait_queue_head_t fm_api_waiter ; int fm_api_command_done ; wait_queue_head_t vda_waiter ; int vda_command_done ; u8 *vda_buffer ; u64 ppvda_buffer ; wait_queue_head_t fs_api_waiter ; int fs_api_command_done ; u64 ppfs_api_buffer ; u8 *fs_api_buffer ; u32 fs_api_buffer_size ; wait_queue_head_t buffered_ioctl_waiter ; int buffered_ioctl_done ; int uncached_size ; struct workqueue_struct *fw_event_q ; struct list_head fw_event_list ; spinlock_t fw_event_lock ; u8 fw_events_off ; char fw_event_q_name[20U] ; int intr_mode ; struct esas2r_sg_context fm_api_sgc ; u8 *save_offset ; struct list_head vrq_mds_head ; struct esas2r_mem_desc *vrq_mds ; int num_vrqs ; struct semaphore fm_api_semaphore ; struct semaphore fs_api_semaphore ; struct semaphore nvram_semaphore ; struct atto_ioctl *local_atto_ioctl ; u8 fw_coredump_buff[524288U] ; unsigned char sysfs_fw_created : 1 ; unsigned char sysfs_fs_created : 1 ; unsigned char sysfs_vda_created : 1 ; unsigned char sysfs_hw_created : 1 ; unsigned char sysfs_live_nvram_created : 1 ; unsigned char sysfs_default_nvram_created : 1 ; }; enum hrtimer_restart; struct esas2r_boot_header { char signature[4U] ; u16 vendor_id ; u16 device_id ; u16 VPD ; u16 struct_length ; u8 struct_revision ; u8 class_code[3U] ; u16 image_length ; u16 code_revision ; u8 code_type ; u8 indicator ; u8 reserved[2U] ; }; struct esas2r_boot_image { u16 signature ; u8 reserved[22U] ; u16 header_offset ; u16 pnp_offset ; }; struct esas2r_pc_image { u16 signature ; u8 length ; u8 main[3U] ; u8 checksum ; u16 image_end ; u16 min_size ; u8 rom_flags ; u8 reserved[12U] ; u16 header_offset ; u16 pnp_offset ; struct esas2r_boot_header boot_image ; }; struct esas2r_efi_image { u16 signature ; u16 length ; u32 efi_signature ; u16 image_type ; u16 machine_type ; u16 compression ; u8 reserved[8U] ; u16 efi_offset ; u16 header_offset ; u16 reserved2 ; struct esas2r_boot_header boot_image ; }; struct esas2r_ioctlfs_command { u8 command ; u8 checksum ; u8 reserved[2U] ; u32 flash_addr ; u32 length ; u32 image_offset ; }; struct esas2r_ioctl_fs { u8 version ; u8 status ; u8 driver_error ; u8 adap_type ; u8 driver_ver ; u8 reserved[11U] ; struct esas2r_ioctlfs_command command ; u8 data[1U] ; }; typedef __kernel_long_t __kernel_suseconds_t; typedef __u64 uint64_t; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; enum hrtimer_restart; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct esas2r_inbound_list_source_entry { u64 address ; u32 length ; u32 reserved ; }; typedef int ldv_func_ret_type___4; enum hrtimer_restart; struct atto_vda_ae_raid { struct atto_vda_ae_hdr hdr ; u32 dwflags ; u8 bygroup_state ; u8 byrebuild_state ; u8 byrebuild_progress ; u8 op_status ; char acname[15U] ; u8 byreserved ; u8 byreserved2[100U] ; }; struct atto_vda_ae_disk { struct atto_vda_ae_hdr hdr ; }; struct atto_vda_ae_log { struct atto_vda_ae_hdr hdr ; char aclog_ascii[64U] ; }; struct atto_vda_ae_timestamp_log { struct atto_vda_ae_hdr hdr ; u32 dwtimestamp ; char aclog_ascii[56U] ; }; struct atto_vda_ae_nvc { struct atto_vda_ae_hdr hdr ; }; struct atto_vda_ae_dev { struct atto_vda_ae_hdr hdr ; struct atto_dev_addr devaddr ; }; union atto_vda_ae { struct atto_vda_ae_hdr hdr ; struct atto_vda_ae_disk disk ; struct atto_vda_ae_lu lu ; struct atto_vda_ae_raid raid ; struct atto_vda_ae_log log ; struct atto_vda_ae_timestamp_log tslog ; struct atto_vda_ae_nvc nvcache ; struct atto_vda_ae_dev dev ; }; struct atto_vda_ob_rsp { u32 handle ; u8 req_stat ; u8 rsvd[3U] ; union atto_vda_func_rsp func_rsp ; }; enum fw_event_type { fw_event_null = 0, fw_event_lun_change = 1, fw_event_present = 2, fw_event_not_present = 3, fw_event_vda_ae = 4 } ; enum hrtimer_restart; struct tss_struct; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long SYSENTER_stack[64U] ; }; struct __anonstruct_mm_segment_t_33 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_33 mm_segment_t; struct thread_info { struct task_struct *task ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; enum hrtimer_restart; struct __large_struct { unsigned long buf[100U] ; }; struct scsi_lun { __u8 scsi_lun[8U] ; }; struct atto_dev_addr2 { u64 dev_port ; u64 hba_port ; u8 lun ; u8 flags ; u8 link_speed ; u8 pad[5U] ; }; union __anonunion____missing_field_name_269 { u16 target_id ; u16 features_mask ; }; struct atto_vda_devinfo2 { struct atto_dev_addr dev_addr ; u8 vendor_id[8U] ; u8 product_id[16U] ; u8 revision[4U] ; u64 capacity ; u32 block_size ; u8 dev_type ; u8 dev_status ; u8 member_state ; u8 operation ; u8 op_status ; u8 progress ; u16 ses_dev_index ; u8 serial_no[32U] ; union __anonunion____missing_field_name_269 __annonCompField88 ; u16 lun ; u16 features ; u8 ses_element_id ; u8 link_speed ; u16 phys_target_id ; u8 reserved[2U] ; u8 version ; u8 reserved2[3U] ; u32 ss_curr_errors ; u64 ss_curr_scanned ; u32 ss_curr_recvrd ; u32 ss_scan_length ; u32 ss_total_errors ; u32 ss_total_recvrd ; u32 ss_num_scans ; char grp_name[15U] ; u8 reserved3[4U] ; u8 num_dev_addr ; struct atto_dev_addr2 dev_addr_list[8U] ; }; struct atto_vda_adapter_info { u8 version ; u8 reserved ; short utc_offset ; u32 utc_time ; u32 features ; u32 valid_features ; char active_config[33U] ; u8 temp_count ; u8 fan_count ; u8 reserved3[61U] ; }; struct atto_vda_temp_info { u8 temp_index ; u8 max_op_temp ; u8 min_op_temp ; u8 op_temp_warn ; u8 temperature ; u8 type ; u8 reserved[106U] ; }; struct atto_vda_fan_info { u8 fan_index ; u8 status ; u16 crit_pvdafaninfothreshold ; u16 warn_threshold ; u16 speed ; u8 reserved[104U] ; }; struct atto_express_ioctl_header { u8 signature[8U] ; u8 return_code ; u8 channel ; u8 retries ; u8 pad[5U] ; }; struct atto_firmware_rw_request { u8 function ; u8 img_type ; u8 pad[2U] ; u32 img_offset ; u32 img_size ; u8 image[524288U] ; }; struct atto_param_rw_request { u16 code ; char data_buffer[512U] ; }; struct atto_channel_list { u32 num_channels ; u8 channel[256U] ; }; struct atto_channel_info { u8 major_rev ; u8 minor_rev ; u8 IRQ ; u8 revision_id ; u8 pci_bus ; u8 pci_dev_func ; u8 core_rev ; u8 host_no ; u16 device_id ; u16 vendor_id ; u16 ven_dev_id ; u8 pad[3U] ; u32 hbaapi_rev ; }; struct atto_csmi_get_driver_info { char name[81U] ; char description[81U] ; u16 major_rev ; u16 minor_rev ; u16 build_rev ; u16 release_rev ; u16 csmi_major_rev ; u16 csmi_minor_rev ; }; struct atto_csmi_get_pci_bus_addr { u8 bus_num ; u8 device_num ; u8 function_num ; u8 reserved ; }; struct __anonstruct____missing_field_name_288 { u32 base_memaddr_lo ; u32 base_memaddr_hi ; }; union __anonunion____missing_field_name_289 { struct atto_csmi_get_pci_bus_addr pci_addr ; u8 reserved[32U] ; }; struct atto_csmi_get_cntlr_cfg { u32 base_io_addr ; struct __anonstruct____missing_field_name_288 __annonCompField99 ; u32 board_id ; u16 slot_num ; u8 cntlr_class ; u8 io_bus_type ; union __anonunion____missing_field_name_289 __annonCompField100 ; char serial_num[81U] ; u16 major_rev ; u16 minor_rev ; u16 build_rev ; u16 release_rev ; u16 bios_major_rev ; u16 bios_minor_rev ; u16 bios_build_rev ; u16 bios_release_rev ; u32 cntlr_flags ; u16 rrom_major_rev ; u16 rrom_minor_rev ; u16 rrom_build_rev ; u16 rrom_release_rev ; u16 rrom_biosmajor_rev ; u16 rrom_biosminor_rev ; u16 rrom_biosbuild_rev ; u16 rrom_biosrelease_rev ; u8 reserved2[7U] ; }; struct atto_csmi_get_cntlr_sts { u32 status ; u32 offline_reason ; u8 reserved[28U] ; }; struct atto_csmi_fw_download { u32 buffer_len ; u32 download_flags ; u8 reserved[32U] ; u16 status ; u16 severity ; }; struct atto_csmi_get_raid_info { u32 num_raid_sets ; u32 max_drivesper_set ; u8 reserved[92U] ; }; struct atto_csmi_raid_drives { char model[40U] ; char firmware[8U] ; char serial_num[40U] ; u8 sas_addr[8U] ; u8 lun[8U] ; u8 drive_sts ; u8 drive_usage ; u8 reserved[30U] ; }; struct atto_csmi_get_raid_cfg { u32 raid_set_index ; u32 capacity ; u32 stripe_size ; u8 raid_type ; u8 status ; u8 information ; u8 drive_cnt ; u8 reserved[20U] ; struct atto_csmi_raid_drives drives[1U] ; }; struct atto_csmi_phy_entity { u8 ident_frame[28U] ; u8 port_id ; u8 neg_link_rate ; u8 min_link_rate ; u8 max_link_rate ; u8 phy_change_cnt ; u8 auto_discover ; u8 reserved[2U] ; u8 attach_ident_frame[28U] ; }; struct atto_csmi_get_phy_info { u8 number_of_phys ; u8 reserved[3U] ; struct atto_csmi_phy_entity phy[32U] ; }; struct atto_csmi_set_phy_info { u8 phy_id ; u8 neg_link_rate ; u8 prog_minlink_rate ; u8 prog_maxlink_rate ; u8 signal_class ; u8 reserved[3U] ; }; struct atto_csmi_get_link_errors { u8 phy_id ; u8 reset_cnts ; u8 reserved[2U] ; u32 inv_dw_cnt ; u32 disp_err_cnt ; u32 loss_ofdw_sync_cnt ; u32 phy_reseterr_cnt ; u32 crc_err_cnt ; }; struct atto_csmi_smp_passthru { u8 phy_id ; u8 port_id ; u8 conn_rate ; u8 reserved ; u8 dest_sas_addr[8U] ; u32 req_len ; u8 smp_req[1020U] ; u8 conn_sts ; u8 reserved2[3U] ; u32 rsp_len ; u8 smp_rsp[1020U] ; }; struct atto_csmi_ssp_passthru_sts { u8 conn_sts ; u8 reserved[3U] ; u8 data_present ; u8 status ; u16 rsp_length ; u8 rsp[256U] ; u32 data_bytes ; }; struct atto_csmi_ssp_passthru { u8 phy_id ; u8 port_id ; u8 conn_rate ; u8 reserved ; u8 dest_sas_addr[8U] ; u8 lun[8U] ; u8 cdb_len ; u8 add_cdb_len ; u8 reserved2[2U] ; u8 cdb[16U] ; u32 flags ; u8 add_cdb[24U] ; u32 data_len ; struct atto_csmi_ssp_passthru_sts sts ; }; struct atto_csmi_stp_passthru_sts { u8 conn_sts ; u8 reserved[3U] ; u8 sts_fis[20U] ; u32 scr[16U] ; u32 data_bytes ; }; struct atto_csmi_stp_passthru { u8 phy_id ; u8 port_id ; u8 conn_rate ; u8 reserved ; u8 dest_sas_addr[8U] ; u8 reserved2[4U] ; u8 command_fis[20U] ; u32 flags ; u32 data_len ; struct atto_csmi_stp_passthru_sts sts ; }; struct atto_csmi_get_sata_sig { u8 phy_id ; u8 reserved[3U] ; u8 reg_dth_fis[20U] ; }; struct atto_csmi_get_scsi_addr { u8 sas_addr[8U] ; u8 sas_lun[8U] ; u8 host_index ; u8 path_id ; u8 target_id ; u8 lun ; }; struct atto_csmi_get_dev_addr { u8 host_index ; u8 path_id ; u8 target_id ; u8 lun ; u8 sas_addr[8U] ; u8 sas_lun[8U] ; }; struct atto_csmi_task_mgmt { u8 host_index ; u8 path_id ; u8 target_id ; u8 lun ; u32 flags ; u32 queue_tag ; u32 reserved ; u8 task_mgt_func ; u8 reserved2[7U] ; u32 information ; struct atto_csmi_ssp_passthru_sts sts ; }; struct atto_csmi_get_conn_info { u32 pinout ; u8 connector[16U] ; u8 location ; u8 reserved[15U] ; }; struct atto_csmi_character { u8 type_flags ; u8 value ; }; struct atto_csmi_pc_ctrl { u8 type ; u8 rate ; u8 reserved[6U] ; u32 vendor_unique[8U] ; u32 tx_flags ; signed char tx_amplitude ; signed char tx_preemphasis ; signed char tx_slew_rate ; signed char tx_reserved[13U] ; u8 tx_vendor_unique[64U] ; u32 rx_flags ; signed char rx_threshold ; signed char rx_equalization_gain ; signed char rx_reserved[14U] ; u8 rx_vendor_unique[64U] ; u32 pattern_flags ; u8 fixed_pattern ; u8 user_pattern_len ; u8 pattern_reserved[6U] ; struct atto_csmi_character user_pattern_buffer[16U] ; }; struct atto_csmi_phy_ctrl { u32 function ; u8 phy_id ; u16 len_of_cntl ; u8 num_of_cntls ; u8 reserved[4U] ; u32 link_flags ; u8 spinup_rate ; u8 link_reserved[7U] ; u32 vendor_unique[8U] ; struct atto_csmi_pc_ctrl control[1U] ; }; union atto_ioctl_csmi { struct atto_csmi_get_driver_info drvr_info ; struct atto_csmi_get_cntlr_cfg cntlr_cfg ; struct atto_csmi_get_cntlr_sts cntlr_sts ; struct atto_csmi_fw_download fw_dwnld ; struct atto_csmi_get_raid_info raid_info ; struct atto_csmi_get_raid_cfg raid_cfg ; struct atto_csmi_get_phy_info get_phy_info ; struct atto_csmi_set_phy_info set_phy_info ; struct atto_csmi_get_link_errors link_errs ; struct atto_csmi_smp_passthru smp_pass_thru ; struct atto_csmi_ssp_passthru ssp_pass_thru ; struct atto_csmi_stp_passthru stp_pass_thru ; struct atto_csmi_task_mgmt tsk_mgt ; struct atto_csmi_get_sata_sig sata_sig ; struct atto_csmi_get_scsi_addr scsi_addr ; struct atto_csmi_get_dev_addr dev_addr ; struct atto_csmi_get_conn_info conn_info[32U] ; struct atto_csmi_phy_ctrl phy_ctrl ; }; struct atto_csmi { u32 control_code ; u32 status ; union atto_ioctl_csmi data ; }; struct __anonstruct____missing_field_name_291 { u64 node_name ; u64 port_name ; }; union __anonunion____missing_field_name_290 { struct __anonstruct____missing_field_name_291 __annonCompField101 ; u64 sas_addr ; }; struct atto_module_info { void *adapter ; void *pci_dev ; void *scsi_host ; unsigned short host_no ; union __anonunion____missing_field_name_290 __annonCompField102 ; }; struct atto_ioctl_vda_scsi_cmd { u8 cdb[16U] ; u32 flags ; u32 data_length ; u32 residual_length ; u16 target_id ; u8 sense_len ; u8 scsi_stat ; u8 reserved[8U] ; u8 sense_data[80U] ; }; struct __anonstruct_info_298 { u32 flash_size ; u32 page_size ; u8 prod_info[32U] ; }; struct __anonstruct_file_299 { char file_name[16U] ; u32 file_size ; }; union __anonunion_data_297 { struct __anonstruct_info_298 info ; struct __anonstruct_file_299 file ; }; struct atto_ioctl_vda_flash_cmd { u32 flash_addr ; u32 data_length ; u8 sub_func ; u8 reserved[15U] ; union __anonunion_data_297 data ; }; struct atto_ioctl_vda_diag_cmd { u64 local_addr ; u32 data_length ; u8 sub_func ; u8 flags ; u8 reserved[3U] ; }; struct atto_ioctl_vda_cli_cmd { u32 cmd_rsp_len ; }; struct atto_ioctl_vda_smp_cmd { u64 dest ; u32 cmd_rsp_len ; }; union __anonunion_data_300 { u8 bytes[112U] ; struct atto_vda_cfg_init init ; }; struct atto_ioctl_vda_cfg_cmd { u32 data_length ; u8 cfg_func ; u8 reserved[11U] ; union __anonunion_data_300 data ; }; union __anonunion_data_301 { u8 bytes[112U] ; struct atto_vda_devinfo dev_info ; struct atto_vda_grp_info grp_info ; struct atto_vdapart_info part_info ; struct atto_vda_dh_info dh_info ; struct atto_vda_metrics_info metrics_info ; struct atto_vda_schedule_info sched_info ; struct atto_vda_n_vcache_info nvcache_info ; struct atto_vda_buzzer_info buzzer_info ; struct atto_vda_adapter_info adapter_info ; struct atto_vda_temp_info temp_info ; struct atto_vda_fan_info fan_info ; }; struct atto_ioctl_vda_mgt_cmd { u8 mgt_func ; u8 scan_generation ; u16 dev_index ; u32 data_length ; u8 reserved[8U] ; union __anonunion_data_301 data ; }; struct atto_ioctl_vda_gsv_cmd { u8 rsp_len ; u8 reserved[7U] ; u8 version_info[1U] ; }; union __anonunion_cmd_302 { struct atto_ioctl_vda_scsi_cmd scsi ; struct atto_ioctl_vda_flash_cmd flash ; struct atto_ioctl_vda_diag_cmd diag ; struct atto_ioctl_vda_cli_cmd cli ; struct atto_ioctl_vda_smp_cmd smp ; struct atto_ioctl_vda_cfg_cmd cfg ; struct atto_ioctl_vda_mgt_cmd mgt ; struct atto_ioctl_vda_gsv_cmd gsv ; u8 cmd_info[256U] ; }; union __anonunion_data_303 { u8 data[1U] ; struct atto_vda_devinfo2 dev_info2 ; }; struct atto_ioctl_vda { u8 version ; u8 function ; u8 status ; u8 vda_status ; u32 data_length ; u8 reserved[8U] ; union __anonunion_cmd_302 cmd ; union __anonunion_data_303 data ; }; union __anonunion_data_304 { u8 byte[1U] ; u32 dword[1U] ; }; struct atto_ioctl_smp { u8 version ; u8 function ; u8 status ; u8 smp_status ; u16 target_id ; u8 phy_id ; u8 dev_index ; u64 smp_sas_addr ; u64 targ_sas_addr ; u32 req_length ; u32 rsp_length ; u8 flags ; u8 reserved[31U] ; union __anonunion_data_304 data ; }; union __anonunion_data_305 { struct atto_firmware_rw_request fwrw ; struct atto_param_rw_request prw ; struct atto_channel_list chanlist ; struct atto_channel_info chaninfo ; struct atto_ioctl ioctl_hba ; struct atto_module_info modinfo ; struct atto_ioctl_vda ioctl_vda ; struct atto_ioctl_smp ioctl_smp ; struct atto_csmi csmi ; }; struct atto_express_ioctl { struct atto_express_ioctl_header header ; union __anonunion_data_305 data ; }; struct esas2r_buffered_ioctl { struct esas2r_adapter *a ; void *ioctl ; u32 length ; u32 control_code ; u32 offset ; int (*callback)(struct esas2r_adapter * , struct esas2r_request * , struct esas2r_sg_context * , void * ) ; void *context ; void (*done_callback)(struct esas2r_adapter * , struct esas2r_request * , void * ) ; void *done_context ; }; enum hrtimer_restart; enum hrtimer_restart; typedef unsigned int uint; enum hrtimer_restart; struct esas2r_vda_ae { u32 signature ; u8 bus_number ; u8 devfn ; u8 pad[2U] ; union atto_vda_ae vda_ae ; }; struct esas2r_fw_event_work { struct list_head list ; struct delayed_work work ; struct esas2r_adapter *a ; enum fw_event_type type ; u8 data[136U] ; }; typedef struct Scsi_Host *ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef bool ldv_func_ret_type___8; void ldv__builtin_va_end(__builtin_va_list * ) ; void ldv__builtin_va_start(__builtin_va_list * ) ; extern int printk(char const * , ...) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int vsnprintf(char * , size_t , char const * , va_list * ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); return; } } extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } int ldv_state_variable_5 ; int LDV_IN_INTERRUPT = 1; int ldv_timer_state_2 = 0; void call_and_disable_all_1(int state ) ; void ldv_initialize_scsi_host_template_5(void) ; void activate_work_1(struct work_struct *work , int state ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; int ldv_scsi_add_host_with_dma_10(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; int esas2r_log(long const level , char const *format , ...) ; int esas2r_log_dev(long const level , struct device const *dev , char const *format , ...) ; int esas2r_log_hexdump(long const level , void const *buf , size_t len ) ; static long event_log_level = 2L; static char event_buffer[1024U] ; static spinlock_t event_buffer_lock = {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "event_buffer_lock", 0, 0UL}}}}; static char const *translate_esas2r_event_level_to_kernel(long const level ) { { switch (level) { case 1L: ; return ("\n"); case 2L: ; return ("\f"); case 3L: ; return ("\016"); case 4L: ; case 5L: ; default: ; return ("\017"); } } } static int esas2r_log_master(long const level , struct device const *dev , char const *format , va_list *args ) { unsigned long flags ; int retval ; char *buffer ; size_t buflen ; char const *fmt_nodev ; char const *fmt_dev ; char const *slevel ; char const *tmp ; raw_spinlock_t *tmp___0 ; char const *tmp___1 ; size_t tmp___2 ; size_t tmp___3 ; { if ((long )level <= event_log_level) { flags = 0UL; retval = 0; buffer = (char *)(& event_buffer); buflen = 1024UL; fmt_nodev = "%s%s: "; fmt_dev = "%s%s [%s, %s, %s]"; tmp = translate_esas2r_event_level_to_kernel(level); slevel = tmp; tmp___0 = spinlock_check(& event_buffer_lock); flags = _raw_spin_lock_irqsave(tmp___0); if ((unsigned long )buffer == (unsigned long )((char *)0)) { spin_unlock_irqrestore(& event_buffer_lock, flags); return (-1); } else { } memset((void *)buffer, 0, buflen); if ((unsigned long )dev == (unsigned long )((struct device const *)0)) { snprintf(buffer, buflen, fmt_nodev, slevel, (char *)"esas2r"); } else { tmp___1 = dev_name(dev); snprintf(buffer, buflen, fmt_dev, slevel, (char *)"esas2r", (unsigned long )dev->driver != (unsigned long )((struct device_driver */* const */)0) ? (dev->driver)->name : "unknown", (unsigned long )dev->bus != (unsigned long )((struct bus_type */* const */)0) ? (dev->bus)->name : "unknown", tmp___1); } tmp___2 = strlen((char const *)(& event_buffer)); buffer = buffer + tmp___2; tmp___3 = strlen((char const *)(& event_buffer)); buflen = buflen - tmp___3; retval = vsnprintf(buffer, buflen, format, args); if (retval < 0) { spin_unlock_irqrestore(& event_buffer_lock, flags); return (-1); } else { } printk("%s\n", (char *)(& event_buffer)); spin_unlock_irqrestore(& event_buffer_lock, flags); } else { } return (0); } } int esas2r_log(long const level , char const *format , ...) { int retval ; va_list args ; { retval = 0; ldv__builtin_va_start((va_list *)(& args)); retval = esas2r_log_master(level, (struct device const *)0, format, (va_list *)(& args)); ldv__builtin_va_end((va_list *)(& args)); return (retval); } } int esas2r_log_dev(long const level , struct device const *dev , char const *format , ...) { int retval ; va_list args ; { retval = 0; ldv__builtin_va_start((va_list *)(& args)); retval = esas2r_log_master(level, dev, format, (va_list *)(& args)); ldv__builtin_va_end((va_list *)(& args)); return (retval); } } int esas2r_log_hexdump(long const level , void const *buf , size_t len ) { char const *tmp ; { if ((long )level <= event_log_level) { tmp = translate_esas2r_event_level_to_kernel(level); print_hex_dump(tmp, "", 2, 16, 1, buf, len, 1); } else { } return (1); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_10(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice_tail_init(struct list_head *list , struct list_head *head ) { int tmp ; { tmp = list_empty((struct list_head const *)list); if (tmp == 0) { __list_splice((struct list_head const *)list, head->prev, head); INIT_LIST_HEAD(list); } else { } return; } } extern void *memcpy(void * , void const * , size_t ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; bool ldv_queue_work_on_21(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_23(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_22(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_25(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_24(struct workqueue_struct *ldv_func_arg1 ) ; __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } int ldv_scsi_add_host_with_dma_26(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; void esas2r_complete_request_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_build_mgt_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 scan_gen , u16 dev_index , u32 length , void *data ) ; void esas2r_build_ioctl_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u8 sub_func ) ; void esas2r_wait_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_start_vda_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_polled_interrupt(struct esas2r_adapter *a ) ; struct esas2r_target *esas2r_targ_db_add_raid(struct esas2r_adapter *a , struct esas2r_disc_context *dc ) ; struct esas2r_target *esas2r_targ_db_add_pthru(struct esas2r_adapter *a , struct esas2r_disc_context *dc , u8 *ident , u8 ident_len ) ; void esas2r_targ_db_remove(struct esas2r_adapter *a , struct esas2r_target *t ) ; struct esas2r_target *esas2r_targ_db_find_by_virt_id(struct esas2r_adapter *a , u16 virt_id ) ; u16 esas2r_targ_db_get_tgt_cnt(struct esas2r_adapter *a ) ; void esas2r_disc_initialize(struct esas2r_adapter *a ) ; void esas2r_disc_start_waiting(struct esas2r_adapter *a ) ; void esas2r_disc_check_for_work(struct esas2r_adapter *a ) ; void esas2r_disc_check_complete(struct esas2r_adapter *a ) ; void esas2r_disc_queue_event(struct esas2r_adapter *a , u8 disc_evt ) ; bool esas2r_disc_start_port(struct esas2r_adapter *a ) ; void esas2r_disc_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; __inline static void esas2r_sgc_init(struct esas2r_sg_context *sgc , struct esas2r_adapter *a , struct esas2r_request *rq , struct atto_vda_sge *first ) { struct atto_vda_sge *tmp ; struct atto_vda_sge *tmp___0 ; { sgc->adapter = a; sgc->first_req = rq; sgc->sge.a64.limit = (struct atto_vda_sge *)rq->vrq + 116U; if ((unsigned long )first != (unsigned long )((struct atto_vda_sge *)0)) { tmp = first; sgc->sge.a64.curr = tmp; sgc->sge.a64.last = tmp; (rq->vrq)->scsi.sg_list_offset = (int )((unsigned char )((long )first)) - (int )((unsigned char )((long )rq->vrq)); } else { tmp___0 = (struct atto_vda_sge *)(& (rq->vrq)->scsi.u.sge); sgc->sge.a64.curr = tmp___0; sgc->sge.a64.last = tmp___0; (rq->vrq)->scsi.sg_list_offset = 44U; } sgc->sge.a64.chain = (struct atto_vda_sge *)0; return; } } __inline static void esas2r_rq_init_request(struct esas2r_request *rq , struct esas2r_adapter *a ) { union atto_vda_req *vrq ; u16 tmp ; { vrq = rq->vrq; INIT_LIST_HEAD(& rq->sg_table_head); rq->__annonCompField106.data_buf = (void *)vrq + 1U; rq->interrupt_cb = (void (*)(struct esas2r_adapter * , struct esas2r_request * ))0; rq->comp_cb = & esas2r_complete_request_cb; rq->flags = 0U; rq->timeout = 0U; rq->req_stat = 254U; rq->req_type = 1U; rq->func_rsp.dwords[0] = 0U; rq->func_rsp.dwords[1] = 0U; rq->vda_req_sz = 0U; *(a->req_table + (unsigned long )((unsigned short )vrq->scsi.handle)) = rq; tmp = a->cmd_ref_no; a->cmd_ref_no = (u16 )((int )a->cmd_ref_no + 1); vrq->scsi.handle = (u32 )(((int )tmp << 16) | (int )((unsigned short )vrq->scsi.handle)); vrq->scsi.function = 0U; vrq->scsi.sense_len = 252U; vrq->scsi.sg_list_offset = 0U; vrq->scsi.chain_offset = 0U; vrq->scsi.flags = 0U; vrq->scsi.__annonCompField92.__annonCompField91.reserved = 0U; vrq->scsi.__annonCompField92.__annonCompField91.ppsense_buf = (rq->vrq_md)->phys_addr + 1024ULL; return; } } __inline static void esas2r_rq_free_sg_lists(struct esas2r_request *rq , struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; raw_spinlock_t *tmp___0 ; { tmp = list_empty((struct list_head const *)(& rq->sg_table_head)); if (tmp != 0) { return; } else { } tmp___0 = spinlock_check(& a->sg_list_lock); flags = _raw_spin_lock_irqsave(tmp___0); list_splice_tail_init(& rq->sg_table_head, & a->free_sg_list_head); spin_unlock_irqrestore(& a->sg_list_lock, flags); return; } } __inline static void esas2r_rq_destroy_request(struct esas2r_request *rq , struct esas2r_adapter *a ) { { esas2r_rq_free_sg_lists(rq, a); *(a->req_table + (unsigned long )((unsigned short )(rq->vrq)->scsi.handle)) = (struct esas2r_request *)0; rq->__annonCompField106.data_buf = (void *)0; return; } } __inline static bool esas2r_build_sg_list(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { long tmp ; bool tmp___0 ; { tmp = ldv__builtin_expect((rq->vrq)->scsi.length == 0U, 0L); if (tmp != 0L) { return (1); } else { } tmp___0 = (*(a->build_sgl))(a, sgc); return (tmp___0); } } __inline static void esas2r_disable_heartbeat(struct esas2r_adapter *a ) { { clear_bit(17L, (unsigned long volatile *)(& a->flags)); clear_bit(16L, (unsigned long volatile *)(& a->flags)); return; } } __inline static void esas2r_local_reset_adapter(struct esas2r_adapter *a ) { { esas2r_disable_heartbeat(a); set_bit(1L, (unsigned long volatile *)(& a->flags)); set_bit(2L, (unsigned long volatile *)(& a->flags)); set_bit(14L, (unsigned long volatile *)(& a->flags)); return; } } __inline static u16 esas2r_targ_get_id(struct esas2r_target *t , struct esas2r_adapter *a ) { { return ((u16 )(((long )t - (long )(& a->targetdb)) / 120L)); } } static void esas2r_disc_abort(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_continue(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_fix_curr_requests(struct esas2r_adapter *a ) ; static u32 esas2r_disc_get_phys_addr(struct esas2r_sg_context *sgc , u64 *addr ) ; static bool esas2r_disc_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_block_dev_scan(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_block_dev_scan_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_dev_add(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_dev_remove(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_part_info(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_part_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_passthru_dev_info(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_passthru_dev_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_passthru_dev_addr(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_passthru_dev_addr_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static bool esas2r_disc_raid_grp_info(struct esas2r_adapter *a , struct esas2r_request *rq ) ; static void esas2r_disc_raid_grp_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_disc_initialize(struct esas2r_adapter *a ) { struct esas2r_sas_nvram *nvr ; int tmp ; int tmp___0 ; { nvr = a->nvram; clear_bit(22L, (unsigned long volatile *)(& a->flags)); clear_bit(1L, (unsigned long volatile *)(& a->flags2)); clear_bit(2L, (unsigned long volatile *)(& a->flags2)); a->disc_start_time = jiffies_to_msecs(jiffies); a->disc_wait_time = (u32 )((int )nvr->dev_wait_time * 1000); a->disc_wait_cnt = (u16 )nvr->dev_wait_count; if ((unsigned int )a->disc_wait_cnt > 256U) { a->disc_wait_cnt = 256U; } else { } a->general_req.interrupt_cx = (void *)0; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { goto _L; } else { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { _L: /* CIL Label */ if ((unsigned int )a->__annonCompField108.prev_dev_cnt == 0U) { a->disc_wait_time = 0U; } else { a->disc_wait_cnt = a->__annonCompField108.prev_dev_cnt; if (a->disc_wait_time <= 14999U) { a->disc_wait_time = 15000U; } else { } } } else { } } if (a->disc_wait_time == 0U) { esas2r_disc_check_complete(a); } else { } return; } } void esas2r_disc_start_waiting(struct esas2r_adapter *a ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )a->disc_ctx.disc_evt != 0U) { esas2r_disc_start_port(a); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } void esas2r_disc_check_for_work(struct esas2r_adapter *a ) { struct esas2r_request *rq ; { rq = & a->general_req; esas2r_polled_interrupt(a); esas2r_disc_start_waiting(a); if ((unsigned long )rq->interrupt_cx == (unsigned long )((void *)0)) { return; } else { } if ((unsigned int )rq->req_stat == 255U && rq->timeout <= 4294967293U) { esas2r_wait_request(a, rq); if ((unsigned int )rq->req_stat == 5U) { esas2r_disc_abort(a, rq); esas2r_local_reset_adapter(a); return; } else { } } else { } if ((unsigned int )rq->req_stat == 254U || (unsigned int )rq->req_stat == 255U) { return; } else { } esas2r_disc_continue(a, rq); return; } } void esas2r_disc_check_complete(struct esas2r_adapter *a ) { unsigned long flags ; u32 currtime ; unsigned int tmp ; u32 time ; raw_spinlock_t *tmp___0 ; int tmp___1 ; u16 tmp___2 ; int tmp___3 ; raw_spinlock_t *tmp___4 ; int tmp___5 ; raw_spinlock_t *tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { if (a->disc_wait_time != 0U) { tmp = jiffies_to_msecs(jiffies); currtime = tmp; time = currtime - a->disc_start_time; if (a->disc_wait_time > time) { tmp___2 = esas2r_targ_db_get_tgt_cnt(a); if ((int )tmp___2 < (int )a->disc_wait_cnt || (unsigned int )a->disc_wait_cnt == 0U) { if (time > 2999U) { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& a->flags2)); if (tmp___1 == 0) { tmp___0 = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp___0); esas2r_disc_queue_event(a, 2); spin_unlock_irqrestore(& a->mem_lock, flags); } else { } } else { } return; } else { } } else { } tmp___3 = test_and_set_bit(2L, (unsigned long volatile *)(& a->flags2)); if (tmp___3 == 0) { a->disc_wait_time = time + 3000U; } else { } tmp___5 = test_and_set_bit(1L, (unsigned long volatile *)(& a->flags2)); if (tmp___5 == 0) { tmp___4 = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp___4); esas2r_disc_queue_event(a, 2); spin_unlock_irqrestore(& a->mem_lock, flags); return; } else { } if (a->disc_wait_time > time) { return; } else { } } else { tmp___7 = test_and_set_bit(1L, (unsigned long volatile *)(& a->flags2)); if (tmp___7 == 0) { tmp___6 = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp___6); esas2r_disc_queue_event(a, 2); spin_unlock_irqrestore(& a->mem_lock, flags); } else { } } a->disc_wait_time = 0U; tmp___8 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); if (tmp___8 != 0) { tmp___9 = constant_test_bit(22L, (unsigned long const volatile *)(& a->flags)); if (tmp___9 != 0) { } else { esas2r_disc_fix_curr_requests(a); clear_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(0L, (unsigned long volatile *)(& a->flags)); } } else { esas2r_disc_fix_curr_requests(a); clear_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(0L, (unsigned long volatile *)(& a->flags)); } return; } } void esas2r_disc_queue_event(struct esas2r_adapter *a , u8 disc_evt ) { struct esas2r_disc_context *dc ; int tmp ; int tmp___0 ; { dc = & a->disc_ctx; dc->disc_evt = (u8 )((int )dc->disc_evt | (int )disc_evt); tmp = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp == 0) { tmp___0 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 == 0) { esas2r_disc_start_port(a); } else { } } else { } return; } } bool esas2r_disc_start_port(struct esas2r_adapter *a ) { struct esas2r_request *rq ; struct esas2r_disc_context *dc ; bool ret ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { rq = & a->general_req; dc = & a->disc_ctx; tmp = constant_test_bit(22L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return (0); } else { } if ((unsigned int )dc->disc_evt != 0U) { tmp___0 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0 && a->disc_wait_time == 0U) { return (0); } else { } } else { set_bit(0L, (unsigned long volatile *)(& a->flags)); return (0); } set_bit(22L, (unsigned long volatile *)(& a->flags)); dc->flags = 0U; tmp___1 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { dc->flags = (u16 )((unsigned int )dc->flags | 32768U); } else { } rq->interrupt_cx = (void *)dc; rq->req_stat = 0U; if (((int )dc->disc_evt & 2) != 0) { dc->disc_evt = (unsigned int )dc->disc_evt & 253U; dc->flags = (u16 )((unsigned int )dc->flags | 2U); dc->state = 2U; } else if ((int )dc->disc_evt & 1) { dc->disc_evt = (unsigned int )dc->disc_evt & 254U; dc->flags = (u16 )((unsigned int )dc->flags | 1U); dc->state = 0U; } else { } tmp___2 = constant_test_bit(25L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 == 0) { ret = esas2r_disc_continue(a, rq); } else { ret = 1; } return (ret); } } static bool esas2r_disc_continue(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; int tmp ; bool tmp___0 ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; goto ldv_39082; ldv_39081: rslt = 0; switch ((int )dc->state) { case 0: rslt = esas2r_disc_dev_remove(a, rq); goto ldv_39072; case 1: rslt = esas2r_disc_dev_add(a, rq); goto ldv_39072; case 2: rslt = esas2r_disc_block_dev_scan(a, rq); goto ldv_39072; case 3: rslt = esas2r_disc_raid_grp_info(a, rq); goto ldv_39072; case 4: rslt = esas2r_disc_part_info(a, rq); goto ldv_39072; case 5: rslt = esas2r_disc_passthru_dev_info(a, rq); goto ldv_39072; case 6: rslt = esas2r_disc_passthru_dev_addr(a, rq); goto ldv_39072; case 255: dc->flags = (unsigned int )dc->flags & 65532U; goto ldv_39072; default: dc->state = 255U; goto ldv_39072; } ldv_39072: ; if ((int )rslt) { return (1); } else { } ldv_39082: ; if (((int )dc->flags & 3) != 0) { goto ldv_39081; } else { } rq->interrupt_cx = (void *)0; tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp == 0) { esas2r_disc_fix_curr_requests(a); } else { } clear_bit(22L, (unsigned long volatile *)(& a->flags)); tmp___0 = esas2r_disc_start_port(a); return (tmp___0); } } static bool esas2r_disc_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; raw_spinlock_t *tmp ; int tmp___0 ; int tmp___1 ; { if (rq->timeout <= 4999U) { rq->timeout = 5000U; } else { } rq->req_type = 2U; tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 == 0) { tmp___1 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 == 0) { esas2r_disc_local_start_request(a, rq); } else { list_add_tail(& rq->req_list, & a->defer_list); } } else { list_add_tail(& rq->req_list, & a->defer_list); } spin_unlock_irqrestore(& a->queue_lock, flags); return (1); } } void esas2r_disc_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { { list_add_tail(& rq->req_list, & a->active_list); esas2r_start_vda_request(a, rq); return; } } static void esas2r_disc_abort(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; dc->state = 255U; return; } } static bool esas2r_disc_block_dev_scan(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_rq_init_request(rq, a); esas2r_build_mgt_req(a, rq, 0, 0, 0, 0U, (void *)0); rq->comp_cb = & esas2r_disc_block_dev_scan_cb; rq->timeout = 30000U; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); return (rslt); } } static void esas2r_disc_block_dev_scan_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; raw_spinlock_t *tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )rq->req_stat == 0U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; } else { } dc->state = 3U; dc->raid_grp_ix = 0U; esas2r_rq_destroy_request(rq, a); if ((int )((short )dc->flags) >= 0) { esas2r_disc_continue(a, rq); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } static bool esas2r_disc_raid_grp_info(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_vda_grp_info *grpinfo ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; if ((unsigned int )dc->raid_grp_ix > 31U) { dc->state = 255U; return (0); } else { } esas2r_rq_init_request(rq, a); grpinfo = & (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.grp_info; memset((void *)grpinfo, 0, 112UL); esas2r_build_mgt_req(a, rq, 16, (int )dc->scan_gen, 0, 112U, (void *)0); grpinfo->grp_index = dc->raid_grp_ix; rq->comp_cb = & esas2r_disc_raid_grp_info_cb; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); return (rslt); } } static void esas2r_disc_raid_grp_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; struct atto_vda_grp_info *grpinfo ; raw_spinlock_t *tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )rq->req_stat == 133U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->raid_grp_ix = 0U; goto done; } else { } if ((unsigned int )rq->req_stat == 0U) { grpinfo = & (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.grp_info; if ((unsigned int )grpinfo->__annonCompField89.status != 3U && (unsigned int )grpinfo->__annonCompField89.status != 4U) { dc->raid_grp_ix = (u8 )((int )dc->raid_grp_ix + 1); } else { memcpy((void *)(& dc->raid_grp_name), (void const *)(& grpinfo->grp_name), 15UL); dc->interleave = grpinfo->interleave; dc->block_size = grpinfo->block_size; dc->state = 4U; dc->part_num = 0U; } } else { if ((unsigned int )rq->req_stat != 136U) { esas2r_log(2L, "A request for RAID group info failed - returned with %x", (int )rq->req_stat); } else { } dc->dev_ix = 0U; dc->state = 5U; } done: esas2r_rq_destroy_request(rq, a); if ((int )((short )dc->flags) >= 0) { esas2r_disc_continue(a, rq); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } static bool esas2r_disc_part_info(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_vdapart_info *partinfo ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; if ((int )((signed char )dc->part_num) < 0) { dc->state = 3U; dc->raid_grp_ix = (u8 )((int )dc->raid_grp_ix + 1); return (0); } else { } esas2r_rq_init_request(rq, a); partinfo = & (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.part_info; memset((void *)partinfo, 0, 88UL); esas2r_build_mgt_req(a, rq, 48, (int )dc->scan_gen, 0, 88U, (void *)0); partinfo->part_no = dc->part_num; memcpy((void *)(& partinfo->grp_name), (void const *)(& dc->raid_grp_name), 15UL); rq->comp_cb = & esas2r_disc_part_info_cb; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); return (rslt); } } static void esas2r_disc_part_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; struct atto_vdapart_info *partinfo ; raw_spinlock_t *tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )rq->req_stat == 133U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->raid_grp_ix = 0U; dc->state = 3U; } else if ((unsigned int )rq->req_stat == 0U) { partinfo = & (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.part_info; dc->part_num = partinfo->part_no; dc->curr_virt_id = partinfo->target_id; esas2r_targ_db_add_raid(a, dc); dc->part_num = (u8 )((int )dc->part_num + 1); } else { if ((unsigned int )rq->req_stat != 152U) { esas2r_log(2L, "A request for RAID group partition info failed - status:%d", (int )rq->req_stat); } else { } dc->state = 3U; dc->raid_grp_ix = (u8 )((int )dc->raid_grp_ix + 1); } esas2r_rq_destroy_request(rq, a); if ((int )((short )dc->flags) >= 0) { esas2r_disc_continue(a, rq); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } static bool esas2r_disc_passthru_dev_info(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_vda_devinfo *devinfo ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_rq_init_request(rq, a); devinfo = & (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.dev_info; memset((void *)devinfo, 0, 112UL); esas2r_build_mgt_req(a, rq, 5, (int )dc->scan_gen, (int )dc->dev_ix, 112U, (void *)0); rq->comp_cb = & esas2r_disc_passthru_dev_info_cb; rq->interrupt_cx = (void *)dc; rslt = esas2r_disc_start_request(a, rq); return (rslt); } } static void esas2r_disc_passthru_dev_info_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; unsigned long flags ; struct atto_vda_devinfo *devinfo ; raw_spinlock_t *tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )rq->req_stat == 133U) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->dev_ix = 0U; dc->state = 5U; } else if ((unsigned int )rq->req_stat == 0U) { devinfo = & (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.dev_info; dc->dev_ix = rq->func_rsp.mgt_rsp.dev_index; dc->curr_virt_id = devinfo->__annonCompField87.target_id; if (((int )devinfo->features & 8) != 0) { dc->curr_phys_id = devinfo->phys_target_id; dc->dev_addr_type = 0U; dc->state = 6U; } else { dc->dev_ix = (u16 )((int )dc->dev_ix + 1); } } else { if ((unsigned int )rq->req_stat != 129U) { esas2r_log(2L, "A request for device information failed - status:%d", (int )rq->req_stat); } else { } dc->state = 255U; } esas2r_rq_destroy_request(rq, a); if ((int )((short )dc->flags) >= 0) { esas2r_disc_continue(a, rq); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } static bool esas2r_disc_passthru_dev_addr(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; bool rslt ; struct atto_ioctl *hi ; struct esas2r_sg_context sgc ; bool tmp ; int tmp___0 ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_rq_init_request(rq, a); sgc.cur_offset = (u8 *)0U; sgc.get_phys_addr = & esas2r_disc_get_phys_addr; sgc.length = 328U; esas2r_sgc_init(& sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField96.sge)); esas2r_build_ioctl_req(a, rq, sgc.length, 0); tmp = esas2r_build_sg_list(a, rq, & sgc); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { esas2r_rq_destroy_request(rq, a); return (0); } else { } rq->comp_cb = & esas2r_disc_passthru_dev_addr_cb; rq->interrupt_cx = (void *)dc; hi = (struct atto_ioctl *)a->disc_buffer; memset((void *)a->disc_buffer, 0, 512UL); hi->version = 0U; hi->function = 5U; hi->flags = 1U; hi->data.get_dev_addr.target_id = (unsigned int )dc->curr_phys_id; hi->data.get_dev_addr.addr_type = dc->dev_addr_type; rslt = esas2r_disc_start_request(a, rq); return (rslt); } } static void esas2r_disc_passthru_dev_addr_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; struct esas2r_target *t ; unsigned long flags ; struct atto_ioctl *hi ; u16 addrlen ; raw_spinlock_t *tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; t = (struct esas2r_target *)0; tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); hi = (struct atto_ioctl *)a->disc_buffer; if ((unsigned int )rq->req_stat == 0U && (unsigned int )hi->status == 0U) { addrlen = hi->data.get_dev_addr.addr_len; if ((unsigned int )dc->dev_addr_type == 0U) { if ((unsigned int )addrlen == 8U) { memcpy((void *)(& dc->sas_addr), (void const *)(& hi->data.get_dev_addr.address), (size_t )addrlen); } else { memset((void *)(& dc->sas_addr), 0, 8UL); } dc->dev_addr_type = 4U; goto next_dev_addr; } else if ((unsigned int )((unsigned char )((int )addrlen >> 8)) == 0U) { t = esas2r_targ_db_add_pthru(a, dc, (u8 *)(& hi->data.get_dev_addr.address), (int )((unsigned char )hi->data.get_dev_addr.addr_len)); if ((unsigned long )t != (unsigned long )((struct esas2r_target *)0)) { memcpy((void *)(& t->sas_addr), (void const *)(& dc->sas_addr), 8UL); } else { } } else { esas2r_log(2L, "an error occurred retrieving the back end data (%s:%d)", "esas2r_disc_passthru_dev_addr_cb", 993); } } else { esas2r_log(2L, "an error occurred retrieving the back end data - rq->req_stat:%d hi->status:%d", (int )rq->req_stat, (int )hi->status); } if (((int )dc->flags & 2) != 0) { dc->dev_ix = (u16 )((int )dc->dev_ix + 1); dc->state = 5U; } else if ((int )dc->flags & 1) { dc->curr_targ = dc->curr_targ + 1; dc->state = 1U; } else { } next_dev_addr: esas2r_rq_destroy_request(rq, a); if ((int )((short )dc->flags) >= 0) { esas2r_disc_continue(a, rq); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } static u32 esas2r_disc_get_phys_addr(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; { a = sgc->adapter; *addr = a->uncached_phys + (unsigned long long )((long )a->disc_buffer - (long )a->uncached); return (sgc->length); } } static bool esas2r_disc_dev_remove(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; struct esas2r_target *t ; struct esas2r_target *t2 ; u16 tmp ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; t = (struct esas2r_target *)(& a->targetdb); goto ldv_39204; ldv_39203: ; if ((unsigned int )t->new_target_state != 0U) { goto ldv_39202; } else { } t->new_target_state = 255U; tmp = esas2r_targ_get_id(t, a); t2 = esas2r_targ_db_find_by_virt_id(a, (int )tmp); if ((unsigned long )t2 != (unsigned long )((struct esas2r_target *)0)) { esas2r_targ_db_remove(a, t2); } else { } ldv_39202: t = t + 1; ldv_39204: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39203; } else { } dc->state = 1U; dc->curr_targ = (struct esas2r_target *)(& a->targetdb); return (0); } } static bool esas2r_disc_dev_add(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_disc_context *dc ; struct esas2r_target *t ; struct atto_vda_ae_lu *luevt ; { dc = (struct esas2r_disc_context *)rq->interrupt_cx; t = dc->curr_targ; if ((unsigned long )a->targetdb_end <= (unsigned long )t) { dc->state = 255U; } else if ((unsigned int )t->new_target_state == 5U) { luevt = & t->lu_event; t->new_target_state = 255U; dc->curr_virt_id = esas2r_targ_get_id(t, a); if ((unsigned int )luevt->hdr.bylength > 23U && (luevt->dwevent & 268435456U) == 0U) { dc->block_size = luevt->id.tgtlun_raid.dwblock_size; dc->interleave = luevt->id.tgtlun_raid.dwinterleave; } else { dc->block_size = 0U; dc->interleave = 0U; } if ((luevt->dwevent & 268435456U) != 0U) { if ((luevt->dwevent & 536870912U) != 0U) { dc->state = 6U; dc->dev_addr_type = 0U; dc->curr_phys_id = luevt->wphys_target_id; } else { esas2r_log(2L, "luevt->dwevent does not have the VDAAE_LU_PHYS_ID bit set (%s:%d)", "esas2r_disc_dev_add", 1127); } } else { dc->raid_grp_name[0] = 0; esas2r_targ_db_add_raid(a, dc); } } else { } if ((unsigned int )dc->state == 1U) { dc->curr_targ = dc->curr_targ + 1; } else { } return (0); } } static void esas2r_disc_fix_curr_requests(struct esas2r_adapter *a ) { unsigned long flags ; struct esas2r_target *t ; struct esas2r_request *rq ; struct list_head *element ; raw_spinlock_t *tmp ; struct list_head const *__mptr ; { tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); element = a->defer_list.next; goto ldv_39227; ldv_39226: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned int )(rq->vrq)->scsi.function == 0U) { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; if ((unsigned int )t->target_state == 5U) { (rq->vrq)->scsi.__annonCompField92.__annonCompField91.target_id = t->virt_targ_id; } else { rq->req_stat = 3U; } } else { } element = element->next; ldv_39227: ; if ((unsigned long )(& a->defer_list) != (unsigned long )element) { goto ldv_39226; } else { } spin_unlock_irqrestore(& a->queue_lock, flags); return; } } bool ldv_queue_work_on_21(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_22(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_23(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_24(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_25(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_26(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern int sprintf(char * , char const * , ...) ; extern char *strcpy(char * , char const * ) ; extern void __xadd_wrong_size(void) ; __inline static int atomic_add_return(int i , atomic_t *v ) { int __ret ; { __ret = i; switch (4UL) { case 1UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddb %b0, %1\n": "+q" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5659; case 2UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddw %w0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5659; case 4UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddl %0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5659; case 8UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddq %q0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5659; default: __xadd_wrong_size(); } ldv_5659: ; return (__ret + i); } } __inline static int atomic_sub_return(int i , atomic_t *v ) { int tmp ; { tmp = atomic_add_return(- i, v); return (tmp); } } extern unsigned long __msecs_to_jiffies(unsigned int const ) ; __inline static unsigned long msecs_to_jiffies(unsigned int const m ) { unsigned long tmp___0 ; { tmp___0 = __msecs_to_jiffies(m); return (tmp___0); } } bool ldv_queue_work_on_37(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_39(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_38(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_41(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_40(struct workqueue_struct *ldv_func_arg1 ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern long schedule_timeout_interruptible(long ) ; extern int down_interruptible(struct semaphore * ) ; extern void up(struct semaphore * ) ; int ldv_scsi_add_host_with_dma_42(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; bool esas2r_nvram_write(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *nvram ) ; void esas2r_nvram_get_defaults(struct esas2r_adapter *a , struct esas2r_sas_nvram *nvram ) ; void esas2r_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_build_flash_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 cksum , u32 addr , u32 length ) ; u32 esas2r_map_data_window(struct esas2r_adapter *a , u32 addr_lo ) ; bool esas2r_process_fs_ioctl(struct esas2r_adapter *a , struct esas2r_ioctl_fs *fs , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) ; bool esas2r_read_flash_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) ; bool esas2r_fm_api(struct esas2r_adapter *a , struct esas2r_flash_img *fi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) ; bool esas2r_read_flash_rev(struct esas2r_adapter *a ) ; bool esas2r_read_image_type(struct esas2r_adapter *a ) ; bool esas2r_nvram_read_direct(struct esas2r_adapter *a ) ; bool esas2r_nvram_validate(struct esas2r_adapter *a ) ; void esas2r_nvram_set_defaults(struct esas2r_adapter *a ) ; bool esas2r_print_flash_rev(struct esas2r_adapter *a ) ; __inline static void esas2r_disable_chip_interrupts(struct esas2r_adapter *a ) { int tmp ; { tmp = atomic_add_return(1, & a->dis_ints_cnt); if (tmp == 1) { writel(0U, (void volatile *)a->regs + 66060U); } else { } return; } } __inline static void esas2r_enable_chip_interrupts(struct esas2r_adapter *a ) { int tmp ; { tmp = atomic_sub_return(1, & a->dis_ints_cnt); if (tmp == 0) { writel(4112U, (void volatile *)a->regs + 66060U); } else { } return; } } __inline static void esas2r_enable_heartbeat(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; { tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp == 0) { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 == 0) { if (((int )(a->nvram)->options2 & 16) != 0) { set_bit(17L, (unsigned long volatile *)(& a->flags)); } else { clear_bit(17L, (unsigned long volatile *)(& a->flags)); } } else { clear_bit(17L, (unsigned long volatile *)(& a->flags)); } } else { clear_bit(17L, (unsigned long volatile *)(& a->flags)); } return; } } static struct esas2r_sas_nvram default_sas_nvram = {{69U, 83U, 65U, 83U}, 0U, 0U, 31U, 248U, 1U, 81U, 0U, 0U, 3U, 1U, 0U, 0U, {80U, 1U, 8U, 96U, 0U, 0U, 0U, 0U}, {0U}, {0U}, {0U}, 0U, 3U, 3U, 0U, {0U}, 0U, 0U, 0U, {0U}}; static u8 cmd_to_fls_func[6U] = { 255U, 1U, 0U, 2U, 3U, 4U}; static u8 esas2r_calc_byte_xor_cksum(u8 *addr , u32 len , u8 seed ) { u32 cksum ; u8 *p ; u32 tmp ; { cksum = (u32 )seed; p = (u8 *)(& cksum); goto ldv_38985; ldv_38984: ; if (((unsigned long )addr & 3UL) == 0UL) { goto ldv_38983; } else { } cksum = (u32 )*addr ^ cksum; addr = addr + 1; len = len - 1U; ldv_38985: ; if (len != 0U) { goto ldv_38984; } else { } ldv_38983: ; goto ldv_38987; ldv_38986: cksum = *((u32 *)addr) ^ cksum; addr = addr + 4UL; len = len - 4U; ldv_38987: ; if (len > 3U) { goto ldv_38986; } else { } goto ldv_38990; ldv_38989: cksum = (u32 )*addr ^ cksum; addr = addr + 1; ldv_38990: tmp = len; len = len - 1U; if (tmp != 0U) { goto ldv_38989; } else { } return ((u8 )((((int )*p ^ (int )*(p + 1UL)) ^ (int )*(p + 2UL)) ^ (int )*(p + 3UL))); } } static u8 esas2r_calc_byte_cksum(void *addr , u32 len , u8 seed ) { u8 *p ; u8 cksum ; u32 tmp ; { p = (u8 *)addr; cksum = seed; goto ldv_39000; ldv_38999: cksum = (int )*(p + (unsigned long )len) + (int )cksum; ldv_39000: tmp = len; len = len - 1U; if (tmp != 0U) { goto ldv_38999; } else { } return (cksum); } } static void esas2r_fmapi_callback(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_vda_flash_req *vrq ; struct esas2r_flash_context *fc ; { vrq = & (rq->vrq)->flash; fc = (struct esas2r_flash_context *)rq->interrupt_cx; if ((unsigned int )rq->req_stat == 0U) { switch ((int )vrq->sub_func) { case 0: ; if ((unsigned long )fc->sgc.cur_offset == (unsigned long )((u8 *)0U)) { goto commit; } else { } vrq->sub_func = 2U; rq->req_stat = 254U; goto ldv_39010; case 2: ; commit: vrq->sub_func = 3U; rq->req_stat = 254U; rq->interrupt_cb = fc->interrupt_cb; goto ldv_39010; default: ; goto ldv_39010; } ldv_39010: ; } else { } if ((unsigned int )rq->req_stat != 254U) { (*(fc->interrupt_cb))(a, rq); } else { } return; } } static void build_flash_msg(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_flash_context *fc ; struct esas2r_sg_context *sgc ; u8 cksum ; bool tmp ; int tmp___0 ; { fc = (struct esas2r_flash_context *)rq->interrupt_cx; sgc = & fc->sgc; cksum = 0U; if ((unsigned int )fc->func == 0U) { if ((unsigned long )sgc->cur_offset != (unsigned long )((u8 *)0U)) { cksum = esas2r_calc_byte_xor_cksum(sgc->cur_offset, sgc->length, 0); } else { } rq->interrupt_cb = & esas2r_fmapi_callback; } else { rq->interrupt_cb = fc->interrupt_cb; } esas2r_build_flash_req(a, rq, (int )fc->func, (int )cksum, fc->flsh_addr, sgc->length); esas2r_rq_free_sg_lists(rq, a); fc->curr_len = fc->sgc.length; if ((unsigned long )sgc->cur_offset != (unsigned long )((u8 *)0U)) { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->flash.data.sge)); tmp = esas2r_build_sg_list(a, rq, sgc); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { rq->req_stat = 2U; return; } else { } } else { fc->sgc.length = 0U; } fc->flsh_addr = fc->flsh_addr + fc->curr_len; return; } } static bool load_image(struct esas2r_adapter *a , struct esas2r_request *rq ) { int tmp ; { rq->req_stat = 254U; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { } else { build_flash_msg(a, rq); } return ((unsigned int )rq->req_stat == 254U); } } static void fix_bios(struct esas2r_adapter *a , struct esas2r_flash_img *fi ) { struct esas2r_component_header *ch ; struct esas2r_pc_image *pi ; struct esas2r_boot_header *bh ; u8 *pnp_header_bytes ; u8 tmp ; u8 tmp___0 ; { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 2UL; pi = (struct esas2r_pc_image *)fi + (unsigned long )ch->image_offset; bh = (struct esas2r_boot_header *)pi + (unsigned long )pi->header_offset; bh->device_id = (a->pcid)->device; if ((unsigned int )pi->pnp_offset != 0U) { pnp_header_bytes = (u8 *)pi + (unsigned long )pi->pnp_offset; *((u32 *)pnp_header_bytes + 10U) = (unsigned int )(a->pcid)->subsystem_vendor | ((unsigned int )(a->pcid)->subsystem_device << 16); tmp = esas2r_calc_byte_cksum((void *)pnp_header_bytes, 32U, 0); *(pnp_header_bytes + 9UL) = (int )*(pnp_header_bytes + 9UL) - (int )tmp; } else { } tmp___0 = esas2r_calc_byte_cksum((void *)pi, ch->length, 0); pi->checksum = (int )pi->checksum - (int )tmp___0; return; } } static void fix_efi(struct esas2r_adapter *a , struct esas2r_flash_img *fi ) { struct esas2r_component_header *ch ; u32 len ; u32 offset ; struct esas2r_efi_image *ei ; struct esas2r_boot_header *bh ; u32 thislen ; { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 5UL; len = ch->length; offset = ch->image_offset; goto ldv_39044; ldv_39043: ei = (struct esas2r_efi_image *)fi + (unsigned long )offset; bh = (struct esas2r_boot_header *)ei + (unsigned long )ei->header_offset; bh->device_id = (a->pcid)->device; thislen = (unsigned int )bh->image_length * 512U; if (thislen > len) { goto ldv_39042; } else { } len = len - thislen; offset = offset + thislen; ldv_39044: ; if (len != 0U) { goto ldv_39043; } else { } ldv_39042: ; return; } } static bool complete_fmapi_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 fi_stat ) { struct esas2r_flash_context *fc ; struct esas2r_flash_img *fi ; { fc = (struct esas2r_flash_context *)rq->interrupt_cx; fi = fc->fi; fi->status = fi_stat; fi->driver_error = (u16 )rq->req_stat; rq->interrupt_cb = (void (*)(struct esas2r_adapter * , struct esas2r_request * ))0; rq->req_stat = 0U; if ((unsigned int )fi_stat != 8U) { memset((void *)fc->scratch, 0, 2048UL); } else { } esas2r_enable_heartbeat(a); clear_bit(8L, (unsigned long volatile *)(& a->flags)); return (0); } } static void fw_download_proc(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_flash_context *fc ; struct esas2r_flash_img *fi ; struct esas2r_component_header *ch ; u32 len ; u8 *p ; u8 *q ; u8 *tmp ; u8 *tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { fc = (struct esas2r_flash_context *)rq->interrupt_cx; fi = fc->fi; if ((unsigned int )rq->req_stat != 0U) { goto error; } else { } if ((unsigned int )fc->func == 1U && fc->cmp_len != 0U) { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + (unsigned long )fc->comp_typ; p = fc->scratch; q = (u8 *)fi + (((unsigned long )ch->image_offset + (unsigned long )ch->length) - (unsigned long )fc->cmp_len); len = fc->curr_len; goto ldv_39064; ldv_39063: tmp = p; p = p + 1; tmp___0 = q; q = q + 1; if ((int )*tmp != (int )*tmp___0) { goto error; } else { } len = len - 1U; ldv_39064: ; if (len != 0U) { goto ldv_39063; } else { } fc->cmp_len = fc->cmp_len - fc->curr_len; if (fc->cmp_len > 2048U) { fc->sgc.length = 2048U; } else { fc->sgc.length = fc->cmp_len; } fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); } else { } goto ldv_39081; ldv_39080: ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + (unsigned long )fc->comp_typ; switch ((int )fc->task) { case 0: ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 2UL; if (ch->length == 0U) { goto no_bios; } else { } fc->task = 1U; fc->func = 0U; fc->comp_typ = 2U; fc->flsh_addr = 7340032U; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39068; case 1: fc->task = 2U; fc->func = 1U; fc->flsh_addr = 7340032U; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39068; case 2: ; no_bios: ch->status = 1U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 3UL; if (ch->length == 0U) { goto no_mac; } else { } fc->task = 3U; fc->func = 0U; fc->comp_typ = 3U; fc->flsh_addr = fi->cmp_hdr[2].length + 7340032U; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39068; case 3: fc->task = 4U; fc->func = 1U; fc->flsh_addr = fc->flsh_addr - ch->length; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39068; case 4: ; no_mac: ch->status = 1U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 5UL; if (ch->length == 0U) { goto no_efi; } else { } fc->task = 5U; fc->func = 0U; fc->comp_typ = 5U; fc->flsh_addr = (fi->cmp_hdr[2].length + fi->cmp_hdr[3].length) + 7340032U; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39068; case 5: fc->task = 6U; fc->func = 1U; fc->flsh_addr = fc->flsh_addr - ch->length; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39068; case 6: ; no_efi: ch->status = 1U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 4UL; if (ch->length == 0U) { goto no_cfg; } else { } fc->task = 7U; fc->func = 0U; fc->comp_typ = 4U; fc->flsh_addr = 8126464U - ch->length; fc->sgc.length = ch->length; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )ch->image_offset; goto ldv_39068; case 7: fc->task = 8U; fc->func = 1U; fc->flsh_addr = 8126464U - ch->length; fc->cmp_len = ch->length; fc->sgc.length = 2048U; fc->sgc.cur_offset = fc->sgc_offset + (unsigned long )((long )fc->scratch - (long )fi); goto ldv_39068; case 8: ; no_cfg: ch->status = 1U; tmp___1 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { esas2r_local_reset_adapter(a); } else { } a->flash_ver = fi->cmp_hdr[2].version; esas2r_print_flash_rev(a); memcpy((void *)(& a->image_type), (void const *)(& fi->rel_version), 16UL); complete_fmapi_req(a, rq, 0); return; } ldv_39068: ; if ((unsigned int )fc->func == 1U && fc->sgc.length > fc->cmp_len) { fc->sgc.length = fc->cmp_len; } else { } ldv_39081: ; if (fc->sgc.length == 0U) { goto ldv_39080; } else { } tmp___2 = load_image(a, rq); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { error: ; if ((int )((unsigned short )fc->comp_typ) < (int )fi->num_comps) { ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + (unsigned long )fc->comp_typ; ch->status = 0U; } else { } complete_fmapi_req(a, rq, 1); } else { } return; } } static u8 get_fi_adap_type(struct esas2r_adapter *a ) { u8 type ; { switch ((int )(a->pcid)->device) { case 44: type = 11U; goto ldv_39088; case 73: ; case 102: ; case 103: ; case 104: type = 15U; goto ldv_39088; default: type = 255U; goto ldv_39088; } ldv_39088: ; return (type); } } static u32 chk_cfg(u8 *cfg , u32 length , u32 *flash_ver ) { u16 *pw ; u32 sz ; u32 len ; u16 type ; u16 size ; u16 *tmp ; u16 *tmp___0 ; { pw = (u16 *)cfg + 0xffffffffffffffffUL; sz = 0U; len = length; if (len == 0U) { len = 2048U; } else { } if ((unsigned long )flash_ver != (unsigned long )((u32 *)0U)) { *flash_ver = 0U; } else { } ldv_39105: tmp = pw; pw = pw - 1; type = *tmp; tmp___0 = pw; pw = pw - 1; size = *tmp___0; if (((unsigned int )type != 43520U && (unsigned int )type != 43522U) && (unsigned int )type != 43524U) { goto ldv_39104; } else { } if ((unsigned int )type == 43524U && (unsigned long )flash_ver != (unsigned long )((u32 *)0U)) { *flash_ver = *((u32 *)pw + 0xffffffffffffffffUL); } else { } sz = ((u32 )size + sz) + 4U; pw = pw + - ((unsigned long )((unsigned int )size / 2U)); if ((unsigned long )sz > (unsigned long )len - 4UL) { goto ldv_39104; } else { } goto ldv_39105; ldv_39104: ; if (length != 0U && sz != length) { return (0U); } else { } return (sz); } } static u8 chk_boot(u8 *boot_img , u32 length ) { struct esas2r_boot_image *bi ; u16 hdroffset ; struct esas2r_boot_header *bh ; { bi = (struct esas2r_boot_image *)boot_img; hdroffset = bi->header_offset; if (((((unsigned int )bi->signature != 43605U || (unsigned int )hdroffset > 65512U) || ((int )hdroffset & 3) != 0) || (unsigned int )hdroffset <= 27U) || (unsigned long )hdroffset + 24UL > (unsigned long )length) { return (255U); } else { } bh = (struct esas2r_boot_header *)bi + (unsigned long )hdroffset; if (((((((((int )((signed char )bh->signature[0]) != 80 || (int )((signed char )bh->signature[1]) != 67) || (int )((signed char )bh->signature[2]) != 73) || (int )((signed char )bh->signature[3]) != 82) || (unsigned int )bh->struct_length <= 23U) || (unsigned int )bh->class_code[2] != 1U) || (unsigned int )bh->class_code[1] != 4U) || (unsigned int )bh->class_code[0] != 0U) || (((unsigned int )bh->code_type != 0U && (unsigned int )bh->code_type != 1U) && (unsigned int )bh->code_type != 3U)) { return (255U); } else { } return (bh->code_type); } } static u16 calc_fi_checksum(struct esas2r_flash_context *fc ) { struct esas2r_flash_img *fi ; u16 cksum ; u32 len ; u16 *pw ; { fi = fc->fi; len = (fi->length - fc->fi_hdr_len) / 2U; pw = (u16 *)fi + (unsigned long )fc->fi_hdr_len; cksum = 0U; goto ldv_39121; ldv_39120: cksum = (int )*pw + (int )cksum; len = len - 1U; pw = pw + 1; ldv_39121: ; if (len != 0U) { goto ldv_39120; } else { } return (cksum); } } static bool verify_fi(struct esas2r_adapter *a , struct esas2r_flash_context *fc ) { struct esas2r_flash_img *fi ; u8 type ; bool imgerr ; u16 i ; u32 len ; struct esas2r_component_header *ch ; bool cmperr ; u8 tmp ; u32 tmp___0 ; u16 tmp___1 ; { fi = fc->fi; len = fi->length; if ((int )len & 1 || fc->fi_hdr_len > len) { fi->status = 6U; return (0); } else { } type = get_fi_adap_type(a); if ((unsigned int )type == 255U || (int )fi->adap_typ != (int )type) { fi->status = 3U; return (0); } else { } imgerr = 0; i = 0U; len = 0U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr); goto ldv_39148; ldv_39147: cmperr = 0; if ((int )((unsigned short )ch->img_type) != (int )i) { imgerr = 1; ch->status = 3U; goto ldv_39134; } else { } switch ((int )ch->img_type) { case 2: type = 0U; goto ldv_39136; case 3: type = 1U; goto ldv_39136; case 5: type = 3U; goto ldv_39136; } ldv_39136: ; switch ((int )ch->img_type) { case 0: ; case 1: ; goto ldv_39141; case 2: ; case 3: ; case 5: ; if ((ch->length & 511U) != 0U) { cmperr = 1; } else { } if (ch->length == 0U) { goto ldv_39141; } else { } tmp = chk_boot((u8 *)fi + (unsigned long )ch->image_offset, ch->length); if ((int )tmp != (int )type) { cmperr = 1; } else { } goto ldv_39141; case 4: ; if (ch->length == 0U) { cmperr = 1; goto ldv_39141; } else { } tmp___0 = chk_cfg((u8 *)fi + ((unsigned long )ch->image_offset + (unsigned long )ch->length), ch->length, (u32 *)0U); if (tmp___0 == 0U) { cmperr = 1; } else { } goto ldv_39141; default: fi->status = 7U; return (0); } ldv_39141: ; if ((int )cmperr) { imgerr = 1; ch->status = 3U; } else { ch->status = 255U; len = ch->length + len; } ldv_39134: i = (u16 )((int )i + 1); ch = ch + 1; ldv_39148: ; if ((int )fi->num_comps > (int )i) { goto ldv_39147; } else { } if ((int )imgerr) { fi->status = 11U; return (0); } else { } if (fi->length - fc->fi_hdr_len != len) { fi->status = 6U; return (0); } else { } tmp___1 = calc_fi_checksum(fc); if ((int )fi->checksum != (int )tmp___1) { fi->status = 5U; return (0); } else { } return (1); } } static void esas2r_complete_fs_ioctl(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_ioctl_fs *fs ; { fs = (struct esas2r_ioctl_fs *)rq->interrupt_cx; if ((unsigned int )(rq->vrq)->flash.sub_func == 3U) { esas2r_enable_heartbeat(a); } else { } fs->driver_error = rq->req_stat; if ((unsigned int )fs->driver_error == 0U) { fs->status = 0U; } else { fs->status = 1U; } return; } } bool esas2r_process_fs_ioctl(struct esas2r_adapter *a , struct esas2r_ioctl_fs *fs , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { u8 cmdcnt ; struct esas2r_ioctlfs_command *fsc ; u8 func ; u32 datalen ; int tmp ; bool tmp___0 ; int tmp___1 ; { cmdcnt = 6U; fsc = & fs->command; func = 0U; fs->status = 1U; fs->driver_error = 254U; if ((unsigned int )fs->version != 0U) { fs->status = 2U; return (0); } else { } if ((int )fsc->command >= (int )cmdcnt) { fs->status = 4U; return (0); } else { } func = cmd_to_fls_func[(int )fsc->command]; if ((unsigned int )func == 255U) { fs->status = 4U; return (0); } else { } if ((unsigned int )fsc->command != 5U) { if (((((unsigned int )(a->pcid)->device != 73U || (unsigned int )fs->adap_type != 3U) && ((unsigned int )(a->pcid)->device != 102U || (unsigned int )fs->adap_type != 4U)) && ((unsigned int )(a->pcid)->device != 103U || (unsigned int )fs->adap_type != 5U)) && ((unsigned int )(a->pcid)->device != 104U || (unsigned int )fs->adap_type != 6U)) { fs->status = 6U; return (0); } else { } if ((unsigned int )fs->driver_ver > 2U) { fs->status = 7U; return (0); } else { } } else { } tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { fs->status = 11U; return (0); } else { } rq->interrupt_cb = & esas2r_complete_fs_ioctl; rq->interrupt_cx = (void *)fs; datalen = fsc->length; esas2r_build_flash_req(a, rq, (int )func, (int )fsc->checksum, fsc->flash_addr, datalen); if ((unsigned int )func == 2U || (unsigned int )func == 1U) { if (datalen == 0U) { fs->status = 4U; return (0); } else { } esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->flash.data.sge)); sgc->length = datalen; tmp___0 = esas2r_build_sg_list(a, rq, sgc); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { fs->status = 3U; return (0); } else { } } else { } if ((unsigned int )func == 3U) { esas2r_disable_heartbeat(a); } else { } esas2r_start_request(a, rq); return (1); } } static bool esas2r_flash_access(struct esas2r_adapter *a , u32 function ) { u32 starttime ; u32 timeout ; u32 intstat ; u32 doorbell ; int tmp ; int tmp___0 ; unsigned long tmp___1 ; unsigned int tmp___2 ; { if (function == 32U) { esas2r_disable_chip_interrupts(a); } else { } writel(function, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); tmp = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { timeout = 40000U; } else { tmp___0 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { timeout = 40000U; } else { timeout = 5000U; } } ldv_39176: intstat = readl((void const volatile *)a->regs + 66048U); if ((intstat & 4096U) != 0U) { doorbell = readl((void const volatile *)a->regs + 66688U); writel(doorbell, (void volatile *)a->regs + 66688U); if ((doorbell & function) != 0U) { goto ldv_39175; } else { } } else { } tmp___1 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___1); tmp___2 = jiffies_to_msecs(jiffies); if (tmp___2 - starttime > timeout) { if (function == 32U) { writel(64U, (void volatile *)a->regs + 66656U); esas2r_enable_chip_interrupts(a); } else { } return (0); } else { } goto ldv_39176; ldv_39175: ; if (function == 64U) { esas2r_enable_chip_interrupts(a); } else { } return (1); } } bool esas2r_read_flash_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) { u8 *end ; bool tmp ; int tmp___0 ; u32 len ; u32 offset ; u32 iatvr ; int tmp___1 ; u8 *tmp___2 ; u32 tmp___3 ; { end = (u8 *)to; tmp = esas2r_flash_access(a, 32U); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } goto ldv_39191; ldv_39190: tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& a->flags2)); if (tmp___1 != 0) { iatvr = (from & 4294836224U) + 3959422976U; } else { iatvr = (from & 4294836224U) + 4227858432U; } esas2r_map_data_window(a, iatvr); offset = from & 131071U; len = size; if (131072U - offset < len) { len = 131072U - offset; } else { } from = from + len; size = size - len; goto ldv_39188; ldv_39187: tmp___2 = end; end = end + 1; *tmp___2 = readb((void const volatile *)a->data_window + (unsigned long )offset); offset = offset + 1U; ldv_39188: tmp___3 = len; len = len - 1U; if (tmp___3 != 0U) { goto ldv_39187; } else { } ldv_39191: ; if (size != 0U) { goto ldv_39190; } else { } esas2r_flash_access(a, 64U); return (1); } } bool esas2r_read_flash_rev(struct esas2r_adapter *a ) { u8 bytes[256U] ; u16 *pw ; u16 *pwstart ; u16 type ; u16 size ; u32 sz ; bool tmp ; int tmp___0 ; bool tmp___1 ; { sz = 256U; pw = (u16 *)(& bytes) + (unsigned long )sz; pwstart = (u16 *)(& bytes) + 2UL; tmp = esas2r_read_flash_block(a, (void *)(& bytes), 8126464U - sz, sz); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto invalid_rev; } else { } goto ldv_39203; ldv_39205: pw = pw - 1; type = *pw; pw = pw - 1; size = *pw; pw = pw + - ((unsigned long )((unsigned int )size / 2U)); if (((unsigned int )type == 43520U || (unsigned int )type == 43522U) || (unsigned long )pw < (unsigned long )pwstart) { goto ldv_39203; } else { } if ((unsigned int )type == 43524U) { a->flash_ver = *((u32 *)pw); } else { } goto ldv_39204; ldv_39203: ; if ((unsigned long )pw >= (unsigned long )pwstart) { goto ldv_39205; } else { } ldv_39204: ; invalid_rev: tmp___1 = esas2r_print_flash_rev(a); return (tmp___1); } } bool esas2r_print_flash_rev(struct esas2r_adapter *a ) { u16 year ; u8 day ; u8 month ; { year = (unsigned short )a->flash_ver; day = (unsigned char )(a->flash_ver >> 16); month = (unsigned char )((int )((unsigned short )(a->flash_ver >> 16)) >> 8); if ((((((unsigned int )day == 0U || (unsigned int )month == 0U) || (unsigned int )day > 31U) || (unsigned int )month > 12U) || (unsigned int )year <= 2005U) || (unsigned int )year > 9999U) { strcpy((char *)(& a->flash_rev), "not found"); a->flash_ver = 0U; return (0); } else { } sprintf((char *)(& a->flash_rev), "%02d/%02d/%04d", (int )month, (int )day, (int )year); return (1); } } bool esas2r_read_image_type(struct esas2r_adapter *a ) { u8 bytes[256U] ; struct esas2r_boot_image *bi ; struct esas2r_boot_header *bh ; u32 sz ; u32 len ; u32 offset ; bool tmp ; int tmp___0 ; struct esas2r_efi_image *ei ; u32 thislen ; { sz = 256U; len = 786432U; offset = 0U; ldv_39230: tmp = esas2r_read_flash_block(a, (void *)(& bytes), offset + 7340032U, sz); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto invalid_rev; } else { } bi = (struct esas2r_boot_image *)(& bytes); bh = (struct esas2r_boot_header *)bi + (unsigned long )bi->header_offset; if ((unsigned int )bi->signature != 43605U) { goto invalid_rev; } else { } if ((unsigned int )bh->code_type == 0U) { strcpy((char *)(& a->image_type), "BIOS"); return (1); } else if ((unsigned int )bh->code_type == 3U) { ei = (struct esas2r_efi_image *)(& bytes); switch ((int )ei->machine_type) { case 332: strcpy((char *)(& a->image_type), "EFI 32-bit"); return (1); case 512: strcpy((char *)(& a->image_type), "EFI itanium"); return (1); case 34404: strcpy((char *)(& a->image_type), "EFI 64-bit"); return (1); case 3772: strcpy((char *)(& a->image_type), "EFI EBC"); return (1); default: ; goto invalid_rev; } } else { thislen = (unsigned int )bh->image_length * 512U; if ((thislen == 0U || thislen + offset > len) || (unsigned int )bh->indicator == 128U) { goto ldv_39229; } else { } offset = offset + thislen; } goto ldv_39230; ldv_39229: ; invalid_rev: strcpy((char *)(& a->image_type), "no boot images"); return (0); } } bool esas2r_nvram_read_direct(struct esas2r_adapter *a ) { bool result ; int tmp ; bool tmp___0 ; int tmp___1 ; { tmp = down_interruptible(& a->nvram_semaphore); if (tmp != 0) { return (0); } else { } tmp___0 = esas2r_read_flash_block(a, (void *)a->nvram, 8126464U, 256U); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } result = esas2r_nvram_validate(a); up(& a->nvram_semaphore); return (result); } } static void esas2r_nvram_callback(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_vda_flash_req *vrq ; { vrq = & (rq->vrq)->flash; if ((unsigned int )rq->req_stat == 0U) { switch ((int )vrq->sub_func) { case 0: vrq->sub_func = 2U; rq->req_stat = 254U; goto ldv_39241; case 2: vrq->sub_func = 3U; rq->req_stat = 254U; goto ldv_39241; case 1: esas2r_nvram_validate(a); goto ldv_39241; case 3: ; default: ; goto ldv_39241; } ldv_39241: ; } else { } if ((unsigned int )rq->req_stat != 254U) { if ((unsigned int )rq->req_stat == 0U) { set_bit(12L, (unsigned long volatile *)(& a->flags)); } else { clear_bit(12L, (unsigned long volatile *)(& a->flags)); } esas2r_enable_heartbeat(a); up(& a->nvram_semaphore); } else { } return; } } bool esas2r_nvram_write(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *nvram ) { struct esas2r_sas_nvram *n ; u8 sas_address_bytes[8U] ; u32 *sas_address_dwords ; struct atto_vda_flash_req *vrq ; int tmp ; int tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; int tmp___3 ; { n = nvram; sas_address_dwords = (u32 *)(& sas_address_bytes); vrq = & (rq->vrq)->flash; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return (0); } else { } tmp___0 = down_interruptible(& a->nvram_semaphore); if (tmp___0 != 0) { return (0); } else { } if ((unsigned long )n == (unsigned long )((struct esas2r_sas_nvram *)0)) { n = a->nvram; } else { } if ((unsigned int )n->version != 0U) { up(& a->nvram_semaphore); return (0); } else { } memcpy((void *)(& sas_address_bytes), (void const *)(& n->sas_addr), 8UL); if (((((unsigned int )sas_address_bytes[0] != 80U || (unsigned int )sas_address_bytes[1] != 1U) || (unsigned int )sas_address_bytes[2] != 8U) || ((int )sas_address_bytes[3] & 240) != 96) || (((u32 )sas_address_bytes[3] & 15U) | *(sas_address_dwords + 1UL)) == 0U) { up(& a->nvram_semaphore); return (0); } else { } if ((unsigned int )n->spin_up_delay > 20U) { n->spin_up_delay = 20U; } else { } n->version = 0U; tmp___1 = esas2r_calc_byte_cksum((void *)n, 256U, 90); n->checksum = (int )n->checksum - (int )tmp___1; memcpy((void *)a->nvram, (void const *)n, 256UL); n = a->nvram; esas2r_disable_heartbeat(a); tmp___2 = esas2r_calc_byte_xor_cksum((u8 *)n, 256U, 0); esas2r_build_flash_req(a, rq, 0, (int )tmp___2, 8126464U, 256U); tmp___3 = constant_test_bit(24L, (unsigned long const volatile *)(& a->flags)); if (tmp___3 != 0) { vrq->data.sge[0].length = 16777472U; vrq->data.sge[0].address = a->uncached_phys + (unsigned long long )((long )n - (long )a->uncached); } else { vrq->data.prde[0].ctl_len = 256U; vrq->data.prde[0].address = a->uncached_phys + (unsigned long long )((long )n - (long )a->uncached); } rq->interrupt_cb = & esas2r_nvram_callback; esas2r_start_request(a, rq); return (1); } } bool esas2r_nvram_validate(struct esas2r_adapter *a ) { struct esas2r_sas_nvram *n ; bool rslt ; u8 tmp ; { n = a->nvram; rslt = 0; if ((((unsigned int )n->signature[0] != 69U || (unsigned int )n->signature[1] != 83U) || (unsigned int )n->signature[2] != 65U) || (unsigned int )n->signature[3] != 83U) { } else { tmp = esas2r_calc_byte_cksum((void *)n, 256U, 90); if ((unsigned int )tmp != 0U) { } else if ((unsigned int )n->version != 0U) { } else { set_bit(12L, (unsigned long volatile *)(& a->flags)); rslt = 1; } } if (! rslt) { esas2r_nvram_set_defaults(a); } else { } return (rslt); } } void esas2r_nvram_set_defaults(struct esas2r_adapter *a ) { struct esas2r_sas_nvram *n ; u32 time ; unsigned int tmp ; { n = a->nvram; tmp = jiffies_to_msecs(jiffies); time = tmp; clear_bit(12L, (unsigned long volatile *)(& a->flags)); *n = default_sas_nvram; n->sas_addr[3] = (u8 )((unsigned int )n->sas_addr[3] | 15U); n->sas_addr[4] = (unsigned char )((int )((unsigned short )time) >> 8); n->sas_addr[5] = (unsigned char )time; n->sas_addr[6] = ((a->pcid)->bus)->number; n->sas_addr[7] = (u8 )(a->pcid)->devfn; return; } } void esas2r_nvram_get_defaults(struct esas2r_adapter *a , struct esas2r_sas_nvram *nvram ) { u8 sas_addr[8U] ; { memcpy((void *)(& sas_addr), (void const *)(& (a->nvram)->sas_addr), 8UL); *nvram = default_sas_nvram; memcpy((void *)(& nvram->sas_addr), (void const *)(& sas_addr), 8UL); return; } } bool esas2r_fm_api(struct esas2r_adapter *a , struct esas2r_flash_img *fi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { struct esas2r_flash_context *fc ; u8 j ; struct esas2r_component_header *ch ; int tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; int tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u8 tmp___9 ; u8 tmp___10 ; u8 tmp___11 ; bool tmp___12 ; bool tmp___13 ; bool tmp___14 ; bool tmp___15 ; int tmp___16 ; { fc = & a->flash_context; tmp = test_and_set_bit(8L, (unsigned long volatile *)(& a->flags)); if (tmp != 0) { fi->status = 9U; return (0); } else { } memcpy((void *)(& fc->sgc), (void const *)sgc, 96UL); sgc = & fc->sgc; fc->fi = fi; fc->sgc_offset = sgc->cur_offset; rq->req_stat = 0U; rq->interrupt_cx = (void *)fc; switch ((int )fi->fi_version) { case 1: fc->scratch = (u8 *)(& fi->scratch_buf); fc->num_comps = 6U; fc->fi_hdr_len = 2176U; goto ldv_39280; default: tmp___0 = complete_fmapi_req(a, rq, 8); return (tmp___0); } ldv_39280: tmp___2 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 != 0) { tmp___1 = complete_fmapi_req(a, rq, 15); return (tmp___1); } else { } switch ((int )fi->action) { case 0: tmp___4 = verify_fi(a, fc); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { tmp___3 = complete_fmapi_req(a, rq, (int )fi->status); return (tmp___3); } else { } ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 2UL; if (ch->length != 0U) { fix_bios(a, fi); } else { } ch = (struct esas2r_component_header *)(& fi->cmp_hdr) + 5UL; if (ch->length != 0U) { fix_efi(a, fi); } else { } fi->checksum = calc_fi_checksum(fc); esas2r_disable_heartbeat(a); fc->task = 0U; fc->func = 0U; fc->comp_typ = 4U; fc->flsh_addr = 7340032U; fc->sgc.length = 786432U; fc->sgc.cur_offset = (u8 *)0U; fc->interrupt_cb = & fw_download_proc; goto ldv_39283; case 2: fi->adap_typ = get_fi_adap_type(a); fi->flags = 0U; fi->num_comps = fc->num_comps; fi->length = fc->fi_hdr_len; memcpy((void *)(& fi->rel_version), (void const *)(& a->image_type), 16UL); j = 0U; ch = (struct esas2r_component_header *)(& fi->cmp_hdr); goto ldv_39286; ldv_39285: ch->img_type = j; ch->status = 255U; ch->length = 0U; ch->version = 4294967295U; ch->image_offset = 0U; ch->pad[0] = 0U; ch->pad[1] = 0U; j = (u8 )((int )j + 1); ch = ch + 1; ldv_39286: ; if ((int )((unsigned short )j) < (int )fi->num_comps) { goto ldv_39285; } else { } if (a->flash_ver != 0U) { tmp___8 = a->flash_ver; fi->cmp_hdr[4].version = tmp___8; tmp___7 = tmp___8; fi->cmp_hdr[5].version = tmp___7; tmp___6 = tmp___7; fi->cmp_hdr[3].version = tmp___6; fi->cmp_hdr[2].version = tmp___6; tmp___11 = 1U; fi->cmp_hdr[4].status = tmp___11; tmp___10 = tmp___11; fi->cmp_hdr[5].status = tmp___10; tmp___9 = tmp___10; fi->cmp_hdr[3].status = tmp___9; fi->cmp_hdr[2].status = tmp___9; tmp___12 = complete_fmapi_req(a, rq, 0); return (tmp___12); } else { } case 1: ; default: tmp___13 = complete_fmapi_req(a, rq, 4); return (tmp___13); } ldv_39283: tmp___15 = load_image(a, rq); if (tmp___15) { tmp___16 = 0; } else { tmp___16 = 1; } if (tmp___16) { tmp___14 = complete_fmapi_req(a, rq, 1); return (tmp___14); } else { } esas2r_start_request(a, rq); return (1); } } bool