extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned int gfp_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; struct gate_struct64 { u16 offset_low ; u16 segment ; unsigned char ist : 3 ; unsigned char zero0 : 5 ; unsigned char type : 5 ; unsigned char dpl : 2 ; unsigned char p : 1 ; u16 offset_middle ; u32 offset_high ; u32 zero1 ; }; typedef struct gate_struct64 gate_desc; struct desc_ptr { unsigned short size ; unsigned long address ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct tss_struct; struct mm_struct; struct task_struct; struct cpumask; struct pv_cpu_ops { unsigned long (*get_debugreg)(int ) ; void (*set_debugreg)(int , unsigned long ) ; void (*clts)(void) ; unsigned long (*read_cr0)(void) ; void (*write_cr0)(unsigned long ) ; unsigned long (*read_cr4_safe)(void) ; unsigned long (*read_cr4)(void) ; void (*write_cr4)(unsigned long ) ; unsigned long (*read_cr8)(void) ; void (*write_cr8)(unsigned long ) ; void (*load_tr_desc)(void) ; void (*load_gdt)(struct desc_ptr const * ) ; void (*load_idt)(struct desc_ptr const * ) ; void (*store_idt)(struct desc_ptr * ) ; void (*set_ldt)(void const * , unsigned int ) ; unsigned long (*store_tr)(void) ; void (*load_tls)(struct thread_struct * , unsigned int ) ; void (*load_gs_index)(unsigned int ) ; void (*write_ldt_entry)(struct desc_struct * , int , void const * ) ; void (*write_gdt_entry)(struct desc_struct * , int , void const * , int ) ; void (*write_idt_entry)(gate_desc * , int , gate_desc const * ) ; void (*alloc_ldt)(struct desc_struct * , unsigned int ) ; void (*free_ldt)(struct desc_struct * , unsigned int ) ; void (*load_sp0)(struct tss_struct * , struct thread_struct * ) ; void (*set_iopl_mask)(unsigned int ) ; void (*wbinvd)(void) ; void (*io_delay)(void) ; void (*cpuid)(unsigned int * , unsigned int * , unsigned int * , unsigned int * ) ; u64 (*read_msr)(unsigned int , int * ) ; int (*write_msr)(unsigned int , unsigned int , unsigned int ) ; u64 (*read_tsc)(void) ; u64 (*read_pmc)(int ) ; unsigned long long (*read_tscp)(unsigned int * ) ; void (*usergs_sysret64)(void) ; void (*usergs_sysret32)(void) ; void (*iret)(void) ; void (*swapgs)(void) ; void (*start_context_switch)(struct task_struct * ) ; void (*end_context_switch)(struct task_struct * ) ; }; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long SYSENTER_stack[64U] ; }; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct vm_area_struct; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __anonstruct_nodemask_t_46 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_46 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct platform_device; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct sensor_device_attribute_2 { struct device_attribute dev_attr ; u8 index ; u8 nr ; }; struct abituguru_data { struct device *hwmon_dev ; struct mutex update_lock ; unsigned long last_updated ; unsigned short addr ; char uguru_ready ; unsigned char update_timeouts ; struct sensor_device_attribute_2 sysfs_attr[210U] ; char sysfs_names[3080U] ; u8 bank1_sensors[2U] ; u8 bank1_address[2U][16U] ; u8 bank1_value[16U] ; u8 bank1_settings[16U][3U] ; int bank1_max_value[16U] ; u8 bank2_sensors ; u8 bank2_value[6U] ; u8 bank2_settings[6U][2U] ; u8 alarms[3U] ; u8 pwms ; u8 pwm_settings[5U][5U] ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern struct pv_cpu_ops pv_cpu_ops ; extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2696; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2696; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2696; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2696; default: __bad_percpu_size(); } ldv_2696: ; return (pfo_ret__); } } extern void *memset(void * , int , size_t ) ; extern int strcmp(char const * , char const * ) ; __inline static void slow_down_io(void) { { (*(pv_cpu_ops.io_delay))(); return; } } __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; extern void __xchg_wrong_size(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_24(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_update_lock_of_abituguru_data(struct mutex *lock ) ; void ldv_mutex_unlock_update_lock_of_abituguru_data(struct mutex *lock ) ; extern unsigned long volatile jiffies ; __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static unsigned char inb_p(int port ) { unsigned char value ; unsigned char tmp ; { tmp = inb(port); value = tmp; slow_down_io(); return (value); } } extern long schedule_timeout(long ) ; int LDV_IN_INTERRUPT = 1; int ldv_state_variable_2 ; int ref_cnt ; struct device *abituguru_pm_group1 ; struct platform_device *abituguru_driver_group1 ; int ldv_state_variable_1 ; int probed_1 = 0; int ldv_state_variable_0 ; void ldv_platform_probe_1(int (*probe)(struct platform_device * ) ) ; void ldv_dev_pm_ops_2(void) ; void ldv_platform_driver_init_1(void) ; extern void msleep(unsigned int ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { tmp = devm_kmalloc(dev, size, gfp | 32768U); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void platform_device_unregister(struct platform_device * ) ; extern struct resource *platform_get_resource(struct platform_device * , unsigned int , unsigned int ) ; extern struct platform_device *platform_device_alloc(char const * , int ) ; extern int platform_device_add_resources(struct platform_device * , struct resource const * , unsigned int ) ; extern int platform_device_add(struct platform_device * ) ; extern void platform_device_put(struct platform_device * ) ; extern int __platform_driver_register(struct platform_driver * , struct module * ) ; int ldv___platform_driver_register_28(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; extern void platform_driver_unregister(struct platform_driver * ) ; void ldv_platform_driver_unregister_29(struct platform_driver *ldv_func_arg1 ) ; void ldv_platform_driver_unregister_30(struct platform_driver *ldv_func_arg1 ) ; __inline static void *platform_get_drvdata(struct platform_device const *pdev ) { void *tmp ; { tmp = dev_get_drvdata(& pdev->dev); return (tmp); } } __inline static void platform_set_drvdata(struct platform_device *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } extern struct device *hwmon_device_register(struct device * ) ; extern void hwmon_device_unregister(struct device * ) ; extern char const *dmi_get_system_info(int ) ; static int const abituguru_bank1_max_value[2U] = { 3494, 255000}; static unsigned char const abituguru_bank2_min_threshold = 5U; static unsigned char const abituguru_bank2_max_threshold = 50U; static int const abituguru_pwm_settings_multiplier[5U] = { 0, 1, 1, 1000, 1000}; static u8 const abituguru_pwm_min[5U] = { 0U, 170U, 170U, 25U, 25U}; static u8 const abituguru_pwm_max[5U] = { 0U, 255U, 255U, 75U, 75U}; static bool force ; static int bank1_types[16U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static int fan_sensors ; static int pwms ; static int verbose = 2; static char const *never_happen = "This should never happen."; static char const *report_this = "Please report this to the abituguru maintainer (see MAINTAINERS)"; static int abituguru_wait(struct abituguru_data *data , u8 state ) { int timeout ; unsigned char tmp ; { timeout = 125; goto ldv_21972; ldv_21971: timeout = timeout - 1; if (timeout == 0) { return (-16); } else { } if (timeout <= 5) { msleep(0U); } else { } ldv_21972: tmp = inb_p((int )data->addr + 4); if ((int )tmp != (int )state) { goto ldv_21971; } else { } return (0); } } static int abituguru_ready(struct abituguru_data *data ) { int timeout ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; unsigned char tmp___2 ; struct _ddebug descriptor___1 ; long tmp___3 ; unsigned char tmp___4 ; { timeout = 5; if ((int )((signed char )data->uguru_ready) != 0) { return (0); } else { } outb(0, (int )data->addr + 4); tmp___0 = abituguru_wait(data, 9); if (tmp___0 != 0) { if (verbose > 0) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_ready"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "timeout exceeded waiting for ready state\n"; descriptor.lineno = 300U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: timeout exceeded waiting for ready state\n"); } else { } } else { } return (-5); } else { } goto ldv_21982; ldv_21981: timeout = timeout - 1; if (timeout == 0) { if (verbose > 0) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_ready"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "CMD reg does not hold 0xAC after ready command\n"; descriptor___0.lineno = 309U; descriptor___0.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: CMD reg does not hold 0xAC after ready command\n"); } else { } } else { } return (-5); } else { } msleep(0U); ldv_21982: tmp___2 = inb_p((int )data->addr); if ((unsigned int )tmp___2 != 172U) { goto ldv_21981; } else { } timeout = 5; goto ldv_21986; ldv_21985: timeout = timeout - 1; if (timeout == 0) { if (verbose > 0) { descriptor___1.modname = "abituguru"; descriptor___1.function = "abituguru_ready"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___1.format = "state != more input after ready command\n"; descriptor___1.lineno = 324U; descriptor___1.