extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __le32; typedef __u32 __be32; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct pci_bus; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct fw_packet; struct fw_card; struct fw_iso_context; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_205 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_205 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct fw_card_driver; struct fw_node; struct fw_card { struct fw_card_driver const *driver ; struct device *device ; struct kref kref ; struct completion done ; int node_id ; int generation ; int current_tlabel ; u64 tlabel_mask ; struct list_head transaction_list ; u64 reset_jiffies ; u32 split_timeout_hi ; u32 split_timeout_lo ; unsigned int split_timeout_cycles ; unsigned int split_timeout_jiffies ; unsigned long long guid ; unsigned int max_receive ; int link_speed ; int config_rom_generation ; spinlock_t lock ; struct fw_node *local_node ; struct fw_node *root_node ; struct fw_node *irm_node ; u8 color ; int gap_count ; bool beta_repeaters_present ; int index ; struct list_head link ; struct list_head phy_receiver_list ; struct delayed_work br_work ; bool br_short ; struct delayed_work bm_work ; int bm_retries ; int bm_generation ; int bm_node_id ; bool bm_abdicate ; bool priority_budget_implemented ; bool broadcast_channel_auto_allocated ; bool broadcast_channel_allocated ; u32 broadcast_channel ; __be32 topology_map[256U] ; __be32 maint_utility_register ; }; struct fw_packet { int speed ; int generation ; u32 header[4U] ; size_t header_length ; void *payload ; size_t payload_length ; dma_addr_t payload_bus ; bool payload_mapped ; u32 timestamp ; void (*callback)(struct fw_packet * , struct fw_card * , int ) ; int ack ; struct list_head link ; void *driver_data ; }; struct fw_iso_packet { u16 payload_length ; unsigned char interrupt : 1 ; unsigned char skip : 1 ; unsigned char tag : 2 ; unsigned char sy : 4 ; unsigned char header_length ; u32 header[0U] ; }; struct fw_iso_buffer { enum dma_data_direction direction ; struct page **pages ; int page_count ; int page_count_mapped ; }; union __anonunion_callback_206 { void (*sc)(struct fw_iso_context * , u32 , size_t , void * , void * ) ; void (*mc)(struct fw_iso_context * , dma_addr_t , void * ) ; }; struct fw_iso_context { struct fw_card *card ; int type ; int channel ; int speed ; bool drop_overflow_headers ; size_t header_size ; union __anonunion_callback_206 callback ; void *callback_data ; }; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_219 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_219 __annonCompField64 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_229 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_229 __annonCompField65 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_233 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField66 ; }; struct lockref { union __anonunion____missing_field_name_232 __annonCompField67 ; }; struct vfsmount; struct __anonstruct____missing_field_name_235 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_234 { struct __anonstruct____missing_field_name_235 __annonCompField68 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_234 __annonCompField69 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_236 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_236 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_240 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_239 { struct __anonstruct____missing_field_name_240 __annonCompField70 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_239 __annonCompField71 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_244 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_244 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_245 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_245 __annonCompField73 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_248 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_249 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_250 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_248 __annonCompField74 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_249 __annonCompField75 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_250 __annonCompField76 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_251 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_251 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_253 { struct list_head link ; int state ; }; union __anonunion_fl_u_252 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_253 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_252 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct fw_card_driver { int (*enable)(struct fw_card * , __be32 const * , size_t ) ; int (*read_phy_reg)(struct fw_card * , int ) ; int (*update_phy_reg)(struct fw_card * , int , int , int ) ; int (*set_config_rom)(struct fw_card * , __be32 const * , size_t ) ; void (*send_request)(struct fw_card * , struct fw_packet * ) ; void (*send_response)(struct fw_card * , struct fw_packet * ) ; int (*cancel_packet)(struct fw_card * , struct fw_packet * ) ; int (*enable_phys_dma)(struct fw_card * , int , int ) ; u32 (*read_csr)(struct fw_card * , int ) ; void (*write_csr)(struct fw_card * , int , u32 ) ; struct fw_iso_context *(*allocate_iso_context)(struct fw_card * , int , int , size_t ) ; void (*free_iso_context)(struct fw_iso_context * ) ; int (*start_iso)(struct fw_iso_context * , s32 , u32 , u32 ) ; int (*set_iso_channels)(struct fw_iso_context * , u64 * ) ; int (*queue_iso)(struct fw_iso_context * , struct fw_iso_packet * , struct fw_iso_buffer * , unsigned long ) ; void (*flush_queue_iso)(struct fw_iso_context * ) ; int (*flush_iso_completions)(struct fw_iso_context * ) ; int (*stop_iso)(struct fw_iso_context * ) ; }; struct fw_node { u16 node_id ; u8 color ; u8 port_count ; unsigned char link_on : 1 ; unsigned char initiated_reset : 1 ; unsigned char b_path : 1 ; unsigned char phy_speed : 2 ; unsigned char max_speed : 2 ; unsigned char max_depth : 4 ; unsigned char max_hops : 4 ; atomic_t ref_count ; struct list_head link ; void *data ; struct fw_node *ports[0U] ; }; struct descriptor { __le16 req_count ; __le16 control ; __le32 data_address ; __le32 branch_address ; __le16 res_count ; __le16 transfer_status ; }; struct fw_ohci; struct ar_context { struct fw_ohci *ohci ; struct page *pages[8U] ; void *buffer ; struct descriptor *descriptors ; dma_addr_t descriptors_bus ; void *pointer ; unsigned int last_buffer_index ; u32 regs ; struct tasklet_struct tasklet ; }; struct context; struct descriptor_buffer { struct list_head list ; dma_addr_t buffer_bus ; size_t buffer_size ; size_t used ; struct descriptor buffer[0U] ; }; struct context { struct fw_ohci *ohci ; u32 regs ; int total_allocation ; u32 current_bus ; bool running ; bool flushing ; struct list_head buffer_list ; struct descriptor_buffer *buffer_tail ; struct descriptor *last ; struct descriptor *prev ; int prev_z ; int (*callback)(struct context * , struct descriptor * , struct descriptor * ) ; struct tasklet_struct tasklet ; }; struct iso_context { struct fw_iso_context base ; struct context context ; void *header ; size_t header_length ; unsigned long flushing_completions ; u32 mc_buffer_bus ; u16 mc_completed ; u16 last_timestamp ; u8 sync ; u8 tags ; }; struct fw_ohci { struct fw_card card ; char *registers ; int node_id ; int generation ; int request_generation ; unsigned int quirks ; unsigned int pri_req_max ; u32 bus_time ; bool bus_time_running ; bool is_root ; bool csr_state_setclear_abdicate ; int n_ir ; int n_it ; spinlock_t lock ; struct mutex phy_reg_mutex ; void *misc_buffer ; dma_addr_t misc_buffer_bus ; struct ar_context ar_request_ctx ; struct ar_context ar_response_ctx ; struct context at_request_ctx ; struct context at_response_ctx ; u32 it_context_support ; u32 it_context_mask ; struct iso_context *it_context_list ; u64 ir_context_channels ; u32 ir_context_support ; u32 ir_context_mask ; struct iso_context *ir_context_list ; u64 mc_channels ; bool mc_allocated ; __be32 *config_rom ; dma_addr_t config_rom_bus ; __be32 *next_config_rom ; dma_addr_t next_config_rom_bus ; __be32 next_header ; __le32 *self_id ; dma_addr_t self_id_bus ; struct work_struct bus_reset_work ; u32 self_id_buffer[512U] ; }; struct __anonstruct_ohci_quirks_254 { unsigned short vendor ; unsigned short device ; unsigned short revision ; unsigned short flags ; }; struct driver_data { u8 inline_data[8U] ; struct fw_packet *packet ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef bool ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static void clear_bit_unlock(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("": : : "memory"); clear_bit(nr, addr); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int test_and_set_bit_lock(long nr , unsigned long volatile *addr ) { int tmp ; { tmp = test_and_set_bit(nr, addr); return (tmp); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int ffs(int x ) { int r ; { __asm__ ("bsfl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } __inline static unsigned int __arch_hweight32(unsigned int w ) { unsigned int res ; { res = 0U; __asm__ ("661:\n\tcall __sw_hweight32\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 4*32+23)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0xf3,0x40,0x0f,0xb8,0xc7\n6651:\n\t.popsection": "=a" (res): "D" (w)); return (res); } } __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } extern int __printk_ratelimit(char const * ) ; extern void dump_stack(void) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; void *ldv_err_ptr(long error ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_move_tail(struct list_head *list , struct list_head *head ) { { __list_del_entry(list); list_add_tail(list, head); return; } } extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void *__memmove(void * , void const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static void *ERR_PTR(long error ) ; __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) ; void ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) { { _raw_spin_lock_irq(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) { { _raw_spin_unlock_irq(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long get_seconds(void) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; void ldv_destroy_workqueue_31(struct workqueue_struct *ldv_func_arg1 ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_work_sync(struct work_struct * ) ; bool ldv_cancel_work_sync_27(struct work_struct *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_5(8192, wq, work); return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { tmp = alloc_pages_current(gfp_mask, order); return (tmp); } } extern unsigned long __get_free_pages(gfp_t , unsigned int ) ; extern void __free_pages(struct page * , unsigned int ) ; extern void free_pages(unsigned long , unsigned int ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } int ldv_irq_1_3 = 0; void *ldv_irq_data_1_1 ; int pci_counter ; int ldv_irq_1_0 = 0; struct work_struct *ldv_work_struct_2_1 ; struct fw_packet *ohci_driver_group1 ; void *ldv_irq_data_1_0 ; int ldv_state_variable_0 ; int ldv_state_variable_2 ; void *ldv_irq_data_1_3 ; int ldv_work_2_0 ; void *ldv_irq_data_1_2 ; struct fw_card *ohci_driver_group2 ; int ldv_irq_1_2 = 0; int LDV_IN_INTERRUPT = 1; int ldv_irq_1_1 = 0; struct work_struct *ldv_work_struct_2_3 ; struct work_struct *ldv_work_struct_2_0 ; int ldv_irq_line_1_3 ; struct work_struct *ldv_work_struct_2_2 ; struct pci_dev *fw_ohci_pci_driver_group1 ; struct fw_iso_context *ohci_driver_group0 ; int ldv_state_variable_3 ; int ldv_work_2_2 ; int ldv_irq_line_1_0 ; int ref_cnt ; int ldv_irq_line_1_1 ; int ldv_state_variable_1 ; int ldv_irq_line_1_2 ; int ldv_work_2_3 ; int ldv_state_variable_4 ; int ldv_work_2_1 ; void disable_work_2(struct work_struct *work ) ; void work_init_2(void) ; void disable_suitable_irq_1(int line , void *data ) ; void call_and_disable_all_2(int state ) ; void ldv_pci_driver_3(void) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void activate_suitable_irq_1(int line , void *data ) ; int ldv_irq_1(int state , int line , void *data ) ; void activate_work_2(struct work_struct *work , int state ) ; void call_and_disable_work_2(struct work_struct *work ) ; void choose_interrupt_1(void) ; void ldv_initialize_fw_card_driver_4(void) ; void invoke_work_2(void) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_notice(struct device const * , char const * , ...) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_range_for_cpu(struct device * , dma_addr_t , unsigned long , size_t , int ) ; extern void debug_dma_sync_single_range_for_device(struct device * , dma_addr_t , unsigned long , size_t , int ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_24023: ; goto ldv_24023; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_24032: ; goto ldv_24032; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (84), "i" (12UL)); ldv_24067: ; goto ldv_24067; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (96), "i" (12UL)); ldv_24075: ; goto ldv_24075; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 0); return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (108), "i" (12UL)); ldv_24083: ; goto ldv_24083; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (120), "i" (12UL)); ldv_24091: ; goto ldv_24091; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_range_for_cpu(struct device *dev , dma_addr_t addr , unsigned long offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops const *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = (struct dma_map_ops const *)tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (134), "i" (12UL)); ldv_24100: ; goto ldv_24100; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*/* const */)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr + (unsigned long long )offset, size, dir); } else { } debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, (int )dir); return; } } __inline static void dma_sync_single_range_for_device(struct device *dev , dma_addr_t addr , unsigned long offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops const *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = (struct dma_map_ops const *)tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (148), "i" (12UL)); ldv_24109: ; goto ldv_24109; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*/* const */)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr + (unsigned long long )offset, size, dir); } else { } debug_dma_sync_single_range_for_device(dev, addr, offset, size, (int )dir); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; extern void fw_schedule_bus_reset(struct fw_card * , bool , bool ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_25(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_26(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_28(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; __inline static void tasklet_unlock_wait(struct tasklet_struct *t ) { int tmp ; { goto ldv_26348; ldv_26347: __asm__ volatile ("": : : "memory"); ldv_26348: tmp = constant_test_bit(1L, (unsigned long const volatile *)(& t->state)); if (tmp != 0) { goto ldv_26347; } else { } return; } } extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_schedule(t); } else { } return; } } __inline static void tasklet_disable_nosync(struct tasklet_struct *t ) { { atomic_inc(& t->count); __asm__ volatile ("": : : "memory"); return; } } __inline static void tasklet_disable(struct tasklet_struct *t ) { { tasklet_disable_nosync(t); tasklet_unlock_wait(t); __asm__ volatile ("mfence": : : "memory"); return; } } __inline static void tasklet_enable(struct tasklet_struct *t ) { { __asm__ volatile ("": : : "memory"); atomic_dec(& t->count); return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static bool pci_dev_msi_enabled(struct pci_dev *pci_dev ) { { return ((bool )((unsigned int )*((unsigned char *)pci_dev + 2530UL) != 0U || (unsigned int )*((unsigned char *)pci_dev + 2530UL) != 0U)); } } extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int pci_request_region(struct pci_dev * , int , char const * ) ; extern void pci_release_region(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_29(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_30(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; if (rc < 0) { return (rc); } else { } return (0); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } extern void *vmap(struct page ** , unsigned int , unsigned long , pgprot_t ) ; extern void vunmap(void const * ) ; extern void fw_card_initialize(struct fw_card * , struct fw_card_driver const * , struct device * ) ; extern int fw_card_add(struct fw_card * , u32 , u32 , u64 ) ; extern void fw_core_remove_card(struct fw_card * ) ; extern void fw_core_handle_bus_reset(struct fw_card * , int , int , int , u32 * , bool ) ; extern void fw_core_handle_request(struct fw_card * , struct fw_packet * ) ; extern void fw_core_handle_response(struct fw_card * , struct fw_packet * ) ; extern void fw_fill_response(struct fw_packet * , u32 * , int , void * , size_t ) ; __inline static bool is_ping_packet(u32 *data ) { { return ((bool )((*data & 3238002687U) == 0U && ~ *data == *(data + 1UL))); } } static struct workqueue_struct *selfid_workqueue ; __inline static struct fw_ohci *fw_ohci(struct fw_card *card ) { struct fw_card const *__mptr ; { __mptr = (struct fw_card const *)card; return ((struct fw_ohci *)__mptr); } } static char ohci_driver_name[14U] = { 'f', 'i', 'r', 'e', 'w', 'i', 'r', 'e', '_', 'o', 'h', 'c', 'i', '\000'}; static struct __anonstruct_ohci_quirks_254 const ohci_quirks[16U] = { {4281U, 65535U, 65535U, 1U}, {4203U, 24U, 65535U, 4U}, {4545U, 22785U, 6U, 16U}, {4354U, 16385U, 65535U, 2U}, {6523U, 9088U, 65535U, 16U}, {4147U, 65535U, 65535U, 1U}, {4631U, 65535U, 65535U, 16U}, {4480U, 65535U, 65535U, 17U}, {4172U, 32777U, 65535U, 11U}, {4172U, 32800U, 65535U, 34U}, {4172U, 32805U, 65535U, 34U}, {4172U, 65535U, 65535U, 2U}, {4358U, 12356U, 70U, 65U}, {4358U, 13315U, 0U, 17U}, {4358U, 13315U, 65535U, 16U}, {4358U, 65535U, 65535U, 17U}}; static int param_quirks ; static int param_debug ; static bool param_remote_dma ; static void log_irqs(struct fw_ohci *ohci , u32 evt ) { long tmp ; { tmp = ldv__builtin_expect((param_debug & 12) == 0, 1L); if (tmp != 0L) { return; } else { } if ((param_debug & 4) == 0 && (evt & 131072U) == 0U) { return; } else { } dev_notice((struct device const *)ohci->card.device, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, (evt & 65536U) != 0U ? (char *)" selfID" : (char *)"", (evt & 16U) != 0U ? (char *)" AR_req" : (char *)"", (evt & 32U) != 0U ? (char *)" AR_resp" : (char *)"", (int )evt & 1 ? (char *)" AT_req" : (char *)"", (evt & 2U) != 0U ? (char *)" AT_resp" : (char *)"", (evt & 128U) != 0U ? (char *)" IR" : (char *)"", (evt & 64U) != 0U ? (char *)" IT" : (char *)"", (evt & 256U) != 0U ? (char *)" postedWriteErr" : (char *)"", (evt & 33554432U) != 0U ? (char *)" cycleTooLong" : (char *)"", (evt & 2097152U) != 0U ? (char *)" cycle64Seconds" : (char *)"", (evt & 8388608U) != 0U ? (char *)" cycleInconsistent" : (char *)"", (evt & 262144U) != 0U ? (char *)" regAccessFail" : (char *)"", (evt & 16777216U) != 0U ? (char *)" unrecoverableError" : (char *)"", (evt & 131072U) != 0U ? (char *)" busReset" : (char *)"", (evt & 4250467852U) != 0U ? (char *)" ?" : (char *)""); return; } } static char const *speed[4U] = { "S100", "S200", "S400", "beta"}; static char const *power[8U] = { "+0W", "+15W", "+30W", "+45W", "-3W", " ?W", "-3..-6W", "-3..-10W"}; static char const port[4U] = { 46, 45, 112, 99}; static char _p(u32 *s , int shift ) { { return ((char )port[(*s >> shift) & 3U]); } } static void log_selfids(struct fw_ohci *ohci , int generation , int self_id_count ) { u32 *s ; long tmp ; char tmp___0 ; char tmp___1 ; char tmp___2 ; char tmp___3 ; char tmp___4 ; char tmp___5 ; char tmp___6 ; char tmp___7 ; char tmp___8 ; char tmp___9 ; char tmp___10 ; int tmp___11 ; { tmp = ldv__builtin_expect((param_debug & 2) == 0, 1L); if (tmp != 0L) { return; } else { } dev_notice((struct device const *)ohci->card.device, "%d selfIDs, generation %d, local node ID %04x\n", self_id_count, generation, ohci->node_id); s = (u32 *)(& ohci->self_id_buffer); goto ldv_33491; ldv_33490: ; if ((*s & 8388608U) == 0U) { tmp___0 = _p(s, 2); tmp___1 = _p(s, 4); tmp___2 = _p(s, 6); dev_notice((struct device const *)ohci->card.device, "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n", *s, (*s >> 24) & 63U, (int )tmp___2, (int )tmp___1, (int )tmp___0, speed[(*s >> 14) & 3U], (*s >> 16) & 63U, power[(*s >> 8) & 7U], (*s & 4194304U) != 0U ? (char *)"L" : (char *)"", (*s & 2048U) != 0U ? (char *)"c" : (char *)"", (*s & 2U) != 0U ? (char *)"i" : (char *)""); } else { tmp___3 = _p(s, 2); tmp___4 = _p(s, 4); tmp___5 = _p(s, 6); tmp___6 = _p(s, 8); tmp___7 = _p(s, 10); tmp___8 = _p(s, 12); tmp___9 = _p(s, 14); tmp___10 = _p(s, 16); dev_notice((struct device const *)ohci->card.device, "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", *s, (*s >> 24) & 63U, (int )tmp___10, (int )tmp___9, (int )tmp___8, (int )tmp___7, (int )tmp___6, (int )tmp___5, (int )tmp___4, (int )tmp___3); } s = s + 1; ldv_33491: tmp___11 = self_id_count; self_id_count = self_id_count - 1; if (tmp___11 != 0) { goto ldv_33490; } else { } return; } } static char const *evts[33U] = { "evt_no_status", "-reserved-", "evt_long_packet", "evt_missing_ack", "evt_underrun", "evt_overrun", "evt_descriptor_read", "evt_data_read", "evt_data_write", "evt_bus_reset", "evt_timeout", "evt_tcode_err", "-reserved-", "-reserved-", "evt_unknown", "evt_flushed", "-reserved-", "ack_complete", "ack_pending ", "-reserved-", "ack_busy_X", "ack_busy_A", "ack_busy_B", "-reserved-", "-reserved-", "-reserved-", "-reserved-", "ack_tardy", "-reserved-", "ack_data_error", "ack_type_error", "-reserved-", "pending/cancelled"}; static char const *tcodes[16U] = { "QW req", "BW req", "W resp", "-reserved-", "QR req", "BR req", "QR resp", "BR resp", "cycle start", "Lk req", "async stream packet", "Lk resp", "-reserved-", "-reserved-", "link internal", "-reserved-"}; static void log_ar_at_event(struct fw_ohci *ohci , char dir , int speed___0 , u32 *header , int evt ) { int tcode ; char specific[12U] ; long tmp ; long tmp___0 ; __u32 tmp___1 ; { tcode = (int )(*header >> 4) & 15; tmp = ldv__builtin_expect((param_debug & 1) == 0, 1L); if (tmp != 0L) { return; } else { } tmp___0 = ldv__builtin_expect((unsigned int )evt > 32U, 0L); if (tmp___0 != 0L) { evt = 31; } else { } if (evt == 9) { dev_notice((struct device const *)ohci->card.device, "A%c evt_bus_reset, generation %d\n", (int )dir, (*(header + 2UL) >> 16) & 255U); return; } else { } switch (tcode) { case 0: ; case 6: ; case 8: tmp___1 = __fswab32(*(header + 3UL)); snprintf((char *)(& specific), 12UL, " = %08x", tmp___1); goto ldv_33509; case 1: ; case 5: ; case 7: ; case 9: ; case 11: snprintf((char *)(& specific), 12UL, " %x,%x", *(header + 3UL) >> 16, *(header + 3UL) & 65535U); goto ldv_33509; default: specific[0] = 0; } ldv_33509: ; switch (tcode) { case 10: dev_notice((struct device const *)ohci->card.device, "A%c %s, %s\n", (int )dir, evts[evt], tcodes[tcode]); goto ldv_33517; case 14: dev_notice((struct device const *)ohci->card.device, "A%c %s, PHY %08x %08x\n", (int )dir, evts[evt], *(header + 1UL), *(header + 2UL)); goto ldv_33517; case 0: ; case 1: ; case 4: ; case 5: ; case 9: dev_notice((struct device const *)ohci->card.device, "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n", (int )dir, speed___0, (*header >> 10) & 63U, *(header + 1UL) >> 16, *header >> 16, evts[evt], tcodes[tcode], *(header + 1UL) & 65535U, *(header + 2UL), (char *)(& specific)); goto ldv_33517; default: dev_notice((struct device const *)ohci->card.device, "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n", (int )dir, speed___0, (*header >> 10) & 63U, *(header + 1UL) >> 16, *header >> 16, evts[evt], tcodes[tcode], (char *)(& specific)); } ldv_33517: ; return; } } __inline static void reg_write(struct fw_ohci const *ohci , int offset , u32 data ) { { writel(data, (void volatile *)ohci->registers + (unsigned long )offset); return; } } __inline static u32 reg_read(struct fw_ohci const *ohci , int offset ) { unsigned int tmp ; { tmp = readl((void const volatile *)ohci->registers + (unsigned long )offset); return (tmp); } } __inline static void flush_writes(struct fw_ohci const *ohci ) { { reg_read(ohci, 0); return; } } static int read_phy_reg(struct fw_ohci *ohci , int addr ) { u32 val ; int i ; { reg_write((struct fw_ohci const *)ohci, 236, (u32 )((addr << 8) | 32768)); i = 0; goto ldv_33544; ldv_33543: val = reg_read((struct fw_ohci const *)ohci, 236); if (val == 4294967295U) { return (-19); } else { } if ((int )val < 0) { return ((int )((val & 16711680U) >> 16)); } else { } if (i > 2) { msleep(1U); } else { } i = i + 1; ldv_33544: ; if (i <= 102) { goto ldv_33543; } else { } dev_err((struct device const *)ohci->card.device, "failed to read phy reg %d\n", addr); dump_stack(); return (-16); } } static int write_phy_reg(struct fw_ohci const *ohci , int addr , u32 val ) { int i ; { reg_write(ohci, 236, ((u32 )(addr << 8) | val) | 16384U); i = 0; goto ldv_33553; ldv_33552: val = reg_read(ohci, 236); if (val == 4294967295U) { return (-19); } else { } if ((val & 16384U) == 0U) { return (0); } else { } if (i > 2) { msleep(1U); } else { } i = i + 1; ldv_33553: ; if (i <= 102) { goto ldv_33552; } else { } dev_err((struct device const *)ohci->card.device, "failed to write phy reg %d, val %u\n", addr, val); dump_stack(); return (-16); } } static int update_phy_reg(struct fw_ohci *ohci , int addr , int clear_bits , int set_bits ) { int ret ; int tmp ; int tmp___0 ; { tmp = read_phy_reg(ohci, addr); ret = tmp; if (ret < 0) { return (ret); } else { } if (addr == 5) { clear_bits = clear_bits | 60; } else { } tmp___0 = write_phy_reg((struct fw_ohci const *)ohci, addr, (u32 )((~ clear_bits & ret) | set_bits)); return (tmp___0); } } static int read_paged_phy_reg(struct fw_ohci *ohci , int page , int addr ) { int ret ; int tmp ; { ret = update_phy_reg(ohci, 7, 224, page << 5); if (ret < 0) { return (ret); } else { } tmp = read_phy_reg(ohci, addr); return (tmp); } } static int ohci_read_phy_reg(struct fw_card *card , int addr ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; int ret ; { tmp = fw_ohci(card); ohci = tmp; ldv_mutex_lock_17(& ohci->phy_reg_mutex); ret = read_phy_reg(ohci, addr); ldv_mutex_unlock_18(& ohci->phy_reg_mutex); return (ret); } } static int ohci_update_phy_reg(struct fw_card *card , int addr , int clear_bits , int set_bits ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; int ret ; { tmp = fw_ohci(card); ohci = tmp; ldv_mutex_lock_19(& ohci->phy_reg_mutex); ret = update_phy_reg(ohci, addr, clear_bits, set_bits); ldv_mutex_unlock_20(& ohci->phy_reg_mutex); return (ret); } } __inline static dma_addr_t ar_buffer_bus(struct ar_context *ctx , unsigned int i ) { { return ((dma_addr_t )(ctx->pages[i])->__annonCompField46.private); } } static void ar_context_link_page(struct ar_context *ctx , unsigned int index ) { struct descriptor *d ; { d = ctx->descriptors + (unsigned long )index; d->branch_address = d->branch_address & 4294967280U; d->res_count = 4096U; d->transfer_status = 0U; __asm__ volatile ("sfence": : : "memory"); d = ctx->descriptors + (unsigned long )ctx->last_buffer_index; d->branch_address = d->branch_address | 1U; ctx->last_buffer_index = index; reg_write((struct fw_ohci const *)ctx->ohci, (int )ctx->regs, 4096U); return; } } static void ar_context_release(struct ar_context *ctx ) { unsigned int i ; dma_addr_t tmp ; { vunmap((void const *)ctx->buffer); i = 0U; goto ldv_33596; ldv_33595: ; if ((unsigned long )ctx->pages[i] != (unsigned long )((struct page *)0)) { tmp = ar_buffer_bus(ctx, i); dma_unmap_page((ctx->ohci)->card.device, tmp, 4096UL, 2); __free_pages(ctx->pages[i], 0U); } else { } i = i + 1U; ldv_33596: ; if (i <= 7U) { goto ldv_33595; } else { } return; } } static void ar_context_abort(struct ar_context *ctx , char const *error_msg ) { struct fw_ohci *ohci ; u32 tmp ; { ohci = ctx->ohci; tmp = reg_read((struct fw_ohci const *)ohci, (int )(ctx->regs + 4U)); if ((tmp & 32768U) != 0U) { reg_write((struct fw_ohci const *)ohci, (int )(ctx->regs + 4U), 32768U); flush_writes((struct fw_ohci const *)ohci); dev_err((struct device const *)ohci->card.device, "AR error: %s; DMA stopped\n", error_msg); } else { } return; } } __inline static unsigned int ar_next_buffer_index(unsigned int index ) { { return ((index + 1U) & 7U); } } __inline static unsigned int ar_first_buffer_index(struct ar_context *ctx ) { unsigned int tmp ; { tmp = ar_next_buffer_index(ctx->last_buffer_index); return (tmp); } } static unsigned int ar_search_last_active_buffer(struct ar_context *ctx , unsigned int *buffer_offset ) { unsigned int i ; unsigned int next_i ; unsigned int last ; __le16 res_count ; __le16 next_res_count ; __le16 __var ; __le16 __var___0 ; __le16 __var___1 ; { last = ctx->last_buffer_index; i = ar_first_buffer_index(ctx); __var = 0U; res_count = *((__le16 volatile *)(& (ctx->descriptors + (unsigned long )i)->res_count)); goto ldv_33627; ldv_33626: next_i = ar_next_buffer_index(i); __asm__ volatile ("lfence": : : "memory"); __var___0 = 0U; next_res_count = *((__le16 volatile *)(& (ctx->descriptors + (unsigned long )next_i)->res_count)); if ((unsigned int )next_res_count == 4096U) { if (i != last) { next_i = ar_next_buffer_index(next_i); __asm__ volatile ("lfence": : : "memory"); __var___1 = 0U; next_res_count = *((__le16 volatile *)(& (ctx->descriptors + (unsigned long )next_i)->res_count)); if ((unsigned int )next_res_count != 4096U) { goto next_buffer_is_active; } else { } } else { } goto ldv_33625; } else { } next_buffer_is_active: i = next_i; res_count = next_res_count; ldv_33627: ; if (i != last && (unsigned int )res_count == 0U) { goto ldv_33626; } else { } ldv_33625: __asm__ volatile ("lfence": : : "memory"); *buffer_offset = 4096U - (unsigned int )res_count; if (*buffer_offset > 4096U) { *buffer_offset = 0U; ar_context_abort(ctx, "corrupted descriptor"); } else { } return (i); } } static void ar_sync_buffers_for_cpu(struct ar_context *ctx , unsigned int end_buffer_index , unsigned int end_buffer_offset ) { unsigned int i ; dma_addr_t tmp ; dma_addr_t tmp___0 ; { i = ar_first_buffer_index(ctx); goto ldv_33635; ldv_33634: tmp = ar_buffer_bus(ctx, i); dma_sync_single_for_cpu((ctx->ohci)->card.device, tmp, 4096UL, 2); i = ar_next_buffer_index(i); ldv_33635: ; if (i != end_buffer_index) { goto ldv_33634; } else { } if (end_buffer_offset != 0U) { tmp___0 = ar_buffer_bus(ctx, i); dma_sync_single_for_cpu((ctx->ohci)->card.device, tmp___0, (size_t )end_buffer_offset, 2); } else { } return; } } static __le32 *handle_ar_packet(struct ar_context *ctx , __le32 *buffer ) { struct fw_ohci *ohci ; struct fw_packet p ; u32 status ; u32 length ; u32 tcode ; int evt ; { ohci = ctx->ohci; p.header[0] = *buffer; p.header[1] = *(buffer + 1UL); p.header[2] = *(buffer + 2UL); tcode = (p.header[0] >> 4) & 15U; switch (tcode) { case 0U: ; case 6U: p.header[3] = *(buffer + 3UL); p.header_length = 16UL; p.payload_length = 0UL; goto ldv_33649; case 5U: p.header[3] = *(buffer + 3UL); p.header_length = 16UL; p.payload_length = 0UL; goto ldv_33649; case 1U: ; case 7U: ; case 9U: ; case 11U: p.header[3] = *(buffer + 3UL); p.header_length = 16UL; p.payload_length = (size_t )(p.header[3] >> 