extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned int gfp_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct vm_area_struct; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __anonstruct_nodemask_t_46 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_46 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct device_attribute; struct i2c_client; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct i2c_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_driver; struct i2c_board_info; enum i2c_slave_event; enum i2c_slave_event; struct i2c_driver { unsigned int class ; int (*attach_adapter)(struct i2c_adapter * ) ; int (*probe)(struct i2c_client * , struct i2c_device_id const * ) ; int (*remove)(struct i2c_client * ) ; void (*shutdown)(struct i2c_client * ) ; void (*alert)(struct i2c_client * , unsigned int ) ; int (*command)(struct i2c_client * , unsigned int , void * ) ; struct device_driver driver ; struct i2c_device_id const *id_table ; int (*detect)(struct i2c_client * , struct i2c_board_info * ) ; unsigned short const *address_list ; struct list_head clients ; }; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; int (*slave_cb)(struct i2c_client * , enum i2c_slave_event , u8 * ) ; }; enum i2c_slave_event { I2C_SLAVE_READ_REQUESTED = 0, I2C_SLAVE_WRITE_REQUESTED = 1, I2C_SLAVE_READ_PROCESSED = 2, I2C_SLAVE_WRITE_RECEIVED = 3, I2C_SLAVE_STOP = 4 } ; struct i2c_board_info { char type[20U] ; unsigned short flags ; unsigned short addr ; void *platform_data ; struct dev_archdata *archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; int irq ; }; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; int (*reg_slave)(struct i2c_client * ) ; int (*unreg_slave)(struct i2c_client * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_adapter * ) ; void (*unprepare_recovery)(struct i2c_adapter * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter_quirks { u64 flags ; int max_num_msgs ; u16 max_write_len ; u16 max_read_len ; u16 max_comb_1st_msg_len ; u16 max_comb_2nd_msg_len ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; struct i2c_adapter_quirks const *quirks ; }; struct sensor_device_attribute { struct device_attribute dev_attr ; int index ; }; enum chips { lm78 = 0, lm79 = 1 } ; struct lm78_data { struct i2c_client *client ; struct mutex lock ; enum chips type ; char const *name ; int isa_addr ; struct mutex update_lock ; char valid ; unsigned long last_updated ; u8 in[7U] ; u8 in_max[7U] ; u8 in_min[7U] ; u8 fan[3U] ; u8 fan_min[3U] ; s8 temp ; s8 temp_over ; s8 temp_hyst ; u8 fan_div[3U] ; u8 vid ; u16 alarms ; }; typedef int ldv_func_ret_type; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; extern int kstrtoll(char const * , unsigned int , long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } __inline static int kstrtol(char const *s , unsigned int base , long *res ) { int tmp ; { tmp = kstrtoll(s, base, (long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; __inline static int PTR_ERR_OR_ZERO(void const *ptr ) { long tmp ; bool tmp___0 ; { tmp___0 = IS_ERR(ptr); if ((int )tmp___0) { tmp = PTR_ERR(ptr); return ((int )tmp); } else { return (0); } } } extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_update_lock_of_lm78_data(struct mutex *lock ) ; void ldv_mutex_unlock_update_lock_of_lm78_data(struct mutex *lock ) ; extern unsigned long volatile jiffies ; struct device_attribute *sensor_dev_attr_in3_min_group0 ; int ldv_state_variable_36 ; int ldv_state_variable_8 ; struct device_attribute *sensor_dev_attr_in6_max_group0 ; int ldv_state_variable_46 ; int ldv_state_variable_47 ; int ldv_state_variable_15 ; int ldv_state_variable_20 ; struct device_attribute *sensor_dev_attr_in2_min_group0 ; int ldv_state_variable_30 ; int ldv_state_variable_0 ; int ldv_state_variable_21 ; int ldv_state_variable_5 ; struct device_attribute *sensor_dev_attr_in4_min_group0 ; int ldv_state_variable_45 ; int ldv_state_variable_33 ; struct device *sensor_dev_attr_fan1_min_group1 ; int ldv_state_variable_13 ; int ldv_state_variable_12 ; struct device_attribute *sensor_dev_attr_in0_max_group0 ; struct device_attribute *sensor_dev_attr_in0_min_group0 ; struct device *sensor_dev_attr_in4_min_group1 ; int ldv_state_variable_22 ; struct device_attribute *dev_attr_temp1_max_group0 ; struct device_attribute *sensor_dev_attr_in3_max_group0 ; int ldv_state_variable_14 ; int ldv_state_variable_37 ; int ldv_state_variable_29 ; int ldv_state_variable_17 ; struct i2c_client *lm78_driver_group0 ; struct device_attribute *sensor_dev_attr_fan3_min_group0 ; int ldv_state_variable_19 ; struct device_attribute *sensor_dev_attr_fan2_min_group0 ; int ldv_state_variable_27 ; int ldv_state_variable_9 ; int ldv_state_variable_24 ; struct device *dev_attr_temp1_max_hyst_group1 ; int ref_cnt ; int ldv_state_variable_42 ; struct device *sensor_dev_attr_in3_max_group1 ; struct device *sensor_dev_attr_fan2_min_group1 ; int ldv_state_variable_1 ; int ldv_state_variable_41 ; int ldv_state_variable_7 ; struct device *sensor_dev_attr_fan3_min_group1 ; int ldv_state_variable_23 ; int ldv_state_variable_40 ; struct device_attribute *dev_attr_temp1_max_hyst_group0 ; struct device_attribute *sensor_dev_attr_in1_min_group0 ; struct device_attribute *sensor_dev_attr_in4_max_group0 ; int ldv_state_variable_10 ; struct device_attribute *sensor_dev_attr_in5_max_group0 ; int ldv_state_variable_6 ; int ldv_state_variable_16 ; struct device_attribute *sensor_dev_attr_in6_min_group0 ; struct device *sensor_dev_attr_in5_min_group1 ; int ldv_state_variable_2 ; int ldv_state_variable_43 ; int ldv_state_variable_25 ; int ldv_state_variable_26 ; struct device *sensor_dev_attr_in6_min_group1 ; struct device_attribute *sensor_dev_attr_in2_max_group0 ; int ldv_state_variable_28 ; struct device *sensor_dev_attr_in2_min_group1 ; struct device *sensor_dev_attr_in4_max_group1 ; struct device *sensor_dev_attr_in0_min_group1 ; struct device_attribute *sensor_dev_attr_fan1_min_group0 ; int ldv_state_variable_11 ; int ldv_state_variable_44 ; struct device *sensor_dev_attr_in0_max_group1 ; int LDV_IN_INTERRUPT = 1; int ldv_state_variable_38 ; int ldv_state_variable_18 ; struct device *dev_attr_temp1_max_group1 ; int ldv_state_variable_39 ; struct device *sensor_dev_attr_in1_min_group1 ; struct device_attribute *sensor_dev_attr_fan1_div_group0 ; struct device *sensor_dev_attr_in3_min_group1 ; int ldv_state_variable_3 ; struct device *sensor_dev_attr_in2_max_group1 ; struct device *sensor_dev_attr_fan1_div_group1 ; int ldv_state_variable_32 ; struct device *sensor_dev_attr_in1_max_group1 ; int ldv_state_variable_31 ; int ldv_state_variable_34 ; struct device_attribute *sensor_dev_attr_fan2_div_group0 ; struct device_attribute *sensor_dev_attr_in1_max_group0 ; struct device *sensor_dev_attr_fan2_div_group1 ; int ldv_state_variable_4 ; struct device_attribute *sensor_dev_attr_in5_min_group0 ; struct device *sensor_dev_attr_in6_max_group1 ; struct device *sensor_dev_attr_in5_max_group1 ; int ldv_state_variable_35 ; void ldv_initialize_i2c_driver_1(void) ; void ldv_initialize_sensor_device_attribute_40(void) ; void ldv_initialize_sensor_device_attribute_46(void) ; void ldv_initialize_sensor_device_attribute_36(void) ; void ldv_initialize_sensor_device_attribute_39(void) ; void ldv_initialize_sensor_device_attribute_27(void) ; void ldv_initialize_sensor_device_attribute_34(void) ; void ldv_initialize_sensor_device_attribute_31(void) ; void ldv_initialize_sensor_device_attribute_18(void) ; void ldv_initialize_sensor_device_attribute_30(void) ; void ldv_initialize_sensor_device_attribute_28(void) ; void ldv_initialize_device_attribute_25(void) ; void ldv_initialize_sensor_device_attribute_42(void) ; void ldv_initialize_device_attribute_24(void) ; void ldv_initialize_sensor_device_attribute_45(void) ; void ldv_initialize_sensor_device_attribute_20(void) ; void ldv_initialize_sensor_device_attribute_43(void) ; void ldv_initialize_sensor_device_attribute_22(void) ; void ldv_initialize_sensor_device_attribute_37(void) ; void ldv_initialize_sensor_device_attribute_17(void) ; void ldv_initialize_sensor_device_attribute_33(void) ; void ldv_initialize_sensor_device_attribute_16(void) ; extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { tmp = devm_kmalloc(dev, size, gfp | 32768U); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } extern void dev_err(struct device const * , char const * , ...) ; extern s32 i2c_smbus_read_byte_data(struct i2c_client const * , u8 ) ; extern s32 i2c_smbus_write_byte_data(struct i2c_client const * , u8 , u8 ) ; extern int i2c_register_driver(struct module * , struct i2c_driver * ) ; extern void i2c_del_driver(struct i2c_driver * ) ; __inline static u32 i2c_get_functionality(struct i2c_adapter *adap ) { u32 tmp ; { tmp = (*((adap->algo)->functionality))(adap); return (tmp); } } __inline static int i2c_check_functionality(struct i2c_adapter *adap , u32 func ) { u32 tmp ; { tmp = i2c_get_functionality(adap); return ((tmp & func) == func); } } extern struct device *devm_hwmon_device_register_with_groups(struct device * , char const * , void * , struct attribute_group const ** ) ; extern int vid_from_reg(int , u8 ) ; static unsigned short const normal_i2c[9U] = { 40U, 41U, 42U, 43U, 44U, 45U, 46U, 47U, 65534U}; __inline static u8 IN_TO_REG(unsigned long val ) { unsigned long nval ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; { __max1 = val; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 4080UL; nval = __min1 < __min2 ? __min1 : __min2; return ((u8 )((nval + 8UL) / 16UL)); } } __inline static u8 FAN_TO_REG(long rpm , int div ) { long __min1 ; long __max1 ; long __max2 ; long __min2 ; { if (rpm <= 0L) { return (255U); } else { } if (rpm > 1350000L) { return (1U); } else { } __max1 = (((long )div * rpm) / 2L + 1350000L) / ((long )div * rpm); __max2 = 1L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 254L; return ((u8 )(__min1 < __min2 ? __min1 : __min2)); } } __inline static int FAN_FROM_REG(u8 val , int div ) { { return ((unsigned int )val != 0U ? ((unsigned int )val != 255U ? 