extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct pci_bus; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct block_device; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_208 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField56 ; }; struct lockref { union __anonunion____missing_field_name_207 __annonCompField57 ; }; struct path; struct vfsmount; struct __anonstruct____missing_field_name_210 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_209 { struct __anonstruct____missing_field_name_210 __annonCompField58 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_209 __annonCompField59 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_211 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_211 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_215 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_214 { struct __anonstruct____missing_field_name_215 __annonCompField60 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_214 __annonCompField61 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_218 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t __bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_218 __annonCompField62 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t __bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct bdi_writeback; struct export_operations; struct kiocb; struct kobject; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_219 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_219 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_220 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_220 __annonCompField63 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct writeback_control; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_223 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_224 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_225 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_223 __annonCompField64 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_224 __annonCompField65 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_225 __annonCompField66 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_226 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_226 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_228 { struct list_head link ; int state ; }; union __anonunion_fl_u_227 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_228 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_227 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct proc_dir_entry; struct kref { atomic_t refcount ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_240 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_240 __annonCompField74 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_242 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_243 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_242 __annonCompField76 ; union __anonunion____missing_field_name_243 __annonCompField77 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct card_cfg_hdr { __u32 version ; __u32 crc ; }; struct __anonstruct_intr_coal_244 { __u32 mode ; __u32 count ; __u32 latency ; }; struct card_cfg_data { __u32 block_size ; __u32 stripe_size ; __u32 vendor_id ; __u32 cache_order ; struct __anonstruct_intr_coal_244 intr_coal ; }; struct rsxx_card_cfg { struct card_cfg_hdr hdr ; struct card_cfg_data data ; }; struct dma_tracker_list; struct rsxx_cs_buffer { dma_addr_t dma_addr ; void *buf ; u32 idx ; }; struct rsxx_dma_stats { u32 crc_errors ; u32 hard_errors ; u32 soft_errors ; u32 writes_issued ; u32 writes_failed ; u32 reads_issued ; u32 reads_failed ; u32 reads_retried ; u32 discards_issued ; u32 discards_failed ; u32 done_rescheduled ; u32 issue_rescheduled ; u32 dma_sw_err ; u32 dma_hw_fault ; u32 dma_cancelled ; u32 sw_q_depth ; atomic_t hw_q_depth ; }; struct rsxx_cardinfo; struct rsxx_dma_ctrl { struct rsxx_cardinfo *card ; int id ; void *regmap ; struct rsxx_cs_buffer status ; struct rsxx_cs_buffer cmd ; u16 e_cnt ; spinlock_t queue_lock ; struct list_head queue ; struct workqueue_struct *issue_wq ; struct work_struct issue_dma_work ; struct workqueue_struct *done_wq ; struct work_struct dma_done_work ; struct timer_list activity_timer ; struct dma_tracker_list *trackers ; struct rsxx_dma_stats stats ; struct mutex work_lock ; }; struct creg_cmd; struct __anonstruct_creg_stats_246 { u32 stat ; u32 failed_cancel_timer ; u32 creg_timeout ; }; struct __anonstruct_creg_ctrl_245 { spinlock_t lock ; bool active ; struct creg_cmd *active_cmd ; struct workqueue_struct *creg_wq ; struct work_struct done_work ; struct list_head queue ; unsigned int q_depth ; struct __anonstruct_creg_stats_246 creg_stats ; struct timer_list cmd_timer ; struct mutex reset_lock ; int reset ; }; struct __anonstruct_log_247 { char tmp[32U] ; char buf[128U] ; int buf_len ; }; struct __anonstruct__stripe_248 { u64 lower_mask ; u64 upper_shift ; u64 upper_mask ; u64 target_mask ; u64 target_shift ; }; struct rsxx_cardinfo { struct pci_dev *dev ; unsigned int halt ; unsigned int eeh_state ; void *regmap ; spinlock_t irq_lock ; unsigned int isr_mask ; unsigned int ier_mask ; struct rsxx_card_cfg config ; int config_valid ; struct __anonstruct_creg_ctrl_245 creg_ctrl ; struct __anonstruct_log_247 log ; struct workqueue_struct *event_wq ; struct work_struct event_work ; unsigned int state ; u64 size8 ; struct mutex dev_lock ; bool bdev_attached ; int disk_id ; int major ; struct request_queue *queue ; struct gendisk *gendisk ; struct __anonstruct__stripe_248 _stripe ; unsigned int dma_fault ; int scrub_hard ; int n_targets ; struct rsxx_dma_ctrl *ctrl ; struct dentry *debugfs_dir ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef unsigned short __u16; typedef signed char s8; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; enum hrtimer_restart; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct exception_table_entry { int insn ; int fixup ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_218___0 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_218___0 __annonCompField64 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct block_device_operations; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; typedef int ldv_func_ret_type___4; typedef bool ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; enum hrtimer_restart; struct rsxx_reg_access { __u32 addr ; __u32 cnt ; __u32 stat ; __u32 stream ; __u32 data[8U] ; }; struct creg_cmd { struct list_head list ; void (*cb)(struct rsxx_cardinfo * , struct creg_cmd * , int ) ; void *cb_private ; unsigned int op ; unsigned int addr ; int cnt8 ; void *buf ; unsigned int stream ; unsigned int status ; }; struct creg_completion { struct completion *cmd_done ; int st ; u32 creg_status ; }; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; typedef bool ldv_func_ret_type___11; enum hrtimer_restart; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; unsigned int flags ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; typedef int congested_fn(void * , int ); struct bdi_writeback_congested { unsigned long state ; atomic_t refcnt ; struct backing_dev_info *bdi ; int blkcg_id ; struct rb_node rb_node ; }; union __anonunion____missing_field_name_254 { struct work_struct release_work ; struct callback_head rcu ; }; struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long state ; unsigned long last_old_flush ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; struct percpu_counter stat[4U] ; struct bdi_writeback_congested *congested ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; spinlock_t work_lock ; struct list_head work_list ; struct delayed_work dwork ; struct percpu_ref refcnt ; struct fprop_local_percpu memcg_completions ; struct cgroup_subsys_state *memcg_css ; struct cgroup_subsys_state *blkcg_css ; struct list_head memcg_node ; struct list_head blkcg_node ; union __anonunion____missing_field_name_254 __annonCompField77 ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; atomic_long_t tot_write_bandwidth ; struct bdi_writeback wb ; struct radix_tree_root cgwb_tree ; struct rb_root cgwb_congested_tree ; atomic_t usage_cnt ; wait_queue_head_t wb_waitq ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; union __anonunion____missing_field_name_257 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_258 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_259 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_261 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_262 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_260 { struct __anonstruct_elv_261 elv ; struct __anonstruct_flush_262 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_257 __annonCompField80 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; unsigned int cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField82 ; union __anonunion____missing_field_name_260 __annonCompField83 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); typedef void elevator_registered_fn(struct request_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; elevator_registered_fn *elevator_registered_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; atomic_t mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct rsxx_bio_meta { struct bio *bio ; atomic_t pending_dmas ; atomic_t error ; unsigned long start_time ; }; typedef __u16 __le16; typedef __u32 __le32; typedef __u64 __le64; enum hrtimer_restart; struct __anonstruct_sub_page_249 { u32 off ; u32 cnt ; }; struct rsxx_dma { struct list_head list ; u8 cmd ; unsigned int laddr ; struct __anonstruct_sub_page_249 sub_page ; dma_addr_t dma_addr ; struct page *page ; unsigned int pg_off ; void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) ; void *cb_data ; }; struct hw_status { u8 status ; u8 tag ; __le16 count ; __le32 _rsvd2 ; __le64 _rsvd3 ; }; struct hw_cmd { u8 command ; u8 tag ; u8 _rsvd ; u8 sub_page ; __le32 device_addr ; __le64 host_addr ; }; struct dma_tracker { int next_tag ; struct rsxx_dma *dma ; }; struct dma_tracker_list { spinlock_t lock ; int head ; struct dma_tracker list[0U] ; }; __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_15(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_16(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; int ldv_irq_1_3 = 0; int LDV_IN_INTERRUPT = 1; int ldv_irq_1_1 = 0; int ldv_irq_1_0 = 0; int ldv_irq_1_2 = 0; void activate_work_3(struct work_struct *work , int state ) ; void call_and_disable_all_3(int state ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; int rsxx_load_config(struct rsxx_cardinfo *card ) ; int rsxx_creg_write(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) ; int rsxx_creg_read(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) ; static void initialize_config(struct rsxx_card_cfg *cfg ) { { cfg->hdr.version = 4U; cfg->data.block_size = 4096U; cfg->data.stripe_size = 4096U; cfg->data.vendor_id = 0U; cfg->data.cache_order = 4294967295U; cfg->data.intr_coal.mode = 0U; cfg->data.intr_coal.count = 0U; cfg->data.intr_coal.latency = 0U; return; } } static u32 config_data_crc32(struct rsxx_card_cfg *cfg ) { u32 tmp ; { tmp = crc32_le(4294967295U, (unsigned char const *)(& cfg->data), 28UL); return (~ tmp); } } static void config_hdr_be_to_cpu(struct card_cfg_hdr *hdr ) { { hdr->version = __fswab32(hdr->version); hdr->crc = __fswab32(hdr->crc); return; } } static void config_hdr_cpu_to_be(struct card_cfg_hdr *hdr ) { { hdr->version = __fswab32(hdr->version); hdr->crc = __fswab32(hdr->crc); return; } } static void config_data_swab(struct rsxx_card_cfg *cfg ) { u32 *data ; int i ; __u32 tmp ; { data = (u32 *)(& cfg->data); i = 0; goto ldv_33156; ldv_33155: tmp = __fswab32(*(data + (unsigned long )i)); *(data + (unsigned long )i) = tmp; i = i + 1; ldv_33156: ; if ((unsigned int )i <= 6U) { goto ldv_33155; } else { } return; } } static void config_data_le_to_cpu(struct rsxx_card_cfg *cfg ) { u32 *data ; int i ; { data = (u32 *)(& cfg->data); i = 0; goto ldv_33164; ldv_33163: *(data + (unsigned long )i) = *(data + (unsigned long )i); i = i + 1; ldv_33164: ; if ((unsigned int )i <= 6U) { goto ldv_33163; } else { } return; } } static void config_data_cpu_to_le(struct rsxx_card_cfg *cfg ) { u32 *data ; int i ; { data = (u32 *)(& cfg->data); i = 0; goto ldv_33172; ldv_33171: *(data + (unsigned long )i) = *(data + (unsigned long )i); i = i + 1; ldv_33172: ; if ((unsigned int )i <= 6U) { goto ldv_33171; } else { } return; } } static int rsxx_save_config(struct rsxx_cardinfo *card ) { struct rsxx_card_cfg cfg ; int st ; long tmp ; { memcpy((void *)(& cfg), (void const *)(& card->config), 36UL); tmp = ldv__builtin_expect(cfg.hdr.version != 4U, 0L); if (tmp != 0L) { dev_err((struct device const *)(& (card->dev)->dev), "Cannot save config with invalid version %d\n", cfg.hdr.version); return (-22); } else { } config_data_cpu_to_le(& cfg); cfg.hdr.crc = config_data_crc32(& cfg); config_data_swab(& cfg); config_hdr_cpu_to_be(& cfg.hdr); st = rsxx_creg_write(card, 2952790016U, 36U, (void *)(& cfg), 1); if (st != 0) { return (st); } else { } return (0); } } int rsxx_load_config(struct rsxx_cardinfo *card ) { int st ; u32 crc ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; { st = rsxx_creg_read(card, 2952790016U, 36U, (void *)(& card->config), 1); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed reading card config.\n"); return (st); } else { } config_hdr_be_to_cpu(& card->config.hdr); if (card->config.hdr.version == 4U) { config_data_swab(& card->config); crc = config_data_crc32(& card->config); if (card->config.hdr.crc != crc) { dev_err((struct device const *)(& (card->dev)->dev), "Config corruption detected!\n"); _dev_info((struct device const *)(& (card->dev)->dev), "CRC (sb x%08x is x%08x)\n", card->config.hdr.crc, crc); return (-5); } else { } config_data_le_to_cpu(& card->config); } else if (card->config.hdr.version != 0U) { dev_err((struct device const *)(& (card->dev)->dev), "Invalid config version %d.\n", card->config.hdr.version); return (-22); } else { _dev_info((struct device const *)(& (card->dev)->dev), "Initializing card configuration.\n"); initialize_config(& card->config); st = rsxx_save_config(card); if (st != 0) { return (st); } else { } } card->config_valid = 1; descriptor.modname = "rsxx"; descriptor.function = "rsxx_load_config"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor.format = "version: x%08x\n"; descriptor.lineno = 191U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "version: x%08x\n", card->config.hdr.version); } else { } descriptor___0.modname = "rsxx"; descriptor___0.function = "rsxx_load_config"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___0.format = "crc: x%08x\n"; descriptor___0.lineno = 193U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (card->dev)->dev), "crc: x%08x\n", card->config.hdr.crc); } else { } descriptor___1.modname = "rsxx"; descriptor___1.function = "rsxx_load_config"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___1.format = "block_size: x%08x\n"; descriptor___1.lineno = 195U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (card->dev)->dev), "block_size: x%08x\n", card->config.data.block_size); } else { } descriptor___2.modname = "rsxx"; descriptor___2.function = "rsxx_load_config"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___2.format = "stripe_size: x%08x\n"; descriptor___2.lineno = 197U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (card->dev)->dev), "stripe_size: x%08x\n", card->config.data.stripe_size); } else { } descriptor___3.modname = "rsxx"; descriptor___3.function = "rsxx_load_config"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___3.format = "vendor_id: x%08x\n"; descriptor___3.lineno = 199U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (card->dev)->dev), "vendor_id: x%08x\n", card->config.data.vendor_id); } else { } descriptor___4.modname = "rsxx"; descriptor___4.function = "rsxx_load_config"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___4.format = "cache_order: x%08x\n"; descriptor___4.lineno = 201U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(& (card->dev)->dev), "cache_order: x%08x\n", card->config.data.cache_order); } else { } descriptor___5.modname = "rsxx"; descriptor___5.function = "rsxx_load_config"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___5.format = "mode: x%08x\n"; descriptor___5.lineno = 203U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_dev_dbg(& descriptor___5, (struct device const *)(& (card->dev)->dev), "mode: x%08x\n", card->config.data.intr_coal.mode); } else { } descriptor___6.modname = "rsxx"; descriptor___6.function = "rsxx_load_config"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___6.format = "count: x%08x\n"; descriptor___6.lineno = 205U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_dev_dbg(& descriptor___6, (struct device const *)(& (card->dev)->dev), "count: x%08x\n", card->config.data.intr_coal.count); } else { } descriptor___7.modname = "rsxx"; descriptor___7.function = "rsxx_load_config"; descriptor___7.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/config.c"; descriptor___7.format = "latency: x%08x\n"; descriptor___7.lineno = 207U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_dev_dbg(& descriptor___7, (struct device const *)(& (card->dev)->dev), "latency: x%08x\n", card->config.data.intr_coal.latency); } else { } return (0); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_15(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static int ffs(int x ) { int r ; { __asm__ ("bsfl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern void __might_fault(char const * , int ) ; bool ldv_is_err_or_null(void const *ptr ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static bool IS_ERR_OR_NULL(void const *ptr ) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; int ldv_mutex_trylock_41(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_39(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_42(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_43(struct mutex *ldv_func_arg1 ) ; __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } void ldv_mutex_lock_38(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_40(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_44(struct mutex *ldv_func_arg1 ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_lock_bh(spinlock_t *lock ) { { _raw_spin_lock_bh(& lock->__annonCompField17.rlock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) { { _raw_spin_lock_irq(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { _raw_spin_unlock_bh(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) { { _raw_spin_unlock_irq(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long volatile jiffies ; extern unsigned long __msecs_to_jiffies(unsigned int const ) ; __inline static unsigned long msecs_to_jiffies(unsigned int const m ) { unsigned long tmp___0 ; { tmp___0 = __msecs_to_jiffies(m); return (tmp___0); } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; void ldv_destroy_workqueue_46(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_47(struct workqueue_struct *ldv_func_arg1 ) ; bool ldv_queue_work_on_33(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_35(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_34(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_37(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_36(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_work_sync(struct work_struct * ) ; bool ldv_cancel_work_sync_49(struct work_struct *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_33(8192, wq, work); return (tmp); } } extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; extern int ida_pre_get(struct ida * , gfp_t ) ; extern int ida_get_new_above(struct ida * , int , int * ) ; extern void ida_remove(struct ida * , int ) ; __inline static int ida_get_new(struct ida *ida , int *p_id ) { int tmp ; { tmp = ida_get_new_above(ida, 0, p_id); return (tmp); } } extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } struct timer_list *ldv_timer_list_7_1 ; int pci_counter ; struct work_struct *ldv_work_struct_3_1 ; int ldv_state_variable_0 ; int ldv_state_variable_12 ; struct pci_dev *rsxx_pci_driver_group1 ; struct inode *debugfs_pci_regs_fops_group1 ; int ldv_timer_6_2 ; struct work_struct *ldv_work_struct_2_0 ; struct pci_dev *rsxx_err_handler_group0 ; struct work_struct *ldv_work_struct_4_3 ; int ldv_state_variable_9 ; int ldv_timer_6_0 ; struct work_struct *ldv_work_struct_2_2 ; int ref_cnt ; int ldv_irq_line_1_1 ; int ldv_work_3_3 ; struct work_struct *ldv_work_struct_4_0 ; int ldv_state_variable_7 ; struct work_struct *ldv_work_struct_3_3 ; struct timer_list *ldv_timer_list_6_3 ; struct timer_list *ldv_timer_list_6_2 ; void *debugfs_cram_fops_group1 ; struct inode *debugfs_stats_fops_group1 ; struct timer_list *ldv_timer_list_7_3 ; struct work_struct *ldv_work_struct_2_1 ; int ldv_work_4_0 ; struct work_struct *ldv_work_struct_3_2 ; int ldv_state_variable_6 ; void *ldv_irq_data_1_0 ; void *ldv_irq_data_1_3 ; int ldv_work_5_0 ; struct work_struct *ldv_work_struct_4_2 ; struct timer_list *ldv_timer_list_6_0 ; int ldv_timer_7_1 ; struct timer_list *ldv_timer_list_7_0 ; struct work_struct *ldv_work_struct_5_1 ; int ldv_work_5_2 ; int ldv_state_variable_3 ; int ldv_irq_line_1_0 ; int ldv_state_variable_4 ; int ldv_work_2_1 ; int ldv_timer_7_3 ; int ldv_state_variable_8 ; struct work_struct *ldv_work_struct_5_2 ; struct work_struct *ldv_work_struct_5_3 ; int ldv_state_variable_5 ; int ldv_state_variable_13 ; int ldv_work_3_2 ; struct timer_list *ldv_timer_list_7_2 ; int ldv_work_3_0 ; struct work_struct *ldv_work_struct_2_3 ; struct timer_list *ldv_timer_list_6_1 ; int ldv_timer_7_0 ; int ldv_state_variable_1 ; struct block_device *rsxx_fops_group0 ; int ldv_work_5_3 ; int ldv_irq_line_1_2 ; int ldv_timer_6_3 ; void *ldv_irq_data_1_1 ; int ldv_state_variable_10 ; int ldv_work_4_1 ; int ldv_work_4_3 ; int ldv_work_3_1 ; struct file *debugfs_cram_fops_group2 ; int ldv_state_variable_2 ; int ldv_work_2_0 ; int ldv_work_5_1 ; struct file *debugfs_stats_fops_group2 ; void *ldv_irq_data_1_2 ; struct work_struct *ldv_work_struct_3_0 ; int ldv_work_4_2 ; int ldv_timer_7_2 ; int ldv_state_variable_11 ; struct work_struct *ldv_work_struct_5_0 ; int ldv_irq_line_1_3 ; int ldv_timer_6_1 ; int ldv_work_2_2 ; struct work_struct *ldv_work_struct_4_1 ; struct file *debugfs_pci_regs_fops_group2 ; int ldv_work_2_3 ; void work_init_3(void) ; void call_and_disable_all_2(int state ) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void work_init_5(void) ; void timer_init_6(void) ; void ldv_initialize_block_device_operations_8(void) ; void disable_work_3(struct work_struct *work ) ; void disable_suitable_irq_1(int line , void *data ) ; void activate_suitable_irq_1(int line , void *data ) ; void ldv_file_operations_12(void) ; void invoke_work_2(void) ; void work_init_2(void) ; void activate_work_2(struct work_struct *work , int state ) ; void timer_init_7(void) ; void choose_interrupt_1(void) ; void ldv_initialize_pci_error_handlers_10(void) ; void ldv_file_operations_13(void) ; void disable_work_2(struct work_struct *work ) ; void work_init_4(void) ; void ldv_pci_driver_9(void) ; int ldv_irq_1(int state , int line , void *data ) ; void ldv_file_operations_11(void) ; void call_and_disable_work_2(struct work_struct *work ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; long tmp___0 ; { tmp = __builtin_object_size((void const *)to, 0); sz = (int )tmp; __might_fault("./arch/x86/include/asm/uaccess.h", 697); tmp___0 = ldv__builtin_expect((long )(sz < 0 || (unsigned long )sz >= n), 1L); if (tmp___0 != 0L) { n = _copy_from_user(to, from, (unsigned int )n); } else { __copy_from_user_overflow(); } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; long tmp___0 ; { tmp = __builtin_object_size(from, 0); sz = (int )tmp; __might_fault("./arch/x86/include/asm/uaccess.h", 732); tmp___0 = ldv__builtin_expect((long )(sz < 0 || (unsigned long )sz >= n), 1L); if (tmp___0 != 0L) { n = _copy_to_user(to, from, (unsigned int )n); } else { __copy_to_user_overflow(); } return (n); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_45(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_48(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_50(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int single_open(struct file * , int (*)(struct seq_file * , void * ) , void * ) ; extern int single_release(struct inode * , struct file * ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_crit(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_dma_max_seg_size(struct pci_dev * , unsigned int ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_51(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_52(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; if (rc < 0) { return (rc); } else { } return (0); } } extern int dma_set_mask(struct device * , u64 ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } extern void msleep(unsigned int ) ; __inline static void ssleep(unsigned int seconds ) { { msleep(seconds * 1000U); return; } } __inline static struct inode *file_inode(struct file const *f ) { { return ((struct inode *)f->f_inode); } } extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove(struct dentry * ) ; extern void debugfs_remove_recursive(struct dentry * ) ; __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } __inline static int CR_INTR_DMA(int N ) { unsigned int _CR_INTR_DMA[8U] ; { _CR_INTR_DMA[0] = 1U; _CR_INTR_DMA[1] = 4U; _CR_INTR_DMA[2] = 16U; _CR_INTR_DMA[3] = 32U; _CR_INTR_DMA[4] = 64U; _CR_INTR_DMA[5] = 128U; _CR_INTR_DMA[6] = 256U; _CR_INTR_DMA[7] = 512U; return ((int )_CR_INTR_DMA[N]); } } void rsxx_enable_ier(struct rsxx_cardinfo *card , unsigned int intr ) ; void rsxx_disable_ier(struct rsxx_cardinfo *card , unsigned int intr ) ; void rsxx_enable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) ; void rsxx_disable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) ; int rsxx_attach_dev(struct rsxx_cardinfo *card ) ; void rsxx_detach_dev(struct rsxx_cardinfo *card ) ; int rsxx_setup_dev(struct rsxx_cardinfo *card ) ; void rsxx_destroy_dev(struct rsxx_cardinfo *card ) ; int rsxx_dev_init(void) ; void rsxx_dev_cleanup(void) ; int rsxx_dma_setup(struct rsxx_cardinfo *card ) ; void rsxx_dma_destroy(struct rsxx_cardinfo *card ) ; int rsxx_dma_init(void) ; int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl , struct list_head *q , unsigned int done ) ; int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl ) ; void rsxx_dma_cleanup(void) ; void rsxx_dma_queue_reset(struct rsxx_cardinfo *card ) ; int rsxx_dma_configure(struct rsxx_cardinfo *card ) ; int rsxx_hw_buffers_init(struct pci_dev *dev , struct rsxx_dma_ctrl *ctrl ) ; int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card ) ; int rsxx_read_hw_log(struct rsxx_cardinfo *card ) ; int rsxx_get_card_state(struct rsxx_cardinfo *card , unsigned int *state ) ; int rsxx_get_card_size8(struct rsxx_cardinfo *card , u64 *size8 ) ; int rsxx_get_num_targets(struct rsxx_cardinfo *card , unsigned int *n_targets ) ; int rsxx_issue_card_cmd(struct rsxx_cardinfo *card , u32 cmd ) ; int rsxx_creg_setup(struct rsxx_cardinfo *card ) ; void rsxx_creg_destroy(struct rsxx_cardinfo *card ) ; int rsxx_creg_init(void) ; void rsxx_creg_cleanup(void) ; void rsxx_eeh_save_issued_creg(struct rsxx_cardinfo *card ) ; void rsxx_kick_creg_queue(struct rsxx_cardinfo *card ) ; static unsigned int force_legacy = 0U; static unsigned int sync_start = 1U; static struct ida rsxx_disk_ida = {{0, 0, 0, 0, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "(rsxx_disk_ida).idr.lock", 0, 0UL}}}}, 0, 0}, (struct ida_bitmap *)0}; static spinlock_t rsxx_ida_lock = {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "rsxx_ida_lock", 0, 0UL}}}}; static int rsxx_attr_pci_regs_show(struct seq_file *m , void *p ) { struct rsxx_cardinfo *card ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; { card = (struct rsxx_cardinfo *)m->private; tmp = ioread32(card->regmap); seq_printf(m, "HWID\t\t0x%08x\n", tmp); tmp___0 = ioread32(card->regmap + 4UL); seq_printf(m, "SCRATCH\t\t0x%08x\n", tmp___0); tmp___1 = ioread32(card->regmap + 20UL); seq_printf(m, "IER\t\t0x%08x\n", tmp___1); tmp___2 = ioread32(card->regmap + 24UL); seq_printf(m, "IPR\t\t0x%08x\n", tmp___2); tmp___3 = ioread32(card->regmap + 64UL); seq_printf(m, "CREG_CMD\t\t0x%08x\n", tmp___3); tmp___4 = ioread32(card->regmap + 68UL); seq_printf(m, "CREG_ADD\t\t0x%08x\n", tmp___4); tmp___5 = ioread32(card->regmap + 72UL); seq_printf(m, "CREG_CNT\t\t0x%08x\n", tmp___5); tmp___6 = ioread32(card->regmap + 76UL); seq_printf(m, "CREG_STAT\t0x%08x\n", tmp___6); tmp___7 = ioread32(card->regmap + 80UL); seq_printf(m, "CREG_DATA0\t0x%08x\n", tmp___7); tmp___8 = ioread32(card->regmap + 84UL); seq_printf(m, "CREG_DATA1\t0x%08x\n", tmp___8); tmp___9 = ioread32(card->regmap + 88UL); seq_printf(m, "CREG_DATA2\t0x%08x\n", tmp___9); tmp___10 = ioread32(card->regmap + 92UL); seq_printf(m, "CREG_DATA3\t0x%08x\n", tmp___10); tmp___11 = ioread32(card->regmap + 96UL); seq_printf(m, "CREG_DATA4\t0x%08x\n", tmp___11); tmp___12 = ioread32(card->regmap + 100UL); seq_printf(m, "CREG_DATA5\t0x%08x\n", tmp___12); tmp___13 = ioread32(card->regmap + 104UL); seq_printf(m, "CREG_DATA6\t0x%08x\n", tmp___13); tmp___14 = ioread32(card->regmap + 108UL); seq_printf(m, "CREG_DATA7\t0x%08x\n", tmp___14); tmp___15 = ioread32(card->regmap + 112UL); seq_printf(m, "INTR_COAL\t0x%08x\n", tmp___15); tmp___16 = ioread32(card->regmap + 116UL); seq_printf(m, "HW_ERROR\t\t0x%08x\n", tmp___16); tmp___17 = ioread32(card->regmap + 120UL); seq_printf(m, "DEBUG0\t\t0x%08x\n", tmp___17); tmp___18 = ioread32(card->regmap + 124UL); seq_printf(m, "DEBUG1\t\t0x%08x\n", tmp___18); tmp___19 = ioread32(card->regmap + 128UL); seq_printf(m, "DEBUG2\t\t0x%08x\n", tmp___19); tmp___20 = ioread32(card->regmap + 132UL); seq_printf(m, "DEBUG3\t\t0x%08x\n", tmp___20); tmp___21 = ioread32(card->regmap + 136UL); seq_printf(m, "DEBUG4\t\t0x%08x\n", tmp___21); tmp___22 = ioread32(card->regmap + 140UL); seq_printf(m, "DEBUG5\t\t0x%08x\n", tmp___22); tmp___23 = ioread32(card->regmap + 144UL); seq_printf(m, "DEBUG6\t\t0x%08x\n", tmp___23); tmp___24 = ioread32(card->regmap + 148UL); seq_printf(m, "DEBUG7\t\t0x%08x\n", tmp___24); tmp___25 = ioread32(card->regmap + 184UL); seq_printf(m, "RECONFIG\t\t0x%08x\n", tmp___25); return (0); } } static int rsxx_attr_stats_show(struct seq_file *m , void *p ) { struct rsxx_cardinfo *card ; int i ; int tmp ; { card = (struct rsxx_cardinfo *)m->private; i = 0; goto ldv_34733; ldv_34732: seq_printf(m, "Ctrl %d CRC Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.crc_errors); seq_printf(m, "Ctrl %d Hard Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.hard_errors); seq_printf(m, "Ctrl %d Soft Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.soft_errors); seq_printf(m, "Ctrl %d Writes Issued\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.writes_issued); seq_printf(m, "Ctrl %d Writes Failed\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.writes_failed); seq_printf(m, "Ctrl %d Reads Issued\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.reads_issued); seq_printf(m, "Ctrl %d Reads Failed\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.reads_failed); seq_printf(m, "Ctrl %d Reads Retried\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.reads_retried); seq_printf(m, "Ctrl %d Discards Issued\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.discards_issued); seq_printf(m, "Ctrl %d Discards Failed\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.discards_failed); seq_printf(m, "Ctrl %d DMA SW Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.dma_sw_err); seq_printf(m, "Ctrl %d DMA HW Faults\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.dma_hw_fault); seq_printf(m, "Ctrl %d DMAs Cancelled\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.dma_cancelled); seq_printf(m, "Ctrl %d SW Queue Depth\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.sw_q_depth); tmp = atomic_read((atomic_t const *)(& (card->ctrl + (unsigned long )i)->stats.hw_q_depth)); seq_printf(m, "Ctrl %d HW Queue Depth\t= %d\n", i, tmp); i = i + 1; ldv_34733: ; if (card->n_targets > i) { goto ldv_34732; } else { } return (0); } } static int rsxx_attr_stats_open(struct inode *inode , struct file *file ) { int tmp ; { tmp = single_open(file, & rsxx_attr_stats_show, inode->i_private); return (tmp); } } static int rsxx_attr_pci_regs_open(struct inode *inode , struct file *file ) { int tmp ; { tmp = single_open(file, & rsxx_attr_pci_regs_show, inode->i_private); return (tmp); } } static ssize_t rsxx_cram_read(struct file *fp , char *ubuf , size_t cnt , loff_t *ppos ) { struct rsxx_cardinfo *card ; struct inode *tmp ; char *buf ; ssize_t st ; void *tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; { tmp = file_inode((struct file const *)fp); card = (struct rsxx_cardinfo *)tmp->i_private; tmp___0 = kzalloc(cnt, 208U); buf = (char *)tmp___0; if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-12L); } else { } tmp___1 = rsxx_creg_read(card, (unsigned int )*ppos + 2684354560U, (unsigned int )cnt, (void *)buf, 1); st = (ssize_t )tmp___1; if (st == 0L) { tmp___2 = copy_to_user((void *)ubuf, (void const *)buf, cnt); st = (ssize_t )tmp___2; } else { } kfree((void const *)buf); if (st != 0L) { return (st); } else { } *ppos = (loff_t )((unsigned long long )*ppos + (unsigned long long )cnt); return ((ssize_t )cnt); } } static ssize_t rsxx_cram_write(struct file *fp , char const *ubuf , size_t cnt , loff_t *ppos ) { struct rsxx_cardinfo *card ; struct inode *tmp ; char *buf ; ssize_t st ; void *tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; { tmp = file_inode((struct file const *)fp); card = (struct rsxx_cardinfo *)tmp->i_private; tmp___0 = kzalloc(cnt, 208U); buf = (char *)tmp___0; if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-12L); } else { } tmp___1 = copy_from_user((void *)buf, (void const *)ubuf, cnt); st = (ssize_t )tmp___1; if (st == 0L) { tmp___2 = rsxx_creg_write(card, (unsigned int )*ppos + 2684354560U, (unsigned int )cnt, (void *)buf, 1); st = (ssize_t )tmp___2; } else { } kfree((void const *)buf); if (st != 0L) { return (st); } else { } *ppos = (loff_t )((unsigned long long )*ppos + (unsigned long long )cnt); return ((ssize_t )cnt); } } static struct file_operations const debugfs_cram_fops = {& __this_module, 0, & rsxx_cram_read, & rsxx_cram_write, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const debugfs_stats_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rsxx_attr_stats_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const debugfs_pci_regs_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rsxx_attr_pci_regs_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void rsxx_debugfs_dev_new(struct rsxx_cardinfo *card ) { struct dentry *debugfs_stats ; struct dentry *debugfs_pci_regs ; struct dentry *debugfs_cram ; bool tmp ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; { card->debugfs_dir = debugfs_create_dir((char const *)(& (card->gendisk)->disk_name), (struct dentry *)0); tmp = IS_ERR_OR_NULL((void const *)card->debugfs_dir); if ((int )tmp) { goto failed_debugfs_dir; } else { } debugfs_stats = debugfs_create_file("stats", 292, card->debugfs_dir, (void *)card, & debugfs_stats_fops); tmp___0 = IS_ERR_OR_NULL((void const *)debugfs_stats); if ((int )tmp___0) { goto failed_debugfs_stats; } else { } debugfs_pci_regs = debugfs_create_file("pci_regs", 292, card->debugfs_dir, (void *)card, & debugfs_pci_regs_fops); tmp___1 = IS_ERR_OR_NULL((void const *)debugfs_pci_regs); if ((int )tmp___1) { goto failed_debugfs_pci_regs; } else { } debugfs_cram = debugfs_create_file("cram", 420, card->debugfs_dir, (void *)card, & debugfs_cram_fops); tmp___2 = IS_ERR_OR_NULL((void const *)debugfs_cram); if ((int )tmp___2) { goto failed_debugfs_cram; } else { } return; failed_debugfs_cram: debugfs_remove(debugfs_pci_regs); failed_debugfs_pci_regs: debugfs_remove(debugfs_stats); failed_debugfs_stats: debugfs_remove(card->debugfs_dir); failed_debugfs_dir: card->debugfs_dir = (struct dentry *)0; return; } } static void rsxx_mask_interrupts(struct rsxx_cardinfo *card ) { { card->isr_mask = 0U; card->ier_mask = 0U; return; } } static void __enable_intr(unsigned int *mask , unsigned int intr ) { { *mask = *mask | intr; return; } } static void __disable_intr(unsigned int *mask , unsigned int intr ) { { *mask = *mask & ~ intr; return; } } void rsxx_enable_ier(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect(card->halt != 0U, 0L); if (tmp != 0L) { return; } else { tmp___0 = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp___0 != 0L) { return; } else { } } __enable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); return; } } void rsxx_disable_ier(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { return; } else { } __disable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); return; } } void rsxx_enable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect(card->halt != 0U, 0L); if (tmp != 0L) { return; } else { tmp___0 = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp___0 != 0L) { return; } else { } } __enable_intr(& card->isr_mask, intr); __enable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); return; } } void rsxx_disable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { return; } else { } __disable_intr(& card->isr_mask, intr); __disable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); return; } } static irqreturn_t rsxx_isr(int irq , void *pdata ) { struct rsxx_cardinfo *card ; unsigned int isr ; int handled ; int reread_isr ; int i ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { card = (struct rsxx_cardinfo *)pdata; handled = 0; spin_lock(& card->irq_lock); ldv_34814: reread_isr = 0; tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { goto ldv_34810; } else { } isr = ioread32(card->regmap + 16UL); if (isr == 4294967295U) { _dev_info((struct device const *)(& (card->dev)->dev), "ISR = 0xFFFFFFFF, retrying later\n"); goto ldv_34810; } else { } isr = card->isr_mask & isr; if (isr == 0U) { goto ldv_34810; } else { } i = 0; goto ldv_34812; ldv_34811: tmp___2 = CR_INTR_DMA(i); if (((unsigned int )tmp___2 & isr) != 0U) { tmp___1 = CR_INTR_DMA(i); if ((card->ier_mask & (unsigned int )tmp___1) != 0U) { tmp___0 = CR_INTR_DMA(i); rsxx_disable_ier(card, (unsigned int )tmp___0); reread_isr = 1; } else { } queue_work((card->ctrl + (unsigned long )i)->done_wq, & (card->ctrl + (unsigned long )i)->dma_done_work); handled = handled + 1; } else { } i = i + 1; ldv_34812: ; if (card->n_targets > i) { goto ldv_34811; } else { } if ((isr & 2U) != 0U) { queue_work(card->creg_ctrl.creg_wq, & card->creg_ctrl.done_work); handled = handled + 1; } else { } if ((isr & 8U) != 0U) { queue_work(card->event_wq, & card->event_work); rsxx_disable_ier_and_isr(card, 8U); handled = handled + 1; } else { } if (reread_isr != 0) { goto ldv_34814; } else { } ldv_34810: spin_unlock(& card->irq_lock); return (handled != 0); } } static char const * const rsxx_card_state_to_str(unsigned int state ) { char const *state_strings[10U] ; int tmp ; { state_strings[0] = "Unknown"; state_strings[1] = "Shutdown"; state_strings[2] = "Starting"; state_strings[3] = "Formatting"; state_strings[4] = "Uninitialized"; state_strings[5] = "Good"; state_strings[6] = "Shutting Down"; state_strings[7] = "Fault"; state_strings[8] = "Read Only Fault"; state_strings[9] = "dStroying"; tmp = ffs((int )state); return (state_strings[tmp]); } } static void card_state_change(struct rsxx_cardinfo *card , unsigned int new_state ) { int st ; char const *tmp ; char const *tmp___0 ; { tmp = (char const *)rsxx_card_state_to_str(new_state); tmp___0 = (char const *)rsxx_card_state_to_str(card->state); _dev_info((struct device const *)(& (card->dev)->dev), "card state change detected.(%s -> %s)\n", tmp___0, tmp); card->state = new_state; if (card->config_valid == 0) { return; } else { } switch (new_state) { case 128U: dev_crit((struct device const *)(& (card->dev)->dev), "Hardware has entered read-only mode!\n"); case 16U: st = rsxx_get_card_size8(card, & card->size8); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed attaching DMA devices\n"); } else { } if (card->config_valid != 0) { set_capacity(card->gendisk, (sector_t )(card->size8 >> 9)); } else { } goto ldv_34826; case 64U: dev_crit((struct device const *)(& (card->dev)->dev), "Hardware Fault reported!\n"); case 1U: ; case 2U: ; case 4U: ; case 8U: ; case 32U: ; case 256U: set_capacity(card->gendisk, 0UL); goto ldv_34826; } ldv_34826: ; return; } } static void card_event_handler(struct work_struct *work ) { struct rsxx_cardinfo *card ; unsigned int state ; unsigned long flags ; int st ; struct work_struct const *__mptr ; long tmp ; raw_spinlock_t *tmp___0 ; { __mptr = (struct work_struct const *)work; card = (struct rsxx_cardinfo *)__mptr + 0xfffffffffffffcc8UL; tmp = ldv__builtin_expect(card->halt != 0U, 0L); if (tmp != 0L) { return; } else { } tmp___0 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___0); rsxx_enable_ier_and_isr(card, 8U); spin_unlock_irqrestore(& card->irq_lock, flags); st = rsxx_get_card_state(card, & state); if (st != 0) { _dev_info((struct device const *)(& (card->dev)->dev), "Failed reading state after event.\n"); return; } else { } if (card->state != state) { card_state_change(card, state); } else { } if ((card->creg_ctrl.creg_stats.stat & 8U) != 0U) { rsxx_read_hw_log(card); } else { } return; } } static int card_shutdown(struct rsxx_cardinfo *card ) { unsigned int state ; long start ; int timeout ; unsigned long tmp ; int st ; { tmp = msecs_to_jiffies(120000U); timeout = (int const )tmp; start = (long )jiffies; ldv_34853: st = rsxx_get_card_state(card, & state); if (st != 0) { return (st); } else { } if (state == 2U && (unsigned long )jiffies - (unsigned long )start < (unsigned long )timeout) { goto ldv_34853; } else { } if (state == 2U) { return (-110); } else { } if (state != 32U && state != 1U) { st = rsxx_issue_card_cmd(card, 2U); if (st != 0) { return (st); } else { } } else { } start = (long )jiffies; ldv_34855: st = rsxx_get_card_state(card, & state); if (st != 0) { return (st); } else { } if (state != 1U && (unsigned long )jiffies - (unsigned long )start < (unsigned long )timeout) { goto ldv_34855; } else { } if (state != 1U) { return (-110); } else { } return (0); } } static int rsxx_eeh_frozen(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; int i ; int st ; { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; dev_warn((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: preparing for slot reset.