16); if (p.payload_length > 4096UL) { ar_context_abort(ctx, "invalid packet length"); return ((__le32 *)0U); } else { } goto ldv_33649; case 2U: ; case 4U: ; case 14U: p.header_length = 12UL; p.payload_length = 0UL; goto ldv_33649; default: ar_context_abort(ctx, "invalid tcode"); return ((__le32 *)0U); } ldv_33649: p.payload = (void *)buffer + p.header_length; length = (u32 )(((p.header_length + p.payload_length) + 3UL) / 4UL); status = *(buffer + (unsigned long )length); evt = (int )(status >> 16) & 31; p.ack = evt + -16; p.speed = (int )(status >> 21) & 7; p.timestamp = status & 65535U; p.generation = ohci->request_generation; log_ar_at_event(ohci, 82, p.speed, (u32 *)(& p.header), evt); if (evt == 0 && (p.header[0] & 255U) == 224U) { p.ack = 1; } else { } if (evt == 9) { if ((ohci->quirks & 2U) == 0U) { ohci->request_generation = (int )(p.header[2] >> 16) & 255; } else { } } else if ((unsigned long )(& ohci->ar_request_ctx) == (unsigned long )ctx) { fw_core_handle_request(& ohci->card, & p); } else { fw_core_handle_response(& ohci->card, & p); } return (buffer + ((unsigned long )length + 1UL)); } } static void *handle_ar_packets(struct ar_context *ctx , void *p , void *end ) { void *next ; __le32 *tmp ; { goto ldv_33666; ldv_33665: tmp = handle_ar_packet(ctx, (__le32 *)p); next = (void *)tmp; if ((unsigned long )next == (unsigned long )((void *)0)) { return (p); } else { } p = next; ldv_33666: ; if ((unsigned long )p < (unsigned long )end) { goto ldv_33665; } else { } return (p); } } static void ar_recycle_buffers(struct ar_context *ctx , unsigned int end_buffer ) { unsigned int i ; dma_addr_t tmp ; { i = ar_first_buffer_index(ctx); goto ldv_33674; ldv_33673: tmp = ar_buffer_bus(ctx, i); dma_sync_single_for_device((ctx->ohci)->card.device, tmp, 4096UL, 2); ar_context_link_page(ctx, i); i = ar_next_buffer_index(i); ldv_33674: ; if (i != end_buffer) { goto ldv_33673; } else { } return; } } static void ar_context_tasklet(unsigned long data ) { struct ar_context *ctx ; unsigned int end_buffer_index ; unsigned int end_buffer_offset ; void *p ; void *end ; void *buffer_end ; unsigned int tmp ; { ctx = (struct ar_context *)data; p = ctx->pointer; if ((unsigned long )p == (unsigned long )((void *)0)) { return; } else { } end_buffer_index = ar_search_last_active_buffer(ctx, & end_buffer_offset); ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); end = ctx->buffer + ((unsigned long )end_buffer_index * 4096UL + (unsigned long )end_buffer_offset); tmp = ar_first_buffer_index(ctx); if (tmp > end_buffer_index) { buffer_end = ctx->buffer + 32768UL; p = handle_ar_packets(ctx, p, buffer_end); if ((unsigned long )p < (unsigned long )buffer_end) { goto error; } else { } p = p + 0xffffffffffff8000UL; } else { } p = handle_ar_packets(ctx, p, end); if ((unsigned long )p != (unsigned long )end) { if ((unsigned long )p > (unsigned long )end) { ar_context_abort(ctx, "inconsistent descriptor"); } else { } goto error; } else { } ctx->pointer = p; ar_recycle_buffers(ctx, end_buffer_index); return; error: ctx->pointer = (void *)0; return; } } static int ar_context_init(struct ar_context *ctx , struct fw_ohci *ohci , unsigned int descriptors_offset , u32 regs ) { unsigned int i ; dma_addr_t dma_addr ; struct page *pages[10U] ; struct descriptor *d ; int tmp ; pgprot_t __constr_expr_0 ; dma_addr_t tmp___0 ; unsigned int tmp___1 ; { ctx->regs = regs; ctx->ohci = ohci; tasklet_init(& ctx->tasklet, & ar_context_tasklet, (unsigned long )ctx); i = 0U; goto ldv_33698; ldv_33697: ctx->pages[i] = alloc_pages(212U, 0U); if ((unsigned long )ctx->pages[i] == (unsigned long )((struct page *)0)) { goto out_of_memory; } else { } dma_addr = dma_map_page(ohci->card.device, ctx->pages[i], 0UL, 4096UL, 2); tmp = dma_mapping_error(ohci->card.device, dma_addr); if (tmp != 0) { __free_pages(ctx->pages[i], 0U); ctx->pages[i] = (struct page *)0; goto out_of_memory; } else { } (ctx->pages[i])->__annonCompField46.private = (unsigned long )dma_addr; i = i + 1U; ldv_33698: ; if (i <= 7U) { goto ldv_33697; } else { } i = 0U; goto ldv_33701; ldv_33700: pages[i] = ctx->pages[i]; i = i + 1U; ldv_33701: ; if (i <= 7U) { goto ldv_33700; } else { } i = 0U; goto ldv_33704; ldv_33703: pages[(unsigned long )i + 8UL] = ctx->pages[i]; i = i + 1U; ldv_33704: ; if (i <= 1U) { goto ldv_33703; } else { } __constr_expr_0.pgprot = 0x8000000000000163UL; ctx->buffer = vmap((struct page **)(& pages), 10U, 4UL, __constr_expr_0); if ((unsigned long )ctx->buffer == (unsigned long )((void *)0)) { goto out_of_memory; } else { } ctx->descriptors = (struct descriptor *)ohci->misc_buffer + (unsigned long )descriptors_offset; ctx->descriptors_bus = ohci->misc_buffer_bus + (dma_addr_t )descriptors_offset; i = 0U; goto ldv_33710; ldv_33709: d = ctx->descriptors + (unsigned long )i; d->req_count = 4096U; d->control = 10252U; tmp___0 = ar_buffer_bus(ctx, i); d->data_address = (unsigned int )tmp___0; tmp___1 = ar_next_buffer_index(i); d->branch_address = (unsigned int )ctx->descriptors_bus + tmp___1 * 16U; i = i + 1U; ldv_33710: ; if (i <= 7U) { goto ldv_33709; } else { } return (0); out_of_memory: ar_context_release(ctx); return (-12); } } static void ar_context_run(struct ar_context *ctx ) { unsigned int i ; { i = 0U; goto ldv_33717; ldv_33716: ar_context_link_page(ctx, i); i = i + 1U; ldv_33717: ; if (i <= 7U) { goto ldv_33716; } else { } ctx->pointer = ctx->buffer; reg_write((struct fw_ohci const *)ctx->ohci, (int )(ctx->regs + 12U), (u32 )ctx->descriptors_bus | 1U); reg_write((struct fw_ohci const *)ctx->ohci, (int )ctx->regs, 32768U); return; } } static struct descriptor *find_branch_descriptor(struct descriptor *d , int z ) { __le16 branch ; { branch = (unsigned int )d->control & 12U; if (z == 2 && (unsigned int )branch == 12U) { return (d); } else { return (d + ((unsigned long )z + 0xffffffffffffffffUL)); } } } static void context_tasklet(unsigned long data ) { struct context *ctx ; struct descriptor *d ; struct descriptor *last ; u32 address ; int z ; struct descriptor_buffer *desc ; struct list_head const *__mptr ; struct descriptor_buffer *old_desc ; struct list_head const *__mptr___0 ; int tmp ; unsigned long flags ; raw_spinlock_t *tmp___0 ; { ctx = (struct context *)data; __mptr = (struct list_head const *)ctx->buffer_list.next; desc = (struct descriptor_buffer *)__mptr; last = ctx->last; goto ldv_33744; ldv_33743: old_desc = desc; address = last->branch_address; z = (int )address & 15; address = address & 4294967280U; ctx->current_bus = address; if ((dma_addr_t )address < desc->buffer_bus || (unsigned long long )address >= desc->buffer_bus + (unsigned long long )desc->used) { __mptr___0 = (struct list_head const *)desc->list.next; desc = (struct descriptor_buffer *)__mptr___0; } else { } d = (struct descriptor *)(& desc->buffer) + ((dma_addr_t )address - desc->buffer_bus) / 16ULL; last = find_branch_descriptor(d, z); tmp = (*(ctx->callback))(ctx, d, last); if (tmp == 0) { goto ldv_33738; } else { } if ((unsigned long )old_desc != (unsigned long )desc) { old_desc->used = 0UL; tmp___0 = spinlock_check(& (ctx->ohci)->lock); flags = _raw_spin_lock_irqsave(tmp___0); list_move_tail(& old_desc->list, & ctx->buffer_list); spin_unlock_irqrestore(& (ctx->ohci)->lock, flags); } else { } ctx->last = last; ldv_33744: ; if (last->branch_address != 0U) { goto ldv_33743; } else { } ldv_33738: ; return; } } static int context_add_buffer(struct context *ctx ) { struct descriptor_buffer *desc ; dma_addr_t bus_addr ; int offset ; void *tmp ; { bus_addr = bus_addr; if (ctx->total_allocation > 16777215) { return (-12); } else { } tmp = dma_alloc_attrs((ctx->ohci)->card.device, 4096UL, & bus_addr, 32U, (struct dma_attrs *)0); desc = (struct descriptor_buffer *)tmp; if ((unsigned long )desc == (unsigned long )((struct descriptor_buffer *)0)) { return (-12); } else { } offset = 48; desc->buffer_size = 4096UL - (unsigned long )offset; desc->buffer_bus = (dma_addr_t )offset + bus_addr; desc->used = 0UL; list_add_tail(& desc->list, & ctx->buffer_list); ctx->total_allocation = (int )((unsigned int )ctx->total_allocation + 4096U); return (0); } } static int context_init(struct context *ctx , struct fw_ohci *ohci , u32 regs , int (*callback)(struct context * , struct descriptor * , struct descriptor * ) ) { int tmp ; struct list_head const *__mptr ; { ctx->ohci = ohci; ctx->regs = regs; ctx->total_allocation = 0; INIT_LIST_HEAD(& ctx->buffer_list); tmp = context_add_buffer(ctx); if (tmp < 0) { return (-12); } else { } __mptr = (struct list_head const *)ctx->buffer_list.next; ctx->buffer_tail = (struct descriptor_buffer *)__mptr; tasklet_init(& ctx->tasklet, & context_tasklet, (unsigned long )ctx); ctx->callback = callback; memset((void *)(& (ctx->buffer_tail)->buffer), 0, 16UL); ((struct descriptor *)(& (ctx->buffer_tail)->buffer))->control = 4096U; ((struct descriptor *)(& (ctx->buffer_tail)->buffer))->transfer_status = 32785U; (ctx->buffer_tail)->used = (ctx->buffer_tail)->used + 16UL; ctx->last = (struct descriptor *)(& (ctx->buffer_tail)->buffer); ctx->prev = (struct descriptor *)(& (ctx->buffer_tail)->buffer); ctx->prev_z = 1; return (0); } } static void context_release(struct context *ctx ) { struct fw_card *card ; struct descriptor_buffer *desc ; struct descriptor_buffer *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { card = & (ctx->ohci)->card; __mptr = (struct list_head const *)ctx->buffer_list.next; desc = (struct descriptor_buffer *)__mptr; __mptr___0 = (struct list_head const *)desc->list.next; tmp = (struct descriptor_buffer *)__mptr___0; goto ldv_33772; ldv_33771: dma_free_attrs(card->device, 4096UL, (void *)desc, desc->buffer_bus - 48ULL, (struct dma_attrs *)0); desc = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct descriptor_buffer *)__mptr___1; ldv_33772: ; if ((unsigned long )(& desc->list) != (unsigned long )(& ctx->buffer_list)) { goto ldv_33771; } else { } return; } } static struct descriptor *context_get_descriptors(struct context *ctx , int z , dma_addr_t *d_bus ) { struct descriptor *d ; struct descriptor_buffer *desc ; int tmp ; struct list_head const *__mptr ; { d = (struct descriptor *)0; desc = ctx->buffer_tail; if ((unsigned long )z * 16UL > desc->buffer_size) { return ((struct descriptor *)0); } else { } if ((unsigned long )z * 16UL > desc->buffer_size - desc->used) { if ((unsigned long )desc->list.next == (unsigned long )(& ctx->buffer_list)) { tmp = context_add_buffer(ctx); if (tmp < 0) { return ((struct descriptor *)0); } else { } } else { } __mptr = (struct list_head const *)desc->list.next; desc = (struct descriptor_buffer *)__mptr; ctx->buffer_tail = desc; } else { } d = (struct descriptor *)(& desc->buffer) + desc->used / 16UL; memset((void *)d, 0, (unsigned long )z * 16UL); *d_bus = desc->buffer_bus + (unsigned long long )desc->used; return (d); } } static void context_run(struct context *ctx , u32 extra ) { struct fw_ohci *ohci ; { ohci = ctx->ohci; reg_write((struct fw_ohci const *)ohci, (int )(ctx->regs + 12U), (ctx->last)->branch_address); reg_write((struct fw_ohci const *)ohci, (int )(ctx->regs + 4U), 4294967295U); reg_write((struct fw_ohci const *)ohci, (int )ctx->regs, extra | 32768U); ctx->running = 1; flush_writes((struct fw_ohci const *)ohci); return; } } static void context_append(struct context *ctx , struct descriptor *d , int z , int extra ) { dma_addr_t d_bus ; struct descriptor_buffer *desc ; struct descriptor *d_branch ; long tmp ; { desc = ctx->buffer_tail; d_bus = desc->buffer_bus + (unsigned long long )((unsigned long )(((long )d - (long )(& desc->buffer)) / 16L) * 16UL); desc->used = desc->used + (unsigned long )(z + extra) * 16UL; __asm__ volatile ("sfence": : : "memory"); d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); d_branch->branch_address = (unsigned int )d_bus | (unsigned int )z; tmp = ldv__builtin_expect(((ctx->ohci)->quirks & 64U) != 0U, 0L); if ((tmp != 0L && (unsigned long )ctx->prev != (unsigned long )d_branch) && ((int )(ctx->prev)->control & 61440) == 8192) { (ctx->prev)->branch_address = (unsigned int )d_bus | (unsigned int )z; } else { } ctx->prev = d; ctx->prev_z = z; return; } } static void context_stop(struct context *ctx ) { struct fw_ohci *ohci ; u32 reg ; int i ; { ohci = ctx->ohci; reg_write((struct fw_ohci const *)ohci, (int )(ctx->regs + 4U), 32768U); ctx->running = 0; i = 0; goto ldv_33804; ldv_33803: reg = reg_read((struct fw_ohci const *)ohci, (int )ctx->regs); if ((reg & 1024U) == 0U) { return; } else { } if (i != 0) { __const_udelay(42950UL); } else { } i = i + 1; ldv_33804: ; if (i <= 999) { goto ldv_33803; } else { } dev_err((struct device const *)ohci->card.device, "DMA context still active (0x%08x)\n", reg); return; } } static int at_context_queue_packet(struct context *ctx , struct fw_packet *packet ) { struct fw_ohci *ohci ; dma_addr_t d_bus ; dma_addr_t payload_bus ; struct driver_data *driver_data ; struct descriptor *d ; struct descriptor *last ; __le32 *header ; int z ; int tcode ; bool tmp ; int tmp___0 ; { ohci = ctx->ohci; payload_bus = payload_bus; d = context_get_descriptors(ctx, 4, & d_bus); if ((unsigned long )d == (unsigned long )((struct descriptor *)0)) { packet->ack = 16; return (-1); } else { } d->control = 512U; d->res_count = (unsigned short )packet->timestamp; tcode = (int )(packet->header[0] >> 4) & 15; header = (__le32 *)d + 1U; switch (tcode) { case 0: ; case 1: ; case 2: ; case 4: ; case 5: ; case 6: ; case 7: ; case 9: ; case 11: *header = (packet->header[0] & 65535U) | (u32 )(packet->speed << 16); *(header + 1UL) = (packet->header[1] & 65535U) | (packet->header[0] & 4294901760U); *(header + 2UL) = packet->header[2]; if (tcode & 1) { *(header + 3UL) = packet->header[3]; } else { *(header + 3UL) = packet->header[3]; } d->req_count = (unsigned short )packet->header_length; goto ldv_33831; case 14: *header = (unsigned int )((packet->speed << 16) | 224); *(header + 1UL) = packet->header[1]; *(header + 2UL) = packet->header[2]; d->req_count = 12U; tmp = is_ping_packet((u32 *)(& packet->header) + 1UL); if ((int )tmp) { d->control = (__le16 )((unsigned int )d->control | 128U); } else { } goto ldv_33831; case 10: *header = (packet->header[0] & 65535U) | (u32 )(packet->speed << 16); *(header + 1UL) = packet->header[0] & 4294901760U; d->req_count = 8U; goto ldv_33831; default: packet->ack = 16; return (-1); } ldv_33831: driver_data = (struct driver_data *)d + 3U; driver_data->packet = packet; packet->driver_data = (void *)driver_data; if (packet->payload_length != 0UL) { if (packet->payload_length > 8UL) { payload_bus = dma_map_single_attrs(ohci->card.device, packet->payload, packet->payload_length, 1, (struct dma_attrs *)0); tmp___0 = dma_mapping_error(ohci->card.device, payload_bus); if (tmp___0 != 0) { packet->ack = 16; return (-1); } else { } packet->payload_bus = payload_bus; packet->payload_mapped = 1; } else { memcpy((void *)(& driver_data->inline_data), (void const *)packet->payload, packet->payload_length); payload_bus = d_bus + 48ULL; } (d + 2UL)->req_count = (unsigned short )packet->payload_length; (d + 2UL)->data_address = (unsigned int )payload_bus; last = d + 2UL; z = 3; } else { last = d; z = 2; } last->control = (__le16 )((unsigned int )last->control | 4156U); if (ohci->generation != packet->generation) { if ((int )packet->payload_mapped) { dma_unmap_single_attrs(ohci->card.device, payload_bus, packet->payload_length, 1, (struct dma_attrs *)0); } else { } packet->ack = 19; return (-1); } else { } context_append(ctx, d, z, 4 - z); if ((int )ctx->running) { reg_write((struct fw_ohci const *)ohci, (int )ctx->regs, 4096U); } else { context_run(ctx, 0U); } return (0); } } static void at_context_flush(struct context *ctx ) { { tasklet_disable(& ctx->tasklet); ctx->flushing = 1; context_tasklet((unsigned long )ctx); ctx->flushing = 0; tasklet_enable(& ctx->tasklet); return; } } static int handle_at_packet(struct context *context , struct descriptor *d , struct descriptor *last ) { struct driver_data *driver_data ; struct fw_packet *packet ; struct fw_ohci *ohci ; int evt ; { ohci = context->ohci; if ((unsigned int )last->transfer_status == 0U && ! context->flushing) { return (0); } else { } driver_data = (struct driver_data *)d + 3U; packet = driver_data->packet; if ((unsigned long )packet == (unsigned long )((struct fw_packet *)0)) { return (1); } else { } if ((int )packet->payload_mapped) { dma_unmap_single_attrs(ohci->card.device, packet->payload_bus, packet->payload_length, 1, (struct dma_attrs *)0); } else { } evt = (int )last->transfer_status & 31; packet->timestamp = (u32 )last->res_count; log_ar_at_event(ohci, 84, packet->speed, (u32 *)(& packet->header), evt); switch (evt) { case 10: packet->ack = 17; goto ldv_33848; case 15: packet->ack = 19; goto ldv_33848; case 3: ; if ((int )context->flushing) { packet->ack = 19; } else { packet->ack = 20; } goto ldv_33848; case 17: ; case 18: ; case 20: ; case 21: ; case 22: ; case 29: ; case 30: packet->ack = evt + -16; goto ldv_33848; case 0: ; if ((int )context->flushing) { packet->ack = 19; goto ldv_33848; } else { } default: packet->ack = 16; goto ldv_33848; } ldv_33848: (*(packet->callback))(packet, & ohci->card, packet->ack); return (1); } } static void handle_local_rom(struct fw_ohci *ohci , struct fw_packet *packet , u32 csr ) { struct fw_packet response ; int tcode ; int length ; int i ; { tcode = (int )(packet->header[0] >> 4) & 15; if (tcode & 1) { length = (int )(packet->header[3] >> 16); } else { length = 4; } i = (int )(csr - 1024U); if (i + length > 1024) { fw_fill_response(& response, (u32 *)(& packet->header), 7, (void *)0, 0UL); } else if ((tcode & -2) != 4) { fw_fill_response(& response, (u32 *)(& packet->header), 6, (void *)0, 0UL); } else { fw_fill_response(& response, (u32 *)(& packet->header), 0, (void *)ohci->config_rom + (unsigned long )i, (size_t )length); } fw_core_handle_response(& ohci->card, & response); return; } } static void handle_local_lock(struct fw_ohci *ohci , struct fw_packet *packet , u32 csr ) { struct fw_packet response ; int tcode ; int length ; int ext_tcode ; int sel ; int try ; __be32 *payload ; __be32 lock_old ; u32 lock_arg ; u32 lock_data ; __u32 tmp ; __u32 tmp___0 ; u32 tmp___1 ; __u32 tmp___2 ; u32 tmp___3 ; { tcode = (int )(packet->header[0] >> 4) & 15; length = (int )(packet->header[3] >> 16); payload = (__be32 *)packet->payload; ext_tcode = (int )packet->header[3] & 65535; if ((tcode == 9 && ext_tcode == 2) && length == 8) { tmp = __fswab32(*payload); lock_arg = tmp; tmp___0 = __fswab32(*(payload + 1UL)); lock_data = tmp___0; } else if (tcode == 4) { lock_arg = 0U; lock_data = 0U; } else { fw_fill_response(& response, (u32 *)(& packet->header), 6, (void *)0, 0UL); goto out; } sel = (int )((csr - 540U) / 4U); reg_write((struct fw_ohci const *)ohci, 12, lock_data); reg_write((struct fw_ohci const *)ohci, 16, lock_arg); reg_write((struct fw_ohci const *)ohci, 20, (u32 )sel); try = 0; goto ldv_33886; ldv_33885: tmp___3 = reg_read((struct fw_ohci const *)ohci, 20); if ((int )tmp___3 < 0) { tmp___1 = reg_read((struct fw_ohci const *)ohci, 12); tmp___2 = __fswab32(tmp___1); lock_old = tmp___2; fw_fill_response(& response, (u32 *)(& packet->header), 0, (void *)(& lock_old), 4UL); goto out; } else { } try = try + 1; ldv_33886: ; if (try <= 19) { goto ldv_33885; } else { } dev_err((struct device const *)ohci->card.device, "swap not done (CSR lock timeout)\n"); fw_fill_response(& response, (u32 *)(& packet->header), 18, (void *)0, 0UL); out: fw_core_handle_response(& ohci->card, & response); return; } } static void handle_local_request(struct context *ctx , struct fw_packet *packet ) { u64 offset ; u64 csr ; { if ((unsigned long )(& (ctx->ohci)->at_request_ctx) == (unsigned long )ctx) { packet->ack = 2; (*(packet->callback))(packet, & (ctx->ohci)->card, packet->ack); } else { } offset = (((unsigned long long )packet->header[1] & 65535ULL) << 32) | (unsigned long long )packet->header[2]; csr = offset - 281474708275200ULL; if (csr > 1023ULL && csr <= 2047ULL) { handle_local_rom(ctx->ohci, packet, (u32 )csr); } else { switch (csr) { case 540ULL: ; case 544ULL: ; case 548ULL: ; case 552ULL: handle_local_lock(ctx->ohci, packet, (u32 )csr); goto ldv_33898; default: ; if ((unsigned long )(& (ctx->ohci)->at_request_ctx) == (unsigned long )ctx) { fw_core_handle_request(& (ctx->ohci)->card, packet); } else { fw_core_handle_response(& (ctx->ohci)->card, packet); } goto ldv_33898; } ldv_33898: ; } if ((unsigned long )(& (ctx->ohci)->at_response_ctx) == (unsigned long )ctx) { packet->ack = 1; (*(packet->callback))(packet, & (ctx->ohci)->card, packet->ack); } else { } return; } } static void at_context_transmit(struct context *ctx , struct fw_packet *packet ) { unsigned long flags ; int ret ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& (ctx->ohci)->lock); flags = _raw_spin_lock_irqsave(tmp); if (packet->header[0] >> 16 == (u32 )(ctx->ohci)->node_id && (ctx->ohci)->generation == packet->generation) { spin_unlock_irqrestore(& (ctx->ohci)->lock, flags); handle_local_request(ctx, packet); return; } else { } ret = at_context_queue_packet(ctx, packet); spin_unlock_irqrestore(& (ctx->ohci)->lock, flags); if (ret < 0) { (*(packet->callback))(packet, & (ctx->ohci)->card, packet->ack); } else { } return; } } static void detect_dead_context(struct fw_ohci *ohci , char const *name , unsigned int regs ) { u32 ctl ; { ctl = reg_read((struct fw_ohci const *)ohci, (int )regs); if ((ctl & 2048U) != 0U) { dev_err((struct device const *)ohci->card.device, "DMA context %s has stopped, error code: %s\n", name, evts[ctl & 31U]); } else { } return; } } static void handle_dead_contexts(struct fw_ohci *ohci ) { unsigned int i ; char name[8U] ; { detect_dead_context(ohci, "ATReq", 384U); detect_dead_context(ohci, "ATRsp", 416U); detect_dead_context(ohci, "ARReq", 448U); detect_dead_context(ohci, "ARRsp", 480U); i = 0U; goto ldv_33922; ldv_33921: ; if ((ohci->it_context_support & (u32 )(1 << (int )i)) == 0U) { goto ldv_33920; } else { } sprintf((char *)(& name), "IT%u", i); detect_dead_context(ohci, (char const *)(& name), (i + 32U) * 16U); ldv_33920: i = i + 1U; ldv_33922: ; if (i <= 31U) { goto ldv_33921; } else { } i = 0U; goto ldv_33926; ldv_33925: ; if ((ohci->ir_context_support & (u32 )(1 << (int )i)) == 0U) { goto ldv_33924; } else { } sprintf((char *)(& name), "IR%u", i); detect_dead_context(ohci, (char const *)(& name), (i + 32U) * 32U); ldv_33924: i = i + 1U; ldv_33926: ; if (i <= 31U) { goto ldv_33925; } else { } return; } } static u32 cycle_timer_ticks(u32 cycle_timer ) { u32 ticks ; { ticks = cycle_timer & 4095U; ticks = ((cycle_timer >> 12) & 8191U) * 3072U + ticks; ticks = (cycle_timer >> 25) * 24576000U + ticks; return (ticks); } } static u32 get_cycle_time(struct fw_ohci *ohci ) { u32 c0 ; u32 c1 ; u32 c2 ; u32 t0 ; u32 t1 ; u32 t2 ; s32 diff01 ; s32 diff12 ; int i ; int tmp ; { c2 = reg_read((struct fw_ohci const *)ohci, 240); if ((int )ohci->quirks & 1) { i = 0; c1 = c2; c2 = reg_read((struct fw_ohci const *)ohci, 240); ldv_33944: c0 = c1; c1 = c2; c2 = reg_read((struct fw_ohci const *)ohci, 240); t0 = cycle_timer_ticks(c0); t1 = cycle_timer_ticks(c1); t2 = cycle_timer_ticks(c2); diff01 = (s32 )(t1 - t0); diff12 = (s32 )(t2 - t1); if (((diff01 <= 0 || diff12 <= 0) || diff01 / diff12 > 1) || diff12 / diff01 > 1) { tmp = i; i = i + 1; if (tmp <= 19) { goto ldv_33944; } else { goto ldv_33945; } } else { } ldv_33945: ; } else { } return (c2); } } static u32 update_bus_time(struct fw_ohci *ohci ) { u32 cycle_time_seconds ; u32 tmp ; unsigned long tmp___0 ; long tmp___1 ; { tmp = get_cycle_time(ohci); cycle_time_seconds = tmp >> 25; tmp___1 = ldv__builtin_expect((long )(! ohci->bus_time_running), 0L); if (tmp___1 != 0L) { reg_write((struct fw_ohci const *)ohci, 136, 2097152U); tmp___0 = get_seconds(); ohci->bus_time = ((unsigned int )tmp___0 & 4294967168U) | (cycle_time_seconds & 64U); ohci->bus_time_running = 1; } else { } if (((ohci->bus_time ^ cycle_time_seconds) & 64U) != 0U) { ohci->bus_time = ohci->bus_time + 64U; } else { } return (ohci->bus_time | cycle_time_seconds); } } static int get_status_for_port(struct fw_ohci *ohci , int port_index ) { int reg ; { ldv_mutex_lock_21(& ohci->phy_reg_mutex); reg = write_phy_reg((struct fw_ohci const *)ohci, 7, (u32 )port_index); if (reg >= 0) { reg = read_phy_reg(ohci, 8); } else { } ldv_mutex_unlock_22(& ohci->phy_reg_mutex); if (reg < 0) { return (reg); } else { } switch (reg & 15) { case 6: ; return (2); case 14: ; return (3); } return (1); } } static int get_self_id_pos(struct fw_ohci *ohci , u32 self_id , int self_id_count ) { int i ; u32 entry ; { i = 0; goto ldv_33965; ldv_33964: entry = ohci->self_id_buffer[i]; if (((self_id ^ entry) & 4278190080U) == 0U) { return (-1); } else { } if ((self_id & 4278190080U) < (entry & 4278190080U)) { return (i); } else { } i = i + 1; ldv_33965: ; if (i < self_id_count) { goto ldv_33964; } else { } return (i); } } static int initiated_reset(struct fw_ohci *ohci ) { int reg ; int ret ; { ret = 0; ldv_mutex_lock_23(& ohci->phy_reg_mutex); reg = write_phy_reg((struct fw_ohci const *)ohci, 7, 224U); if (reg >= 0) { reg = read_phy_reg(ohci, 8); reg = reg | 64; reg = write_phy_reg((struct fw_ohci const *)ohci, 8, (u32 )reg); if (reg >= 0) { reg = read_phy_reg(ohci, 12); if (reg >= 0) { if ((reg & 8) != 0) { ret = 2; } else { } } else { } } else { } } else { } ldv_mutex_unlock_24(& ohci->phy_reg_mutex); return (ret); } } static int find_and_insert_self_id(struct fw_ohci *ohci , int self_id_count ) { int reg ; int i ; int pos ; int status ; u32 self_id ; u32 tmp ; int tmp___0 ; { self_id = 2151729152U; tmp = reg_read((struct fw_ohci const *)ohci, 232); reg = (int )tmp; if (reg >= 0) { dev_notice((struct device const *)ohci->card.device, "node ID not valid, new bus reset in progress\n"); return (-16); } else { } self_id = (u32 )((reg & 63) << 24) | self_id; reg = ohci_read_phy_reg(& ohci->card, 4); if (reg < 0) { return (reg); } else { } self_id = (u32 )((reg & 7) << 8) | self_id; reg = ohci_read_phy_reg(& ohci->card, 1); if (reg < 0) { return (reg); } else { } self_id = (u32 )((reg & 63) << 16) | self_id; i = 0; goto ldv_33982; ldv_33981: status = get_status_for_port(ohci, i); if (status < 0) { return (status); } else { } self_id = (u32 )((status & 3) << (3 - i) * 2) | self_id; i = i + 1; ldv_33982: ; if (i <= 2) { goto ldv_33981; } else { } tmp___0 = initiated_reset(ohci); self_id = (u32 )tmp___0 | self_id; pos = get_self_id_pos(ohci, self_id, self_id_count); if (pos >= 0) { __memmove((void *)(& ohci->self_id_buffer) + ((unsigned long )pos + 1UL), (void const *)(& ohci->self_id_buffer) + (unsigned long )pos, (unsigned long )(self_id_count - pos) * 4UL); ohci->self_id_buffer[pos] = self_id; self_id_count = self_id_count + 1; } else { } return (self_id_count); } } static void bus_reset_work(struct work_struct *work ) { struct fw_ohci *ohci ; struct work_struct const *__mptr ; int self_id_count ; int generation ; int new_generation ; int i ; int j ; u32 reg ; void *free_rom ; dma_addr_t free_rom_bus ; bool is_new_root ; u32 id ; u32 id2 ; u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; { __mptr = (struct work_struct const *)work; ohci = (struct fw_ohci *)__mptr + 0xfffffffffffff508UL; free_rom = (void *)0; free_rom_bus = 0ULL; reg = reg_read((struct fw_ohci const *)ohci, 232); if ((int )reg >= 0) { dev_notice((struct device const *)ohci->card.device, "node ID not valid, new bus reset in progress\n"); return; } else { } if ((reg & 63U) == 63U) { dev_notice((struct device const *)ohci->card.device, "malconfigured bus\n"); return; } else { } ohci->node_id = (int )reg & 65535; is_new_root = (reg & 1073741824U) != 0U; if (! ohci->is_root || ! is_new_root) { reg_write((struct fw_ohci const *)ohci, 224, 2097152U); } else { } ohci->is_root = is_new_root; reg = reg_read((struct fw_ohci const *)ohci, 104); if ((int )reg < 0) { dev_notice((struct device const *)ohci->card.device, "self ID receive error\n"); return; } else { } self_id_count = (int )(reg >> 3) & 255; if (self_id_count > 252) { dev_notice((struct device const *)ohci->card.device, "bad selfIDSize (%08x)\n", reg); return; } else { } generation = (int )(*(ohci->self_id) >> 16) & 255; __asm__ volatile ("lfence": : : "memory"); i = 1; j = 0; goto ldv_34003; ldv_34002: id = *(ohci->self_id + (unsigned long )i); id2 = *(ohci->self_id + ((unsigned long )i + 1UL)); if (~ id2 != id) { if (id == 4294901903U) { dev_notice((struct device const *)ohci->card.device, "ignoring spurious self IDs\n"); self_id_count = j; goto ldv_34001; } else { } dev_notice((struct device const *)ohci->card.device, "bad self ID %d/%d (%08x != ~%08x)\n", j, self_id_count, id, id2); return; } else { } ohci->self_id_buffer[j] = id; i = i + 2; j = j + 1; ldv_34003: ; if (j < self_id_count) { goto ldv_34002; } else { } ldv_34001: ; if ((ohci->quirks & 32U) != 0U) { self_id_count = find_and_insert_self_id(ohci, self_id_count); if (self_id_count < 0) { dev_notice((struct device const *)ohci->card.device, "could not construct local self ID\n"); return; } else { } } else { } if (self_id_count == 0) { dev_notice((struct device const *)ohci->card.device, "no self IDs\n"); return; } else { } __asm__ volatile ("lfence": : : "memory"); tmp = reg_read((struct fw_ohci const *)ohci, 104); new_generation = (int )(tmp >> 16) & 255; if (new_generation != generation) { dev_notice((struct device const *)ohci->card.device, "new bus reset, discarding self ids\n"); return; } else { } spin_lock_irq(& ohci->lock); ohci->generation = -1; context_stop(& ohci->at_request_ctx); context_stop(& ohci->at_response_ctx); spin_unlock_irq(& ohci->lock); at_context_flush(& ohci->at_request_ctx); at_context_flush(& ohci->at_response_ctx); spin_lock_irq(& ohci->lock); ohci->generation = generation; reg_write((struct fw_ohci const *)ohci, 132, 131072U); if ((ohci->quirks & 2U) != 0U) { ohci->request_generation = generation; } else { } if ((unsigned long )ohci->next_config_rom != (unsigned long )((__be32 *)0U)) { if ((unsigned long )ohci->next_config_rom != (unsigned long )ohci->config_rom) { free_rom = (void *)ohci->config_rom; free_rom_bus = ohci->config_rom_bus; } else { } ohci->config_rom = ohci->next_config_rom; ohci->config_rom_bus = ohci->next_config_rom_bus; ohci->next_config_rom = (__be32 *)0U; tmp___0 = __fswab32(*(ohci->config_rom + 2UL)); reg_write((struct fw_ohci const *)ohci, 32, tmp___0); *(ohci->config_rom) = ohci->next_header; tmp___1 = __fswab32(ohci->next_header); reg_write((struct fw_ohci const *)ohci, 24, tmp___1); } else { } if ((int )param_remote_dma) { reg_write((struct fw_ohci const *)ohci, 272, 4294967295U); reg_write((struct fw_ohci const *)ohci, 280, 4294967295U); } else { } spin_unlock_irq(& ohci->lock); if ((unsigned long )free_rom != (unsigned long )((void *)0)) { dma_free_attrs(ohci->card.device, 1024UL, free_rom, free_rom_bus, (struct dma_attrs *)0); } else { } log_selfids(ohci, generation, self_id_count); fw_core_handle_bus_reset(& ohci->card, ohci->node_id, generation, self_id_count, (u32 *)(& ohci->self_id_buffer), (int )ohci->csr_state_setclear_abdicate); ohci->csr_state_setclear_abdicate = 0; return; } } static irqreturn_t irq_handler(int irq , void *data ) { struct fw_ohci *ohci ; u32 event ; u32 iso_event ; int i ; int tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; { ohci = (struct fw_ohci *)data; event = reg_read((struct fw_ohci const *)ohci, 132); if (event == 0U || event == 4294967295U) { return (0); } else { } reg_write((struct fw_ohci const *)ohci, 132, event & 4294835967U); log_irqs(ohci, event); if ((event & 65536U) != 0U) { queue_work(selfid_workqueue, & ohci->bus_reset_work); } else { } if ((event & 16U) != 0U) { tasklet_schedule(& ohci->ar_request_ctx.tasklet); } else { } if ((event & 32U) != 0U) { tasklet_schedule(& ohci->ar_response_ctx.tasklet); } else { } if ((int )event & 1) { tasklet_schedule(& ohci->at_request_ctx.tasklet); } else { } if ((event & 2U) != 0U) { tasklet_schedule(& ohci->at_response_ctx.tasklet); } else { } if ((event & 128U) != 0U) { iso_event = reg_read((struct fw_ohci const *)ohci, 164); reg_write((struct fw_ohci const *)ohci, 164, iso_event); goto ldv_34013; ldv_34012: tmp = ffs((int )iso_event); i = tmp + -1; tasklet_schedule(& (ohci->ir_context_list + (unsigned long )i)->context.tasklet); iso_event = (u32 )(~ (1 << i)) & iso_event; ldv_34013: ; if (iso_event != 0U) { goto ldv_34012; } else { } } else { } if ((event & 64U) != 0U) { iso_event = reg_read((struct fw_ohci const *)ohci, 148); reg_write((struct fw_ohci const *)ohci, 148, iso_event); goto ldv_34016; ldv_34015: tmp___0 = ffs((int )iso_event); i = tmp___0 + -1; tasklet_schedule(& (ohci->it_context_list + (unsigned long )i)->context.tasklet); iso_event = (u32 )(~ (1 << i)) & iso_event; ldv_34016: ; if (iso_event != 0U) { goto ldv_34015; } else { } } else { } tmp___1 = ldv__builtin_expect((event & 262144U) != 0U, 0L); if (tmp___1 != 0L) { dev_err((struct device const *)ohci->card.device, "register access failure\n"); } else { } tmp___3 = ldv__builtin_expect((event & 256U) != 0U, 0L); if (tmp___3 != 0L) { reg_read((struct fw_ohci const *)ohci, 60); reg_read((struct fw_ohci const *)ohci, 56); reg_write((struct fw_ohci const *)ohci, 132, 256U); tmp___2 = __printk_ratelimit("irq_handler"); if (tmp___2 != 0) { dev_err((struct device const *)ohci->card.device, "PCI posted write error\n"); } else { } } else { } tmp___5 = ldv__builtin_expect((event & 33554432U) != 0U, 0L); if (tmp___5 != 0L) { tmp___4 = __printk_ratelimit("irq_handler"); if (tmp___4 != 0) { dev_notice((struct device const *)ohci->card.device, "isochronous cycle too long\n"); } else { } reg_write((struct fw_ohci const *)ohci, 224, 2097152U); } else { } tmp___7 = ldv__builtin_expect((event & 8388608U) != 0U, 0L); if (tmp___7 != 0L) { tmp___6 = __printk_ratelimit("irq_handler"); if (tmp___6 != 0) { dev_notice((struct device const *)ohci->card.device, "isochronous cycle inconsistent\n"); } else { } } else { } tmp___8 = ldv__builtin_expect((event & 16777216U) != 0U, 0L); if (tmp___8 != 0L) { handle_dead_contexts(ohci); } else { } if ((event & 2097152U) != 0U) { spin_lock(& ohci->lock); update_bus_time(ohci); spin_unlock(& ohci->lock); } else { flush_writes((struct fw_ohci const *)ohci); } return (1); } } static int software_reset(struct fw_ohci *ohci ) { u32 val ; int i ; { reg_write((struct fw_ohci const *)ohci, 80, 65536U); i = 0; goto ldv_34025; ldv_34024: val = reg_read((struct fw_ohci const *)ohci, 80); if (val == 4294967295U) { return (-19); } else { } if ((val & 65536U) == 0U) { return (0); } else { } msleep(1U); i = i + 1; ldv_34025: ; if (i <= 499) { goto ldv_34024; } else { } return (-16); } } static void copy_config_rom(__be32 *dest , __be32 const *src , size_t length ) { size_t size ; { size = length * 4UL; memcpy((void *)dest, (void const *)src, size); if (size <= 1023UL) { memset((void *)(dest + length), 0, 1024UL - size); } else { } return; } } static int configure_1394a_enhancements(struct fw_ohci *ohci ) { bool enable_1394a ; int ret ; int clear ; int set ; int offset ; u32 tmp ; { tmp = reg_read((struct fw_ohci const *)ohci, 80); if ((tmp & 8388608U) == 0U) { return (0); } else { } enable_1394a = 0; ret = read_phy_reg(ohci, 2); if (ret < 0) { return (ret); } else { } if ((ret & 224) == 224) { ret = read_paged_phy_reg(ohci, 1, 8); if (ret < 0) { return (ret); } else { } if (ret > 0) { enable_1394a = 1; } else { } } else { } if ((ohci->quirks & 8U) != 0U) { enable_1394a = 0; } else { } if ((int )enable_1394a) { clear = 0; set = 3; } else { clear = 3; set = 0; } ret = update_phy_reg(ohci, 5, clear, set); if (ret < 0) { return (ret); } else { } if ((int )enable_1394a) { offset = 80; } else { offset = 84; } reg_write((struct fw_ohci const *)ohci, offset, 4194304U); reg_write((struct fw_ohci const *)ohci, 84, 8388608U); return (0); } } static int probe_tsb41ba3d(struct fw_ohci *ohci ) { u8 id[6U] ; int reg ; int i ; { id[0] = 8U; id[1] = 0U; id[2] = 40U; id[3] = 131U; id[4] = 48U; id[5] = 5U; reg = read_phy_reg(ohci, 2); if (reg < 0) { return (reg); } else { } if ((reg & 224) != 224) { return (0); } else { } i = 5; goto ldv_34050; ldv_34049: reg = read_paged_phy_reg(ohci, 1, i + 10); if (reg < 0) { return (reg); } else { } if ((int )id[i] != reg) { return (0); } else { } i = i - 1; ldv_34050: ; if (i >= 0) { goto ldv_34049; } else { } return (1); } } static int ohci_enable(struct fw_card *card , __be32 const *config_rom , size_t length ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; u32 lps ; u32 version ; u32 irqs ; int i ; int ret ; int tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; void *tmp___4 ; __u32 tmp___5 ; { tmp = fw_ohci(card); ohci = tmp; tmp___0 = software_reset(ohci); if (tmp___0 != 0) { dev_err((struct device const *)ohci->card.device, "failed to reset ohci card\n"); return (-16); } else { } reg_write((struct fw_ohci const *)ohci, 80, 786432U); flush_writes((struct fw_ohci const *)ohci); lps = 0U; i = 0; goto ldv_34064; ldv_34063: msleep(50U); tmp___1 = reg_read((struct fw_ohci const *)ohci, 80); lps = tmp___1 & 524288U; i = i + 1; ldv_34064: ; if (lps == 0U && i <= 2) { goto ldv_34063; } else { } if (lps == 0U) { dev_err((struct device const *)ohci->card.device, "failed to set Link Power Status\n"); return (-5); } else { } if ((ohci->quirks & 32U) != 0U) { ret = probe_tsb41ba3d(ohci); if (ret < 0) { return (ret); } else { } if (ret != 0) { dev_notice((struct device const *)ohci->card.device, "local TSB41BA3D phy\n"); } else { ohci->quirks = ohci->quirks & 4294967263U; } } else { } reg_write((struct fw_ohci const *)ohci, 84, 1073741824U); reg_write((struct fw_ohci const *)ohci, 100, (u32 )ohci->self_id_bus); reg_write((struct fw_ohci const *)ohci, 224, 3145728U); reg_write((struct fw_ohci const *)ohci, 8, 13109295U); ohci->bus_time_running = 0; i = 0; goto ldv_34067; ldv_34066: ; if ((ohci->ir_context_support & (u32 )(1 << i)) != 0U) { reg_write((struct fw_ohci const *)ohci, i * 32 + 1028, 268435456U); } else { } i = i + 1; ldv_34067: ; if (i <= 31) { goto ldv_34066; } else { } tmp___2 = reg_read((struct fw_ohci const *)ohci, 0); version = tmp___2 & 16711935U; if (version > 65551U) { reg_write((struct fw_ohci const *)ohci, 180, 4294967294U); card->broadcast_channel_auto_allocated = 1; } else { } reg_write((struct fw_ohci const *)ohci, 220, 63U); tmp___3 = reg_read((struct fw_ohci const *)ohci, 220); ohci->pri_req_max = tmp___3 & 63U; reg_write((struct fw_ohci const *)ohci, 220, 0U); card->priority_budget_implemented = ohci->pri_req_max != 0U; reg_write((struct fw_ohci const *)ohci, 288, 65536U); reg_write((struct fw_ohci const *)ohci, 132, 4294967295U); reg_write((struct fw_ohci const *)ohci, 140, 4294967295U); ret = configure_1394a_enhancements(ohci); if (ret < 0) { return (ret); } else { } ret = ohci_update_phy_reg(card, 4, 0, 192); if (ret < 0) { return (ret); } else { } if ((unsigned long )config_rom != (unsigned long )((__be32 const *)0U)) { tmp___4 = dma_alloc_attrs(ohci->card.device, 1024UL, & ohci->next_config_rom_bus, 208U, (struct dma_attrs *)0); ohci->next_config_rom = (__be32 *)tmp___4; if ((unsigned long )ohci->next_config_rom == (unsigned long )((__be32 *)0U)) { return (-12); } else { } copy_config_rom(ohci->next_config_rom, config_rom, length); } else { ohci->next_config_rom = ohci->config_rom; ohci->next_config_rom_bus = ohci->config_rom_bus; } ohci->next_header = *(ohci->next_config_rom); *(ohci->next_config_rom) = 0U; reg_write((struct fw_ohci const *)ohci, 24, 0U); tmp___5 = __fswab32(*(ohci->next_config_rom + 2UL)); reg_write((struct fw_ohci const *)ohci, 32, tmp___5); reg_write((struct fw_ohci const *)ohci, 52, (u32 )ohci->next_config_rom_bus); reg_write((struct fw_ohci const *)ohci, 256, 2147483648U); irqs = 2206532083U; if ((param_debug & 8) != 0) { irqs = irqs | 131072U; } else { } reg_write((struct fw_ohci const *)ohci, 136, irqs); reg_write((struct fw_ohci const *)ohci, 80, 2147614720U); reg_write((struct fw_ohci const *)ohci, 224, 1536U); ar_context_run(& ohci->ar_request_ctx); ar_context_run(& ohci->ar_response_ctx); flush_writes((struct fw_ohci const *)ohci); fw_schedule_bus_reset(& ohci->card, 0, 1); return (0); } } static int ohci_set_config_rom(struct fw_card *card , __be32 const *config_rom , size_t length ) { struct fw_ohci *ohci ; __be32 *next_config_rom ; dma_addr_t next_config_rom_bus ; void *tmp ; { next_config_rom_bus = next_config_rom_bus; ohci = fw_ohci(card); tmp = dma_alloc_attrs(ohci->card.device, 1024UL, & next_config_rom_bus, 208U, (struct dma_attrs *)0); next_config_rom = (__be32 *)tmp; if ((unsigned long )next_config_rom == (unsigned long )((__be32 *)0U)) { return (-12); } else { } spin_lock_irq(& ohci->lock); if ((unsigned long )ohci->next_config_rom == (unsigned long )((__be32 *)0U)) { ohci->next_config_rom = next_config_rom; ohci->next_config_rom_bus = next_config_rom_bus; next_config_rom = (__be32 *)0U; } else { } copy_config_rom(ohci->next_config_rom, config_rom, length); ohci->next_header = *config_rom; *(ohci->next_config_rom) = 0U; reg_write((struct fw_ohci const *)ohci, 52, (u32 )ohci->next_config_rom_bus); spin_unlock_irq(& ohci->lock); if ((unsigned long )next_config_rom != (unsigned long )((__be32 *)0U)) { dma_free_attrs(ohci->card.device, 1024UL, (void *)next_config_rom, next_config_rom_bus, (struct dma_attrs *)0); } else { } fw_schedule_bus_reset(& ohci->card, 1, 1); return (0); } } static void ohci_send_request(struct fw_card *card , struct fw_packet *packet ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; { tmp = fw_ohci(card); ohci = tmp; at_context_transmit(& ohci->at_request_ctx, packet); return; } } static void ohci_send_response(struct fw_card *card , struct fw_packet *packet ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; { tmp = fw_ohci(card); ohci = tmp; at_context_transmit(& ohci->at_response_ctx, packet); return; } } static int ohci_cancel_packet(struct fw_card *card , struct fw_packet *packet ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; struct context *ctx ; struct driver_data *driver_data ; int ret ; { tmp = fw_ohci(card); ohci = tmp; ctx = & ohci->at_request_ctx; driver_data = (struct driver_data *)packet->driver_data; ret = -2; tasklet_disable(& ctx->tasklet); if (packet->ack != 0) { goto out; } else { } if ((int )packet->payload_mapped) { dma_unmap_single_attrs(ohci->card.device, packet->payload_bus, packet->payload_length, 1, (struct dma_attrs *)0); } else { } log_ar_at_event(ohci, 84, packet->speed, (u32 *)(& packet->header), 32); driver_data->packet = (struct fw_packet *)0; packet->ack = 17; (*(packet->callback))(packet, & ohci->card, packet->ack); ret = 0; out: tasklet_enable(& ctx->tasklet); return (ret); } } static int ohci_enable_phys_dma(struct fw_card *card , int node_id , int generation ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; unsigned long flags ; int n ; int ret ; raw_spinlock_t *tmp___0 ; { tmp = fw_ohci(card); ohci = tmp; ret = 0; if ((int )param_remote_dma) { return (0); } else { } tmp___0 = spinlock_check(& ohci->lock); flags = _raw_spin_lock_irqsave(tmp___0); if (ohci->generation != generation) { ret = -116; goto out; } else { } n = (node_id & 65472) == 65472 ? node_id & 63 : 63; if (n <= 31) { reg_write((struct fw_ohci const *)ohci, 280, (u32 )(1 << n)); } else { reg_write((struct fw_ohci const *)ohci, 272, (u32 )(1 << (n + -32))); } flush_writes((struct fw_ohci const *)ohci); out: spin_unlock_irqrestore(& ohci->lock, flags); return (ret); } } static u32 ohci_read_csr(struct fw_card *card , int csr_offset ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; unsigned long flags ; u32 value ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; raw_spinlock_t *tmp___3 ; u32 tmp___4 ; int __ret_warn_on ; long tmp___5 ; { tmp = fw_ohci(card); ohci = tmp; switch (csr_offset) { case 0: ; case 4: ; if ((int )ohci->is_root) { tmp___0 = reg_read((struct fw_ohci const *)ohci, 224); if ((tmp___0 & 2097152U) != 0U) { value = 256U; } else { value = 0U; } } else { value = 0U; } if ((int )ohci->csr_state_setclear_abdicate) { value = value | 1024U; } else { } return (value); case 8: tmp___1 = reg_read((struct fw_ohci const *)ohci, 232); return (tmp___1 << 16); case 512: tmp___2 = get_cycle_time(ohci); return (tmp___2); case 516: tmp___3 = spinlock_check(& ohci->lock); flags = _raw_spin_lock_irqsave(tmp___3); value = update_bus_time(ohci); spin_unlock_irqrestore(& ohci->lock, flags); return (value); case 528: value = reg_read((struct fw_ohci const *)ohci, 8); return ((value >> 4) & 268431375U); case 536: tmp___4 = reg_read((struct fw_ohci const *)ohci, 220); return ((tmp___4 & 63U) | (ohci->pri_req_max << 8)); default: __ret_warn_on = 1; tmp___5 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___5 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/13363/dscv_tempdir/dscv/ri/32_7a/drivers/firewire/ohci.c", 2666); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); return (0U); } } } static void ohci_write_csr(struct fw_card *card , int csr_offset , u32 value ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; unsigned long flags ; raw_spinlock_t *tmp___0 ; u32 tmp___1 ; int __ret_warn_on ; long tmp___2 ; { tmp = fw_ohci(card); ohci = tmp; switch (csr_offset) { case 0: ; if ((value & 256U) != 0U && (int )ohci->is_root) { reg_write((struct fw_ohci const *)ohci, 228, 2097152U); flush_writes((struct fw_ohci const *)ohci); } else { } if ((value & 1024U) != 0U) { ohci->csr_state_setclear_abdicate = 0; } else { } goto ldv_34137; case 4: ; if ((value & 256U) != 0U && (int )ohci->is_root) { reg_write((struct fw_ohci const *)ohci, 224, 2097152U); flush_writes((struct fw_ohci const *)ohci); } else { } if ((value & 1024U) != 0U) { ohci->csr_state_setclear_abdicate = 1; } else { } goto ldv_34137; case 8: reg_write((struct fw_ohci const *)ohci, 232, value >> 16); flush_writes((struct fw_ohci const *)ohci); goto ldv_34137; case 512: reg_write((struct fw_ohci const *)ohci, 240, value); reg_write((struct fw_ohci const *)ohci, 128, 8388608U); flush_writes((struct fw_ohci const *)ohci); goto ldv_34137; case 516: tmp___0 = spinlock_check(& ohci->lock); flags = _raw_spin_lock_irqsave(tmp___0); tmp___1 = update_bus_time(ohci); ohci->bus_time = (tmp___1 & 64U) | (value & 4294967168U); spin_unlock_irqrestore(& ohci->lock, flags); goto ldv_34137; case 528: value = (((value & 15U) | ((value << 4) & 255U)) | ((value & 15U) << 8)) | ((value & 268431360U) << 4); reg_write((struct fw_ohci const *)ohci, 8, value); flush_writes((struct fw_ohci const *)ohci); goto ldv_34137; case 536: reg_write((struct fw_ohci const *)ohci, 220, value & 63U); flush_writes((struct fw_ohci const *)ohci); goto ldv_34137; default: __ret_warn_on = 1; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___2 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/13363/dscv_tempdir/dscv/ri/32_7a/drivers/firewire/ohci.c", 2729); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); goto ldv_34137; } ldv_34137: ; return; } } static void flush_iso_completions(struct iso_context *ctx ) { { (*(ctx->base.callback.sc))(& ctx->base, (u32 )ctx->last_timestamp, ctx->header_length, ctx->header, ctx->base.callback_data); ctx->header_length = 0UL; return; } } static void copy_iso_headers(struct iso_context *ctx , u32 const *dma_hdr ) { u32 *ctx_hdr ; __u32 tmp ; __u32 tmp___0 ; { if (ctx->header_length + ctx->base.header_size > 