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_pr_debug(& descriptor___1, "abituguru: state != more input after ready command\n"); } else { } } else { } return (-5); } else { } msleep(0U); ldv_21986: tmp___4 = inb_p((int )data->addr + 4); if ((unsigned int )tmp___4 != 8U) { goto ldv_21985; } else { } data->uguru_ready = 1; return (0); } } static int abituguru_send_address(struct abituguru_data *data , u8 bank_addr , u8 sensor_addr , int retries ) { int report_errors ; int tmp ; struct _ddebug descriptor ; long tmp___0 ; struct task_struct *tmp___1 ; long volatile __ret ; struct task_struct *tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; struct task_struct *tmp___5 ; struct _ddebug descriptor___0 ; long tmp___6 ; int tmp___7 ; { report_errors = retries; ldv_22007: tmp = abituguru_ready(data); if (tmp != 0) { return (-5); } else { } outb((int )bank_addr, (int )data->addr + 4); data->uguru_ready = 0; tmp___7 = abituguru_wait(data, 8); if (tmp___7 != 0) { if (retries != 0) { if (verbose > 2) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_send_address"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "timeout exceeded waiting for more input state, %d tries remaining\n"; descriptor.lineno = 367U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: timeout exceeded waiting for more input state, %d tries remaining\n", retries); } else { } } else { } tmp___1 = get_current(); tmp___1->task_state_change = 0UL; __ret = 2L; switch (8UL) { case 1UL: tmp___2 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___2->state): : "memory", "cc"); goto ldv_21999; case 2UL: tmp___3 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___3->state): : "memory", "cc"); goto ldv_21999; case 4UL: tmp___4 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___4->state): : "memory", "cc"); goto ldv_21999; case 8UL: tmp___5 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___5->state): : "memory", "cc"); goto ldv_21999; default: __xchg_wrong_size(); } ldv_21999: schedule_timeout(50L); retries = retries - 1; goto ldv_22005; } else { } if (report_errors != 0) { if (verbose > 0) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_send_address"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "timeout exceeded waiting for more input state (bank: %d)\n"; descriptor___0.lineno = 376U; descriptor___0.flags = 1U; tmp___6 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: timeout exceeded waiting for more input state (bank: %d)\n", (int )bank_addr); } else { } } else { } } else { } return (-16); } else { } outb((int )sensor_addr, (int )data->addr); return (0); ldv_22005: ; goto ldv_22007; } } static int abituguru_read(struct abituguru_data *data , u8 bank_addr , u8 sensor_addr , u8 *buf , int count , int retries ) { int i ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { i = abituguru_send_address(data, (int )bank_addr, (int )sensor_addr, retries); if (i != 0) { return (i); } else { } i = 0; goto ldv_22021; ldv_22020: tmp___0 = abituguru_wait(data, 1); if (tmp___0 != 0) { if (retries != 0 || verbose > 2) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_read"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "timeout exceeded waiting for read state (bank: %d, sensor: %d)\n"; descriptor.lineno = 404U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: timeout exceeded waiting for read state (bank: %d, sensor: %d)\n", (int )bank_addr, (int )sensor_addr); } else { } } else { } goto ldv_22019; } else { } *(buf + (unsigned long )i) = inb((int )data->addr); i = i + 1; ldv_22021: ; if (i < count) { goto ldv_22020; } else { } ldv_22019: abituguru_ready(data); return (i); } } static int abituguru_write(struct abituguru_data *data , u8 bank_addr , u8 sensor_addr , u8 *buf , int count ) { int i ; int timeout ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; int tmp___2 ; struct _ddebug descriptor___1 ; long tmp___3 ; unsigned char tmp___4 ; { timeout = 5; i = abituguru_send_address(data, (int )bank_addr, (int )sensor_addr, 3); if (i != 0) { return (i); } else { } i = 0; goto ldv_22035; ldv_22034: tmp___0 = abituguru_wait(data, 0); if (tmp___0 != 0) { if (verbose > 0) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_write"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "timeout exceeded waiting for write state (bank: %d, sensor: %d)\n"; descriptor.lineno = 440U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: timeout exceeded waiting for write state (bank: %d, sensor: %d)\n", (int )bank_addr, (int )sensor_addr); } else { } } else { } goto ldv_22033; } else { } outb((int )*(buf + (unsigned long )i), (int )data->addr); i = i + 1; ldv_22035: ; if (i < count) { goto ldv_22034; } else { } ldv_22033: tmp___2 = abituguru_wait(data, 1); if (tmp___2 != 0) { if (verbose > 0) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_write"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "timeout exceeded waiting for read state after write (bank: %d, sensor: %d)\n"; descriptor___0.lineno = 454U; descriptor___0.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: timeout exceeded waiting for read state after write (bank: %d, sensor: %d)\n", (int )bank_addr, (int )sensor_addr); } else { } } else { } return (-5); } else { } goto ldv_22039; ldv_22038: timeout = timeout - 1; if (timeout == 0) { if (verbose > 0) { descriptor___1.modname = "abituguru"; descriptor___1.function = "abituguru_write"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___1.format = "CMD reg does not hold 0xAC after write (bank: %d, sensor: %d)\n"; descriptor___1.lineno = 464U; descriptor___1.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_pr_debug(& descriptor___1, "abituguru: CMD reg does not hold 0xAC after write (bank: %d, sensor: %d)\n", (int )bank_addr, (int )sensor_addr); } else { } } else { } return (-5); } else { } msleep(0U); ldv_22039: tmp___4 = inb_p((int )data->addr); if ((unsigned int )tmp___4 != 172U) { goto ldv_22038; } else { } abituguru_ready(data); return (i); } } static int abituguru_detect_bank1_sensor_type(struct abituguru_data *data , u8 sensor_addr ) { u8 val ; u8 test_flag ; u8 buf[3U] ; int i ; int ret ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; int tmp___2 ; struct task_struct *tmp___3 ; long volatile __ret ; struct task_struct *tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; struct task_struct *tmp___7 ; int tmp___8 ; int tmp___9 ; struct _ddebug descriptor___1 ; long tmp___10 ; struct _ddebug descriptor___2 ; long tmp___11 ; struct _ddebug descriptor___3 ; long tmp___12 ; int tmp___13 ; struct task_struct *tmp___14 ; long volatile __ret___0 ; struct task_struct *tmp___15 ; struct task_struct *tmp___16 ; struct task_struct *tmp___17 ; struct task_struct *tmp___18 ; int tmp___19 ; int tmp___20 ; struct _ddebug descriptor___4 ; long tmp___21 ; struct _ddebug descriptor___5 ; long tmp___22 ; struct _ddebug descriptor___6 ; long tmp___23 ; int tmp___24 ; { ret = -19; if (bank1_types[(int )sensor_addr] >= 0 && bank1_types[(int )sensor_addr] <= 2) { if (verbose > 1) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_detect_bank1_sensor_type"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "assuming sensor type %d for bank1 sensor %d because of \"bank1_types\" module param\n"; descriptor.lineno = 496U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: assuming sensor type %d for bank1 sensor %d because of \"bank1_types\" module param\n", bank1_types[(int )sensor_addr], (int )sensor_addr); } else { } } else { } return (bank1_types[(int )sensor_addr]); } else { } tmp___0 = abituguru_read(data, 33, (int )sensor_addr, & val, 1, 3); if (tmp___0 != 1) { return (-19); } else { } if ((unsigned int )val <= 9U || (unsigned int )val > 250U) { printk("\fabituguru: bank1-sensor: %d reading (%d) too close to limits, unable to determine sensor type, skipping sensor\n", (int )sensor_addr, (int )val); return (2); } else { } if (verbose > 1) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_detect_bank1_sensor_type"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "testing bank1 sensor %d\n"; descriptor___0.lineno = 518U; descriptor___0.