ldv_queue_work_on_37(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_38(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_39(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_40(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_41(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_42(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } extern void list_del(struct list_head * ) ; __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void do_gettimeofday(struct timeval * ) ; extern int del_timer_sync(struct timer_list * ) ; int ldv_del_timer_sync_59(struct timer_list *ldv_func_arg1 ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; void ldv_destroy_workqueue_60(struct workqueue_struct *ldv_func_arg1 ) ; bool ldv_queue_work_on_53(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_55(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_54(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_57(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_56(struct workqueue_struct *ldv_func_arg1 ) ; extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; extern void sysfs_remove_bin_file(struct kobject * , struct bin_attribute const * ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } void disable_suitable_timer_2(struct timer_list *timer ) ; extern void __const_udelay(unsigned long ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { tmp = __pci_enable_wake(dev, state, 0, (int )enable); return (tmp); } } extern int pci_request_region(struct pci_dev * , int , char const * ) ; extern void pci_release_region(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; if (rc < 0) { return (rc); } else { } return (0); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } extern u64 dma_get_required_mask(struct device * ) ; __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_coherent_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { __constr_expr_0.lock.raw_lock.val.counter = 0; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } extern void free_irq(unsigned int , void * ) ; extern void __tasklet_hi_schedule(struct tasklet_struct * ) ; __inline static void tasklet_hi_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_hi_schedule(t); } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; int ldv_scsi_add_host_with_dma_58(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; void ldv_scsi_remove_host_61(struct Scsi_Host *shost ) ; extern void scsi_host_put(struct Scsi_Host * ) ; struct esas2r_adapter *esas2r_adapters[32U] ; u8 *esas2r_buffered_ioctl ; dma_addr_t esas2r_buffered_ioctl_addr ; u32 esas2r_buffered_ioctl_size ; struct pci_dev *esas2r_buffered_ioctl_pcid ; int sgl_page_size ; int num_sg_lists ; int num_requests ; int num_ae_requests ; int interrupt_mode ; int esas2r_init_adapter(struct Scsi_Host *host , struct pci_dev *pcid , int index ) ; int esas2r_cleanup(struct Scsi_Host *host ) ; void esas2r_adapter_tasklet(unsigned long context ) ; irqreturn_t esas2r_interrupt(int irq , void *dev_id ) ; irqreturn_t esas2r_msi_interrupt(int irq , void *dev_id ) ; void esas2r_kickoff_timer(struct esas2r_adapter *a ) ; int esas2r_suspend(struct pci_dev *pdev , pm_message_t state ) ; int esas2r_resume(struct pci_dev *pdev ) ; void esas2r_fw_event_off(struct esas2r_adapter *a ) ; void esas2r_kill_adapter(int i ) ; u32 esas2r_get_uncached_size(struct esas2r_adapter *a ) ; bool esas2r_init_adapter_struct(struct esas2r_adapter *a , void **uncached_area ) ; bool esas2r_check_adapter(struct esas2r_adapter *a ) ; bool esas2r_init_adapter_hw(struct esas2r_adapter *a , bool init_poll ) ; void esas2r_do_tasklet_tasks(struct esas2r_adapter *a ) ; void esas2r_do_deferred_processes(struct esas2r_adapter *a ) ; void esas2r_reset_adapter(struct esas2r_adapter *a ) ; void esas2r_timer_tick(struct esas2r_adapter *a ) ; char const *esas2r_get_model_name(struct esas2r_adapter *a ) ; char const *esas2r_get_model_name_short(struct esas2r_adapter *a ) ; void esas2r_build_ae_req(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_build_cfg_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u32 length , void *data ) ; void esas2r_power_down(struct esas2r_adapter *a ) ; bool esas2r_power_up(struct esas2r_adapter *a , bool init_poll ) ; bool esas2r_read_mem_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) ; void esas2r_force_interrupt(struct esas2r_adapter *a ) ; void esas2r_process_adapter_reset(struct esas2r_adapter *a ) ; void esas2r_dummy_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_ae_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_send_reset_ae(struct esas2r_adapter *a , bool pwr_mgt ) ; bool esas2r_init_msgs(struct esas2r_adapter *a ) ; bool esas2r_is_adapter_present(struct esas2r_adapter *a ) ; void esas2r_reset_chip(struct esas2r_adapter *a ) ; bool esas2r_build_sg_list_sge(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) ; bool esas2r_build_sg_list_prd(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) ; void esas2r_targ_db_initialize(struct esas2r_adapter *a ) ; void esas2r_targ_db_remove_all(struct esas2r_adapter *a , bool notify ) ; void esas2r_targ_db_report_changes(struct esas2r_adapter *a ) ; bool esas2r_set_degraded_mode(struct esas2r_adapter *a , char *error_str ) ; __inline static bool esas2r_is_tasklet_pending(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tmp = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { tmp___4 = 1; } else { tmp___0 = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { tmp___4 = 1; } else { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { tmp___4 = 1; } else { tmp___2 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 != 0) { tmp___4 = 1; } else { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& a->flags)); if (tmp___3 != 0) { tmp___4 = 1; } else { tmp___4 = 0; } } } } } return ((bool )tmp___4); } } __inline static void esas2r_schedule_tasklet(struct esas2r_adapter *a ) { int tmp ; { tmp = test_and_set_bit(15L, (unsigned long volatile *)(& a->flags)); if (tmp == 0) { tasklet_hi_schedule(& a->tasklet); } else { } return; } } __inline static void esas2r_start_ae_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; raw_spinlock_t *tmp ; { esas2r_build_ae_req(a, rq); tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); esas2r_start_vda_request(a, rq); spin_unlock_irqrestore(& a->queue_lock, flags); return; } } struct bin_attribute bin_attr_fw ; struct bin_attribute bin_attr_fs ; struct bin_attribute bin_attr_vda ; struct bin_attribute bin_attr_hw ; struct bin_attribute bin_attr_live_nvram ; struct bin_attribute bin_attr_default_nvram ; static bool esas2r_initmem_alloc(struct esas2r_adapter *a , struct esas2r_mem_desc *mem_desc , u32 align ) { { mem_desc->esas2r_param = mem_desc->size + align; mem_desc->virt_addr = (void *)0; mem_desc->phys_addr = 0ULL; mem_desc->esas2r_data = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )mem_desc->esas2r_param, & mem_desc->phys_addr, 208U, (struct dma_attrs *)0); if ((unsigned long )mem_desc->esas2r_data == (unsigned long )((void *)0)) { esas2r_log(1L, "failed to allocate %lu bytes of consistent memory!", (unsigned long )mem_desc->esas2r_param); return (0); } else { } mem_desc->virt_addr = (void *)((((unsigned long )mem_desc->esas2r_data + (unsigned long )align) - 1UL) & - ((unsigned long )align)); mem_desc->phys_addr = ((mem_desc->phys_addr + (unsigned long long )align) - 1ULL) & - ((unsigned long long )align); memset(mem_desc->virt_addr, 0, (size_t )mem_desc->size); return (1); } } static void esas2r_initmem_free(struct esas2r_adapter *a , struct esas2r_mem_desc *mem_desc ) { int unalign ; { if ((unsigned long )mem_desc->virt_addr == (unsigned long )((void *)0)) { return; } else { } if (mem_desc->phys_addr != 0ULL) { unalign = (int )((unsigned int )((long )mem_desc->virt_addr) - (unsigned int )((long )mem_desc->esas2r_data)); dma_free_attrs(& (a->pcid)->dev, (unsigned long )mem_desc->esas2r_param, mem_desc->esas2r_data, mem_desc->phys_addr - (u64 )unalign, (struct dma_attrs *)0); } else { kfree((void const *)mem_desc->esas2r_data); } mem_desc->virt_addr = (void *)0; return; } } static bool alloc_vda_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_mem_desc *memdesc ; void *tmp ; bool tmp___0 ; int tmp___1 ; { tmp = kzalloc(56UL, 208U); memdesc = (struct esas2r_mem_desc *)tmp; if ((unsigned long )memdesc == (unsigned long )((struct esas2r_mem_desc *)0)) { return (0); } else { } memdesc->size = 1280U; tmp___0 = esas2r_initmem_alloc(a, memdesc, 256U); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { kfree((void const *)memdesc); return (0); } else { } a->num_vrqs = a->num_vrqs + 1; list_add(& memdesc->next_desc, & a->vrq_mds_head); rq->vrq_md = memdesc; rq->vrq = (union atto_vda_req *)memdesc->virt_addr; (rq->vrq)->scsi.handle = (u32 )a->num_vrqs; return (1); } } static void esas2r_unmap_regions(struct esas2r_adapter *a ) { { if ((unsigned long )a->regs != (unsigned long )((unsigned char *)0U)) { iounmap((void volatile *)a->regs); } else { } a->regs = (unsigned char *)0U; pci_release_region(a->pcid, 2); if ((unsigned long )a->data_window != (unsigned long )((unsigned char *)0U)) { iounmap((void volatile *)a->data_window); } else { } a->data_window = (unsigned char *)0U; pci_release_region(a->pcid, 0); return; } } static int esas2r_map_regions(struct esas2r_adapter *a ) { int error ; void *tmp ; void *tmp___0 ; { a->regs = (unsigned char *)0U; a->data_window = (unsigned char *)0U; error = pci_request_region(a->pcid, 2, (char const *)(& a->name)); if (error != 0) { esas2r_log(1L, "pci_request_region(2) failed, error %d", error); return (error); } else { } tmp = ioremap((a->pcid)->resource[2].start, (a->pcid)->resource[2].start != 0ULL || (a->pcid)->resource[2].end != (a->pcid)->resource[2].start ? (unsigned long )(((a->pcid)->resource[2].end - (a->pcid)->resource[2].start) + 1ULL) : 0UL); a->regs = (unsigned char *)tmp; if ((unsigned long )a->regs == (unsigned long )((unsigned char *)0U)) { esas2r_log(1L, "ioremap failed for regs mem region\n"); pci_release_region(a->pcid, 2); return (-14); } else { } error = pci_request_region(a->pcid, 0, (char const *)(& a->name)); if (error != 0) { esas2r_log(1L, "pci_request_region(2) failed, error %d", error); esas2r_unmap_regions(a); return (error); } else { } tmp___0 = ioremap((a->pcid)->resource[0].start, (a->pcid)->resource[0].start != 0ULL || (a->pcid)->resource[0].end != (a->pcid)->resource[0].start ? (unsigned long )(((a->pcid)->resource[0].end - (a->pcid)->resource[0].start) + 1ULL) : 0UL); a->data_window = (unsigned char *)tmp___0; if ((unsigned long )a->data_window == (unsigned long )((unsigned char *)0U)) { esas2r_log(1L, "ioremap failed for data_window mem region\n"); esas2r_unmap_regions(a); return (-14); } else { } return (0); } } static void esas2r_setup_interrupts(struct esas2r_adapter *a , int intr_mode ) { int i ; { switch (intr_mode) { case 0: ; use_legacy_interrupts: a->intr_mode = 0; goto ldv_39015; case 1: i = pci_enable_msi_exact(a->pcid, 1); if (i != 0) { esas2r_log(2L, "failed to enable MSI for adapter %d, falling back to legacy interrupts (err=%d)", a->index, i); goto use_legacy_interrupts; } else { } a->intr_mode = 1; set_bit(12L, (unsigned long volatile *)(& a->flags2)); goto ldv_39015; default: esas2r_log(2L, "unknown interrupt_mode %d requested, falling back to legacy interrupt", interrupt_mode); goto use_legacy_interrupts; } ldv_39015: ; return; } } static void esas2r_claim_interrupts(struct esas2r_adapter *a ) { unsigned long flags ; int tmp ; { flags = 0UL; if (a->intr_mode == 0) { flags = flags | 128UL; } else { } esas2r_log(3L, "esas2r_claim_interrupts irq=%d (%p, %s, %x)", (a->pcid)->irq, a, (char *)(& a->name), flags); tmp = request_irq((a->pcid)->irq, a->intr_mode == 0 ? & esas2r_interrupt : & esas2r_msi_interrupt, flags, (char const *)(& a->name), (void *)a); if (tmp != 0) { esas2r_log(1L, "unable to request IRQ %02X", (a->pcid)->irq); return; } else { } set_bit(11L, (unsigned long volatile *)(& a->flags2)); esas2r_log(3L, "claimed IRQ %d flags: 0x%lx", (a->pcid)->irq, flags); return; } } int esas2r_init_adapter(struct Scsi_Host *host , struct pci_dev *pcid , int index ) { struct esas2r_adapter *a ; u64 bus_addr ; int i ; void *next_uncached ; struct esas2r_request *first_request ; struct esas2r_request *last_request ; uint64_t required_mask ; u64 tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; char const *__lock_name ; struct workqueue_struct *tmp___6 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; struct lock_class_key __key___6 ; bool tmp___7 ; int tmp___8 ; int tmp___9 ; u32 tmp___10 ; void *tmp___11 ; bool tmp___12 ; int tmp___13 ; bool tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; { bus_addr = 0ULL; if (index > 31) { esas2r_log(1L, "tried to init invalid adapter index %u!", index); return (0); } else { } if ((unsigned long )esas2r_adapters[index] != (unsigned long )((struct esas2r_adapter *)0)) { esas2r_log(1L, "tried to init existing adapter index %u!", index); return (0); } else { } a = (struct esas2r_adapter *)(& host->hostdata); memset((void *)a, 0, 559640UL); a->pcid = pcid; a->host = host; tmp = dma_get_required_mask(& pcid->dev); required_mask = tmp; if (required_mask > 4294967295ULL) { tmp___2 = pci_set_dma_mask(pcid, 0xffffffffffffffffULL); if (tmp___2 == 0) { tmp___3 = pci_set_consistent_dma_mask(pcid, 0xffffffffffffffffULL); if (tmp___3 == 0) { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "64-bit PCI addressing enabled\n"); } else { goto _L___0; } } else { goto _L___0; } } else { _L___0: /* CIL Label */ tmp___0 = pci_set_dma_mask(pcid, 4294967295ULL); if (tmp___0 == 0) { tmp___1 = pci_set_consistent_dma_mask(pcid, 4294967295ULL); if (tmp___1 == 0) { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "32-bit PCI addressing enabled\n"); } else { esas2r_log(1L, "failed to set DMA mask"); esas2r_kill_adapter(index); return (0); } } else { esas2r_log(1L, "failed to set DMA mask"); esas2r_kill_adapter(index); return (0); } } esas2r_adapters[index] = a; sprintf((char *)(& a->name), "esas2r_%02d", index); spinlock_check(& a->request_lock); __raw_spin_lock_init(& a->request_lock.__annonCompField18.rlock, "&(&a->request_lock)->rlock", & __key); spinlock_check(& a->fw_event_lock); __raw_spin_lock_init(& a->fw_event_lock.__annonCompField18.rlock, "&(&a->fw_event_lock)->rlock", & __key___0); sema_init(& a->fm_api_semaphore, 1); sema_init(& a->fs_api_semaphore, 1); sema_init(& a->nvram_semaphore, 1); esas2r_fw_event_off(a); snprintf((char *)(& a->fw_event_q_name), 20UL, "esas2r/%d", a->index); __lock_name = "\"%s\"a->fw_event_q_name"; tmp___6 = __alloc_workqueue_key("%s", 131082U, 1, & __key___1, __lock_name, (char *)(& a->fw_event_q_name)); a->fw_event_q = tmp___6; __init_waitqueue_head(& a->buffered_ioctl_waiter, "&a->buffered_ioctl_waiter", & __key___2); __init_waitqueue_head(& a->nvram_waiter, "&a->nvram_waiter", & __key___3); __init_waitqueue_head(& a->fm_api_waiter, "&a->fm_api_waiter", & __key___4); __init_waitqueue_head(& a->fs_api_waiter, "&a->fs_api_waiter", & __key___5); __init_waitqueue_head(& a->vda_waiter, "&a->vda_waiter", & __key___6); INIT_LIST_HEAD(& a->general_req.req_list); INIT_LIST_HEAD(& a->active_list); INIT_LIST_HEAD(& a->defer_list); INIT_LIST_HEAD(& a->free_sg_list_head); INIT_LIST_HEAD(& a->avail_request); INIT_LIST_HEAD(& a->vrq_mds_head); INIT_LIST_HEAD(& a->fw_event_list); first_request = (struct esas2r_request *)a + 1U; last_request = first_request; i = 1; goto ldv_39045; ldv_39044: INIT_LIST_HEAD(& last_request->req_list); list_add_tail(& last_request->comp_list, & a->avail_request); tmp___7 = alloc_vda_req(a, last_request); if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { esas2r_log(1L, "failed to allocate a VDA request!"); esas2r_kill_adapter(index); return (0); } else { } last_request = last_request + 1; i = i + 1; ldv_39045: ; if (i < num_requests) { goto ldv_39044; } else { } tmp___9 = esas2r_map_regions(a); if (tmp___9 != 0) { esas2r_log(1L, "could not map PCI regions!"); esas2r_kill_adapter(index); return (0); } else { } a->index = (unsigned int )index; atomic_inc(& a->dis_ints_cnt); atomic_inc(& a->disable_cnt); set_bit(2L, (unsigned long volatile *)(& a->flags)); set_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(20L, (unsigned long volatile *)(& a->flags)); set_bit(24L, (unsigned long volatile *)(& a->flags)); a->init_msg = 1U; a->max_vdareq_size = 128U; a->build_sgl = & esas2r_build_sg_list_sge; esas2r_setup_interrupts(a, interrupt_mode); tmp___10 = esas2r_get_uncached_size(a); a->uncached_size = (int )tmp___10; tmp___11 = dma_alloc_attrs(& pcid->dev, (unsigned long )a->uncached_size, & bus_addr, 208U, (struct dma_attrs *)0); a->uncached = (u8 *)tmp___11; if ((unsigned long )a->uncached == (unsigned long )((u8 *)0U)) { esas2r_log(1L, "failed to allocate %d bytes of consistent memory!", a->uncached_size); esas2r_kill_adapter(index); return (0); } else { } a->uncached_phys = bus_addr; memset((void *)a->uncached, 0, (size_t )a->uncached_size); next_uncached = (void *)a->uncached; tmp___12 = esas2r_init_adapter_struct(a, & next_uncached); if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { esas2r_log(1L, "failed to initialize adapter structure (2)!"); esas2r_kill_adapter(index); return (0); } else { } tasklet_init(& a->tasklet, & esas2r_adapter_tasklet, (unsigned long )a); esas2r_disable_chip_interrupts(a); esas2r_check_adapter(a); tmp___14 = esas2r_init_adapter_hw(a, 1); if (tmp___14) { tmp___15 = 0; } else { tmp___15 = 1; } if (tmp___15) { esas2r_log(1L, "failed to initialize hardware!"); } else { } esas2r_claim_interrupts(a); tmp___16 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags2)); if (tmp___16 != 0) { esas2r_enable_chip_interrupts(a); } else { } set_bit(8L, (unsigned long volatile *)(& a->flags2)); tmp___17 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___17 == 0) { esas2r_kickoff_timer(a); } else { } return (1); } } static void esas2r_adapter_power_down(struct esas2r_adapter *a , int power_management ) { struct esas2r_mem_desc *memdesc ; struct esas2r_mem_desc *next ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& a->flags2)); if (tmp___0 != 0) { tmp___1 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 == 0) { if (power_management == 0) { ldv_del_timer_sync_59(& a->timer); tasklet_kill(& a->tasklet); } else { } esas2r_power_down(a); __ms = 500UL; goto ldv_39055; ldv_39054: __const_udelay(4295000UL); ldv_39055: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39054; } else { } } else { } } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fw)); a->sysfs_fw_created = 0U; } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fs)); a->sysfs_fs_created = 0U; } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_vda)); a->sysfs_vda_created = 0U; } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_hw)); a->sysfs_hw_created = 0U; } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_live_nvram)); a->sysfs_live_nvram_created = 0U; } else { } if ((unsigned int )*((unsigned char *)a + 559632UL) != 0U) { sysfs_remove_bin_file(& (a->host)->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_default_nvram)); a->sysfs_default_nvram_created = 0U; } else { } tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags2)); if (tmp___2 != 0) { esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "free_irq(%d) called", (a->pcid)->irq); free_irq((a->pcid)->irq, (void *)a); clear_bit(11L, (unsigned long volatile *)(& a->flags2)); } else { } tmp___3 = constant_test_bit(12L, (unsigned long const volatile *)(& a->flags2)); if (tmp___3 != 0) { pci_disable_msi(a->pcid); clear_bit(12L, (unsigned long volatile *)(& a->flags2)); } else { } if ((unsigned long )a->inbound_list_md.virt_addr != (unsigned long )((void *)0)) { esas2r_initmem_free(a, & a->inbound_list_md); } else { } if ((unsigned long )a->outbound_list_md.virt_addr != (unsigned long )((void *)0)) { esas2r_initmem_free(a, & a->outbound_list_md); } else { } __mptr = (struct list_head const *)a->free_sg_list_head.next; memdesc = (struct esas2r_mem_desc *)__mptr; __mptr___0 = (struct list_head const *)memdesc->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___0; goto ldv_39064; ldv_39063: esas2r_initmem_free(a, memdesc); memdesc = next; __mptr___1 = (struct list_head const *)next->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___1; ldv_39064: ; if ((unsigned long )(& memdesc->next_desc) != (unsigned long )(& a->free_sg_list_head)) { goto ldv_39063; } else { } __mptr___2 = (struct list_head const *)a->vrq_mds_head.next; memdesc = (struct esas2r_mem_desc *)__mptr___2; __mptr___3 = (struct list_head const *)memdesc->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___3; goto ldv_39073; ldv_39072: esas2r_initmem_free(a, memdesc); list_del(& memdesc->next_desc); kfree((void const *)memdesc); memdesc = next; __mptr___4 = (struct list_head const *)next->next_desc.next; next = (struct esas2r_mem_desc *)__mptr___4; ldv_39073: ; if ((unsigned long )(& memdesc->next_desc) != (unsigned long )(& a->vrq_mds_head)) { goto ldv_39072; } else { } kfree((void const *)a->first_ae_req); a->first_ae_req = (struct esas2r_request *)0; kfree((void const *)a->sg_list_mds); a->sg_list_mds = (struct esas2r_mem_desc *)0; kfree((void const *)a->req_table); a->req_table = (struct esas2r_request **)0; if ((unsigned long )a->regs != (unsigned long )((unsigned char *)0U)) { esas2r_unmap_regions(a); a->regs = (unsigned char *)0U; a->data_window = (unsigned char *)0U; } else { } return; } } void esas2r_kill_adapter(int i ) { struct esas2r_adapter *a ; unsigned long flags ; struct workqueue_struct *wq ; raw_spinlock_t *tmp ; int tmp___0 ; { a = esas2r_adapters[i]; if ((unsigned long )a != (unsigned long )((struct esas2r_adapter *)0)) { esas2r_fw_event_off(a); esas2r_adapter_power_down(a, 0); if ((unsigned long )esas2r_buffered_ioctl != (unsigned long )((u8 *)0U) && (unsigned long )a->pcid == (unsigned long )esas2r_buffered_ioctl_pcid) { dma_free_attrs(& (a->pcid)->dev, (unsigned long )esas2r_buffered_ioctl_size, (void *)esas2r_buffered_ioctl, esas2r_buffered_ioctl_addr, (struct dma_attrs *)0); esas2r_buffered_ioctl = (u8 *)0U; } else { } if ((unsigned long )a->vda_buffer != (unsigned long )((u8 *)0U)) { dma_free_attrs(& (a->pcid)->dev, 262416UL, (void *)a->vda_buffer, a->ppvda_buffer, (struct dma_attrs *)0); a->vda_buffer = (u8 *)0U; } else { } if ((unsigned long )a->fs_api_buffer != (unsigned long )((u8 *)0U)) { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->fs_api_buffer_size, (void *)a->fs_api_buffer, a->ppfs_api_buffer, (struct dma_attrs *)0); a->fs_api_buffer = (u8 *)0U; } else { } kfree((void const *)a->local_atto_ioctl); a->local_atto_ioctl = (struct atto_ioctl *)0; tmp = spinlock_check(& a->fw_event_lock); flags = _raw_spin_lock_irqsave(tmp); wq = a->fw_event_q; a->fw_event_q = (struct workqueue_struct *)0; spin_unlock_irqrestore(& a->fw_event_lock, flags); if ((unsigned long )wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_60(wq); } else { } if ((unsigned long )a->uncached != (unsigned long )((u8 *)0U)) { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->uncached_size, (void *)a->uncached, a->uncached_phys, (struct dma_attrs *)0); a->uncached = (u8 *)0U; } else { } esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "pci_disable_device() called. msix_enabled: %d msi_enabled: %d irq: %d pin: %d", (int )(a->pcid)->msix_enabled, (int )(a->pcid)->msi_enabled, (a->pcid)->irq, (int )(a->pcid)->pin); esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "before pci_disable_device() enable_cnt: %d", (a->pcid)->enable_cnt.counter); pci_disable_device(a->pcid); esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "after pci_disable_device() enable_cnt: %d", (a->pcid)->enable_cnt.counter); esas2r_log_dev(3L, (struct device const *)(& (a->pcid)->dev), "pci_set_drv_data(%p, NULL) called", a->pcid); pci_set_drvdata(a->pcid, (void *)0); esas2r_adapters[i] = (struct esas2r_adapter *)0; tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& a->flags2)); if (tmp___0 != 0) { clear_bit(8L, (unsigned long volatile *)(& a->flags2)); set_bit(13L, (unsigned long volatile *)(& a->flags)); esas2r_log_dev(3L, (struct device const *)(& (a->host)->shost_gendev), "scsi_remove_host() called"); ldv_scsi_remove_host_61(a->host); esas2r_log_dev(3L, (struct device const *)(& (a->host)->shost_gendev), "scsi_host_put() called"); scsi_host_put(a->host); } else { } } else { } return; } } int esas2r_cleanup(struct Scsi_Host *host ) { struct esas2r_adapter *a ; int index ; int i ; { if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { i = 0; goto ldv_39091; ldv_39090: esas2r_kill_adapter(i); i = i + 1; ldv_39091: ; if (i <= 31) { goto ldv_39090; } else { } return (-1); } else { } a = (struct esas2r_adapter *)(& host->hostdata); index = (int )a->index; esas2r_kill_adapter(index); return (index); } } int esas2r_suspend(struct pci_dev *pdev , pm_message_t state ) { struct Scsi_Host *host ; void *tmp ; u32 device_state ; struct esas2r_adapter *a ; pci_power_t tmp___0 ; { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; a = (struct esas2r_adapter *)(& host->hostdata); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "suspending adapter()"); if ((unsigned long )a == (unsigned long )((struct esas2r_adapter *)0)) { return (-19); } else { } esas2r_adapter_power_down(a, 1); tmp___0 = pci_choose_state(pdev, state); device_state = (u32 )tmp___0; esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_save_state() called"); pci_save_state(pdev); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_disable_device() called"); pci_disable_device(pdev); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_set_power_state() called"); pci_set_power_state(pdev, (pci_power_t )device_state); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "esas2r_suspend(): 0"); return (0); } } int esas2r_resume(struct pci_dev *pdev ) { struct Scsi_Host *host ; void *tmp ; struct esas2r_adapter *a ; int rez ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; a = (struct esas2r_adapter *)(& host->hostdata); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "resuming adapter()"); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_set_power_state(PCI_D0) called"); pci_set_power_state(pdev, 0); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_enable_wake(PCI_D0, 0) called"); pci_enable_wake(pdev, 0, 0); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_restore_state() called"); pci_restore_state(pdev); esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "pci_enable_device() called"); rez = pci_enable_device(pdev); pci_set_master(pdev); if ((unsigned long )a == (unsigned long )((struct esas2r_adapter *)0)) { rez = -19; goto error_exit; } else { } tmp___0 = esas2r_map_regions(a); if (tmp___0 != 0) { esas2r_log(1L, "could not re-map PCI regions!"); rez = -12; goto error_exit; } else { } esas2r_setup_interrupts(a, a->intr_mode); esas2r_disable_chip_interrupts(a); tmp___1 = esas2r_power_up(a, 1); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { rez = -12; goto error_exit; } else { } esas2r_claim_interrupts(a); tmp___3 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags2)); if (tmp___3 != 0) { esas2r_enable_chip_interrupts(a); esas2r_kickoff_timer(a); } else { esas2r_log(1L, "could not re-claim IRQ!"); rez = -12; goto error_exit; } error_exit: esas2r_log_dev(1L, (struct device const *)(& pdev->dev), "esas2r_resume(): %d", rez); return (rez); } } bool esas2r_set_degraded_mode(struct esas2r_adapter *a , char *error_str ) { { set_bit(13L, (unsigned long volatile *)(& a->flags)); esas2r_log(1L, "setting adapter to degraded mode: %s\n", error_str); return (0); } } u32 esas2r_get_uncached_size(struct esas2r_adapter *a ) { { return ((((u32 )((int )((unsigned short )sgl_page_size) * num_sg_lists) + (((u32 )((unsigned long )((num_requests + num_ae_requests) + 3)) * 16U + 7U) & 4294967288U)) + (((u32 )((unsigned long )((num_requests + num_ae_requests) + 3)) * 16U + 7U) & 4294967288U)) + 1040U); } } static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a ) { int pcie_cap_reg ; u16 devcontrol ; { pcie_cap_reg = pci_find_capability(a->pcid, 16); if (pcie_cap_reg != 0) { pci_read_config_word((struct pci_dev const *)a->pcid, pcie_cap_reg + 8, & devcontrol); if (((int )devcontrol & 28672) > 8192) { esas2r_log(3L, "max read request size > 512B"); devcontrol = (unsigned int )devcontrol & 36863U; devcontrol = (u16 )((unsigned int )devcontrol | 8192U); pci_write_config_word((struct pci_dev const *)a->pcid, pcie_cap_reg + 8, (int )devcontrol); } else { } } else { } return; } } bool esas2r_init_adapter_struct(struct esas2r_adapter *a , void **uncached_area ) { u32 i ; u8 *high ; struct esas2r_inbound_list_source_entry *element ; struct esas2r_request *rq ; struct esas2r_mem_desc *sgl ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; bool tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; bool tmp___7 ; int tmp___8 ; bool tmp___9 ; int tmp___10 ; int tmp___11 ; bool tmp___12 ; int tmp___13 ; int tmp___14 ; { spinlock_check(& a->sg_list_lock); __raw_spin_lock_init(& a->sg_list_lock.__annonCompField18.rlock, "&(&a->sg_list_lock)->rlock", & __key); spinlock_check(& a->mem_lock); __raw_spin_lock_init(& a->mem_lock.__annonCompField18.rlock, "&(&a->mem_lock)->rlock", & __key___0); spinlock_check(& a->queue_lock); __raw_spin_lock_init(& a->queue_lock.__annonCompField18.rlock, "&(&a->queue_lock)->rlock", & __key___1); a->targetdb_end = (struct esas2r_target *)(& a->targetdb) + 256UL; tmp = alloc_vda_req(a, & a->general_req); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } tmp___1 = kzalloc((unsigned long )num_ae_requests * 176UL, 208U); a->first_ae_req = (struct esas2r_request *)tmp___1; if ((unsigned long )a->first_ae_req == (unsigned long )((struct esas2r_request *)0)) { esas2r_log(1L, "failed to allocate memory for asynchronous events"); return (0); } else { } tmp___2 = kzalloc((unsigned long )num_sg_lists * 56UL, 208U); a->sg_list_mds = (struct esas2r_mem_desc *)tmp___2; if ((unsigned long )a->sg_list_mds == (unsigned long )((struct esas2r_mem_desc *)0)) { esas2r_log(1L, "failed to allocate memory for s/g list descriptors"); return (0); } else { } tmp___3 = kzalloc((unsigned long )((num_requests + num_ae_requests) + 1) * 8UL, 208U); a->req_table = (struct esas2r_request **)tmp___3; if ((unsigned long )a->req_table == (unsigned long )((struct esas2r_request **)0)) { esas2r_log(1L, "failed to allocate memory for the request table"); return (0); } else { } esas2r_init_pci_cfg_space(a); if ((unsigned int )(a->pcid)->subsystem_vendor == 4476U && ((int )(a->pcid)->subsystem_device & 16384) != 0) { a->flags2 = a->flags2 | 7L; } else { } tmp___4 = constant_test_bit(7L, (unsigned long const volatile *)(& a->flags2)); if (tmp___4 != 0) { a->flags2 = a->flags2; } else { } if ((unsigned int )(a->pcid)->subsystem_device == 16488U) { a->flags2 = a->flags2 | 6L; } else { } high = (u8 *)*uncached_area; i = 0U; sgl = a->sg_list_mds; goto ldv_39133; ldv_39132: sgl->size = (u32 )sgl_page_size; list_add_tail(& sgl->next_desc, & a->free_sg_list_head); tmp___5 = esas2r_initmem_alloc(a, sgl, 16U); if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { if (i <= 7U) { return (0); } else { } goto ldv_39131; } else { } i = i + 1U; sgl = sgl + 1; ldv_39133: ; if ((u32 )num_sg_lists > i) { goto ldv_39132; } else { } ldv_39131: a->list_size = (u32 )(num_requests + 2); a->inbound_list_md.size = a->list_size * 16U; tmp___7 = esas2r_initmem_alloc(a, & a->inbound_list_md, 16U); if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { return (0); } else { } a->outbound_list_md.size = a->list_size * 16U; tmp___9 = esas2r_initmem_alloc(a, & a->outbound_list_md, 16U); if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { return (0); } else { } a->nvram = (struct esas2r_sas_nvram *)high; high = high + 256UL; a->disc_buffer = high; high = high + 512UL; high = (u8 *)(((unsigned long )high + 7UL) & 0xfffffffffffffff8UL); a->outbound_copy = (u32 volatile *)high; high = high + 4UL; tmp___11 = constant_test_bit(12L, (unsigned long const volatile *)(& a->flags)); if (tmp___11 == 0) { esas2r_nvram_set_defaults(a); } else { } *uncached_area = (void *)high; tmp___14 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___14 != 0) { memset((void *)a->req_table, 0, (unsigned long )((num_requests + num_ae_requests) + 1) * 8UL); esas2r_targ_db_initialize(a); element = (struct esas2r_inbound_list_source_entry *)a->inbound_list_md.virt_addr; i = 0U; goto ldv_39135; ldv_39134: element->address = 0ULL; element->reserved = 0U; element->length = 256U; element = element + 1; i = i + 1U; ldv_39135: ; if (a->list_size > i) { goto ldv_39134; } else { } rq = a->first_ae_req; i = 0U; goto ldv_39138; ldv_39137: INIT_LIST_HEAD(& rq->req_list); tmp___12 = alloc_vda_req(a, rq); if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { return (0); } else { } esas2r_rq_init_request(rq, a); rq->comp_cb = & esas2r_ae_complete; rq = rq + 1; i = i + 1U; ldv_39138: ; if ((u32 )num_ae_requests > i) { goto ldv_39137; } else { } } else { } return (1); } } bool esas2r_check_adapter(struct esas2r_adapter *a ) { u32 starttime ; u32 doorbell ; u64 ppaddr ; u32 dw ; int tmp ; bool tmp___0 ; unsigned int tmp___1 ; u32 ver ; bool tmp___2 ; unsigned long tmp___3 ; bool tmp___4 ; unsigned int tmp___5 ; unsigned long tmp___6 ; unsigned int tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; unsigned long tmp___10 ; bool tmp___11 ; unsigned int tmp___12 ; { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { goto skip_chip_reset; } else { } writel(0U, (void volatile *)a->regs + 66060U); readl((void const volatile *)a->regs + 66060U); starttime = jiffies_to_msecs(jiffies); ldv_39150: esas2r_force_interrupt(a); doorbell = readl((void const volatile *)a->regs + 66688U); if (doorbell == 4294967295U) { tmp___1 = jiffies_to_msecs(jiffies); if (tmp___1 - starttime > 2000U) { tmp___0 = esas2r_set_degraded_mode(a, (char *)"unable to access registers"); return (tmp___0); } else { } } else if ((doorbell & 128U) != 0U) { ver = doorbell & 458752U; writel(doorbell, (void volatile *)a->regs + 66688U); if (ver == 0U) { set_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 128U; a->build_sgl = & esas2r_build_sg_list_sge; } else if (ver == 65536U) { clear_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 1024U; a->build_sgl = & esas2r_build_sg_list_prd; } else { tmp___2 = esas2r_set_degraded_mode(a, (char *)"unknown firmware version"); return (tmp___2); } goto ldv_39149; } else { } tmp___3 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___3); tmp___5 = jiffies_to_msecs(jiffies); if (tmp___5 - starttime > 180000U) { tmp___4 = esas2r_set_degraded_mode(a, (char *)"firmware start has timed out"); return (tmp___4); } else { } goto ldv_39150; ldv_39149: writel(16U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); ldv_39152: doorbell = readl((void const volatile *)a->regs + 66688U); if ((doorbell & 16U) != 0U) { writel(doorbell, (void volatile *)a->regs + 66688U); goto ldv_39151; } else { } tmp___6 = msecs_to_jiffies(50U); schedule_timeout_interruptible((long )tmp___6); tmp___7 = jiffies_to_msecs(jiffies); if (tmp___7 - starttime > 3000U) { goto ldv_39151; } else { } goto ldv_39152; ldv_39151: ; skip_chip_reset: dw = readl((void const volatile *)a->regs + 16428U); dw = dw & 4294967294U; writel(dw, (void volatile *)a->regs + 16428U); dw = readl((void const volatile *)a->regs + 16508U); dw = dw & 4294967294U; writel(dw, (void volatile *)a->regs + 16508U); ppaddr = a->inbound_list_md.phys_addr; writel((unsigned int )ppaddr, (void volatile *)a->regs + 16384U); writel((unsigned int )(ppaddr >> 32ULL), (void volatile *)a->regs + 16388U); ppaddr = a->outbound_list_md.phys_addr; writel((unsigned int )ppaddr, (void volatile *)a->regs + 16464U); writel((unsigned int )(ppaddr >> 32ULL), (void volatile *)a->regs + 16468U); ppaddr = a->uncached_phys + (unsigned long long )((long )a->outbound_copy - (long )a->uncached); writel((unsigned int )ppaddr, (void volatile *)a->regs + 16472U); writel((unsigned int )(ppaddr >> 32ULL), (void volatile *)a->regs + 16476U); tmp___9 = a->list_size - 1U; a->last_read = tmp___9; tmp___8 = tmp___9; a->last_write = tmp___8; *(a->outbound_copy) = tmp___8; set_bit(23L, (unsigned long volatile *)(& a->flags)); writel(a->last_write | 16384U, (void volatile *)a->regs + 16408U); writel(a->last_write | 16384U, (void volatile *)a->regs + 16492U); writel(a->last_write | 16384U, (void volatile *)a->regs + 16412U); writel(a->last_write | 16384U, (void volatile *)a->regs + 16488U); dw = readl((void const volatile *)a->regs + 16424U); dw = dw & 4294963440U; writel(dw | 512U, (void volatile *)a->regs + 16424U); dw = readl((void const volatile *)a->regs + 16504U); dw = dw & 4294963440U; writel(dw | 512U, (void volatile *)a->regs + 16504U); dw = readl((void const volatile *)a->regs + 16428U); dw = dw & 2147548943U; dw = ((a->list_size << 16) | dw) | 32800U; writel(dw, (void volatile *)a->regs + 16428U); dw = readl((void const volatile *)a->regs + 16508U); dw = dw & 2147548943U; dw = ((a->list_size << 16) | dw) | 32U; writel(dw, (void volatile *)a->regs + 16508U); writel(256U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); ldv_39154: doorbell = readl((void const volatile *)a->regs + 66688U); if ((doorbell & 256U) != 0U) { writel(doorbell, (void volatile *)a->regs + 66688U); goto ldv_39153; } else { } tmp___10 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___10); tmp___12 = jiffies_to_msecs(jiffies); if (tmp___12 - starttime > 3000U) { tmp___11 = esas2r_set_degraded_mode(a, (char *)"timeout waiting for communication list init"); return (tmp___11); } else { } goto ldv_39154; ldv_39153: doorbell = readl((void const volatile *)a->regs + 66660U); if ((doorbell & 512U) != 0U) { set_bit(5L, (unsigned long volatile *)(& a->flags2)); } else { clear_bit(5L, (unsigned long volatile *)(& a->flags2)); } writel(1U, (void volatile *)a->regs + 16524U); writel(16253951U, (void volatile *)a->regs + 66692U); return (1); } } static bool esas2r_format_init_msg(struct esas2r_adapter *a , struct esas2r_request *rq ) { u32 msg ; struct atto_vda_cfg_init *ci ; struct timeval now ; u32 major ; u32 minor ; u16 fw_release ; int tmp ; __u32 tmp___0 ; { msg = (u32 )a->init_msg; a->init_msg = 0U; switch (msg) { case 1U: ; case 4U: do_gettimeofday(& now); esas2r_build_cfg_req(a, rq, 0, 0U, (void *)0); ci = & (rq->vrq)->cfg.data.init; ci->sgl_page_size = (unsigned int )sgl_page_size; ci->epoch_time = (unsigned int )now.tv_sec; rq->flags = (u8 )((unsigned int )rq->flags | 8U); a->init_msg = 2U; goto ldv_39164; case 2U: ; if ((unsigned int )rq->req_stat == 0U) { a->fw_version = (u32 )rq->func_rsp.cfg_rsp.vda_version; a->fw_build = rq->func_rsp.cfg_rsp.fw_build; fw_release = rq->func_rsp.cfg_rsp.fw_release; major = (u32 )((unsigned char )fw_release); minor = (u32 )((unsigned char )((int )fw_release >> 8)); a->fw_version = a->fw_version + ((major << 16) + (minor << 24)); } else { } tmp = constant_test_bit(7L, (unsigned long const volatile *)(& a->flags2)); if (tmp != 0) { goto _L; } else { tmp___0 = __fswab32(a->fw_version); if (tmp___0 > 5392130U) { _L: /* CIL Label */ esas2r_build_cfg_req(a, rq, 2, 112U, (void *)0); (rq->vrq)->cfg.sg_list_offset = 12U; (rq->vrq)->cfg.data.prde.ctl_len = 112U; (rq->vrq)->cfg.data.prde.address = (rq->vrq_md)->phys_addr + 1024ULL; rq->flags = (u8 )((unsigned int )rq->flags | 8U); a->init_msg = 3U; goto ldv_39164; } else { } } case 3U: ; if (msg == 3U) { ci = (struct atto_vda_cfg_init *)rq->__annonCompField106.data_buf; if ((unsigned int )rq->req_stat == 0U) { a->num_targets_backend = ci->num_targets_backend; a->ioctl_tunnel = ci->ioctl_tunnel; } else { } } else { } default: rq->req_stat = 0U; return (0); } ldv_39164: ; return (1); } } bool esas2r_init_msgs(struct esas2r_adapter *a ) { bool success ; struct esas2r_request *rq ; unsigned long flags ; raw_spinlock_t *tmp ; bool tmp___0 ; { success = 1; rq = & a->general_req; esas2r_rq_init_request(rq, a); rq->comp_cb = & esas2r_dummy_complete; if ((unsigned int )a->init_msg == 0U) { a->init_msg = 4U; } else { } goto ldv_39182; ldv_39184: tmp___0 = esas2r_format_init_msg(a, rq); if ((int )tmp___0) { ldv_39181: tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); esas2r_start_vda_request(a, rq); spin_unlock_irqrestore(& a->queue_lock, flags); esas2r_wait_request(a, rq); if ((unsigned int )rq->req_stat != 254U) { goto ldv_39180; } else { } goto ldv_39181; ldv_39180: ; } else { } if ((unsigned int )rq->req_stat == 0U || (((int )rq->flags & 8) != 0 && (unsigned int )rq->req_stat != 5U)) { goto ldv_39182; } else { } esas2r_log(1L, "init message %x failed (%x, %x)", (int )a->init_msg, (int )rq->req_stat, (int )rq->flags); a->init_msg = 1U; success = 0; goto ldv_39183; ldv_39182: ; if ((unsigned int )a->init_msg != 0U) { goto ldv_39184; } else { } ldv_39183: esas2r_rq_destroy_request(rq, a); return (success); } } bool esas2r_init_adapter_hw(struct esas2r_adapter *a , bool init_poll ) { bool rslt ; struct esas2r_request *rq ; u32 i ; int tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u32 currtime ; u32 nexttick ; u32 deltatime ; int tmp___7 ; unsigned long tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; bool tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; { rslt = 0; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { goto exit; } else { } tmp___2 = constant_test_bit(12L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 == 0) { tmp___0 = esas2r_nvram_read_direct(a); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { esas2r_log(2L, "invalid/missing NVRAM parameters"); } else { } } else { } tmp___3 = esas2r_init_msgs(a); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { esas2r_set_degraded_mode(a, (char *)"init messages failed"); goto exit; } else { } clear_bit(13L, (unsigned long volatile *)(& a->flags)); clear_bit(2L, (unsigned long volatile *)(& a->flags)); i = 0U; rq = a->first_ae_req; goto ldv_39194; ldv_39193: esas2r_start_ae_request(a, rq); i = i + 1U; rq = rq + 1; ldv_39194: ; if ((u32 )num_ae_requests > i) { goto ldv_39193; } else { } if ((int )((signed char )a->flash_rev[0]) == 0) { esas2r_read_flash_rev(a); } else { } if ((int )((signed char )a->image_type[0]) == 0) { esas2r_read_image_type(a); } else { } if (a->fw_version == 0U) { a->fw_rev[0] = 0; } else { sprintf((char *)(& a->fw_rev), "%1d.