1350000 / ((int )val * div) : 0) : -1); } } __inline static s8 TEMP_TO_REG(long val ) { int nval ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __max1 = val; __max2 = -128000L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 127000L; nval = (int )(__min1 < __min2 ? __min1 : __min2); return (nval < 0 ? (s8 )((nval + -500) / 1000) : (s8 )((nval + 500) / 1000)); } } __inline static int TEMP_FROM_REG(s8 val ) { { return ((int )val * 1000); } } static int lm78_read_value(struct lm78_data *data , u8 reg ) ; static int lm78_write_value(struct lm78_data *data , u8 reg , u8 value ) ; static struct lm78_data *lm78_update_device(struct device *dev ) ; static void lm78_init_device(struct lm78_data *data ) ; static ssize_t show_in(struct device *dev , struct device_attribute *da , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = lm78_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", (int )data->in[attr->index] * 16); return ((ssize_t )tmp___0); } } static ssize_t show_in_min(struct device *dev , struct device_attribute *da , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = lm78_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", (int )data->in_min[attr->index] * 16); return ((ssize_t )tmp___0); } } static ssize_t show_in_max(struct device *dev , struct device_attribute *da , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = lm78_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", (int )data->in_max[attr->index] * 16); return ((ssize_t )tmp___0); } } static ssize_t set_in_min(struct device *dev , struct device_attribute *da , char const *buf , size_t count ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; void *tmp ; int nr ; unsigned long val ; int err ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; nr = attr->index; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_10(& data->update_lock); data->in_min[nr] = IN_TO_REG(val); lm78_write_value(data, (int )((unsigned int )((u8 )(nr + 22)) * 2U), (int )data->in_min[nr]); ldv_mutex_unlock_11(& data->update_lock); return ((ssize_t )count); } } static ssize_t set_in_max(struct device *dev , struct device_attribute *da , char const *buf , size_t count ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; void *tmp ; int nr ; unsigned long val ; int err ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; nr = attr->index; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_12(& data->update_lock); data->in_max[nr] = IN_TO_REG(val); lm78_write_value(data, (int )((unsigned int )((u8 )nr) * 2U + 43U), (int )data->in_max[nr]); ldv_mutex_unlock_13(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_in0_input = {{{"in0_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0}; static struct sensor_device_attribute sensor_dev_attr_in0_min = {{{"in0_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 0}; static struct sensor_device_attribute sensor_dev_attr_in0_max = {{{"in0_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 0}; static struct sensor_device_attribute sensor_dev_attr_in1_input = {{{"in1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_in1_min = {{{"in1_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 1}; static struct sensor_device_attribute sensor_dev_attr_in1_max = {{{"in1_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_input = {{{"in2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_in2_min = {{{"in2_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 2}; static struct sensor_device_attribute sensor_dev_attr_in2_max = {{{"in2_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_input = {{{"in3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 3}; static struct sensor_device_attribute sensor_dev_attr_in3_min = {{{"in3_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 3}; static struct sensor_device_attribute sensor_dev_attr_in3_max = {{{"in3_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_input = {{{"in4_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 4}; static struct sensor_device_attribute sensor_dev_attr_in4_min = {{{"in4_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 4}; static struct sensor_device_attribute sensor_dev_attr_in4_max = {{{"in4_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 4}; static struct sensor_device_attribute sensor_dev_attr_in5_input = {{{"in5_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 5}; static struct sensor_device_attribute sensor_dev_attr_in5_min = {{{"in5_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 5}; static struct sensor_device_attribute sensor_dev_attr_in5_max = {{{"in5_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 5}; static struct sensor_device_attribute sensor_dev_attr_in6_input = {{{"in6_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 6}; static struct sensor_device_attribute sensor_dev_attr_in6_min = {{{"in6_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 6}; static struct sensor_device_attribute sensor_dev_attr_in6_max = {{{"in6_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 6}; static ssize_t show_temp(struct device *dev , struct device_attribute *da , char *buf ) { struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = lm78_update_device(dev); data = tmp; tmp___0 = TEMP_FROM_REG((int )data->temp); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t show_temp_over(struct device *dev , struct device_attribute *da , char *buf ) { struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = lm78_update_device(dev); data = tmp; tmp___0 = TEMP_FROM_REG((int )data->temp_over); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t set_temp_over(struct device *dev , struct device_attribute *da , char const *buf , size_t count ) { struct lm78_data *data ; void *tmp ; long val ; int err ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; err = kstrtol(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_14(& data->update_lock); data->temp_over = TEMP_TO_REG(val); lm78_write_value(data, 57, (int )((u8 )data->temp_over)); ldv_mutex_unlock_15(& data->update_lock); return ((ssize_t )count); } } static ssize_t show_temp_hyst(struct device *dev , struct device_attribute *da , char *buf ) { struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = lm78_update_device(dev); data = tmp; tmp___0 = TEMP_FROM_REG((int )data->temp_hyst); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t set_temp_hyst(struct device *dev , struct device_attribute *da , char const *buf , size_t count ) { struct lm78_data *data ; void *tmp ; long val ; int err ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; err = kstrtol(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_16(& data->update_lock); data->temp_hyst = TEMP_TO_REG(val); lm78_write_value(data, 58, (int )((u8 )data->temp_hyst)); ldv_mutex_unlock_17(& data->update_lock); return ((ssize_t )count); } } static struct device_attribute dev_attr_temp1_input = {{"temp1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_temp1_max = {{"temp1_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_over, & set_temp_over}; static struct device_attribute dev_attr_temp1_max_hyst = {{"temp1_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_hyst, & set_temp_hyst}; static ssize_t show_fan(struct device *dev , struct device_attribute *da , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; struct lm78_data *tmp ; int nr ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = lm78_update_device(dev); data = tmp; nr = attr->index; tmp___0 = FAN_FROM_REG((int )data->fan[nr], 1 << (int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t show_fan_min(struct device *dev , struct device_attribute *da , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; struct lm78_data *tmp ; int nr ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = lm78_update_device(dev); data = tmp; nr = attr->index; tmp___0 = FAN_FROM_REG((int )data->fan_min[nr], 1 << (int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t set_fan_min(struct device *dev , struct device_attribute *da , char const *buf , size_t count ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; void *tmp ; int nr ; unsigned long val ; int err ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; nr = attr->index; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_18(& data->update_lock); data->fan_min[nr] = FAN_TO_REG((long )val, 1 << (int )data->fan_div[nr]); lm78_write_value(data, (int )((unsigned int )((u8 )nr) + 59U), (int )data->fan_min[nr]); ldv_mutex_unlock_19(& data->update_lock); return ((ssize_t )count); } } static ssize_t show_fan_div(struct device *dev , struct device_attribute *da , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = lm78_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", 1 << (int )data->fan_div[attr->index]); return ((ssize_t )tmp___0); } } static ssize_t set_fan_div(struct device *dev , struct device_attribute *da , char const *buf , size_t count ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct lm78_data *data ; void *tmp ; int nr ; unsigned long min ; u8 reg ; unsigned long val ; int err ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)da; attr = (struct