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: testing bank1 sensor %d\n", (int )sensor_addr); } else { } } else { } if ((unsigned int )val <= 240U) { buf[0] = 4U; buf[1] = 245U; buf[2] = 250U; test_flag = 64U; } else { buf[0] = 2U; buf[1] = 5U; buf[2] = 10U; test_flag = 32U; } tmp___2 = abituguru_write(data, 35, (int )sensor_addr, (u8 *)(& buf), 3); if (tmp___2 != 3) { goto abituguru_detect_bank1_sensor_type_exit; } else { } tmp___3 = get_current(); tmp___3->task_state_change = 0UL; __ret = 2L; switch (8UL) { case 1UL: tmp___4 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___4->state): : "memory", "cc"); goto ldv_22056; case 2UL: tmp___5 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___5->state): : "memory", "cc"); goto ldv_22056; case 4UL: tmp___6 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___6->state): : "memory", "cc"); goto ldv_22056; case 8UL: tmp___7 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___7->state): : "memory", "cc"); goto ldv_22056; default: __xchg_wrong_size(); } ldv_22056: schedule_timeout(5L); tmp___8 = abituguru_read(data, 32, 0, (u8 *)(& buf), 3, 3); if (tmp___8 != 3) { goto abituguru_detect_bank1_sensor_type_exit; } else { } if (((int )buf[(int )((unsigned int )sensor_addr / 8U)] >> ((int )sensor_addr & 7)) & 1) { tmp___9 = abituguru_read(data, 34, (int )sensor_addr, (u8 *)(& buf), 3, 3); if (tmp___9 != 3) { goto abituguru_detect_bank1_sensor_type_exit; } else { } if ((unsigned int )((int )buf[0] & (int )test_flag) != 0U) { if (verbose > 1) { descriptor___1.modname = "abituguru"; descriptor___1.function = "abituguru_detect_bank1_sensor_type"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___1.format = " found volt sensor\n"; descriptor___1.lineno = 555U; descriptor___1.flags = 1U; tmp___10 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___10 != 0L) { __dynamic_pr_debug(& descriptor___1, "abituguru: found volt sensor\n"); } else { } } else { } ret = 0; goto abituguru_detect_bank1_sensor_type_exit; } else if (verbose > 1) { descriptor___2.modname = "abituguru"; descriptor___2.function = "abituguru_detect_bank1_sensor_type"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___2.format = " alarm raised during volt sensor test, but volt range flag not set\n"; descriptor___2.lineno = 560U; descriptor___2.flags = 1U; tmp___11 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___11 != 0L) { __dynamic_pr_debug(& descriptor___2, "abituguru: alarm raised during volt sensor test, but volt range flag not set\n"); } else { } } else { } } else if (verbose > 1) { descriptor___3.modname = "abituguru"; descriptor___3.function = "abituguru_detect_bank1_sensor_type"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___3.format = " alarm not raised during volt sensor test\n"; descriptor___3.lineno = 563U; descriptor___3.flags = 1U; tmp___12 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___12 != 0L) { __dynamic_pr_debug(& descriptor___3, "abituguru: alarm not raised during volt sensor test\n"); } else { } } else { } buf[0] = 1U; buf[1] = 5U; buf[2] = 10U; tmp___13 = abituguru_write(data, 35, (int )sensor_addr, (u8 *)(& buf), 3); if (tmp___13 != 3) { goto abituguru_detect_bank1_sensor_type_exit; } else { } tmp___14 = get_current(); tmp___14->task_state_change = 0UL; __ret___0 = 2L; switch (8UL) { case 1UL: tmp___15 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret___0), "+m" (tmp___15->state): : "memory", "cc"); goto ldv_22067; case 2UL: tmp___16 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret___0), "+m" (tmp___16->state): : "memory", "cc"); goto ldv_22067; case 4UL: tmp___17 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret___0), "+m" (tmp___17->state): : "memory", "cc"); goto ldv_22067; case 8UL: tmp___18 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret___0), "+m" (tmp___18->state): : "memory", "cc"); goto ldv_22067; default: __xchg_wrong_size(); } ldv_22067: schedule_timeout(12L); tmp___19 = abituguru_read(data, 32, 0, (u8 *)(& buf), 3, 3); if (tmp___19 != 3) { goto abituguru_detect_bank1_sensor_type_exit; } else { } if (((int )buf[(int )((unsigned int )sensor_addr / 8U)] >> ((int )sensor_addr & 7)) & 1) { tmp___20 = abituguru_read(data, 34, (int )sensor_addr, (u8 *)(& buf), 3, 3); if (tmp___20 != 3) { goto abituguru_detect_bank1_sensor_type_exit; } else { } if (((int )buf[0] & 16) != 0) { if (verbose > 1) { descriptor___4.modname = "abituguru"; descriptor___4.function = "abituguru_detect_bank1_sensor_type"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___4.format = " found temp sensor\n"; descriptor___4.lineno = 592U; descriptor___4.flags = 1U; tmp___21 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___21 != 0L) { __dynamic_pr_debug(& descriptor___4, "abituguru: found temp sensor\n"); } else { } } else { } ret = 1; goto abituguru_detect_bank1_sensor_type_exit; } else if (verbose > 1) { descriptor___5.modname = "abituguru"; descriptor___5.function = "abituguru_detect_bank1_sensor_type"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___5.format = " alarm raised during temp sensor test, but temp high flag not set\n"; descriptor___5.lineno = 597U; descriptor___5.flags = 1U; tmp___22 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___22 != 0L) { __dynamic_pr_debug(& descriptor___5, "abituguru: alarm raised during temp sensor test, but temp high flag not set\n"); } else { } } else { } } else if (verbose > 1) { descriptor___6.modname = "abituguru"; descriptor___6.function = "abituguru_detect_bank1_sensor_type"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___6.format = " alarm not raised during temp sensor test\n"; descriptor___6.lineno = 600U; descriptor___6.flags = 1U; tmp___23 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___23 != 0L) { __dynamic_pr_debug(& descriptor___6, "abituguru: alarm not raised during temp sensor test\n"); } else { } } else { } ret = 2; abituguru_detect_bank1_sensor_type_exit: i = 0; goto ldv_22078; ldv_22077: tmp___24 = abituguru_write(data, 35, (int )sensor_addr, (u8 *)(& data->bank1_settings) + (unsigned long )sensor_addr, 3); if (tmp___24 == 3) { goto ldv_22076; } else { } i = i + 1; ldv_22078: ; if (i <= 2) { goto ldv_22077; } else { } ldv_22076: ; if (i == 3) { printk("\vabituguru: Fatal error could not restore original settings. %s %s\n", never_happen, report_this); return (-19); } else { } return (ret); } } static void abituguru_detect_no_bank2_sensors(struct abituguru_data *data ) { int i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; { if (fan_sensors > 0 && fan_sensors <= 6) { data->bank2_sensors = (u8 )fan_sensors; if (verbose > 1) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_detect_no_bank2_sensors"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "assuming %d fan sensors because of \"fan_sensors\" module param\n"; descriptor.lineno = 650U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: assuming %d fan sensors because of \"fan_sensors\" module param\n", (int )data->bank2_sensors); } else { } } else { } return; } else { } if (verbose > 1) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_detect_no_bank2_sensors"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "detecting number of fan sensors\n"; descriptor___0.lineno = 654U; descriptor___0.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: detecting number of fan sensors\n"); } else { } } else { } i = 0; goto ldv_22091; ldv_22090: ; if (((int )data->bank2_settings[i][0] & -202) != 0) { if (verbose > 1) { descriptor___1.modname = "abituguru"; descriptor___1.function = "abituguru_detect_no_bank2_sensors"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___1.format = " bank2 sensor %d does not seem to be a fan sensor: settings[0] = %02X\n"; descriptor___1.lineno = 667U; descriptor___1.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___1, "abituguru: bank2 sensor %d does not seem to be a fan sensor: settings[0] = %02X\n", i, (unsigned int )data->bank2_settings[i][0]); } else { } } else { } goto ldv_22087; } else { } if ((int )data->bank2_settings[i][1] < (int )((unsigned char )abituguru_bank2_min_threshold)) { if (verbose > 1) { descriptor___2.modname = "abituguru"; descriptor___2.function = "abituguru_detect_no_bank2_sensors"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___2.format = " bank2 sensor %d does not seem to be a fan sensor: the threshold (%d) is below the minimum (%d)\n"; descriptor___2.lineno = 678U; descriptor___2.flags = 1U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_pr_debug(& descriptor___2, "abituguru: bank2 sensor %d does not seem to be a fan sensor: the threshold (%d) is below the minimum (%d)\n", i, (int )data->bank2_settings[i][1], (int )abituguru_bank2_min_threshold); } else { } } else { } goto ldv_22087; } else { } if ((int )data->bank2_settings[i][1] > (int )((unsigned char )abituguru_bank2_max_threshold)) { if (verbose > 1) { descriptor___3.modname = "abituguru"; descriptor___3.function = "abituguru_detect_no_bank2_sensors"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___3.format = " bank2 sensor %d does not seem to be a fan sensor: the threshold (%d) is above the maximum (%d)\n"; descriptor___3.lineno = 687U; descriptor___3.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_pr_debug(& descriptor___3, "abituguru: bank2 sensor %d does not seem to be a fan sensor: the threshold (%d) is above the maximum (%d)\n", i, (int )data->bank2_settings[i][1], (int )abituguru_bank2_max_threshold); } else { } } else { } goto ldv_22087; } else { } i = i + 1; ldv_22091: ; if (i <= 5) { goto ldv_22090; } else { } ldv_22087: data->bank2_sensors = (u8 )i; if (verbose > 1) { descriptor___4.modname = "abituguru"; descriptor___4.function = "abituguru_detect_no_bank2_sensors"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___4.format = " found: %d fan sensors\n"; descriptor___4.lineno = 694U; descriptor___4.flags = 1U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_pr_debug(& descriptor___4, "abituguru: found: %d fan sensors\n", (int )data->bank2_sensors); } else { } } else { } return; } } static void abituguru_detect_no_pwms(struct abituguru_data *data ) { int i ; int j ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; u8 min ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; { if (pwms > 0 && pwms <= 5) { data->pwms = (u8 )pwms; if (verbose > 1) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_detect_no_pwms"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "assuming %d PWM outputs because of \"pwms\" module param\n"; descriptor.lineno = 705U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: assuming %d PWM outputs because of \"pwms\" module param\n", (int )data->pwms); } else { } } else { } return; } else { } if (verbose > 1) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_detect_no_pwms"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "detecting number of PWM outputs\n"; descriptor___0.lineno = 709U; descriptor___0.