\n"); card->eeh_state = 1U; rsxx_mask_interrupts(card); __asm__ volatile ("sfence": : : "memory"); pci_disable_device(dev); st = rsxx_eeh_save_issued_dmas(card); if (st != 0) { return (st); } else { } rsxx_eeh_save_issued_creg(card); i = 0; goto ldv_34864; ldv_34863: ; if ((unsigned long )(card->ctrl + (unsigned long )i)->status.buf != (unsigned long )((void *)0)) { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->status.buf, (card->ctrl + (unsigned long )i)->status.dma_addr); } else { } if ((unsigned long )(card->ctrl + (unsigned long )i)->cmd.buf != (unsigned long )((void *)0)) { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->cmd.buf, (card->ctrl + (unsigned long )i)->cmd.dma_addr); } else { } i = i + 1; ldv_34864: ; if (card->n_targets > i) { goto ldv_34863; } else { } return (0); } } static void rsxx_eeh_failure(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; int i ; int cnt ; int tmp___0 ; { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; cnt = 0; dev_err((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: disabling failed card.\n"); card->eeh_state = 1U; card->halt = 1U; i = 0; goto ldv_34873; ldv_34872: spin_lock_bh(& (card->ctrl + (unsigned long )i)->queue_lock); cnt = rsxx_cleanup_dma_queue(card->ctrl + (unsigned long )i, & (card->ctrl + (unsigned long )i)->queue, 1U); spin_unlock_bh(& (card->ctrl + (unsigned long )i)->queue_lock); tmp___0 = rsxx_dma_cancel(card->ctrl + (unsigned long )i); cnt = tmp___0 + cnt; if (cnt != 0) { _dev_info((struct device const *)(& (card->dev)->dev), "Freed %d queued DMAs on channel %d\n", cnt, (card->ctrl + (unsigned long )i)->id); } else { } i = i + 1; ldv_34873: ; if (card->n_targets > i) { goto ldv_34872; } else { } return; } } static int rsxx_eeh_fifo_flush_poll(struct rsxx_cardinfo *card ) { unsigned int status ; int iter ; int tmp ; { iter = 0; goto ldv_34880; ldv_34881: status = ioread32(card->regmap + 184UL); if ((status & 2U) != 0U) { ssleep(1U); goto ldv_34880; } else { } if ((status & 4U) != 0U) { dev_warn((struct device const *)(& (card->dev)->dev), "HW: flash controller timeout\n"); } else { } return (0); ldv_34880: tmp = iter; iter = iter + 1; if (tmp <= 9) { goto ldv_34881; } else { } return (-1); } } static pci_ers_result_t rsxx_error_detected(struct pci_dev *dev , enum pci_channel_state error ) { int st ; { if ((unsigned int )dev->revision <= 2U) { return (1U); } else { } if ((unsigned int )error == 3U) { rsxx_eeh_failure(dev); return (4U); } else { } st = rsxx_eeh_frozen(dev); if (st != 0) { dev_err((struct device const *)(& dev->dev), "Slot reset setup failed\n"); rsxx_eeh_failure(dev); return (4U); } else { } return (3U); } } static pci_ers_result_t rsxx_slot_reset(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; unsigned long flags ; int i ; int st ; unsigned int tmp___0 ; raw_spinlock_t *tmp___1 ; int tmp___2 ; { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; dev_warn((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: recovering from slot reset.\n"); st = pci_enable_device(dev); if (st != 0) { goto failed_hw_setup; } else { } pci_set_master(dev); st = rsxx_eeh_fifo_flush_poll(card); if (st != 0) { goto failed_hw_setup; } else { } rsxx_dma_queue_reset(card); i = 0; goto ldv_34898; ldv_34897: st = rsxx_hw_buffers_init(dev, card->ctrl + (unsigned long )i); if (st != 0) { goto failed_hw_buffers_init; } else { } i = i + 1; ldv_34898: ; if (card->n_targets > i) { goto ldv_34897; } else { } if (card->config_valid != 0) { rsxx_dma_configure(card); } else { } tmp___0 = ioread32(card->regmap + 16UL); st = (int )tmp___0; card->eeh_state = 0U; tmp___1 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___1); if ((card->n_targets & 8) != 0) { rsxx_enable_ier_and_isr(card, 1023U); } else { rsxx_enable_ier_and_isr(card, 63U); } spin_unlock_irqrestore(& card->irq_lock, flags); rsxx_kick_creg_queue(card); i = 0; goto ldv_34905; ldv_34904: spin_lock(& (card->ctrl + (unsigned long )i)->queue_lock); tmp___2 = list_empty((struct list_head const *)(& (card->ctrl + (unsigned long )i)->queue)); if (tmp___2 != 0) { spin_unlock(& (card->ctrl + (unsigned long )i)->queue_lock); goto ldv_34903; } else { } spin_unlock(& (card->ctrl + (unsigned long )i)->queue_lock); queue_work((card->ctrl + (unsigned long )i)->issue_wq, & (card->ctrl + (unsigned long )i)->issue_dma_work); ldv_34903: i = i + 1; ldv_34905: ; if (card->n_targets > i) { goto ldv_34904; } else { } _dev_info((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: recovery complete.\n"); return (5U); failed_hw_buffers_init: i = 0; goto ldv_34908; ldv_34907: ; if ((unsigned long )(card->ctrl + (unsigned long )i)->status.buf != (unsigned long )((void *)0)) { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->status.buf, (card->ctrl + (unsigned long )i)->status.dma_addr); } else { } if ((unsigned long )(card->ctrl + (unsigned long )i)->cmd.buf != (unsigned long )((void *)0)) { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->cmd.buf, (card->ctrl + (unsigned long )i)->cmd.dma_addr); } else { } i = i + 1; ldv_34908: ; if (card->n_targets > i) { goto ldv_34907; } else { } failed_hw_setup: rsxx_eeh_failure(dev); return (4U); } } static int rsxx_compatibility_check(struct rsxx_cardinfo *card ) { unsigned char pci_rev ; { pci_read_config_byte((struct pci_dev const *)card->dev, 8, & pci_rev); if ((unsigned int )pci_rev > 4U) { return (-1); } else { } return (0); } } static int rsxx_pci_probe(struct pci_dev *dev , struct pci_device_id const *id ) { struct rsxx_cardinfo *card ; int st ; unsigned int sync_timeout ; void *tmp ; int tmp___0 ; struct lock_class_key __key ; void *tmp___1 ; struct lock_class_key __key___0 ; char const *__lock_name ; struct workqueue_struct *tmp___2 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; char const *tmp___3 ; char const *tmp___4 ; { _dev_info((struct device const *)(& dev->dev), "PCI-Flash SSD discovered\n"); tmp = kzalloc(1184UL, 208U); card = (struct rsxx_cardinfo *)tmp; if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { return (-12); } else { } card->dev = dev; pci_set_drvdata(dev, (void *)card); ldv_34922: tmp___0 = ida_pre_get(& rsxx_disk_ida, 208U); if (tmp___0 == 0) { st = -12; goto failed_ida_get; } else { } spin_lock(& rsxx_ida_lock); st = ida_get_new(& rsxx_disk_ida, & card->disk_id); spin_unlock(& rsxx_ida_lock); if (st == -11) { goto ldv_34922; } else { } if (st != 0) { goto failed_ida_get; } else { } st = pci_enable_device(dev); if (st != 0) { goto failed_enable; } else { } pci_set_master(dev); pci_set_dma_max_seg_size(dev, 4096U); st = pci_set_dma_mask(dev, 0xffffffffffffffffULL); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "No usable DMA configuration,aborting\n"); goto failed_dma_mask; } else { } st = pci_request_regions(dev, "rsxx"); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed to request memory region\n"); goto failed_request_regions; } else { } if ((dev->resource[0].start == 0ULL && dev->resource[0].end == dev->resource[0].start) || dev->resource[0].end - dev->resource[0].start == 0xffffffffffffffffULL) { dev_err((struct device const *)(& (card->dev)->dev), "BAR0 has length 0!\n"); st = -12; goto failed_iomap; } else { } card->regmap = pci_iomap(dev, 0, 0UL); if ((unsigned long )card->regmap == (unsigned long )((void *)0)) { dev_err((struct device const *)(& (card->dev)->dev), "Failed to map BAR0\n"); st = -12; goto failed_iomap; } else { } spinlock_check(& card->irq_lock); __raw_spin_lock_init(& card->irq_lock.__annonCompField17.rlock, "&(&card->irq_lock)->rlock", & __key); card->halt = 0U; card->eeh_state = 0U; spin_lock_irq(& card->irq_lock); rsxx_disable_ier_and_isr(card, 4294967295U); spin_unlock_irq(& card->irq_lock); if (force_legacy == 0U) { st = pci_enable_msi_exact(dev, 1); if (st != 0) { dev_warn((struct device const *)(& (card->dev)->dev), "Failed to enable MSI\n"); } else { } } else { } st = ldv_request_irq_45(dev->irq, & rsxx_isr, 128UL, "rsxx", (void *)card); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed requesting IRQ%d\n", dev->irq); goto failed_irq; } else { } st = rsxx_creg_setup(card); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed to setup creg interface.\n"); goto failed_creg_setup; } else { } spin_lock_irq(& card->irq_lock); rsxx_enable_ier_and_isr(card, 2U); spin_unlock_irq(& card->irq_lock); st = rsxx_compatibility_check(card); if (st != 0) { dev_warn((struct device const *)(& (card->dev)->dev), "Incompatible driver detected. Please update the driver.\n"); st = -22; goto failed_compatiblity_check; } else { } st = rsxx_load_config(card); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed loading card config\n"); } else { } st = rsxx_get_num_targets(card, (unsigned int *)(& card->n_targets)); if (st != 0) { _dev_info((struct device const *)(& (card->dev)->dev), "Failed reading the number of DMA targets\n"); } else { } tmp___1 = kzalloc((unsigned long )card->n_targets * 712UL, 208U); card->ctrl = (struct rsxx_dma_ctrl *)tmp___1; if ((unsigned long )card->ctrl == (unsigned long )((struct rsxx_dma_ctrl *)0)) { st = -12; goto failed_dma_setup; } else { } st = rsxx_dma_setup(card); if (st != 0) { _dev_info((struct device const *)(& (card->dev)->dev), "Failed to setup DMA engine\n"); goto failed_dma_setup; } else { } __lock_name = "\"%s\"\"rsxx\"\"_event\""; tmp___2 = __alloc_workqueue_key("%s", 131082U, 1, & __key___0, __lock_name, (char *)"rsxx_event"); card->event_wq = tmp___2; if ((unsigned long )card->event_wq == (unsigned long )((struct workqueue_struct *)0)) { dev_err((struct device const *)(& (card->dev)->dev), "Failed card event setup.\n"); goto failed_event_handler; } else { } __init_work(& card->event_work, 0); __constr_expr_0.counter = 137438953408L; card->event_work.data = __constr_expr_0; lockdep_init_map(& card->event_work.lockdep_map, "(&card->event_work)", & __key___1, 0); INIT_LIST_HEAD(& card->event_work.entry); card->event_work.func = & card_event_handler; st = rsxx_setup_dev(card); if (st != 0) { goto failed_create_dev; } else { } rsxx_get_card_state(card, & card->state); tmp___3 = (char const *)rsxx_card_state_to_str(card->state); _dev_info((struct device const *)(& (card->dev)->dev), "card state: %s\n", tmp___3); spin_lock_irq(& card->irq_lock); rsxx_enable_ier_and_isr(card, 8U); spin_unlock_irq(& card->irq_lock); if (card->state == 1U) { st = rsxx_issue_card_cmd(card, 1U); if (st != 0) { dev_crit((struct device const *)(& (card->dev)->dev), "Failed issuing card startup\n"); } else { } if (sync_start != 0U) { sync_timeout = 600U; _dev_info((struct device const *)(& (card->dev)->dev), "Waiting for card to startup\n"); ldv_34940: ssleep(1U); sync_timeout = sync_timeout - 1U; rsxx_get_card_state(card, & card->state); if (sync_timeout != 0U && card->state == 2U) { goto ldv_34940; } else { } if (card->state == 2U) { dev_warn((struct device const *)(& (card->dev)->dev), "Card startup timed out\n"); card->size8 = 0ULL; } else { tmp___4 = (char const *)rsxx_card_state_to_str(card->state); _dev_info((struct device const *)(& (card->dev)->dev), "card state: %s\n", tmp___4); st = rsxx_get_card_size8(card, & card->size8); if (st != 0) { card->size8 = 0ULL; } else { } } } else { } } else if (card->state == 16U || card->state == 128U) { st = rsxx_get_card_size8(card, & card->size8); if (st != 0) { card->size8 = 0ULL; } else { } } else { } rsxx_attach_dev(card); rsxx_debugfs_dev_new(card); return (0); failed_create_dev: ldv_destroy_workqueue_46(card->event_wq); card->event_wq = (struct workqueue_struct *)0; failed_event_handler: rsxx_dma_destroy(card); failed_dma_setup: ; failed_compatiblity_check: ldv_destroy_workqueue_47(card->creg_ctrl.creg_wq); card->creg_ctrl.creg_wq = (struct workqueue_struct *)0; failed_creg_setup: spin_lock_irq(& card->irq_lock); rsxx_disable_ier_and_isr(card, 4294967295U); spin_unlock_irq(& card->irq_lock); ldv_free_irq_48(dev->irq, (void *)card); if (force_legacy == 0U) { pci_disable_msi(dev); } else { } failed_irq: pci_iounmap(dev, card->regmap); failed_iomap: pci_release_regions(dev); failed_request_regions: ; failed_dma_mask: pci_disable_device(dev); failed_enable: spin_lock(& rsxx_ida_lock); ida_remove(& rsxx_disk_ida, card->disk_id); spin_unlock(& rsxx_ida_lock); failed_ida_get: kfree((void const *)card); return (st); } } static void rsxx_pci_remove(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; unsigned long flags ; int st ; int i ; raw_spinlock_t *tmp___0 ; int tmp___1 ; raw_spinlock_t *tmp___2 ; raw_spinlock_t *tmp___3 ; { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { return; } else { } _dev_info((struct device const *)(& (card->dev)->dev), "Removing PCI-Flash SSD.\n"); rsxx_detach_dev(card); i = 0; goto ldv_34953; ldv_34952: tmp___0 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___0); tmp___1 = CR_INTR_DMA(i); rsxx_disable_ier_and_isr(card, (unsigned int )tmp___1); spin_unlock_irqrestore(& card->irq_lock, flags); i = i + 1; ldv_34953: ; if (card->n_targets > i) { goto ldv_34952; } else { } st = card_shutdown(card); if (st != 0) { dev_crit((struct device const *)(& (card->dev)->dev), "Shutdown failed!\n"); } else { } tmp___2 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___2); rsxx_disable_ier_and_isr(card, 8U); spin_unlock_irqrestore(& card->irq_lock, flags); ldv_cancel_work_sync_49(& card->event_work); rsxx_destroy_dev(card); rsxx_dma_destroy(card); tmp___3 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___3); rsxx_disable_ier_and_isr(card, 4294967295U); spin_unlock_irqrestore(& card->irq_lock, flags); card->halt = 1U; debugfs_remove_recursive(card->debugfs_dir); ldv_free_irq_50(dev->irq, (void *)card); if (force_legacy == 0U) { pci_disable_msi(dev); } else { } rsxx_creg_destroy(card); pci_iounmap(dev, card->regmap); pci_disable_device(dev); pci_release_regions(dev); kfree((void const *)card); return; } } static int rsxx_pci_suspend(struct pci_dev *dev , pm_message_t state ) { { return (-38); } } static void rsxx_pci_shutdown(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; unsigned long flags ; int i ; raw_spinlock_t *tmp___0 ; int tmp___1 ; { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { return; } else { } _dev_info((struct device const *)(& (card->dev)->dev), "Shutting down PCI-Flash SSD.\n"); rsxx_detach_dev(card); i = 0; goto ldv_34975; ldv_34974: tmp___0 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___0); tmp___1 = CR_INTR_DMA(i); rsxx_disable_ier_and_isr(card, (unsigned int )tmp___1); spin_unlock_irqrestore(& card->irq_lock, flags); i = i + 1; ldv_34975: ; if (card->n_targets > i) { goto ldv_34974; } else { } card_shutdown(card); return; } } static struct pci_error_handlers const rsxx_err_handler = {& rsxx_error_detected, 0, 0, & rsxx_slot_reset, 0, 0}; static struct pci_device_id const rsxx_pci_ids[3U] = { {4116U, 1193U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4116U, 1194U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__rsxx_pci_ids_device_table[3U] ; static struct pci_driver rsxx_pci_driver = {{0, 0}, "rsxx", (struct pci_device_id const *)(& rsxx_pci_ids), & rsxx_pci_probe, & rsxx_pci_remove, & rsxx_pci_suspend, 0, 0, 0, & rsxx_pci_shutdown, 0, & rsxx_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rsxx_core_init(void) { int st ; int tmp ; { st = rsxx_dev_init(); if (st != 0) { return (st); } else { } st = rsxx_dma_init(); if (st != 0) { goto dma_init_failed; } else { } st = rsxx_creg_init(); if (st != 0) { goto creg_init_failed; } else { } tmp = ldv___pci_register_driver_51(& rsxx_pci_driver, & __this_module, "rsxx"); return (tmp); creg_init_failed: rsxx_dma_cleanup(); dma_init_failed: rsxx_dev_cleanup(); return (st); } } static void rsxx_core_cleanup(void) { { ldv_pci_unregister_driver_52(& rsxx_pci_driver); rsxx_creg_cleanup(); rsxx_dma_cleanup(); rsxx_dev_cleanup(); return; } } extern int ldv_open_13(void) ; extern int ldv_resume_early_9(void) ; extern int ldv_resume_9(void) ; int ldv_retval_2 ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_6 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; extern int ldv_suspend_late_9(void) ; extern int ldv_release_13(void) ; int ldv_retval_4 ; void ldv_check_final_state(void) ; int ldv_retval_8 ; int ldv_retval_3 ; int ldv_retval_7 ; void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& rsxx_isr)) { return (1); } else { } return (0); } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } void ldv_file_operations_12(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(1000UL); debugfs_stats_fops_group1 = (struct inode *)tmp; tmp___0 = ldv_init_zalloc(504UL); debugfs_stats_fops_group2 = (struct file *)tmp___0; return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; card_event_handler(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_35048; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; card_event_handler(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_35048; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; card_event_handler(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_35048; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; card_event_handler(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_35048; default: ldv_stop(); } ldv_35048: ; return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_35064; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_35064; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_35064; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_35064; default: ldv_stop(); } ldv_35064: ; return; } } void ldv_initialize_pci_error_handlers_10(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); rsxx_err_handler_group0 = (struct pci_dev *)tmp; return; } } void ldv_file_operations_13(void) { void *tmp ; { debugfs_cram_fops_group1 = ldv_init_zalloc(1000UL); tmp = ldv_init_zalloc(504UL); debugfs_cram_fops_group2 = (struct file *)tmp; return; } } void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void ldv_pci_driver_9(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); rsxx_pci_driver_group1 = (struct pci_dev *)tmp; return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = rsxx_isr(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_35088; default: ldv_stop(); } ldv_35088: ; } else { } return (state); } } void ldv_file_operations_11(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(1000UL); debugfs_pci_regs_fops_group1 = (struct inode *)tmp; tmp___0 = ldv_init_zalloc(504UL); debugfs_pci_regs_fops_group2 = (struct file *)tmp___0; return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { card_event_handler(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { card_event_handler(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { card_event_handler(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { card_event_handler(work); ldv_work_2_3 = 1; return; } else { } return; } } void ldv_main_exported_8(void) ; int main(void) { loff_t ldvarg1 ; char *ldvarg4 ; void *tmp ; size_t ldvarg3 ; int ldvarg0 ; loff_t *ldvarg2 ; void *tmp___0 ; pm_message_t ldvarg5 ; struct pci_device_id *ldvarg6 ; void *tmp___1 ; loff_t ldvarg8 ; char *ldvarg11 ; void *tmp___2 ; int ldvarg7 ; size_t ldvarg10 ; loff_t *ldvarg9 ; void *tmp___3 ; char *ldvarg21 ; void *tmp___4 ; char *ldvarg18 ; void *tmp___5 ; size_t ldvarg20 ; size_t ldvarg17 ; loff_t *ldvarg19 ; void *tmp___6 ; loff_t *ldvarg16 ; void *tmp___7 ; enum pci_channel_state ldvarg22 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; { tmp = ldv_init_zalloc(1UL); ldvarg4 = (char *)tmp; tmp___0 = ldv_init_zalloc(8UL); ldvarg2 = (loff_t *)tmp___0; tmp___1 = ldv_init_zalloc(32UL); ldvarg6 = (struct pci_device_id *)tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg11 = (char *)tmp___2; tmp___3 = ldv_init_zalloc(8UL); ldvarg9 = (loff_t *)tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg21 = (char *)tmp___4; tmp___5 = ldv_init_zalloc(1UL); ldvarg18 = (char *)tmp___5; tmp___6 = ldv_init_zalloc(8UL); ldvarg19 = (loff_t *)tmp___6; tmp___7 = ldv_init_zalloc(8UL); ldvarg16 = (loff_t *)tmp___7; ldv_initialize(); ldv_memset((void *)(& ldvarg1), 0, 8UL); ldv_memset((void *)(& ldvarg3), 0, 8UL); ldv_memset((void *)(& ldvarg0), 0, 4UL); ldv_memset((void *)(& ldvarg5), 0, 4UL); ldv_memset((void *)(& ldvarg8), 0, 8UL); ldv_memset((void *)(& ldvarg7), 0, 4UL); ldv_memset((void *)(& ldvarg10), 0, 8UL); ldv_memset((void *)(& ldvarg20), 0, 8UL); ldv_memset((void *)(& ldvarg17), 0, 8UL); ldv_memset((void *)(& ldvarg22), 0, 4UL); timer_init_6(); ldv_state_variable_6 = 1; ldv_state_variable_11 = 0; work_init_3(); ldv_state_variable_3 = 1; timer_init_7(); ldv_state_variable_7 = 1; ldv_state_variable_9 = 0; ldv_state_variable_12 = 0; work_init_2(); ldv_state_variable_2 = 1; ldv_state_variable_8 = 0; ldv_state_variable_1 = 1; work_init_4(); ldv_state_variable_4 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_13 = 0; ldv_state_variable_10 = 0; work_init_5(); ldv_state_variable_5 = 1; ldv_35188: tmp___8 = __VERIFIER_nondet_int(); switch (tmp___8) { case 0: ; goto ldv_35137; case 1: ; if (ldv_state_variable_11 != 0) { tmp___9 = __VERIFIER_nondet_int(); switch (tmp___9) { case 0: ; if (ldv_state_variable_11 == 2) { single_release(debugfs_pci_regs_fops_group1, debugfs_pci_regs_fops_group2); ldv_state_variable_11 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_35140; case 1: ; if (ldv_state_variable_11 == 2) { seq_read(debugfs_pci_regs_fops_group2, ldvarg4, ldvarg3, ldvarg2); ldv_state_variable_11 = 2; } else { } goto ldv_35140; case 2: ; if (ldv_state_variable_11 == 2) { seq_lseek(debugfs_pci_regs_fops_group2, ldvarg1, ldvarg0); ldv_state_variable_11 = 2; } else { } goto ldv_35140; case 3: ; if (ldv_state_variable_11 == 1) { ldv_retval_0 = rsxx_attr_pci_regs_open(debugfs_pci_regs_fops_group1, debugfs_pci_regs_fops_group2); if (ldv_retval_0 == 0) { ldv_state_variable_11 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_35140; default: ldv_stop(); } ldv_35140: ; } else { } goto ldv_35137; case 2: ; goto ldv_35137; case 3: ; goto ldv_35137; case 4: ; if (ldv_state_variable_9 != 0) { tmp___10 = __VERIFIER_nondet_int(); switch (tmp___10) { case 0: ; if (ldv_state_variable_9 == 1) { ldv_retval_5 = rsxx_pci_probe(rsxx_pci_driver_group1, (struct pci_device_id const *)ldvarg6); if (ldv_retval_5 == 0) { ldv_state_variable_9 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_35149; case 1: ; if (ldv_state_variable_9 == 4) { rsxx_pci_shutdown(rsxx_pci_driver_group1); ldv_state_variable_9 = 4; } else { } if (ldv_state_variable_9 == 3) { rsxx_pci_shutdown(rsxx_pci_driver_group1); ldv_state_variable_9 = 3; } else { } if (ldv_state_variable_9 == 2) { rsxx_pci_shutdown(rsxx_pci_driver_group1); ldv_state_variable_9 = 2; } else { } if (ldv_state_variable_9 == 5) { rsxx_pci_shutdown(rsxx_pci_driver_group1); ldv_state_variable_9 = 5; } else { } goto ldv_35149; case 2: ; if (ldv_state_variable_9 == 2 && pci_counter == 0) { ldv_retval_4 = rsxx_pci_suspend(rsxx_pci_driver_group1, ldvarg5); if (ldv_retval_4 == 0) { ldv_state_variable_9 = 3; } else { } } else { } goto ldv_35149; case 3: ; if (ldv_state_variable_9 == 4) { rsxx_pci_remove(rsxx_pci_driver_group1); ldv_state_variable_9 = 1; } else { } if (ldv_state_variable_9 == 3) { rsxx_pci_remove(rsxx_pci_driver_group1); ldv_state_variable_9 = 1; } else { } if (ldv_state_variable_9 == 2) { rsxx_pci_remove(rsxx_pci_driver_group1); ldv_state_variable_9 = 1; } else { } if (ldv_state_variable_9 == 5) { rsxx_pci_remove(rsxx_pci_driver_group1); ldv_state_variable_9 = 1; } else { } goto ldv_35149; case 4: ; if (ldv_state_variable_9 == 4) { ldv_retval_3 = ldv_resume_9(); if (ldv_retval_3 == 0) { ldv_state_variable_9 = 2; } else { } } else { } if (ldv_state_variable_9 == 3) { ldv_retval_3 = ldv_resume_9(); if (ldv_retval_3 == 0) { ldv_state_variable_9 = 2; } else { } } else { } if (ldv_state_variable_9 == 5) { ldv_retval_3 = ldv_resume_9(); if (ldv_retval_3 == 0) { ldv_state_variable_9 = 2; } else { } } else { } goto ldv_35149; case 5: ; if (ldv_state_variable_9 == 3) { ldv_retval_2 = ldv_suspend_late_9(); if (ldv_retval_2 == 0) { ldv_state_variable_9 = 4; } else { } } else { } goto ldv_35149; case 6: ; if (ldv_state_variable_9 == 4) { ldv_retval_1 = ldv_resume_early_9(); if (ldv_retval_1 == 0) { ldv_state_variable_9 = 5; } else { } } else { } if (ldv_state_variable_9 == 3) { ldv_retval_1 = ldv_resume_early_9(); if (ldv_retval_1 == 0) { ldv_state_variable_9 = 5; } else { } } else { } goto ldv_35149; default: ldv_stop(); } ldv_35149: ; } else { } goto ldv_35137; case 5: ; if (ldv_state_variable_12 != 0) { tmp___11 = __VERIFIER_nondet_int(); switch (tmp___11) { case 0: ; if (ldv_state_variable_12 == 2) { single_release(debugfs_stats_fops_group1, debugfs_stats_fops_group2); ldv_state_variable_12 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_35159; case 1: ; if (ldv_state_variable_12 == 2) { seq_read(debugfs_stats_fops_group2, ldvarg11, ldvarg10, ldvarg9); ldv_state_variable_12 = 2; } else { } goto ldv_35159; case 2: ; if (ldv_state_variable_12 == 2) { seq_lseek(debugfs_stats_fops_group2, ldvarg8, ldvarg7); ldv_state_variable_12 = 2; } else { } goto ldv_35159; case 3: ; if (ldv_state_variable_12 == 1) { ldv_retval_6 = rsxx_attr_stats_open(debugfs_stats_fops_group1, debugfs_stats_fops_group2); if (ldv_retval_6 == 0) { ldv_state_variable_12 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_35159; default: ldv_stop(); } ldv_35159: ; } else { } goto ldv_35137; case 6: ; if (ldv_state_variable_2 != 0) { invoke_work_2(); } else { } goto ldv_35137; case 7: ; if (ldv_state_variable_8 != 0) { ldv_main_exported_8(); } else { } goto ldv_35137; case 8: ; if (ldv_state_variable_1 != 0) { choose_interrupt_1(); } else { } goto ldv_35137; case 9: ; goto ldv_35137; case 10: ; if (ldv_state_variable_0 != 0) { tmp___12 = __VERIFIER_nondet_int(); switch (tmp___12) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { rsxx_core_cleanup(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_35171; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_7 = rsxx_core_init(); if (ldv_retval_7 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_7 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_12 = 1; ldv_file_operations_12(); ldv_state_variable_10 = 1; ldv_initialize_pci_error_handlers_10(); ldv_state_variable_13 = 1; ldv_file_operations_13(); ldv_state_variable_11 = 1; ldv_file_operations_11(); ldv_state_variable_8 = 1; ldv_initialize_block_device_operations_8(); } else { } } else { } goto ldv_35171; default: ldv_stop(); } ldv_35171: ; } else { } goto ldv_35137; case 11: ; if (ldv_state_variable_13 != 0) { tmp___13 = __VERIFIER_nondet_int(); switch (tmp___13) { case 0: ; if (ldv_state_variable_13 == 1) { rsxx_cram_write(debugfs_cram_fops_group2, (char const *)ldvarg21, ldvarg20, ldvarg19); ldv_state_variable_13 = 1; } else { } if (ldv_state_variable_13 == 2) { rsxx_cram_write(debugfs_cram_fops_group2, (char const *)ldvarg21, ldvarg20, ldvarg19); ldv_state_variable_13 = 2; } else { } goto ldv_35176; case 1: ; if (ldv_state_variable_13 == 2) { rsxx_cram_read(debugfs_cram_fops_group2, ldvarg18, ldvarg17, ldvarg16); ldv_state_variable_13 = 2; } else { } goto ldv_35176; case 2: ; if (ldv_state_variable_13 == 1) { ldv_retval_8 = ldv_open_13(); if (ldv_retval_8 == 0) { ldv_state_variable_13 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_35176; case 3: ; if (ldv_state_variable_13 == 2) { ldv_release_13(); ldv_state_variable_13 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_35176; default: ldv_stop(); } ldv_35176: ; } else { } goto ldv_35137; case 12: ; if (ldv_state_variable_10 != 0) { tmp___14 = __VERIFIER_nondet_int(); switch (tmp___14) { case 0: ; if (ldv_state_variable_10 == 1) { rsxx_slot_reset(rsxx_err_handler_group0); ldv_state_variable_10 = 1; } else { } goto ldv_35183; case 1: ; if (ldv_state_variable_10 == 1) { rsxx_error_detected(rsxx_err_handler_group0, ldvarg22); ldv_state_variable_10 = 1; } else { } goto ldv_35183; default: ldv_stop(); } ldv_35183: ; } else { } goto ldv_35137; case 13: ; goto ldv_35137; default: ldv_stop(); } ldv_35137: ; goto ldv_35188; ldv_final: ldv_check_final_state(); return 0; } } __inline static bool IS_ERR_OR_NULL(void const *ptr ) { bool tmp ; { tmp = ldv_is_err_or_null(ptr); return (tmp); } } bool ldv_queue_work_on_33(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_34(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_35(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_36(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_37(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_38(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_39(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_40(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_41(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_42(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_43(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_44(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } __inline static int ldv_request_irq_45(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_1(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_1((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_destroy_workqueue_46(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } void ldv_destroy_workqueue_47(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } void ldv_free_irq_48(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } bool ldv_cancel_work_sync_49(struct work_struct *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = cancel_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_3(ldv_func_arg1); return (ldv_func_res); } } void ldv_free_irq_50(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } int ldv___pci_register_driver_51(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_9 = 1; ldv_pci_driver_9(); return (ldv_func_res); } } void ldv_pci_unregister_driver_52(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_9 = 0; return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; int ldv_mutex_trylock_87(struct mutex *ldv_func_arg1 ) ; int ldv_mutex_trylock_91(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_82(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_85(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_88(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_93(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_83(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_84(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_86(struct mutex *ldv_func_arg1 ) ; int ldv_mutex_trylock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) ; void ldv_mutex_unlock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) ; __inline static int timer_pending(struct timer_list const *timer ) { { return ((unsigned long )timer->entry.pprev != (unsigned long )((struct hlist_node **/* const */)0)); } } extern int mod_timer(struct timer_list * , unsigned long ) ; int ldv_mod_timer_89(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; int ldv_del_timer_sync_90(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_92(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_94(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_95(struct timer_list *ldv_func_arg1 ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); return; } } extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; extern void complete(struct completion * ) ; bool ldv_queue_work_on_77(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_79(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_78(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_81(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_80(struct workqueue_struct *ldv_func_arg1 ) ; bool ldv_cancel_work_sync_96(struct work_struct *ldv_func_arg1 ) ; extern unsigned int ioread32be(void * ) ; extern void iowrite32be(u32 , void * ) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; extern void *kmem_cache_alloc(struct kmem_cache * , gfp_t ) ; extern void kmem_cache_free(struct kmem_cache * , void * ) ; void activate_suitable_timer_6(struct timer_list *timer , unsigned long data ) ; void call_and_disable_work_3(struct work_struct *work ) ; void disable_suitable_timer_6(struct timer_list *timer ) ; void activate_pending_timer_6(struct timer_list *timer , unsigned long data , int pending_flag ) ; void choose_timer_6(void) ; int reg_timer_6(struct timer_list *timer , void (*function)(unsigned long ) , unsigned long data ) ; void ldv_timer_6(int state , struct timer_list *timer ) ; void invoke_work_3(void) ; extern void dev_emerg(struct device const * , char const * , ...) ; extern void dev_alert(struct device const * , char const * , ...) ; extern void dev_notice(struct device const * , char const * , ...) ; __inline static unsigned int CREG_DATA(int N ) { { return ((unsigned int )((N << 2) + 80)); } } int rsxx_get_card_capabilities(struct rsxx_cardinfo *card , u32 *capabilities ) ; int rsxx_reg_access(struct rsxx_cardinfo *card , struct rsxx_reg_access *ucmd , int read ) ; static struct kmem_cache *creg_cmd_pool ; static int copy_to_creg_data(struct rsxx_cardinfo *card , int cnt8 , void *buf , unsigned int stream ) { int i ; u32 *data ; long tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { i = 0; data = (u32 *)buf; tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { return (-5); } else { } i = 0; goto ldv_33157; ldv_33156: ; if (stream != 0U) { tmp___0 = CREG_DATA(i); iowrite32be(*(data + (unsigned long )i), card->regmap + (unsigned long )tmp___0); } else { tmp___1 = CREG_DATA(i); iowrite32(*(data + (unsigned long )i), card->regmap + (unsigned long )tmp___1); } i = i + 1; cnt8 = cnt8 + -4; ldv_33157: ; if (cnt8 > 0) { goto ldv_33156; } else { } return (0); } } static int copy_from_creg_data(struct rsxx_cardinfo *card , int cnt8 , void *buf , unsigned int stream ) { int i ; u32 *data ; long tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { i = 0; data = (u32 *)buf; tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { return (-5); } else { } i = 0; goto ldv_33168; ldv_33167: ; if (stream != 0U) { tmp___0 = CREG_DATA(i); *(data + (unsigned long )i) = ioread32be(card->regmap + (unsigned long )tmp___0); } else { tmp___1 = CREG_DATA(i); *(data + (unsigned long )i) = ioread32(card->regmap + (unsigned long )tmp___1); } i = i + 1; cnt8 = cnt8 + -4; ldv_33168: ; if (cnt8 > 0) { goto ldv_33167; } else { } return (0); } } static void creg_issue_cmd(struct rsxx_cardinfo *card , struct creg_cmd *cmd ) { int st ; long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { return; } else { } iowrite32(cmd->addr, card->regmap + 68UL); iowrite32((u32 )cmd->cnt8, card->regmap + 72UL); if (cmd->op == 192U) { if ((unsigned long )cmd->buf != (unsigned long )((void *)0)) { st = copy_to_creg_data(card, cmd->cnt8, cmd->buf, cmd->stream); if (st != 0) { return; } else { } } else { } } else { } tmp___0 = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp___0 != 0L) { return; } else { } iowrite32(cmd->op, card->regmap + 64UL); return; } } static void creg_kick_queue(struct rsxx_cardinfo *card ) { int tmp ; struct list_head const *__mptr ; unsigned long tmp___0 ; { if ((int )card->creg_ctrl.active) { return; } else { tmp = list_empty((struct list_head const *)(& card->creg_ctrl.queue)); if (tmp != 0) { return; } else { } } card->creg_ctrl.active = 1; __mptr = (struct list_head const *)card->creg_ctrl.queue.next; card->creg_ctrl.active_cmd = (struct creg_cmd *)__mptr; list_del(& (card->creg_ctrl.active_cmd)->list); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth - 1U; tmp___0 = msecs_to_jiffies(10000U); ldv_mod_timer_89(& card->creg_ctrl.cmd_timer, tmp___0 + (unsigned long )jiffies); creg_issue_cmd(card, card->creg_ctrl.active_cmd); return; } } static int creg_queue_cmd(struct rsxx_cardinfo *card , unsigned int op , unsigned int addr , unsigned int cnt8 , void *buf , int stream , void (*callback)(struct rsxx_cardinfo * , struct creg_cmd * , int ) , void *cb_private ) { struct creg_cmd *cmd ; long tmp ; void *tmp___0 ; { tmp = ldv__builtin_expect(card->halt != 0U, 0L); if (tmp != 0L) { return (-22); } else { } if (card->creg_ctrl.reset != 0) { return (-11); } else { } if (cnt8 > 32U) { return (-22); } else { } tmp___0 = kmem_cache_alloc(creg_cmd_pool, 208U); cmd = (struct creg_cmd *)tmp___0; if ((unsigned long )cmd == (unsigned long )((struct creg_cmd *)0)) { return (-12); } else { } INIT_LIST_HEAD(& cmd->list); cmd->op = op; cmd->addr = addr; cmd->cnt8 = (int )cnt8; cmd->buf = buf; cmd->stream = (unsigned int )stream; cmd->cb = callback; cmd->cb_private = cb_private; cmd->status = 0U; spin_lock_bh(& card->creg_ctrl.lock); list_add_tail(& cmd->list, & card->creg_ctrl.queue); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth + 1U; creg_kick_queue(card); spin_unlock_bh(& card->creg_ctrl.lock); return (0); } } static void creg_cmd_timed_out(unsigned long data ) { struct rsxx_cardinfo *card ; struct creg_cmd *cmd ; { card = (struct rsxx_cardinfo *)data; spin_lock(& card->creg_ctrl.lock); cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; spin_unlock(& card->creg_ctrl.lock); if ((unsigned long )cmd == (unsigned long )((struct creg_cmd *)0)) { card->creg_ctrl.creg_stats.creg_timeout = card->creg_ctrl.creg_stats.creg_timeout + 1U; dev_warn((struct device const *)(& (card->dev)->dev), "No active command associated with timeout!\n"); return; } else { } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { (*(cmd->cb))(card, cmd, -110); } else { } kmem_cache_free(creg_cmd_pool, (void *)cmd); spin_lock(& card->creg_ctrl.lock); card->creg_ctrl.active = 0; creg_kick_queue(card); spin_unlock(& card->creg_ctrl.lock); return; } } static void creg_cmd_done(struct work_struct *work ) { struct rsxx_cardinfo *card ; struct creg_cmd *cmd ; int st ; struct work_struct const *__mptr ; int tmp ; unsigned int cnt8 ; unsigned int tmp___0 ; { st = 0; __mptr = (struct work_struct const *)work; card = (struct rsxx_cardinfo *)__mptr + 0xffffffffffffff10UL; tmp = ldv_del_timer_sync_90(& card->creg_ctrl.cmd_timer); if (tmp == 0) { card->creg_ctrl.creg_stats.failed_cancel_timer = card->creg_ctrl.creg_stats.failed_cancel_timer + 1U; } else { } spin_lock_bh(& card->creg_ctrl.lock); cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; spin_unlock_bh(& card->creg_ctrl.lock); if ((unsigned long )cmd == (unsigned long )((struct creg_cmd *)0)) { dev_err((struct device const *)(& (card->dev)->dev), "Spurious creg interrupt!\n"); return; } else { } card->creg_ctrl.creg_stats.stat = ioread32(card->regmap + 76UL); cmd->status = card->creg_ctrl.creg_stats.stat; if ((cmd->status & 3U) == 0U) { dev_err((struct device const *)(& (card->dev)->dev), "Invalid status on creg command\n"); st = -5; goto creg_done; } else if ((cmd->status & 2U) != 0U) { st = -5; } else { } if (cmd->op == 224U) { tmp___0 = ioread32(card->regmap + 72UL); cnt8 = tmp___0; if ((unsigned long )cmd->buf == (unsigned long )((void *)0)) { dev_err((struct device const *)(& (card->dev)->dev), "Buffer not given for read.\n"); st = -5; goto creg_done; } else { } if ((unsigned int )cmd->cnt8 != cnt8) { dev_err((struct device const *)(& (card->dev)->dev), "count mismatch\n"); st = -5; goto creg_done; } else { } st = copy_from_creg_data(card, (int )cnt8, cmd->buf, cmd->stream); } else { } creg_done: ; if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { (*(cmd->cb))(card, cmd, st); } else { } kmem_cache_free(creg_cmd_pool, (void *)cmd); spin_lock_bh(& card->creg_ctrl.lock); card->creg_ctrl.active = 0; creg_kick_queue(card); spin_unlock_bh(& card->creg_ctrl.lock); return; } } static void creg_reset(struct rsxx_cardinfo *card ) { struct creg_cmd *cmd ; struct creg_cmd *tmp ; unsigned long flags ; int tmp___0 ; raw_spinlock_t *tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___2 ; raw_spinlock_t *tmp___3 ; { cmd = (struct creg_cmd *)0; tmp___0 = ldv_mutex_trylock_91(& card->creg_ctrl.reset_lock); if (tmp___0 == 0) { return; } else { } card->creg_ctrl.reset = 1; tmp___1 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___1); rsxx_disable_ier_and_isr(card, 10U); spin_unlock_irqrestore(& card->irq_lock, flags); dev_warn((struct device const *)(& (card->dev)->dev), "Resetting creg interface for recovery\n"); spin_lock_bh(& card->creg_ctrl.lock); __mptr = (struct list_head const *)card->creg_ctrl.queue.next; cmd = (struct creg_cmd *)__mptr; __mptr___0 = (struct list_head const *)cmd->list.next; tmp = (struct creg_cmd *)__mptr___0; goto ldv_33222; ldv_33221: list_del(& cmd->list); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth - 1U; if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { (*(cmd->cb))(card, cmd, -125); } else { } kmem_cache_free(creg_cmd_pool, (void *)cmd); cmd = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct creg_cmd *)__mptr___1; ldv_33222: ; if ((unsigned long )(& cmd->list) != (unsigned long )(& card->creg_ctrl.queue)) { goto ldv_33221; } else { } cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; if ((unsigned long )cmd != (unsigned long )((struct creg_cmd *)0)) { tmp___2 = timer_pending((struct timer_list const *)(& card->creg_ctrl.cmd_timer)); if (tmp___2 != 0) { ldv_del_timer_sync_92(& card->creg_ctrl.cmd_timer); } else { } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { (*(cmd->cb))(card, cmd, -125); } else { } kmem_cache_free(creg_cmd_pool, (void *)cmd); card->creg_ctrl.active = 0; } else { } spin_unlock_bh(& card->creg_ctrl.lock); card->creg_ctrl.reset = 0; tmp___3 = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp___3); rsxx_enable_ier_and_isr(card, 10U); spin_unlock_irqrestore(& card->irq_lock, flags); ldv_mutex_unlock_93(& card->creg_ctrl.reset_lock); return; } } static void creg_cmd_done_cb(struct rsxx_cardinfo *card , struct creg_cmd *cmd , int st ) { struct creg_completion *cmd_completion ; long tmp ; { cmd_completion = (struct creg_completion *)cmd->cb_private; tmp = ldv__builtin_expect((unsigned long )cmd_completion == (unsigned long )((struct creg_completion *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/cregs.c"), "i" (378), "i" (12UL)); ldv_33237: ; goto ldv_33237; } else { } cmd_completion->st = st; cmd_completion->creg_status = cmd->status; complete(cmd_completion->cmd_done); return; } } static int __issue_creg_rw(struct rsxx_cardinfo *card , unsigned int op , unsigned int addr , unsigned int cnt8 , void *buf , int stream , unsigned int *hw_stat ) { struct completion cmd_done ; struct creg_completion completion ; unsigned long timeout ; int st ; unsigned long tmp ; { init_completion(& cmd_done); cmd_done = cmd_done; completion.cmd_done = & cmd_done; completion.st = 0; completion.creg_status = 0U; st = creg_queue_cmd(card, op, addr, cnt8, buf, stream, & creg_cmd_done_cb, (void *)(& completion)); if (st != 0) { return (st); } else { } timeout = msecs_to_jiffies(card->creg_ctrl.q_depth * 10000U + 20000U); tmp = wait_for_completion_timeout(completion.cmd_done, timeout); st = (int )tmp; if (st == 0) { dev_crit((struct device const *)(& (card->dev)->dev), "cregs timer failed\n"); creg_reset(card); return (-5); } else { } *hw_stat = completion.creg_status; if (completion.st != 0) { ioread32(card->regmap + 4UL); dev_warn((struct device const *)(& (card->dev)->dev), "creg command failed(%d x%08x)\n", completion.st, addr); return (completion.st); } else { } return (0); } } static int issue_creg_rw(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int stream , int read ) { unsigned int hw_stat ; unsigned int xfer ; unsigned int op ; int st ; unsigned int __min1 ; unsigned int __min2 ; { op = read != 0 ? 