sensor_device_attribute *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; nr = attr->index; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_20(& data->update_lock); tmp___0 = FAN_FROM_REG((int )data->fan_min[nr], 1 << (int )data->fan_div[nr]); min = (unsigned long )tmp___0; switch (val) { case 1UL: data->fan_div[nr] = 0U; goto ldv_23034; case 2UL: data->fan_div[nr] = 1U; goto ldv_23034; case 4UL: data->fan_div[nr] = 2U; goto ldv_23034; case 8UL: data->fan_div[nr] = 3U; goto ldv_23034; default: dev_err((struct device const *)dev, "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", val); ldv_mutex_unlock_21(& data->update_lock); return (-22L); } ldv_23034: tmp___1 = lm78_read_value(data, 71); reg = (u8 )tmp___1; switch (nr) { case 0: reg = (u8 )(((int )((signed char )reg) & -49) | (int )((signed char )((int )data->fan_div[nr] << 4))); goto ldv_23040; case 1: reg = (u8 )(((int )((signed char )reg) & 63) | (int )((signed char )((int )data->fan_div[nr] << 6))); goto ldv_23040; } ldv_23040: lm78_write_value(data, 71, (int )reg); data->fan_min[nr] = FAN_TO_REG((long )min, 1 << (int )data->fan_div[nr]); lm78_write_value(data, (int )((unsigned int )((u8 )nr) + 59U), (int )data->fan_min[nr]); ldv_mutex_unlock_22(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_fan1_input = {{{"fan1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan1_min = {{{"fan1_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & set_fan_min}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan2_input = {{{"fan2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan2_min = {{{"fan2_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & set_fan_min}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan3_input = {{{"fan3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_fan3_min = {{{"fan3_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & set_fan_min}, 2}; static struct sensor_device_attribute sensor_dev_attr_fan1_div = {{{"fan1_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & set_fan_div}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan2_div = {{{"fan2_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & set_fan_div}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan3_div = {{{"fan3_div", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static ssize_t show_vid(struct device *dev , struct device_attribute *da , char *buf ) { struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = lm78_update_device(dev); data = tmp; tmp___0 = vid_from_reg((int )data->vid, 82); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static struct device_attribute dev_attr_cpu0_vid = {{"cpu0_vid", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_vid, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_alarms(struct device *dev , struct device_attribute *da , char *buf ) { struct lm78_data *data ; struct lm78_data *tmp ; int tmp___0 ; { tmp = lm78_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%u\n", (int )data->alarms); return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_alarms = {{"alarms", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarms, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_alarm(struct device *dev , struct device_attribute *da , char *buf ) { struct lm78_data *data ; struct lm78_data *tmp ; int nr ; struct device_attribute const *__mptr ; int tmp___0 ; { tmp = lm78_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)da; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp___0 = sprintf(buf, "%u\n", ((int )data->alarms >> nr) & 1); return ((ssize_t )tmp___0); } } static struct sensor_device_attribute sensor_dev_attr_in0_alarm = {{{"in0_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0}; static struct sensor_device_attribute sensor_dev_attr_in1_alarm = {{{"in1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_alarm = {{{"in2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_alarm = {{{"in3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_alarm = {{{"in4_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 8}; static struct sensor_device_attribute sensor_dev_attr_in5_alarm = {{{"in5_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 9}; static struct sensor_device_attribute sensor_dev_attr_in6_alarm = {{{"in6_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 10}; static struct sensor_device_attribute sensor_dev_attr_fan1_alarm = {{{"fan1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 6}; static struct sensor_device_attribute sensor_dev_attr_fan2_alarm = {{{"fan2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 7}; static struct sensor_device_attribute sensor_dev_attr_fan3_alarm = {{{"fan3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 11}; static struct sensor_device_attribute sensor_dev_attr_temp1_alarm = {{{"temp1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 4}; static struct attribute *lm78_attrs[47U] = { & sensor_dev_attr_in0_input.dev_attr.attr, & sensor_dev_attr_in0_min.dev_attr.attr, & sensor_dev_attr_in0_max.dev_attr.attr, & sensor_dev_attr_in0_alarm.dev_attr.attr, & sensor_dev_attr_in1_input.dev_attr.attr, & sensor_dev_attr_in1_min.dev_attr.attr, & sensor_dev_attr_in1_max.dev_attr.attr, & sensor_dev_attr_in1_alarm.dev_attr.attr, & sensor_dev_attr_in2_input.dev_attr.attr, & sensor_dev_attr_in2_min.dev_attr.attr, & sensor_dev_attr_in2_max.dev_attr.attr, & sensor_dev_attr_in2_alarm.dev_attr.attr, & sensor_dev_attr_in3_input.dev_attr.attr, & sensor_dev_attr_in3_min.dev_attr.attr, & sensor_dev_attr_in3_max.dev_attr.attr, & sensor_dev_attr_in3_alarm.dev_attr.attr, & sensor_dev_attr_in4_input.dev_attr.attr, & sensor_dev_attr_in4_min.dev_attr.attr, & sensor_dev_attr_in4_max.dev_attr.attr, & sensor_dev_attr_in4_alarm.dev_attr.attr, & sensor_dev_attr_in5_input.dev_attr.attr, & sensor_dev_attr_in5_min.dev_attr.attr, & sensor_dev_attr_in5_max.dev_attr.attr, & sensor_dev_attr_in5_alarm.dev_attr.attr, & sensor_dev_attr_in6_input.dev_attr.attr, & sensor_dev_attr_in6_min.dev_attr.attr, & sensor_dev_attr_in6_max.dev_attr.attr, & sensor_dev_attr_in6_alarm.dev_attr.attr, & dev_attr_temp1_input.attr, & dev_attr_temp1_max.attr, & dev_attr_temp1_max_hyst.attr, & sensor_dev_attr_temp1_alarm.dev_attr.attr, & sensor_dev_attr_fan1_input.dev_attr.attr, & sensor_dev_attr_fan1_min.dev_attr.attr, & sensor_dev_attr_fan1_div.dev_attr.attr, & sensor_dev_attr_fan1_alarm.dev_attr.attr, & sensor_dev_attr_fan2_input.dev_attr.attr, & sensor_dev_attr_fan2_min.dev_attr.attr, & sensor_dev_attr_fan2_div.dev_attr.attr, & sensor_dev_attr_fan2_alarm.dev_attr.attr, & sensor_dev_attr_fan3_input.dev_attr.attr, & sensor_dev_attr_fan3_min.dev_attr.attr, & sensor_dev_attr_fan3_div.dev_attr.attr, & sensor_dev_attr_fan3_alarm.dev_attr.attr, & dev_attr_alarms.attr, & dev_attr_cpu0_vid.attr, (struct attribute *)0}; static struct attribute_group const lm78_group = {0, 0, (struct attribute **)(& lm78_attrs), 0}; static struct attribute_group const *lm78_groups[2U] = { & lm78_group, (struct attribute_group const *)0}; static int lm78_alias_detect(struct i2c_client *client , u8 chipid ) { { return (0); } } static struct lm78_data *lm78_data_if_isa(void) { { return ((struct lm78_data *)0); } } static int lm78_i2c_detect(struct i2c_client *client , struct i2c_board_info *info ) { int i ; struct lm78_data *isa ; struct lm78_data *tmp ; char const *client_name ; struct i2c_adapter *adapter ; int address ; int tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; int tmp___4 ; { tmp = lm78_data_if_isa(); isa = tmp; adapter = client->adapter; address = (int )client->addr; tmp___0 = i2c_check_functionality(adapter, 1572864U); if (tmp___0 == 0) { return (-19); } else { } if ((unsigned long )isa != (unsigned long )((struct lm78_data *)0)) { ldv_mutex_lock_23(& isa->update_lock); } else { } tmp___1 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 64); if ((tmp___1 & 128) != 0) { goto err_nodev; } else { tmp___2 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 72); if (tmp___2 != address) { goto err_nodev; } else { } } i = i2c_smbus_read_byte_data((struct i2c_client const *)client, 79); if (i == 163 || i == 92) { goto err_nodev; } else { } i = i2c_smbus_read_byte_data((struct i2c_client const *)client, 73); if ((i == 0 || i == 32) || i == 64) { client_name = "lm78"; } else if ((i & 254) == 192) { client_name = "lm79"; } else { goto err_nodev; } tmp___4 = lm78_alias_detect(client, (int )((u8 )i)); if (tmp___4 != 0) { descriptor.modname = "lm78"; descriptor.function = "lm78_i2c_detect"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8170/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/lm78.c"; descriptor.format = "Device at 0x%02x appears to be the same as ISA device\n"; descriptor.lineno = 628U; descriptor.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& adapter->dev), "Device at 0x%02x appears to be the same as ISA device\n", address); } else { } goto err_nodev; } else { } if ((unsigned long )isa != (unsigned long )((struct lm78_data *)0)) { ldv_mutex_unlock_24(& isa->update_lock); } else { } strlcpy((char *)(& info->type), client_name, 20UL); return (0); err_nodev: ; if ((unsigned long )isa != (unsigned long )((struct lm78_data *)0)) { ldv_mutex_unlock_25(& isa->update_lock); } else { } return (-19); } } static int lm78_i2c_probe(struct i2c_client *client , struct i2c_device_id const *id ) { struct device *dev ; struct device *hwmon_dev ; struct lm78_data *data ; void *tmp ; int tmp___0 ; { dev = & client->dev; tmp = devm_kzalloc(dev, 408UL, 208U); data = (struct lm78_data *)tmp; if ((unsigned long )data == (unsigned long )((struct lm78_data *)0)) { return (-12); } else { } data->client = client; data->type = (enum chips )id->driver_data; lm78_init_device(data); hwmon_dev = devm_hwmon_device_register_with_groups(dev, (char const *)(& client->name), (void *)data, (struct attribute_group const **)(& lm78_groups)); tmp___0 = PTR_ERR_OR_ZERO((void const *)hwmon_dev); return (tmp___0); } } static struct i2c_device_id const lm78_i2c_id[3U] = { {{'l', 'm', '7', '8', '\000'}, 0UL}, {{'l', 'm', '7', '9', '\000'}, 1UL}}; struct i2c_device_id const __mod_i2c__lm78_i2c_id_device_table[3U] ; static struct i2c_driver lm78_driver = {1U, 0, & lm78_i2c_probe, 0, 0, 0, 0, {"lm78", 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (struct i2c_device_id const *)(& lm78_i2c_id), & lm78_i2c_detect, (unsigned short const *)(& normal_i2c), {0, 0}}; static int lm78_read_value(struct lm78_data *data , u8 reg ) { struct i2c_client *client ; s32 tmp ; { client = data->client; tmp = i2c_smbus_read_byte_data((struct i2c_client const *)client, (int )reg); return (tmp); } } static int lm78_write_value(struct lm78_data *data , u8 reg , u8 value ) { struct i2c_client *client ; s32 tmp ; { client = data->client; tmp = i2c_smbus_write_byte_data((struct i2c_client const *)client, (int )reg, (int )value); return (tmp); } } static void lm78_init_device(struct lm78_data *data ) { u8 config ; int i ; int tmp ; int tmp___0 ; struct lock_class_key __key ; { tmp = lm78_read_value(data, 64); config = (u8 )tmp; if (((int )config & 9) != 1) { lm78_write_value(data, 64, (int )((u8 )(((int )((signed char )config) & -10) | 1))); } else { } i = 0; goto ldv_23398; ldv_23397: tmp___0 = lm78_read_value(data, (int )((unsigned int )((u8 )i) + 59U)); data->fan_min[i] = (u8 )tmp___0; i = i + 1; ldv_23398: ; if (i <= 2) { goto ldv_23397; } else { } __mutex_init(& data->update_lock, "&data->update_lock", & __key); return; } } static struct lm78_data *lm78_update_device(struct device *dev ) { struct lm78_data *data ; void *tmp ; int i ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct lm78_data *)tmp; ldv_mutex_lock_26(& data->update_lock); if ((long )((data->last_updated - (unsigned long )jiffies) + 375UL) < 0L || (int )((signed char )data->valid) == 0) { descriptor.modname = "lm78"; descriptor.function = "lm78_update_device"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8170/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/lm78.c"; descriptor.format = "Starting lm78 update\n"; descriptor.lineno = 755U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)dev, "Starting lm78 update\n"); } else { } i = 0; goto ldv_23415; ldv_23414: tmp___1 = lm78_read_value(data, (int )((unsigned int )((u8 )i) + 32U)); data->in[i] = (u8 )tmp___1; tmp___2 = lm78_read_value(data, (int )((unsigned int )((u8 )(i + 22)) * 2U)); data->in_min[i] = (u8 )tmp___2; tmp___3 = lm78_read_value(data, (int )((unsigned int )((u8 )i) * 2U + 43U)); data->in_max[i] = (u8 )tmp___3; i = i + 1; ldv_23415: ; if (i <= 6) { goto ldv_23414; } else { } i = 0; goto ldv_23418; ldv_23417: tmp___4 = lm78_read_value(data, (int )((unsigned int )((u8 )i) + 40U)); data->fan[i] = (u8 )tmp___4; tmp___5 = lm78_read_value(data, (int )((unsigned int )((u8 )i) + 59U)); data->fan_min[i] = (u8 )tmp___5; i = i + 1; ldv_23418: ; if (i <= 2) { goto ldv_23417; } else { } tmp___6 = lm78_read_value(data, 39); data->temp = (s8 )tmp___6; tmp___7 = lm78_read_value(data, 57); data->temp_over = (s8 )tmp___7; tmp___8 = lm78_read_value(data, 58); data->temp_hyst = (s8 )tmp___8; i = lm78_read_value(data, 71); data->vid = (unsigned int )((u8 )i) & 15U; if ((unsigned int )data->type == 1U) { tmp___9 = lm78_read_value(data, 73); data->vid = (u8 )((int )((signed char )data->vid) | (int )((signed char )((tmp___9 & 1) << 4))); } else { data->vid = (u8 )((unsigned int )data->vid | 16U); } data->fan_div[0] = (unsigned int )((u8 )(i >> 4)) & 3U; data->fan_div[1] = (u8 )(i >> 6); tmp___10 = lm78_read_value(data, 65); tmp___11 = lm78_read_value(data, 66); data->alarms = (int )((u16 )tmp___10) + ((int )((u16 )tmp___11) << 8U); data->last_updated = jiffies; data->valid = 1; data->fan_div[2] = 1U; } else { } ldv_mutex_unlock_27(& data->update_lock); return (data); } } static int lm78_isa_register(void) { { return (0); } } static void lm78_isa_unregister(void) { { return; } } static int sm_lm78_init(void) { int res ; { res = lm78_isa_register(); if (res != 0) { goto exit; } else { } res = i2c_register_driver(& __this_module, & lm78_driver); if (res != 0) { goto exit_unreg_isa_device; } else { } return (0); exit_unreg_isa_device: lm78_isa_unregister(); exit: ; return (res); } } static void sm_lm78_exit(void) { { lm78_isa_unregister(); i2c_del_driver(& lm78_driver); return; } } int ldv_retval_0 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; void ldv_check_final_state(void) ; extern int