%02d", (int )((unsigned char )(a->fw_version >> 16)), (int )((unsigned char )((int )((unsigned short )(a->fw_version >> 16)) >> 8))); } tmp___5 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp___5 != 0) { tmp___6 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___6 != 0) { esas2r_enable_chip_interrupts(a); return (1); } else { } } else { } esas2r_disc_initialize(a); if ((int )init_poll) { currtime = a->disc_start_time; nexttick = 100U; set_bit(15L, (unsigned long volatile *)(& a->flags)); set_bit(25L, (unsigned long volatile *)(& a->flags)); tmp___7 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___7 != 0) { atomic_dec(& a->disable_cnt); } else { } goto ldv_39200; ldv_39199: tmp___8 = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp___8); tmp___9 = jiffies_to_msecs(jiffies); deltatime = tmp___9 - currtime; currtime = currtime + deltatime; tmp___10 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___10 == 0) { esas2r_disc_check_for_work(a); } else { } if (nexttick <= deltatime) { nexttick = nexttick + 100U; esas2r_timer_tick(a); } else { } if (nexttick > deltatime) { nexttick = nexttick - deltatime; } else { } tmp___11 = esas2r_is_tasklet_pending(a); if ((int )tmp___11) { esas2r_do_tasklet_tasks(a); } else { } ldv_39200: tmp___12 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___12 != 0) { goto ldv_39199; } else { } tmp___13 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___13 != 0) { atomic_inc(& a->disable_cnt); } else { } clear_bit(25L, (unsigned long volatile *)(& a->flags)); clear_bit(15L, (unsigned long volatile *)(& a->flags)); } else { } esas2r_targ_db_report_changes(a); esas2r_disc_start_waiting(a); a->int_mask = 4112U; esas2r_enable_chip_interrupts(a); esas2r_enable_heartbeat(a); rslt = 1; exit: tmp___16 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp___16 != 0) { tmp___17 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___17 != 0) { if (! rslt) { clear_bit(2L, (unsigned long volatile *)(& a->flags)); } else { } } else { goto _L; } } else { _L: /* CIL Label */ if (! rslt) { clear_bit(2L, (unsigned long volatile *)(& a->flags)); clear_bit(14L, (unsigned long volatile *)(& a->flags)); } else { } tmp___15 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___15 != 0) { clear_bit(20L, (unsigned long volatile *)(& a->flags)); tmp___14 = atomic_sub_return(1, & a->disable_cnt); if (tmp___14 == 0) { esas2r_do_deferred_processes(a); } else { } } else { } } return (rslt); } } void esas2r_reset_adapter(struct esas2r_adapter *a ) { { set_bit(9L, (unsigned long volatile *)(& a->flags)); esas2r_local_reset_adapter(a); esas2r_schedule_tasklet(a); return; } } void esas2r_reset_chip(struct esas2r_adapter *a ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; { tmp = esas2r_is_adapter_present(a); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } tmp___1 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags2)); if (tmp___1 != 0) { tmp___2 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags2)); if (tmp___2 == 0) { esas2r_read_mem_block(a, (void *)(& a->fw_coredump_buff), 4094164992U, 524288U); set_bit(4L, (unsigned long volatile *)(& a->flags2)); } else { } } else { } clear_bit(3L, (unsigned long volatile *)(& a->flags2)); if ((unsigned int )(a->pcid)->revision == 178U) { writel(2147483648U, (void volatile *)a->regs + 65840U); } else { writel(32U, (void volatile *)a->regs + 65800U); } __ms = 10UL; goto ldv_39210; ldv_39209: __const_udelay(4295000UL); ldv_39210: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_39209; } else { } return; } } static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a ) { u32 starttime ; u32 doorbell ; unsigned long tmp ; unsigned int tmp___0 ; { writel(512U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); ldv_39218: doorbell = readl((void const volatile *)a->regs + 66688U); if ((doorbell & 512U) != 0U) { writel(doorbell, (void volatile *)a->regs + 66688U); goto ldv_39217; } else { } tmp = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp); tmp___0 = jiffies_to_msecs(jiffies); if (tmp___0 - starttime > 30000U) { goto ldv_39217; } else { } goto ldv_39218; ldv_39217: ; return; } } void esas2r_power_down(struct esas2r_adapter *a ) { u32 starttime ; u32 doorbell ; unsigned long tmp ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; { set_bit(11L, (unsigned long volatile *)(& a->flags)); set_bit(21L, (unsigned long volatile *)(& a->flags)); tmp___2 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 == 0) { esas2r_disable_chip_interrupts(a); esas2r_disable_heartbeat(a); writel(16U, (void volatile *)a->regs + 66656U); starttime = jiffies_to_msecs(jiffies); ldv_39225: doorbell = readl((void const volatile *)a->regs + 66688U); if ((doorbell & 16U) != 0U) { writel(doorbell, (void volatile *)a->regs + 66688U); goto ldv_39224; } else { } tmp = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp); tmp___0 = jiffies_to_msecs(jiffies); if (tmp___0 - starttime > 3000U) { goto ldv_39224; } else { } goto ldv_39225; ldv_39224: tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& a->flags2)); if (tmp___1 != 0) { esas2r_power_down_notify_firmware(a); } else { } } else { } set_bit(9L, (unsigned long volatile *)(& a->flags)); set_bit(14L, (unsigned long volatile *)(& a->flags)); set_bit(2L, (unsigned long volatile *)(& a->flags)); esas2r_process_adapter_reset(a); a->__annonCompField108.prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); esas2r_targ_db_remove_all(a, 0); return; } } bool esas2r_power_up(struct esas2r_adapter *a , bool init_poll ) { bool ret ; bool tmp ; int tmp___0 ; { clear_bit(21L, (unsigned long volatile *)(& a->flags)); esas2r_init_pci_cfg_space(a); set_bit(20L, (unsigned long volatile *)(& a->flags)); atomic_inc(& a->disable_cnt); ret = esas2r_check_adapter(a); tmp = esas2r_init_adapter_hw(a, (int )init_poll); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { ret = 0; } else { } esas2r_send_reset_ae(a, 1); clear_bit(11L, (unsigned long volatile *)(& a->flags)); return (ret); } } bool esas2r_is_adapter_present(struct esas2r_adapter *a ) { int tmp ; unsigned int tmp___0 ; { tmp = constant_test_bit(18L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return (0); } else { } tmp___0 = readl((void const volatile *)a->regs + 66688U); if (tmp___0 == 4294967295U) { set_bit(18L, (unsigned long volatile *)(& a->flags)); return (0); } else { } return (1); } } char const *esas2r_get_model_name(struct esas2r_adapter *a ) { { switch ((int )(a->pcid)->subsystem_device) { case 73: ; return ("ATTO ExpressSAS R680"); case 74: ; return ("ATTO ExpressSAS R608"); case 75: ; return ("ATTO ExpressSAS R60F"); case 76: ; return ("ATTO ExpressSAS R6F0"); case 77: ; return ("ATTO ExpressSAS R644"); case 78: ; return ("ATTO ExpressSAS R648"); case 16486: ; return ("ATTO ThunderStream SC 3808D"); case 16487: ; return ("ATTO ThunderStream SC 3808E"); case 16488: ; return ("ATTO ThunderLink SH 1068"); } return ("ATTO SAS Controller"); } } char const *esas2r_get_model_name_short(struct esas2r_adapter *a ) { { switch ((int )(a->pcid)->subsystem_device) { case 73: ; return ("R680"); case 74: ; return ("R608"); case 75: ; return ("R60F"); case 76: ; return ("R6F0"); case 77: ; return ("R644"); case 78: ; return ("R648"); case 16486: ; return ("SC 3808D"); case 16487: ; return ("SC 3808E"); case 16488: ; return ("SH 1068"); } return ("unknown"); } } bool ldv_queue_work_on_53(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_54(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_55(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_56(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_57(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_58(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } int ldv_del_timer_sync_59(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_2(ldv_func_arg1); return (ldv_func_res); } } void ldv_destroy_workqueue_60(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } void ldv_scsi_remove_host_61(struct Scsi_Host *shost ) { { scsi_remove_host(shost); ldv_state_variable_5 = 0; return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { __list_del_entry(entry); INIT_LIST_HEAD(entry); return; } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } bool ldv_queue_work_on_75(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_77(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_76(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_79(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_78(struct workqueue_struct *ldv_func_arg1 ) ; int ldv_scsi_add_host_with_dma_80(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; extern void scsi_report_bus_reset(struct Scsi_Host * , int ) ; void esas2r_target_state_changed(struct esas2r_adapter *a , u16 targ_id , u8 state ) ; void esas2r_adapter_interrupt(struct esas2r_adapter *a ) ; void esas2r_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_complete_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; void esas2r_nuxi_ae_data(union atto_vda_ae *ae ) ; void esas2r_log_request_failure(struct esas2r_adapter *a , struct esas2r_request *rq ) ; bool esas2r_ioreq_aborted(struct esas2r_adapter *a , struct esas2r_request *rq , u8 status ) ; void esas2r_queue_fw_event(struct esas2r_adapter *a , enum fw_event_type type , void *data , int data_sz ) ; __inline static bool esas2r_adapter_interrupt_pending(struct esas2r_adapter *a ) { u32 intstat ; { if (a->int_mask == 0U) { return (0); } else { } intstat = readl((void const volatile *)a->regs + 66048U); if ((a->int_mask & intstat) == 0U) { return (0); } else { } esas2r_disable_chip_interrupts(a); a->int_stat = intstat; a->int_mask = 0U; return (1); } } __inline static void esas2r_comp_list_drain(struct esas2r_adapter *a , struct list_head *comp_list ) { struct esas2r_request *rq ; struct list_head *element ; struct list_head *next ; struct list_head const *__mptr ; { element = comp_list->next; next = element->next; goto ldv_38966; ldv_38965: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr; list_del_init(element); esas2r_complete_request(a, rq); element = next; next = element->next; ldv_38966: ; if ((unsigned long )element != (unsigned long )comp_list) { goto ldv_38965; } else { } return; } } static void esas2r_doorbell_interrupt(struct esas2r_adapter *a , u32 doorbell ) ; static void esas2r_get_outbound_responses(struct esas2r_adapter *a ) ; static void esas2r_process_bus_reset(struct esas2r_adapter *a ) ; void esas2r_polled_interrupt(struct esas2r_adapter *a ) { u32 intstat ; u32 doorbell ; int tmp ; { esas2r_disable_chip_interrupts(a); intstat = readl((void const volatile *)a->regs + 66048U); if ((intstat & 16U) != 0U) { writel(1U, (void volatile *)a->regs + 16520U); readl((void const volatile *)a->regs + 16520U); esas2r_get_outbound_responses(a); } else { } if ((intstat & 4096U) != 0U) { doorbell = readl((void const volatile *)a->regs + 66688U); if (doorbell != 0U) { esas2r_doorbell_interrupt(a, doorbell); } else { } } else { } esas2r_enable_chip_interrupts(a); tmp = atomic_read((atomic_t const *)(& a->disable_cnt)); if (tmp == 0) { esas2r_do_deferred_processes(a); } else { } return; } } irqreturn_t esas2r_interrupt(int irq , void *dev_id ) { struct esas2r_adapter *a ; bool tmp ; int tmp___0 ; { a = (struct esas2r_adapter *)dev_id; tmp = esas2r_adapter_interrupt_pending(a); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } set_bit(9L, (unsigned long volatile *)(& a->flags2)); esas2r_schedule_tasklet(a); return (1); } } void esas2r_adapter_interrupt(struct esas2r_adapter *a ) { u32 doorbell ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = ldv__builtin_expect((a->int_stat & 16U) != 0U, 1L); if (tmp != 0L) { writel(1U, (void volatile *)a->regs + 16520U); readl((void const volatile *)a->regs + 16520U); esas2r_get_outbound_responses(a); } else { } tmp___0 = ldv__builtin_expect((a->int_stat & 4096U) != 0U, 0L); if (tmp___0 != 0L) { doorbell = readl((void const volatile *)a->regs + 66688U); if (doorbell != 0U) { esas2r_doorbell_interrupt(a, doorbell); } else { } } else { } a->int_mask = 4112U; esas2r_enable_chip_interrupts(a); tmp___1 = atomic_read((atomic_t const *)(& a->disable_cnt)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 1L); if (tmp___2 != 0L) { esas2r_do_deferred_processes(a); } else { } return; } } irqreturn_t esas2r_msi_interrupt(int irq , void *dev_id ) { struct esas2r_adapter *a ; u32 intstat ; u32 doorbell ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { a = (struct esas2r_adapter *)dev_id; intstat = readl((void const volatile *)a->regs + 66048U); tmp = ldv__builtin_expect((intstat & 16U) != 0U, 1L); if (tmp != 0L) { writel(1U, (void volatile *)a->regs + 16520U); readl((void const volatile *)a->regs + 16520U); esas2r_get_outbound_responses(a); } else { } tmp___0 = ldv__builtin_expect((intstat & 4096U) != 0U, 0L); if (tmp___0 != 0L) { doorbell = readl((void const volatile *)a->regs + 66688U); if (doorbell != 0U) { esas2r_doorbell_interrupt(a, doorbell); } else { } } else { } esas2r_disable_chip_interrupts(a); esas2r_enable_chip_interrupts(a); tmp___1 = atomic_read((atomic_t const *)(& a->disable_cnt)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 1L); if (tmp___2 != 0L) { esas2r_do_deferred_processes(a); } else { } esas2r_do_tasklet_tasks(a); return (1); } } static void esas2r_handle_outbound_rsp_err(struct esas2r_adapter *a , struct esas2r_request *rq , struct atto_vda_ob_rsp *rsp ) { u8 scsistatus ; long tmp ; { tmp = ldv__builtin_expect((unsigned int )rq->req_stat != 0U, 0L); if (tmp != 0L) { memcpy((void *)(& rq->func_rsp), (void const *)(& rsp->func_rsp), 8UL); if ((unsigned int )rq->req_stat == 10U) { if (rq->timeout > 4294967293U) { rq->req_stat = 5U; } else { } } else if ((unsigned int )rq->req_stat == 8U) { scsistatus = rq->func_rsp.scsi_rsp.scsi_stat; if ((((unsigned int )scsistatus == 0U || (unsigned int )scsistatus == 4U) || (unsigned int )scsistatus == 16U) || (unsigned int )scsistatus == 20U) { rq->req_stat = 0U; rq->func_rsp.scsi_rsp.scsi_stat = 0U; } else { } } else { } } else { } return; } } static void esas2r_get_outbound_responses(struct esas2r_adapter *a ) { struct atto_vda_ob_rsp *rsp ; u32 rspput_ptr ; u32 rspget_ptr ; struct esas2r_request *rq ; u32 handle ; unsigned long flags ; struct list_head comp_list ; raw_spinlock_t *tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; { comp_list.next = & comp_list; comp_list.prev = & comp_list; tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); rspput_ptr = (unsigned int )*(a->outbound_copy) & 16383U; rspget_ptr = a->last_read; tmp___0 = ldv__builtin_expect(rspget_ptr == rspput_ptr, 0L); if (tmp___0 != 0L) { spin_unlock_irqrestore(& a->queue_lock, flags); return; } else { } tmp___1 = ldv__builtin_expect(a->list_size <= rspput_ptr, 0L); if (tmp___1 != 0L) { spin_unlock_irqrestore(& a->queue_lock, flags); esas2r_local_reset_adapter(a); return; } else { } ldv_39022: rspget_ptr = rspget_ptr + 1U; if (a->list_size <= rspget_ptr) { rspget_ptr = 0U; } else { } rsp = (struct atto_vda_ob_rsp *)a->outbound_list_md.virt_addr + (unsigned long )rspget_ptr; handle = rsp->handle; tmp___2 = ldv__builtin_expect((long )((unsigned int )((unsigned short )handle) == 0U || (int )((unsigned short )handle) > (num_requests + num_ae_requests) + 1), 0L); if (tmp___2 != 0L) { goto ldv_39021; } else { } rq = *(a->req_table + (unsigned long )((unsigned short )handle)); tmp___3 = ldv__builtin_expect((long )((unsigned long )rq == (unsigned long )((struct esas2r_request *)0) || (rq->vrq)->scsi.handle != handle), 0L); if (tmp___3 != 0L) { goto ldv_39021; } else { } list_del(& rq->req_list); rq->req_stat = rsp->req_stat; tmp___4 = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 0U, 1L); if (tmp___4 != 0L) { esas2r_handle_outbound_rsp_err(a, rq, rsp); } else { memcpy((void *)(& rq->func_rsp), (void const *)(& rsp->func_rsp), 8UL); } list_add_tail(& rq->comp_list, & comp_list); ldv_39021: ; if (rspget_ptr != rspput_ptr) { goto ldv_39022; } else { } a->last_read = rspget_ptr; spin_unlock_irqrestore(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); return; } } void esas2r_do_deferred_processes(struct esas2r_adapter *a ) { int startreqs ; struct esas2r_request *rq ; unsigned long flags ; int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; struct list_head comp_list ; struct list_head *element ; struct list_head *next ; raw_spinlock_t *tmp___3 ; struct list_head const *__mptr ; int tmp___4 ; int tmp___5 ; { startreqs = 2; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { startreqs = 0; } else { tmp___1 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { startreqs = 0; } else { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { startreqs = 1; } else { } } } atomic_inc(& a->disable_cnt); tmp___2 = esas2r_is_tasklet_pending(a); if ((int )tmp___2) { esas2r_schedule_tasklet(a); startreqs = 0; } else { } if (startreqs != 0) { tmp___5 = list_empty((struct list_head const *)(& a->defer_list)); if (tmp___5 == 0) { comp_list.next = & comp_list; comp_list.prev = & comp_list; tmp___3 = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp___3); element = a->defer_list.next; next = element->next; goto ldv_39040; ldv_39039: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned int )rq->req_stat != 254U) { list_del(element); list_add_tail(& rq->comp_list, & comp_list); } else if ((unsigned int )rq->req_type == 2U) { list_del(element); esas2r_disc_local_start_request(a, rq); } else if (startreqs == 2) { list_del(element); esas2r_local_start_request(a, rq); tmp___4 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___4 != 0) { goto ldv_39038; } else { } } else { } element = next; next = element->next; ldv_39040: ; if ((unsigned long )(& a->defer_list) != (unsigned long )element) { goto ldv_39039; } else { } ldv_39038: spin_unlock_irqrestore(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); } else { } } else { } atomic_dec(& a->disable_cnt); return; } } void esas2r_process_adapter_reset(struct esas2r_adapter *a ) { struct esas2r_request *rq ; unsigned long flags ; struct esas2r_disc_context *dc ; struct list_head comp_list ; struct list_head *element ; raw_spinlock_t *tmp ; u32 tmp___0 ; u32 tmp___1 ; struct list_head const *__mptr ; bool tmp___2 ; { rq = & a->general_req; comp_list.next = & comp_list; comp_list.prev = & comp_list; tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned long )rq->interrupt_cx != (unsigned long )((void *)0)) { dc = (struct esas2r_disc_context *)rq->interrupt_cx; dc->disc_evt = 0U; clear_bit(22L, (unsigned long volatile *)(& a->flags)); } else { } rq->interrupt_cx = (void *)0; rq->interrupt_cb = (void (*)(struct esas2r_adapter * , struct esas2r_request * ))0; rq->comp_cb = & esas2r_dummy_complete; tmp___1 = a->list_size - 1U; a->last_read = tmp___1; tmp___0 = tmp___1; a->last_write = tmp___0; *(a->outbound_copy) = tmp___0; set_bit(23L, (unsigned long volatile *)(& a->flags)); element = a->defer_list.next; goto ldv_39055; ldv_39054: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned int )rq->req_stat == 255U) { tmp___2 = esas2r_ioreq_aborted(a, rq, 10); if ((int )tmp___2) { list_add_tail(& rq->comp_list, & comp_list); } else { } } else { } element = element->next; ldv_39055: ; if ((unsigned long )(& a->defer_list) != (unsigned long )element) { goto ldv_39054; } else { } spin_unlock_irqrestore(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); esas2r_process_bus_reset(a); return; } } static void esas2r_process_bus_reset(struct esas2r_adapter *a ) { struct esas2r_request *rq ; struct list_head *element ; unsigned long flags ; struct list_head comp_list ; raw_spinlock_t *tmp ; struct list_head const *__mptr ; bool tmp___0 ; int tmp___1 ; { comp_list.next = & comp_list; comp_list.prev = & comp_list; tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); element = a->defer_list.next; goto ldv_39070; ldv_39069: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; tmp___0 = esas2r_ioreq_aborted(a, rq, 10); if ((int )tmp___0) { list_add_tail(& rq->comp_list, & comp_list); } else { } element = element->next; ldv_39070: ; if ((unsigned long )(& a->defer_list) != (unsigned long )element) { goto ldv_39069; } else { } spin_unlock_irqrestore(& a->queue_lock, flags); esas2r_comp_list_drain(a, & comp_list); tmp___1 = atomic_read((atomic_t const *)(& a->disable_cnt)); if (tmp___1 == 0) { esas2r_do_deferred_processes(a); } else { } clear_bit(9L, (unsigned long volatile *)(& a->flags)); return; } } static void esas2r_chip_rst_needed_during_tasklet(struct esas2r_adapter *a ) { bool alrdyrst ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; { clear_bit(1L, (unsigned long volatile *)(& a->flags)); clear_bit(4L, (unsigned long volatile *)(& a->flags)); clear_bit(6L, (unsigned long volatile *)(& a->flags)); clear_bit(5L, (unsigned long volatile *)(& a->flags)); tmp___3 = esas2r_is_adapter_present(a); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4 || a->chip_uptime > 59999U) { set_bit(13L, (unsigned long volatile *)(& a->flags)); set_bit(7L, (unsigned long volatile *)(& a->flags)); clear_bit(2L, (unsigned long volatile *)(& a->flags)); clear_bit(14L, (unsigned long volatile *)(& a->flags)); esas2r_disable_chip_interrupts(a); a->int_mask = 0U; esas2r_process_adapter_reset(a); esas2r_log(1L, "Adapter disabled because of hardware failure"); } else { tmp = test_and_set_bit(19L, (unsigned long volatile *)(& a->flags)); alrdyrst = tmp != 0; if (! alrdyrst) { esas2r_disable_chip_interrupts(a); } else { } tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { tmp___1 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 == 0) { if (! alrdyrst) { } else { esas2r_reset_chip(a); } } else { esas2r_reset_chip(a); } } else { esas2r_reset_chip(a); } a->chip_uptime = a->chip_uptime + 20000U; a->chip_init_time = jiffies_to_msecs(jiffies); tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 == 0) { esas2r_process_adapter_reset(a); if (! alrdyrst) { a->__annonCompField108.prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); esas2r_targ_db_remove_all(a, 0); } else { } } else { } a->int_mask = 0U; } return; } } static void esas2r_handle_chip_rst_during_tasklet(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { goto ldv_39081; ldv_39080: tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp == 0) { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 == 0) { esas2r_disable_chip_interrupts(a); } else { } } else { } esas2r_check_adapter(a); esas2r_init_adapter_hw(a, 0); tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { goto ldv_39079; } else { } tmp___4 = constant_test_bit(11L, (unsigned long const volatile *)(& a->flags)); if (tmp___4 != 0) { tmp___2 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 != 0) { esas2r_log(1L, "The firmware was reset during a normal power-up sequence"); } else { clear_bit(11L, (unsigned long volatile *)(& a->flags)); esas2r_send_reset_ae(a, 1); } } else { tmp___3 = constant_test_bit(20L, (unsigned long const volatile *)(& a->flags)); if (tmp___3 != 0) { } else { esas2r_send_reset_ae(a, 0); } esas2r_log(1L, "Recovering from a chip reset while the chip was online"); } clear_bit(19L, (unsigned long volatile *)(& a->flags)); esas2r_enable_chip_interrupts(a); clear_bit(3L, (unsigned long volatile *)(& a->flags)); ldv_39081: tmp___5 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp___5 != 0) { goto ldv_39080; } else { } ldv_39079: ; return; } } void esas2r_do_tasklet_tasks(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { goto _L; } else { tmp___1 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { _L: /* CIL Label */ tmp = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { esas2r_chip_rst_needed_during_tasklet(a); } else { } esas2r_handle_chip_rst_during_tasklet(a); } else { } } tmp___3 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags)); if (tmp___3 != 0) { clear_bit(4L, (unsigned long volatile *)(& a->flags)); tmp___2 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 != 0) { set_bit(6L, (unsigned long volatile *)(& a->flags)); } else { writel(2U, (void volatile *)a->regs + 66656U); } } else { } tmp___4 = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags)); if (tmp___4 != 0) { esas2r_process_bus_reset(a); esas2r_log_dev(2L, (struct device const *)(& (a->host)->shost_gendev), "scsi_report_bus_reset() called"); scsi_report_bus_reset(a->host, 0); clear_bit(6L, (unsigned long volatile *)(& a->flags)); clear_bit(5L, (unsigned long volatile *)(& a->flags)); esas2r_log(2L, "Bus reset complete"); } else { } tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& a->flags)); if (tmp___5 != 0) { clear_bit(0L, (unsigned long volatile *)(& a->flags)); esas2r_targ_db_report_changes(a); } else { } tmp___6 = atomic_read((atomic_t const *)(& a->disable_cnt)); if (tmp___6 == 0) { esas2r_do_deferred_processes(a); } else { } return; } } static void esas2r_doorbell_interrupt(struct esas2r_adapter *a , u32 doorbell ) { { writel(doorbell, (void volatile *)a->regs + 66688U); if ((doorbell & 2U) != 0U) { set_bit(6L, (unsigned long volatile *)(& a->flags)); } else { } if ((doorbell & 128U) != 0U) { clear_bit(16L, (unsigned long volatile *)(& a->flags)); } else { } if ((doorbell & 15728640U) != 0U) { esas2r_log(1L, "The firmware has panicked"); } else { } if ((doorbell & 524288U) != 0U) { set_bit(3L, (unsigned long volatile *)(& a->flags2)); esas2r_local_reset_adapter(a); } else { } return; } } void esas2r_force_interrupt(struct esas2r_adapter *a ) { { writel(65664U, (void volatile *)a->regs + 66656U); return; } } static void esas2r_lun_event(struct esas2r_adapter *a , union atto_vda_ae *ae , u16 target , u32 length ) { struct esas2r_target *t ; u32 cplen ; unsigned long flags ; raw_spinlock_t *tmp ; { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )target; cplen = length; if (cplen > 24U) { cplen = 24U; } else { } tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); t->new_target_state = 255U; if ((ae->lu.dwevent & 2U) != 0U) { t->new_target_state = 0U; } else { switch ((int )ae->lu.bystate) { case 1: ; case 2: ; case 6: ; case 5: t->new_target_state = 0U; goto ldv_39108; case 3: ; case 4: t->new_target_state = 5U; goto ldv_39108; } ldv_39108: ; } if ((unsigned int )t->new_target_state != 255U) { memcpy((void *)(& t->lu_event), (void const *)(& ae->lu), (size_t )cplen); esas2r_disc_queue_event(a, 1); } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return; } } void esas2r_ae_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) { union atto_vda_ae *ae ; u32 length ; union atto_vda_ae *last ; u16 target ; { ae = (union atto_vda_ae *)(& (rq->__annonCompField106.vda_rsp_data)->ae_data.event_data); length = rq->func_rsp.ae_rsp.length; last = (union atto_vda_ae *)(& (rq->__annonCompField106.vda_rsp_data)->ae_data.event_data) + (unsigned long )length; if ((length > 256U || (length & 3U) != 0U) || length == 0U) { esas2r_log(2L, "The AE request response length (%p) is too long: %d", rq, length); last = ae; } else { } goto ldv_39126; ldv_39125: length = (u32 )ae->hdr.bylength; if (((unsigned int )((long )last) - (unsigned int )((long )ae) < length || (length & 3U) != 0U) || length == 0U) { esas2r_log(1L, "the async event length is invalid (%p): %d", ae, length); goto ldv_39119; } else { } esas2r_nuxi_ae_data(ae); esas2r_queue_fw_event(a, 4, (void *)ae, 128); switch ((int )ae->hdr.bytype) { case 1: ; if ((ae->raid.dwflags & 27U) != 0U) { esas2r_log(3L, "RAID event received - name:%s rebuild_state:%d group_state:%d", (char *)(& ae->raid.acname), (int )ae->raid.byrebuild_state, (int )ae->raid.bygroup_state); } else { } goto ldv_39121; case 2: esas2r_log(3L, "LUN event received: event:%d target_id:%d LUN:%d state:%d", ae->lu.dwevent, (int )ae->lu.id.tgtlun.wtarget_id, (int )ae->lu.id.tgtlun.bylun, (int )ae->lu.bystate); target = ae->lu.id.tgtlun.wtarget_id; if ((unsigned int )target <= 255U) { esas2r_lun_event(a, ae, (int )target, length); } else { } goto ldv_39121; case 3: esas2r_log(3L, "Disk event received"); goto ldv_39121; default: ; goto ldv_39121; } ldv_39121: ae = ae + (unsigned long )length; ldv_39126: ; if ((unsigned long )ae < (unsigned long )last) { goto ldv_39125; } else { } ldv_39119: esas2r_start_ae_request(a, rq); return; } } void esas2r_send_reset_ae(struct esas2r_adapter *a , bool pwr_mgt ) { struct atto_vda_ae_hdr ae ; { if ((int )pwr_mgt) { ae.bytype = 13U; } else { ae.bytype = 4U; } ae.byversion = 0U; ae.byflags = 0U; ae.bylength = 4U; esas2r_queue_fw_event(a, 4, (void *)(& ae), 128); return; } } void esas2r_dummy_complete(struct esas2r_adapter *a , struct esas2r_request *rq ) { { return; } } static void esas2r_check_req_rsp_sense(struct esas2r_adapter *a , struct esas2r_request *rq ) { u8 snslen ; u8 snslen2 ; u8 *s ; { snslen2 = rq->func_rsp.scsi_rsp.sense_len; snslen = snslen2; if ((int )rq->sense_len < (int )snslen) { snslen = rq->sense_len; } else { } if ((unsigned int )snslen != 0U) { if ((unsigned long )rq->sense_buf != (unsigned long )((u8 *)0U)) { memcpy((void *)rq->sense_buf, (void const *)rq->__annonCompField106.data_buf, (size_t )snslen); } else { rq->sense_buf = (u8 *)rq->__annonCompField106.data_buf; } if ((unsigned int )snslen2 > 12U) { s = (u8 *)rq->__annonCompField106.data_buf; if ((unsigned int )*(s + 12UL) == 63U && (unsigned int )*(s + 13UL) == 14U) { esas2r_target_state_changed(a, (int )rq->target_id, 6); } else { } } else { } } else { } rq->sense_len = snslen; return; } } void esas2r_complete_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { long tmp ; long tmp___0 ; { if ((unsigned int )(rq->vrq)->scsi.function == 1U && (unsigned int )(rq->vrq)->flash.sub_func == 3U) { clear_bit(10L, (unsigned long volatile *)(& a->flags)); } else { } if ((unsigned long )rq->interrupt_cb != (unsigned long )((void (*)(struct esas2r_adapter * , struct esas2r_request * ))0)) { (*(rq->interrupt_cb))(a, rq); if ((unsigned int )rq->req_stat == 254U) { esas2r_start_request(a, rq); return; } else { } } else { } tmp = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 0U, 1L); if (tmp != 0L) { tmp___0 = ldv__builtin_expect((unsigned int )rq->req_stat != 0U, 0L); if (tmp___0 != 0L) { esas2r_check_req_rsp_sense(a, rq); esas2r_log_request_failure(a, rq); } else { } } else { } (*(rq->comp_cb))(a, rq); return; } } bool ldv_queue_work_on_75(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_76(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_77(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_78(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_79(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_80(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; bool ldv_queue_work_on_91(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_93(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_92(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_95(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_94(struct workqueue_struct *ldv_func_arg1 ) ; int ldv_scsi_add_host_with_dma_96(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; bool esas2r_send_task_mgmt(struct esas2r_adapter *a , struct esas2r_request *rqaux , u8 task_mgt_func ) ; void esas2r_reset_bus(struct esas2r_adapter *a ) ; __inline static struct esas2r_mem_desc *esas2r_alloc_sgl(struct esas2r_adapter *a ) { unsigned long flags ; struct list_head *sgl ; struct esas2r_mem_desc *result ; raw_spinlock_t *tmp ; struct list_head const *__mptr ; int tmp___0 ; long tmp___1 ; { result = (struct esas2r_mem_desc *)0; tmp = spinlock_check(& a->sg_list_lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = list_empty((struct list_head const *)(& a->free_sg_list_head)); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 1L); if (tmp___1 != 0L) { sgl = a->free_sg_list_head.next; __mptr = (struct list_head const *)sgl; result = (struct esas2r_mem_desc *)__mptr; list_del_init(sgl); } else { } spin_unlock_irqrestore(& a->sg_list_lock, flags); return (result); } } void esas2r_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_target *t ; struct esas2r_request *startrq ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; raw_spinlock_t *tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; { t = (struct esas2r_target *)0; startrq = rq; tmp___4 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___4 != 0) { tmp___6 = 1; } else { tmp___5 = constant_test_bit(21L, (unsigned long const volatile *)(& a->flags)); if (tmp___5 != 0) { tmp___6 = 1; } else { tmp___6 = 0; } } tmp___7 = ldv__builtin_expect((long )tmp___6, 0L); if (tmp___7 != 0L) { if ((unsigned int )(rq->vrq)->scsi.function == 0U) { rq->req_stat = 112U; } else { rq->req_stat = 251U; } } else { tmp___3 = ldv__builtin_expect((unsigned int )(rq->vrq)->scsi.function == 0U, 1L); if (tmp___3 != 0L) { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; tmp___2 = ldv__builtin_expect((long )((unsigned long )a->targetdb_end <= (unsigned long )t || ((int )t->flags & 2) == 0), 0L); if (tmp___2 != 0L) { rq->req_stat = 3U; } else { (rq->vrq)->scsi.__annonCompField92.__annonCompField91.target_id = t->virt_targ_id; if ((unsigned int )t->target_state != 5U) { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp == 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); if (tmp___1 != 0L) { rq->req_stat = 3U; } else { } } } else { } } tmp___8 = ldv__builtin_expect((unsigned int )rq->req_stat != 254U, 0L); if (tmp___8 != 0L) { esas2r_complete_request(a, rq); return; } else { } tmp___9 = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp___9); tmp___10 = list_empty((struct list_head const *)(& a->defer_list)); if (tmp___10 != 0) { tmp___11 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___11 == 0) { tmp___12 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___12 == 0) { tmp___13 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___13 == 0) { tmp___14 = 1; } else { tmp___14 = 0; } } else { tmp___14 = 0; } } else { tmp___14 = 0; } } else { tmp___14 = 0; } tmp___15 = ldv__builtin_expect((long )tmp___14, 1L); if (tmp___15 != 0L) { esas2r_local_start_request(a, startrq); } else { list_add_tail(& startrq->req_list, & a->defer_list); } spin_unlock_irqrestore(& a->queue_lock, flags); return; } } void esas2r_local_start_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { long tmp ; { tmp = ldv__builtin_expect((long )((unsigned int )(rq->vrq)->scsi.function == 1U && (unsigned int )(rq->vrq)->flash.sub_func == 3U), 0L); if (tmp != 0L) { set_bit(10L, (unsigned long volatile *)(& a->flags)); } else { } list_add_tail(& rq->req_list, & a->active_list); esas2r_start_vda_request(a, rq); return; } } void esas2r_start_vda_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct esas2r_inbound_list_source_entry *element ; u32 dw ; int tmp ; int tmp___0 ; { rq->req_stat = 255U; a->last_write = a->last_write + 1U; if (a->last_write >= a->list_size) { a->last_write = 0U; tmp = constant_test_bit(23L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { clear_bit(23L, (unsigned long volatile *)(& a->flags)); } else { set_bit(23L, (unsigned long volatile *)(& a->flags)); } } else { } element = (struct esas2r_inbound_list_source_entry *)a->inbound_list_md.virt_addr + (unsigned long )a->last_write; if ((unsigned int )rq->vda_req_sz == 0U) { rq->vda_req_sz = (unsigned int )a->max_vdareq_size / 4U; } else { } element->address = (rq->vrq_md)->phys_addr; element->length = (unsigned int )rq->vda_req_sz; dw = a->last_write; tmp___0 = constant_test_bit(23L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { dw = dw | 16384U; } else { } writel(dw, (void volatile *)a->regs + 16408U); return; } } bool esas2r_build_sg_list_sge(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) { struct esas2r_request *rq ; union atto_vda_req *vrq ; u32 rem ; u64 addr ; u32 len ; long tmp ; long tmp___0 ; u8 sgelen ; struct esas2r_mem_desc *sgl ; long tmp___1 ; long tmp___2 ; u16 reqsize ; { rq = sgc->first_req; vrq = rq->vrq; goto ldv_39007; ldv_39006: rem = 0U; len = (*(sgc->get_phys_addr))(sgc, & addr); tmp = ldv__builtin_expect(len == 0U, 0L); if (tmp != 0L) { return (0); } else { } tmp___0 = ldv__builtin_expect(sgc->length < len, 0L); if (tmp___0 != 0L) { len = sgc->length; } else { } another_entry: ; if (len > 4190208U) { rem = len - 4190208U; len = 4190208U; } else { } tmp___2 = ldv__builtin_expect((unsigned long )sgc->sge.a64.curr > (unsigned long )sgc->sge.a64.limit, 0L); if (tmp___2 != 0L) { sgl = esas2r_alloc_sgl(a); tmp___1 = ldv__builtin_expect((unsigned long )sgl == (unsigned long )((struct esas2r_mem_desc *)0), 0L); if (tmp___1 != 0L) { return (0); } else { } sgelen = (int )((unsigned char )((long )sgc->sge.a64.curr)) - (int )((unsigned char )((long )sgc->sge.a64.last)); memcpy(sgl->virt_addr, (void const *)sgc->sge.a64.last, (size_t )sgelen); sgc->sge.a64.curr = (struct atto_vda_sge *)sgl->virt_addr + (unsigned long )sgelen; sgc->sge.a64.limit = (struct atto_vda_sge *)sgl->virt_addr + ((unsigned long )sgl_page_size + 0xfffffffffffffff4UL); (sgc->sge.a64.last)->length = 2214592512U; (sgc->sge.a64.last)->address = sgl->phys_addr; if ((unsigned long )sgc->sge.a64.chain != (unsigned long )((struct atto_vda_sge *)0)) { (sgc->sge.a64.chain)->length = (sgc->sge.a64.chain)->length | (((unsigned int )((long )((u8 *)sgc->sge.a64.last + 1U)) - (unsigned int )((long )(rq->sg_table)->virt_addr)) + 786432U); } else { vrq->scsi.chain_offset = (int )((unsigned char )((long )sgc->sge.a64.last)) - (int )((unsigned char )((long )vrq)); rq->vda_req_sz = (u16 )(((unsigned long )vrq->scsi.chain_offset + 15UL) / 4UL); } sgc->sge.a64.chain = sgc->sge.a64.last; list_add(& sgl->next_desc, & rq->sg_table_head); } else { } sgc->sge.a64.last = sgc->sge.a64.curr; (sgc->sge.a64.curr)->length = len | 67108864U; (sgc->sge.a64.curr)->address = (u64 )((unsigned int )addr); sgc->sge.a64.curr = sgc->sge.a64.curr + 1; sgc->cur_offset = sgc->cur_offset + (unsigned long )len; sgc->length = sgc->length - len; if (rem != 0U) { addr = (u64 )len + addr; len = rem; rem = 0U; goto another_entry; } else { } ldv_39007: ; if (sgc->length != 0U) { goto ldv_39006; } else { } (sgc->sge.a64.last)->length = (sgc->sge.a64.last)->length | 16777216U; if ((unsigned long )sgc->sge.a64.chain != (unsigned long )((struct atto_vda_sge *)0)) { (sgc->sge.a64.chain)->length = (sgc->sge.a64.chain)->length | ((unsigned int )((long )sgc->sge.a64.curr) - (unsigned int )((long )(rq->sg_table)->virt_addr)); } else { reqsize = (u16 )(((unsigned long )((int )((unsigned short )((long )sgc->sge.a64.last)) - (int )((unsigned short )((long )vrq))) + 15UL) / 4UL); if ((int )rq->vda_req_sz < (int )reqsize) { rq->vda_req_sz = reqsize; } else { } } return (1); } } static bool esas2r_build_prd_iblk(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) { struct esas2r_request *rq ; u64 addr ; u32 len ; struct esas2r_mem_desc *sgl ; u32 numchain ; u32 rem ; long tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; { rq = sgc->first_req; numchain = 1U; rem = 0U; goto ldv_39023; ldv_39022: len = (*(sgc->get_phys_addr))(sgc, & addr); tmp = ldv__builtin_expect(len == 0U, 0L); if (tmp != 0L) { return (0); } else { } tmp___0 = ldv__builtin_expect(sgc->length < len, 0L); if (tmp___0 != 0L) { len = sgc->length; } else { } another_entry: ; if (len > 4190208U) { rem = len - 4190208U; len = 4190208U; } else { } if (sgc->sge.prd.sge_cnt == 0U) { if (sgc->length == len) { (sgc->sge.prd.curr)->ctl_len = len; (sgc->sge.prd.curr)->address = addr; sgc->cur_offset = sgc->cur_offset + (unsigned long )len; sgc->length = sgc->length - len; numchain = 0U; goto ldv_39021; } else { } if ((unsigned long )sgc->sge.prd.chain != (unsigned long )((struct atto_physical_region_description *)0)) { (sgc->sge.prd.chain)->ctl_len = (sgc->sge.prd.chain)->ctl_len | sgc->sge.prd.sgl_max_cnt; } else { } sgl = esas2r_alloc_sgl(a); tmp___1 = ldv__builtin_expect((unsigned long )sgl == (unsigned long )((struct esas2r_mem_desc *)0), 0L); if (tmp___1 != 0L) { return (0); } else { } list_add(& sgl->next_desc, & rq->sg_table_head); sgc->sge.prd.chain = sgc->sge.prd.curr; (sgc->sge.prd.chain)->ctl_len = 16777216U; (sgc->sge.prd.chain)->address = sgl->phys_addr; sgc->sge.prd.curr = (struct atto_physical_region_description *)sgl->virt_addr; sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1U; } else { } sgc->sge.prd.sge_cnt = sgc->sge.prd.sge_cnt - 1U; (sgc->sge.prd.curr)->ctl_len = len; (sgc->sge.prd.curr)->address = addr; sgc->sge.prd.curr = sgc->sge.prd.curr + 1; sgc->cur_offset = sgc->cur_offset + (unsigned long )len; sgc->length = sgc->length - len; if (rem != 0U) { addr = (u64 )len + addr; len = rem; rem = 0U; goto another_entry; } else { } ldv_39023: ; if (sgc->length != 0U) { goto ldv_39022; } else { } ldv_39021: tmp___2 = list_empty((struct list_head const *)(& rq->sg_table_head)); if (tmp___2 == 0) { if ((unsigned long )sgc->sge.prd.chain != (unsigned long )((struct atto_physical_region_description *)0)) { (sgc->sge.prd.chain)->ctl_len = (sgc->sge.prd.chain)->ctl_len | ((sgc->sge.prd.sgl_max_cnt - sgc->sge.prd.sge_cnt) - numchain); } else { } } else { } return (1); } } bool esas2r_build_sg_list_prd(struct esas2r_adapter *a , struct esas2r_sg_context *sgc ) { struct esas2r_request *rq ; u32 len ; struct esas2r_target *t ; u8 is_i_o ; u16 reqsize ; struct atto_physical_region_description *curr_iblk_chn ; u8 *cdb ; u32 lbalo ; u32 startlba ; bool tmp ; int tmp___0 ; long tmp___1 ; { rq = sgc->first_req; len = sgc->length; t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; is_i_o = 0U; cdb = (u8 *)(& (rq->vrq)->scsi.cdb); if (((unsigned int )(rq->vrq)->scsi.function == 0U && (unsigned int )t->target_state == 5U) && ((int )t->flags & 1) == 0) { lbalo = 0U; switch ((int )(rq->vrq)->scsi.cdb[0]) { case 136: ; case 138: lbalo = (unsigned int )((unsigned short )((int )((short )*(cdb + 9UL)) | (int )((short )((int )*(cdb + 8UL) << 8)))) | ((unsigned int )((unsigned short )((int )((short )*(cdb + 7UL)) | (int )((short )((int )*(cdb + 6UL) << 8)))) << 16); is_i_o = 1U; goto ldv_39038; case 168: ; case 170: ; case 40: ; case 42: lbalo = (unsigned int )((unsigned short )((int )((short )*(cdb + 5UL)) | (int )((short )((int )*(cdb + 4UL) << 8)))) | ((unsigned int )((unsigned short )((int )((short )*(cdb + 3UL)) | (int )((short )((int )*(cdb + 2UL) << 8)))) << 16); is_i_o = 1U; goto ldv_39038; case 8: ; case 10: lbalo = (unsigned int )((unsigned short )((int )((short )*(cdb + 3UL)) | (int )((short )((int )*(cdb + 2UL) << 8)))) | (((unsigned int )*(cdb + 1UL) & 31U) << 16); is_i_o = 1U; goto ldv_39038; default: ; goto ldv_39038; } ldv_39038: ; if ((unsigned int )is_i_o != 0U) { (rq->vrq)->scsi.