224U : 192U; ldv_33267: __min1 = size8; __min2 = 32U; xfer = __min1 < __min2 ? __min1 : __min2; st = __issue_creg_rw(card, op, addr, xfer, data, stream, & hw_stat); if (st != 0) { return (st); } else { } data = data + (unsigned long )xfer; addr = addr + xfer; size8 = size8 - xfer; if (size8 != 0U) { goto ldv_33267; } else { } return (0); } } int rsxx_creg_write(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) { int tmp ; { tmp = issue_creg_rw(card, addr, size8, data, byte_stream, 0); return (tmp); } } int rsxx_creg_read(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) { int tmp ; { tmp = issue_creg_rw(card, addr, size8, data, byte_stream, 1); return (tmp); } } int rsxx_get_card_state(struct rsxx_cardinfo *card , unsigned int *state ) { int tmp ; { tmp = rsxx_creg_read(card, 2147487748U, 4U, (void *)state, 0); return (tmp); } } int rsxx_get_card_size8(struct rsxx_cardinfo *card , u64 *size8 ) { unsigned int size ; int st ; { st = rsxx_creg_read(card, 2147487756U, 4U, (void *)(& size), 0); if (st != 0) { return (st); } else { } *size8 = (unsigned long long )size * 4096ULL; return (0); } } int rsxx_get_num_targets(struct rsxx_cardinfo *card , unsigned int *n_targets ) { int tmp ; { tmp = rsxx_creg_read(card, 2147495936U, 4U, (void *)n_targets, 0); return (tmp); } } int rsxx_get_card_capabilities(struct rsxx_cardinfo *card , u32 *capabilities ) { int tmp ; { tmp = rsxx_creg_read(card, 2147487824U, 4U, (void *)capabilities, 0); return (tmp); } } int rsxx_issue_card_cmd(struct rsxx_cardinfo *card , u32 cmd ) { int tmp ; { tmp = rsxx_creg_write(card, 2147487744U, 4U, (void *)(& cmd), 0); return (tmp); } } static void hw_log_msg(struct rsxx_cardinfo *card , char const *str , int len ) { char level ; struct _ddebug descriptor ; long tmp ; { if ((len > 3 && (int )((signed char )*str) == 60) && (int )((signed char )*(str + 2UL)) == 62) { level = *(str + 1UL); str = str + 3UL; len = len + -3; } else { } switch ((int )level) { case 48: dev_emerg((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 49: dev_alert((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 50: dev_crit((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 51: dev_err((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 52: dev_warn((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 53: dev_notice((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 54: _dev_info((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; case 55: descriptor.modname = "rsxx"; descriptor.function = "hw_log_msg"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/cregs.c"; descriptor.format = "HW: %.*s"; descriptor.lineno = 580U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } else { } goto ldv_33312; default: _dev_info((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); goto ldv_33312; } ldv_33312: ; return; } } static int substrncpy(char *dest , char const *src , int count ) { int max_cnt ; { max_cnt = count; goto ldv_33331; ldv_33330: count = count - 1; *dest = *src; if ((int )((signed char )*dest) == 0) { goto ldv_33329; } else { } src = src + 1; dest = dest + 1; ldv_33331: ; if (count != 0) { goto ldv_33330; } else { } ldv_33329: ; return (max_cnt - count); } } static void read_hw_log_done(struct rsxx_cardinfo *card , struct creg_cmd *cmd , int st ) { char *buf ; char *log_str ; int cnt ; int len ; int off ; int _min1 ; int _min2 ; { buf = (char *)cmd->buf; off = 0; if (st != 0) { return; } else { } goto ldv_33346; ldv_33345: log_str = (char *)(& card->log.buf) + (unsigned long )card->log.buf_len; _min1 = cmd->cnt8 - off; _min2 = 128 - card->log.buf_len; cnt = _min1 < _min2 ? _min1 : _min2; len = substrncpy(log_str, (char const *)buf + (unsigned long )off, cnt); off = off + len; card->log.buf_len = card->log.buf_len + len; if ((int )((signed char )*(log_str + ((unsigned long )len + 0xffffffffffffffffUL))) == 0 || card->log.buf_len == 128) { if (card->log.buf_len != 1) { hw_log_msg(card, (char const *)(& card->log.buf), card->log.buf_len); } else { } card->log.buf_len = 0; } else { } ldv_33346: ; if (cmd->cnt8 > off) { goto ldv_33345; } else { } if ((cmd->status & 8U) != 0U) { rsxx_read_hw_log(card); } else { } return; } } int rsxx_read_hw_log(struct rsxx_cardinfo *card ) { int st ; { st = creg_queue_cmd(card, 224U, 2147491840U, 32U, (void *)(& card->log.tmp), 1, & read_hw_log_done, (void *)0); if (st != 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed getting log text\n"); } else { } return (st); } } static int issue_reg_cmd(struct rsxx_cardinfo *card , struct rsxx_reg_access *cmd , int read ) { unsigned int op ; int tmp ; { op = read != 0 ? 224U : 192U; tmp = __issue_creg_rw(card, op, cmd->addr, cmd->cnt, (void *)(& cmd->data), (int )cmd->stream, & cmd->stat); return (tmp); } } int rsxx_reg_access(struct rsxx_cardinfo *card , struct rsxx_reg_access *ucmd , int read ) { struct rsxx_reg_access cmd ; int st ; unsigned long tmp ; int __ret_pu ; __u32 __pu_val ; unsigned long tmp___0 ; { tmp = copy_from_user((void *)(& cmd), (void const *)ucmd, 48UL); st = (int )tmp; if (st != 0) { return (-14); } else { } if (cmd.cnt > 32U) { return (-14); } else { } st = issue_reg_cmd(card, & cmd, read); if (st != 0) { return (st); } else { } __might_fault("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/cregs.c", 695); __pu_val = cmd.stat; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_33368; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_33368; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_33368; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_33368; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_33368; } ldv_33368: st = __ret_pu; if (st != 0) { return (-14); } else { } if (read != 0) { tmp___0 = copy_to_user((void *)(& ucmd->data), (void const *)(& cmd.data), (unsigned long )cmd.cnt); st = (int )tmp___0; if (st != 0) { return (-14); } else { } } else { } return (0); } } void rsxx_eeh_save_issued_creg(struct rsxx_cardinfo *card ) { struct creg_cmd *cmd ; { cmd = (struct creg_cmd *)0; cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; if ((unsigned long )cmd != (unsigned long )((struct creg_cmd *)0)) { ldv_del_timer_sync_94(& card->creg_ctrl.cmd_timer); spin_lock_bh(& card->creg_ctrl.lock); list_add(& cmd->list, & card->creg_ctrl.queue); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth + 1U; card->creg_ctrl.active = 0; spin_unlock_bh(& card->creg_ctrl.lock); } else { } return; } } void rsxx_kick_creg_queue(struct rsxx_cardinfo *card ) { int tmp ; { spin_lock_bh(& card->creg_ctrl.lock); tmp = list_empty((struct list_head const *)(& card->creg_ctrl.queue)); if (tmp == 0) { creg_kick_queue(card); } else { } spin_unlock_bh(& card->creg_ctrl.lock); return; } } int rsxx_creg_setup(struct rsxx_cardinfo *card ) { struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; { card->creg_ctrl.active_cmd = (struct creg_cmd *)0; __lock_name = "\"%s\"\"rsxx\"\"_creg\""; tmp = __alloc_workqueue_key("%s", 131082U, 1, & __key, __lock_name, (char *)"rsxx_creg"); card->creg_ctrl.creg_wq = tmp; if ((unsigned long )card->creg_ctrl.creg_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } __init_work(& card->creg_ctrl.done_work, 0); __constr_expr_0.counter = 137438953408L; card->creg_ctrl.done_work.data = __constr_expr_0; lockdep_init_map(& card->creg_ctrl.done_work.lockdep_map, "(&card->creg_ctrl.done_work)", & __key___0, 0); INIT_LIST_HEAD(& card->creg_ctrl.done_work.entry); card->creg_ctrl.done_work.func = & creg_cmd_done; __mutex_init(& card->creg_ctrl.reset_lock, "&card->creg_ctrl.reset_lock", & __key___1); INIT_LIST_HEAD(& card->creg_ctrl.queue); spinlock_check(& card->creg_ctrl.lock); __raw_spin_lock_init(& card->creg_ctrl.lock.__annonCompField17.rlock, "&(&card->creg_ctrl.lock)->rlock", & __key___2); reg_timer_6(& card->creg_ctrl.cmd_timer, & creg_cmd_timed_out, (unsigned long )card); return (0); } } void rsxx_creg_destroy(struct rsxx_cardinfo *card ) { struct creg_cmd *cmd ; struct creg_cmd *tmp ; int cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___0 ; { cnt = 0; spin_lock_bh(& card->creg_ctrl.lock); __mptr = (struct list_head const *)card->creg_ctrl.queue.next; cmd = (struct creg_cmd *)__mptr; __mptr___0 = (struct list_head const *)cmd->list.next; tmp = (struct creg_cmd *)__mptr___0; goto ldv_33404; ldv_33403: list_del(& cmd->list); if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { (*(cmd->cb))(card, cmd, -125); } else { } kmem_cache_free(creg_cmd_pool, (void *)cmd); cnt = cnt + 1; cmd = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct creg_cmd *)__mptr___1; ldv_33404: ; if ((unsigned long )(& cmd->list) != (unsigned long )(& card->creg_ctrl.queue)) { goto ldv_33403; } else { } if (cnt != 0) { _dev_info((struct device const *)(& (card->dev)->dev), "Canceled %d queue creg commands\n", cnt); } else { } cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; if ((unsigned long )cmd != (unsigned long )((struct creg_cmd *)0)) { tmp___0 = timer_pending((struct timer_list const *)(& card->creg_ctrl.cmd_timer)); if (tmp___0 != 0) { ldv_del_timer_sync_95(& card->creg_ctrl.cmd_timer); } else { } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { (*(cmd->cb))(card, cmd, -125); } else { } _dev_info((struct device const *)(& (card->dev)->dev), "Canceled active creg command\n"); kmem_cache_free(creg_cmd_pool, (void *)cmd); } else { } spin_unlock_bh(& card->creg_ctrl.lock); ldv_cancel_work_sync_96(& card->creg_ctrl.done_work); return; } } int rsxx_creg_init(void) { { creg_cmd_pool = kmem_cache_create("creg_cmd", 64UL, 8UL, 8192UL, (void (*)(void * ))0); if ((unsigned long )creg_cmd_pool == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } return (0); } } void rsxx_creg_cleanup(void) { { kmem_cache_destroy(creg_cmd_pool); return; } } void work_init_3(void) { { ldv_work_3_0 = 0; ldv_work_3_1 = 0; ldv_work_3_2 = 0; ldv_work_3_3 = 0; return; } } void activate_suitable_timer_6(struct timer_list *timer , unsigned long data ) { { if (ldv_timer_6_0 == 0 || ldv_timer_6_0 == 2) { ldv_timer_list_6_0 = timer; ldv_timer_list_6_0->data = data; ldv_timer_6_0 = 1; return; } else { } if (ldv_timer_6_1 == 0 || ldv_timer_6_1 == 2) { ldv_timer_list_6_1 = timer; ldv_timer_list_6_1->data = data; ldv_timer_6_1 = 1; return; } else { } if (ldv_timer_6_2 == 0 || ldv_timer_6_2 == 2) { ldv_timer_list_6_2 = timer; ldv_timer_list_6_2->data = data; ldv_timer_6_2 = 1; return; } else { } if (ldv_timer_6_3 == 0 || ldv_timer_6_3 == 2) { ldv_timer_list_6_3 = timer; ldv_timer_list_6_3->data = data; ldv_timer_6_3 = 1; return; } else { } return; } } void activate_work_3(struct work_struct *work , int state ) { { if (ldv_work_3_0 == 0) { ldv_work_struct_3_0 = work; ldv_work_3_0 = state; return; } else { } if (ldv_work_3_1 == 0) { ldv_work_struct_3_1 = work; ldv_work_3_1 = state; return; } else { } if (ldv_work_3_2 == 0) { ldv_work_struct_3_2 = work; ldv_work_3_2 = state; return; } else { } if (ldv_work_3_3 == 0) { ldv_work_struct_3_3 = work; ldv_work_3_3 = state; return; } else { } return; } } void call_and_disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 2 || ldv_work_3_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_0) { creg_cmd_done(work); ldv_work_3_0 = 1; return; } else { } if ((ldv_work_3_1 == 2 || ldv_work_3_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_1) { creg_cmd_done(work); ldv_work_3_1 = 1; return; } else { } if ((ldv_work_3_2 == 2 || ldv_work_3_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_2) { creg_cmd_done(work); ldv_work_3_2 = 1; return; } else { } if ((ldv_work_3_3 == 2 || ldv_work_3_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_3) { creg_cmd_done(work); ldv_work_3_3 = 1; return; } else { } return; } } void timer_init_6(void) { { ldv_timer_6_0 = 0; ldv_timer_6_1 = 0; ldv_timer_6_2 = 0; ldv_timer_6_3 = 0; return; } } void disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 3 || ldv_work_3_0 == 2) && (unsigned long )ldv_work_struct_3_0 == (unsigned long )work) { ldv_work_3_0 = 1; } else { } if ((ldv_work_3_1 == 3 || ldv_work_3_1 == 2) && (unsigned long )ldv_work_struct_3_1 == (unsigned long )work) { ldv_work_3_1 = 1; } else { } if ((ldv_work_3_2 == 3 || ldv_work_3_2 == 2) && (unsigned long )ldv_work_struct_3_2 == (unsigned long )work) { ldv_work_3_2 = 1; } else { } if ((ldv_work_3_3 == 3 || ldv_work_3_3 == 2) && (unsigned long )ldv_work_struct_3_3 == (unsigned long )work) { ldv_work_3_3 = 1; } else { } return; } } void disable_suitable_timer_6(struct timer_list *timer ) { { if (ldv_timer_6_0 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_6_0) { ldv_timer_6_0 = 0; return; } else { } if (ldv_timer_6_1 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_6_1) { ldv_timer_6_1 = 0; return; } else { } if (ldv_timer_6_2 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_6_2) { ldv_timer_6_2 = 0; return; } else { } if (ldv_timer_6_3 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_6_3) { ldv_timer_6_3 = 0; return; } else { } return; } } void activate_pending_timer_6(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_6_0 == (unsigned long )timer) { if (ldv_timer_6_0 == 2 || pending_flag != 0) { ldv_timer_list_6_0 = timer; ldv_timer_list_6_0->data = data; ldv_timer_6_0 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_6_1 == (unsigned long )timer) { if (ldv_timer_6_1 == 2 || pending_flag != 0) { ldv_timer_list_6_1 = timer; ldv_timer_list_6_1->data = data; ldv_timer_6_1 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_6_2 == (unsigned long )timer) { if (ldv_timer_6_2 == 2 || pending_flag != 0) { ldv_timer_list_6_2 = timer; ldv_timer_list_6_2->data = data; ldv_timer_6_2 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_6_3 == (unsigned long )timer) { if (ldv_timer_6_3 == 2 || pending_flag != 0) { ldv_timer_list_6_3 = timer; ldv_timer_list_6_3->data = data; ldv_timer_6_3 = 1; } else { } return; } else { } activate_suitable_timer_6(timer, data); return; } } void choose_timer_6(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_timer_6_0 == 1) { ldv_timer_6_0 = 2; ldv_timer_6(ldv_timer_6_0, ldv_timer_list_6_0); } else { } goto ldv_33446; case 1: ; if (ldv_timer_6_1 == 1) { ldv_timer_6_1 = 2; ldv_timer_6(ldv_timer_6_1, ldv_timer_list_6_1); } else { } goto ldv_33446; case 2: ; if (ldv_timer_6_2 == 1) { ldv_timer_6_2 = 2; ldv_timer_6(ldv_timer_6_2, ldv_timer_list_6_2); } else { } goto ldv_33446; case 3: ; if (ldv_timer_6_3 == 1) { ldv_timer_6_3 = 2; ldv_timer_6(ldv_timer_6_3, ldv_timer_list_6_3); } else { } goto ldv_33446; default: ldv_stop(); } ldv_33446: ; return; } } int reg_timer_6(struct timer_list *timer , void (*function)(unsigned long ) , unsigned long data ) { { if ((unsigned long )function == (unsigned long )(& creg_cmd_timed_out)) { activate_suitable_timer_6(timer, data); } else { } return (0); } } void ldv_timer_6(int state , struct timer_list *timer ) { { LDV_IN_INTERRUPT = 2; creg_cmd_timed_out(timer->data); LDV_IN_INTERRUPT = 1; return; } } void invoke_work_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_3_0 == 2 || ldv_work_3_0 == 3) { ldv_work_3_0 = 4; creg_cmd_done(ldv_work_struct_3_0); ldv_work_3_0 = 1; } else { } goto ldv_33467; case 1: ; if (ldv_work_3_1 == 2 || ldv_work_3_1 == 3) { ldv_work_3_1 = 4; creg_cmd_done(ldv_work_struct_3_0); ldv_work_3_1 = 1; } else { } goto ldv_33467; case 2: ; if (ldv_work_3_2 == 2 || ldv_work_3_2 == 3) { ldv_work_3_2 = 4; creg_cmd_done(ldv_work_struct_3_0); ldv_work_3_2 = 1; } else { } goto ldv_33467; case 3: ; if (ldv_work_3_3 == 2 || ldv_work_3_3 == 3) { ldv_work_3_3 = 4; creg_cmd_done(ldv_work_struct_3_0); ldv_work_3_3 = 1; } else { } goto ldv_33467; default: ldv_stop(); } ldv_33467: ; return; } } void call_and_disable_all_3(int state ) { { if (ldv_work_3_0 == state) { call_and_disable_work_3(ldv_work_struct_3_0); } else { } if (ldv_work_3_1 == state) { call_and_disable_work_3(ldv_work_struct_3_1); } else { } if (ldv_work_3_2 == state) { call_and_disable_work_3(ldv_work_struct_3_2); } else { } if (ldv_work_3_3 == state) { call_and_disable_work_3(ldv_work_struct_3_3); } else { } return; } } bool ldv_queue_work_on_77(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_78(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_79(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_80(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_81(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_unlock_82(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_83(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_84(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_85(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_86(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_87(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_88(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mod_timer_89(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_del_timer_sync_90(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } int ldv_mutex_trylock_91(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_reset_lock_of_NOT_ARG_SIGN(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } int ldv_del_timer_sync_92(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } void ldv_mutex_unlock_93(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_reset_lock_of_NOT_ARG_SIGN(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_del_timer_sync_94(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } int ldv_del_timer_sync_95(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } bool ldv_cancel_work_sync_96(struct work_struct *ldv_func_arg1 ) { ldv_func_ret_type___11 ldv_func_res ; bool tmp ; { tmp = cancel_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_3(ldv_func_arg1); return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((int )((signed char )c) != 0); } } int ldv_mutex_trylock_129(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_130(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_134(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_136(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_133(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) ; void ldv_mutex_unlock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) ; bool ldv_queue_work_on_121(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_123(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_122(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_125(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_124(struct workqueue_struct *ldv_func_arg1 ) ; extern int register_blkdev(unsigned int , char const * ) ; extern void unregister_blkdev(unsigned int , char const * ) ; extern void add_disk(struct gendisk * ) ; extern void del_gendisk(struct gendisk * ) ; __inline static sector_t get_capacity(struct gendisk *disk ) { { return (disk->part0.nr_sects); } } extern struct gendisk *alloc_disk(int ) ; extern void put_disk(struct gendisk * ) ; extern void bio_endio(struct bio * , int ) ; extern void generic_start_io_acct(int , unsigned long , struct hd_struct * ) ; extern void generic_end_io_acct(int , struct hd_struct * , unsigned long ) ; __inline static void queue_flag_set_unlocked(unsigned int flag , struct request_queue *q ) { { __set_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); return; } } __inline static void queue_flag_clear_unlocked(unsigned int flag , struct request_queue *q ) { { __clear_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); return; } } extern void blk_cleanup_queue(struct request_queue * ) ; extern void blk_queue_make_request(struct request_queue * , make_request_fn * ) ; extern void blk_queue_bounce_limit(struct request_queue * , u64 ) ; extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_max_discard_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_logical_block_size(struct request_queue * , unsigned short ) ; extern void blk_queue_physical_block_size(struct request_queue * , unsigned int ) ; extern void blk_queue_dma_alignment(struct request_queue * , int ) ; extern struct request_queue *blk_alloc_queue(gfp_t ) ; int rsxx_dma_queue_bio(struct rsxx_cardinfo *card , struct bio *bio , atomic_t *n_dmas , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) ; static unsigned int blkdev_minors = 64U; static unsigned int blkdev_max_hw_sectors = 1024U; static unsigned int enable_blkdev = 1U; static struct kmem_cache *bio_meta_pool ; static int rsxx_blkdev_ioctl(struct block_device *bdev , fmode_t mode , unsigned int cmd , unsigned long arg ) { struct rsxx_cardinfo *card ; int tmp ; int tmp___0 ; { card = (struct rsxx_cardinfo *)(bdev->bd_disk)->private_data; switch (cmd) { case 3224400416U: tmp = rsxx_reg_access(card, (struct rsxx_reg_access *)arg, 1); return (tmp); case 3224400417U: tmp___0 = rsxx_reg_access(card, (struct rsxx_reg_access *)arg, 0); return (tmp___0); } return (-25); } } static int rsxx_getgeo(struct block_device *bdev , struct hd_geometry *geo ) { struct rsxx_cardinfo *card ; u64 blocks ; uint32_t __base ; uint32_t __rem ; { card = (struct rsxx_cardinfo *)(bdev->bd_disk)->private_data; blocks = card->size8 >> 9; if (card->size8 != 0ULL) { geo->heads = 64U; geo->sectors = 16U; __base = (uint32_t )((int )geo->heads * (int )geo->sectors); __rem = (uint32_t )(blocks % (u64 )__base); blocks = blocks / (u64 )__base; geo->cylinders = (unsigned short )blocks; } else { geo->heads = 0U; geo->sectors = 0U; geo->cylinders = 0U; } return (0); } } static struct block_device_operations const rsxx_fops = {0, 0, 0, & rsxx_blkdev_ioctl, 0, 0, 0, 0, 0, 0, & rsxx_getgeo, 0, & __this_module}; static void disk_stats_start(struct rsxx_cardinfo *card , struct bio *bio ) { { generic_start_io_acct((int )bio->bi_rw & 1, (unsigned long )(bio->bi_iter.bi_size >> 9), & (card->gendisk)->part0); return; } } static void disk_stats_complete(struct rsxx_cardinfo *card , struct bio *bio , unsigned long start_time ) { { generic_end_io_acct((int )bio->bi_rw & 1, & (card->gendisk)->part0, start_time); return; } } static void bio_dma_done_cb(struct rsxx_cardinfo *card , void *cb_data , unsigned int error ) { struct rsxx_bio_meta *meta ; int tmp ; int tmp___0 ; { meta = (struct rsxx_bio_meta *)cb_data; if (error != 0U) { atomic_set(& meta->error, 1); } else { } tmp___0 = atomic_dec_and_test(& meta->pending_dmas); if (tmp___0 != 0) { if (card->eeh_state == 0U && (unsigned long )card->gendisk != (unsigned long )((struct gendisk *)0)) { disk_stats_complete(card, meta->bio, meta->start_time); } else { } tmp = atomic_read((atomic_t const *)(& meta->error)); bio_endio(meta->bio, tmp != 0 ? -5 : 0); kmem_cache_free(bio_meta_pool, (void *)meta); } else { } return; } } static void rsxx_make_request(struct request_queue *q , struct bio *bio ) { struct rsxx_cardinfo *card ; struct rsxx_bio_meta *bio_meta ; int st ; sector_t tmp ; long tmp___0 ; long tmp___1 ; void *tmp___2 ; long tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; { card = (struct rsxx_cardinfo *)q->queuedata; st = -22; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dev.c", 151, 0); if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { goto req_err; } else { } tmp = get_capacity(card->gendisk); if (bio->bi_iter.bi_sector + (sector_t )(bio->bi_iter.bi_size >> 9) > tmp) { goto req_err; } else { } tmp___0 = ldv__builtin_expect(card->halt != 0U, 0L); if (tmp___0 != 0L) { st = -14; goto req_err; } else { } tmp___1 = ldv__builtin_expect(card->dma_fault != 0U, 0L); if (tmp___1 != 0L) { st = -14; goto req_err; } else { } if (bio->bi_iter.bi_size == 0U) { dev_err((struct device const *)(& (card->dev)->dev), "size zero BIO!