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: detecting number of PWM outputs\n"); } else { } } else { } i = 0; goto ldv_22117; ldv_22116: ; if (((int )data->pwm_settings[i][0] & -144) != 0) { if (verbose > 1) { descriptor___1.modname = "abituguru"; descriptor___1.function = "abituguru_detect_no_pwms"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___1.format = " pwm channel %d does not seem to be a pwm channel: settings[0] = %02X\n"; descriptor___1.lineno = 719U; descriptor___1.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___1, "abituguru: pwm channel %d does not seem to be a pwm channel: settings[0] = %02X\n", i, (unsigned int )data->pwm_settings[i][0]); } else { } } else { } goto ldv_22102; } else { } j = 0; goto ldv_22105; ldv_22104: ; if ((int )data->bank1_address[1][j] == ((int )data->pwm_settings[i][0] & 15)) { goto ldv_22103; } else { } j = j + 1; ldv_22105: ; if ((int )data->bank1_sensors[1] > j) { goto ldv_22104; } else { } ldv_22103: ; if ((int )data->bank1_sensors[1] == j) { if (verbose > 1) { descriptor___2.modname = "abituguru"; descriptor___2.function = "abituguru_detect_no_pwms"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___2.format = " pwm channel %d does not seem to be a pwm channel: %d is not a valid temp sensor address\n"; descriptor___2.lineno = 737U; descriptor___2.flags = 1U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_pr_debug(& descriptor___2, "abituguru: pwm channel %d does not seem to be a pwm channel: %d is not a valid temp sensor address\n", i, (int )data->pwm_settings[i][0] & 15); } else { } } else { } goto ldv_22102; } else { } j = 1; goto ldv_22112; ldv_22111: ; if (i == 0 && (j == 1 || j == 2)) { min = 77U; } else { min = abituguru_pwm_min[j]; } if ((int )data->pwm_settings[i][j] < (int )min) { if (verbose > 1) { descriptor___3.modname = "abituguru"; descriptor___3.function = "abituguru_detect_no_pwms"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___3.format = " pwm channel %d does not seem to be a pwm channel: setting %d (%d) is below the minimum value (%d)\n"; descriptor___3.lineno = 755U; descriptor___3.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_pr_debug(& descriptor___3, "abituguru: pwm channel %d does not seem to be a pwm channel: setting %d (%d) is below the minimum value (%d)\n", i, j, (int )data->pwm_settings[i][j], (int )min); } else { } } else { } goto abituguru_detect_no_pwms_exit; } else { } if ((int )data->pwm_settings[i][j] > (int )((unsigned char )abituguru_pwm_max[j])) { if (verbose > 1) { descriptor___4.modname = "abituguru"; descriptor___4.function = "abituguru_detect_no_pwms"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___4.format = " pwm channel %d does not seem to be a pwm channel: setting %d (%d) is above the maximum value (%d)\n"; descriptor___4.lineno = 764U; descriptor___4.flags = 1U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_pr_debug(& descriptor___4, "abituguru: pwm channel %d does not seem to be a pwm channel: setting %d (%d) is above the maximum value (%d)\n", i, j, (int )data->pwm_settings[i][j], (int )abituguru_pwm_max[j]); } else { } } else { } goto abituguru_detect_no_pwms_exit; } else { } j = j + 1; ldv_22112: ; if (j <= 4) { goto ldv_22111; } else { } if ((int )data->pwm_settings[i][1] >= (int )data->pwm_settings[i][2]) { if (verbose > 1) { descriptor___5.modname = "abituguru"; descriptor___5.function = "abituguru_detect_no_pwms"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___5.format = " pwm channel %d does not seem to be a pwm channel: min pwm (%d) >= max pwm (%d)\n"; descriptor___5.lineno = 775U; descriptor___5.flags = 1U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_pr_debug(& descriptor___5, "abituguru: pwm channel %d does not seem to be a pwm channel: min pwm (%d) >= max pwm (%d)\n", i, (int )data->pwm_settings[i][1], (int )data->pwm_settings[i][2]); } else { } } else { } goto ldv_22102; } else { } if ((int )data->pwm_settings[i][3] >= (int )data->pwm_settings[i][4]) { if (verbose > 1) { descriptor___6.modname = "abituguru"; descriptor___6.function = "abituguru_detect_no_pwms"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___6.format = " pwm channel %d does not seem to be a pwm channel: min temp (%d) >= max temp (%d)\n"; descriptor___6.lineno = 783U; descriptor___6.flags = 1U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_pr_debug(& descriptor___6, "abituguru: pwm channel %d does not seem to be a pwm channel: min temp (%d) >= max temp (%d)\n", i, (int )data->pwm_settings[i][3], (int )data->pwm_settings[i][4]); } else { } } else { } goto ldv_22102; } else { } i = i + 1; ldv_22117: ; if (i <= 4) { goto ldv_22116; } else { } ldv_22102: ; abituguru_detect_no_pwms_exit: data->pwms = (u8 )i; if (verbose > 1) { descriptor___7.modname = "abituguru"; descriptor___7.function = "abituguru_detect_no_pwms"; descriptor___7.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___7.format = " found: %d PWM outputs\n"; descriptor___7.lineno = 790U; descriptor___7.flags = 1U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_pr_debug(& descriptor___7, "abituguru: found: %d PWM outputs\n", (int )data->pwms); } else { } } else { } return; } } static struct abituguru_data *abituguru_update_device(struct device *dev ) ; static ssize_t show_bank1_value(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; struct abituguru_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = abituguru_update_device(dev); data = tmp; if ((unsigned long )data == (unsigned long )((struct abituguru_data *)0)) { return (-5L); } else { } tmp___0 = sprintf(buf, "%d\n", ((int )data->bank1_value[(int )attr->index] * data->bank1_max_value[(int )attr->index] + 128) / 255); return ((ssize_t )tmp___0); } } static ssize_t show_bank1_setting(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = sprintf(buf, "%d\n", ((int )data->bank1_settings[(int )attr->index][(int )attr->nr] * data->bank1_max_value[(int )attr->index] + 128) / 255); return ((ssize_t )tmp___0); } } static ssize_t show_bank2_value(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; struct abituguru_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = abituguru_update_device(dev); data = tmp; if ((unsigned long )data == (unsigned long )((struct abituguru_data *)0)) { return (-5L); } else { } tmp___0 = sprintf(buf, "%d\n", ((int )data->bank2_value[(int )attr->index] * 15300 + 128) / 255); return ((ssize_t )tmp___0); } } static ssize_t show_bank2_setting(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = sprintf(buf, "%d\n", ((int )data->bank2_settings[(int )attr->index][(int )attr->nr] * 15300 + 128) / 255); return ((ssize_t )tmp___0); } } static ssize_t store_bank1_setting(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; unsigned long val ; ssize_t ret ; int tmp___0 ; u8 orig_val ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & val); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } ret = (ssize_t )count; val = (val * 255UL + (unsigned long )(data->bank1_max_value[(int )attr->index] / 2)) / (unsigned long )data->bank1_max_value[(int )attr->index]; if (val > 255UL) { return (-22L); } else { } ldv_mutex_lock_10(& data->update_lock); if ((unsigned long )data->bank1_settings[(int )attr->index][(int )attr->nr] != val) { orig_val = data->bank1_settings[(int )attr->index][(int )attr->nr]; data->bank1_settings[(int )attr->index][(int )attr->nr] = (u8 )val; tmp___1 = abituguru_write(data, 35, (int )attr->index, (u8 *)(& data->bank1_settings) + (unsigned long )attr->index, 3); if (tmp___1 <= (int )attr->nr) { data->bank1_settings[(int )attr->index][(int )attr->nr] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_11(& data->update_lock); return (ret); } } static ssize_t store_bank2_setting(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; unsigned long val ; ssize_t ret ; int tmp___0 ; u8 orig_val ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & val); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } ret = (ssize_t )count; val = (val * 255UL + 7650UL) / 15300UL; if ((unsigned long )abituguru_bank2_min_threshold > val || (unsigned long )abituguru_bank2_max_threshold < val) { return (-22L); } else { } ldv_mutex_lock_12(& data->update_lock); if ((unsigned long )data->bank2_settings[(int )attr->index][(int )attr->nr] != val) { orig_val = data->bank2_settings[(int )attr->index][(int )attr->nr]; data->bank2_settings[(int )attr->index][(int )attr->nr] = (u8 )val; tmp___1 = abituguru_write(data, 40, (int )attr->index, (u8 *)(& data->bank2_settings) + (unsigned long )attr->index, 2); if (tmp___1 <= (int )attr->nr) { data->bank2_settings[(int )attr->index][(int )attr->nr] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_13(& data->update_lock); return (ret); } } static ssize_t show_bank1_alarm(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; struct abituguru_data *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = abituguru_update_device(dev); data = tmp; if ((unsigned long )data == (unsigned long )((struct abituguru_data *)0)) { return (-5L); } else { } if (((int )data->alarms[(int )((unsigned int )attr->index / 8U)] >> ((int )attr->index & 7)) & 1 && (unsigned int )((int )data->bank1_settings[(int )attr->index][0] & (int )attr->nr) != 0U) { tmp___0 = sprintf(buf, "1\n"); return ((ssize_t )tmp___0); } else { tmp___1 = sprintf(buf, "0\n"); return ((ssize_t )tmp___1); } } } static ssize_t show_bank2_alarm(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; struct abituguru_data *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = abituguru_update_device(dev); data = tmp; if ((unsigned long )data == (unsigned long )((struct abituguru_data *)0)) { return (-5L); } else { } if (((int )data->alarms[2] >> (int )attr->index) & 1) { tmp___0 = sprintf(buf, "1\n"); return ((ssize_t )tmp___0); } else { tmp___1 = sprintf(buf, "0\n"); return ((ssize_t )tmp___1); } } } static ssize_t show_bank1_mask(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; if ((unsigned int )((int )data->bank1_settings[(int )attr->index][0] & (int )attr->nr) != 0U) { tmp___0 = sprintf(buf, "1\n"); return ((ssize_t )tmp___0); } else { tmp___1 = sprintf(buf, "0\n"); return ((ssize_t )tmp___1); } } } static ssize_t show_bank2_mask(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; if ((unsigned int )((int )data->bank2_settings[(int )attr->index][0] & (int )attr->nr) != 0U) { tmp___0 = sprintf(buf, "1\n"); return ((ssize_t )tmp___0); } else { tmp___1 = sprintf(buf, "0\n"); return ((ssize_t )tmp___1); } } } static ssize_t store_bank1_mask(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; ssize_t ret ; u8 orig_val ; unsigned long mask ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & mask); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } ret = (ssize_t )count; ldv_mutex_lock_14(& data->update_lock); orig_val = data->bank1_settings[(int )attr->index][0]; if (mask != 0UL) { data->bank1_settings[(int )attr->index][0] = (u8 )((int )data->bank1_settings[(int )attr->index][0] | (int )attr->nr); } else { data->bank1_settings[(int )attr->index][0] = (u8 )((int )((signed char )data->bank1_settings[(int )attr->index][0]) & ~ ((int )((signed char )attr->nr))); } if ((int )data->bank1_settings[(int )attr->index][0] != (int )orig_val) { tmp___1 = abituguru_write(data, 35, (int )attr->index, (u8 *)(& data->bank1_settings) + (unsigned long )attr->index, 3); if (tmp___1 <= 0) { data->bank1_settings[(int )attr->index][0] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_15(& data->update_lock); return (ret); } } static ssize_t store_bank2_mask(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; ssize_t ret ; u8 orig_val ; unsigned long mask ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & mask); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } ret = (ssize_t )count; ldv_mutex_lock_16(& data->update_lock); orig_val = data->bank2_settings[(int )attr->index][0]; if (mask != 0UL) { data->bank2_settings[(int )attr->index][0] = (u8 )((int )data->bank2_settings[(int )attr->index][0] | (int )attr->nr); } else { data->bank2_settings[(int )attr->index][0] = (u8 )((int )((signed char )data->bank2_settings[(int )attr->index][0]) & ~ ((int )((signed char )attr->nr))); } if ((int )data->bank2_settings[(int )attr->index][0] != (int )orig_val) { tmp___1 = abituguru_write(data, 40, (int )attr->index, (u8 *)(& data->bank2_settings) + (unsigned long )attr->index, 2); if (tmp___1 <= 0) { data->bank2_settings[(int )attr->index][0] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_17(& data->update_lock); return (ret); } } static ssize_t show_pwm_setting(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = sprintf(buf, "%d\n", (int )data->pwm_settings[(int )attr->index][(int )attr->nr] * (int )abituguru_pwm_settings_multiplier[(int )attr->nr]); return ((ssize_t )tmp___0); } } static ssize_t store_pwm_setting(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; u8 min ; unsigned long val ; ssize_t ret ; int tmp___0 ; u8 orig_val ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & val); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } ret = (ssize_t )count; val = ((unsigned long )((int )abituguru_pwm_settings_multiplier[(int )attr->nr] / 2) + val) / (unsigned long )abituguru_pwm_settings_multiplier[(int )attr->nr]; if ((unsigned int )attr->index == 0U && ((unsigned int )attr->nr == 1U || (unsigned int )attr->nr == 2U)) { min = 77U; } else { min = abituguru_pwm_min[(int )attr->nr]; } if ((unsigned long )min > val || (unsigned long )abituguru_pwm_max[(int )attr->nr] < val) { return (-22L); } else { } ldv_mutex_lock_18(& data->update_lock); if ((int )attr->nr & 1 && (unsigned long )data->pwm_settings[(int )attr->index][(int )attr->nr + 1] <= val) { ret = -22L; } else if (((int )attr->nr & 1) == 0 && (unsigned long )data->pwm_settings[(int )attr->index][(int )attr->nr + -1] >= val) { ret = -22L; } else if ((unsigned long )data->pwm_settings[(int )attr->index][(int )attr->nr] != val) { orig_val = data->pwm_settings[(int )attr->index][(int )attr->nr]; data->pwm_settings[(int )attr->index][(int )attr->nr] = (u8 )val; tmp___1 = abituguru_write(data, 37, (int )attr->index, (u8 *)(& data->pwm_settings) + (unsigned long )attr->index, 5); if (tmp___1 <= (int )attr->nr) { data->pwm_settings[(int )attr->index][(int )attr->nr] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_19(& data->update_lock); return (ret); } } static ssize_t show_pwm_sensor(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int i ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; i = 0; goto ldv_22279; ldv_22278: ; if ((int )data->bank1_address[1][i] == ((int )data->pwm_settings[(int )attr->index][0] & 15)) { tmp___0 = sprintf(buf, "%d\n", i + 1); return ((ssize_t )tmp___0); } else { } i = i + 1; ldv_22279: ; if ((int )data->bank1_sensors[1] > i) { goto ldv_22278; } else { } return (-6L); } } static ssize_t store_pwm_sensor(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; ssize_t ret ; unsigned long val ; u8 orig_val ; u8 address ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & val); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } if (val == 0UL || (unsigned long )data->bank1_sensors[1] < val) { return (-22L); } else { } val = val - 1UL; ret = (ssize_t )count; ldv_mutex_lock_20(& data->update_lock); orig_val = data->pwm_settings[(int )attr->index][0]; address = data->bank1_address[1][val]; data->pwm_settings[(int )attr->index][0] = (unsigned int )data->pwm_settings[(int )attr->index][0] & 240U; data->pwm_settings[(int )attr->index][0] = (u8 )((int )data->pwm_settings[(int )attr->index][0] | (int )address); if ((int )data->pwm_settings[(int )attr->index][0] != (int )orig_val) { tmp___1 = abituguru_write(data, 37, (int )attr->index, (u8 *)(& data->pwm_settings) + (unsigned long )attr->index, 5); if (tmp___1 <= 0) { data->pwm_settings[(int )attr->index][0] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_21(& data->update_lock); return (ret); } } static ssize_t show_pwm_enable(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; int res ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; res = 0; if ((int )((signed char )data->pwm_settings[(int )attr->index][0]) < 0) { res = 2; } else { } tmp___0 = sprintf(buf, "%d\n", res); return ((ssize_t )tmp___0); } } static ssize_t store_pwm_enable(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *attr ; struct device_attribute const *__mptr ; struct abituguru_data *data ; void *tmp ; u8 orig_val ; ssize_t ret ; unsigned long user_val ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & user_val); ret = (ssize_t )tmp___0; if (ret != 0L) { return (ret); } else { } ret = (ssize_t )count; ldv_mutex_lock_22(& data->update_lock); orig_val = data->pwm_settings[(int )attr->index][0]; switch (user_val) { case 0UL: data->pwm_settings[(int )attr->index][0] = (unsigned int )data->pwm_settings[(int )attr->index][0] & 127U; goto ldv_22319; case 2UL: data->pwm_settings[(int )attr->index][0] = (u8 )((unsigned int )data->pwm_settings[(int )attr->index][0] | 128U); goto ldv_22319; default: ret = -22L; } ldv_22319: ; if ((int )data->pwm_settings[(int )attr->index][0] != (int )orig_val) { tmp___1 = abituguru_write(data, 37, (int )attr->index, (u8 *)(& data->pwm_settings) + (unsigned long )attr->index, 5); if (tmp___1 <= 0) { data->pwm_settings[(int )attr->index][0] = orig_val; ret = -5L; } else { } } else { } ldv_mutex_unlock_23(& data->update_lock); return (ret); } } static ssize_t show_name(struct device *dev , struct device_attribute *devattr , char *buf ) { int tmp ; { tmp = sprintf(buf, "%s\n", (char *)"abituguru"); return ((ssize_t )tmp); } } static struct sensor_device_attribute_2 const abituguru_sysfs_bank1_templ[2U][9U] = { { {{{"in%d_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_value, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 0U}, {{{"in%d_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_setting, & store_bank1_setting}, 0U, 1U}, {{{"in%d_min_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 64U}, {{{"in%d_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_setting, & store_bank1_setting}, 0U, 2U}, {{{"in%d_max_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 32U}, {{{"in%d_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 8U}, {{{"in%d_shutdown", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 128U}, {{{"in%d_min_alarm_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 4U}, {{{"in%d_max_alarm_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 2U}}, { {{{"temp%d_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_value, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 0U}, {{{"temp%d_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 16U}, {{{"temp%d_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_setting, & store_bank1_setting}, 0U, 1U}, {{{"temp%d_crit", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_setting, & store_bank1_setting}, 0U, 2U}, {{{"temp%d_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 8U}, {{{"temp%d_shutdown", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 128U}, {{{"temp%d_alarm_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank1_mask, & store_bank1_mask}, 0U, 1U}}}; static struct sensor_device_attribute_2 const abituguru_sysfs_fan_templ[6U] = { {{{"fan%d_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank2_value, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 0U}, {{{"fan%d_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank2_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 0U}, {{{"fan%d_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank2_setting, & store_bank2_setting}, 0U, 1U}, {{{"fan%d_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank2_mask, & store_bank2_mask}, 0U, 8U}, {{{"fan%d_shutdown", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank2_mask, & store_bank2_mask}, 0U, 128U}, {{{"fan%d_alarm_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_bank2_mask, & store_bank2_mask}, 0U, 1U}}; static struct sensor_device_attribute_2 const abituguru_sysfs_pwm_templ[6U] = { {{{"pwm%d_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_enable, & store_pwm_enable}, 0U, 0U}, {{{"pwm%d_auto_channels_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_sensor, & store_pwm_sensor}, 0U, 0U}, {{{"pwm%d_auto_point1_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_setting, & store_pwm_setting}, 0U, 1U}, {{{"pwm%d_auto_point2_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_setting, & store_pwm_setting}, 0U, 2U}, {{{"pwm%d_auto_point1_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_setting, & store_pwm_setting}, 0U, 3U}, {{{"pwm%d_auto_point2_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_setting, & store_pwm_setting}, 0U, 4U}}; static struct sensor_device_attribute_2 abituguru_sysfs_attr[1U] = { {{{"name", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_name, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0U, 0U}}; static int abituguru_probe(struct platform_device *pdev ) { struct abituguru_data *data ; int i ; int j ; int used ; int sysfs_names_free ; int sysfs_attr_i ; int res ; char *sysfs_filename ; u8 probe_order[16U] ; void *tmp ; struct resource *tmp___0 ; struct lock_class_key __key ; unsigned char tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; bool tmp___11 ; int tmp___12 ; long tmp___13 ; { res = -19; probe_order[0] = 0U; probe_order[1] = 1U; probe_order[2] = 3U; probe_order[3] = 4U; probe_order[4] = 10U; probe_order[5] = 8U; probe_order[6] = 14U; probe_order[7] = 2U; probe_order[8] = 9U; probe_order[9] = 6U; probe_order[10] = 5U; probe_order[11] = 11U; probe_order[12] = 15U; probe_order[13] = 13U; probe_order[14] = 7U; probe_order[15] = 12U; tmp = devm_kzalloc(& pdev->dev, 15240UL, 208U); data = (struct abituguru_data *)tmp; if ((unsigned long )data == (unsigned long )((struct abituguru_data *)0)) { return (-12); } else { } tmp___0 = platform_get_resource(pdev, 256U, 0U); data->addr = (unsigned short )tmp___0->start; __mutex_init(& data->update_lock, "&data->update_lock", & __key); platform_set_drvdata(pdev, (void *)data); tmp___1 = inb_p((int )data->addr + 4); if ((unsigned int )tmp___1 == 8U) { data->uguru_ready = 1; } else { } tmp___2 = abituguru_read(data, 32, 0, (u8 *)(& data->alarms), 3, 3); if (tmp___2 != 3) { goto abituguru_probe_error; } else { } i = 0; goto ldv_22694; ldv_22693: tmp___3 = abituguru_read(data, 33, (int )((u8 )i), (u8 *)(& data->bank1_value) + (unsigned long )i, 1, 3); if (tmp___3 != 1) { goto abituguru_probe_error; } else { } tmp___4 = abituguru_read(data, 34, (int )((u8 )i), (u8 *)(& data->bank1_settings) + (unsigned long )i, 3, 3); if (tmp___4 != 3) { goto abituguru_probe_error; } else { } i = i + 1; ldv_22694: ; if (i <= 15) { goto ldv_22693; } else { } i = 0; goto ldv_22697; ldv_22696: tmp___5 = abituguru_read(data, 38, (int )((u8 )i), (u8 *)(& data->bank2_value) + (unsigned long )i, 1, 3); if (tmp___5 != 1) { goto abituguru_probe_error; } else { } tmp___6 = abituguru_read(data, 39, (int )((u8 )i), (u8 *)(& data->bank2_settings) + (unsigned long )i, 2, 3); if (tmp___6 != 2) { goto abituguru_probe_error; } else { } i = i + 1; ldv_22697: ; if (i <= 5) { goto ldv_22696; } else { } i = 0; goto ldv_22700; ldv_22699: tmp___7 = abituguru_read(data, 36, (int )((u8 )i), (u8 *)(& data->pwm_settings) + (unsigned long )i, 5, 3); if (tmp___7 != 5) { goto abituguru_probe_error; } else { } i = i + 1; ldv_22700: ; if (i <= 4) { goto ldv_22699; } else { } data->last_updated = jiffies; sysfs_attr_i = 0; sysfs_filename = (char *)(& data->sysfs_names); sysfs_names_free = 3080; i = 0; goto ldv_22707; ldv_22706: res = abituguru_detect_bank1_sensor_type(data, (int )probe_order[i]); if (res < 0) { goto abituguru_probe_error; } else { } if (res == 2) { goto ldv_22702; } else { } j = 0; goto ldv_22704; ldv_22703: tmp___8 = snprintf(sysfs_filename, (size_t )sysfs_names_free, abituguru_sysfs_bank1_templ[res][j].dev_attr.attr.name, (int )data->bank1_sensors[res] + res); used = tmp___8 + 1; data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_bank1_templ[res][j]; data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = (char const *)sysfs_filename; data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; sysfs_filename = sysfs_filename + (unsigned long )used; sysfs_names_free = sysfs_names_free - used; sysfs_attr_i = sysfs_attr_i + 1; j = j + 1; ldv_22704: ; if ((res != 0 ? 7 : 9) > j) { goto ldv_22703; } else { } data->bank1_max_value[(int )probe_order[i]] = abituguru_bank1_max_value[res]; data->bank1_address[res][(int )data->bank1_sensors[res]] = probe_order[i]; data->bank1_sensors[res] = (u8 )((int )data->bank1_sensors[res] + 1); ldv_22702: i = i + 1; ldv_22707: ; if (i <= 15) { goto ldv_22706; } else { } abituguru_detect_no_bank2_sensors(data); i = 0; goto ldv_22715; ldv_22714: j = 0; goto ldv_22712; ldv_22711: tmp___9 = snprintf(sysfs_filename, (size_t )sysfs_names_free, abituguru_sysfs_fan_templ[j].dev_attr.attr.name, i + 1); used = tmp___9 + 1; data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_fan_templ[j]; data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = (char const *)sysfs_filename; data->sysfs_attr[sysfs_attr_i].index = (u8 )i; sysfs_filename = sysfs_filename + (unsigned long )used; sysfs_names_free = sysfs_names_free - used; sysfs_attr_i = sysfs_attr_i + 1; j = j + 1; ldv_22712: ; if ((unsigned int )j <= 5U) { goto ldv_22711; } else { } i = i + 1; ldv_22715: ; if ((int )data->bank2_sensors > i) { goto ldv_22714; } else { } abituguru_detect_no_pwms(data); i = 0; goto ldv_22723; ldv_22722: j = 0; goto ldv_22720; ldv_22719: tmp___10 = snprintf(sysfs_filename, (size_t )sysfs_names_free, abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, i + 1); used = tmp___10 + 1; data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_pwm_templ[j]; data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = (char const *)sysfs_filename; data->sysfs_attr[sysfs_attr_i].index = (u8 )i; sysfs_filename = sysfs_filename + (unsigned long )used; sysfs_names_free = sysfs_names_free - used; sysfs_attr_i = sysfs_attr_i + 1; j = j + 1; ldv_22720: ; if ((unsigned int )j <= 5U) { goto ldv_22719; } else { } i = i + 1; ldv_22723: ; if ((int )data->pwms > i) { goto ldv_22722; } else { } if (sysfs_names_free < 0) { printk("\vabituguru: Fatal error ran out of space for sysfs attr names. %s %s", never_happen, report_this); res = -36; goto abituguru_probe_error; } else { } printk("\016abituguru: found Abit uGuru\n"); i = 0; goto