__annonCompField92.__annonCompField91.iblk_cnt_prd = 0U; startlba = t->inter_block - ((t->inter_block - 1U) & lbalo); sgc->length = t->block_size * startlba; if (((t->inter_block - 1U) & lbalo) == 0U) { rq->flags = (u8 )((unsigned int )rq->flags | 4U); } else { } if (sgc->length > len) { sgc->length = len; } else { } } else { sgc->length = len; } } else { sgc->length = len; } curr_iblk_chn = (struct atto_physical_region_description *)sgc->sge.a64.curr; sgc->sge.prd.sgl_max_cnt = (u32 )((unsigned long )sgl_page_size / 12UL); goto ldv_39048; ldv_39047: sgc->sge.prd.sge_cnt = 0U; sgc->sge.prd.chain = (struct atto_physical_region_description *)0; sgc->sge.prd.curr = curr_iblk_chn; len = len - sgc->length; tmp = esas2r_build_prd_iblk(a, sgc); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); if (tmp___1 != 0L) { return (0); } else { } curr_iblk_chn = curr_iblk_chn + 1; if ((unsigned int )is_i_o != 0U) { (rq->vrq)->scsi.__annonCompField92.__annonCompField91.iblk_cnt_prd = (u8 )((int )(rq->vrq)->scsi.__annonCompField92.__annonCompField91.iblk_cnt_prd + 1); if (t->inter_byte < len) { sgc->length = t->inter_byte; } else { sgc->length = len; } } else { } ldv_39048: ; if (len != 0U) { goto ldv_39047; } else { } reqsize = (u16 )((unsigned int )((int )((unsigned short )((long )curr_iblk_chn)) - (int )((unsigned short )((long )rq->vrq))) / 4U); if ((int )rq->vda_req_sz < (int )reqsize) { rq->vda_req_sz = reqsize; } else { } return (1); } } static void esas2r_handle_pending_reset(struct esas2r_adapter *a , u32 currtime ) { u32 delta ; u32 doorbell ; u32 ver ; { delta = currtime - a->chip_init_time; if (delta <= 2000U) { } else if (delta > 179999U) { esas2r_local_reset_adapter(a); } else { doorbell = readl((void const volatile *)a->regs + 66688U); if (doorbell == 4294967295U || (doorbell & 128U) == 0U) { esas2r_force_interrupt(a); } else { ver = doorbell & 458752U; writel(doorbell, (void volatile *)a->regs + 66688U); if (ver == 0U) { set_bit(3L, (unsigned long volatile *)(& a->flags)); set_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 128U; a->build_sgl = & esas2r_build_sg_list_sge; } else if (ver == 65536U) { set_bit(3L, (unsigned long volatile *)(& a->flags)); clear_bit(24L, (unsigned long volatile *)(& a->flags)); a->max_vdareq_size = 1024U; a->build_sgl = & esas2r_build_sg_list_prd; } else { esas2r_local_reset_adapter(a); } } } return; } } void esas2r_timer_tick(struct esas2r_adapter *a ) { u32 currtime ; unsigned int tmp ; u32 deltatime ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { tmp = jiffies_to_msecs(jiffies); currtime = tmp; deltatime = currtime - a->last_tick_time; a->last_tick_time = currtime; if (a->chip_uptime != 0U) { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 == 0) { tmp___1 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 == 0) { if (a->chip_uptime <= deltatime) { a->chip_uptime = 0U; } else { a->chip_uptime = a->chip_uptime - deltatime; } } else { } } else { } } else { } tmp___7 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___7 != 0) { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 == 0) { tmp___3 = constant_test_bit(3L, (unsigned long const volatile *)(& a->flags)); if (tmp___3 == 0) { esas2r_handle_pending_reset(a, currtime); } else { } } else { } } else { tmp___4 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___4 != 0) { esas2r_disc_check_complete(a); } else { } tmp___6 = constant_test_bit(17L, (unsigned long const volatile *)(& a->flags)); if (tmp___6 != 0) { tmp___5 = constant_test_bit(16L, (unsigned long const volatile *)(& a->flags)); if (tmp___5 != 0) { if (currtime - a->__annonCompField108.heartbeat_time > 2999U) { clear_bit(16L, (unsigned long volatile *)(& a->flags)); esas2r_log(1L, "heartbeat failed"); esas2r_local_reset_adapter(a); } else { } } else { set_bit(16L, (unsigned long volatile *)(& a->flags)); a->__annonCompField108.heartbeat_time = currtime; esas2r_force_interrupt(a); } } else { } } tmp___8 = atomic_read((atomic_t const *)(& a->disable_cnt)); if (tmp___8 == 0) { esas2r_do_deferred_processes(a); } else { } return; } } bool esas2r_send_task_mgmt(struct esas2r_adapter *a , struct esas2r_request *rqaux , u8 task_mgt_func ) { u16 targetid ; u8 lun ; bool ret ; struct esas2r_request *rq ; struct list_head *next ; struct list_head *element ; unsigned long flags ; struct list_head comp_list ; raw_spinlock_t *tmp ; struct list_head const *__mptr ; bool tmp___0 ; struct list_head const *__mptr___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { targetid = rqaux->target_id; lun = (unsigned char )(rqaux->vrq)->scsi.flags; ret = 0; comp_list.next = & comp_list; comp_list.prev = & comp_list; tmp = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp); element = a->defer_list.next; next = element->next; goto ldv_39081; ldv_39080: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if (((unsigned int )(rq->vrq)->scsi.function == 0U && (int )rq->target_id == (int )targetid) && ((int )((unsigned char )(rq->vrq)->scsi.flags) == (int )lun || (unsigned int )task_mgt_func == 32U)) { if ((unsigned int )rq->req_stat == 254U) { tmp___0 = esas2r_ioreq_aborted(a, rq, 10); if ((int )tmp___0) { list_add_tail(& rq->comp_list, & comp_list); } else { } } else { } } else { } element = next; next = element->next; ldv_39081: ; if ((unsigned long )(& a->defer_list) != (unsigned long )element) { goto ldv_39080; } else { } rqaux->sense_len = 0U; (rqaux->vrq)->scsi.length = 0U; rqaux->target_id = targetid; (rqaux->vrq)->scsi.flags = (rqaux->vrq)->scsi.flags | (u32 )lun; memset((void *)(& (rqaux->vrq)->scsi.cdb), 0, 16UL); (rqaux->vrq)->scsi.flags = (rqaux->vrq)->scsi.flags; tmp___1 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { rqaux->req_stat = 0U; element = a->active_list.next; next = element->next; goto ldv_39086; ldv_39085: __mptr___0 = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr___0 + 0xfffffffffffffff0UL; if (((unsigned int )(rq->vrq)->scsi.function == 0U && (int )rq->target_id == (int )targetid) && ((int )((unsigned char )(rq->vrq)->scsi.flags) == (int )lun || (unsigned int )task_mgt_func == 32U)) { rqaux->req_stat = 2U; } else { } element = next; next = element->next; ldv_39086: ; if ((unsigned long )(& a->active_list) != (unsigned long )element) { goto ldv_39085; } else { } ret = 1; } else { } spin_unlock_irqrestore(& a->queue_lock, flags); tmp___2 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 == 0) { esas2r_start_request(a, rqaux); } else { } esas2r_comp_list_drain(a, & comp_list); tmp___3 = atomic_read((atomic_t const *)(& a->disable_cnt)); if (tmp___3 == 0) { esas2r_do_deferred_processes(a); } else { } return (ret); } } void esas2r_reset_bus(struct esas2r_adapter *a ) { int tmp ; int tmp___0 ; int tmp___1 ; { esas2r_log(3L, "performing a bus reset"); tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp == 0) { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 == 0) { tmp___1 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 == 0) { set_bit(4L, (unsigned long volatile *)(& a->flags)); set_bit(5L, (unsigned long volatile *)(& a->flags)); set_bit(9L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } else { } } else { } } else { } return; } } bool esas2r_ioreq_aborted(struct esas2r_adapter *a , struct esas2r_request *rq , u8 status ) { { list_del_init(& rq->req_list); if (rq->timeout > 4294967293U) { rq->req_stat = 2U; return (1); } else { } rq->req_stat = status; return (1); } } bool ldv_queue_work_on_91(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_92(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_93(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_94(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_95(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_96(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern void __might_sleep(char const * , int , int ) ; extern void __might_fault(char const * , int ) ; extern void __bad_percpu_size(void) ; extern int memcmp(void const * , void const * , size_t ) ; extern struct tss_struct cpu_tss ; __inline static unsigned long current_top_of_stack(void) { u64 pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& cpu_tss.x86_tss.sp0)); goto ldv_5437; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& cpu_tss.x86_tss.sp0)); goto ldv_5437; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& cpu_tss.x86_tss.sp0)); goto ldv_5437; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& cpu_tss.x86_tss.sp0)); goto ldv_5437; default: __bad_percpu_size(); } ldv_5437: ; return ((unsigned long )pfo_ret__); } } __inline static struct thread_info *current_thread_info(void) { unsigned long tmp ; { tmp = current_top_of_stack(); return ((struct thread_info *)(tmp - 32768UL)); } } extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; bool ldv_queue_work_on_107(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_109(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_108(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_111(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_110(struct workqueue_struct *ldv_func_arg1 ) ; extern void schedule(void) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static bool __chk_range_not_ok(unsigned long addr , unsigned long size , unsigned long limit ) { { addr = addr + size; if (addr < size) { return (1); } else { } return (addr > limit); } } extern unsigned long copy_user_enhanced_fast_string(void * , void const * , unsigned int ) ; extern unsigned long copy_user_generic_string(void * , void const * , unsigned int ) ; extern unsigned long copy_user_generic_unrolled(void * , void const * , unsigned int ) ; __inline static unsigned long copy_user_generic(void *to , void const *from , unsigned int len ) { unsigned int ret ; { __asm__ volatile ("661:\n\tcall %P4\n662:\n.skip -((((6651f-6641f) ^ (((6651f-6641f) ^ (6652f-6642f)) & -(-((6651f-6641f) - (6652f-6642f))))) - (662b-661b)) > 0) * (((6651f-6641f) ^ (((6651f-6641f) ^ (6652f-6642f)) & -(-((6651f-6641f) - (6652f-6642f))))) - (662b-661b)), 0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 3*32+16)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n .long 661b - .\n .long 6642f - .\n .word ( 9*32+ 9)\n .byte 663b-661b\n .byte 6652f-6642f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\tcall %P5\n6651:\n\t6642:\n\tcall %P6\n6652:\n\t.popsection": "=a" (ret), "=D" (to), "=S" (from), "=d" (len): [old] "i" (& copy_user_generic_unrolled), [new1] "i" (& copy_user_generic_string), [new2] "i" (& copy_user_enhanced_fast_string), "1" (to), "2" (from), "3" (len): "memory", "rcx", "r8", "r9", "r10", "r11"); return ((unsigned long )ret); } } __inline static int __copy_from_user_nocheck(void *dst , void const *src , unsigned int size ) { int ret ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { ret = 0; tmp = copy_user_generic(dst, src, size); return ((int )tmp); switch (size) { case 1U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovb %2,%b1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorb %b1,%b1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=q" (*((u8 *)dst)): "m" (*((struct __large_struct *)src)), "i" (1), "0" (ret)); return (ret); case 2U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovw %2,%w1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorw %w1,%w1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u16 *)dst)): "m" (*((struct __large_struct *)src)), "i" (2), "0" (ret)); return (ret); case 4U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovl %2,%k1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorl %k1,%k1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u32 *)dst)): "m" (*((struct __large_struct *)src)), "i" (4), "0" (ret)); return (ret); case 8U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (8), "0" (ret)); return (ret); case 10U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (10), "0" (ret)); tmp___0 = ldv__builtin_expect(ret != 0, 0L); if (tmp___0 != 0L) { return (ret); } else { } __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovw %2,%w1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorw %w1,%w1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u16 *)dst + 8U)): "m" (*((struct __large_struct *)src + 8U)), "i" (2), "0" (ret)); return (ret); case 16U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst)): "m" (*((struct __large_struct *)src)), "i" (16), "0" (ret)); tmp___1 = ldv__builtin_expect(ret != 0, 0L); if (tmp___1 != 0L) { return (ret); } else { } __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %2,%1\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\txorq %1,%1\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret), "=r" (*((u64 *)dst + 8U)): "m" (*((struct __large_struct *)src + 8U)), "i" (8), "0" (ret)); return (ret); default: tmp___2 = copy_user_generic(dst, src, size); return ((int )tmp___2); } } } __inline static int __copy_from_user(void *dst , void const *src , unsigned int size ) { int tmp ; { __might_fault("./arch/x86/include/asm/uaccess_64.h", 97); tmp = __copy_from_user_nocheck(dst, src, size); return (tmp); } } __inline static int __copy_to_user_nocheck(void *dst , void const *src , unsigned int size ) { int ret ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { ret = 0; tmp = copy_user_generic(dst, src, size); return ((int )tmp); switch (size) { case 1U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovb %b1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "iq" (*((u8 *)src)), "m" (*((struct __large_struct *)dst)), "i" (1), "0" (ret)); return (ret); case 2U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovw %w1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u16 *)src)), "m" (*((struct __large_struct *)dst)), "i" (2), "0" (ret)); return (ret); case 4U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovl %k1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u32 *)src)), "m" (*((struct __large_struct *)dst)), "i" (4), "0" (ret)); return (ret); case 8U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (8), "0" (ret)); return (ret); case 10U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (10), "0" (ret)); tmp___0 = ldv__builtin_expect(ret != 0, 0L); if (tmp___0 != 0L) { return (ret); } else { } __asm__ volatile ("": : : "memory"); __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovw %w1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "ir" (*((u16 *)src + 4UL)), "m" (*((struct __large_struct *)dst + 4U)), "i" (2), "0" (ret)); return (ret); case 16U: __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src)), "m" (*((struct __large_struct *)dst)), "i" (16), "0" (ret)); tmp___1 = ldv__builtin_expect(ret != 0, 0L); if (tmp___1 != 0L) { return (ret); } else { } __asm__ volatile ("": : : "memory"); __asm__ volatile ("661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xcb\n6651:\n\t.popsection\n1:\tmovq %1,%2\n2: 661:\n\t\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 9*32+20)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0x0f,0x01,0xca\n6651:\n\t.popsection\n.section .fixup,\"ax\"\n3:\tmov %3,%0\n\tjmp 2b\n.previous\n .pushsection \"__ex_table\",\"a\"\n .balign 8\n .long (1b) - .\n .long (3b) - .\n .popsection\n": "=r" (ret): "er" (*((u64 *)src + 1UL)), "m" (*((struct __large_struct *)dst + 1U)), "i" (8), "0" (ret)); return (ret); default: tmp___2 = copy_user_generic(dst, src, size); return ((int )tmp___2); } } } __inline static int __copy_to_user(void *dst , void const *src , unsigned int size ) { int tmp ; { __might_fault("./arch/x86/include/asm/uaccess_64.h", 147); tmp = __copy_to_user_nocheck(dst, src, size); return (tmp); } } int ldv_scsi_add_host_with_dma_112(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; u8 *esas2r_buffered_ioctl ; dma_addr_t esas2r_buffered_ioctl_addr ; u32 esas2r_buffered_ioctl_size ; struct pci_dev *esas2r_buffered_ioctl_pcid ; int esas2r_write_params(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *data ) ; int esas2r_ioctl_handler(void *hostdata , int cmd , void *arg ) ; int esas2r_ioctl(struct scsi_device *sd , int cmd , void *arg ) ; u8 handle_hba_ioctl(struct esas2r_adapter *a , struct atto_ioctl *ioctl_hba ) ; int esas2r_read_fw(struct esas2r_adapter *a , char *buf , long off , int count ) ; int esas2r_write_fw(struct esas2r_adapter *a , char const *buf , long off , int count ) ; int esas2r_read_vda(struct esas2r_adapter *a , char *buf , long off , int count ) ; int esas2r_write_vda(struct esas2r_adapter *a , char const *buf , long off , int count ) ; int esas2r_read_fs(struct esas2r_adapter *a , char *buf , long off , int count ) ; int esas2r_write_fs(struct esas2r_adapter *a , char const *buf , long off , int count ) ; void esas2r_free_request(struct esas2r_adapter *a , struct esas2r_request *rq ) ; struct esas2r_request *esas2r_alloc_request(struct esas2r_adapter *a ) ; struct esas2r_target *esas2r_targ_db_find_by_sas_addr(struct esas2r_adapter *a , u64 *sas_addr ) ; u16 esas2r_targ_db_find_next_present(struct esas2r_adapter *a , u16 target_id ) ; bool esas2r_process_vda_ioctl(struct esas2r_adapter *a , struct atto_ioctl_vda *vi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) ; static struct semaphore buffered_ioctl_semaphore = {{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "(buffered_ioctl_semaphore).lock", 0, 0UL}}, 1U, {& buffered_ioctl_semaphore.wait_list, & buffered_ioctl_semaphore.wait_list}}; static void complete_fm_api_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { a->fm_api_command_done = 1; __wake_up(& a->fm_api_waiter, 1U, 1, (void *)0); return; } } static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; int offset ; { a = sgc->adapter; offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )a->save_offset)); *addr = a->firmware.phys + (u64 )offset; return ((u32 )(a->firmware.orig_len - offset)); } } static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; int offset ; { a = sgc->adapter; offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )a->save_offset)); *addr = a->firmware.header_buff_phys + (u64 )offset; return (2176U - (u32 )offset); } } static void do_fm_api(struct esas2r_adapter *a , struct esas2r_flash_img *fi ) { struct esas2r_request *rq ; int tmp ; bool tmp___0 ; int tmp___1 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___2 ; { tmp = down_interruptible(& a->fm_api_semaphore); if (tmp != 0) { fi->status = 9U; return; } else { } rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { fi->status = 9U; goto free_sem; } else { } if ((unsigned long )(& a->firmware.header) == (unsigned long )fi) { a->firmware.header_buff = dma_alloc_attrs(& (a->pcid)->dev, 2176UL, & a->firmware.header_buff_phys, 208U, (struct dma_attrs *)0); if ((unsigned long )a->firmware.header_buff == (unsigned long )((void *)0)) { fi->status = 9U; goto free_req; } else { } memcpy(a->firmware.header_buff, (void const *)fi, 2176UL); a->save_offset = (u8 *)a->firmware.header_buff; a->fm_api_sgc.get_phys_addr = & get_physaddr_fm_api_header; } else { a->save_offset = (u8 *)fi; a->fm_api_sgc.get_phys_addr = & get_physaddr_fm_api; } rq->comp_cb = & complete_fm_api_req; a->fm_api_command_done = 0; a->fm_api_sgc.cur_offset = a->save_offset; tmp___0 = esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, & a->fm_api_sgc); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { goto all_done; } else { } goto ldv_39033; ldv_39032: __ret = 0; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--08_1a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6125/dscv_tempdir/dscv/ri/08_1a/drivers/scsi/esas2r/esas2r_ioctl.c", 162, 0); if (a->fm_api_command_done == 0) { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_39029: tmp___2 = prepare_to_wait_event(& a->fm_api_waiter, & __wait, 1); __int = tmp___2; if (a->fm_api_command_done != 0) { goto ldv_39028; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39028; } else { } schedule(); goto ldv_39029; ldv_39028: finish_wait(& a->fm_api_waiter, & __wait); __ret = (int )__ret___0; } else { } ldv_39033: ; if (a->fm_api_command_done == 0) { goto ldv_39032; } else { } all_done: ; if ((unsigned long )(& a->firmware.header) == (unsigned long )fi) { memcpy((void *)fi, (void const *)a->firmware.header_buff, 2176UL); dma_free_attrs(& (a->pcid)->dev, 2176UL, a->firmware.header_buff, a->firmware.header_buff_phys, (struct dma_attrs *)0); } else { } free_req: esas2r_free_request(a, rq); free_sem: up(& a->fm_api_semaphore); return; } } static void complete_nvr_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { a->nvram_command_done = 1; __wake_up(& a->nvram_waiter, 1U, 1, (void *)0); return; } } static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc , u64 *addr ) { int offset ; { offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )esas2r_buffered_ioctl)); *addr = (dma_addr_t )offset + esas2r_buffered_ioctl_addr; return (esas2r_buffered_ioctl_size - (u32 )offset); } } static void complete_buffered_ioctl_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { a->buffered_ioctl_done = 1; __wake_up(& a->buffered_ioctl_waiter, 1U, 1, (void *)0); return; } } static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi ) { struct esas2r_adapter *a ; struct esas2r_request *rq ; struct esas2r_sg_context sgc ; u8 result ; int tmp ; void *tmp___0 ; int tmp___1 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___2 ; { a = bi->a; result = 0U; tmp = down_interruptible(& buffered_ioctl_semaphore); if (tmp != 0) { return (108U); } else { } if ((unsigned long )esas2r_buffered_ioctl != (unsigned long )((u8 *)0U)) { if (bi->length > esas2r_buffered_ioctl_size) { dma_free_attrs(& (a->pcid)->dev, (unsigned long )esas2r_buffered_ioctl_size, (void *)esas2r_buffered_ioctl, esas2r_buffered_ioctl_addr, (struct dma_attrs *)0); goto allocate_buffer; } else { } } else { allocate_buffer: esas2r_buffered_ioctl_size = bi->length; esas2r_buffered_ioctl_pcid = a->pcid; tmp___0 = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )esas2r_buffered_ioctl_size, & esas2r_buffered_ioctl_addr, 208U, (struct dma_attrs *)0); esas2r_buffered_ioctl = (u8 *)tmp___0; } if ((unsigned long )esas2r_buffered_ioctl == (unsigned long )((u8 *)0U)) { esas2r_log(1L, "could not allocate %d bytes of consistent memory for a buffered ioctl!", bi->length); result = 108U; goto exit_cleanly; } else { } memcpy((void *)esas2r_buffered_ioctl, (void const *)bi->ioctl, (size_t )bi->length); rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { esas2r_log(1L, "could not allocate an internal request"); result = 108U; goto exit_cleanly; } else { } a->buffered_ioctl_done = 0; rq->comp_cb = & complete_buffered_ioctl_req; sgc.cur_offset = esas2r_buffered_ioctl + (unsigned long )bi->offset; sgc.get_phys_addr = & get_physaddr_buffered_ioctl; sgc.length = esas2r_buffered_ioctl_size; tmp___1 = (*(bi->callback))(a, rq, & sgc, bi->context); if (tmp___1 == 0) { a->buffered_ioctl_done = 0; goto free_andexit_cleanly; } else { } goto ldv_39068; ldv_39067: __ret = 0; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--08_1a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6125/dscv_tempdir/dscv/ri/08_1a/drivers/scsi/esas2r/esas2r_ioctl.c", 276, 0); if (a->buffered_ioctl_done == 0) { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_39064: tmp___2 = prepare_to_wait_event(& a->buffered_ioctl_waiter, & __wait, 1); __int = tmp___2; if (a->buffered_ioctl_done != 0) { goto ldv_39063; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39063; } else { } schedule(); goto ldv_39064; ldv_39063: finish_wait(& a->buffered_ioctl_waiter, & __wait); __ret = (int )__ret___0; } else { } ldv_39068: ; if (a->buffered_ioctl_done == 0) { goto ldv_39067; } else { } free_andexit_cleanly: ; if ((unsigned int )result == 0U && (unsigned long )bi->done_callback != (unsigned long )((void (*)(struct esas2r_adapter * , struct esas2r_request * , void * ))0)) { (*(bi->done_callback))(a, rq, bi->done_context); } else { } esas2r_free_request(a, rq); exit_cleanly: ; if ((unsigned int )result == 0U) { memcpy(bi->ioctl, (void const *)esas2r_buffered_ioctl, (size_t )bi->length); } else { } up(& buffered_ioctl_semaphore); return (result); } } static int smp_ioctl_callback(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc , void *context ) { struct atto_ioctl_smp *si ; bool tmp ; int tmp___0 ; { si = (struct atto_ioctl_smp *)esas2r_buffered_ioctl; esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField96.sge)); esas2r_build_ioctl_req(a, rq, sgc->length, 2); tmp = esas2r_build_sg_list(a, rq, sgc); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { si->status = 3U; return (0); } else { } esas2r_start_request(a, rq); return (1); } } static u8 handle_smp_ioctl(struct esas2r_adapter *a , struct atto_ioctl_smp *si ) { struct esas2r_buffered_ioctl bi ; u8 tmp ; { memset((void *)(& bi), 0, 64UL); bi.a = a; bi.ioctl = (void *)si; bi.length = (si->req_length + si->rsp_length) + 68U; bi.offset = 0U; bi.callback = & smp_ioctl_callback; tmp = handle_buffered_ioctl(& bi); return (tmp); } } static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { { rq->target_id = rq->func_rsp.ioctl_rsp.__annonCompField98.csmi.target_id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )rq->func_rsp.ioctl_rsp.__annonCompField98.csmi.lun; (*(rq->aux_req_cb))(a, rq); return; } } static bool csmi_ioctl_tunnel(struct esas2r_adapter *a , union atto_ioctl_csmi *ci , struct esas2r_request *rq , struct esas2r_sg_context *sgc , u32 ctrl_code , u16 target_id ) { struct atto_vda_ioctl_req *ioctl ; int tmp ; bool tmp___0 ; int tmp___1 ; { ioctl = & (rq->vrq)->ioctl; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return (0); } else { } esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField96.sge)); esas2r_build_ioctl_req(a, rq, sgc->length, 1); ioctl->__annonCompField95.csmi.ctrl_code = ctrl_code; ioctl->__annonCompField95.csmi.target_id = target_id; ioctl->__annonCompField95.csmi.lun = (unsigned char )(rq->vrq)->scsi.flags; rq->aux_req_cx = (void *)ci; rq->aux_req_cb = rq->comp_cb; rq->comp_cb = & esas2r_csmi_ioctl_tunnel_comp_cb; tmp___0 = esas2r_build_sg_list(a, rq, sgc); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } esas2r_start_request(a, rq); return (1); } } static bool check_lun(struct scsi_lun lun ) { bool result ; { result = (bool )(((((((unsigned int )lun.scsi_lun[7] == 0U && (unsigned int )lun.scsi_lun[6] == 0U) && (unsigned int )lun.scsi_lun[5] == 0U) && (unsigned int )lun.scsi_lun[4] == 0U) && (unsigned int )lun.scsi_lun[3] == 0U) && (unsigned int )lun.scsi_lun[2] == 0U) && (unsigned int )lun.scsi_lun[0] == 0U); return (result); } } static int csmi_ioctl_callback(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc , void *context ) { struct atto_csmi *ci ; union atto_ioctl_csmi *ioctl_csmi ; u8 path ; u8 tid ; u8 lun ; u32 sts ; struct esas2r_target *t ; unsigned long flags ; struct atto_csmi_get_dev_addr *gda ; struct atto_csmi_task_mgmt *tm ; struct atto_csmi_get_driver_info *gdi ; char const *tmp ; struct atto_csmi_get_cntlr_cfg *gcc ; int tmp___0 ; struct atto_csmi_get_cntlr_sts *gcs ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; struct atto_csmi_get_scsi_addr *gsa ; struct scsi_lun lun___0 ; bool tmp___4 ; int tmp___5 ; raw_spinlock_t *tmp___6 ; struct atto_csmi_get_dev_addr *gda___0 ; bool tmp___7 ; int tmp___8 ; { ci = (struct atto_csmi *)context; ioctl_csmi = (union atto_ioctl_csmi *)esas2r_buffered_ioctl; path = 0U; tid = 0U; lun = 0U; sts = 0U; if (ci->control_code == 28U) { gda = & ci->data.dev_addr; path = gda->path_id; tid = gda->target_id; lun = gda->lun; } else if (ci->control_code == 29U) { tm = & ci->data.tsk_mgt; path = tm->path_id; tid = tm->target_id; lun = tm->lun; } else { } if ((unsigned int )path != 0U) { rq->func_rsp.ioctl_rsp.__annonCompField98.csmi.csmi_status = 3U; return (0); } else { } rq->target_id = (u16 )tid; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )lun; switch (ci->control_code) { case 1U: gdi = & ioctl_csmi->drvr_info; tmp = esas2r_get_model_name(a); strcpy((char *)(& gdi->description), tmp); gdi->csmi_major_rev = 0U; gdi->csmi_minor_rev = 81U; goto ldv_39117; case 2U: gcc = & ioctl_csmi->cntlr_cfg; gcc->base_io_addr = 0U; pci_read_config_dword((struct pci_dev const *)a->pcid, 24, & gcc->__annonCompField99.base_memaddr_lo); pci_read_config_dword((struct pci_dev const *)a->pcid, 28, & gcc->__annonCompField99.base_memaddr_hi); gcc->board_id = (unsigned int )(a->pcid)->subsystem_device | ((unsigned int )(a->pcid)->subsystem_vendor << 16); gcc->slot_num = 65535U; gcc->cntlr_class = 5U; gcc->io_bus_type = 3U; gcc->__annonCompField100.pci_addr.bus_num = ((a->pcid)->bus)->number; gcc->__annonCompField100.pci_addr.device_num = (unsigned int )((u8 )((a->pcid)->devfn >> 3)) & 31U; gcc->__annonCompField100.pci_addr.function_num = (unsigned int )((u8 )(a->pcid)->devfn) & 7U; memset((void *)(& gcc->serial_num), 0, 81UL); gcc->major_rev = (u16 )((unsigned char )a->fw_version); gcc->minor_rev = (u16 )((unsigned char )((int )((unsigned short )a->fw_version) >> 8)); gcc->build_rev = (u16 )((unsigned char )(a->fw_version >> 16)); gcc->release_rev = (u16 )((unsigned char )((int )((unsigned short )(a->fw_version >> 16)) >> 8)); gcc->bios_major_rev = (u16 )((unsigned char )((int )((unsigned short )(a->flash_ver >> 16)) >> 8)); gcc->bios_minor_rev = (u16 )((unsigned char )(a->flash_ver >> 16)); gcc->bios_build_rev = (unsigned short )a->flash_ver; tmp___0 = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags2)); if (tmp___0 != 0) { gcc->cntlr_flags = 5U; } else { gcc->cntlr_flags = 10U; } gcc->rrom_major_rev = 0U; gcc->rrom_minor_rev = 0U; gcc->rrom_build_rev = 0U; gcc->rrom_release_rev = 0U; gcc->rrom_biosmajor_rev = 0U; gcc->rrom_biosminor_rev = 0U; gcc->rrom_biosbuild_rev = 0U; gcc->rrom_biosrelease_rev = 0U; goto ldv_39117; case 3U: gcs = & ioctl_csmi->cntlr_sts; tmp___1 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { gcs->status = 2U; } else { gcs->status = 1U; } gcs->offline_reason = 0U; goto ldv_39117; case 4U: ; case 10U: ; case 11U: sts = 2U; goto ldv_39117; case 23U: ; case 24U: ; case 25U: ; case 20U: ; case 21U: ; case 22U: ; case 26U: ; case 30U: ; case 60U: tmp___2 = csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, ci->control_code, 65535); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { sts = 1U; goto ldv_39117; } else { } return (1); case 27U: gsa = & ioctl_csmi->scsi_addr; memcpy((void *)(& lun___0), (void const *)(& gsa->sas_lun), 8UL); tmp___4 = check_lun(lun___0); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { sts = 2013U; goto ldv_39117; } else { } tmp___6 = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp___6); t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)(& gsa->sas_addr)); spin_unlock_irqrestore(& a->mem_lock, flags); if ((unsigned long )t == (unsigned long )((struct esas2r_target *)0)) { sts = 2013U; goto ldv_39117; } else { } gsa->host_index = 255U; gsa->lun = gsa->sas_lun[1]; rq->target_id = esas2r_targ_get_id(t, a); goto ldv_39117; case 28U: gda___0 = & ioctl_csmi->dev_addr; t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; if (((unsigned long )a->targetdb_end <= (unsigned long )t || (unsigned int )t->target_state != 5U) || t->sas_addr == 0ULL) { sts = 2014U; goto ldv_39117; } else { } *((u64 *)(& gda___0->sas_addr)) = t->sas_addr; memset((void *)(& gda___0->sas_lun), 0, 8UL); gda___0->sas_lun[1] = (unsigned char )(rq->vrq)->scsi.flags; goto ldv_39117; case 29U: t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )rq->target_id; if (((unsigned long )a->targetdb_end <= (unsigned long )t || (unsigned int )t->target_state != 5U) || ((int )t->flags & 1) == 0) { sts = 2014U; goto ldv_39117; } else { } tmp___7 = csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, ci->control_code, (int )t->phys_targ_id); if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { sts = 1U; goto ldv_39117; } else { } return (1); default: sts = 2U; goto ldv_39117; } ldv_39117: rq->func_rsp.ioctl_rsp.__annonCompField98.csmi.csmi_status = sts; return (0); } } static void csmi_ioctl_done_callback(struct esas2r_adapter *a , struct esas2r_request *rq , void *context ) { struct atto_csmi *ci ; union atto_ioctl_csmi *ioctl_csmi ; struct atto_csmi_get_driver_info *gdi ; struct atto_csmi_get_scsi_addr *gsa ; { ci = (struct atto_csmi *)context; ioctl_csmi = (union atto_ioctl_csmi *)esas2r_buffered_ioctl; switch (ci->control_code) { case 1U: gdi = & ioctl_csmi->drvr_info; strcpy((char *)(& gdi->name), "1.00"); gdi->major_rev = 1U; gdi->minor_rev = 0U; gdi->build_rev = 0U; gdi->release_rev = 0U; goto ldv_39153; case 27U: gsa = & ioctl_csmi->scsi_addr; if (rq->func_rsp.ioctl_rsp.__annonCompField98.csmi.csmi_status == 0U) { gsa->target_id = (u8 )rq->target_id; gsa->path_id = 0U; } else { } goto ldv_39153; } ldv_39153: ci->status = rq->func_rsp.ioctl_rsp.__annonCompField98.csmi.csmi_status; return; } } static u8 handle_csmi_ioctl(struct esas2r_adapter *a , struct atto_csmi *ci ) { struct esas2r_buffered_ioctl bi ; u8 tmp ; { memset((void *)(& bi), 0, 64UL); bi.a = a; bi.ioctl = (void *)(& ci->data); bi.length = 2064U; bi.offset = 0U; bi.callback = & csmi_ioctl_callback; bi.context = (void *)ci; bi.done_callback = & csmi_ioctl_done_callback; bi.done_context = (void *)ci; tmp = handle_buffered_ioctl(& bi); return (tmp); } } static bool hba_ioctl_tunnel(struct esas2r_adapter *a , struct atto_ioctl *hi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { bool tmp ; int tmp___0 ; { esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->ioctl.