4096UL) { if ((int )ctx->base.drop_overflow_headers) { return; } else { } flush_iso_completions(ctx); } else { } ctx_hdr = (u32 *)(ctx->header + ctx->header_length); ctx->last_timestamp = (unsigned short )*dma_hdr; if (ctx->base.header_size != 0UL) { tmp = __fswab32(*(dma_hdr + 1UL)); *ctx_hdr = tmp; } else { } if (ctx->base.header_size > 4UL) { tmp___0 = __fswab32(*dma_hdr); *(ctx_hdr + 1UL) = tmp___0; } else { } if (ctx->base.header_size > 8UL) { memcpy((void *)ctx_hdr + 2U, (void const *)dma_hdr + 2U, ctx->base.header_size - 8UL); } else { } ctx->header_length = ctx->header_length + ctx->base.header_size; return; } } static int handle_ir_packet_per_buffer(struct context *context , struct descriptor *d , struct descriptor *last ) { struct iso_context *ctx ; struct context const *__mptr ; struct descriptor *pd ; u32 buffer_dma ; { __mptr = (struct context const *)context; ctx = (struct iso_context *)__mptr + 0xffffffffffffffd0UL; pd = d; goto ldv_34170; ldv_34169: ; if ((unsigned int )pd->transfer_status != 0U) { goto ldv_34168; } else { } pd = pd + 1; ldv_34170: ; if ((unsigned long )pd <= (unsigned long )last) { goto ldv_34169; } else { } ldv_34168: ; if ((unsigned long )pd > (unsigned long )last) { return (0); } else { } goto ldv_34172; ldv_34171: d = d + 1; buffer_dma = d->data_address; dma_sync_single_range_for_cpu((context->ohci)->card.device, (dma_addr_t )buffer_dma & 0xfffffffffffff000ULL, (unsigned long )buffer_dma & 4095UL, (size_t )d->req_count, 2); ldv_34172: ; if (((int )d->control & 12) == 0) { goto ldv_34171; } else { } copy_iso_headers(ctx, (u32 const *)last + 1U); if (((int )last->control & 48) != 0) { flush_iso_completions(ctx); } else { } return (1); } } static int handle_ir_buffer_fill(struct context *context , struct descriptor *d , struct descriptor *last ) { struct iso_context *ctx ; struct context const *__mptr ; unsigned int req_count ; unsigned int res_count ; unsigned int completed ; u32 buffer_dma ; __le16 __var ; { __mptr = (struct context const *)context; ctx = (struct iso_context *)__mptr + 0xffffffffffffffd0UL; req_count = (unsigned int )last->req_count; __var = 0U; res_count = (unsigned int )*((__le16 volatile *)(& last->res_count)); completed = req_count - res_count; buffer_dma = last->data_address; if (completed != 0U) { ctx->mc_buffer_bus = buffer_dma; ctx->mc_completed = (u16 )completed; } else { } if (res_count != 0U) { return (0); } else { } dma_sync_single_range_for_cpu((context->ohci)->card.device, (dma_addr_t )buffer_dma & 0xfffffffffffff000ULL, (unsigned long )buffer_dma & 4095UL, (size_t )completed, 2); if (((int )last->control & 48) != 0) { (*(ctx->base.callback.mc))(& ctx->base, (dma_addr_t )(buffer_dma + completed), ctx->base.callback_data); ctx->mc_completed = 0U; } else { } return (1); } } static void flush_ir_buffer_fill(struct iso_context *ctx ) { { dma_sync_single_range_for_cpu((ctx->context.ohci)->card.device, (dma_addr_t )ctx->mc_buffer_bus & 0xfffffffffffff000ULL, (unsigned long )ctx->mc_buffer_bus & 4095UL, (size_t )ctx->mc_completed, 2); (*(ctx->base.callback.mc))(& ctx->base, (dma_addr_t )(ctx->mc_buffer_bus + (u32 )ctx->mc_completed), ctx->base.callback_data); ctx->mc_completed = 0U; return; } } __inline static void sync_it_packet_for_cpu(struct context *context , struct descriptor *pd ) { __le16 control ; u32 buffer_dma ; { if (((int )pd->control & 12) != 0) { return; } else { } pd = pd + 2UL; if ((((unsigned long )pd->data_address ^ (unsigned long )context->current_bus) & 0xfffffffffffff000UL) == 0UL) { if (((int )pd->control & 12) != 0) { return; } else { } pd = pd + 1; } else { } ldv_34197: buffer_dma = pd->data_address; dma_sync_single_range_for_cpu((context->ohci)->card.device, (dma_addr_t )buffer_dma & 0xfffffffffffff000ULL, (unsigned long )buffer_dma & 4095UL, (size_t )pd->req_count, 1); control = pd->control; pd = pd + 1; if (((int )control & 12) == 0) { goto ldv_34197; } else { } return; } } static int handle_it_packet(struct context *context , struct descriptor *d , struct descriptor *last ) { struct iso_context *ctx ; struct context const *__mptr ; struct descriptor *pd ; __be32 *ctx_hdr ; __u32 tmp ; { __mptr = (struct context const *)context; ctx = (struct iso_context *)__mptr + 0xffffffffffffffd0UL; pd = d; goto ldv_34211; ldv_34210: ; if ((unsigned int )pd->transfer_status != 0U) { goto ldv_34209; } else { } pd = pd + 1; ldv_34211: ; if ((unsigned long )pd <= (unsigned long )last) { goto ldv_34210; } else { } ldv_34209: ; if ((unsigned long )pd > (unsigned long )last) { return (0); } else { } sync_it_packet_for_cpu(context, d); if (ctx->header_length + 4UL > 4096UL) { if ((int )ctx->base.drop_overflow_headers) { return (1); } else { } flush_iso_completions(ctx); } else { } ctx_hdr = (__be32 *)(ctx->header + ctx->header_length); ctx->last_timestamp = last->res_count; tmp = __fswab32((__u32 )(((int )pd->transfer_status << 16) | (int )pd->res_count)); *ctx_hdr = tmp; ctx->header_length = ctx->header_length + 4UL; if (((int )last->control & 48) != 0) { flush_iso_completions(ctx); } else { } return (1); } } static void set_multichannel_mask(struct fw_ohci *ohci , u64 channels ) { u32 hi ; u32 lo ; { hi = (u32 )(channels >> 32); lo = (u32 )channels; reg_write((struct fw_ohci const *)ohci, 116, ~ hi); reg_write((struct fw_ohci const *)ohci, 124, ~ lo); reg_write((struct fw_ohci const *)ohci, 112, hi); reg_write((struct fw_ohci const *)ohci, 120, lo); __asm__ volatile ("": : : "memory"); ohci->mc_channels = channels; return; } } static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card , int type , int channel , size_t header_size ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; struct iso_context *ctx ; int (*callback)(struct context * , struct descriptor * , struct descriptor * ) ; u64 *channels ; u32 *mask ; u32 regs ; int index ; int ret ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; unsigned long tmp___4 ; void *tmp___5 ; { tmp = fw_ohci(card); ohci = tmp; ctx = ctx; callback = callback; channels = channels; mask = mask; regs = regs; ret = -16; spin_lock_irq(& ohci->lock); switch (type) { case 0: mask = & ohci->it_context_mask; callback = & handle_it_packet; tmp___0 = ffs((int )*mask); index = tmp___0 + -1; if (index >= 0) { *mask = *mask & (u32 )(~ (1 << index)); regs = (u32 )((index + 32) * 16); ctx = ohci->it_context_list + (unsigned long )index; } else { } goto ldv_34233; case 1: channels = & ohci->ir_context_channels; mask = & ohci->ir_context_mask; callback = & handle_ir_packet_per_buffer; if ((int )(*channels >> channel) & 1) { tmp___1 = ffs((int )*mask); index = tmp___1 + -1; } else { index = -1; } if (index >= 0) { *channels = *channels & ~ (1ULL << channel); *mask = *mask & (u32 )(~ (1 << index)); regs = (u32 )((index + 32) * 32); ctx = ohci->ir_context_list + (unsigned long )index; } else { } goto ldv_34233; case 2: mask = & ohci->ir_context_mask; callback = & handle_ir_buffer_fill; if (! ohci->mc_allocated) { tmp___2 = ffs((int )*mask); index = tmp___2 + -1; } else { index = -1; } if (index >= 0) { ohci->mc_allocated = 1; *mask = *mask & (u32 )(~ (1 << index)); regs = (u32 )((index + 32) * 32); ctx = ohci->ir_context_list + (unsigned long )index; } else { } goto ldv_34233; default: index = -1; ret = -38; } ldv_34233: spin_unlock_irq(& ohci->lock); if (index < 0) { tmp___3 = ERR_PTR((long )ret); return ((struct fw_iso_context *)tmp___3); } else { } memset((void *)ctx, 0, 208UL); ctx->header_length = 0UL; tmp___4 = __get_free_pages(208U, 0U); ctx->header = (void *)tmp___4; if ((unsigned long )ctx->header == (unsigned long )((void *)0)) { ret = -12; goto out; } else { } ret = context_init(& ctx->context, ohci, regs, callback); if (ret < 0) { goto out_with_header; } else { } if (type == 2) { set_multichannel_mask(ohci, 0ULL); ctx->mc_completed = 0U; } else { } return (& ctx->base); out_with_header: free_pages((unsigned long )ctx->header, 0U); out: spin_lock_irq(& ohci->lock); switch (type) { case 1: *channels = *channels | (1ULL << channel); goto ldv_34240; case 2: ohci->mc_allocated = 0; goto ldv_34240; } ldv_34240: *mask = *mask | (u32 )(1 << index); spin_unlock_irq(& ohci->lock); tmp___5 = ERR_PTR((long )ret); return ((struct fw_iso_context *)tmp___5); } } static int ohci_start_iso(struct fw_iso_context *base , s32 cycle , u32 sync , u32 tags ) { struct iso_context *ctx ; struct fw_iso_context const *__mptr ; struct fw_ohci *ohci ; u32 control ; u32 match ; int index ; { __mptr = (struct fw_iso_context const *)base; ctx = (struct iso_context *)__mptr; ohci = ctx->context.ohci; control = 1073741824U; if ((ctx->context.last)->branch_address == 0U) { return (-61); } else { } switch (ctx->base.type) { case 0: index = (int )(((long )ctx - (long )ohci->it_context_list) / 208L); match = 0U; if (cycle >= 0) { match = (unsigned int )((cycle & 32767) << 16) | 2147483648U; } else { } reg_write((struct fw_ohci const *)ohci, 148, (u32 )(1 << index)); reg_write((struct fw_ohci const *)ohci, 152, (u32 )(1 << index)); context_run(& ctx->context, match); goto ldv_34256; case 2: control = control | 2415919104U; case 1: index = (int )(((long )ctx - (long )ohci->ir_context_list) / 208L); match = ((tags << 28) | (sync << 8)) | (u32 )ctx->base.channel; if (cycle >= 0) { match = (u32 )((cycle & 32767) << 12) | match; control = control | 536870912U; } else { } reg_write((struct fw_ohci const *)ohci, 164, (u32 )(1 << index)); reg_write((struct fw_ohci const *)ohci, 168, (u32 )(1 << index)); reg_write((struct fw_ohci const *)ohci, (int )(ctx->context.regs + 16U), match); context_run(& ctx->context, control); ctx->sync = (u8 )sync; ctx->tags = (u8 )tags; goto ldv_34256; } ldv_34256: ; return (0); } } static int ohci_stop_iso(struct fw_iso_context *base ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; struct iso_context *ctx ; struct fw_iso_context const *__mptr ; int index ; { tmp = fw_ohci(base->card); ohci = tmp; __mptr = (struct fw_iso_context const *)base; ctx = (struct iso_context *)__mptr; switch (ctx->base.type) { case 0: index = (int )(((long )ctx - (long )ohci->it_context_list) / 208L); reg_write((struct fw_ohci const *)ohci, 156, (u32 )(1 << index)); goto ldv_34268; case 1: ; case 2: index = (int )(((long )ctx - (long )ohci->ir_context_list) / 208L); reg_write((struct fw_ohci const *)ohci, 172, (u32 )(1 << index)); goto ldv_34268; } ldv_34268: flush_writes((struct fw_ohci const *)ohci); context_stop(& ctx->context); tasklet_kill(& ctx->context.tasklet); return (0); } } static void ohci_free_iso_context(struct fw_iso_context *base ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; struct iso_context *ctx ; struct fw_iso_context const *__mptr ; unsigned long flags ; int index ; raw_spinlock_t *tmp___0 ; { tmp = fw_ohci(base->card); ohci = tmp; __mptr = (struct fw_iso_context const *)base; ctx = (struct iso_context *)__mptr; ohci_stop_iso(base); context_release(& ctx->context); free_pages((unsigned long )ctx->header, 0U); tmp___0 = spinlock_check(& ohci->lock); flags = _raw_spin_lock_irqsave(tmp___0); switch (base->type) { case 0: index = (int )(((long )ctx - (long )ohci->it_context_list) / 208L); ohci->it_context_mask = ohci->it_context_mask | (u32 )(1 << index); goto ldv_34284; case 1: index = (int )(((long )ctx - (long )ohci->ir_context_list) / 208L); ohci->ir_context_mask = ohci->ir_context_mask | (u32 )(1 << index); ohci->ir_context_channels = ohci->ir_context_channels | (1ULL << base->channel); goto ldv_34284; case 2: index = (int )(((long )ctx - (long )ohci->ir_context_list) / 208L); ohci->ir_context_mask = ohci->ir_context_mask | (u32 )(1 << index); ohci->ir_context_channels = ohci->ir_context_channels | ohci->mc_channels; ohci->mc_channels = 0ULL; ohci->mc_allocated = 0; goto ldv_34284; } ldv_34284: spin_unlock_irqrestore(& ohci->lock, flags); return; } } static int ohci_set_iso_channels(struct fw_iso_context *base , u64 *channels ) { struct fw_ohci *ohci ; struct fw_ohci *tmp ; unsigned long flags ; int ret ; raw_spinlock_t *tmp___0 ; { tmp = fw_ohci(base->card); ohci = tmp; switch (base->type) { case 2: tmp___0 = spinlock_check(& ohci->lock); flags = _raw_spin_lock_irqsave(tmp___0); if ((~ (ohci->ir_context_channels | ohci->mc_channels) & *channels) != 0ULL) { *channels = ohci->ir_context_channels; ret = -16; } else { set_multichannel_mask(ohci, *channels); ret = 0; } spin_unlock_irqrestore(& ohci->lock, flags); goto ldv_34298; default: ret = -22; } ldv_34298: ; return (ret); } } static void ohci_resume_iso_dma(struct fw_ohci *ohci ) { int i ; struct iso_context *ctx ; { i = 0; goto ldv_34306; ldv_34305: ctx = ohci->ir_context_list + (unsigned long )i; if ((int )ctx->context.running) { ohci_start_iso(& ctx->base, 0, (u32 )ctx->sync, (u32 )ctx->tags); } else { } i = i + 1; ldv_34306: ; if (ohci->n_ir > i) { goto ldv_34305; } else { } i = 0; goto ldv_34309; ldv_34308: ctx = ohci->it_context_list + (unsigned long )i; if ((int )ctx->context.running) { ohci_start_iso(& ctx->base, 0, (u32 )ctx->sync, (u32 )ctx->tags); } else { } i = i + 1; ldv_34309: ; if (ohci->n_it > i) { goto ldv_34308; } else { } return; } } static int queue_iso_transmit(struct iso_context *ctx , struct fw_iso_packet *packet , struct fw_iso_buffer *buffer , unsigned long payload ) { struct descriptor *d ; struct descriptor *last ; struct descriptor *pd ; struct fw_iso_packet *p ; __le32 *header ; dma_addr_t d_bus ; dma_addr_t page_bus ; u32 z ; u32 header_z ; u32 payload_z ; u32 irq ; u32 payload_index ; u32 payload_end_index ; u32 next_page_index ; int page ; int end_page ; int i ; int length ; int offset ; u32 _min1 ; u32 _min2 ; { p = packet; payload_index = (u32 )payload; if ((unsigned int )*((unsigned char *)p + 2UL) != 0U) { z = 1U; } else { z = 2U; } if ((unsigned int )p->header_length != 0U) { z = z + 1U; } else { } end_page = (int )((((u32 )p->payload_length + payload_index) + 4095U) >> 12); if ((unsigned int )p->payload_length != 0U) { payload_z = (u32 )end_page - (payload_index >> 12); } else { payload_z = 0U; } z = z + payload_z; header_z = (u32 )(((unsigned long )p->header_length + 15UL) / 16UL); d = context_get_descriptors(& ctx->context, (int )(z + header_z), & d_bus); if ((unsigned long )d == (unsigned long )((struct descriptor *)0)) { return (-12); } else { } if ((unsigned int )*((unsigned char *)p + 2UL) == 0U) { d->control = 512U; d->req_count = 8U; d->branch_address = (unsigned int )d_bus | z; header = (__le32 *)d + 1U; *header = (unsigned int )(((((int )p->sy | ((int )p->tag << 14)) | 160) | (ctx->base.channel << 8)) | (ctx->base.speed << 16)); *(header + 1UL) = (unsigned int )(((int )p->header_length + (int )p->payload_length) << 16); } else { } if ((unsigned int )p->header_length != 0U) { (d + 2UL)->req_count = (unsigned short )p->header_length; (d + 2UL)->data_address = (unsigned int )d_bus + z * 16U; memcpy((void *)d + (unsigned long )z, (void const *)(& p->header), (size_t )p->header_length); } else { } pd = d + ((unsigned long )z - (unsigned long )payload_z); payload_end_index = (u32 )p->payload_length + payload_index; i = 0; goto ldv_34340; ldv_34339: page = (int )(payload_index >> 12); offset = (int )payload_index & 4095; next_page_index = (u32 )((page + 1) << 12); _min1 = next_page_index; _min2 = payload_end_index; length = (int )((_min1 < _min2 ? _min1 : _min2) - payload_index); (pd + (unsigned long )i)->req_count = (unsigned short )length; page_bus = (dma_addr_t )(*(buffer->pages + (unsigned long )page))->__annonCompField46.private; (pd + (unsigned long )i)->data_address = (unsigned int )page_bus + (unsigned int )offset; dma_sync_single_range_for_device((ctx->context.ohci)->card.device, page_bus, (unsigned long )offset, (size_t )length, 1); payload_index = payload_index + (u32 )length; i = i + 1; ldv_34340: ; if ((u32 )i < payload_z) { goto ldv_34339; } else { } if ((unsigned