ldv_22726; ldv_22725: res = device_create_file(& pdev->dev, (struct device_attribute const *)(& data->sysfs_attr[i].dev_attr)); if (res != 0) { goto abituguru_probe_error; } else { } i = i + 1; ldv_22726: ; if (i < sysfs_attr_i) { goto ldv_22725; } else { } i = 0; goto ldv_22731; ldv_22730: res = device_create_file(& pdev->dev, (struct device_attribute const *)(& abituguru_sysfs_attr[i].dev_attr)); if (res != 0) { goto abituguru_probe_error; } else { } i = i + 1; ldv_22731: ; if (i == 0) { goto ldv_22730; } else { } data->hwmon_dev = hwmon_device_register(& pdev->dev); tmp___11 = IS_ERR((void const *)data->hwmon_dev); if (tmp___11) { tmp___12 = 0; } else { tmp___12 = 1; } if (tmp___12) { return (0); } else { } tmp___13 = PTR_ERR((void const *)data->hwmon_dev); res = (int )tmp___13; abituguru_probe_error: i = 0; goto ldv_22734; ldv_22733: device_remove_file(& pdev->dev, (struct device_attribute const *)(& data->sysfs_attr[i].dev_attr)); i = i + 1; ldv_22734: ; if ((unsigned long )data->sysfs_attr[i].dev_attr.attr.name != (unsigned long )((char const *)0)) { goto ldv_22733; } else { } i = 0; goto ldv_22739; ldv_22738: device_remove_file(& pdev->dev, (struct device_attribute const *)(& abituguru_sysfs_attr[i].dev_attr)); i = i + 1; ldv_22739: ; if (i == 0) { goto ldv_22738; } else { } return (res); } } static int abituguru_remove(struct platform_device *pdev ) { int i ; struct abituguru_data *data ; void *tmp ; { tmp = platform_get_drvdata((struct platform_device const *)pdev); data = (struct abituguru_data *)tmp; hwmon_device_unregister(data->hwmon_dev); i = 0; goto ldv_22747; ldv_22746: device_remove_file(& pdev->dev, (struct device_attribute const *)(& data->sysfs_attr[i].dev_attr)); i = i + 1; ldv_22747: ; if ((unsigned long )data->sysfs_attr[i].dev_attr.attr.name != (unsigned long )((char const *)0)) { goto ldv_22746; } else { } i = 0; goto ldv_22752; ldv_22751: device_remove_file(& pdev->dev, (struct device_attribute const *)(& abituguru_sysfs_attr[i].dev_attr)); i = i + 1; ldv_22752: ; if (i == 0) { goto ldv_22751; } else { } return (0); } } static struct abituguru_data *abituguru_update_device(struct device *dev ) { int i ; int err ; struct abituguru_data *data ; void *tmp ; char success ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; success = 1; ldv_mutex_lock_24(& data->update_lock); if ((long )((data->last_updated - (unsigned long )jiffies) + 250UL) < 0L) { success = 0; err = abituguru_read(data, 32, 0, (u8 *)(& data->alarms), 3, 0); if (err != 3) { goto LEAVE_UPDATE; } else { } i = 0; goto ldv_22769; ldv_22768: err = abituguru_read(data, 33, (int )((u8 )i), (u8 *)(& data->bank1_value) + (unsigned long )i, 1, 0); if (err != 1) { goto LEAVE_UPDATE; } else { } err = abituguru_read(data, 34, (int )((u8 )i), (u8 *)(& data->bank1_settings) + (unsigned long )i, 3, 0); if (err != 3) { goto LEAVE_UPDATE; } else { } i = i + 1; ldv_22769: ; if (i <= 15) { goto ldv_22768; } else { } i = 0; goto ldv_22772; ldv_22771: err = abituguru_read(data, 38, (int )((u8 )i), (u8 *)(& data->bank2_value) + (unsigned long )i, 1, 0); if (err != 1) { goto LEAVE_UPDATE; } else { } i = i + 1; ldv_22772: ; if ((int )data->bank2_sensors > i) { goto ldv_22771; } else { } success = 1; data->update_timeouts = 0U; LEAVE_UPDATE: ; if ((int )((signed char )success) == 0 && (err == -16 || err >= 0)) { if ((unsigned int )data->update_timeouts != 255U) { data->update_timeouts = (unsigned char )((int )data->update_timeouts + 1); } else { } if ((unsigned int )data->update_timeouts <= 2U) { if (verbose > 2) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_update_device"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "timeout exceeded, will try again next update\n"; descriptor.lineno = 1500U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: timeout exceeded, will try again next update\n"); } else { } } else { } success = 1; } else if (verbose > 0) { descriptor___0.modname = "abituguru"; descriptor___0.function = "abituguru_update_device"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor___0.format = "timeout exceeded %d times waiting for more input state\n"; descriptor___0.lineno = 1506U; descriptor___0.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___0, "abituguru: timeout exceeded %d times waiting for more input state\n", (int )data->update_timeouts); } else { } } else { } } else { } if ((int )((signed char )success) != 0) { data->last_updated = jiffies; } else { } } else { } ldv_mutex_unlock_25(& data->update_lock); if ((int )((signed char )success) != 0) { return (data); } else { return ((struct abituguru_data *)0); } } } static int abituguru_suspend(struct device *dev ) { struct abituguru_data *data ; void *tmp ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; ldv_mutex_lock_26(& data->update_lock); return (0); } } static int abituguru_resume(struct device *dev ) { struct abituguru_data *data ; void *tmp ; unsigned char tmp___0 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct abituguru_data *)tmp; tmp___0 = inb_p((int )data->addr + 4); if ((unsigned int )tmp___0 != 8U) { data->uguru_ready = 0; } else { } ldv_mutex_unlock_27(& data->update_lock); return (0); } } static struct dev_pm_ops const abituguru_pm = {0, 0, & abituguru_suspend, & abituguru_resume, & abituguru_suspend, & abituguru_resume, & abituguru_suspend, & abituguru_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct platform_driver abituguru_driver = {& abituguru_probe, & abituguru_remove, 0, 0, 0, {"abituguru", 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & abituguru_pm, 0}, 0, (_Bool)0}; static int abituguru_detect(void) { u8 cmd_val ; unsigned char tmp ; u8 data_val ; unsigned char tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { tmp = inb_p(224); cmd_val = tmp; tmp___0 = inb_p(228); data_val = tmp___0; if (((unsigned int )data_val == 0U || (unsigned int )data_val == 8U) && ((unsigned int )cmd_val == 0U || (unsigned int )cmd_val == 172U)) { return (224); } else { } if (verbose > 1) { descriptor.modname = "abituguru"; descriptor.function = "abituguru_detect"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8100/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/abituguru.c"; descriptor.format = "no Abit uGuru found, data = 0x%02X, cmd = 0x%02X\n"; descriptor.lineno = 1574U; descriptor.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor, "abituguru: no Abit uGuru found, data = 0x%02X, cmd = 0x%02X\n", (unsigned int )data_val, (unsigned int )cmd_val); } else { } } else { } if ((int )force) { printk("\016abituguru: Assuming Abit uGuru is present because of \"force\" parameter\n"); return (224); } else { } return (-19); } } static struct platform_device *abituguru_pdev ; static int abituguru_init(void) { int address ; int err ; struct resource res ; char const *board_vendor ; char const *tmp ; int tmp___0 ; { res.start = 0ULL; res.end = 0ULL; res.name = 0; res.flags = 256UL; res.parent = 0; res.sibling = 0; res.child = 0; tmp = dmi_get_system_info(9); board_vendor = tmp; if (! force) { if ((unsigned long )board_vendor == (unsigned long )((char const *)0)) { return (-19); } else { tmp___0 = strcmp(board_vendor, "http://www.abit.com.tw/"); if (tmp___0 != 0) { return (-19); } else { } } } else { } address = abituguru_detect(); if (address < 0) { return (address); } else { } err = ldv___platform_driver_register_28(& abituguru_driver, & __this_module); if (err != 0) { goto exit; } else { } abituguru_pdev = platform_device_alloc("abituguru", address); if ((unsigned long )abituguru_pdev == (unsigned long )((struct platform_device *)0)) { printk("\vabituguru: Device allocation failed\n"); err = -12; goto exit_driver_unregister; } else { } res.start = (resource_size_t )address; res.end = (resource_size_t )(address + 4); res.name = "abituguru"; err = platform_device_add_resources(abituguru_pdev, (struct resource const *)(& res), 1U); if (err != 0) { printk("\vabituguru: Device resource addition failed (%d)\n", err); goto exit_device_put; } else { } err = platform_device_add(abituguru_pdev); if (err != 0) { printk("\vabituguru: Device addition failed (%d)\n", err); goto exit_device_put; } else { } return (0); exit_device_put: platform_device_put(abituguru_pdev); exit_driver_unregister: ldv_platform_driver_unregister_29(& abituguru_driver); exit: ; return (err); } } static void abituguru_exit(void) { { platform_device_unregister(abituguru_pdev); ldv_platform_driver_unregister_30(& abituguru_driver); return; } } int ldv_retval_20 ; extern int ldv_suspend_late_2(void) ; extern int ldv_restore_noirq_2(void) ; int ldv_retval_18 ; int ldv_retval_2 ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_11 ; int ldv_retval_1 ; int ldv_retval_15 ; int ldv_retval_16 ; extern int ldv_freeze_late_2(void) ; extern int ldv_complete_2(void) ; void ldv_check_final_state(void) ; int ldv_retval_8 ; int ldv_retval_7 ; extern int ldv_thaw_early_2(void) ; int ldv_retval_19 ; extern int ldv_poweroff_noirq_2(void) ; extern int ldv_resume_noirq_2(void) ; extern int ldv_resume_early_2(void) ; int ldv_retval_14 ; int ldv_retval_17 ; extern int ldv_prepare_2(void) ; int ldv_retval_12 ; extern void ldv_initialize(void) ; int ldv_retval_6 ; extern int ldv_restore_early_2(void) ; extern int ldv_suspend_noirq_2(void) ; int ldv_retval_21 ; extern int ldv_poweroff_late_2(void) ; int ldv_retval_13 ; extern int ldv_thaw_noirq_2(void) ; int ldv_retval_9 ; int ldv_retval_10 ; extern int ldv_freeze_noirq_2(void) ; int ldv_retval_4 ; int ldv_retval_3 ; void ldv_platform_probe_1(int (*probe)(struct platform_device * ) ) { int err ; { err = (*probe)(abituguru_driver_group1); if (err == 0) { probed_1 = 1; ref_cnt = ref_cnt + 1; } else { } return; } } void ldv_dev_pm_ops_2(void) { void *tmp ; { tmp = ldv_init_zalloc(1416UL); abituguru_pm_group1 = (struct device *)tmp; return; } } void ldv_platform_driver_init_1(void) { void *tmp ; { tmp = ldv_init_zalloc(1472UL); abituguru_driver_group1 = (struct platform_device *)tmp; return; } } int main(void) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { ldv_initialize(); ldv_state_variable_1 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_2 = 0; ldv_22933: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_1 != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_1 == 1) { ldv_retval_1 = abituguru_probe(abituguru_driver_group1); if (ldv_retval_1 == 0) { ldv_state_variable_1 = 2; ref_cnt = ref_cnt + 1; probed_1 = 1; } else { } } else { } goto ldv_22899; case 1: ; if (ldv_state_variable_1 == 1 && probed_1 == 1) { ldv_retval_0 = abituguru_remove(abituguru_driver_group1); if (ldv_retval_0 == 0) { ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; probed_1 = 0; } else { } } else { } if (ldv_state_variable_1 == 2 && probed_1 == 1) { ldv_retval_0 = abituguru_remove(abituguru_driver_group1); if (ldv_retval_0 == 0) { ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; probed_1 = 0; } else { } } else { } goto ldv_22899; default: ldv_stop(); } ldv_22899: ; } else { } goto ldv_22902; case 1: ; if (ldv_state_variable_0 != 0) { tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { abituguru_exit(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_22906; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_2 = abituguru_init(); if (ldv_retval_2 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_2 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_2 = 1; ldv_dev_pm_ops_2(); } else { } } else { } goto ldv_22906; default: ldv_stop(); } ldv_22906: ; } else { } goto ldv_22902; case 2: ; if (ldv_state_variable_2 != 0) { tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_2 == 12) { ldv_retval_21 = abituguru_resume(abituguru_pm_group1); if (ldv_retval_21 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_22911; case 1: ; if (ldv_state_variable_2 == 13) { ldv_retval_20 = abituguru_resume(abituguru_pm_group1); if (ldv_retval_20 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_22911; case 2: ; if (ldv_state_variable_2 == 2) { ldv_retval_19 = abituguru_suspend(abituguru_pm_group1); if (ldv_retval_19 == 0) { ldv_state_variable_2 = 3; } else { } } else { } goto ldv_22911; case 3: ; if (ldv_state_variable_2 == 2) { ldv_retval_18 = abituguru_suspend(abituguru_pm_group1); if (ldv_retval_18 == 0) { ldv_state_variable_2 = 4; } else { } } else { } goto ldv_22911; case 4: ; if (ldv_state_variable_2 == 2) { ldv_retval_17 = abituguru_suspend(abituguru_pm_group1); if (ldv_retval_17 == 0) { ldv_state_variable_2 = 5; } else { } } else { } goto ldv_22911; case 5: ; if (ldv_state_variable_2 == 14) { ldv_retval_16 = abituguru_resume(abituguru_pm_group1); if (ldv_retval_16 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_22911; case 6: ; if (ldv_state_variable_2 == 5) { ldv_retval_15 = ldv_suspend_late_2(); if (ldv_retval_15 == 0) { ldv_state_variable_2 = 10; } else { } } else { } goto ldv_22911; case 7: ; if (ldv_state_variable_2 == 7) { ldv_retval_14 = ldv_restore_early_2(); if (ldv_retval_14 == 0) { ldv_state_variable_2 = 12; } else { } } else { } goto ldv_22911; case 8: ; if (ldv_state_variable_2 == 10) { ldv_retval_13 = ldv_resume_early_2(); if (ldv_retval_13 == 0) { ldv_state_variable_2 = 14; } else { } } else { } goto ldv_22911; case 9: ; if (ldv_state_variable_2 == 9) { ldv_retval_12 = ldv_thaw_early_2(); if (ldv_retval_12 == 0) { ldv_state_variable_2 = 13; } else { } } else { } goto ldv_22911; case 10: ; if (ldv_state_variable_2 == 11) { ldv_retval_11 = ldv_resume_noirq_2(); if (ldv_retval_11 == 0) { ldv_state_variable_2 = 14; } else { } } else { } goto ldv_22911; case 11: ; if (ldv_state_variable_2 == 4) { ldv_retval_10 = ldv_freeze_noirq_2(); if (ldv_retval_10 == 0) { ldv_state_variable_2 = 8; } else { } } else { } goto ldv_22911; case 12: ; if (ldv_state_variable_2 == 1) { ldv_retval_9 = ldv_prepare_2(); if (ldv_retval_9 == 0) { ldv_state_variable_2 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_22911; case 13: ; if (ldv_state_variable_2 == 4) { ldv_retval_8 = ldv_freeze_late_2(); if (ldv_retval_8 == 0) { ldv_state_variable_2 = 9; } else { } } else { } goto ldv_22911; case 14: ; if (ldv_state_variable_2 == 8) { ldv_retval_7 = ldv_thaw_noirq_2(); if (ldv_retval_7 == 0) { ldv_state_variable_2 = 13; } else { } } else { } goto ldv_22911; case 15: ; if (ldv_state_variable_2 == 3) { ldv_retval_6 = ldv_poweroff_noirq_2(); if (ldv_retval_6 == 0) { ldv_state_variable_2 = 6; } else { } } else { } goto ldv_22911; case 16: ; if (ldv_state_variable_2 == 3) { ldv_retval_5 = ldv_poweroff_late_2(); if (ldv_retval_5 == 0) { ldv_state_variable_2 = 7; } else { } } else { } goto ldv_22911; case 17: ; if (ldv_state_variable_2 == 6) { ldv_retval_4 = ldv_restore_noirq_2(); if (ldv_retval_4 == 0) { ldv_state_variable_2 = 12; } else { } } else { } goto ldv_22911; case 18: ; if (ldv_state_variable_2 == 5) { ldv_retval_3 = ldv_suspend_noirq_2(); if (ldv_retval_3 == 0) { ldv_state_variable_2 = 11; } else { } } else { } goto ldv_22911; case 19: ; if (ldv_state_variable_2 == 15) { ldv_complete_2(); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_22911; default: ldv_stop(); } ldv_22911: ; } else { } goto ldv_22902; default: ldv_stop(); } ldv_22902: ; goto ldv_22933; ldv_final: ldv_check_final_state(); return 0; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_abituguru_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv___platform_driver_register_28(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; { tmp = __platform_driver_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; ldv_state_variable_1 = 1; ldv_platform_driver_init_1(); return (ldv_func_res); } } void ldv_platform_driver_unregister_29(struct platform_driver *ldv_func_arg1 ) { { platform_driver_unregister(ldv_func_arg1); ldv_state_variable_1 = 0; return; } } void ldv_platform_driver_unregister_30(struct platform_driver *ldv_func_arg1 ) { { platform_driver_unregister(ldv_func_arg1); ldv_state_variable_1 = 0; return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_update_lock_of_abituguru_data = 1; int ldv_mutex_lock_interruptible_update_lock_of_abituguru_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_abituguru_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_update_lock_of_abituguru_data = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_update_lock_of_abituguru_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_abituguru_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_update_lock_of_abituguru_data = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_update_lock_of_abituguru_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_abituguru_data != 1) { ldv_error(); } else { } ldv_mutex_update_lock_of_abituguru_data = 2; return; } } int ldv_mutex_trylock_update_lock_of_abituguru_data(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_update_lock_of_abituguru_data != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_update_lock_of_abituguru_data = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_update_lock_of_abituguru_data(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_update_lock_of_abituguru_data != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_update_lock_of_abituguru_data = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_update_lock_of_abituguru_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_abituguru_data == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_update_lock_of_abituguru_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_abituguru_data != 2) { ldv_error(); } else { } ldv_mutex_update_lock_of_abituguru_data = 1; return; } } void ldv_usb_lock_device_update_lock_of_abituguru_data(void) { { ldv_mutex_lock_update_lock_of_abituguru_data((struct mutex *)0); return; } } int ldv_usb_trylock_device_update_lock_of_abituguru_data(void) { int tmp ; { tmp = ldv_mutex_trylock_update_lock_of_abituguru_data((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_update_lock_of_abituguru_data(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_update_lock_of_abituguru_data((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_update_lock_of_abituguru_data(void) { { ldv_mutex_unlock_update_lock_of_abituguru_data((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_update_lock_of_abituguru_data != 1) { ldv_error(); } else { } return; } }