__annonCompField96.sge)); esas2r_build_ioctl_req(a, rq, sgc->length, 0); tmp = esas2r_build_sg_list(a, rq, sgc); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { hi->status = 3U; return (0); } else { } esas2r_start_request(a, rq); return (1); } } static void scsi_passthru_comp_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_ioctl *hi ; struct atto_hba_scsi_pass_thru *spt ; u8 sts ; u16 tmp ; { hi = (struct atto_ioctl *)rq->aux_req_cx; spt = & hi->data.scsi_pass_thru; sts = 1U; spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; spt->sense_length = rq->sense_len; spt->residual_length = rq->func_rsp.scsi_rsp.residual_length; switch ((int )rq->req_stat) { case 0: ; case 8: sts = 0U; goto ldv_39176; case 7: sts = 3U; goto ldv_39176; case 6: sts = 2U; goto ldv_39176; case 3: ; case 112: sts = 4U; goto ldv_39176; case 4: sts = 5U; goto ldv_39176; case 5: sts = 6U; goto ldv_39176; case 251: sts = 10U; goto ldv_39176; case 2: sts = 9U; goto ldv_39176; case 10: sts = 8U; goto ldv_39176; case 13: sts = 7U; goto ldv_39176; } ldv_39176: spt->req_status = sts; tmp = esas2r_targ_db_find_next_present(a, (int )((unsigned short )spt->target_id)); spt->target_id = (u32 )tmp; (*(rq->aux_req_cb))(a, rq); return; } } static int hba_ioctl_callback(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sg_context *sgc , void *context ) { struct atto_ioctl *hi ; u8 *class_code ; struct atto_hba_get_adapter_info *gai ; int pcie_cap_reg ; u16 stat ; u32 caps ; int tmp ; int tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; struct atto_hba_get_adapter_address *gaa ; bool tmp___3 ; struct atto_hba_trace *trc ; bool tmp___4 ; u32 len ; u32 offset ; u32 total_len ; int tmp___5 ; int tmp___6 ; struct atto_hba_scsi_pass_thru *spt ; struct scsi_lun lun ; bool tmp___7 ; bool tmp___8 ; int tmp___9 ; bool tmp___10 ; int tmp___11 ; struct atto_hba_get_device_address *gda ; struct esas2r_target *t ; bool tmp___12 ; u16 tmp___13 ; bool tmp___14 ; struct atto_hba_adap_ctrl *ac ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; struct atto_hba_get_device_info *gdi ; struct esas2r_target *t___0 ; bool tmp___20 ; u16 tmp___21 ; { hi = (struct atto_ioctl *)esas2r_buffered_ioctl; hi->status = 0U; switch ((int )hi->function) { case 0: class_code = (u8 *)(& (a->pcid)->class); gai = & hi->data.get_adap_info; if ((int )hi->flags & 1) { hi->status = 5U; goto ldv_39198; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_39198; } else { } memset((void *)gai, 0, 512UL); gai->pci.vendor_id = (a->pcid)->vendor; gai->pci.device_id = (a->pcid)->device; gai->pci.ss_vendor_id = (a->pcid)->subsystem_vendor; gai->pci.ss_device_id = (a->pcid)->subsystem_device; gai->pci.class_code[0] = *class_code; gai->pci.class_code[1] = *(class_code + 1UL); gai->pci.class_code[2] = *(class_code + 2UL); gai->pci.rev_id = (a->pcid)->revision; gai->pci.bus_num = ((a->pcid)->bus)->number; gai->pci.dev_num = (unsigned int )((u8 )((a->pcid)->devfn >> 3)) & 31U; gai->pci.func_num = (unsigned int )((u8 )(a->pcid)->devfn) & 7U; pcie_cap_reg = pci_find_capability(a->pcid, 16); if (pcie_cap_reg != 0) { pci_read_config_word((struct pci_dev const *)a->pcid, pcie_cap_reg + 18, & stat); pci_read_config_dword((struct pci_dev const *)a->pcid, pcie_cap_reg + 12, & caps); gai->pci.link_speed_curr = (unsigned int )((unsigned char )stat) & 15U; gai->pci.link_speed_max = (unsigned int )((unsigned char )caps) & 15U; gai->pci.link_width_curr = (unsigned char )(((int )stat & 1008) >> 4); gai->pci.link_width_max = (unsigned char )((caps & 1008U) >> 4); } else { } gai->pci.msi_vector_cnt = 1U; if ((unsigned int )*((unsigned char *)a->pcid + 2530UL) != 0U) { gai->pci.interrupt_mode = 3U; } else if ((unsigned int )*((unsigned char *)a->pcid + 2530UL) != 0U) { gai->pci.interrupt_mode = 2U; } else { gai->pci.interrupt_mode = 1U; } gai->adap_type = 2U; tmp = constant_test_bit(6L, (unsigned long const volatile *)(& a->flags2)); if (tmp != 0) { gai->adap_type = 10U; } else { } tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { gai->adap_flags = (u8 )((unsigned int )gai->adap_flags | 1U); } else { } gai->adap_flags = (u8 )((unsigned int )gai->adap_flags | 6U); if ((((unsigned int )(a->pcid)->subsystem_device == 75U || (unsigned int )(a->pcid)->subsystem_device == 74U) || (unsigned int )(a->pcid)->subsystem_device == 77U) || (unsigned int )(a->pcid)->subsystem_device == 16487U) { gai->adap_flags = (u8 )((unsigned int )gai->adap_flags | 64U); } else { } gai->num_ports = 8U; gai->num_phys = 8U; strcpy((char *)(& gai->firmware_rev), (char const *)(& a->fw_rev)); strcpy((char *)(& gai->flash_rev), (char const *)(& a->flash_rev)); tmp___1 = esas2r_get_model_name_short(a); strcpy((char *)(& gai->model_name_short), tmp___1); tmp___2 = esas2r_get_model_name(a); strcpy((char *)(& gai->model_name), tmp___2); gai->num_targets = 256U; gai->num_busses = 1U; gai->num_targsper_bus = gai->num_targets; gai->num_lunsper_targ = 256U; if ((unsigned int )(a->pcid)->subsystem_device == 76U || (unsigned int )(a->pcid)->subsystem_device == 75U) { gai->num_connectors = 4U; } else { gai->num_connectors = 2U; } gai->adap_flags2 = (u8 )((unsigned int )gai->adap_flags2 | 8U); gai->num_targets_backend = a->num_targets_backend; gai->tunnel_flags = a->ioctl_tunnel & 127U; goto ldv_39198; case 1: gaa = & hi->data.get_adap_addr; if ((int )hi->flags & 1) { hi->status = 5U; goto ldv_39198; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; } else if ((unsigned int )gaa->addr_type == 0U || (unsigned int )gaa->addr_type == 1U) { if ((unsigned int )gaa->addr_type == 0U && (unsigned int )gaa->port_id > 7U) { hi->status = 10U; } else { memcpy((void *)(& gaa->address), (void const *)(& (a->nvram)->sas_addr), 8UL); gaa->addr_len = 8U; } } else { hi->status = 8U; } goto ldv_39198; case 2: ; if ((int )hi->flags & 1) { tmp___3 = hba_ioctl_tunnel(a, hi, rq, sgc); if ((int )tmp___3) { return (1); } else { } goto ldv_39198; } else { } hi->status = 5U; goto ldv_39198; case 3: trc = & hi->data.trace; if ((int )hi->flags & 1) { tmp___4 = hba_ioctl_tunnel(a, hi, rq, sgc); if ((int )tmp___4) { return (1); } else { } goto ldv_39198; } else { } if ((unsigned int )hi->version > 1U) { hi->status = 2U; hi->version = 1U; goto ldv_39198; } else { } if ((unsigned int )trc->trace_type == 1U && (unsigned int )hi->version != 0U) { if ((unsigned int )trc->trace_func == 4U) { len = hi->data_length; offset = trc->current_offset; total_len = 524288U; tmp___5 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags2)); if (tmp___5 == 0) { total_len = 0U; } else { } if (len > total_len) { len = total_len; } else { } if ((offset >= total_len || offset + len > total_len) || len == 0U) { hi->status = 8U; goto ldv_39198; } else { } memcpy((void *)trc + 1U, (void const *)(& a->fw_coredump_buff) + (unsigned long )offset, (size_t )len); hi->data_length = len; } else if ((unsigned int )trc->trace_func == 5U) { memset((void *)(& a->fw_coredump_buff), 0, 524288UL); clear_bit(4L, (unsigned long volatile *)(& a->flags2)); } else if ((unsigned int )trc->trace_func != 0U) { hi->status = 5U; goto ldv_39198; } else { } trc->trace_mask = 0U; trc->current_offset = 0U; trc->total_length = 524288U; tmp___6 = constant_test_bit(4L, (unsigned long const volatile *)(& a->flags2)); if (tmp___6 == 0) { trc->total_length = 0U; } else { } } else { hi->status = 5U; } goto ldv_39198; case 4: spt = & hi->data.scsi_pass_thru; memcpy((void *)(& lun), (void const *)(& spt->lun), 8UL); if ((int )hi->flags & 1) { tmp___7 = hba_ioctl_tunnel(a, hi, rq, sgc); if ((int )tmp___7) { return (1); } else { } goto ldv_39198; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_39198; } else { } if (spt->target_id > 255U) { hi->status = 8U; goto ldv_39198; } else { tmp___8 = check_lun(lun); if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { hi->status = 8U; goto ldv_39198; } else { } } esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)0); sgc->length = hi->data_length; sgc->cur_offset = sgc->cur_offset + 416UL; rq->target_id = (unsigned short )spt->target_id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )spt->lun[1]; memcpy((void *)(& (rq->vrq)->scsi.cdb), (void const *)(& spt->cdb), 16UL); (rq->vrq)->scsi.length = hi->data_length; rq->sense_len = spt->sense_length; rq->sense_buf = (u8 *)(& spt->sense_data); rq->aux_req_cx = (void *)hi; rq->aux_req_cb = rq->comp_cb; rq->comp_cb = & scsi_passthru_comp_cb; if ((int )spt->flags & 1) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 33554432U; } else if ((spt->flags & 2U) != 0U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 16777216U; } else if (sgc->length != 0U) { hi->status = 8U; goto ldv_39198; } else { } if ((spt->flags & 16U) != 0U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 512U; } else if ((spt->flags & 8U) != 0U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 256U; } else { } tmp___10 = esas2r_build_sg_list(a, rq, sgc); if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { hi->status = 3U; goto ldv_39198; } else { } esas2r_start_request(a, rq); return (1); case 5: gda = & hi->data.get_dev_addr; if ((int )hi->flags & 1) { tmp___12 = hba_ioctl_tunnel(a, hi, rq, sgc); if ((int )tmp___12) { return (1); } else { } goto ldv_39198; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_39198; } else { } if (gda->target_id > 255U) { hi->status = 8U; goto ldv_39198; } else { } t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )((unsigned short )gda->target_id); if ((unsigned int )t->target_state != 5U) { hi->status = 1U; } else if ((unsigned int )gda->addr_type == 0U) { if (t->sas_addr == 0ULL) { hi->status = 5U; } else { *((u64 *)(& gda->address)) = t->sas_addr; gda->addr_len = 8U; } } else if ((unsigned int )gda->addr_type == 1U) { hi->status = 10U; } else { hi->status = 8U; } tmp___13 = esas2r_targ_db_find_next_present(a, (int )((unsigned short )gda->target_id)); gda->target_id = (u32 )tmp___13; goto ldv_39198; case 6: ; case 12: tmp___14 = hba_ioctl_tunnel(a, hi, rq, sgc); if ((int )tmp___14) { return (1); } else { } goto ldv_39198; case 14: ac = & hi->data.adap_ctrl; if ((int )hi->flags & 1) { hi->status = 5U; goto ldv_39198; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_39198; } else { } if ((unsigned int )ac->adap_func == 0U) { esas2r_reset_adapter(a); } else if ((unsigned int )ac->adap_func != 1U) { hi->status = 5U; goto ldv_39198; } else { } tmp___19 = constant_test_bit(1L, (unsigned long const volatile *)(& a->flags)); if (tmp___19 != 0) { ac->adap_state = 2U; } else { tmp___18 = constant_test_bit(2L, (unsigned long const volatile *)(& a->flags)); if (tmp___18 != 0) { ac->adap_state = 3U; } else { tmp___17 = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp___17 != 0) { ac->adap_state = 4U; } else { tmp___16 = constant_test_bit(7L, (unsigned long const volatile *)(& a->flags)); if (tmp___16 != 0) { ac->adap_state = 6U; } else { tmp___15 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___15 != 0) { ac->adap_state = 5U; } else { ac->adap_state = 1U; } } } } } goto ldv_39198; case 15: gdi = & hi->data.get_dev_info; if ((int )hi->flags & 1) { tmp___20 = hba_ioctl_tunnel(a, hi, rq, sgc); if ((int )tmp___20) { return (1); } else { } goto ldv_39198; } else { } if ((unsigned int )hi->version != 0U) { hi->status = 2U; hi->version = 0U; goto ldv_39198; } else { } if (gdi->target_id > 255U) { hi->status = 8U; goto ldv_39198; } else { } t___0 = (struct esas2r_target *)(& a->targetdb) + (unsigned long )((unsigned short )gdi->target_id); tmp___21 = esas2r_targ_db_find_next_present(a, (int )((unsigned short )gdi->target_id)); gdi->target_id = (u32 )tmp___21; if ((unsigned int )t___0->target_state != 5U) { hi->status = 1U; goto ldv_39198; } else { } hi->status = 5U; goto ldv_39198; default: hi->status = 4U; goto ldv_39198; } ldv_39198: ; return (0); } } static void hba_ioctl_done_callback(struct esas2r_adapter *a , struct esas2r_request *rq , void *context ) { struct atto_ioctl *ioctl_hba ; struct atto_hba_get_adapter_info *gai ; { ioctl_hba = (struct atto_ioctl *)esas2r_buffered_ioctl; if ((unsigned int )ioctl_hba->function == 0U) { gai = & ioctl_hba->data.get_adap_info; gai->drvr_rev_major = 1U; gai->drvr_rev_minor = 0U; strcpy((char *)(& gai->drvr_rev_ascii), "1.00"); strcpy((char *)(& gai->drvr_name), "esas2r"); gai->num_busses = 1U; gai->num_targsper_bus = 256U; gai->num_lunsper_targ = 1U; } else { } return; } } u8 handle_hba_ioctl(struct esas2r_adapter *a , struct atto_ioctl *ioctl_hba ) { struct esas2r_buffered_ioctl bi ; u8 tmp ; { memset((void *)(& bi), 0, 64UL); bi.a = a; bi.ioctl = (void *)ioctl_hba; bi.length = ioctl_hba->data_length + 576U; bi.callback = & hba_ioctl_callback; bi.context = (void *)0; bi.done_callback = & hba_ioctl_done_callback; bi.done_context = (void *)0; bi.offset = 0U; tmp = handle_buffered_ioctl(& bi); return (tmp); } } int esas2r_write_params(struct esas2r_adapter *a , struct esas2r_request *rq , struct esas2r_sas_nvram *data ) { int result ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; bool tmp___0 ; { result = 0; a->nvram_command_done = 0; rq->comp_cb = & complete_nvr_req; tmp___0 = esas2r_nvram_write(a, rq, data); if ((int )tmp___0) { goto ldv_39251; ldv_39250: __ret = 0; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--08_1a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6125/dscv_tempdir/dscv/ri/08_1a/drivers/scsi/esas2r/esas2r_ioctl.c", 1265, 0); if (a->nvram_command_done == 0) { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_39247: tmp = prepare_to_wait_event(& a->nvram_waiter, & __wait, 1); __int = tmp; if (a->nvram_command_done != 0) { goto ldv_39246; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39246; } else { } schedule(); goto ldv_39247; ldv_39246: finish_wait(& a->nvram_waiter, & __wait); __ret = (int )__ret___0; } else { } ldv_39251: ; if (a->nvram_command_done == 0) { goto ldv_39250; } else { } if ((unsigned int )rq->req_stat == 0U) { result = 1; } else { } } else { } return (result); } } int esas2r_ioctl_handler(void *hostdata , int cmd , void *arg ) { struct atto_express_ioctl *ioctl ; struct esas2r_adapter *a ; struct esas2r_request *rq ; u16 code ; int err ; struct thread_info *tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; void *tmp___3 ; int tmp___4 ; int i ; int k ; int tmp___5 ; { ioctl = (struct atto_express_ioctl *)0; esas2r_log(4L, "ioctl (%p, %x, %p)", hostdata, cmd, arg); if (((unsigned long )arg == (unsigned long )((void *)0) || cmd <= 17663) || cmd > 17679) { return (-524); } else { } tmp = current_thread_info(); tmp___0 = __chk_range_not_ok((unsigned long )arg, 524320UL, tmp->addr_limit.seg); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } tmp___2 = ldv__builtin_expect((long )tmp___1, 1L); if (tmp___2 == 0L) { esas2r_log(2L, "ioctl_handler access_ok failed for cmd %d, address %p", cmd, arg); return (-14); } else { } tmp___3 = kzalloc(524320UL, 208U); ioctl = (struct atto_express_ioctl *)tmp___3; if ((unsigned long )ioctl == (unsigned long )((struct atto_express_ioctl *)0)) { esas2r_log(2L, "ioctl_handler kzalloc failed for %d bytes", 524320UL); return (-12); } else { } err = __copy_from_user((void *)ioctl, (void const *)arg, 524320U); if (err != 0) { esas2r_log(2L, "copy_from_user didn\'t copy everything (err %d, cmd %d)", err, cmd); kfree((void const *)ioctl); return (-14); } else { } tmp___4 = memcmp((void const *)(& ioctl->header.signature), (void const *)"Express", 8UL); if (tmp___4 != 0) { esas2r_log(2L, "invalid signature"); kfree((void const *)ioctl); return (-524); } else { } ioctl->header.return_code = 0U; err = 0; if (cmd == 17668) { i = 0; k = 0; ioctl->data.chanlist.num_channels = 0U; goto ldv_39267; ldv_39266: ; if ((unsigned long )esas2r_adapters[i] != (unsigned long )((struct esas2r_adapter *)0)) { ioctl->data.chanlist.num_channels = ioctl->data.chanlist.num_channels + 1U; ioctl->data.chanlist.channel[k] = (u8 )i; k = k + 1; } else { } i = i + 1; ldv_39267: ; if (i <= 31) { goto ldv_39266; } else { } goto ioctl_done; } else { } if ((unsigned int )ioctl->header.channel == 255U) { a = (struct esas2r_adapter *)hostdata; } else { a = esas2r_adapters[(int )ioctl->header.channel]; if ((unsigned int )ioctl->header.channel > 31U || (unsigned long )a == (unsigned long )((struct esas2r_adapter *)0)) { ioctl->header.return_code = 104U; esas2r_log(2L, "bad channel value"); kfree((void const *)ioctl); return (-524); } else { } } switch (cmd) { case 17664: ; if ((unsigned int )ioctl->data.fwrw.img_type == 5U) { err = esas2r_write_fw(a, (char const *)(& ioctl->data.fwrw.image), 0L, 524320); if (err >= 0) { err = esas2r_read_fw(a, (char *)(& ioctl->data.fwrw.image), 0L, 524320); } else { } } else if ((unsigned int )ioctl->data.fwrw.img_type == 6U) { err = esas2r_write_fs(a, (char const *)(& ioctl->data.fwrw.image), 0L, 524320); if (err >= 0) { err = esas2r_read_fs(a, (char *)(& ioctl->data.fwrw.image), 0L, 524320); } else { } } else { ioctl->header.return_code = 107U; } goto ldv_39271; case 17665: memcpy((void *)(& ioctl->data.prw.data_buffer), (void const *)a->nvram, 256UL); ioctl->data.prw.code = 1U; goto ldv_39271; case 17666: rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { kfree((void const *)ioctl); esas2r_log(2L, "could not allocate an internal request"); return (-12); } else { } tmp___5 = esas2r_write_params(a, rq, (struct esas2r_sas_nvram *)(& ioctl->data.prw.data_buffer)); code = (u16 )tmp___5; ioctl->data.prw.code = code; esas2r_free_request(a, rq); goto ldv_39271; case 17670: esas2r_nvram_get_defaults(a, (struct esas2r_sas_nvram *)(& ioctl->data.prw.data_buffer)); ioctl->data.prw.code = 1U; goto ldv_39271; case 17669: ioctl->data.chaninfo.major_rev = 1U; ioctl->data.chaninfo.minor_rev = 0U; ioctl->data.chaninfo.IRQ = (u8 )(a->pcid)->irq; ioctl->data.chaninfo.device_id = (a->pcid)->device; ioctl->data.chaninfo.vendor_id = (a->pcid)->vendor; ioctl->data.chaninfo.ven_dev_id = (a->pcid)->subsystem_device; ioctl->data.chaninfo.revision_id = (a->pcid)->revision; ioctl->data.chaninfo.pci_bus = ((a->pcid)->bus)->number; ioctl->data.chaninfo.pci_dev_func = (u8 )(a->pcid)->devfn; ioctl->data.chaninfo.core_rev = 0U; ioctl->data.chaninfo.host_no = (u8 )(a->host)->host_no; ioctl->data.chaninfo.hbaapi_rev = 0U; goto ldv_39271; case 17674: ioctl->header.return_code = handle_smp_ioctl(a, & ioctl->data.ioctl_smp); goto ldv_39271; case 17675: ioctl->header.return_code = handle_csmi_ioctl(a, & ioctl->data.csmi); goto ldv_39271; case 17676: ioctl->header.return_code = handle_hba_ioctl(a, & ioctl->data.ioctl_hba); goto ldv_39271; case 17677: err = esas2r_write_vda(a, (char const *)(& ioctl->data.ioctl_vda), 0L, (int )(ioctl->data.ioctl_vda.data_length + 632U)); if (err >= 0) { err = esas2r_read_vda(a, (char *)(& ioctl->data.ioctl_vda), 0L, (int )(ioctl->data.ioctl_vda.data_length + 632U)); } else { } goto ldv_39271; case 17679: ioctl->data.modinfo.adapter = (void *)a; ioctl->data.modinfo.pci_dev = (void *)a->pcid; ioctl->data.modinfo.scsi_host = (void *)a->host; ioctl->data.modinfo.host_no = (unsigned short )(a->host)->host_no; goto ldv_39271; default: ioctl->header.return_code = 101U; } ldv_39271: ; ioctl_done: ; if (err < 0) { esas2r_log(2L, "err %d on ioctl cmd %d", err, cmd); switch (err) { case -12: ; case -16: ioctl->header.return_code = 108U; goto ldv_39284; case -38: ; case -22: ioctl->header.return_code = 110U; goto ldv_39284; default: ioctl->header.return_code = 109U; goto ldv_39284; } ldv_39284: ; } else { } err = __copy_to_user(arg, (void const *)ioctl, 524320U); if (err != 0) { esas2r_log(2L, "ioctl_handler copy_to_user didn\'t copy everything (err %d, cmd %d)", err, cmd); kfree((void const *)ioctl); return (-14); } else { } kfree((void const *)ioctl); return (0); } } int esas2r_ioctl(struct scsi_device *sd , int cmd , void *arg ) { int tmp ; { tmp = esas2r_ioctl_handler((void *)(& (sd->host)->hostdata), cmd, arg); return (tmp); } } static void free_fw_buffers(struct esas2r_adapter *a ) { { if ((unsigned long )a->firmware.data != (unsigned long )((u8 *)0U)) { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->firmware.orig_len, (void *)a->firmware.data, a->firmware.phys, (struct dma_attrs *)0); a->firmware.data = (u8 *)0U; } else { } return; } } static int allocate_fw_buffers(struct esas2r_adapter *a , u32 length ) { void *tmp ; { free_fw_buffers(a); a->firmware.orig_len = (int )length; tmp = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )length, & a->firmware.phys, 208U, (struct dma_attrs *)0); a->firmware.data = (u8 *)tmp; if ((unsigned long )a->firmware.data == (unsigned long )((u8 *)0U)) { return (0); } else { } return (1); } } int esas2r_read_fw(struct esas2r_adapter *a , char *buf , long off , int count ) { int size ; int __min1 ; int __min2 ; u32 length ; int tmp ; int size___0 ; int _min1 ; int _min2 ; { if ((unsigned int )a->firmware.state == 1U) { __min1 = count; __min2 = 2176; size = __min1 < __min2 ? __min1 : __min2; memcpy((void *)buf, (void const *)(& a->firmware.header), (size_t )size); return (size); } else { } if ((unsigned int )a->firmware.state == 2U) { length = a->firmware.header.length; if (off == 0L) { if ((unsigned int )a->firmware.header.action == 1U) { tmp = allocate_fw_buffers(a, length); if (tmp == 0) { return (-12); } else { } memcpy((void *)a->firmware.data, (void const *)(& a->firmware.header), 2176UL); do_fm_api(a, (struct esas2r_flash_img *)a->firmware.data); } else if ((unsigned int )a->firmware.header.action == 2U) { _min1 = count; _min2 = 2176; size___0 = _min1 < _min2 ? _min1 : _min2; do_fm_api(a, & a->firmware.header); memcpy((void *)buf, (void const *)(& a->firmware.header), (size_t )size___0); return (size___0); } else { return (-38); } } else { } if ((long )count + off > (long )length) { count = (int )(length - (unsigned int )off); } else { } if (count < 0) { return (0); } else { } if ((unsigned long )a->firmware.data == (unsigned long )((u8 *)0U)) { return (-12); } else { } memcpy((void *)buf, (void const *)a->firmware.data + (unsigned long )off, (size_t )count); if ((long )length <= (long )count + off) { free_fw_buffers(a); } else { } return (count); } else { } return (-22); } } int esas2r_write_fw(struct esas2r_adapter *a , char const *buf , long off , int count ) { u32 length ; struct esas2r_flash_img *header ; int min_size ; int tmp ; { if (off == 0L) { header = (struct esas2r_flash_img *)buf; min_size = 2160; a->firmware.state = 0; if (count <= 3 || (unsigned int )header->fi_version > 1U) { return (-22); } else { } if ((unsigned int )header->fi_version == 1U) { min_size = 2176; } else { } if (count < min_size) { return (-22); } else { } length = header->length; if (length > 1048576U) { return (-22); } else { } if ((unsigned int )header->action == 0U) { tmp = allocate_fw_buffers(a, length); if (tmp == 0) { return (-12); } else { } memcpy((void *)(& a->firmware.header), (void const *)buf, 2176UL); } else if ((unsigned int )header->action == 1U || (unsigned int )header->action == 2U) { memcpy((void *)(& a->firmware.header), (void const *)buf, 2176UL); a->firmware.state = 2; return (count); } else { return (-38); } } else { length = a->firmware.header.length; } if ((long )count + off > (long )length) { count = (int )(length - (unsigned int )off); } else { } if (count > 0) { if ((unsigned int )a->firmware.header.action == 1U) { return (count); } else { } if ((unsigned long )a->firmware.data == (unsigned long )((u8 *)0U)) { return (-12); } else { } memcpy((void *)a->firmware.data + (unsigned long )off, (void const *)buf, (size_t )count); if ((long )length == (long )count + off) { do_fm_api(a, (struct esas2r_flash_img *)a->firmware.data); memcpy((void *)(& a->firmware.header), (void const *)a->firmware.data, 2176UL); a->firmware.state = 1; free_fw_buffers(a); } else { } } else { } return (count); } } static void vda_complete_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { a->vda_command_done = 1; __wake_up(& a->vda_waiter, 1U, 1, (void *)0); return; } } static u32 get_physaddr_vda(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; int offset ; { a = sgc->adapter; offset = (int )((unsigned int )((long )sgc->cur_offset) - (unsigned int )((long )a->vda_buffer)); *addr = a->ppvda_buffer + (u64 )offset; return (262416U - (u32 )offset); } } int esas2r_read_vda(struct esas2r_adapter *a , char *buf , long off , int count ) { struct esas2r_request *rq ; struct atto_ioctl_vda *vi ; struct esas2r_sg_context sgc ; bool wait_for_completion___0 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; { if ((unsigned long )a->vda_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (off == 0L) { vi = (struct atto_ioctl_vda *)a->vda_buffer; rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { return (-16); } else { } rq->comp_cb = & vda_complete_req; sgc.first_req = rq; sgc.adapter = a; sgc.cur_offset = a->vda_buffer + 272UL; sgc.get_phys_addr = & get_physaddr_vda; a->vda_command_done = 0; wait_for_completion___0 = esas2r_process_vda_ioctl(a, vi, rq, & sgc); if ((int )wait_for_completion___0) { goto ldv_39354; ldv_39353: __ret = 0; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--08_1a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6125/dscv_tempdir/dscv/ri/08_1a/drivers/scsi/esas2r/esas2r_ioctl.c", 1891, 0); if (a->vda_command_done == 0) { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_39350: tmp = prepare_to_wait_event(& a->vda_waiter, & __wait, 1); __int = tmp; if (a->vda_command_done != 0) { goto ldv_39349; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39349; } else { } schedule(); goto ldv_39350; ldv_39349: finish_wait(& a->vda_waiter, & __wait); __ret = (int )__ret___0; } else { } ldv_39354: ; if (a->vda_command_done == 0) { goto ldv_39353; } else { } } else { } esas2r_free_request(a, rq); } else { } if ((unsigned long )off > 262416UL) { return (0); } else { } if ((unsigned long )((long )count + off) > 262416UL) { count = (int )(262416U - (unsigned int )off); } else { } if (count < 0) { return (0); } else { } memcpy((void *)buf, (void const *)a->vda_buffer + (unsigned long )off, (size_t )count); return (count); } } int esas2r_write_vda(struct esas2r_adapter *a , char const *buf , long off , int count ) { dma_addr_t dma_addr ; void *tmp ; { if ((unsigned long )a->vda_buffer == (unsigned long )((u8 *)0U)) { tmp = dma_alloc_attrs(& (a->pcid)->dev, 262416UL, & dma_addr, 208U, (struct dma_attrs *)0); a->vda_buffer = (u8 *)tmp; a->ppvda_buffer = dma_addr; } else { } if ((unsigned long )a->vda_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if ((unsigned long )off > 262416UL) { return (0); } else { } if ((unsigned long )((long )count + off) > 262416UL) { count = (int )(262416U - (unsigned int )off); } else { } if (count <= 0) { return (0); } else { } memcpy((void *)a->vda_buffer + (unsigned long )off, (void const *)buf, (size_t )count); return (count); } } static void fs_api_complete_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { { a->fs_api_command_done = 1; __wake_up(& a->fs_api_waiter, 1U, 1, (void *)0); return; } } static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc , u64 *addr ) { struct esas2r_adapter *a ; struct esas2r_ioctl_fs *fs ; u32 offset ; { a = sgc->adapter; fs = (struct esas2r_ioctl_fs *)a->fs_api_buffer; offset = (u32 )((long )sgc->cur_offset) - (u32 )((long )fs); *addr = a->ppfs_api_buffer + (u64 )offset; return (a->fs_api_buffer_size - offset); } } int esas2r_read_fs(struct esas2r_adapter *a , char *buf , long off , int count ) { struct esas2r_request *rq ; struct esas2r_sg_context sgc ; struct esas2r_ioctl_fs *fs ; int tmp ; bool tmp___0 ; int tmp___1 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___2 ; { if ((unsigned long )a->fs_api_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (off == 0L) { fs = (struct esas2r_ioctl_fs *)a->fs_api_buffer; tmp = down_interruptible(& a->fs_api_semaphore); if (tmp != 0) { busy: fs->status = 3U; return (-16); } else { } rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { up(& a->fs_api_semaphore); goto busy; } else { } rq->comp_cb = & fs_api_complete_req; sgc.cur_offset = (u8 *)(& fs->data); sgc.get_phys_addr = & get_physaddr_fs_api; a->fs_api_command_done = 0; tmp___0 = esas2r_process_fs_ioctl(a, fs, rq, & sgc); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { if ((unsigned int )fs->status == 3U) { count = -16; } else { } goto dont_wait; } else { } goto ldv_39395; ldv_39394: __ret = 0; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--08_1a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6125/dscv_tempdir/dscv/ri/08_1a/drivers/scsi/esas2r/esas2r_ioctl.c", 2023, 0); if (a->fs_api_command_done == 0) { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_39391: tmp___2 = prepare_to_wait_event(& a->fs_api_waiter, & __wait, 1); __int = tmp___2; if (a->fs_api_command_done != 0) { goto ldv_39390; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39390; } else { } schedule(); goto ldv_39391; ldv_39390: finish_wait(& a->fs_api_waiter, & __wait); __ret = (int )__ret___0; } else { } ldv_39395: ; if (a->fs_api_command_done == 0) { goto ldv_39394; } else { } dont_wait: up(& a->fs_api_semaphore); esas2r_free_request(a, rq); if (count < 0) { return (count); } else { } } else { } if ((long )a->fs_api_buffer_size < off) { return (0); } else { } if ((long )count + off > (long )a->fs_api_buffer_size) { count = (int )(a->fs_api_buffer_size - (unsigned int )off); } else { } if (count < 0) { return (0); } else { } memcpy((void *)buf, (void const *)a->fs_api_buffer + (unsigned long )off, (size_t )count); return (count); } } int esas2r_write_fs(struct esas2r_adapter *a , char const *buf , long off , int count ) { struct esas2r_ioctl_fs *fs ; u32 length ; void *tmp ; { if (off == 0L) { fs = (struct esas2r_ioctl_fs *)buf; length = fs->command.length + 32U; if ((unsigned int )fs->command.command == 2U) { length = 32U; } else { } if ((unsigned int )count <= 31U) { return (-22); } else { } if ((unsigned long )a->fs_api_buffer != (unsigned long )((u8 *)0U)) { if (a->fs_api_buffer_size < length) { dma_free_attrs(& (a->pcid)->dev, (unsigned long )a->fs_api_buffer_size, (void *)a->fs_api_buffer, a->ppfs_api_buffer, (struct dma_attrs *)0); goto re_allocate_buffer; } else { } } else { re_allocate_buffer: a->fs_api_buffer_size = length; tmp = dma_alloc_attrs(& (a->pcid)->dev, (unsigned long )a->fs_api_buffer_size, & a->ppfs_api_buffer, 208U, (struct dma_attrs *)0); a->fs_api_buffer = (u8 *)tmp; } } else { } if ((unsigned long )a->fs_api_buffer == (unsigned long )((u8 *)0U)) { return (-12); } else { } if ((long )a->fs_api_buffer_size < off) { return (0); } else { } if ((long )count + off > (long )a->fs_api_buffer_size) { count = (int )(a->fs_api_buffer_size - (unsigned int )off); } else { } if (count <= 0) { return (0); } else { } memcpy((void *)a->fs_api_buffer + (unsigned long )off, (void const *)buf, (size_t )count); return (count); } } bool ldv_queue_work_on_107(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_108(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_109(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_110(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_111(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_112(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } bool ldv_queue_work_on_123(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_125(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_124(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_127(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_126(struct workqueue_struct *ldv_func_arg1 ) ; int ldv_scsi_add_host_with_dma_128(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; struct esas2r_target *esas2r_targ_db_find_by_ident(struct esas2r_adapter *a , void *identifier , u8 ident_len ) ; void esas2r_targ_db_initialize(struct esas2r_adapter *a ) { struct esas2r_target *t ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_38979; ldv_38978: memset((void *)t, 0, 120UL); t->target_state = 0U; t->buffered_target_state = 0U; t->new_target_state = 255U; t = t + 1; ldv_38979: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_38978; } else { } return; } } void esas2r_targ_db_remove_all(struct esas2r_adapter *a , bool notify ) { struct esas2r_target *t ; unsigned long flags ; raw_spinlock_t *tmp ; u16 tmp___0 ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_38992; ldv_38991: ; if ((unsigned int )t->target_state != 5U) { goto ldv_38987; } else { } tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); esas2r_targ_db_remove(a, t); spin_unlock_irqrestore(& a->mem_lock, flags); if ((int )notify) { tmp___0 = esas2r_targ_get_id(t, a); esas2r_target_state_changed(a, (int )tmp___0, 0); } else { } ldv_38987: t = t + 1; ldv_38992: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_38991; } else { } return; } } void esas2r_targ_db_report_changes(struct esas2r_adapter *a ) { struct esas2r_target *t ; unsigned long flags ; int tmp ; u8 state ; raw_spinlock_t *tmp___0 ; u8 tmp___1 ; u16 tmp___2 ; { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return; } else { } t = (struct esas2r_target *)(& a->targetdb); goto ldv_39004; ldv_39003: state = 255U; tmp___0 = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp___0); if ((int )t->buffered_target_state != (int )t->target_state) { tmp___1 = t->target_state; t->buffered_target_state = tmp___1; state = tmp___1; } else { } spin_unlock_irqrestore(& a->mem_lock, flags); if ((unsigned int )state != 255U) { tmp___2 = esas2r_targ_get_id(t, a); esas2r_target_state_changed(a, (int )tmp___2, (int )state); } else { } t = t + 1; ldv_39004: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39003; } else { } return; } } struct esas2r_target *esas2r_targ_db_add_raid(struct esas2r_adapter *a , struct esas2r_disc_context *dc ) { struct esas2r_target *t ; { if ((unsigned int )dc->curr_virt_id > 255U) { return ((struct esas2r_target *)0); } else { } t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )dc->curr_virt_id; if ((unsigned int )t->target_state == 5U) { return ((struct esas2r_target *)0); } else { } if (dc->interleave == 0U || dc->block_size == 0U) { return ((struct esas2r_target *)0); } else { } t->block_size = dc->block_size; t->inter_byte = dc->interleave; t->inter_block = dc->interleave / dc->block_size; t->virt_targ_id = dc->curr_virt_id; t->phys_targ_id = 65535U; t->flags = (unsigned int )t->flags & 254U; t->flags = (u8 )((unsigned int )t->flags | 2U); t->identifier_len = 0U; t->target_state = 5U; return (t); } } struct esas2r_target *esas2r_targ_db_add_pthru(struct esas2r_adapter *a , struct esas2r_disc_context *dc , u8 *ident , u8 ident_len ) { struct esas2r_target *t ; { if ((unsigned int )dc->curr_virt_id > 255U) { return ((struct esas2r_target *)0); } else { } t = esas2r_targ_db_find_by_ident(a, (void *)ident, (int )ident_len); if ((unsigned long )t == (unsigned long )((struct esas2r_target *)0)) { t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )dc->curr_virt_id; if ((unsigned int )ident_len > 60U || (unsigned int )t->target_state == 5U) { return ((struct esas2r_target *)0); } else { } } else { } t->block_size = 0U; t->inter_byte = 0U; t->inter_block = 0U; t->virt_targ_id = dc->curr_virt_id; t->phys_targ_id = dc->curr_phys_id; t->identifier_len = ident_len; memcpy((void *)(& t->identifier), (void const *)ident, (size_t )ident_len); t->flags = (u8 )((unsigned int )t->flags | 3U); t->target_state = 5U; return (t); } } void esas2r_targ_db_remove(struct esas2r_adapter *a , struct esas2r_target *t ) { { t->target_state = 0U; return; } } struct esas2r_target *esas2r_targ_db_find_by_sas_addr(struct esas2r_adapter *a , u64 *sas_addr ) { struct esas2r_target *t ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39028; ldv_39027: ; if (t->sas_addr == *sas_addr) { return (t); } else { } t = t + 1; ldv_39028: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39027; } else { } return ((struct esas2r_target *)0); } } struct esas2r_target *esas2r_targ_db_find_by_ident(struct esas2r_adapter *a , void *identifier , u8 ident_len ) { struct esas2r_target *t ; int tmp ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39037; ldv_39036: ; if ((int )t->identifier_len == (int )ident_len) { tmp = memcmp((void const *)(& t->identifier), (void const *)identifier, (size_t )ident_len); if (tmp == 0) { return (t); } else { } } else { } t = t + 1; ldv_39037: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39036; } else { } return ((struct esas2r_target *)0); } } u16 esas2r_targ_db_find_next_present(struct esas2r_adapter *a , u16 target_id ) { u16 id ; struct esas2r_target *t ; { id = (unsigned int )target_id + 1U; goto ldv_39047; ldv_39046: t = (struct esas2r_target *)(& a->targetdb) + (unsigned long )id; if ((unsigned int )t->target_state == 5U) { goto ldv_39045; } else { } id = (u16 )((int )id + 1); ldv_39047: ; if ((unsigned int )id <= 255U) { goto ldv_39046; } else { } ldv_39045: ; return (id); } } struct esas2r_target *esas2r_targ_db_find_by_virt_id(struct esas2r_adapter *a , u16 virt_id ) { struct esas2r_target *t ; { t = (struct esas2r_target *)(& a->targetdb); goto ldv_39055; ldv_39054: ; if ((unsigned int )t->target_state != 5U) { goto ldv_39053; } else { } if ((int )t->virt_targ_id == (int )virt_id) { return (t); } else { } ldv_39053: t = t + 1; ldv_39055: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39054; } else { } return ((struct esas2r_target *)0); } } u16 esas2r_targ_db_get_tgt_cnt(struct esas2r_adapter *a ) { u16 devcnt ; struct esas2r_target *t ; unsigned long flags ; raw_spinlock_t *tmp ; { devcnt = 0U; tmp = spinlock_check(& a->mem_lock); flags = _raw_spin_lock_irqsave(tmp); t = (struct esas2r_target *)(& a->targetdb); goto ldv_39067; ldv_39066: ; if ((unsigned int )t->target_state == 5U) { devcnt = (u16 )((int )devcnt + 1); } else { } t = t + 1; ldv_39067: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39066; } else { } spin_unlock_irqrestore(& a->mem_lock, flags); return (devcnt); } } bool ldv_queue_work_on_123(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_124(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_125(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_126(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_127(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_128(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; bool ldv_queue_work_on_139(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_141(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_140(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_143(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_142(struct workqueue_struct *ldv_func_arg1 ) ; int ldv_scsi_add_host_with_dma_144(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; void esas2r_build_cli_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u32 cmd_rsp_len ) ; void esas2r_nuxi_mgt_data(u8 function , void *data ) ; void esas2r_nuxi_cfg_data(u8 function , void *data ) ; static u8 esas2r_vdaioctl_versions[9U] = { 255U, 0U, 255U, 255U, 0U, 255U, 0U, 0U, 0U}; static void clear_vda_request(struct esas2r_request *rq ) ; static void esas2r_complete_vda_ioctl(struct esas2r_adapter *a , struct esas2r_request *rq ) ; bool esas2r_process_vda_ioctl(struct esas2r_adapter *a , struct atto_ioctl_vda *vi , struct esas2r_request *rq , struct esas2r_sg_context *sgc ) { u32 datalen ; struct atto_vda_sge *firstsg ; u8 vercnt ; int tmp ; u8 *cmdcurr_offset ; u32 payldlen ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { datalen = 0U; firstsg = (struct atto_vda_sge *)0; vercnt = 9U; vi->status = 0U; vi->vda_status = 254U; if ((int )vi->function >= (int )vercnt) { vi->status = 4U; return (0); } else { } if ((int )vi->version > (int )esas2r_vdaioctl_versions[(int )vi->function]) { vi->status = 2U; return (0); } else { } tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { vi->status = 11U; return (0); } else { } if ((unsigned int )vi->function != 0U) { clear_vda_request(rq); } else { } (rq->vrq)->scsi.function = vi->function; rq->interrupt_cb = & esas2r_complete_vda_ioctl; rq->interrupt_cx = (void *)vi; switch ((int )vi->function) { case 1: ; if (((unsigned int )vi->cmd.flash.sub_func != 6U && (unsigned int )vi->cmd.flash.sub_func != 7U) && (unsigned int )vi->cmd.flash.sub_func != 8U) { vi->status = 4U; return (0); } else { } if ((unsigned int )vi->cmd.flash.sub_func != 8U) { datalen = vi->data_length; } else { } (rq->vrq)->flash.length = datalen; (rq->vrq)->flash.sub_func = vi->cmd.flash.sub_func; memcpy((void *)(& (rq->vrq)->flash.data.file.file_name), (void const *)(& vi->cmd.flash.data.file.file_name), 16UL); firstsg = (struct atto_vda_sge *)(& (rq->vrq)->flash.data.file.sge); goto ldv_38992; case 4: datalen = vi->data_length; (rq->vrq)->cli.cmd_rsp_len = vi->cmd.cli.cmd_rsp_len; (rq->vrq)->cli.length = datalen; firstsg = (struct atto_vda_sge *)(& (rq->vrq)->cli.sge); goto ldv_38992; case 7: cmdcurr_offset = sgc->cur_offset + 0xffffffffffffff10UL; if (vi->data_length != 0U) { payldlen = 0U; if ((unsigned int )vi->cmd.mgt.mgt_func == 8U || (unsigned int )vi->cmd.mgt.mgt_func == 9U) { (rq->vrq)->mgt.payld_sglst_offset = 48U; payldlen = vi->data_length; datalen = vi->cmd.mgt.data_length; } else if ((unsigned int )vi->cmd.mgt.mgt_func == 10U || (unsigned int )vi->cmd.mgt.mgt_func == 12U) { datalen = vi->data_length; cmdcurr_offset = sgc->cur_offset; } else { vi->status = 8U; return (0); } (rq->vrq)->mgt.length = datalen; if (payldlen != 0U) { (rq->vrq)->mgt.payld_length = payldlen; esas2r_sgc_init(sgc, a, rq, (struct atto_vda_sge *)(& (rq->vrq)->mgt.payld_sge)); sgc->length = payldlen; tmp___0 = esas2r_build_sg_list(a, rq, sgc); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { vi->status = 3U; return (0); } else { } } else { } } else { datalen = vi->cmd.mgt.data_length; (rq->vrq)->mgt.length = datalen; } firstsg = (struct atto_vda_sge *)(& (rq->vrq)->mgt.__annonCompField97.sge); sgc->cur_offset = cmdcurr_offset; (rq->vrq)->mgt.mgt_func = vi->cmd.mgt.mgt_func; (rq->vrq)->mgt.scan_generation = vi->cmd.mgt.scan_generation; (rq->vrq)->mgt.dev_index = vi->cmd.mgt.dev_index; esas2r_nuxi_mgt_data((int )(rq->vrq)->mgt.mgt_func, (void *)(& vi->cmd.mgt.data)); goto ldv_38992; case 6: ; if (vi->data_length != 0U || vi->cmd.cfg.data_length == 0U) { vi->status = 8U; return (0); } else { } if ((unsigned int )vi->cmd.cfg.cfg_func == 0U) { vi->status = 4U; return (0); } else { } (rq->vrq)->cfg.sub_func = vi->cmd.cfg.cfg_func; (rq->vrq)->cfg.length = vi->cmd.cfg.data_length; if ((unsigned int )vi->cmd.cfg.cfg_func == 1U) { memcpy((void *)(& (rq->vrq)->cfg.data), (void const *)(& vi->cmd.cfg.data), (size_t )vi->cmd.cfg.data_length); esas2r_nuxi_cfg_data((int )(rq->vrq)->cfg.sub_func, (void *)(& (rq->vrq)->cfg.data)); } else { vi->status = 4U; return (0); } goto ldv_38992; case 8: vi->cmd.gsv.rsp_len = vercnt; memcpy((void *)(& vi->cmd.gsv.version_info), (void const *)(& esas2r_vdaioctl_versions), (size_t )vercnt); vi->vda_status = 0U; goto ldv_38992; default: vi->status = 4U; return (0); } ldv_38992: ; if (datalen != 0U) { esas2r_sgc_init(sgc, a, rq, firstsg); sgc->length = datalen; tmp___2 = esas2r_build_sg_list(a, rq, sgc); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { vi->status = 3U; return (0); } else { } } else { } esas2r_start_request(a, rq); return (1); } } static void esas2r_complete_vda_ioctl(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_ioctl_vda *vi ; struct atto_ioctl_vda_cfg_cmd *cfg ; struct atto_vda_cfg_rsp *rsp ; char buf[5U] ; { vi = (struct atto_ioctl_vda *)rq->interrupt_cx; vi->vda_status = rq->req_stat; switch ((int )vi->function) { case 1: ; if ((unsigned int )vi->cmd.flash.sub_func == 8U || (unsigned int )vi->cmd.flash.sub_func == 6U) { vi->cmd.flash.data.file.file_size = rq->func_rsp.flash_rsp.file_size; } else { } goto ldv_39006; case 7: vi->cmd.mgt.scan_generation = rq->func_rsp.mgt_rsp.scan_generation; vi->cmd.mgt.dev_index = rq->func_rsp.mgt_rsp.dev_index; if (vi->data_length == 0U) { vi->cmd.mgt.data_length = rq->func_rsp.mgt_rsp.length; } else { } esas2r_nuxi_mgt_data((int )(rq->vrq)->mgt.mgt_func, (void *)(& vi->cmd.mgt.data)); goto ldv_39006; case 6: ; if ((unsigned int )vi->cmd.cfg.cfg_func == 1U) { cfg = & vi->cmd.cfg; rsp = & rq->func_rsp.cfg_rsp; cfg->data_length = 112U; cfg->data.init.vda_version = (unsigned int )rsp->vda_version; cfg->data.init.fw_build = rsp->fw_build; snprintf((char *)(& buf), 5UL, "%1.1u.