int )*((unsigned char *)p + 2UL) != 0U) { irq = 48U; } else { irq = 0U; } last = z != 2U ? d + ((unsigned long )z + 0xffffffffffffffffUL) : d; last->control = (__le16 )((unsigned int )((int )last->control | (int )((unsigned short )irq)) | 6156U); context_append(& ctx->context, d, (int )z, (int )header_z); return (0); } } static int queue_iso_packet_per_buffer(struct iso_context *ctx , struct fw_iso_packet *packet , struct fw_iso_buffer *buffer , unsigned long payload ) { struct device *device ; struct descriptor *d ; struct descriptor *pd ; dma_addr_t d_bus ; dma_addr_t page_bus ; u32 z ; u32 header_z ; u32 rest ; int i ; int j ; int length ; int page ; int offset ; int packet_count ; int header_size ; int payload_per_buffer ; size_t _max1 ; unsigned long _max2 ; { device = (ctx->context.ohci)->card.device; packet_count = (int )((size_t )packet->header_length / ctx->base.header_size); _max1 = ctx->base.header_size; _max2 = 8UL; header_size = (int )(_max1 > _max2 ? _max1 : _max2); header_z = (u32 )(((unsigned long )header_size + 15UL) / 16UL); page = (int )(payload >> 12); offset = (int )payload & 4095; payload_per_buffer = (int )packet->payload_length / packet_count; i = 0; goto ldv_34371; ldv_34370: z = (u32 )(((unsigned long )(payload_per_buffer + offset) + 4095UL) / 4096UL) + 1U; d = context_get_descriptors(& ctx->context, (int )(z + header_z), & d_bus); if ((unsigned long )d == (unsigned long )((struct descriptor *)0)) { return (-12); } else { } d->control = 10240U; if ((unsigned int )*((unsigned char *)packet + 2UL) != 0U && i == 0) { d->control = (__le16 )((unsigned int )d->control | 3U); } else { } d->req_count = (unsigned short )header_size; d->res_count = d->req_count; d->transfer_status = 0U; d->data_address = (unsigned int )d_bus + z * 16U; rest = (u32 )payload_per_buffer; pd = d; j = 1; goto ldv_34368; ldv_34367: pd = pd + 1; pd->control = 10240U; if ((u32 )offset + rest <= 4095U) { length = (int )rest; } else { length = (int )(4096U - (unsigned int )offset); } pd->req_count = (unsigned short )length; pd->res_count = pd->req_count; pd->transfer_status = 0U; page_bus = (dma_addr_t )(*(buffer->pages + (unsigned long )page))->__annonCompField46.private; pd->data_address = (unsigned int )page_bus + (unsigned int )offset; dma_sync_single_range_for_device(device, page_bus, (unsigned long )offset, (size_t )length, 2); offset = (offset + length) & 4095; rest = rest - (u32 )length; if (offset == 0) { page = page + 1; } else { } j = j + 1; ldv_34368: ; if ((u32 )j < z) { goto ldv_34367; } else { } pd->control = 14348U; if ((unsigned int )*((unsigned char *)packet + 2UL) != 0U && packet_count + -1 == i) { pd->control = (__le16 )((unsigned int )pd->control | 48U); } else { } context_append(& ctx->context, d, (int )z, (int )header_z); i = i + 1; ldv_34371: ; if (i < packet_count) { goto ldv_34370; } else { } return (0); } } static int queue_iso_buffer_fill(struct iso_context *ctx , struct fw_iso_packet *packet , struct fw_iso_buffer *buffer , unsigned long payload ) { struct descriptor *d ; dma_addr_t d_bus ; dma_addr_t page_bus ; int page ; int offset ; int rest ; int z ; int i ; int length ; int __ret_warn_on ; long tmp ; long tmp___0 ; { page = (int )(payload >> 12); offset = (int )payload & 4095; rest = (int )packet->payload_length; z = (int )(((unsigned long )(offset + rest) + 4095UL) / 4096UL); __ret_warn_on = ((offset & 3) != 0 || (rest & 3) != 0) || page + z > buffer->page_count; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/13363/dscv_tempdir/dscv/ri/32_7a/drivers/firewire/ohci.c", 3402); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { return (-14); } else { } i = 0; goto ldv_34391; ldv_34390: d = context_get_descriptors(& ctx->context, 1, & d_bus); if ((unsigned long )d == (unsigned long )((struct descriptor *)0)) { return (-12); } else { } d->control = 8204U; if ((unsigned int )*((unsigned char *)packet + 2UL) != 0U && i == 0) { d->control = (__le16 )((unsigned int )d->control | 3U); } else { } if ((unsigned int )*((unsigned char *)packet + 2UL) != 0U && z + -1 == i) { d->control = (__le16 )((unsigned int )d->control | 48U); } else { } if ((unsigned int )(offset + rest) <= 4095U) { length = rest; } else { length = (int )(4096U - (unsigned int )offset); } d->req_count = (unsigned short )length; d->res_count = d->req_count; d->transfer_status = 0U; page_bus = (dma_addr_t )(*(buffer->pages + (unsigned long )page))->__annonCompField46.private; d->data_address = (unsigned int )page_bus + (unsigned int )offset; dma_sync_single_range_for_device((ctx->context.ohci)->card.device, page_bus, (unsigned long )offset, (size_t )length, 2); rest = rest - length; offset = 0; page = page + 1; context_append(& ctx->context, d, 1, 0); i = i + 1; ldv_34391: ; if (i < z) { goto ldv_34390; } else { } return (0); } } static int ohci_queue_iso(struct fw_iso_context *base , struct fw_iso_packet *packet , struct fw_iso_buffer *buffer , unsigned long payload ) { struct iso_context *ctx ; struct fw_iso_context const *__mptr ; unsigned long flags ; int ret ; raw_spinlock_t *tmp ; { __mptr = (struct fw_iso_context const *)base; ctx = (struct iso_context *)__mptr; ret = -38; tmp = spinlock_check(& (ctx->context.ohci)->lock); flags = _raw_spin_lock_irqsave(tmp); switch (base->type) { case 0: ret = queue_iso_transmit(ctx, packet, buffer, payload); goto ldv_34408; case 1: ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload); goto ldv_34408; case 2: ret = queue_iso_buffer_fill(ctx, packet, buffer, payload); goto ldv_34408; } ldv_34408: spin_unlock_irqrestore(& (ctx->context.ohci)->lock, flags); return (ret); } } static void ohci_flush_queue_iso(struct fw_iso_context *base ) { struct context *ctx ; struct fw_iso_context const *__mptr ; { __mptr = (struct fw_iso_context const *)base; ctx = & ((struct iso_context *)__mptr)->context; reg_write((struct fw_ohci const *)ctx->ohci, (int )ctx->regs, 4096U); return; } } static int ohci_flush_iso_completions(struct fw_iso_context *base ) { struct iso_context *ctx ; struct fw_iso_context const *__mptr ; int ret ; int tmp ; { __mptr = (struct fw_iso_context const *)base; ctx = (struct iso_context *)__mptr; ret = 0; tasklet_disable(& ctx->context.tasklet); tmp = test_and_set_bit_lock(0L, (unsigned long volatile *)(& ctx->flushing_completions)); if (tmp == 0) { context_tasklet((unsigned long )(& ctx->context)); switch (base->type) { case 0: ; case 1: ; if (ctx->header_length != 0UL) { flush_iso_completions(ctx); } else { } goto ldv_34426; case 2: ; if ((unsigned int )ctx->mc_completed != 0U) { flush_ir_buffer_fill(ctx); } else { } goto ldv_34426; default: ret = -38; } ldv_34426: clear_bit_unlock(0L, (unsigned long volatile *)(& ctx->flushing_completions)); __asm__ volatile ("": : : "memory"); } else { } tasklet_enable(& ctx->context.tasklet); return (ret); } } static struct fw_card_driver const ohci_driver = {& ohci_enable, & ohci_read_phy_reg, & ohci_update_phy_reg, & ohci_set_config_rom, & ohci_send_request, & ohci_send_response, & ohci_cancel_packet, & ohci_enable_phys_dma, & ohci_read_csr, & ohci_write_csr, & ohci_allocate_iso_context, & ohci_free_iso_context, & ohci_start_iso, & ohci_set_iso_channels, & ohci_queue_iso, & ohci_flush_queue_iso, & ohci_flush_iso_completions, & ohci_stop_iso}; __inline static void pmac_ohci_on(struct pci_dev *dev ) { { return; } } static int pci_probe(struct pci_dev *dev , struct pci_device_id const *ent ) { struct fw_ohci *ohci ; u32 bus_options ; u32 max_receive ; u32 link_speed ; u32 version ; u64 guid ; int i ; int err ; size_t size ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; void *tmp___0 ; unsigned int tmp___1 ; void *tmp___2 ; unsigned int tmp___3 ; void *tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; bool tmp___7 ; int tmp___8 ; u32 tmp___9 ; u32 tmp___10 ; { if ((unsigned int )dev->vendor == 4541U) { dev_err((struct device const *)(& dev->dev), "Pinnacle MovieBoard is not yet supported\n"); return (-38); } else { } tmp = kzalloc(4936UL, 208U); ohci = (struct fw_ohci *)tmp; if ((unsigned long )ohci == (unsigned long )((struct fw_ohci *)0)) { err = -12; goto fail; } else { } fw_card_initialize(& ohci->card, & ohci_driver, & dev->dev); pmac_ohci_on(dev); err = pci_enable_device(dev); if (err != 0) { dev_err((struct device const *)(& dev->dev), "failed to enable OHCI hardware\n"); goto fail_free; } else { } pci_set_master(dev); pci_write_config_dword((struct pci_dev const *)dev, 64, 0U); pci_set_drvdata(dev, (void *)ohci); spinlock_check(& ohci->lock); __raw_spin_lock_init(& ohci->lock.__annonCompField17.rlock, "&(&ohci->lock)->rlock", & __key); __mutex_init(& ohci->phy_reg_mutex, "&ohci->phy_reg_mutex", & __key___0); __init_work(& ohci->bus_reset_work, 0); __constr_expr_0.counter = 137438953408L; ohci->bus_reset_work.data = __constr_expr_0; lockdep_init_map(& ohci->bus_reset_work.lockdep_map, "(&ohci->bus_reset_work)", & __key___1, 0); INIT_LIST_HEAD(& ohci->bus_reset_work.entry); ohci->bus_reset_work.func = & bus_reset_work; if ((dev->resource[0].flags & 512UL) == 0UL || ((dev->resource[0].start == 0ULL && dev->resource[0].end == dev->resource[0].start) || (dev->resource[0].end - dev->resource[0].start) + 1ULL <= 2047ULL)) { dev_err((struct device const *)ohci->card.device, "invalid MMIO resource\n"); err = -6; goto fail_disable; } else { } err = pci_request_region(dev, 0, (char const *)(& ohci_driver_name)); if (err != 0) { dev_err((struct device const *)ohci->card.device, "MMIO resource unavailable\n"); goto fail_disable; } else { } tmp___0 = pci_iomap(dev, 0, 2048UL); ohci->registers = (char *)tmp___0; if ((unsigned long )ohci->registers == (unsigned long )((char *)0)) { dev_err((struct device const *)ohci->card.device, "failed to remap registers\n"); err = -6; goto fail_iomem; } else { } i = 0; goto ldv_34461; ldv_34460: ; if (((int )((unsigned short )ohci_quirks[i].vendor) == (int )dev->vendor && ((unsigned int )((unsigned short )ohci_quirks[i].device) == 65535U || (int )((unsigned short )ohci_quirks[i].device) == (int )dev->device)) && ((unsigned int )((unsigned short )ohci_quirks[i].revision) == 65535U || (int )((unsigned short )ohci_quirks[i].revision) >= (int )((unsigned short )dev->revision))) { ohci->quirks = (unsigned int )ohci_quirks[i].flags; goto ldv_34459; } else { } i = i + 1; ldv_34461: ; if ((unsigned int )i <= 15U) { goto ldv_34460; } else { } ldv_34459: ; if (param_quirks != 0) { ohci->quirks = (unsigned int )param_quirks; } else { } ohci->misc_buffer = dma_alloc_attrs(ohci->card.device, 4096UL, & ohci->misc_buffer_bus, 208U, (struct dma_attrs *)0); if ((unsigned long )ohci->misc_buffer == (unsigned long )((void *)0)) { err = -12; goto fail_iounmap; } else { } err = ar_context_init(& ohci->ar_request_ctx, ohci, 0U, 448U); if (err < 0) { goto fail_misc_buf; } else { } err = ar_context_init(& ohci->ar_response_ctx, ohci, 1024U, 480U); if (err < 0) { goto fail_arreq_ctx; } else { } err = context_init(& ohci->at_request_ctx, ohci, 384U, & handle_at_packet); if (err < 0) { goto fail_arrsp_ctx; } else { } err = context_init(& ohci->at_response_ctx, ohci, 416U, & handle_at_packet); if (err < 0) { goto fail_atreq_ctx; } else { } reg_write((struct fw_ohci const *)ohci, 168, 4294967295U); ohci->ir_context_channels = 0xffffffffffffffffULL; ohci->ir_context_support = reg_read((struct fw_ohci const *)ohci, 168); reg_write((struct fw_ohci const *)ohci, 172, 4294967295U); ohci->ir_context_mask = ohci->ir_context_support; tmp___1 = __arch_hweight32(ohci->ir_context_mask); ohci->n_ir = (int )tmp___1; size = (unsigned long )ohci->n_ir * 208UL; tmp___2 = kzalloc(size, 208U); ohci->ir_context_list = (struct iso_context *)tmp___2; reg_write((struct fw_ohci const *)ohci, 152, 4294967295U); ohci->it_context_support = reg_read((struct fw_ohci const *)ohci, 152); reg_write((struct fw_ohci const *)ohci, 156, 4294967295U); ohci->it_context_mask = ohci->it_context_support; tmp___3 = __arch_hweight32(ohci->it_context_mask); ohci->n_it = (int )tmp___3; size = (unsigned long )ohci->n_it * 208UL; tmp___4 = kzalloc(size, 208U); ohci->it_context_list = (struct iso_context *)tmp___4; if ((unsigned long )ohci->it_context_list == (unsigned long )((struct iso_context *)0) || (unsigned long )ohci->ir_context_list == (unsigned long )((struct iso_context *)0)) { err = -12; goto fail_contexts; } else { } ohci->self_id = (__le32 *)ohci->misc_buffer + 2048U; ohci->self_id_bus = ohci->misc_buffer_bus + 2048ULL; bus_options = reg_read((struct fw_ohci const *)ohci, 32); max_receive = (bus_options >> 12) & 15U; link_speed = bus_options & 7U; tmp___5 = reg_read((struct fw_ohci const *)ohci, 36); tmp___6 = reg_read((struct fw_ohci const *)ohci, 40); guid = ((unsigned long long )tmp___5 << 32) | (unsigned long long )tmp___6; if ((ohci->quirks & 16U) == 0U) { pci_enable_msi_exact(dev, 1); } else { } tmp___7 = pci_dev_msi_enabled(dev); tmp___8 = ldv_request_irq_25(dev->irq, & irq_handler, (int )tmp___7 ? 0UL : 128UL, (char const *)(& ohci_driver_name), (void *)ohci); if (tmp___8 != 0) { dev_err((struct device const *)ohci->card.device, "failed to allocate interrupt %d\n", dev->irq); err = -5; goto fail_msi; } else { } err = fw_card_add(& ohci->card, max_receive, link_speed, guid); if (err != 0) { goto fail_irq; } else { } tmp___9 = reg_read((struct fw_ohci const *)ohci, 0); version = tmp___9 & 16711935U; tmp___10 = reg_read((struct fw_ohci const *)ohci, 288); dev_notice((struct device const *)ohci->card.device, "added OHCI v%x.