\n"); goto req_err; } else { } tmp___2 = kmem_cache_alloc(bio_meta_pool, 208U); bio_meta = (struct rsxx_bio_meta *)tmp___2; if ((unsigned long )bio_meta == (unsigned long )((struct rsxx_bio_meta *)0)) { st = -12; goto req_err; } else { } bio_meta->bio = bio; atomic_set(& bio_meta->error, 0); atomic_set(& bio_meta->pending_dmas, 0); bio_meta->start_time = jiffies; tmp___3 = ldv__builtin_expect(card->halt != 0U, 0L); if (tmp___3 == 0L) { disk_stats_start(card, bio); } else { } descriptor.modname = "rsxx"; descriptor.function = "rsxx_make_request"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dev.c"; descriptor.format = "BIO[%c]: meta: %p addr8: x%llx size: %d\n"; descriptor.lineno = 190U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "BIO[%c]: meta: %p addr8: x%llx size: %d\n", (int )bio->bi_rw & 1 ? 87 : 82, bio_meta, (unsigned long long )bio->bi_iter.bi_sector << 9, bio->bi_iter.bi_size); } else { } st = rsxx_dma_queue_bio(card, bio, & bio_meta->pending_dmas, & bio_dma_done_cb, (void *)bio_meta); if (st != 0) { goto queue_err; } else { } return; queue_err: kmem_cache_free(bio_meta_pool, (void *)bio_meta); req_err: bio_endio(bio, st); return; } } static bool rsxx_discard_supported(struct rsxx_cardinfo *card ) { unsigned char pci_rev ; { pci_read_config_byte((struct pci_dev const *)card->dev, 8, & pci_rev); return ((unsigned int )pci_rev > 1U); } } int rsxx_attach_dev(struct rsxx_cardinfo *card ) { { ldv_mutex_lock_133(& card->dev_lock); if (enable_blkdev != 0U) { if (card->config_valid != 0) { set_capacity(card->gendisk, (sector_t )(card->size8 >> 9)); } else { set_capacity(card->gendisk, 0UL); } add_disk(card->gendisk); card->bdev_attached = 1; } else { } ldv_mutex_unlock_134(& card->dev_lock); return (0); } } void rsxx_detach_dev(struct rsxx_cardinfo *card ) { { ldv_mutex_lock_135(& card->dev_lock); if ((int )card->bdev_attached) { del_gendisk(card->gendisk); card->bdev_attached = 0; } else { } ldv_mutex_unlock_136(& card->dev_lock); return; } } int rsxx_setup_dev(struct rsxx_cardinfo *card ) { unsigned short blk_size ; struct lock_class_key __key ; bool tmp ; { __mutex_init(& card->dev_lock, "&card->dev_lock", & __key); if (enable_blkdev == 0U) { return (0); } else { } card->major = register_blkdev(0U, "rsxx"); if (card->major < 0) { dev_err((struct device const *)(& (card->dev)->dev), "Failed to get major number\n"); return (-12); } else { } card->queue = blk_alloc_queue(208U); if ((unsigned long )card->queue == (unsigned long )((struct request_queue *)0)) { dev_err((struct device const *)(& (card->dev)->dev), "Failed queue alloc\n"); unregister_blkdev((unsigned int )card->major, "rsxx"); return (-12); } else { } card->gendisk = alloc_disk((int )blkdev_minors); if ((unsigned long )card->gendisk == (unsigned long )((struct gendisk *)0)) { dev_err((struct device const *)(& (card->dev)->dev), "Failed disk alloc\n"); blk_cleanup_queue(card->queue); unregister_blkdev((unsigned int )card->major, "rsxx"); return (-12); } else { } if (card->config_valid != 0) { blk_size = (unsigned short )card->config.data.block_size; blk_queue_dma_alignment(card->queue, (int )blk_size + -1); blk_queue_logical_block_size(card->queue, (int )blk_size); } else { } blk_queue_make_request(card->queue, & rsxx_make_request); blk_queue_bounce_limit(card->queue, 0xffffffffffffffffULL); blk_queue_max_hw_sectors(card->queue, blkdev_max_hw_sectors); blk_queue_physical_block_size(card->queue, 4096U); queue_flag_set_unlocked(12U, card->queue); queue_flag_clear_unlocked(16U, card->queue); tmp = rsxx_discard_supported(card); if ((int )tmp) { queue_flag_set_unlocked(14U, card->queue); blk_queue_max_discard_sectors(card->queue, 8U); (card->queue)->limits.discard_granularity = 4096U; (card->queue)->limits.discard_alignment = 4096U; (card->queue)->limits.discard_zeroes_data = 1U; } else { } (card->queue)->queuedata = (void *)card; snprintf((char *)(& (card->gendisk)->disk_name), 32UL, "rsxx%d", card->disk_id); (card->gendisk)->driverfs_dev = & (card->dev)->dev; (card->gendisk)->major = card->major; (card->gendisk)->first_minor = 0; (card->gendisk)->fops = & rsxx_fops; (card->gendisk)->private_data = (void *)card; (card->gendisk)->queue = card->queue; return (0); } } void rsxx_destroy_dev(struct rsxx_cardinfo *card ) { { if (enable_blkdev == 0U) { return; } else { } put_disk(card->gendisk); card->gendisk = (struct gendisk *)0; blk_cleanup_queue(card->queue); (card->queue)->queuedata = (void *)0; unregister_blkdev((unsigned int )card->major, "rsxx"); return; } } int rsxx_dev_init(void) { { bio_meta_pool = kmem_cache_create("rsxx_bio_meta", 24UL, 8UL, 8192UL, (void (*)(void * ))0); if ((unsigned long )bio_meta_pool == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } return (0); } } void rsxx_dev_cleanup(void) { { kmem_cache_destroy(bio_meta_pool); return; } } void ldv_initialize_block_device_operations_8(void) { void *tmp ; { tmp = ldv_init_zalloc(480UL); rsxx_fops_group0 = (struct block_device *)tmp; return; } } void ldv_main_exported_8(void) { fmode_t ldvarg15 ; struct hd_geometry *ldvarg12 ; void *tmp ; unsigned long ldvarg13 ; unsigned int ldvarg14 ; int tmp___0 ; { tmp = ldv_init_zalloc(16UL); ldvarg12 = (struct hd_geometry *)tmp; ldv_memset((void *)(& ldvarg15), 0, 4UL); ldv_memset((void *)(& ldvarg13), 0, 8UL); ldv_memset((void *)(& ldvarg14), 0, 4UL); tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_8 == 1) { rsxx_blkdev_ioctl(rsxx_fops_group0, ldvarg15, ldvarg14, ldvarg13); ldv_state_variable_8 = 1; } else { } goto ldv_36578; case 1: ; if (ldv_state_variable_8 == 1) { rsxx_getgeo(rsxx_fops_group0, ldvarg12); ldv_state_variable_8 = 1; } else { } goto ldv_36578; default: ldv_stop(); } ldv_36578: ; return; } } bool ldv_queue_work_on_121(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_122(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_123(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_124(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_125(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_129(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_130(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_133(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_134(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_136(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static bool is_power_of_2(unsigned long n ) { { return ((bool )(n != 0UL && ((n - 1UL) & n) == 0UL)); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice(struct list_head const *list , struct list_head *head ) { int tmp ; { tmp = list_empty(list); if (tmp == 0) { __list_splice(list, head, head->next); } else { } return; } } __inline static void list_splice_tail(struct list_head *list , struct list_head *head ) { int tmp ; { tmp = list_empty((struct list_head const *)list); if (tmp == 0) { __list_splice((struct list_head const *)list, head->prev, head); } else { } return; } } extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; __inline static void atomic_add(int i , atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; addl %1,%0": "+m" (v->counter): "ir" (i)); return; } } __inline static void atomic_sub(int i , atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; subl %1,%0": "+m" (v->counter): "ir" (i)); return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } int ldv_mutex_trylock_167(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_162(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_165(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_175(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_177(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_163(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_164(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_166(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_174(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_176(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) ; void ldv_mutex_unlock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) ; int ldv_mod_timer_169(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_170(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_172(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_del_timer_sync_171(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_173(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_182(struct timer_list *ldv_func_arg1 ) ; void ldv_destroy_workqueue_178(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_179(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_180(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_181(struct workqueue_struct *ldv_func_arg1 ) ; bool ldv_queue_work_on_157(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_159(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_158(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_161(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_160(struct workqueue_struct *ldv_func_arg1 ) ; __inline static bool queue_work___0(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_157(8192, wq, work); return (tmp); } } void activate_work_5(struct work_struct *work , int state ) ; int reg_timer_7(struct timer_list *timer , void (*function)(unsigned long ) , unsigned long data ) ; void call_and_disable_all_4(int state ) ; void disable_work_5(struct work_struct *work ) ; void ldv_timer_7(int state , struct timer_list *timer ) ; void invoke_work_4(void) ; void call_and_disable_work_5(struct work_struct *work ) ; void activate_work_4(struct work_struct *work , int state ) ; void call_and_disable_all_5(int state ) ; void disable_suitable_timer_7(struct timer_list *timer ) ; void invoke_work_5(void) ; void disable_work_4(struct work_struct *work ) ; void choose_timer_7(void) ; void call_and_disable_work_4(struct work_struct *work ) ; void activate_pending_timer_7(struct timer_list *timer , unsigned long data , int pending_flag ) ; void activate_suitable_timer_7(struct timer_list *timer , unsigned long data ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (84), "i" (12UL)); ldv_31285: ; goto ldv_31285; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (96), "i" (12UL)); ldv_31293: ; goto ldv_31293; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 0); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); return (tmp); } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, page, offset, size, (enum dma_data_direction )direction); return (tmp); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { tmp = dma_mapping_error(& pdev->dev, dma_addr); return (tmp); } } __inline static void bvec_iter_advance(struct bio_vec *bv , struct bvec_iter *iter , unsigned int bytes ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; unsigned int len ; unsigned int _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { __ret_warn_once = iter->bi_size < bytes; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); if (tmp___1 != 0L) { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_fmt("include/linux/bio.h", 211, "Attempted to advance past end of bvec iter\n"); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { __warned = 1; } else { } } else { } ldv__builtin_expect(__ret_warn_once != 0, 0L); goto ldv_32300; ldv_32299: _min1 = bytes; _min1___0 = iter->bi_size; _min2___0 = (bv + (unsigned long )iter->bi_idx)->bv_len - iter->bi_bvec_done; _min2 = _min1___0 < _min2___0 ? _min1___0 : _min2___0; len = _min1 < _min2 ? _min1 : _min2; bytes = bytes - len; iter->bi_size = iter->bi_size - len; iter->bi_bvec_done = iter->bi_bvec_done + len; if (iter->bi_bvec_done == (bv + (unsigned long )iter->bi_idx)->bv_len) { iter->bi_bvec_done = 0U; iter->bi_idx = iter->bi_idx + 1U; } else { } ldv_32300: ; if (bytes != 0U) { goto ldv_32299; } else { } return; } } __inline static void bio_advance_iter(struct bio *bio , struct bvec_iter *iter , unsigned int bytes ) { { iter->bi_sector = iter->bi_sector + (sector_t )(bytes >> 9); if (((unsigned long long )bio->bi_rw & 640ULL) != 0ULL) { iter->bi_size = iter->bi_size - bytes; } else { bvec_iter_advance(bio->bi_io_vec, iter, bytes); } return; } } extern void *vmalloc(unsigned long ) ; extern void vfree(void const * ) ; static struct kmem_cache *rsxx_dma_pool ; static unsigned int rsxx_addr8_to_laddr(u64 addr8 , struct rsxx_cardinfo *card ) { unsigned long long tgt_addr8 ; uint32_t __base ; uint32_t __rem ; { tgt_addr8 = ((addr8 >> (int )card->_stripe.upper_shift) & card->_stripe.upper_mask) | (card->_stripe.lower_mask & addr8); __base = 4096U; __rem = (uint32_t )(tgt_addr8 % (unsigned long long )__base); tgt_addr8 = tgt_addr8 / (unsigned long long )__base; return ((unsigned int )tgt_addr8); } } static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card , u64 addr8 ) { unsigned int tgt ; { tgt = (unsigned int )(addr8 >> (int )card->_stripe.target_shift) & (unsigned int )card->_stripe.target_mask; return (tgt); } } void rsxx_dma_queue_reset(struct rsxx_cardinfo *card ) { { iowrite32(1U, card->regmap + 8UL); return; } } static unsigned int get_dma_size(struct rsxx_dma *dma ) { { if (dma->sub_page.cnt != 0U) { return (dma->sub_page.cnt << 9); } else { return (4096U); } } } static void set_tracker_dma(struct dma_tracker_list *trackers , int tag , struct rsxx_dma *dma ) { { trackers->list[tag].dma = dma; return; } } static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers , int tag ) { { return (trackers->list[tag].dma); } } static int pop_tracker(struct dma_tracker_list *trackers ) { int tag ; { spin_lock(& trackers->lock); tag = trackers->head; if (tag != -1) { trackers->head = trackers->list[tag].next_tag; trackers->list[tag].next_tag = -1; } else { } spin_unlock(& trackers->lock); return (tag); } } static void push_tracker(struct dma_tracker_list *trackers , int tag ) { { spin_lock(& trackers->lock); trackers->list[tag].next_tag = trackers->head; trackers->head = tag; trackers->list[tag].dma = (struct rsxx_dma *)0; spin_unlock(& trackers->lock); return; } } static u32 dma_intr_coal_val(u32 mode , u32 count , u32 latency ) { u32 latency_units ; { latency_units = latency / 64U; if (mode == 0U) { return (0U); } else { } return (((count << 16) & 33488896U) | (latency_units & 65535U)); } } static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card ) { int i ; u32 q_depth ; u32 intr_coal ; long tmp ; int tmp___0 ; { q_depth = 0U; if (card->config.data.intr_coal.mode != 2U) { return; } else { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); if (tmp != 0L) { return; } else { } } i = 0; goto ldv_33258; ldv_33257: tmp___0 = atomic_read((atomic_t const *)(& (card->ctrl + (unsigned long )i)->stats.hw_q_depth)); q_depth = (u32 )tmp___0 + q_depth; i = i + 1; ldv_33258: ; if (card->n_targets > i) { goto ldv_33257; } else { } intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode, q_depth / 2U, card->config.data.intr_coal.latency); iowrite32(intr_coal, card->regmap + 112UL); return; } } static void rsxx_free_dma(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma ) { unsigned int tmp ; int tmp___0 ; { if ((unsigned int )dma->cmd != 112U) { tmp___0 = pci_dma_mapping_error((ctrl->card)->dev, dma->dma_addr); if (tmp___0 == 0) { tmp = get_dma_size(dma); pci_unmap_page((ctrl->card)->dev, dma->dma_addr, (size_t )tmp, (unsigned int )dma->cmd == 128U ? 1 : 2); } else { } } else { } kmem_cache_free(rsxx_dma_pool, (void *)dma); return; } } static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma , unsigned int status ) { { if ((int )status & 1) { ctrl->stats.dma_sw_err = ctrl->stats.dma_sw_err + 1U; } else { } if ((status & 2U) != 0U) { ctrl->stats.dma_hw_fault = ctrl->stats.dma_hw_fault + 1U; } else { } if ((status & 4U) != 0U) { ctrl->stats.dma_cancelled = ctrl->stats.dma_cancelled + 1U; } else { } if ((unsigned long )dma->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , void * , unsigned int ))0)) { (*(dma->cb))(ctrl->card, dma->cb_data, status != 0U); } else { } rsxx_free_dma(ctrl, dma); return; } } int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl , struct list_head *q , unsigned int done ) { struct rsxx_dma *dma ; struct rsxx_dma *tmp ; int cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { cnt = 0; __mptr = (struct list_head const *)q->next; dma = (struct rsxx_dma *)__mptr; __mptr___0 = (struct list_head const *)dma->list.next; tmp = (struct rsxx_dma *)__mptr___0; goto ldv_33284; ldv_33283: list_del(& dma->list); if ((int )done & 1) { rsxx_complete_dma(ctrl, dma, 4U); } else { rsxx_free_dma(ctrl, dma); } cnt = cnt + 1; dma = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct rsxx_dma *)__mptr___1; ldv_33284: ; if ((unsigned long )(& dma->list) != (unsigned long )q) { goto ldv_33283; } else { } return (cnt); } } static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma ) { { spin_lock_bh(& ctrl->queue_lock); ctrl->stats.sw_q_depth = ctrl->stats.sw_q_depth + 1U; list_add(& dma->list, & ctrl->queue); spin_unlock_bh(& ctrl->queue_lock); return; } } static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma , u8 hw_st ) { unsigned int status ; int requeue_cmd ; struct _ddebug descriptor ; long tmp ; { status = 0U; requeue_cmd = 0; descriptor.modname = "rsxx"; descriptor.function = "rsxx_handle_dma_error"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor.format = "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n"; descriptor.lineno = 297U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((ctrl->card)->dev)->dev), "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n", (int )dma->cmd, dma->laddr, (int )hw_st); } else { } if ((int )hw_st & 1) { ctrl->stats.crc_errors = ctrl->stats.crc_errors + 1U; } else { } if (((int )hw_st & 2) != 0) { ctrl->stats.hard_errors = ctrl->stats.hard_errors + 1U; } else { } if (((int )hw_st & 4) != 0) { ctrl->stats.soft_errors = ctrl->stats.soft_errors + 1U; } else { } switch ((int )dma->cmd) { case 192: ; if (((int )hw_st & 3) != 0) { if ((ctrl->card)->scrub_hard != 0) { dma->cmd = 224U; requeue_cmd = 1; ctrl->stats.reads_retried = ctrl->stats.reads_retried + 1U; } else { status = status | 2U; ctrl->stats.reads_failed = ctrl->stats.reads_failed + 1U; } } else if (((int )hw_st & 8) != 0) { status = status | 2U; ctrl->stats.reads_failed = ctrl->stats.reads_failed + 1U; } else { } goto ldv_33300; case 224: ; if (((int )hw_st & 3) != 0) { status = status | 2U; ctrl->stats.reads_failed = ctrl->stats.reads_failed + 1U; } else { } goto ldv_33300; case 128: status = status | 2U; ctrl->stats.writes_failed = ctrl->stats.writes_failed + 1U; goto ldv_33300; case 112: status = status | 2U; ctrl->stats.discards_failed = ctrl->stats.discards_failed + 1U; goto ldv_33300; default: dev_err((struct device const *)(& ((ctrl->card)->dev)->dev), "Unknown command in DMA!