%2.2u", (int )((unsigned char )rsp->fw_release), (int )((unsigned char )((int )rsp->fw_release >> 8))); memcpy((void *)(& cfg->data.init.fw_release), (void const *)(& buf), 4UL); if ((unsigned int )((unsigned char )cfg->data.init.fw_build) == 65U) { cfg->data.init.fw_version = cfg->data.init.fw_build; } else { cfg->data.init.fw_version = cfg->data.init.fw_release; } } else { esas2r_nuxi_cfg_data((int )(rq->vrq)->cfg.sub_func, (void *)(& vi->cmd.cfg.data)); } goto ldv_39006; case 4: vi->cmd.cli.cmd_rsp_len = rq->func_rsp.cli_rsp.cmd_rsp_len; goto ldv_39006; default: ; goto ldv_39006; } ldv_39006: ; return; } } void esas2r_build_flash_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 cksum , u32 addr , u32 length ) { struct atto_vda_flash_req *vrq ; { vrq = & (rq->vrq)->flash; clear_vda_request(rq); (rq->vrq)->scsi.function = 1U; if (((unsigned int )sub_func == 0U || (unsigned int )sub_func == 2U) || (unsigned int )sub_func == 1U) { vrq->sg_list_offset = 20U; } else { } vrq->length = length; vrq->flash_addr = addr; vrq->checksum = cksum; vrq->sub_func = sub_func; return; } } void esas2r_build_mgt_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u8 scan_gen , u16 dev_index , u32 length , void *data ) { struct atto_vda_mgmt_req *vrq ; int tmp ; { vrq = & (rq->vrq)->mgt; clear_vda_request(rq); (rq->vrq)->scsi.function = 7U; vrq->mgt_func = sub_func; vrq->scan_generation = scan_gen; vrq->dev_index = dev_index; vrq->length = length; if (vrq->length != 0U) { tmp = constant_test_bit(24L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { vrq->sg_list_offset = 24U; vrq->__annonCompField97.sge[0].length = length | 16777216U; vrq->__annonCompField97.sge[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } else { vrq->sg_list_offset = 24U; vrq->__annonCompField97.prde[0].ctl_len = length; vrq->__annonCompField97.prde[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } } else { } if ((unsigned long )data != (unsigned long )((void *)0)) { esas2r_nuxi_mgt_data((int )sub_func, data); memcpy((void *)(& (rq->__annonCompField106.vda_rsp_data)->mgt_data.data.bytes), (void const *)data, (size_t )length); } else { } return; } } void esas2r_build_ae_req(struct esas2r_adapter *a , struct esas2r_request *rq ) { struct atto_vda_ae_req *vrq ; int tmp ; { vrq = & (rq->vrq)->ae; clear_vda_request(rq); (rq->vrq)->scsi.function = 3U; vrq->length = 256U; tmp = constant_test_bit(24L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { vrq->sg_list_offset = 12U; vrq->__annonCompField93.sge[0].length = vrq->length | 16777216U; vrq->__annonCompField93.sge[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } else { vrq->sg_list_offset = 12U; vrq->__annonCompField93.prde[0].ctl_len = vrq->length; vrq->__annonCompField93.prde[0].address = (rq->vrq_md)->phys_addr + 1024ULL; } return; } } void esas2r_build_cli_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u32 cmd_rsp_len ) { struct atto_vda_cli_req *vrq ; { vrq = & (rq->vrq)->cli; clear_vda_request(rq); (rq->vrq)->scsi.function = 4U; vrq->length = length; vrq->cmd_rsp_len = cmd_rsp_len; vrq->sg_list_offset = 16U; return; } } void esas2r_build_ioctl_req(struct esas2r_adapter *a , struct esas2r_request *rq , u32 length , u8 sub_func ) { struct atto_vda_ioctl_req *vrq ; { vrq = & (rq->vrq)->ioctl; clear_vda_request(rq); (rq->vrq)->scsi.function = 5U; vrq->length = length; vrq->sub_func = sub_func; vrq->sg_list_offset = 32U; return; } } void esas2r_build_cfg_req(struct esas2r_adapter *a , struct esas2r_request *rq , u8 sub_func , u32 length , void *data ) { struct atto_vda_cfg_req *vrq ; { vrq = & (rq->vrq)->cfg; clear_vda_request(rq); (rq->vrq)->scsi.function = 6U; vrq->sub_func = sub_func; vrq->length = length; if ((unsigned long )data != (unsigned long )((void *)0)) { esas2r_nuxi_cfg_data((int )sub_func, data); memcpy((void *)(& vrq->data), (void const *)data, (size_t )length); } else { } return; } } static void clear_vda_request(struct esas2r_request *rq ) { u32 handle ; { handle = (rq->vrq)->scsi.handle; memset((void *)rq->vrq, 0, 1024UL); (rq->vrq)->scsi.handle = handle; rq->req_stat = 254U; memset(rq->__annonCompField106.data_buf, 0, 256UL); INIT_LIST_HEAD(& rq->req_list); return; } } bool ldv_queue_work_on_139(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_140(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_141(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_142(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_143(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_144(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern void __bad_size_call_parameter(void) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void add_timer(struct timer_list * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; bool ldv_queue_work_on_155(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_157(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_156(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_159(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_168(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_158(struct workqueue_struct *ldv_func_arg1 ) ; extern int cpu_number ; extern int sysfs_create_bin_file(struct kobject * , struct bin_attribute const * ) ; __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } int ldv_state_variable_8 ; struct kobject *bin_attr_hw_group0 ; int pci_counter ; struct work_struct *ldv_work_struct_1_3 ; struct kobject *bin_attr_fs_group0 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_work_1_1 ; struct bin_attribute *bin_attr_live_nvram_group2 ; struct Scsi_Host *driver_template_group1 ; struct file *bin_attr_hw_group1 ; void *esas2r_proc_fops_group1 ; struct scsi_device *driver_template_group2 ; int ldv_state_variable_9 ; int ref_cnt ; struct bin_attribute *bin_attr_hw_group2 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; int ldv_state_variable_10 ; struct file *bin_attr_fs_group1 ; struct file *esas2r_proc_fops_group2 ; int ldv_work_1_3 ; struct file *bin_attr_live_nvram_group1 ; int ldv_state_variable_6 ; int ldv_state_variable_2 ; struct bin_attribute *bin_attr_vda_group2 ; struct file *bin_attr_vda_group1 ; struct bin_attribute *bin_attr_fw_group2 ; struct kobject *bin_attr_vda_group0 ; int ldv_state_variable_11 ; int ldv_work_1_2 ; struct kobject *bin_attr_live_nvram_group0 ; struct kobject *bin_attr_fw_group0 ; struct work_struct *ldv_work_struct_1_2 ; int ldv_state_variable_3 ; struct timer_list *ldv_timer_list_2 ; int ldv_work_1_0 ; struct file *bin_attr_fw_group1 ; struct scsi_cmnd *driver_template_group0 ; int ldv_state_variable_4 ; struct bin_attribute *bin_attr_fs_group2 ; struct pci_dev *esas2r_pci_driver_group1 ; void ldv_initialize_bin_attribute_10(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void choose_timer_2(struct timer_list *timer ) ; int reg_timer_2(struct timer_list *timer ) ; void activate_pending_timer_2(struct timer_list *timer , unsigned long data , int pending_flag ) ; void ldv_initialize_bin_attribute_9(void) ; void ldv_pci_driver_4(void) ; void ldv_initialize_bin_attribute_7(void) ; void ldv_file_operations_3(void) ; void disable_work_1(struct work_struct *work ) ; void ldv_initialize_bin_attribute_8(void) ; void work_init_1(void) ; void invoke_work_1(void) ; void ldv_initialize_bin_attribute_11(void) ; extern void msleep(unsigned int ) ; extern int seq_putc(struct seq_file * , char ) ; extern int seq_puts(struct seq_file * , char const * ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_162(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_163(struct pci_driver *ldv_func_arg1 ) ; void ldv_pci_unregister_driver_165(struct pci_driver *ldv_func_arg1 ) ; extern struct scatterlist *sg_next(struct scatterlist * ) ; extern int __register_chrdev(unsigned int , unsigned int , unsigned int , char const * , struct file_operations const * ) ; extern void __unregister_chrdev(unsigned int , unsigned int , unsigned int , char const * ) ; __inline static int register_chrdev(unsigned int major , char const *name , struct file_operations const *fops ) { int tmp ; { tmp = __register_chrdev(major, 0U, 256U, name, fops); return (tmp); } } __inline static int ldv_register_chrdev_167(unsigned int major , char const *name , struct file_operations const *fops ) ; __inline static void unregister_chrdev(unsigned int major , char const *name ) { { __unregister_chrdev(major, 0U, 256U, name); return; } } __inline static void ldv_unregister_chrdev_164(unsigned int major , char const *name ) ; extern struct proc_dir_entry *proc_create_data(char const * , umode_t , struct proc_dir_entry * , struct file_operations const * , void * ) ; __inline static struct proc_dir_entry *proc_create(char const *name , umode_t mode , struct proc_dir_entry *parent , struct file_operations const *proc_fops ) { struct proc_dir_entry *tmp ; { tmp = proc_create_data(name, (int )mode, parent, proc_fops, (void *)0); return (tmp); } } extern void remove_proc_entry(char const * , struct proc_dir_entry * ) ; extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; struct Scsi_Host *ldv_scsi_host_alloc_161(struct scsi_host_template *sht , int privsize ) ; int ldv_scsi_add_host_with_dma_160(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { tmp = ldv_scsi_add_host_with_dma_160(host, dev, dev); return (tmp); } } extern void scsi_unregister(struct Scsi_Host * ) ; void ldv_scsi_unregister_166(struct Scsi_Host *shost ) ; extern int scsi_add_device(struct Scsi_Host * , uint , uint , u64 ) ; extern void scsi_remove_device(struct scsi_device * ) ; extern void scsi_device_put(struct scsi_device * ) ; extern struct scsi_device *scsi_device_lookup(struct Scsi_Host * , uint , uint , u64 ) ; extern int scsi_change_queue_depth(struct scsi_device * , int ) ; extern int scsi_device_set_state(struct scsi_device * , enum scsi_device_state ) ; extern int scsi_dma_map(struct scsi_cmnd * ) ; extern void scsi_dma_unmap(struct scsi_cmnd * ) ; __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } __inline static unsigned int scsi_bufflen(struct scsi_cmnd *cmd ) { { return (cmd->sdb.length); } } __inline static void scsi_set_resid(struct scsi_cmnd *cmd , int resid ) { { cmd->sdb.resid = resid; return; } } struct esas2r_adapter *esas2r_adapters[32U] ; int cmd_per_lun ; int can_queue ; int esas2r_max_sectors ; int sg_tablesize ; int esas2r_release(struct Scsi_Host *sh ) ; char const *esas2r_info(struct Scsi_Host *sh ) ; int esas2r_queuecommand(struct Scsi_Host *host , struct scsi_cmnd *cmd ) ; int esas2r_show_info(struct seq_file *m , struct Scsi_Host *sh ) ; long esas2r_proc_ioctl(struct file *fp , unsigned int cmd , unsigned long arg ) ; int esas2r_eh_abort(struct scsi_cmnd *cmd ) ; int esas2r_device_reset(struct scsi_cmnd *cmd ) ; int esas2r_host_reset(struct scsi_cmnd *cmd ) ; int esas2r_bus_reset(struct scsi_cmnd *cmd ) ; int esas2r_target_reset(struct scsi_cmnd *cmd ) ; void esas2r_fw_event_on(struct esas2r_adapter *a ) ; int esas2r_req_status_to_error(u8 req_stat ) ; static int found_adapters ; static struct esas2r_adapter *esas2r_adapter_from_kobj(struct kobject *kobj ) { struct device *dev ; struct kobject const *__mptr ; struct Scsi_Host *host ; struct device const *__mptr___0 ; { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct device const *)dev; host = (struct Scsi_Host *)__mptr___0 + 0xfffffffffffff6c0UL; return ((struct esas2r_adapter *)(& host->hostdata)); } } static ssize_t read_fw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_read_fw(a, buf, (long )off, (int )count); return ((ssize_t )tmp___0); } } static ssize_t write_fw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_write_fw(a, (char const *)buf, (long )off, (int )count); return ((ssize_t )tmp___0); } } static ssize_t read_fs(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_read_fs(a, buf, (long )off, (int )count); return ((ssize_t )tmp___0); } } static ssize_t write_fs(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; unsigned long _min1 ; size_t _min2 ; int result ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; _min1 = 36UL; _min2 = count; length = (int )(_min1 < _min2 ? _min1 : _min2); result = 0; result = esas2r_write_fs(a, (char const *)buf, (long )off, (int )count); if (result < 0) { result = 0; } else { } return ((ssize_t )length); } } static ssize_t read_vda(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_read_vda(a, buf, (long )off, (int )count); return ((ssize_t )tmp___0); } } static ssize_t write_vda(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; tmp___0 = esas2r_write_vda(a, (char const *)buf, (long )off, (int )count); return ((ssize_t )tmp___0); } } static ssize_t read_live_nvram(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; size_t __min1 ; size_t __min2 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; __min1 = 256UL; __min2 = 4096UL; length = (int )(__min1 < __min2 ? __min1 : __min2); memcpy((void *)buf, (void const *)a->nvram, (size_t )length); return ((ssize_t )length); } } static ssize_t write_live_nvram(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; struct esas2r_request *rq ; int result ; int tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; result = -14; rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { return (-12L); } else { } tmp___0 = esas2r_write_params(a, rq, (struct esas2r_sas_nvram *)buf); if (tmp___0 != 0) { result = (int )count; } else { } esas2r_free_request(a, rq); return ((ssize_t )result); } } static ssize_t read_default_nvram(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; esas2r_nvram_get_defaults(a, (struct esas2r_sas_nvram *)buf); return (256L); } } static ssize_t read_hw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; size_t __min1 ; size_t __min2 ; u8 tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; __min1 = 576UL; __min2 = 4096UL; length = (int )(__min1 < __min2 ? __min1 : __min2); if ((unsigned long )a->local_atto_ioctl == (unsigned long )((struct atto_ioctl *)0)) { return (-12L); } else { } tmp___0 = handle_hba_ioctl(a, a->local_atto_ioctl); if ((unsigned int )tmp___0 != 0U) { return (-12L); } else { } memcpy((void *)buf, (void const *)a->local_atto_ioctl, (size_t )length); return ((ssize_t )length); } } static ssize_t write_hw(struct file *file , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t off , size_t count ) { struct esas2r_adapter *a ; struct esas2r_adapter *tmp ; int length ; unsigned long _min1 ; size_t _min2 ; void *tmp___0 ; { tmp = esas2r_adapter_from_kobj(kobj); a = tmp; _min1 = 576UL; _min2 = count; length = (int )(_min1 < _min2 ? _min1 : _min2); if ((unsigned long )a->local_atto_ioctl == (unsigned long )((struct atto_ioctl *)0)) { tmp___0 = kzalloc(576UL, 208U); a->local_atto_ioctl = (struct atto_ioctl *)tmp___0; if ((unsigned long )a->local_atto_ioctl == (unsigned long )((struct atto_ioctl *)0)) { esas2r_log(2L, "write_hw kzalloc failed for %d bytes", 576UL); return (-12L); } else { } } else { } memset((void *)a->local_atto_ioctl, 0, 576UL); memcpy((void *)a->local_atto_ioctl, (void const *)buf, (size_t )length); return ((ssize_t )length); } } struct bin_attribute bin_attr_fw = {{"fw", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_fw, & write_fw, 0}; struct bin_attribute bin_attr_fs = {{"fs", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_fs, & write_fs, 0}; struct bin_attribute bin_attr_vda = {{"vda", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_vda, & write_vda, 0}; struct bin_attribute bin_attr_hw = {{"hw", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_hw, & write_hw, 0}; struct bin_attribute bin_attr_live_nvram = {{"live_nvram", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_live_nvram, & write_live_nvram, 0}; struct bin_attribute bin_attr_default_nvram = {{"default_nvram", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & read_default_nvram, (ssize_t (*)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ))0, 0}; static struct scsi_host_template driver_template = {& __this_module, "ATTO ExpressSAS 6GB RAID Adapter", 0, & esas2r_release, & esas2r_info, & esas2r_ioctl, 0, & esas2r_queuecommand, & esas2r_eh_abort, & esas2r_device_reset, & esas2r_target_reset, & esas2r_bus_reset, & esas2r_host_reset, 0, 0, 0, 0, 0, 0, 0, & scsi_change_queue_depth, 0, 0, & esas2r_show_info, 0, 0, 0, "esas2r", 0, 128, -1, 128U, (unsigned short)0, 65535U, 0UL, 64, 0U, 0, 1U, (unsigned char)0, (unsigned char)0, 0U, 1U, 0U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0U, 0, 0, {0, 0}, 0ULL, 0U, 0, (_Bool)0}; int sgl_page_size = 512; int num_sg_lists = 1024; int sg_tablesize = 128; int num_requests = 256; int num_ae_requests = 4; int cmd_per_lun = 64; int can_queue = 128; int esas2r_max_sectors = 65535; int interrupt_mode = 1; static struct pci_device_id esas2r_pci_table[7U] = { {4476U, 73U, 4476U, 73U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 74U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 75U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 76U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 77U, 0U, 0U, 0UL}, {4476U, 73U, 4476U, 78U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__esas2r_pci_table_device_table[7U] ; static int esas2r_probe(struct pci_dev *pcid , struct pci_device_id const *id ) ; static void esas2r_remove(struct pci_dev *pdev ) ; static struct pci_driver esas2r_pci_driver = {{0, 0}, "esas2r", (struct pci_device_id const *)(& esas2r_pci_table), & esas2r_probe, & esas2r_remove, & esas2r_suspend, 0, 0, & esas2r_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int esas2r_probe(struct pci_dev *pcid , struct pci_device_id const *id ) { struct Scsi_Host *host ; struct esas2r_adapter *a ; int err ; size_t host_alloc_size ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { host = (struct Scsi_Host *)0; host_alloc_size = (unsigned long )(num_requests + 1) * 176UL + 559640UL; esas2r_log_dev(4L, (struct device const *)(& pcid->dev), "esas2r_probe() 0x%02x 0x%02x 0x%02x 0x%02x", (int )pcid->vendor, (int )pcid->device, (int )pcid->subsystem_vendor, (int )pcid->subsystem_device); esas2r_log_dev(3L, (struct device const *)(& pcid->dev), "before pci_enable_device() enable_cnt: %d", pcid->enable_cnt.counter); err = pci_enable_device(pcid); if (err != 0) { esas2r_log_dev(1L, (struct device const *)(& pcid->dev), "pci_enable_device() FAIL (%d)", err); return (-19); } else { } esas2r_log_dev(3L, (struct device const *)(& pcid->dev), "pci_enable_device() OK"); esas2r_log_dev(3L, (struct device const *)(& pcid->dev), "after pci_enable_device() enable_cnt: %d", pcid->enable_cnt.counter); host = ldv_scsi_host_alloc_161(& driver_template, (int )host_alloc_size); if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { esas2r_log(1L, "scsi_host_alloc() FAIL"); return (-19); } else { } memset((void *)(& host->hostdata), 0, host_alloc_size); a = (struct esas2r_adapter *)(& host->hostdata); esas2r_log(3L, "scsi_host_alloc() OK host: %p", host); host->max_id = 256U; host->max_lun = 255ULL; host->max_cmd_len = 16U; host->can_queue = can_queue; host->cmd_per_lun = (short )cmd_per_lun; host->this_id = (int )(host->max_id + 1U); host->max_channel = 0U; host->unique_id = (unsigned int )found_adapters; host->sg_tablesize = (unsigned short )sg_tablesize; host->max_sectors = (unsigned int )esas2r_max_sectors; esas2r_log(3L, "pci_set_master() called"); pci_set_master(pcid); tmp = esas2r_init_adapter(host, pcid, found_adapters); if (tmp == 0) { esas2r_log(1L, "unable to initialize device at PCI bus %x:%x", (int )(pcid->bus)->number, pcid->devfn); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "scsi_host_put() called"); scsi_host_put(host); return (0); } else { } esas2r_log(3L, "pci_set_drvdata(%p, %p) called", pcid, (unsigned long *)(& host->hostdata)); pci_set_drvdata(pcid, (void *)host); esas2r_log(3L, "scsi_add_host() called"); err = scsi_add_host(host, & pcid->dev); if (err != 0) { esas2r_log(1L, "scsi_add_host returned %d", err); esas2r_log_dev(1L, (struct device const *)(& host->shost_gendev), "scsi_add_host() FAIL"); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "scsi_host_put() called"); scsi_host_put(host); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "pci_set_drvdata(%p, NULL) called", pcid); pci_set_drvdata(pcid, (void *)0); return (-19); } else { } esas2r_fw_event_on(a); esas2r_log_dev(3L, (struct device const *)(& host->shost_gendev), "scsi_scan_host() called"); scsi_scan_host(host); tmp___0 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fw)); if (tmp___0 != 0) { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: fw"); } else { a->sysfs_fw_created = 1U; } tmp___1 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_fs)); if (tmp___1 != 0) { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: fs"); } else { a->sysfs_fs_created = 1U; } tmp___2 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_vda)); if (tmp___2 != 0) { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: vda"); } else { a->sysfs_vda_created = 1U; } tmp___3 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_hw)); if (tmp___3 != 0) { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: hw"); } else { a->sysfs_hw_created = 1U; } tmp___4 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_live_nvram)); if (tmp___4 != 0) { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: live_nvram"); } else { a->sysfs_live_nvram_created = 1U; } tmp___5 = sysfs_create_bin_file(& host->shost_dev.kobj, (struct bin_attribute const *)(& bin_attr_default_nvram)); if (tmp___5 != 0) { esas2r_log_dev(2L, (struct device const *)(& host->shost_gendev), "Failed to create sysfs binary file: default_nvram"); } else { a->sysfs_default_nvram_created = 1U; } found_adapters = found_adapters + 1; return (0); } } static void esas2r_remove(struct pci_dev *pdev ) { struct Scsi_Host *host ; int index ; void *tmp ; { if ((unsigned long )pdev == (unsigned long )((struct pci_dev *)0)) { esas2r_log(2L, "esas2r_remove pdev==NULL"); return; } else { } tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { return; } else { } esas2r_log_dev(3L, (struct device const *)(& pdev->dev), "esas2r_remove(%p) called; host:%p", pdev, host); index = esas2r_cleanup(host); if (index < 0) { esas2r_log_dev(2L, (struct device const *)(& pdev->dev), "unknown host in %s", "esas2r_remove"); } else { } found_adapters = found_adapters - 1; if (found_adapters == 0) { esas2r_cleanup((struct Scsi_Host *)0); } else { } return; } } static int esas2r_init(void) { int i ; int tmp ; { esas2r_log(3L, "%s called", "esas2r_init"); if (can_queue <= 0) { esas2r_log(2L, "warning: can_queue must be at least 1, value forced."); can_queue = 1; } else if (can_queue > 2048) { esas2r_log(2L, "warning: can_queue must be no larger than 2048, value forced."); can_queue = 2048; } else { } if (cmd_per_lun <= 0) { esas2r_log(2L, "warning: cmd_per_lun must be at least 1, value forced."); cmd_per_lun = 1; } else if (cmd_per_lun > 2048) { esas2r_log(2L, "warning: cmd_per_lun must be no larger than 2048, value forced."); cmd_per_lun = 2048; } else { } if (sg_tablesize <= 31) { esas2r_log(2L, "warning: sg_tablesize must be at least 32, value forced."); sg_tablesize = 32; } else { } if (esas2r_max_sectors <= 0) { esas2r_log(2L, "warning: esas2r_max_sectors must be at least 1, value forced."); esas2r_max_sectors = 1; } else if (esas2r_max_sectors > 65535) { esas2r_log(2L, "warning: esas2r_max_sectors must be no larger than 0xffff, value forced."); esas2r_max_sectors = 65535; } else { } sgl_page_size = sgl_page_size & -16; if (sgl_page_size <= 63) { sgl_page_size = 64; } else if (sgl_page_size > 1024) { sgl_page_size = 1024; } else { } if (num_sg_lists <= 7) { num_sg_lists = 8; } else if (num_sg_lists > 2048) { num_sg_lists = 2048; } else { } if (num_requests <= 3) { num_requests = 4; } else if (num_requests > 256) { num_requests = 256; } else { } if (num_ae_requests <= 1) { num_ae_requests = 2; } else if (num_ae_requests > 8) { num_ae_requests = 8; } else { } i = 0; goto ldv_39379; ldv_39378: esas2r_adapters[i] = (struct esas2r_adapter *)0; i = i + 1; ldv_39379: ; if (i <= 31) { goto ldv_39378; } else { } driver_template.module = & __this_module; tmp = ldv___pci_register_driver_162(& esas2r_pci_driver, & __this_module, "esas2r"); if (tmp != 0) { esas2r_log(1L, "pci_register_driver FAILED"); } else { esas2r_log(3L, "pci_register_driver() OK"); } if (found_adapters == 0) { ldv_pci_unregister_driver_163(& esas2r_pci_driver); esas2r_cleanup((struct Scsi_Host *)0); esas2r_log(1L, "driver will not be loaded because no ATTO %s devices were found", (char *)"esas2r"); return (-1); } else { esas2r_log(3L, "found %d adapters", found_adapters); } return (0); } } static struct file_operations const esas2r_proc_fops = {0, 0, 0, 0, 0, 0, 0, 0, & esas2r_proc_ioctl, & esas2r_proc_ioctl, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct Scsi_Host *esas2r_proc_host ; static int esas2r_proc_major ; long esas2r_proc_ioctl(struct file *fp , unsigned int cmd , unsigned long arg ) { int tmp ; { tmp = esas2r_ioctl_handler((void *)(& esas2r_proc_host->hostdata), (int )cmd, (void *)arg); return ((long )tmp); } } static void esas2r_exit(void) { { esas2r_log(3L, "%s called", "esas2r_exit"); if (esas2r_proc_major > 0) { esas2r_log(3L, "unregister proc"); remove_proc_entry("ATTONode", (esas2r_proc_host->hostt)->proc_dir); ldv_unregister_chrdev_164((unsigned int )esas2r_proc_major, "esas2r"); esas2r_proc_major = 0; } else { } esas2r_log(3L, "pci_unregister_driver() called"); ldv_pci_unregister_driver_165(& esas2r_pci_driver); return; } } int esas2r_show_info(struct seq_file *m , struct Scsi_Host *sh ) { struct esas2r_adapter *a ; struct esas2r_target *t ; int dev_count ; char const *tmp ; { a = (struct esas2r_adapter *)(& sh->hostdata); dev_count = 0; esas2r_log(4L, "esas2r_show_info (%p,%d)", m, sh->host_no); seq_printf(m, "ATTO ExpressSAS 6GB RAID Adapter\nDriver version: 1.00\nFlash version: %s\nFirmware version: %s\nCopyright 2001-2013\nhttp://www.attotech.com\n\n", (char *)(& a->flash_rev), (int )((signed char )a->fw_rev[0]) != 0 ? (char *)(& a->fw_rev) : (char *)"(none)"); tmp = esas2r_get_model_name(a); seq_printf(m, "Adapter information:\n--------------------\nModel: %s\nSAS address: %02X%02X%02X%02X:%02X%02X%02X%02X\n", tmp, (int )(a->nvram)->sas_addr[0], (int )(a->nvram)->sas_addr[1], (int )(a->nvram)->sas_addr[2], (int )(a->nvram)->sas_addr[3], (int )(a->nvram)->sas_addr[4], (int )(a->nvram)->sas_addr[5], (int )(a->nvram)->sas_addr[6], (int )(a->nvram)->sas_addr[7]); seq_puts(m, "\nDiscovered devices:\n\n # Target ID\n---------------\n"); t = (struct esas2r_target *)(& a->targetdb); goto ldv_39401; ldv_39400: ; if ((unsigned int )t->buffered_target_state == 5U) { dev_count = dev_count + 1; seq_printf(m, " %3d %3d\n", dev_count, (int )((unsigned short )(((long )t - (long )(& a->targetdb)) / 120L))); } else { } t = t + 1; ldv_39401: ; if ((unsigned long )a->targetdb_end > (unsigned long )t) { goto ldv_39400; } else { } if (dev_count == 0) { seq_puts(m, "none\n"); } else { } seq_putc(m, 10); return (0); } } int esas2r_release(struct Scsi_Host *sh ) { { esas2r_log_dev(3L, (struct device const *)(& sh->shost_gendev), "esas2r_release() called"); esas2r_cleanup(sh); if (sh->irq != 0U) { free_irq(sh->irq, (void *)0); } else { } ldv_scsi_unregister_166(sh); return (0); } } char const *esas2r_info(struct Scsi_Host *sh ) { struct esas2r_adapter *a ; char esas2r_info_str[512U] ; struct proc_dir_entry *pde ; { a = (struct esas2r_adapter *)(& sh->hostdata); esas2r_log_dev(3L, (struct device const *)(& sh->shost_gendev), "esas2r_info() called"); if (esas2r_proc_major <= 0) { esas2r_proc_host = sh; esas2r_proc_major = ldv_register_chrdev_167(0U, "esas2r", & esas2r_proc_fops); esas2r_log_dev(4L, (struct device const *)(& sh->shost_gendev), "register_chrdev (major %d)", esas2r_proc_major); if (esas2r_proc_major > 0) { pde = proc_create("ATTONode", 0, (sh->hostt)->proc_dir, & esas2r_proc_fops); if ((unsigned long )pde == (unsigned long )((struct proc_dir_entry *)0)) { esas2r_log_dev(2L, (struct device const *)(& sh->shost_gendev), "failed to create_proc_entry"); esas2r_proc_major = -1; } else { } } else { } } else { } sprintf((char *)(& esas2r_info_str), "ATTO ExpressSAS 6GB RAID Adapter (bus 0x%02X, device 0x%02X, IRQ 0x%02X) driver version: 1.00 firmware version: %s\n", (int )((a->pcid)->bus)->number, (a->pcid)->devfn, (a->pcid)->irq, (int )((signed char )a->fw_rev[0]) != 0 ? (char *)(& a->fw_rev) : (char *)"(none)"); return ((char const *)(& esas2r_info_str)); } } static u32 get_physaddr_from_sgc(struct esas2r_sg_context *sgc , u64 *addr ) { u32 len ; long tmp ; { tmp = ldv__builtin_expect((unsigned long )sgc->cur_offset == (unsigned long )sgc->exp_offset, 1L); if (tmp != 0L) { if (sgc->sgel_count < sgc->num_sgel) { if ((unsigned long )sgc->exp_offset != (unsigned long )((u8 *)0U)) { sgc->cur_sgel = sg_next(sgc->cur_sgel); sgc->sgel_count = sgc->sgel_count + 1; } else { } len = (sgc->cur_sgel)->dma_length; *addr = (sgc->cur_sgel)->dma_address; sgc->exp_offset = sgc->exp_offset + (unsigned long )len; } else { len = 0U; } } else if ((unsigned long )sgc->cur_offset < (unsigned long )sgc->exp_offset) { len = (sgc->cur_sgel)->dma_length; *addr = (sgc->cur_sgel)->dma_address; sgc->exp_offset = sgc->exp_offset + - ((unsigned long )len); *addr = *addr + (unsigned long long )((long )sgc->cur_offset - (long )sgc->exp_offset); sgc->exp_offset = sgc->exp_offset + (unsigned long )len; len = (unsigned int )((long )sgc->exp_offset) - (unsigned int )((long )sgc->cur_offset); } else { len = 0U; } return (len); } } int esas2r_queuecommand(struct Scsi_Host *host , struct scsi_cmnd *cmd ) { struct esas2r_adapter *a ; struct esas2r_request *rq ; struct esas2r_sg_context sgc ; unsigned int bufflen ; int tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; bool tmp___4 ; int tmp___5 ; long tmp___6 ; { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); cmd->result = 0; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { cmd->result = 65536; (*(cmd->scsi_done))(cmd); return (0); } else { } rq = esas2r_alloc_request(a); tmp___1 = ldv__builtin_expect((unsigned long )rq == (unsigned long )((struct esas2r_request *)0), 0L); if (tmp___1 != 0L) { return (4181); } else { } rq->__annonCompField107.cmd = cmd; bufflen = scsi_bufflen(cmd); tmp___2 = ldv__builtin_expect(bufflen != 0U, 1L); if (tmp___2 != 0L) { if ((unsigned int )cmd->sc_data_direction == 1U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 16777216U; } else if ((unsigned int )cmd->sc_data_direction == 2U) { (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | 33554432U; } else { } } else { } memcpy((void *)(& (rq->vrq)->scsi.cdb), (void const *)cmd->cmnd, (size_t )cmd->cmd_len); (rq->vrq)->scsi.length = bufflen; rq->target_id = (u16 )(cmd->device)->id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )(cmd->device)->lun; rq->sense_buf = cmd->sense_buffer; rq->sense_len = 96U; esas2r_sgc_init(& sgc, a, rq, (struct atto_vda_sge *)0); sgc.length = bufflen; sgc.cur_offset = (u8 *)0U; sgc.cur_sgel = scsi_sglist(cmd); sgc.exp_offset = (u8 *)0U; sgc.num_sgel = scsi_dma_map(cmd); sgc.sgel_count = 0; tmp___3 = ldv__builtin_expect(sgc.num_sgel < 0, 0L); if (tmp___3 != 0L) { esas2r_free_request(a, rq); return (4181); } else { } sgc.get_phys_addr = & get_physaddr_from_sgc; tmp___4 = esas2r_build_sg_list(a, rq, & sgc); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } tmp___6 = ldv__builtin_expect((long )tmp___5, 0L); if (tmp___6 != 0L) { scsi_dma_unmap(cmd); esas2r_free_request(a, rq); return (4181); } else { } esas2r_start_request(a, rq); return (0); } } static void complete_task_management_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { { *(rq->__annonCompField107.task_management_status_ptr) = rq->req_stat; esas2r_free_request(a, rq); return; } } static int esas2r_check_active_queue(struct esas2r_adapter *a , struct esas2r_request **abort_request , struct scsi_cmnd *cmd , struct list_head *queue ) { bool found ; struct esas2r_request *ar ; struct esas2r_request *rq ; struct list_head *element ; struct list_head *next ; struct list_head const *__mptr ; { found = 0; ar = *abort_request; element = queue->next; next = element->next; goto ldv_39444; ldv_39443: __mptr = (struct list_head const *)element; rq = (struct esas2r_request *)__mptr + 0xfffffffffffffff0UL; if ((unsigned long )rq->__annonCompField107.cmd == (unsigned long )cmd) { if ((unsigned long )(& a->active_list) == (unsigned long )queue) { ar = esas2r_alloc_request(a); if ((unsigned long )ar == (unsigned long )((struct esas2r_request *)0)) { esas2r_log_dev(2L, (struct device const *)(& (a->host)->shost_gendev), "unable to allocate an abort request for cmd %p", cmd); return (0); } else { } ar->sense_len = 0U; (ar->vrq)->scsi.length = 0U; ar->target_id = rq->target_id; (ar->vrq)->scsi.flags = (ar->vrq)->scsi.flags | (u32 )((unsigned char )(rq->vrq)->scsi.flags); memset((void *)(& (ar->vrq)->scsi.cdb), 0, 16UL); (ar->vrq)->scsi.flags = (ar->vrq)->scsi.flags | 8388608U; (ar->vrq)->scsi.u.abort_handle = (rq->vrq)->scsi.handle; } else { list_del_init(& rq->req_list); esas2r_free_request(a, rq); } found = 1; goto ldv_39442; } else { } element = next; next = element->next; ldv_39444: ; if ((unsigned long )element != (unsigned long )queue) { goto ldv_39443; } else { } ldv_39442: ; if (! found) { return (1); } else { } return (2); } } int esas2r_eh_abort(struct scsi_cmnd *cmd ) { struct esas2r_adapter *a ; struct esas2r_request *abort_request ; unsigned long flags ; struct list_head *queue ; int result ; int tmp ; raw_spinlock_t *tmp___0 ; u8 task_management_status ; int tmp___1 ; { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); abort_request = (struct esas2r_request *)0; esas2r_log(3L, "eh_abort (%p)", cmd); tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { cmd->result = 327680; scsi_set_resid(cmd, 0); (*(cmd->scsi_done))(cmd); return (8194); } else { } tmp___0 = spinlock_check(& a->queue_lock); flags = _raw_spin_lock_irqsave(tmp___0); queue = & a->defer_list; check_active_queue: result = esas2r_check_active_queue(a, & abort_request, cmd, queue); if (result == 0) { spin_unlock_irqrestore(& a->queue_lock, flags); return (8195); } else if (result == 2 && (unsigned long )(& a->defer_list) == (unsigned long )queue) { queue = & a->active_list; goto check_active_queue; } else { } spin_unlock_irqrestore(& a->queue_lock, flags); if ((unsigned long )abort_request != (unsigned long )((struct esas2r_request *)0)) { task_management_status = 254U; abort_request->comp_cb = & complete_task_management_request; abort_request->__annonCompField107.task_management_status_ptr = & task_management_status; esas2r_start_request(a, abort_request); tmp___1 = atomic_read((atomic_t const *)(& a->disable_cnt)); if (tmp___1 == 0) { esas2r_do_deferred_processes(a); } else { } goto ldv_39459; ldv_39458: msleep(10U); ldv_39459: ; if ((unsigned int )task_management_status == 254U) { goto ldv_39458; } else { } return (8194); } else { } cmd->result = 327680; scsi_set_resid(cmd, 0); (*(cmd->scsi_done))(cmd); return (8194); } } static int esas2r_host_bus_reset(struct scsi_cmnd *cmd , bool host_reset ) { struct esas2r_adapter *a ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return (8195); } else { } if ((int )host_reset) { esas2r_reset_adapter(a); } else { esas2r_reset_bus(a); } goto ldv_39467; ldv_39466: msleep(10U); tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { return (8195); } else { } ldv_39467: tmp___1 = constant_test_bit(9L, (unsigned long const volatile *)(& a->flags)); if (tmp___1 != 0) { goto ldv_39466; } else { } tmp___2 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___2 != 0) { return (8195); } else { } return (8194); } } int esas2r_host_reset(struct scsi_cmnd *cmd ) { int tmp ; { esas2r_log(3L, "host_reset (%p)", cmd); tmp = esas2r_host_bus_reset(cmd, 1); return (tmp); } } int esas2r_bus_reset(struct scsi_cmnd *cmd ) { int tmp ; { esas2r_log(3L, "bus_reset (%p)", cmd); tmp = esas2r_host_bus_reset(cmd, 0); return (tmp); } } static int esas2r_dev_targ_reset(struct scsi_cmnd *cmd , bool target_reset ) { struct esas2r_adapter *a ; struct esas2r_request *rq ; u8 task_management_status ; bool completed ; int tmp ; int tmp___0 ; { a = (struct esas2r_adapter *)(& ((cmd->device)->host)->hostdata); task_management_status = 254U; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp != 0) { return (8195); } else { } retry: rq = esas2r_alloc_request(a); if ((unsigned long )rq == (unsigned long )((struct esas2r_request *)0)) { if ((int )target_reset) { esas2r_log(1L, "unable to allocate a request for a target reset (%d)!", (cmd->device)->id); } else { esas2r_log(1L, "unable to allocate a request for a device reset (%d:%d)!", (cmd->device)->id, (cmd->device)->lun); } return (8195); } else { } rq->target_id = (u16 )(cmd->device)->id; (rq->vrq)->scsi.flags = (rq->vrq)->scsi.flags | (u32 )(cmd->device)->lun; rq->req_stat = 254U; rq->comp_cb = & complete_task_management_request; rq->__annonCompField107.task_management_status_ptr = & task_management_status; if ((int )target_reset) { completed = esas2r_send_task_mgmt(a, rq, 32); } else { completed = esas2r_send_task_mgmt(a, rq, 16); } if ((int )completed) { esas2r_free_request(a, rq); } else { goto ldv_39485; ldv_39484: msleep(10U); ldv_39485: ; if ((unsigned int )task_management_status == 254U) { goto ldv_39484; } else { } } tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& a->flags)); if (tmp___0 != 0) { return (8195); } else { } if ((unsigned int )task_management_status == 2U) { msleep(100U); goto retry; } else { } return (8194); } } int esas2r_device_reset(struct scsi_cmnd *cmd ) { int tmp ; { esas2r_log(3L, "device_reset (%p)", cmd); tmp = esas2r_dev_targ_reset(cmd, 0); return (tmp); } } int esas2r_target_reset(struct scsi_cmnd *cmd ) { int tmp ; { esas2r_log(3L, "target_reset (%p)", cmd); tmp = esas2r_dev_targ_reset(cmd, 1); return (tmp); } } void esas2r_log_request_failure(struct esas2r_adapter *a , struct esas2r_request *rq ) { u8 reqstatus ; { reqstatus = rq->req_stat; if ((unsigned int )reqstatus == 0U) { return; } else { } if ((unsigned int )(rq->vrq)->scsi.function == 0U) { if ((unsigned int )reqstatus == 8U) { if ((unsigned int )rq->func_rsp.scsi_rsp.sense_len > 12U) { esas2r_log(2L, "request failure - SCSI error %x ASC:%x ASCQ:%x CDB:%x", (int )*(rq->sense_buf + 2UL), (int )*(rq->sense_buf + 12UL), (int )*(rq->sense_buf + 13UL), (int )(rq->vrq)->scsi.cdb[0]); } else { esas2r_log(2L, "request failure - SCSI error CDB:%x\n", (int )(rq->vrq)->scsi.cdb[0]); } } else if (((unsigned int )(rq->vrq)->scsi.cdb[0] != 18U && (unsigned int )(rq->vrq)->scsi.cdb[0] != 160U) || ((unsigned int )reqstatus != 3U && (unsigned int )reqstatus != 112U)) { if ((unsigned int )reqstatus == 7U && (unsigned int )(rq->vrq)->scsi.cdb[0] == 18U) { } else { esas2r_log(2L, "request failure - cdb:%x reqstatus:%d target:%d", (int )(rq->vrq)->scsi.cdb[0], (int )reqstatus, (int )rq->target_id); } } else { } } else { } return; } } void esas2r_wait_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { u32 starttime ; u32 timeout ; unsigned long tmp ; unsigned int tmp___0 ; { starttime = jiffies_to_msecs(jiffies); timeout = rq->timeout != 0U ? rq->timeout : 5000U; ldv_39505: esas2r_polled_interrupt(a); if ((unsigned int )rq->req_stat != 255U) { goto ldv_39504; } else { } tmp = msecs_to_jiffies(100U); schedule_timeout_interruptible((long )tmp); tmp___0 = jiffies_to_msecs(jiffies); if (tmp___0 - starttime > timeout) { rq->req_stat = 5U; esas2r_local_reset_adapter(a); return; } else { } goto ldv_39505; ldv_39504: ; return; } } u32 esas2r_map_data_window(struct esas2r_adapter *a , u32 addr_lo ) { u32 offset ; u32 base ; { offset = addr_lo & 131071U; base = addr_lo & 4294836224U; if (a->window_base != base) { writel(base | 1U, (void volatile *)a->regs + 33848U); readl((void const volatile *)a->regs + 33848U); a->window_base = base; } else { } return (offset); } } bool esas2r_read_mem_block(struct esas2r_adapter *a , void *to , u32 from , u32 size ) { u8 *end ; u32 len ; u32 offset ; u32 iatvr ; u8 *tmp ; u32 tmp___0 ; { end = (u8 *)to; goto ldv_39526; ldv_39525: iatvr = from & 4294836224U; esas2r_map_data_window(a, iatvr); offset = from & 131071U; len = size; if (131072U - offset < len) { len = 131072U - offset; } else { } from = from + len; size = size - len; goto ldv_39523; ldv_39522: tmp = end; end = end + 1; *tmp = readb((void const volatile *)a->data_window + (unsigned long )offset); offset = offset + 1U; ldv_39523: tmp___0 = len; len = len - 1U; if (tmp___0 != 0U) { goto ldv_39522; } else { } ldv_39526: ; if (size != 0U) { goto ldv_39525; } else { } return (1); } } void esas2r_nuxi_mgt_data(u8 function , void *data ) { struct atto_vda_grp_info *g ; struct atto_vda_devinfo *d ; struct atto_vdapart_info *p ; struct atto_vda_dh_info *h ; struct atto_vda_metrics_info *m ; struct atto_vda_schedule_info *s ; struct atto_vda_buzzer_info *b ; u8 i ; { switch ((int )function) { case 112: ; case 113: b = (struct atto_vda_buzzer_info *)data; b->duration = b->duration; goto ldv_39542; case 81: ; case 80: s = (struct atto_vda_schedule_info *)data; s->id = s->id; goto ldv_39542; case 1: ; case 2: ; case 5: ; case 6: ; case 7: ; case 11: d = (struct atto_vda_devinfo *)data; d->capacity = d->capacity; d->block_size = d->block_size; d->ses_dev_index = d->ses_dev_index; d->__annonCompField87.target_id = d->__annonCompField87.target_id; d->lun = d->lun; d->features = d->features; goto ldv_39542; case 16: ; case 17: ; case 18: ; case 19: ; case 20: ; case 21: ; case 22: ; case 23: ; case 24: ; case 25: ; case 26: ; case 27: ; case 64: ; case 65: ; case 66: ; case 67: ; case 28: g = (struct atto_vda_grp_info *)data; g->capacity = g->capacity; g->block_size = g->block_size; g->interleave = g->interleave; g->features = g->features; i = 0U; goto ldv_39569; ldv_39568: g->__annonCompField90.members[(int )i] = g->__annonCompField90.members[(int )i]; i = (u8 )((int )i + 1); ldv_39569: ; if ((unsigned int )i <= 31U) { goto ldv_39568; } else { } goto ldv_39542; case 48: ; case 49: ; case 50: ; case 51: ; case 52: ; case 53: p = (struct atto_vdapart_info *)data; p->part_size = p->part_size; p->start_lba = (u64 )((unsigned int )p->start_lba); p->block_size = p->block_size; p->target_id = p->target_id; goto ldv_39542; case 8: h = (struct atto_vda_dh_info *)data; h->med_defect_cnt = h->med_defect_cnt; h->info_exc_cnt = h->info_exc_cnt; goto ldv_39542; case 9: m = (struct atto_vda_metrics_info *)data; i = 0U; goto ldv_39580; ldv_39579: m->dev_indexes[(int )i] = m->dev_indexes[(int )i]; i = (u8 )((int )i + 1); ldv_39580: ; if ((unsigned int )i <= 31U) { goto ldv_39579; } else { } goto ldv_39542; default: ; goto ldv_39542; } ldv_39542: ; return; } } void esas2r_nuxi_cfg_data(u8 function , void *data ) { struct atto_vda_cfg_init *ci ; { switch ((int )function) { case 0: ; case 1: ; case 2: ci = (struct atto_vda_cfg_init *)data; ci->date_time.year = ci->date_time.year; ci->sgl_page_size = ci->sgl_page_size; ci->vda_version = ci->vda_version; ci->epoch_time = ci->epoch_time; ci->ioctl_tunnel = ci->ioctl_tunnel; ci->num_targets_backend = ci->num_targets_backend; goto ldv_39591; default: ; goto ldv_39591; } ldv_39591: ; return; } } void esas2r_nuxi_ae_data(union atto_vda_ae *ae ) { struct atto_vda_ae_raid *r ; struct atto_vda_ae_lu *l ; { r = & ae->raid; l = & ae->lu; switch ((int )ae->hdr.bytype) { case 1: r->dwflags = r->dwflags; goto ldv_39599; case 2: l->dwevent = l->dwevent; l->wphys_target_id = l->wphys_target_id; l->id.tgtlun.wtarget_id = l->id.tgtlun.wtarget_id; if ((unsigned int )l->hdr.bylength > 23U) { l->id.tgtlun_raid.dwinterleave = l->id.tgtlun_raid.dwinterleave; l->id.tgtlun_raid.dwblock_size = l->id.tgtlun_raid.dwblock_size; } else { } goto ldv_39599; case 3: ; default: ; goto ldv_39599; } ldv_39599: ; return; } } void esas2r_free_request(struct esas2r_adapter *a , struct esas2r_request *rq ) { unsigned long flags ; raw_spinlock_t *tmp ; { esas2r_rq_destroy_request(rq, a); tmp = spinlock_check(& a->request_lock); flags = _raw_spin_lock_irqsave(tmp); list_add(& rq->comp_list, & a->avail_request); spin_unlock_irqrestore(& a->request_lock, flags); return; } } struct esas2r_request *esas2r_alloc_request(struct esas2r_adapter *a ) { struct esas2r_request *rq ; unsigned long flags ; raw_spinlock_t *tmp ; int tmp___0 ; long tmp___1 ; struct list_head const *__mptr ; { tmp = spinlock_check(& a->request_lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = list_empty((struct list_head const *)(& a->avail_request)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { spin_unlock_irqrestore(& a->request_lock, flags); return ((struct esas2r_request *)0); } else { } __mptr = (struct list_head const *)a->avail_request.next; rq = (struct esas2r_request *)__mptr; list_del(& rq->comp_list); spin_unlock_irqrestore(& a->request_lock, flags); esas2r_rq_init_request(rq, a); return (rq); } } void esas2r_complete_request_cb(struct esas2r_adapter *a , struct esas2r_request *rq ) { int tmp ; long tmp___0 ; { scsi_dma_unmap(rq->__annonCompField107.cmd); tmp___0 = ldv__builtin_expect((unsigned int )rq->req_stat != 0U, 0L); if (tmp___0 != 0L) { tmp = esas2r_req_status_to_error((int )rq->req_stat); (rq->__annonCompField107.cmd)->result = (tmp << 16) | ((int )rq->func_rsp.scsi_rsp.scsi_stat & 254); if ((unsigned int )rq->req_stat == 7U) { scsi_set_resid(rq->__annonCompField107.cmd, (int )rq->func_rsp.scsi_rsp.residual_length); } else { scsi_set_resid(rq->__annonCompField107.cmd, 0); } } else { } (*((rq->__annonCompField107.cmd)->scsi_done))(rq->__annonCompField107.cmd); esas2r_free_request(a, rq); return; } } void esas2r_adapter_tasklet(unsigned long context ) { struct esas2r_adapter *a ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; { a = (struct esas2r_adapter *)context; tmp = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags2)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { clear_bit(10L, (unsigned long volatile *)(& a->flags2)); esas2r_timer_tick(a); } else { } tmp___1 = constant_test_bit(9L, (unsigned long const volatile *)(& a->flags2)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 1L); if (tmp___2 != 0L) { clear_bit(9L, (unsigned long volatile *)(& a->flags2)); esas2r_adapter_interrupt(a); } else { } tmp___3 = esas2r_is_tasklet_pending(a); if ((int )tmp___3) { esas2r_do_tasklet_tasks(a); } else { } tmp___4 = esas2r_is_tasklet_pending(a); if ((int )tmp___4) { clear_bit(15L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } else { tmp___5 = constant_test_bit(9L, (unsigned long const volatile *)(& a->flags2)); if (tmp___5 != 0) { clear_bit(15L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } else { tmp___6 = constant_test_bit(10L, (unsigned long const volatile *)(& a->flags2)); if (tmp___6 != 0) { clear_bit(15L, (unsigned long volatile *)(& a->flags)); esas2r_schedule_tasklet(a); } else { clear_bit(15L, (unsigned long volatile *)(& a->flags)); } } } return; } } static void esas2r_timer_callback(unsigned long context ) ; void esas2r_kickoff_timer(struct esas2r_adapter *a ) { unsigned long tmp ; { reg_timer_2(& a->timer); a->timer.function = & esas2r_timer_callback; a->timer.data = (unsigned long )a; tmp = msecs_to_jiffies(100U); a->timer.expires = tmp + (unsigned long )jiffies; add_timer(& a->timer); return; } } static void esas2r_timer_callback(unsigned long context ) { struct esas2r_adapter *a ; { a = (struct esas2r_adapter *)context; set_bit(10L, (unsigned long volatile *)(& a->flags2)); esas2r_schedule_tasklet(a); esas2r_kickoff_timer(a); return; } } static void esas2r_free_fw_event(struct esas2r_fw_event_work *fw_event ) { unsigned long flags ; struct esas2r_adapter *a ; raw_spinlock_t *tmp ; { a = fw_event->a; tmp = spinlock_check(& a->fw_event_lock); flags = _raw_spin_lock_irqsave(tmp); list_del(& fw_event->list); kfree((void const *)fw_event); spin_unlock_irqrestore(& a->fw_event_lock, flags); return; } } void esas2r_fw_event_off(struct esas2r_adapter *a ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& a->fw_event_lock); flags = _raw_spin_lock_irqsave(tmp); a->fw_events_off = 1U; spin_unlock_irqrestore(& a->fw_event_lock, flags); return; } } void esas2r_fw_event_on(struct esas2r_adapter *a ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& a->fw_event_lock); flags = _raw_spin_lock_irqsave(tmp); a->fw_events_off = 0U; spin_unlock_irqrestore(& a->fw_event_lock, flags); return; } } static void esas2r_add_device(struct esas2r_adapter *a , u16 target_id ) { int ret ; struct scsi_device *scsi_dev ; { scsi_dev = scsi_device_lookup(a->host, 0U, (uint )target_id, 0ULL); if ((unsigned long )scsi_dev != (unsigned long )((struct scsi_device *)0)) { esas2r_log_dev(2L, (struct device const *)(& scsi_dev->sdev_gendev), "scsi device already exists at id %d", (int )target_id); scsi_device_put(scsi_dev); } else { esas2r_log_dev(3L, (struct device const *)(& (a->host)->shost_gendev), "scsi_add_device() called for 0:%d:0", (int )target_id); ret = scsi_add_device(a->host, 0U, (uint )target_id, 0ULL); if (ret != 0) { esas2r_log_dev(1L, (struct device const *)(& (a->host)->shost_gendev), "scsi_add_device failed with %d for id %d", ret, (int )target_id); } else { } } return; } } static void esas2r_remove_device(struct esas2r_adapter *a , u16 target_id ) { struct scsi_device *scsi_dev ; { scsi_dev = scsi_device_lookup(a->host, 0U, (uint )target_id, 0ULL); if ((unsigned long )scsi_dev != (unsigned long )((struct scsi_device *)0)) { scsi_device_set_state(scsi_dev, 6); esas2r_log_dev(3L, (struct device const *)(& scsi_dev->sdev_gendev), "scsi_remove_device() called for 0:%d:0", (int )target_id); scsi_remove_device(scsi_dev); esas2r_log_dev(3L, (struct device const *)(& scsi_dev->sdev_gendev), "scsi_device_put() called"); scsi_device_put(scsi_dev); } else { esas2r_log_dev(2L, (struct device const *)(& (a->host)->shost_gendev), "no target found at id %d", (int )target_id); } return; } } static void esas2r_send_ae_event(struct esas2r_fw_event_work *fw_event ) { struct esas2r_vda_ae *ae ; char *type ; { ae = (struct esas2r_vda_ae *)(& fw_event->data); switch ((int )ae->vda_ae.hdr.bytype) { case 1: type = (char *)"RAID group state change"; goto ldv_39677; case 2: type = (char *)"Mapped destination LU change"; goto ldv_39677; case 3: type = (char *)"Physical disk inventory change"; goto ldv_39677; case 4: type = (char *)"Firmware reset"; goto ldv_39677; case 5: type = (char *)"Event Log message (INFO level)"; goto ldv_39677; case 6: type = (char *)"Event Log message (WARN level)"; goto ldv_39677; case 7: type = (char *)"Event Log message (CRIT level)"; goto ldv_39677; case 8: type = (char *)"Event Log message (FAIL level)"; goto ldv_39677; case 9: type = (char *)"NVCache change"; goto ldv_39677; case 10: type = (char *)"Time stamped log message (INFO level)"; goto ldv_39677; case 11: type = (char *)"Time stamped log message (WARN level)"; goto ldv_39677; case 12: type = (char *)"Time stamped log message (CRIT level)"; goto ldv_39677; case 13: type = (char *)"Power management"; goto ldv_39677; case 14: type = (char *)"Mute button pressed"; goto ldv_39677; case 15: type = (char *)"Device attribute change"; goto ldv_39677; default: type = (char *)"Unknown"; goto ldv_39677; } ldv_39677: esas2r_log(2L, "An async event of type \"%s\" was received from the firmware. The event contents are:", type); esas2r_log_hexdump(2L, (void const *)(& ae->vda_ae), (size_t )ae->vda_ae.hdr.bylength); return; } } static void esas2r_firmware_event_work(struct work_struct *work ) { struct esas2r_fw_event_work *fw_event ; struct work_struct const *__mptr ; struct esas2r_adapter *a ; u16 target_id ; { __mptr = (struct work_struct const *)work; fw_event = (struct esas2r_fw_event_work *)__mptr + 0xfffffffffffffff0UL; a = fw_event->a; target_id = *((u16 *)(& fw_event->data)); if ((unsigned int )a->fw_events_off != 0U) { goto done; } else { } switch ((unsigned int )fw_event->type) { case 0U: ; goto ldv_39703; case 1U: esas2r_remove_device(a, (int )target_id); esas2r_add_device(a, (int )target_id); goto ldv_39703; case 2U: esas2r_add_device(a, (int )target_id); goto ldv_39703; case 3U: esas2r_remove_device(a, (int )target_id); goto ldv_39703; case 4U: esas2r_send_ae_event(fw_event); goto ldv_39703; } ldv_39703: ; done: esas2r_free_fw_event(fw_event); return; } } void esas2r_queue_fw_event(struct esas2r_adapter *a , enum fw_event_type type , void *data , int data_sz ) { struct esas2r_fw_event_work *fw_event ; unsigned long flags ; void *tmp ; struct esas2r_vda_ae *ae ; raw_spinlock_t *tmp___0 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; unsigned long tmp___1 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; { tmp = kzalloc(392UL, 32U); fw_event = (struct esas2r_fw_event_work *)tmp; if ((unsigned long )fw_event == (unsigned long )((struct esas2r_fw_event_work *)0)) { esas2r_log(2L, "esas2r_queue_fw_event failed to alloc"); return; } else { } if ((unsigned int )type == 4U) { ae = (struct esas2r_vda_ae *)(& fw_event->data); ae->signature = 1096045647U; ae->bus_number = ((a->pcid)->bus)->number; ae->devfn = (u8 )(a->pcid)->devfn; memcpy((void *)(& ae->vda_ae), (void const *)data, 128UL); } else { memcpy((void *)(& fw_event->data), (void const *)data, (size_t )data_sz); } fw_event->type = type; fw_event->a = a; tmp___0 = spinlock_check(& a->fw_event_lock); flags = _raw_spin_lock_irqsave(tmp___0); list_add_tail(& fw_event->list, & a->fw_event_list); __init_work(& fw_event->work.work, 0); __constr_expr_0.counter = 137438953408L; fw_event->work.work.data = __constr_expr_0; lockdep_init_map(& fw_event->work.work.lockdep_map, "(&(&fw_event->work)->work)", & __key, 0); INIT_LIST_HEAD(& fw_event->work.work.entry); fw_event->work.work.func = & esas2r_firmware_event_work; init_timer_key(& fw_event->work.timer, 2097152U, "(&(&fw_event->work)->timer)", & __key___0); fw_event->work.timer.function = & delayed_work_timer_fn; fw_event->work.timer.data = (unsigned long )(& fw_event->work); tmp___1 = msecs_to_jiffies(1U); __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39728; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39728; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39728; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39728; default: __bad_percpu_size(); } ldv_39728: pscr_ret__ = pfo_ret__; goto ldv_39734; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39738; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39738; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39738; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39738; default: __bad_percpu_size(); } ldv_39738: pscr_ret__ = pfo_ret_____0; goto ldv_39734; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39747; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39747; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39747; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39747; default: __bad_percpu_size(); } ldv_39747: pscr_ret__ = pfo_ret_____1; goto ldv_39734; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39756; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39756; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39756; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39756; default: __bad_percpu_size(); } ldv_39756: pscr_ret__ = pfo_ret_____2; goto ldv_39734; default: __bad_size_call_parameter(); goto ldv_39734; } ldv_39734: ldv_queue_delayed_work_on_168(pscr_ret__, a->fw_event_q, & fw_event->work, tmp___1); spin_unlock_irqrestore(& a->fw_event_lock, flags); return; } } void esas2r_target_state_changed(struct esas2r_adapter *a , u16 targ_id , u8 state ) { { if ((unsigned int )state == 6U) { esas2r_queue_fw_event(a, 1, (void *)(& targ_id), 2); } else if ((unsigned int )state == 5U) { esas2r_queue_fw_event(a, 2, (void *)(& targ_id), 2); } else if ((unsigned int )state == 0U) { esas2r_queue_fw_event(a, 3, (void *)(& targ_id), 2); } else { } return; } } int esas2r_req_status_to_error(u8 req_stat ) { { switch ((int )req_stat) { case 6: ; case 7: ; case 0: ; case 8: ; return (0); case 3: ; case 112: ; return (1); case 13: ; return (8); case 10: ; return (5); case 2: ; return (2); } return (7); } } extern int ldv_release_11(void) ; extern int ldv_release_9(void) ; extern int ldv_probe_5(void) ; int ldv_retval_2 ; extern int ldv_probe_11(void) ; extern int ldv_release_8(void) ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_6 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; extern int ldv_open_3(void) ; extern int ldv_release_10(void) ; extern int ldv_shutdown_4(void) ; extern int ldv_resume_early_4(void) ; extern int ldv_release_6(void) ; extern int ldv_probe_10(void) ; extern int ldv_probe_9(void) ; extern int ldv_suspend_late_4(void) ; int ldv_retval_4 ; extern int ldv_probe_8(void) ; void ldv_check_final_state(void) ; extern int ldv_probe_7(void) ; extern int ldv_release_3(void) ; int ldv_retval_3 ; extern int ldv_release_7(void) ; extern int ldv_probe_6(void) ; void ldv_initialize_bin_attribute_10(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(296UL); bin_attr_fs_group0 = (struct kobject *)tmp; tmp___0 = __VERIFIER_nondet_pointer(); bin_attr_fs_group1 = (struct file *)tmp___0; tmp___1 = ldv_init_zalloc(72UL); bin_attr_fs_group2 = (struct bin_attribute *)tmp___1; return; } } void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { esas2r_firmware_event_work(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { esas2r_firmware_event_work(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { esas2r_firmware_event_work(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { esas2r_firmware_event_work(work); ldv_work_1_3 = 1; return; } else { } return; } } void choose_timer_2(struct timer_list *timer ) { { if (ldv_timer_state_2 != 1) { return; } LDV_IN_INTERRUPT = 2; (*(timer->function))(timer->data); LDV_IN_INTERRUPT = 1; ldv_timer_state_2 = 2; return; } } int reg_timer_2(struct timer_list *timer ) { { ldv_timer_list_2 = timer; ldv_timer_state_2 = 1; return (0); } } void activate_pending_timer_2(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_2 == (unsigned long )timer) { if (ldv_timer_state_2 == 2 || pending_flag != 0) { ldv_timer_list_2 = timer; ldv_timer_list_2->data = data; ldv_timer_state_2 = 1; } else { } return; } else { } reg_timer_2(timer); ldv_timer_list_2->data = data; return; } } void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void ldv_initialize_bin_attribute_9(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(296UL); bin_attr_vda_group0 = (struct kobject *)tmp; tmp___0 = __VERIFIER_nondet_pointer(); bin_attr_vda_group1 = (struct file *)tmp___0; tmp___1 = ldv_init_zalloc(72UL); bin_attr_vda_group2 = (struct bin_attribute *)tmp___1; return; } } void ldv_initialize_scsi_host_template_5(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = __VERIFIER_nondet_pointer(); driver_template_group0 = (struct scsi_cmnd *)tmp; tmp___0 = ldv_init_zalloc(3816UL); driver_template_group1 = (struct Scsi_Host *)tmp___0; tmp___1 = __VERIFIER_nondet_pointer(); driver_template_group2 = (struct scsi_device *)tmp___1; return; } } void ldv_pci_driver_4(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); esas2r_pci_driver_group1 = (struct pci_dev *)tmp; return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void ldv_initialize_bin_attribute_7(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(296UL); bin_attr_live_nvram_group0 = (struct kobject *)tmp; tmp___0 = __VERIFIER_nondet_pointer(); bin_attr_live_nvram_group1 = (struct file *)tmp___0; tmp___1 = ldv_init_zalloc(72UL); bin_attr_live_nvram_group2 = (struct bin_attribute *)tmp___1; return; } } void ldv_file_operations_3(void) { void *tmp ; { esas2r_proc_fops_group1 = ldv_init_zalloc(1000UL); tmp = ldv_init_zalloc(504UL); esas2r_proc_fops_group2 = (struct file *)tmp; return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void ldv_initialize_bin_attribute_8(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(296UL); bin_attr_hw_group0 = (struct kobject *)tmp; tmp___0 = __VERIFIER_nondet_pointer(); bin_attr_hw_group1 = (struct file *)tmp___0; tmp___1 = ldv_init_zalloc(72UL); bin_attr_hw_group2 = (struct bin_attribute *)tmp___1; return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } void disable_suitable_timer_2(struct timer_list *timer ) { { if ((unsigned long )timer == (unsigned long )ldv_timer_list_2) { ldv_timer_state_2 = 0; return; } else { } return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; esas2r_firmware_event_work(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_39897; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; esas2r_firmware_event_work(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_39897; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; esas2r_firmware_event_work(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_39897; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; esas2r_firmware_event_work(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_39897; default: ldv_stop(); } ldv_39897: ; return; } } void ldv_initialize_bin_attribute_11(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(296UL); bin_attr_fw_group0 = (struct kobject *)tmp; tmp___0 = __VERIFIER_nondet_pointer(); bin_attr_fw_group1 = (struct file *)tmp___0; tmp___1 = ldv_init_zalloc(72UL); bin_attr_fw_group2 = (struct bin_attribute *)tmp___1; return; } } int main(void) { char *ldvarg1 ; void *tmp ; struct kobject *ldvarg4 ; void *tmp___0 ; struct bin_attribute *ldvarg3 ; void *tmp___1 ; size_t ldvarg0 ; loff_t ldvarg5 ; struct file *ldvarg2 ; void *tmp___2 ; loff_t ldvarg8 ; loff_t ldvarg11 ; char *ldvarg7 ; void *tmp___3 ; char *ldvarg10 ; void *tmp___4 ; size_t ldvarg9 ; size_t ldvarg6 ; unsigned long ldvarg14 ; unsigned int ldvarg13 ; unsigned long ldvarg12 ; unsigned int ldvarg15 ; loff_t ldvarg21 ; loff_t ldvarg18 ; char *ldvarg20 ; void *tmp___5 ; char *ldvarg17 ; void *tmp___6 ; size_t ldvarg19 ; size_t ldvarg16 ; loff_t ldvarg24 ; loff_t ldvarg27 ; char *ldvarg26 ; void *tmp___7 ; size_t ldvarg25 ; char *ldvarg23 ; void *tmp___8 ; size_t ldvarg22 ; char *ldvarg32 ; void *tmp___9 ; size_t ldvarg31 ; char *ldvarg29 ; void *tmp___10 ; size_t ldvarg28 ; loff_t ldvarg33 ; loff_t ldvarg30 ; struct pci_device_id *ldvarg35 ; void *tmp___11 ; pm_message_t ldvarg34 ; size_t ldvarg39 ; char *ldvarg37 ; void *tmp___12 ; loff_t ldvarg41 ; size_t ldvarg36 ; char *ldvarg40 ; void *tmp___13 ; loff_t ldvarg38 ; struct seq_file *ldvarg45 ; void *tmp___14 ; int ldvarg43 ; void *ldvarg42 ; void *tmp___15 ; int ldvarg44 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; { tmp = ldv_init_zalloc(1UL); ldvarg1 = (char *)tmp; tmp___0 = ldv_init_zalloc(296UL); ldvarg4 = (struct kobject *)tmp___0; tmp___1 = ldv_init_zalloc(72UL); ldvarg3 = (struct bin_attribute *)tmp___1; tmp___2 = __VERIFIER_nondet_pointer(); ldvarg2 = (struct file *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg7 = (char *)tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg10 = (char *)tmp___4; tmp___5 = ldv_init_zalloc(1UL); ldvarg20 = (char *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg17 = (char *)tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg26 = (char *)tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg23 = (char *)tmp___8; tmp___9 = ldv_init_zalloc(1UL); ldvarg32 = (char *)tmp___9; tmp___10 = ldv_init_zalloc(1UL); ldvarg29 = (char *)tmp___10; tmp___11 = ldv_init_zalloc(32UL); ldvarg35 = (struct pci_device_id *)tmp___11; tmp___12 = ldv_init_zalloc(1UL); ldvarg37 = (char *)tmp___12; tmp___13 = ldv_init_zalloc(1UL); ldvarg40 = (char *)tmp___13; tmp___14 = ldv_init_zalloc(256UL); ldvarg45 = (struct seq_file *)tmp___14; tmp___15 = ldv_init_zalloc(1UL); ldvarg42 = tmp___15; ldv_initialize(); ldv_memset((void *)(& ldvarg0), 0, 8UL); ldv_memset((void *)(& ldvarg5), 0, 8UL); ldv_memset((void *)(& ldvarg8), 0, 8UL); ldv_memset((void *)(& ldvarg11), 0, 8UL); ldv_memset((void *)(& ldvarg9), 0, 8UL); ldv_memset((void *)(& ldvarg6), 0, 8UL); ldv_memset((void *)(& ldvarg14), 0, 8UL); ldv_memset((void *)(& ldvarg13), 0, 4UL); ldv_memset((void *)(& ldvarg12), 0, 8UL); ldv_memset((void *)(& ldvarg15), 0, 4UL); ldv_memset((void *)(& ldvarg21), 0, 8UL); ldv_memset((void *)(& ldvarg18), 0, 8UL); ldv_memset((void *)(& ldvarg19), 0, 8UL); ldv_memset((void *)(& ldvarg16), 0, 8UL); ldv_memset((void *)(& ldvarg24), 0, 8UL); ldv_memset((void *)(& ldvarg27), 0, 8UL); ldv_memset((void *)(& ldvarg25), 0, 8UL); ldv_memset((void *)(& ldvarg22), 0, 8UL); ldv_memset((void *)(& ldvarg31), 0, 8UL); ldv_memset((void *)(& ldvarg28), 0, 8UL); ldv_memset((void *)(& ldvarg33), 0, 8UL); ldv_memset((void *)(& ldvarg30), 0, 8UL); ldv_memset((void *)(& ldvarg34), 0, 4UL); ldv_memset((void *)(& ldvarg39), 0, 8UL); ldv_memset((void *)(& ldvarg41), 0, 8UL); ldv_memset((void *)(& ldvarg36), 0, 8UL); ldv_memset((void *)(& ldvarg38), 0, 8UL); ldv_memset((void *)(& ldvarg43), 0, 4UL); ldv_memset((void *)(& ldvarg44), 0, 4UL); ldv_state_variable_6 = 0; ldv_state_variable_11 = 0; ldv_state_variable_3 = 0; ldv_state_variable_7 = 0; ldv_state_variable_9 = 0; ldv_state_variable_2 = 1; ldv_state_variable_8 = 0; work_init_1(); ldv_state_variable_1 = 1; ldv_state_variable_4 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_10 = 0; ldv_state_variable_5 = 0; ldv_40059: tmp___16 = __VERIFIER_nondet_int(); switch (tmp___16) { case 0: ; if (ldv_state_variable_6 != 0) { tmp___17 = __VERIFIER_nondet_int(); switch (tmp___17) { case 0: ; if (ldv_state_variable_6 == 2) { read_default_nvram(ldvarg2, ldvarg4, ldvarg3, ldvarg1, ldvarg5, ldvarg0); ldv_state_variable_6 = 2; } else { } goto ldv_39978; case 1: ; if (ldv_state_variable_6 == 2) { ldv_release_6(); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_39978; case 2: ; if (ldv_state_variable_6 == 1) { ldv_probe_6(); ldv_state_variable_6 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_39978; default: ldv_stop(); } ldv_39978: ; } else { } goto ldv_39982; case 1: ; if (ldv_state_variable_11 != 0) { tmp___18 = __VERIFIER_nondet_int(); switch (tmp___18) { case 0: ; if (ldv_state_variable_11 == 2) { write_fw(bin_attr_fw_group1, bin_attr_fw_group0, bin_attr_fw_group2, ldvarg10, ldvarg11, ldvarg9); ldv_state_variable_11 = 2; } else { } goto ldv_39985; case 1: ; if (ldv_state_variable_11 == 2) { read_fw(bin_attr_fw_group1, bin_attr_fw_group0, bin_attr_fw_group2, ldvarg7, ldvarg8, ldvarg6); ldv_state_variable_11 = 2; } else { } goto ldv_39985; case 2: ; if (ldv_state_variable_11 == 2) { ldv_release_11(); ldv_state_variable_11 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_39985; case 3: ; if (ldv_state_variable_11 == 1) { ldv_probe_11(); ldv_state_variable_11 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_39985; default: ldv_stop(); } ldv_39985: ; } else { } goto ldv_39982; case 2: ; if (ldv_state_variable_3 != 0) { tmp___19 = __VERIFIER_nondet_int(); switch (tmp___19) { case 0: ; if (ldv_state_variable_3 == 2) { esas2r_proc_ioctl(esas2r_proc_fops_group2, ldvarg15, ldvarg14); ldv_state_variable_3 = 2; } else { } goto ldv_39992; case 1: ; if (ldv_state_variable_3 == 2) { esas2r_proc_ioctl(esas2r_proc_fops_group2, ldvarg13, ldvarg12); ldv_state_variable_3 = 2; } else { } goto ldv_39992; case 2: ; if (ldv_state_variable_3 == 1) { ldv_retval_0 = ldv_open_3(); if (ldv_retval_0 == 0) { ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_39992; case 3: ; if (ldv_state_variable_3 == 2) { ldv_release_3(); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_39992; default: ldv_stop(); } ldv_39992: ; } else { } goto ldv_39982; case 3: ; if (ldv_state_variable_7 != 0) { tmp___20 = __VERIFIER_nondet_int(); switch (tmp___20) { case 0: ; if (ldv_state_variable_7 == 2) { write_live_nvram(bin_attr_live_nvram_group1, bin_attr_live_nvram_group0, bin_attr_live_nvram_group2, ldvarg20, ldvarg21, ldvarg19); ldv_state_variable_7 = 2; } else { } goto ldv_39999; case 1: ; if (ldv_state_variable_7 == 2) { read_live_nvram(bin_attr_live_nvram_group1, bin_attr_live_nvram_group0, bin_attr_live_nvram_group2, ldvarg17, ldvarg18, ldvarg16); ldv_state_variable_7 = 2; } else { } goto ldv_39999; case 2: ; if (ldv_state_variable_7 == 2) { ldv_release_7(); ldv_state_variable_7 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_39999; case 3: ; if (ldv_state_variable_7 == 1) { ldv_probe_7(); ldv_state_variable_7 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_39999; default: ldv_stop(); } ldv_39999: ; } else { } goto ldv_39982; case 4: ; if (ldv_state_variable_9 != 0) { tmp___21 = __VERIFIER_nondet_int(); switch (tmp___21) { case 0: ; if (ldv_state_variable_9 == 2) { write_vda(bin_attr_vda_group1, bin_attr_vda_group0, bin_attr_vda_group2, ldvarg26, ldvarg27, ldvarg25); ldv_state_variable_9 = 2; } else { } goto ldv_40006; case 1: ; if (ldv_state_variable_9 == 2) { read_vda(bin_attr_vda_group1, bin_attr_vda_group0, bin_attr_vda_group2, ldvarg23, ldvarg24, ldvarg22); ldv_state_variable_9 = 2; } else { } goto ldv_40006; case 2: ; if (ldv_state_variable_9 == 2) { ldv_release_9(); ldv_state_variable_9 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_40006; case 3: ; if (ldv_state_variable_9 == 1) { ldv_probe_9(); ldv_state_variable_9 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_40006; default: ldv_stop(); } ldv_40006: ; } else { } goto ldv_39982; case 5: ; if (ldv_state_variable_2 != 0) { choose_timer_2(ldv_timer_list_2); } else { } goto ldv_39982; case 6: ; if (ldv_state_variable_8 != 0) { tmp___22 = __VERIFIER_nondet_int(); switch (tmp___22) { case 0: ; if (ldv_state_variable_8 == 2) { write_hw(bin_attr_hw_group1, bin_attr_hw_group0, bin_attr_hw_group2, ldvarg32, ldvarg33, ldvarg31); ldv_state_variable_8 = 2; } else { } goto ldv_40014; case 1: ; if (ldv_state_variable_8 == 2) { read_hw(bin_attr_hw_group1, bin_attr_hw_group0, bin_attr_hw_group2, ldvarg29, ldvarg30, ldvarg28); ldv_state_variable_8 = 2; } else { } goto ldv_40014; case 2: ; if (ldv_state_variable_8 == 2) { ldv_release_8(); ldv_state_variable_8 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_40014; case 3: ; if (ldv_state_variable_8 == 1) { ldv_probe_8(); ldv_state_variable_8 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_40014; default: ldv_stop(); } ldv_40014: ; } else { } goto ldv_39982; case 7: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_39982; case 8: ; if (ldv_state_variable_4 != 0) { tmp___23 = __VERIFIER_nondet_int(); switch (tmp___23) { case 0: ; if (ldv_state_variable_4 == 1) { ldv_retval_5 = esas2r_probe(esas2r_pci_driver_group1, (struct pci_device_id const *)ldvarg35); if (ldv_retval_5 == 0) { ldv_state_variable_4 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_40022; case 1: ; if (ldv_state_variable_4 == 2 && pci_counter == 0) { ldv_retval_4 = esas2r_suspend(esas2r_pci_driver_group1, ldvarg34); if (ldv_retval_4 == 0) { ldv_state_variable_4 = 3; } else { } } else { } goto ldv_40022; case 2: ; if (ldv_state_variable_4 == 4) { esas2r_remove(esas2r_pci_driver_group1); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { esas2r_remove(esas2r_pci_driver_group1); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 2) { esas2r_remove(esas2r_pci_driver_group1); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 5) { esas2r_remove(esas2r_pci_driver_group1); ldv_state_variable_4 = 1; } else { } goto ldv_40022; case 3: ; if (ldv_state_variable_4 == 4) { ldv_retval_3 = esas2r_resume(esas2r_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; } else { } } else { } if (ldv_state_variable_4 == 3) { ldv_retval_3 = esas2r_resume(esas2r_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; } else { } } else { } if (ldv_state_variable_4 == 5) { ldv_retval_3 = esas2r_resume(esas2r_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; } else { } } else { } goto ldv_40022; case 4: ; if (ldv_state_variable_4 == 3) { ldv_retval_2 = ldv_suspend_late_4(); if (ldv_retval_2 == 0) { ldv_state_variable_4 = 4; } else { } } else { } goto ldv_40022; case 5: ; if (ldv_state_variable_4 == 4) { ldv_retval_1 = ldv_resume_early_4(); if (ldv_retval_1 == 0) { ldv_state_variable_4 = 5; } else { } } else { } if (ldv_state_variable_4 == 3) { ldv_retval_1 = ldv_resume_early_4(); if (ldv_retval_1 == 0) { ldv_state_variable_4 = 5; } else { } } else { } goto ldv_40022; case 6: ; if (ldv_state_variable_4 == 4) { ldv_shutdown_4(); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 3) { ldv_shutdown_4(); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { ldv_shutdown_4(); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { ldv_shutdown_4(); ldv_state_variable_4 = 5; } else { } goto ldv_40022; default: ldv_stop(); } ldv_40022: ; } else { } goto ldv_39982; case 9: ; if (ldv_state_variable_0 != 0) { tmp___24 = __VERIFIER_nondet_int(); switch (tmp___24) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { esas2r_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_40033; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_6 = esas2r_init(); if (ldv_retval_6 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_9 = 1; ldv_initialize_bin_attribute_9(); ldv_state_variable_10 = 1; ldv_initialize_bin_attribute_10(); ldv_state_variable_7 = 1; ldv_initialize_bin_attribute_7(); ldv_state_variable_11 = 1; ldv_initialize_bin_attribute_11(); ldv_state_variable_6 = 1; ldv_state_variable_8 = 1; ldv_initialize_bin_attribute_8(); } else { } if (ldv_retval_6 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_40033; default: ldv_stop(); } ldv_40033: ; } else { } goto ldv_39982; case 10: ; if (ldv_state_variable_10 != 0) { tmp___25 = __VERIFIER_nondet_int(); switch (tmp___25) { case 0: ; if (ldv_state_variable_10 == 2) { write_fs(bin_attr_fs_group1, bin_attr_fs_group0, bin_attr_fs_group2, ldvarg40, ldvarg41, ldvarg39); ldv_state_variable_10 = 2; } else { } goto ldv_40038; case 1: ; if (ldv_state_variable_10 == 2) { read_fs(bin_attr_fs_group1, bin_attr_fs_group0, bin_attr_fs_group2, ldvarg37, ldvarg38, ldvarg36); ldv_state_variable_10 = 2; } else { } goto ldv_40038; case 2: ; if (ldv_state_variable_10 == 2) { ldv_release_10(); ldv_state_variable_10 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_40038; case 3: ; if (ldv_state_variable_10 == 1) { ldv_probe_10(); ldv_state_variable_10 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_40038; default: ldv_stop(); } ldv_40038: ; } else { } goto ldv_39982; case 11: ; if (ldv_state_variable_5 != 0) { tmp___26 = __VERIFIER_nondet_int(); switch (tmp___26) { case 0: ; if (ldv_state_variable_5 == 1) { esas2r_show_info(ldvarg45, driver_template_group1); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_show_info(ldvarg45, driver_template_group1); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 1: ; if (ldv_state_variable_5 == 1) { scsi_change_queue_depth(driver_template_group2, ldvarg44); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { scsi_change_queue_depth(driver_template_group2, ldvarg44); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 2: ; if (ldv_state_variable_5 == 1) { esas2r_queuecommand(driver_template_group1, driver_template_group0); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_queuecommand(driver_template_group1, driver_template_group0); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 3: ; if (ldv_state_variable_5 == 1) { esas2r_target_reset(driver_template_group0); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_target_reset(driver_template_group0); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 4: ; if (ldv_state_variable_5 == 1) { esas2r_device_reset(driver_template_group0); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_device_reset(driver_template_group0); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 5: ; if (ldv_state_variable_5 == 1) { esas2r_eh_abort(driver_template_group0); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_eh_abort(driver_template_group0); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 6: ; if (ldv_state_variable_5 == 2) { esas2r_release(driver_template_group1); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_40045; case 7: ; if (ldv_state_variable_5 == 1) { esas2r_ioctl(driver_template_group2, ldvarg43, ldvarg42); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_ioctl(driver_template_group2, ldvarg43, ldvarg42); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 8: ; if (ldv_state_variable_5 == 1) { esas2r_bus_reset(driver_template_group0); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_bus_reset(driver_template_group0); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 9: ; if (ldv_state_variable_5 == 1) { esas2r_host_reset(driver_template_group0); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_host_reset(driver_template_group0); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 10: ; if (ldv_state_variable_5 == 1) { esas2r_info(driver_template_group1); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { esas2r_info(driver_template_group1); ldv_state_variable_5 = 2; } else { } goto ldv_40045; case 11: ; if (ldv_state_variable_5 == 1) { ldv_probe_5(); ldv_state_variable_5 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_40045; default: ldv_stop(); } ldv_40045: ; } else { } goto ldv_39982; default: ldv_stop(); } ldv_39982: ; goto ldv_40059; ldv_final: ldv_check_final_state(); return 0; } } bool ldv_queue_work_on_155(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_156(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_157(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_158(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_159(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_scsi_add_host_with_dma_160(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } struct Scsi_Host *ldv_scsi_host_alloc_161(struct scsi_host_template *sht , int privsize ) { ldv_func_ret_type___5 ldv_func_res ; struct Scsi_Host *tmp ; { tmp = scsi_host_alloc(sht, privsize); ldv_func_res = tmp; if ((unsigned long )ldv_func_res != (unsigned long )((ldv_func_ret_type___5 )0)) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } int ldv___pci_register_driver_162(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_4 = 1; ldv_pci_driver_4(); return (ldv_func_res); } } void ldv_pci_unregister_driver_163(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_4 = 0; return; } } __inline static void ldv_unregister_chrdev_164(unsigned int major , char const *name ) { { unregister_chrdev(major, name); ldv_state_variable_3 = 0; return; } } void ldv_pci_unregister_driver_165(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_4 = 0; return; } } void ldv_scsi_unregister_166(struct Scsi_Host *shost ) { { scsi_unregister(shost); ldv_state_variable_5 = 0; return; } } __inline static int ldv_register_chrdev_167(unsigned int major , char const *name , struct file_operations const *fops ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; { tmp = register_chrdev(major, name, fops); ldv_func_res = tmp; ldv_state_variable_3 = 1; ldv_file_operations_3(); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_168(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___8 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } extern void *memset(void * , int , size_t ) ; __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } int ldv_module_refcounter = 1; void ldv_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_module_refcounter = ldv_module_refcounter + 1; } else { } return; } } int ldv_try_module_get(struct module *module ) { int module_get_succeeded ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { module_get_succeeded = ldv_undef_int(); if (module_get_succeeded == 1) { ldv_module_refcounter = ldv_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { if (ldv_module_refcounter <= 1) { ldv_error(); } else { } ldv_module_refcounter = ldv_module_refcounter - 1; } else { } return; } } void ldv_module_put_and_exit(void) { { ldv_module_put((struct module *)1); LDV_STOP: ; goto LDV_STOP; } } unsigned int ldv_module_refcount(void) { { return ((unsigned int )(ldv_module_refcounter + -1)); } } void ldv_check_final_state(void) { { if (ldv_module_refcounter != 1) { ldv_error(); } else { } return; } }