%x device as card %d, %d IR + %d IT contexts, quirks 0x%x%s\n", version >> 16, version & 255U, ohci->card.index, ohci->n_ir, ohci->n_it, ohci->quirks, tmp___10 != 0U ? (char *)", physUB" : (char *)""); return (0); fail_irq: ldv_free_irq_26(dev->irq, (void *)ohci); fail_msi: pci_disable_msi(dev); fail_contexts: kfree((void const *)ohci->ir_context_list); kfree((void const *)ohci->it_context_list); context_release(& ohci->at_response_ctx); fail_atreq_ctx: context_release(& ohci->at_request_ctx); fail_arrsp_ctx: ar_context_release(& ohci->ar_response_ctx); fail_arreq_ctx: ar_context_release(& ohci->ar_request_ctx); fail_misc_buf: dma_free_attrs(ohci->card.device, 4096UL, ohci->misc_buffer, ohci->misc_buffer_bus, (struct dma_attrs *)0); fail_iounmap: pci_iounmap(dev, (void *)ohci->registers); fail_iomem: pci_release_region(dev, 0); fail_disable: pci_disable_device(dev); fail_free: kfree((void const *)ohci); pmac_ohci_on(dev); fail: ; return (err); } } static void pci_remove(struct pci_dev *dev ) { struct fw_ohci *ohci ; void *tmp ; u32 tmp___0 ; { tmp = pci_get_drvdata(dev); ohci = (struct fw_ohci *)tmp; tmp___0 = reg_read((struct fw_ohci const *)ohci, 80); if ((tmp___0 & 524288U) != 0U) { reg_write((struct fw_ohci const *)ohci, 140, 4294967295U); flush_writes((struct fw_ohci const *)ohci); } else { } ldv_cancel_work_sync_27(& ohci->bus_reset_work); fw_core_remove_card(& ohci->card); software_reset(ohci); ldv_free_irq_28(dev->irq, (void *)ohci); if ((unsigned long )ohci->next_config_rom != (unsigned long )((__be32 *)0U) && (unsigned long )ohci->next_config_rom != (unsigned long )ohci->config_rom) { dma_free_attrs(ohci->card.device, 1024UL, (void *)ohci->next_config_rom, ohci->next_config_rom_bus, (struct dma_attrs *)0); } else { } if ((unsigned long )ohci->config_rom != (unsigned long )((__be32 *)0U)) { dma_free_attrs(ohci->card.device, 1024UL, (void *)ohci->config_rom, ohci->config_rom_bus, (struct dma_attrs *)0); } else { } ar_context_release(& ohci->ar_request_ctx); ar_context_release(& ohci->ar_response_ctx); dma_free_attrs(ohci->card.device, 4096UL, ohci->misc_buffer, ohci->misc_buffer_bus, (struct dma_attrs *)0); context_release(& ohci->at_request_ctx); context_release(& ohci->at_response_ctx); kfree((void const *)ohci->it_context_list); kfree((void const *)ohci->ir_context_list); pci_disable_msi(dev); pci_iounmap(dev, (void *)ohci->registers); pci_release_region(dev, 0); pci_disable_device(dev); kfree((void const *)ohci); pmac_ohci_on(dev); dev_notice((struct device const *)(& dev->dev), "removed fw-ohci device\n"); return; } } static int pci_suspend(struct pci_dev *dev , pm_message_t state ) { struct fw_ohci *ohci ; void *tmp ; int err ; pci_power_t tmp___0 ; { tmp = pci_get_drvdata(dev); ohci = (struct fw_ohci *)tmp; software_reset(ohci); err = pci_save_state(dev); if (err != 0) { dev_err((struct device const *)ohci->card.device, "pci_save_state failed\n"); return (err); } else { } tmp___0 = pci_choose_state(dev, state); err = pci_set_power_state(dev, tmp___0); if (err != 0) { dev_err((struct device const *)ohci->card.device, "pci_set_power_state failed with %d\n", err); } else { } pmac_ohci_on(dev); return (0); } } static int pci_resume(struct pci_dev *dev ) { struct fw_ohci *ohci ; void *tmp ; int err ; u32 tmp___0 ; u32 tmp___1 ; { tmp = pci_get_drvdata(dev); ohci = (struct fw_ohci *)tmp; pmac_ohci_on(dev); pci_set_power_state(dev, 0); pci_restore_state(dev); err = pci_enable_device(dev); if (err != 0) { dev_err((struct device const *)ohci->card.device, "pci_enable_device failed\n"); return (err); } else { } tmp___0 = reg_read((struct fw_ohci const *)ohci, 40); if (tmp___0 == 0U) { tmp___1 = reg_read((struct fw_ohci const *)ohci, 36); if (tmp___1 == 0U) { reg_write((struct fw_ohci const *)ohci, 40, (unsigned int )ohci->card.guid); reg_write((struct fw_ohci const *)ohci, 36, (unsigned int )(ohci->card.guid >> 32)); } else { } } else { } err = ohci_enable(& ohci->card, (__be32 const *)0U, 0UL); if (err != 0) { return (err); } else { } ohci_resume_iso_dma(ohci); return (0); } } static struct pci_device_id const pci_table[2U] = { {4294967295U, 4294967295U, 4294967295U, 4294967295U, 786448U, 4294967295U, 0UL}}; struct pci_device_id const __mod_pci__pci_table_device_table[2U] ; static struct pci_driver fw_ohci_pci_driver = {{0, 0}, (char const *)(& ohci_driver_name), (struct pci_device_id const *)(& pci_table), & pci_probe, & pci_remove, & pci_suspend, 0, 0, & pci_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int fw_ohci_init(void) { struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp ; int tmp___0 ; { __lock_name = "KBUILD_MODNAME"; tmp = __alloc_workqueue_key("firewire_ohci", 8U, 0, & __key, __lock_name); selfid_workqueue = tmp; if ((unsigned long )selfid_workqueue == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } tmp___0 = ldv___pci_register_driver_29(& fw_ohci_pci_driver, & __this_module, "firewire_ohci"); return (tmp___0); } } static void fw_ohci_cleanup(void) { { ldv_pci_unregister_driver_30(& fw_ohci_pci_driver); ldv_destroy_workqueue_31(selfid_workqueue); return; } } extern int ldv_shutdown_3(void) ; int ldv_retval_2 ; extern int ldv_suspend_late_3(void) ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_4 ; extern int ldv_resume_early_3(void) ; extern void ldv_initialize(void) ; int ldv_retval_1 ; void ldv_check_final_state(void) ; int ldv_retval_3 ; void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } void ldv_pci_driver_3(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); fw_ohci_pci_driver_group1 = (struct pci_dev *)tmp; return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& irq_handler)) { return (1); } else { } return (0); } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = irq_handler(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_34559; default: ldv_stop(); } ldv_34559: ; } else { } return (state); } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { bus_reset_work(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { bus_reset_work(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { bus_reset_work(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { bus_reset_work(work); ldv_work_2_3 = 1; return; } else { } return; } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_34576; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_34576; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_34576; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_34576; default: ldv_stop(); } ldv_34576: ; return; } } void ldv_initialize_fw_card_driver_4(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(48UL); ohci_driver_group0 = (struct fw_iso_context *)tmp; tmp___0 = ldv_init_zalloc(1856UL); ohci_driver_group2 = (struct fw_card *)tmp___0; tmp___1 = ldv_init_zalloc(104UL); ohci_driver_group1 = (struct fw_packet *)tmp___1; return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; bus_reset_work(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_34590; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; bus_reset_work(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_34590; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; bus_reset_work(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_34590; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; bus_reset_work(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_34590; default: ldv_stop(); } ldv_34590: ; return; } } int main(void) { u64 *ldvarg18 ; void *tmp ; size_t ldvarg11 ; int ldvarg20 ; size_t ldvarg7 ; unsigned long ldvarg3 ; __be32 *ldvarg12 ; void *tmp___0 ; __be32 *ldvarg8 ; void *tmp___1 ; u32 ldvarg1 ; u32 ldvarg13 ; int ldvarg10 ; int ldvarg9 ; u32 ldvarg0 ; struct fw_iso_packet *ldvarg5 ; void *tmp___2 ; int ldvarg16 ; int ldvarg6 ; size_t ldvarg15 ; int ldvarg21 ; int ldvarg17 ; struct fw_iso_buffer *ldvarg4 ; void *tmp___3 ; int ldvarg14 ; int ldvarg22 ; int ldvarg19 ; s32 ldvarg2 ; struct pci_device_id *ldvarg24 ; void *tmp___4 ; pm_message_t ldvarg23 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { tmp = ldv_init_zalloc(8UL); ldvarg18 = (u64 *)tmp; tmp___0 = ldv_init_zalloc(4UL); ldvarg12 = (__be32 *)tmp___0; tmp___1 = ldv_init_zalloc(4UL); ldvarg8 = (__be32 *)tmp___1; tmp___2 = ldv_init_zalloc(4UL); ldvarg5 = (struct fw_iso_packet *)tmp___2; tmp___3 = ldv_init_zalloc(24UL); ldvarg4 = (struct fw_iso_buffer *)tmp___3; tmp___4 = ldv_init_zalloc(32UL); ldvarg24 = (struct pci_device_id *)tmp___4; ldv_initialize(); ldv_memset((void *)(& ldvarg11), 0, 8UL); ldv_memset((void *)(& ldvarg20), 0, 4UL); ldv_memset((void *)(& ldvarg7), 0, 8UL); ldv_memset((void *)(& ldvarg3), 0, 8UL); ldv_memset((void *)(& ldvarg1), 0, 4UL); ldv_memset((void *)(& ldvarg13), 0, 4UL); ldv_memset((void *)(& ldvarg10), 0, 4UL); ldv_memset((void *)(& ldvarg9), 0, 4UL); ldv_memset((void *)(& ldvarg0), 0, 4UL); ldv_memset((void *)(& ldvarg16), 0, 4UL); ldv_memset((void *)(& ldvarg6), 0, 4UL); ldv_memset((void *)(& ldvarg15), 0, 8UL); ldv_memset((void *)(& ldvarg21), 0, 4UL); ldv_memset((void *)(& ldvarg17), 0, 4UL); ldv_memset((void *)(& ldvarg14), 0, 4UL); ldv_memset((void *)(& ldvarg22), 0, 4UL); ldv_memset((void *)(& ldvarg19), 0, 4UL); ldv_memset((void *)(& ldvarg2), 0, 4UL); ldv_memset((void *)(& ldvarg23), 0, 4UL); ldv_state_variable_4 = 0; ldv_state_variable_1 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_3 = 0; work_init_2(); ldv_state_variable_2 = 1; ldv_34670: tmp___5 = __VERIFIER_nondet_int(); switch (tmp___5) { case 0: ; if (ldv_state_variable_4 != 0) { tmp___6 = __VERIFIER_nondet_int(); switch (tmp___6) { case 0: ; if (ldv_state_variable_4 == 1) { ohci_stop_iso(ohci_driver_group0); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 1: ; if (ldv_state_variable_4 == 1) { ohci_update_phy_reg(ohci_driver_group2, ldvarg22, ldvarg21, ldvarg20); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 2: ; if (ldv_state_variable_4 == 1) { ohci_read_phy_reg(ohci_driver_group2, ldvarg19); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 3: ; if (ldv_state_variable_4 == 1) { ohci_set_iso_channels(ohci_driver_group0, ldvarg18); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 4: ; if (ldv_state_variable_4 == 1) { ohci_allocate_iso_context(ohci_driver_group2, ldvarg17, ldvarg16, ldvarg15); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 5: ; if (ldv_state_variable_4 == 1) { ohci_write_csr(ohci_driver_group2, ldvarg14, ldvarg13); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 6: ; if (ldv_state_variable_4 == 1) { ohci_cancel_packet(ohci_driver_group2, ohci_driver_group1); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 7: ; if (ldv_state_variable_4 == 1) { ohci_flush_iso_completions(ohci_driver_group0); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 8: ; if (ldv_state_variable_4 == 1) { ohci_send_request(ohci_driver_group2, ohci_driver_group1); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 9: ; if (ldv_state_variable_4 == 1) { ohci_enable(ohci_driver_group2, (__be32 const *)ldvarg12, ldvarg11); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 10: ; if (ldv_state_variable_4 == 1) { ohci_free_iso_context(ohci_driver_group0); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 11: ; if (ldv_state_variable_4 == 1) { ohci_flush_queue_iso(ohci_driver_group0); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 12: ; if (ldv_state_variable_4 == 1) { ohci_enable_phys_dma(ohci_driver_group2, ldvarg10, ldvarg9); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 13: ; if (ldv_state_variable_4 == 1) { ohci_set_config_rom(ohci_driver_group2, (__be32 const *)ldvarg8, ldvarg7); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 14: ; if (ldv_state_variable_4 == 1) { ohci_read_csr(ohci_driver_group2, ldvarg6); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 15: ; if (ldv_state_variable_4 == 1) { ohci_send_response(ohci_driver_group2, ohci_driver_group1); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 16: ; if (ldv_state_variable_4 == 1) { ohci_queue_iso(ohci_driver_group0, ldvarg5, ldvarg4, ldvarg3); ldv_state_variable_4 = 1; } else { } goto ldv_34631; case 17: ; if (ldv_state_variable_4 == 1) { ohci_start_iso(ohci_driver_group0, ldvarg2, ldvarg1, ldvarg0); ldv_state_variable_4 = 1; } else { } goto ldv_34631; default: ldv_stop(); } ldv_34631: ; } else { } goto ldv_34650; case 1: ; if (ldv_state_variable_1 != 0) { choose_interrupt_1(); } else { } goto ldv_34650; case 2: ; if (ldv_state_variable_0 != 0) { tmp___7 = __VERIFIER_nondet_int(); switch (tmp___7) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { fw_ohci_cleanup(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_34655; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_0 = fw_ohci_init(); if (ldv_retval_0 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_4 = 1; ldv_initialize_fw_card_driver_4(); } else { } if (ldv_retval_0 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_34655; default: ldv_stop(); } ldv_34655: ; } else { } goto ldv_34650; case 3: ; if (ldv_state_variable_3 != 0) { tmp___8 = __VERIFIER_nondet_int(); switch (tmp___8) { case 0: ; if (ldv_state_variable_3 == 1) { ldv_retval_5 = pci_probe(fw_ohci_pci_driver_group1, (struct pci_device_id const *)ldvarg24); if (ldv_retval_5 == 0) { ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_34660; case 1: ; if (ldv_state_variable_3 == 2 && pci_counter == 0) { ldv_retval_4 = pci_suspend(fw_ohci_pci_driver_group1, ldvarg23); if (ldv_retval_4 == 0) { ldv_state_variable_3 = 3; } else { } } else { } goto ldv_34660; case 2: ; if (ldv_state_variable_3 == 4) { ldv_retval_3 = pci_resume(fw_ohci_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_3 = 2; } else { } } else { } if (ldv_state_variable_3 == 3) { ldv_retval_3 = pci_resume(fw_ohci_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_3 = 2; } else { } } else { } if (ldv_state_variable_3 == 5) { ldv_retval_3 = pci_resume(fw_ohci_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_3 = 2; } else { } } else { } goto ldv_34660; case 3: ; if (ldv_state_variable_3 == 4) { pci_remove(fw_ohci_pci_driver_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { pci_remove(fw_ohci_pci_driver_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { pci_remove(fw_ohci_pci_driver_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 5) { pci_remove(fw_ohci_pci_driver_group1); ldv_state_variable_3 = 1; } else { } goto ldv_34660; case 4: ; if (ldv_state_variable_3 == 3) { ldv_retval_2 = ldv_suspend_late_3(); if (ldv_retval_2 == 0) { ldv_state_variable_3 = 4; } else { } } else { } goto ldv_34660; case 5: ; if (ldv_state_variable_3 == 4) { ldv_retval_1 = ldv_resume_early_3(); if (ldv_retval_1 == 0) { ldv_state_variable_3 = 5; } else { } } else { } if (ldv_state_variable_3 == 3) { ldv_retval_1 = ldv_resume_early_3(); if (ldv_retval_1 == 0) { ldv_state_variable_3 = 5; } else { } } else { } goto ldv_34660; case 6: ; if (ldv_state_variable_3 == 4) { ldv_shutdown_3(); ldv_state_variable_3 = 4; } else { } if (ldv_state_variable_3 == 3) { ldv_shutdown_3(); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { ldv_shutdown_3(); ldv_state_variable_3 = 2; } else { } if (ldv_state_variable_3 == 5) { ldv_shutdown_3(); ldv_state_variable_3 = 5; } else { } goto ldv_34660; default: ldv_stop(); } ldv_34660: ; } else { } goto ldv_34650; case 4: ; if (ldv_state_variable_2 != 0) { invoke_work_2(); } else { } goto ldv_34650; default: ldv_stop(); } ldv_34650: ; goto ldv_34670; ldv_final: ldv_check_final_state(); return 0; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { tmp = ldv_err_ptr(error); return (tmp); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static int ldv_request_irq_25(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_1(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_1((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_free_irq_26(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } bool ldv_cancel_work_sync_27(struct work_struct *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = cancel_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_2(ldv_func_arg1); return (ldv_func_res); } } void ldv_free_irq_28(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } int ldv___pci_register_driver_29(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_3 = 1; ldv_pci_driver_3(); return (ldv_func_res); } } void ldv_pci_unregister_driver_30(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_3 = 0; return; } } void ldv_destroy_workqueue_31(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_phy_reg_mutex_of_fw_ohci = 1; int ldv_mutex_lock_interruptible_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_phy_reg_mutex_of_fw_ohci = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_phy_reg_mutex_of_fw_ohci = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) { { if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 1) { ldv_error(); } else { } ldv_mutex_phy_reg_mutex_of_fw_ohci = 2; return; } } int ldv_mutex_trylock_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_phy_reg_mutex_of_fw_ohci = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_phy_reg_mutex_of_fw_ohci(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_phy_reg_mutex_of_fw_ohci = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_phy_reg_mutex_of_fw_ohci == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci(struct mutex *lock ) { { if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 2) { ldv_error(); } else { } ldv_mutex_phy_reg_mutex_of_fw_ohci = 1; return; } } void ldv_usb_lock_device_phy_reg_mutex_of_fw_ohci(void) { { ldv_mutex_lock_phy_reg_mutex_of_fw_ohci((struct mutex *)0); return; } } int ldv_usb_trylock_device_phy_reg_mutex_of_fw_ohci(void) { int tmp ; { tmp = ldv_mutex_trylock_phy_reg_mutex_of_fw_ohci((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_phy_reg_mutex_of_fw_ohci(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_phy_reg_mutex_of_fw_ohci((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_phy_reg_mutex_of_fw_ohci(void) { { ldv_mutex_unlock_phy_reg_mutex_of_fw_ohci((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_phy_reg_mutex_of_fw_ohci != 1) { ldv_error(); } else { } return; } }