(cmd: x%02x laddr x%08x st: x%02x\n", (int )dma->cmd, dma->laddr, (int )hw_st); status = status | 1U; goto ldv_33300; } ldv_33300: ; if (requeue_cmd != 0) { rsxx_requeue_dma(ctrl, dma); } else { rsxx_complete_dma(ctrl, dma, status); } return; } } static void dma_engine_stalled(unsigned long data ) { struct rsxx_dma_ctrl *ctrl ; int cnt ; int tmp ; long tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; { ctrl = (struct rsxx_dma_ctrl *)data; tmp = atomic_read((atomic_t const *)(& ctrl->stats.hw_q_depth)); if (tmp == 0) { return; } else { tmp___0 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); if (tmp___0 != 0L) { return; } else { } } tmp___3 = ioread32(ctrl->regmap + 44UL); if (ctrl->cmd.idx != tmp___3) { dev_warn((struct device const *)(& ((ctrl->card)->dev)->dev), "SW_CMD_IDX write was lost, re-writing...\n"); iowrite32(ctrl->cmd.idx, ctrl->regmap + 44UL); tmp___1 = msecs_to_jiffies(10000U); ldv_mod_timer_169(& ctrl->activity_timer, tmp___1 + (unsigned long )jiffies); } else { dev_warn((struct device const *)(& ((ctrl->card)->dev)->dev), "DMA channel %d has stalled, faulting interface.\n", ctrl->id); (ctrl->card)->dma_fault = 1U; spin_lock(& ctrl->queue_lock); cnt = rsxx_cleanup_dma_queue(ctrl, & ctrl->queue, 1U); spin_unlock(& ctrl->queue_lock); tmp___2 = rsxx_dma_cancel(ctrl); cnt = tmp___2 + cnt; if (cnt != 0) { _dev_info((struct device const *)(& ((ctrl->card)->dev)->dev), "Freed %d queued DMAs on channel %d\n", cnt, ctrl->id); } else { } } return; } } static void rsxx_issue_dmas(struct rsxx_dma_ctrl *ctrl ) { struct rsxx_dma *dma ; int tag ; int cmds_pending ; struct hw_cmd *hw_cmd_buf ; int dir ; long tmp ; long tmp___0 ; int tmp___1 ; struct list_head const *__mptr ; long tmp___2 ; int tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; unsigned long tmp___5 ; long tmp___6 ; { cmds_pending = 0; hw_cmd_buf = (struct hw_cmd *)ctrl->cmd.buf; tmp = ldv__builtin_expect((ctrl->card)->halt != 0U, 0L); if (tmp != 0L) { return; } else { tmp___0 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); if (tmp___0 != 0L) { return; } else { } } ldv_33324: spin_lock_bh(& ctrl->queue_lock); tmp___1 = list_empty((struct list_head const *)(& ctrl->queue)); if (tmp___1 != 0) { spin_unlock_bh(& ctrl->queue_lock); goto ldv_33318; } else { } spin_unlock_bh(& ctrl->queue_lock); tag = pop_tracker(ctrl->trackers); if (tag == -1) { goto ldv_33318; } else { } spin_lock_bh(& ctrl->queue_lock); __mptr = (struct list_head const *)ctrl->queue.next; dma = (struct rsxx_dma *)__mptr; list_del(& dma->list); ctrl->stats.sw_q_depth = ctrl->stats.sw_q_depth - 1U; spin_unlock_bh(& ctrl->queue_lock); tmp___2 = ldv__builtin_expect((ctrl->card)->dma_fault != 0U, 0L); if (tmp___2 != 0L) { push_tracker(ctrl->trackers, tag); rsxx_complete_dma(ctrl, dma, 4U); goto ldv_33321; } else { } if ((unsigned int )dma->cmd != 112U) { if ((unsigned int )dma->cmd == 128U) { dir = 1; } else { dir = 2; } dma->dma_addr = pci_map_page((ctrl->card)->dev, dma->page, (unsigned long )dma->pg_off, (size_t )(dma->sub_page.cnt << 9), dir); tmp___3 = pci_dma_mapping_error((ctrl->card)->dev, dma->dma_addr); if (tmp___3 != 0) { push_tracker(ctrl->trackers, tag); rsxx_complete_dma(ctrl, dma, 4U); goto ldv_33321; } else { } } else { } set_tracker_dma(ctrl->trackers, tag, dma); (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->command = dma->cmd; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->tag = (u8 )tag; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->_rsvd = 0U; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->sub_page = (((unsigned int )((u8 )dma->sub_page.cnt) & 7U) << 4U) | ((unsigned int )((u8 )dma->sub_page.off) & 7U); (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->device_addr = dma->laddr; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->host_addr = dma->dma_addr; descriptor.modname = "rsxx"; descriptor.function = "rsxx_issue_dmas"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor.format = "Issue DMA%d(laddr %d tag %d) to idx %d\n"; descriptor.lineno = 480U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((ctrl->card)->dev)->dev), "Issue DMA%d(laddr %d tag %d) to idx %d\n", ctrl->id, dma->laddr, tag, ctrl->cmd.idx); } else { } ctrl->cmd.idx = (ctrl->cmd.idx + 1U) & 255U; cmds_pending = cmds_pending + 1; if ((unsigned int )dma->cmd == 128U) { ctrl->stats.writes_issued = ctrl->stats.writes_issued + 1U; } else if ((unsigned int )dma->cmd == 112U) { ctrl->stats.discards_issued = ctrl->stats.discards_issued + 1U; } else { ctrl->stats.reads_issued = ctrl->stats.reads_issued + 1U; } ldv_33321: ; goto ldv_33324; ldv_33318: ; if (cmds_pending != 0) { atomic_add(cmds_pending, & ctrl->stats.hw_q_depth); tmp___5 = msecs_to_jiffies(10000U); ldv_mod_timer_170(& ctrl->activity_timer, tmp___5 + (unsigned long )jiffies); tmp___6 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); if (tmp___6 != 0L) { ldv_del_timer_sync_171(& ctrl->activity_timer); return; } else { } iowrite32(ctrl->cmd.idx, ctrl->regmap + 44UL); } else { } return; } } static void rsxx_dma_done(struct rsxx_dma_ctrl *ctrl ) { struct rsxx_dma *dma ; unsigned long flags ; u16 count ; u8 status ; u8 tag ; struct hw_status *hw_st_buf ; long tmp ; long tmp___0 ; long tmp___1 ; raw_spinlock_t *tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; unsigned long tmp___4 ; int tmp___5 ; raw_spinlock_t *tmp___6 ; int tmp___7 ; { hw_st_buf = (struct hw_status *)ctrl->status.buf; tmp = ldv__builtin_expect((ctrl->card)->halt != 0U, 0L); if (tmp != 0L) { return; } else { tmp___0 = ldv__builtin_expect((ctrl->card)->dma_fault != 0U, 0L); if (tmp___0 != 0L) { return; } else { tmp___1 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); if (tmp___1 != 0L) { return; } else { } } } count = (hw_st_buf + (unsigned long )ctrl->status.idx)->count; goto ldv_33340; ldv_33339: __asm__ volatile ("lfence": : : "memory"); status = (hw_st_buf + (unsigned long )ctrl->status.idx)->status; tag = (hw_st_buf + (unsigned long )ctrl->status.idx)->tag; dma = get_tracker_dma(ctrl->trackers, (int )tag); if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { tmp___2 = spinlock_check(& (ctrl->card)->irq_lock); flags = _raw_spin_lock_irqsave(tmp___2); rsxx_disable_ier(ctrl->card, 1013U); spin_unlock_irqrestore(& (ctrl->card)->irq_lock, flags); dev_err((struct device const *)(& ((ctrl->card)->dev)->dev), "No tracker for tag %d (idx %d id %d)\n", (int )tag, ctrl->status.idx, ctrl->id); return; } else { } descriptor.modname = "rsxx"; descriptor.function = "rsxx_dma_done"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor.format = "Completing DMA%d(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n"; descriptor.lineno = 556U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((ctrl->card)->dev)->dev), "Completing DMA%d(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n", ctrl->id, dma->laddr, (int )tag, (int )status, (int )count, ctrl->status.idx); } else { } atomic_dec(& ctrl->stats.hw_q_depth); tmp___4 = msecs_to_jiffies(10000U); ldv_mod_timer_172(& ctrl->activity_timer, tmp___4 + (unsigned long )jiffies); if ((unsigned int )status != 0U) { rsxx_handle_dma_error(ctrl, dma, (int )status); } else { rsxx_complete_dma(ctrl, dma, 0U); } push_tracker(ctrl->trackers, (int )tag); ctrl->status.idx = (ctrl->status.idx + 1U) & 255U; ctrl->e_cnt = (u16 )((int )ctrl->e_cnt + 1); count = (hw_st_buf + (unsigned long )ctrl->status.idx)->count; ldv_33340: ; if ((int )ctrl->e_cnt == (int )count) { goto ldv_33339; } else { } dma_intr_coal_auto_tune(ctrl->card); tmp___5 = atomic_read((atomic_t const *)(& ctrl->stats.hw_q_depth)); if (tmp___5 == 0) { ldv_del_timer_sync_173(& ctrl->activity_timer); } else { } tmp___6 = spinlock_check(& (ctrl->card)->irq_lock); flags = _raw_spin_lock_irqsave(tmp___6); tmp___7 = CR_INTR_DMA(ctrl->id); rsxx_enable_ier(ctrl->card, (unsigned int )tmp___7); spin_unlock_irqrestore(& (ctrl->card)->irq_lock, flags); spin_lock_bh(& ctrl->queue_lock); if (ctrl->stats.sw_q_depth != 0U) { queue_work___0(ctrl->issue_wq, & ctrl->issue_dma_work); } else { } spin_unlock_bh(& ctrl->queue_lock); return; } } static void rsxx_schedule_issue(struct work_struct *work ) { struct rsxx_dma_ctrl *ctrl ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; ctrl = (struct rsxx_dma_ctrl *)__mptr + 0xffffffffffffff50UL; ldv_mutex_lock_174(& ctrl->work_lock); rsxx_issue_dmas(ctrl); ldv_mutex_unlock_175(& ctrl->work_lock); return; } } static void rsxx_schedule_done(struct work_struct *work ) { struct rsxx_dma_ctrl *ctrl ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; ctrl = (struct rsxx_dma_ctrl *)__mptr + 0xfffffffffffffef8UL; ldv_mutex_lock_176(& ctrl->work_lock); rsxx_dma_done(ctrl); ldv_mutex_unlock_177(& ctrl->work_lock); return; } } static int rsxx_queue_discard(struct rsxx_cardinfo *card , struct list_head *q , unsigned int laddr , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) { struct rsxx_dma *dma ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { tmp = kmem_cache_alloc(rsxx_dma_pool, 208U); dma = (struct rsxx_dma *)tmp; if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { return (-12); } else { } dma->cmd = 112U; dma->laddr = laddr; dma->dma_addr = 0ULL; dma->sub_page.off = 0U; dma->sub_page.cnt = 0U; dma->page = (struct page *)0; dma->pg_off = 0U; dma->cb = cb; dma->cb_data = cb_data; descriptor.modname = "rsxx"; descriptor.function = "rsxx_queue_discard"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor.format = "Queuing[D] laddr %x\n"; descriptor.lineno = 636U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "Queuing[D] laddr %x\n", dma->laddr); } else { } list_add_tail(& dma->list, q); return (0); } } static int rsxx_queue_dma(struct rsxx_cardinfo *card , struct list_head *q , int dir , unsigned int dma_off , unsigned int dma_len , unsigned int laddr , struct page *page , unsigned int pg_off , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) { struct rsxx_dma *dma ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { tmp = kmem_cache_alloc(rsxx_dma_pool, 208U); dma = (struct rsxx_dma *)tmp; if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { return (-12); } else { } dma->cmd = dir != 0 ? 128U : 192U; dma->laddr = laddr; dma->sub_page.off = dma_off >> 9; dma->sub_page.cnt = dma_len >> 9; dma->page = page; dma->pg_off = pg_off; dma->cb = cb; dma->cb_data = cb_data; descriptor.modname = "rsxx"; descriptor.function = "rsxx_queue_dma"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor.format = "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n"; descriptor.lineno = 672U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n", dir != 0 ? 87 : 82, dma->laddr, dma->sub_page.off, dma->sub_page.cnt, dma->page, dma->pg_off); } else { } list_add_tail(& dma->list, q); return (0); } } int rsxx_dma_queue_bio(struct rsxx_cardinfo *card , struct bio *bio , atomic_t *n_dmas , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) { struct list_head dma_list[8U] ; struct bio_vec bvec ; struct bvec_iter iter ; unsigned long long addr8 ; unsigned int laddr ; unsigned int bv_len ; unsigned int bv_off ; unsigned int dma_off ; unsigned int dma_len ; int dma_cnt[8U] ; int tgt ; int st ; int i ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int _min1 ; unsigned int _min2 ; struct bio_vec __constr_expr_0 ; unsigned int _min1___0 ; unsigned int _min2___0 ; int tmp___1 ; { addr8 = (unsigned long long )(bio->bi_iter.bi_sector << 9); atomic_set(n_dmas, 0); i = 0; goto ldv_33403; ldv_33402: INIT_LIST_HEAD((struct list_head *)(& dma_list) + (unsigned long )i); dma_cnt[i] = 0; i = i + 1; ldv_33403: ; if (card->n_targets > i) { goto ldv_33402; } else { } if (((unsigned long long )bio->bi_rw & 128ULL) != 0ULL) { bv_len = bio->bi_iter.bi_size; goto ldv_33407; ldv_33406: tmp = rsxx_get_dma_tgt(card, addr8); tgt = (int )tmp; laddr = rsxx_addr8_to_laddr(addr8, card); st = rsxx_queue_discard(card, (struct list_head *)(& dma_list) + (unsigned long )tgt, laddr, cb, cb_data); if (st != 0) { goto bvec_err; } else { } dma_cnt[tgt] = dma_cnt[tgt] + 1; atomic_inc(n_dmas); addr8 = addr8 + 4096ULL; bv_len = bv_len - 4096U; ldv_33407: ; if (bv_len != 0U) { goto ldv_33406; } else { } } else { iter = bio->bi_iter; goto ldv_33420; ldv_33419: bv_len = bvec.bv_len; bv_off = bvec.bv_offset; goto ldv_33417; ldv_33416: tmp___0 = rsxx_get_dma_tgt(card, addr8); tgt = (int )tmp___0; laddr = rsxx_addr8_to_laddr(addr8, card); dma_off = (unsigned int )addr8 & 4095U; _min1 = bv_len; _min2 = 4096U - dma_off; dma_len = _min1 < _min2 ? _min1 : _min2; st = rsxx_queue_dma(card, (struct list_head *)(& dma_list) + (unsigned long )tgt, (int )bio->bi_rw & 1, dma_off, dma_len, laddr, bvec.bv_page, bv_off, cb, cb_data); if (st != 0) { goto bvec_err; } else { } dma_cnt[tgt] = dma_cnt[tgt] + 1; atomic_inc(n_dmas); addr8 = (unsigned long long )dma_len + addr8; bv_off = bv_off + dma_len; bv_len = bv_len - dma_len; ldv_33417: ; if (bv_len != 0U) { goto ldv_33416; } else { } bio_advance_iter(bio, & iter, bvec.bv_len); ldv_33420: ; if (iter.bi_size != 0U) { _min1___0 = iter.bi_size; _min2___0 = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_len - iter.bi_bvec_done; __constr_expr_0.bv_page = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_page; __constr_expr_0.bv_len = _min1___0 < _min2___0 ? _min1___0 : _min2___0; __constr_expr_0.bv_offset = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_offset + iter.bi_bvec_done; bvec = __constr_expr_0; goto ldv_33419; } else { } } i = 0; goto ldv_33423; ldv_33422: tmp___1 = list_empty((struct list_head const *)(& dma_list) + (unsigned long )i); if (tmp___1 == 0) { spin_lock_bh(& (card->ctrl + (unsigned long )i)->queue_lock); (card->ctrl + (unsigned long )i)->stats.sw_q_depth = (card->ctrl + (unsigned long )i)->stats.sw_q_depth + (u32 )dma_cnt[i]; list_splice_tail((struct list_head *)(& dma_list) + (unsigned long )i, & (card->ctrl + (unsigned long )i)->queue); spin_unlock_bh(& (card->ctrl + (unsigned long )i)->queue_lock); queue_work___0((card->ctrl + (unsigned long )i)->issue_wq, & (card->ctrl + (unsigned long )i)->issue_dma_work); } else { } i = i + 1; ldv_33423: ; if (card->n_targets > i) { goto ldv_33422; } else { } return (0); bvec_err: i = 0; goto ldv_33426; ldv_33425: rsxx_cleanup_dma_queue(card->ctrl + (unsigned long )i, (struct list_head *)(& dma_list) + (unsigned long )i, 0U); i = i + 1; ldv_33426: ; if (card->n_targets > i) { goto ldv_33425; } else { } return (st); } } int rsxx_hw_buffers_init(struct pci_dev *dev , struct rsxx_dma_ctrl *ctrl ) { { ctrl->status.buf = pci_alloc_consistent(dev, 4096UL, & ctrl->status.dma_addr); ctrl->cmd.buf = pci_alloc_consistent(dev, 4096UL, & ctrl->cmd.dma_addr); if ((unsigned long )ctrl->status.buf == (unsigned long )((void *)0) || (unsigned long )ctrl->cmd.buf == (unsigned long )((void *)0)) { return (-12); } else { } memset(ctrl->status.buf, 172, 4096UL); iowrite32((unsigned int )ctrl->status.dma_addr, ctrl->regmap + 48UL); iowrite32((unsigned int )(ctrl->status.dma_addr >> 32ULL), ctrl->regmap + 52UL); memset(ctrl->cmd.buf, 131, 4096UL); iowrite32((unsigned int )ctrl->cmd.dma_addr, ctrl->regmap + 32UL); iowrite32((unsigned int )(ctrl->cmd.dma_addr >> 32ULL), ctrl->regmap + 36UL); ctrl->status.idx = ioread32(ctrl->regmap + 56UL); if (ctrl->status.idx > 255U) { dev_crit((struct device const *)(& dev->dev), "Failed reading status cnt x%x\n", ctrl->status.idx); return (-22); } else { } iowrite32(ctrl->status.idx, ctrl->regmap + 56UL); iowrite32(ctrl->status.idx, ctrl->regmap + 60UL); ctrl->cmd.idx = ioread32(ctrl->regmap + 40UL); if (ctrl->cmd.idx > 255U) { dev_crit((struct device const *)(& dev->dev), "Failed reading cmd cnt x%x\n", ctrl->status.idx); return (-22); } else { } iowrite32(ctrl->cmd.idx, ctrl->regmap + 40UL); iowrite32(ctrl->cmd.idx, ctrl->regmap + 44UL); return (0); } } static int rsxx_dma_ctrl_init(struct pci_dev *dev , struct rsxx_dma_ctrl *ctrl ) { int i ; int st ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; char const *__lock_name ; struct workqueue_struct *tmp___0 ; struct lock_class_key __key___3 ; char const *__lock_name___0 ; struct workqueue_struct *tmp___1 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_1 ; { memset((void *)(& ctrl->stats), 0, 68UL); tmp = vmalloc(4160UL); ctrl->trackers = (struct dma_tracker_list *)tmp; if ((unsigned long )ctrl->trackers == (unsigned long )((struct dma_tracker_list *)0)) { return (-12); } else { } (ctrl->trackers)->head = 0; i = 0; goto ldv_33439; ldv_33438: (ctrl->trackers)->list[i].next_tag = i + 1; (ctrl->trackers)->list[i].dma = (struct rsxx_dma *)0; i = i + 1; ldv_33439: ; if (i <= 254) { goto ldv_33438; } else { } (ctrl->trackers)->list[254].next_tag = -1; spinlock_check(& (ctrl->trackers)->lock); __raw_spin_lock_init(& (ctrl->trackers)->lock.__annonCompField17.rlock, "&(&ctrl->trackers->lock)->rlock", & __key); spinlock_check(& ctrl->queue_lock); __raw_spin_lock_init(& ctrl->queue_lock.__annonCompField17.rlock, "&(&ctrl->queue_lock)->rlock", & __key___0); __mutex_init(& ctrl->work_lock, "&ctrl->work_lock", & __key___1); INIT_LIST_HEAD(& ctrl->queue); reg_timer_6(& ctrl->activity_timer, & dma_engine_stalled, (unsigned long )ctrl); __lock_name = "\"rsxx\"\"_issue\""; tmp___0 = __alloc_workqueue_key("rsxx_issue", 131074U, 1, & __key___2, __lock_name); ctrl->issue_wq = tmp___0; if ((unsigned long )ctrl->issue_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } __lock_name___0 = "\"rsxx\"\"_done\""; tmp___1 = __alloc_workqueue_key("rsxx_done", 131074U, 1, & __key___3, __lock_name___0); ctrl->done_wq = tmp___1; if ((unsigned long )ctrl->done_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } __init_work(& ctrl->issue_dma_work, 0); __constr_expr_0.counter = 137438953408L; ctrl->issue_dma_work.data = __constr_expr_0; lockdep_init_map(& ctrl->issue_dma_work.lockdep_map, "(&ctrl->issue_dma_work)", & __key___4, 0); INIT_LIST_HEAD(& ctrl->issue_dma_work.entry); ctrl->issue_dma_work.func = & rsxx_schedule_issue; __init_work(& ctrl->dma_done_work, 0); __constr_expr_1.counter = 137438953408L; ctrl->dma_done_work.data = __constr_expr_1; lockdep_init_map(& ctrl->dma_done_work.lockdep_map, "(&ctrl->dma_done_work)", & __key___5, 0); INIT_LIST_HEAD(& ctrl->dma_done_work.entry); ctrl->dma_done_work.func = & rsxx_schedule_done; st = rsxx_hw_buffers_init(dev, ctrl); if (st != 0) { return (st); } else { } return (0); } } static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card , unsigned int stripe_size8 ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; struct _ddebug descriptor___0 ; long tmp___4 ; struct _ddebug descriptor___1 ; long tmp___5 ; struct _ddebug descriptor___2 ; long tmp___6 ; struct _ddebug descriptor___3 ; long tmp___7 ; { tmp = is_power_of_2((unsigned long )stripe_size8); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { dev_err((struct device const *)(& (card->dev)->dev), "stripe_size is NOT a power of 2!\n"); return (-22); } else { } card->_stripe.lower_mask = (u64 )(stripe_size8 - 1U); card->_stripe.upper_mask = ~ card->_stripe.lower_mask; tmp___1 = ffs(card->n_targets); card->_stripe.upper_shift = (u64 )(tmp___1 + -1); card->_stripe.target_mask = (u64 )(card->n_targets + -1); tmp___2 = ffs((int )stripe_size8); card->_stripe.target_shift = (u64 )(tmp___2 + -1); descriptor.modname = "rsxx"; descriptor.function = "rsxx_dma_stripe_setup"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor.format = "_stripe.lower_mask = x%016llx\n"; descriptor.lineno = 881U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "_stripe.lower_mask = x%016llx\n", card->_stripe.lower_mask); } else { } descriptor___0.modname = "rsxx"; descriptor___0.function = "rsxx_dma_stripe_setup"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor___0.format = "_stripe.upper_shift = x%016llx\n"; descriptor___0.lineno = 883U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (card->dev)->dev), "_stripe.upper_shift = x%016llx\n", card->_stripe.upper_shift); } else { } descriptor___1.modname = "rsxx"; descriptor___1.function = "rsxx_dma_stripe_setup"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor___1.format = "_stripe.upper_mask = x%016llx\n"; descriptor___1.lineno = 885U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (card->dev)->dev), "_stripe.upper_mask = x%016llx\n", card->_stripe.upper_mask); } else { } descriptor___2.modname = "rsxx"; descriptor___2.function = "rsxx_dma_stripe_setup"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor___2.format = "_stripe.target_mask = x%016llx\n"; descriptor___2.lineno = 887U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (card->dev)->dev), "_stripe.target_mask = x%016llx\n", card->_stripe.target_mask); } else { } descriptor___3.modname = "rsxx"; descriptor___3.function = "rsxx_dma_stripe_setup"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10747/dscv_tempdir/dscv/ri/32_7a/drivers/block/rsxx/dma.c"; descriptor___3.format = "_stripe.target_shift = x%016llx\n"; descriptor___3.lineno = 889U; descriptor___3.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (card->dev)->dev), "_stripe.target_shift = x%016llx\n", card->_stripe.target_shift); } else { } return (0); } } int rsxx_dma_configure(struct rsxx_cardinfo *card ) { u32 intr_coal ; int tmp ; { intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode, card->config.data.intr_coal.count, card->config.data.intr_coal.latency); iowrite32(intr_coal, card->regmap + 112UL); tmp = rsxx_dma_stripe_setup(card, card->config.data.stripe_size); return (tmp); } } int rsxx_dma_setup(struct rsxx_cardinfo *card ) { unsigned long flags ; int st ; int i ; raw_spinlock_t *tmp ; int tmp___0 ; struct rsxx_dma_ctrl *ctrl ; { _dev_info((struct device const *)(& (card->dev)->dev), "Initializing %d DMA targets\n", card->n_targets); i = 0; goto ldv_33475; ldv_33474: (card->ctrl + (unsigned long )i)->regmap = card->regmap + (unsigned long )(i * 4096); i = i + 1; ldv_33475: ; if (card->n_targets > i) { goto ldv_33474; } else { } card->dma_fault = 0U; rsxx_dma_queue_reset(card); i = 0; goto ldv_33479; ldv_33478: st = rsxx_dma_ctrl_init(card->dev, card->ctrl + (unsigned long )i); if (st != 0) { goto failed_dma_setup; } else { } (card->ctrl + (unsigned long )i)->card = card; (card->ctrl + (unsigned long )i)->id = i; i = i + 1; ldv_33479: ; if (card->n_targets > i) { goto ldv_33478; } else { } card->scrub_hard = 1; if (card->config_valid != 0) { rsxx_dma_configure(card); } else { } i = 0; goto ldv_33485; ldv_33484: tmp = spinlock_check(& card->irq_lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = CR_INTR_DMA(i); rsxx_enable_ier_and_isr(card, (unsigned int )tmp___0); spin_unlock_irqrestore(& card->irq_lock, flags); i = i + 1; ldv_33485: ; if (card->n_targets > i) { goto ldv_33484; } else { } return (0); failed_dma_setup: i = 0; goto ldv_33489; ldv_33488: ctrl = card->ctrl + (unsigned long )i; if ((unsigned long )ctrl->issue_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_178(ctrl->issue_wq); ctrl->issue_wq = (struct workqueue_struct *)0; } else { } if ((unsigned long )ctrl->done_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_179(ctrl->done_wq); ctrl->done_wq = (struct workqueue_struct *)0; } else { } if ((unsigned long )ctrl->trackers != (unsigned long )((struct dma_tracker_list *)0)) { vfree((void const *)ctrl->trackers); } else { } if ((unsigned long )ctrl->status.buf != (unsigned long )((void *)0)) { pci_free_consistent(card->dev, 4096UL, ctrl->status.buf, ctrl->status.dma_addr); } else { } if ((unsigned long )ctrl->cmd.buf != (unsigned long )((void *)0)) { pci_free_consistent(card->dev, 4096UL, ctrl->cmd.buf, ctrl->cmd.dma_addr); } else { } i = i + 1; ldv_33489: ; if (card->n_targets > i) { goto ldv_33488; } else { } return (st); } } int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl ) { struct rsxx_dma *dma ; int i ; int cnt ; { cnt = 0; i = 0; goto ldv_33498; ldv_33497: dma = get_tracker_dma(ctrl->trackers, i); if ((unsigned long )dma != (unsigned long )((struct rsxx_dma *)0)) { atomic_dec(& ctrl->stats.hw_q_depth); rsxx_complete_dma(ctrl, dma, 4U); push_tracker(ctrl->trackers, i); cnt = cnt + 1; } else { } i = i + 1; ldv_33498: ; if (i <= 254) { goto ldv_33497; } else { } return (cnt); } } void rsxx_dma_destroy(struct rsxx_cardinfo *card ) { struct rsxx_dma_ctrl *ctrl ; int i ; int tmp ; { i = 0; goto ldv_33506; ldv_33505: ctrl = card->ctrl + (unsigned long )i; if ((unsigned long )ctrl->issue_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_180(ctrl->issue_wq); ctrl->issue_wq = (struct workqueue_struct *)0; } else { } if ((unsigned long )ctrl->done_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_181(ctrl->done_wq); ctrl->done_wq = (struct workqueue_struct *)0; } else { } tmp = timer_pending((struct timer_list const *)(& ctrl->activity_timer)); if (tmp != 0) { ldv_del_timer_sync_182(& ctrl->activity_timer); } else { } spin_lock_bh(& ctrl->queue_lock); rsxx_cleanup_dma_queue(ctrl, & ctrl->queue, 1U); spin_unlock_bh(& ctrl->queue_lock); rsxx_dma_cancel(ctrl); vfree((void const *)ctrl->trackers); pci_free_consistent(card->dev, 4096UL, ctrl->status.buf, ctrl->status.dma_addr); pci_free_consistent(card->dev, 4096UL, ctrl->cmd.buf, ctrl->cmd.dma_addr); i = i + 1; ldv_33506: ; if (card->n_targets > i) { goto ldv_33505; } else { } return; } } int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card ) { int i ; int j ; int cnt ; struct rsxx_dma *dma ; struct list_head *issued_dmas ; void *tmp ; unsigned int tmp___0 ; { tmp = kzalloc((unsigned long )card->n_targets * 16UL, 208U); issued_dmas = (struct list_head *)tmp; if ((unsigned long )issued_dmas == (unsigned long )((struct list_head *)0)) { return (-12); } else { } i = 0; goto ldv_33521; ldv_33520: INIT_LIST_HEAD(issued_dmas + (unsigned long )i); cnt = 0; j = 0; goto ldv_33518; ldv_33517: dma = get_tracker_dma((card->ctrl + (unsigned long )i)->trackers, j); if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { goto ldv_33516; } else { } if ((unsigned int )dma->cmd == 128U) { (card->ctrl + (unsigned long )i)->stats.writes_issued = (card->ctrl + (unsigned long )i)->stats.writes_issued - 1U; } else if ((unsigned int )dma->cmd == 112U) { (card->ctrl + (unsigned long )i)->stats.discards_issued = (card->ctrl + (unsigned long )i)->stats.discards_issued - 1U; } else { (card->ctrl + (unsigned long )i)->stats.reads_issued = (card->ctrl + (unsigned long )i)->stats.reads_issued - 1U; } if ((unsigned int )dma->cmd != 112U) { tmp___0 = get_dma_size(dma); pci_unmap_page(card->dev, dma->dma_addr, (size_t )tmp___0, (unsigned int )dma->cmd == 128U ? 1 : 2); } else { } list_add_tail(& dma->list, issued_dmas + (unsigned long )i); push_tracker((card->ctrl + (unsigned long )i)->trackers, j); cnt = cnt + 1; ldv_33516: j = j + 1; ldv_33518: ; if (j <= 254) { goto ldv_33517; } else { } spin_lock_bh(& (card->ctrl + (unsigned long )i)->queue_lock); list_splice((struct list_head const *)issued_dmas + (unsigned long )i, & (card->ctrl + (unsigned long )i)->queue); atomic_sub(cnt, & (card->ctrl + (unsigned long )i)->stats.hw_q_depth); (card->ctrl + (unsigned long )i)->stats.sw_q_depth = (card->ctrl + (unsigned long )i)->stats.sw_q_depth + (u32 )cnt; (card->ctrl + (unsigned long )i)->e_cnt = 0U; spin_unlock_bh(& (card->ctrl + (unsigned long )i)->queue_lock); i = i + 1; ldv_33521: ; if (card->n_targets > i) { goto ldv_33520; } else { } kfree((void const *)issued_dmas); return (0); } } int rsxx_dma_init(void) { { rsxx_dma_pool = kmem_cache_create("rsxx_dma", 72UL, 8UL, 8192UL, (void (*)(void * ))0); if ((unsigned long )rsxx_dma_pool == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } return (0); } } void rsxx_dma_cleanup(void) { { kmem_cache_destroy(rsxx_dma_pool); return; } } void activate_work_5(struct work_struct *work , int state ) { { if (ldv_work_5_0 == 0) { ldv_work_struct_5_0 = work; ldv_work_5_0 = state; return; } else { } if (ldv_work_5_1 == 0) { ldv_work_struct_5_1 = work; ldv_work_5_1 = state; return; } else { } if (ldv_work_5_2 == 0) { ldv_work_struct_5_2 = work; ldv_work_5_2 = state; return; } else { } if (ldv_work_5_3 == 0) { ldv_work_struct_5_3 = work; ldv_work_5_3 = state; return; } else { } return; } } int reg_timer_7(struct timer_list *timer , void (*function)(unsigned long ) , unsigned long data ) { { if ((unsigned long )function == (unsigned long )(& dma_engine_stalled)) { activate_suitable_timer_7(timer, data); } else { } return (0); } } void work_init_5(void) { { ldv_work_5_0 = 0; ldv_work_5_1 = 0; ldv_work_5_2 = 0; ldv_work_5_3 = 0; return; } } void call_and_disable_all_4(int state ) { { if (ldv_work_4_0 == state) { call_and_disable_work_4(ldv_work_struct_4_0); } else { } if (ldv_work_4_1 == state) { call_and_disable_work_4(ldv_work_struct_4_1); } else { } if (ldv_work_4_2 == state) { call_and_disable_work_4(ldv_work_struct_4_2); } else { } if (ldv_work_4_3 == state) { call_and_disable_work_4(ldv_work_struct_4_3); } else { } return; } } void disable_work_5(struct work_struct *work ) { { if ((ldv_work_5_0 == 3 || ldv_work_5_0 == 2) && (unsigned long )ldv_work_struct_5_0 == (unsigned long )work) { ldv_work_5_0 = 1; } else { } if ((ldv_work_5_1 == 3 || ldv_work_5_1 == 2) && (unsigned long )ldv_work_struct_5_1 == (unsigned long )work) { ldv_work_5_1 = 1; } else { } if ((ldv_work_5_2 == 3 || ldv_work_5_2 == 2) && (unsigned long )ldv_work_struct_5_2 == (unsigned long )work) { ldv_work_5_2 = 1; } else { } if ((ldv_work_5_3 == 3 || ldv_work_5_3 == 2) && (unsigned long )ldv_work_struct_5_3 == (unsigned long )work) { ldv_work_5_3 = 1; } else { } return; } } void ldv_timer_7(int state , struct timer_list *timer ) { { LDV_IN_INTERRUPT = 2; dma_engine_stalled(timer->data); LDV_IN_INTERRUPT = 1; return; } } void invoke_work_4(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_4_0 == 2 || ldv_work_4_0 == 3) { ldv_work_4_0 = 4; rsxx_schedule_issue(ldv_work_struct_4_0); ldv_work_4_0 = 1; } else { } goto ldv_33558; case 1: ; if (ldv_work_4_1 == 2 || ldv_work_4_1 == 3) { ldv_work_4_1 = 4; rsxx_schedule_issue(ldv_work_struct_4_0); ldv_work_4_1 = 1; } else { } goto ldv_33558; case 2: ; if (ldv_work_4_2 == 2 || ldv_work_4_2 == 3) { ldv_work_4_2 = 4; rsxx_schedule_issue(ldv_work_struct_4_0); ldv_work_4_2 = 1; } else { } goto ldv_33558; case 3: ; if (ldv_work_4_3 == 2 || ldv_work_4_3 == 3) { ldv_work_4_3 = 4; rsxx_schedule_issue(ldv_work_struct_4_0); ldv_work_4_3 = 1; } else { } goto ldv_33558; default: ldv_stop(); } ldv_33558: ; return; } } void call_and_disable_work_5(struct work_struct *work ) { { if ((ldv_work_5_0 == 2 || ldv_work_5_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_0) { rsxx_schedule_done(work); ldv_work_5_0 = 1; return; } else { } if ((ldv_work_5_1 == 2 || ldv_work_5_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_1) { rsxx_schedule_done(work); ldv_work_5_1 = 1; return; } else { } if ((ldv_work_5_2 == 2 || ldv_work_5_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_2) { rsxx_schedule_done(work); ldv_work_5_2 = 1; return; } else { } if ((ldv_work_5_3 == 2 || ldv_work_5_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_3) { rsxx_schedule_done(work); ldv_work_5_3 = 1; return; } else { } return; } } void activate_work_4(struct work_struct *work , int state ) { { if (ldv_work_4_0 == 0) { ldv_work_struct_4_0 = work; ldv_work_4_0 = state; return; } else { } if (ldv_work_4_1 == 0) { ldv_work_struct_4_1 = work; ldv_work_4_1 = state; return; } else { } if (ldv_work_4_2 == 0) { ldv_work_struct_4_2 = work; ldv_work_4_2 = state; return; } else { } if (ldv_work_4_3 == 0) { ldv_work_struct_4_3 = work; ldv_work_4_3 = state; return; } else { } return; } } void call_and_disable_all_5(int state ) { { if (ldv_work_5_0 == state) { call_and_disable_work_5(ldv_work_struct_5_0); } else { } if (ldv_work_5_1 == state) { call_and_disable_work_5(ldv_work_struct_5_1); } else { } if (ldv_work_5_2 == state) { call_and_disable_work_5(ldv_work_struct_5_2); } else { } if (ldv_work_5_3 == state) { call_and_disable_work_5(ldv_work_struct_5_3); } else { } return; } } void disable_suitable_timer_7(struct timer_list *timer ) { { if (ldv_timer_7_0 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_7_0) { ldv_timer_7_0 = 0; return; } else { } if (ldv_timer_7_1 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_7_1) { ldv_timer_7_1 = 0; return; } else { } if (ldv_timer_7_2 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_7_2) { ldv_timer_7_2 = 0; return; } else { } if (ldv_timer_7_3 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_7_3) { ldv_timer_7_3 = 0; return; } else { } return; } } void timer_init_7(void) { { ldv_timer_7_0 = 0; ldv_timer_7_1 = 0; ldv_timer_7_2 = 0; ldv_timer_7_3 = 0; return; } } void invoke_work_5(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_5_0 == 2 || ldv_work_5_0 == 3) { ldv_work_5_0 = 4; rsxx_schedule_done(ldv_work_struct_5_0); ldv_work_5_0 = 1; } else { } goto ldv_33587; case 1: ; if (ldv_work_5_1 == 2 || ldv_work_5_1 == 3) { ldv_work_5_1 = 4; rsxx_schedule_done(ldv_work_struct_5_0); ldv_work_5_1 = 1; } else { } goto ldv_33587; case 2: ; if (ldv_work_5_2 == 2 || ldv_work_5_2 == 3) { ldv_work_5_2 = 4; rsxx_schedule_done(ldv_work_struct_5_0); ldv_work_5_2 = 1; } else { } goto ldv_33587; case 3: ; if (ldv_work_5_3 == 2 || ldv_work_5_3 == 3) { ldv_work_5_3 = 4; rsxx_schedule_done(ldv_work_struct_5_0); ldv_work_5_3 = 1; } else { } goto ldv_33587; default: ldv_stop(); } ldv_33587: ; return; } } void disable_work_4(struct work_struct *work ) { { if ((ldv_work_4_0 == 3 || ldv_work_4_0 == 2) && (unsigned long )ldv_work_struct_4_0 == (unsigned long )work) { ldv_work_4_0 = 1; } else { } if ((ldv_work_4_1 == 3 || ldv_work_4_1 == 2) && (unsigned long )ldv_work_struct_4_1 == (unsigned long )work) { ldv_work_4_1 = 1; } else { } if ((ldv_work_4_2 == 3 || ldv_work_4_2 == 2) && (unsigned long )ldv_work_struct_4_2 == (unsigned long )work) { ldv_work_4_2 = 1; } else { } if ((ldv_work_4_3 == 3 || ldv_work_4_3 == 2) && (unsigned long )ldv_work_struct_4_3 == (unsigned long )work) { ldv_work_4_3 = 1; } else { } return; } } void work_init_4(void) { { ldv_work_4_0 = 0; ldv_work_4_1 = 0; ldv_work_4_2 = 0; ldv_work_4_3 = 0; return; } } void choose_timer_7(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_timer_7_0 == 1) { ldv_timer_7_0 = 2; ldv_timer_7(ldv_timer_7_0, ldv_timer_list_7_0); } else { } goto ldv_33602; case 1: ; if (ldv_timer_7_1 == 1) { ldv_timer_7_1 = 2; ldv_timer_7(ldv_timer_7_1, ldv_timer_list_7_1); } else { } goto ldv_33602; case 2: ; if (ldv_timer_7_2 == 1) { ldv_timer_7_2 = 2; ldv_timer_7(ldv_timer_7_2, ldv_timer_list_7_2); } else { } goto ldv_33602; case 3: ; if (ldv_timer_7_3 == 1) { ldv_timer_7_3 = 2; ldv_timer_7(ldv_timer_7_3, ldv_timer_list_7_3); } else { } goto ldv_33602; default: ldv_stop(); } ldv_33602: ; return; } } void call_and_disable_work_4(struct work_struct *work ) { { if ((ldv_work_4_0 == 2 || ldv_work_4_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_0) { rsxx_schedule_issue(work); ldv_work_4_0 = 1; return; } else { } if ((ldv_work_4_1 == 2 || ldv_work_4_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_1) { rsxx_schedule_issue(work); ldv_work_4_1 = 1; return; } else { } if ((ldv_work_4_2 == 2 || ldv_work_4_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_2) { rsxx_schedule_issue(work); ldv_work_4_2 = 1; return; } else { } if ((ldv_work_4_3 == 2 || ldv_work_4_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_3) { rsxx_schedule_issue(work); ldv_work_4_3 = 1; return; } else { } return; } } void activate_pending_timer_7(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_7_0 == (unsigned long )timer) { if (ldv_timer_7_0 == 2 || pending_flag != 0) { ldv_timer_list_7_0 = timer; ldv_timer_list_7_0->data = data; ldv_timer_7_0 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_7_1 == (unsigned long )timer) { if (ldv_timer_7_1 == 2 || pending_flag != 0) { ldv_timer_list_7_1 = timer; ldv_timer_list_7_1->data = data; ldv_timer_7_1 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_7_2 == (unsigned long )timer) { if (ldv_timer_7_2 == 2 || pending_flag != 0) { ldv_timer_list_7_2 = timer; ldv_timer_list_7_2->data = data; ldv_timer_7_2 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_7_3 == (unsigned long )timer) { if (ldv_timer_7_3 == 2 || pending_flag != 0) { ldv_timer_list_7_3 = timer; ldv_timer_list_7_3->data = data; ldv_timer_7_3 = 1; } else { } return; } else { } activate_suitable_timer_7(timer, data); return; } } void activate_suitable_timer_7(struct timer_list *timer , unsigned long data ) { { if (ldv_timer_7_0 == 0 || ldv_timer_7_0 == 2) { ldv_timer_list_7_0 = timer; ldv_timer_list_7_0->data = data; ldv_timer_7_0 = 1; return; } else { } if (ldv_timer_7_1 == 0 || ldv_timer_7_1 == 2) { ldv_timer_list_7_1 = timer; ldv_timer_list_7_1->data = data; ldv_timer_7_1 = 1; return; } else { } if (ldv_timer_7_2 == 0 || ldv_timer_7_2 == 2) { ldv_timer_list_7_2 = timer; ldv_timer_list_7_2->data = data; ldv_timer_7_2 = 1; return; } else { } if (ldv_timer_7_3 == 0 || ldv_timer_7_3 == 2) { ldv_timer_list_7_3 = timer; ldv_timer_list_7_3->data = data; ldv_timer_7_3 = 1; return; } else { } return; } } bool ldv_queue_work_on_157(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_158(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_159(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_160(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_161(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_unlock_162(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_163(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_164(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_165(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_166(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_167(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mod_timer_169(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_mod_timer_170(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_del_timer_sync_171(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } int ldv_mod_timer_172(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_del_timer_sync_173(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } void ldv_mutex_lock_174(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_175(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_176(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_177(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_destroy_workqueue_178(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } void ldv_destroy_workqueue_179(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } void ldv_destroy_workqueue_180(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } void ldv_destroy_workqueue_181(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } int ldv_del_timer_sync_182(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_dev_lock_of_rsxx_cardinfo = 1; int ldv_mutex_lock_interruptible_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_dev_lock_of_rsxx_cardinfo = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_dev_lock_of_rsxx_cardinfo = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 1) { ldv_error(); } else { } ldv_mutex_dev_lock_of_rsxx_cardinfo = 2; return; } } int ldv_mutex_trylock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_dev_lock_of_rsxx_cardinfo = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_dev_lock_of_rsxx_cardinfo(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_dev_lock_of_rsxx_cardinfo = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_dev_lock_of_rsxx_cardinfo == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 2) { ldv_error(); } else { } ldv_mutex_dev_lock_of_rsxx_cardinfo = 1; return; } } void ldv_usb_lock_device_dev_lock_of_rsxx_cardinfo(void) { { ldv_mutex_lock_dev_lock_of_rsxx_cardinfo((struct mutex *)0); return; } } int ldv_usb_trylock_device_dev_lock_of_rsxx_cardinfo(void) { int tmp ; { tmp = ldv_mutex_trylock_dev_lock_of_rsxx_cardinfo((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_dev_lock_of_rsxx_cardinfo(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_dev_lock_of_rsxx_cardinfo((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_dev_lock_of_rsxx_cardinfo(void) { { ldv_mutex_unlock_dev_lock_of_rsxx_cardinfo((struct mutex *)0); return; } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 1; int ldv_mutex_lock_interruptible_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 1) { ldv_error(); } else { } ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 2; return; } } int ldv_mutex_trylock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_reset_lock_of_NOT_ARG_SIGN(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { { if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 2) { ldv_error(); } else { } ldv_mutex_reset_lock_of_NOT_ARG_SIGN = 1; return; } } void ldv_usb_lock_device_reset_lock_of_NOT_ARG_SIGN(void) { { ldv_mutex_lock_reset_lock_of_NOT_ARG_SIGN((struct mutex *)0); return; } } int ldv_usb_trylock_device_reset_lock_of_NOT_ARG_SIGN(void) { int tmp ; { tmp = ldv_mutex_trylock_reset_lock_of_NOT_ARG_SIGN((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_reset_lock_of_NOT_ARG_SIGN(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_reset_lock_of_NOT_ARG_SIGN((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_reset_lock_of_NOT_ARG_SIGN(void) { { ldv_mutex_unlock_reset_lock_of_NOT_ARG_SIGN((struct mutex *)0); return; } } static int ldv_mutex_work_lock_of_rsxx_dma_ctrl = 1; int ldv_mutex_lock_interruptible_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_work_lock_of_rsxx_dma_ctrl = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_work_lock_of_rsxx_dma_ctrl = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 1) { ldv_error(); } else { } ldv_mutex_work_lock_of_rsxx_dma_ctrl = 2; return; } } int ldv_mutex_trylock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_work_lock_of_rsxx_dma_ctrl = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_work_lock_of_rsxx_dma_ctrl(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_work_lock_of_rsxx_dma_ctrl = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { { if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 2) { ldv_error(); } else { } ldv_mutex_work_lock_of_rsxx_dma_ctrl = 1; return; } } void ldv_usb_lock_device_work_lock_of_rsxx_dma_ctrl(void) { { ldv_mutex_lock_work_lock_of_rsxx_dma_ctrl((struct mutex *)0); return; } } int ldv_usb_trylock_device_work_lock_of_rsxx_dma_ctrl(void) { int tmp ; { tmp = ldv_mutex_trylock_work_lock_of_rsxx_dma_ctrl((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_work_lock_of_rsxx_dma_ctrl(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_work_lock_of_rsxx_dma_ctrl((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_work_lock_of_rsxx_dma_ctrl(void) { { ldv_mutex_unlock_work_lock_of_rsxx_dma_ctrl((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_dev_lock_of_rsxx_cardinfo != 1) { ldv_error(); } else { } if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_reset_lock_of_NOT_ARG_SIGN != 1) { ldv_error(); } else { } if (ldv_mutex_work_lock_of_rsxx_dma_ctrl != 1) { ldv_error(); } else { } return; } }