ldv_release_1(void) ; void ldv_initialize_i2c_driver_1(void) { void *tmp ; { tmp = ldv_init_zalloc(1480UL); lm78_driver_group0 = (struct i2c_client *)tmp; return; } } void ldv_initialize_sensor_device_attribute_40(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in2_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in2_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_46(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in0_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in0_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_36(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in3_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in3_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_39(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in2_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in2_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_27(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in6_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in6_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_34(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in4_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in4_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_31(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in5_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in5_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_18(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan3_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan3_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_30(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in5_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in5_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_28(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in6_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in6_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_25(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_temp1_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_temp1_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_42(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in1_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in1_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_24(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_temp1_max_hyst_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_temp1_max_hyst_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_45(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in0_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in0_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_20(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan2_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan2_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_43(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in1_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in1_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_22(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan1_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan1_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_37(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in3_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in3_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_17(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan1_div_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan1_div_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_33(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in4_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in4_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_16(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan2_div_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan2_div_group1 = (struct device *)tmp___0; return; } } int main(void) { size_t ldvarg1 ; char *ldvarg0 ; void *tmp ; char *ldvarg2 ; void *tmp___0 ; char *ldvarg4 ; void *tmp___1 ; struct device *ldvarg3 ; void *tmp___2 ; struct device_attribute *ldvarg5 ; void *tmp___3 ; struct device_attribute *ldvarg8 ; void *tmp___4 ; char *ldvarg7 ; void *tmp___5 ; struct device *ldvarg6 ; void *tmp___6 ; struct device_attribute *ldvarg11 ; void *tmp___7 ; char *ldvarg10 ; void *tmp___8 ; struct device *ldvarg9 ; void *tmp___9 ; struct device_attribute *ldvarg14 ; void *tmp___10 ; char *ldvarg13 ; void *tmp___11 ; struct device *ldvarg12 ; void *tmp___12 ; char *ldvarg17 ; void *tmp___13 ; size_t ldvarg16 ; char *ldvarg15 ; void *tmp___14 ; struct device *ldvarg18 ; void *tmp___15 ; struct device_attribute *ldvarg20 ; void *tmp___16 ; char *ldvarg19 ; void *tmp___17 ; struct i2c_device_id *ldvarg21 ; void *tmp___18 ; struct i2c_board_info *ldvarg22 ; void *tmp___19 ; size_t ldvarg24 ; char *ldvarg25 ; void *tmp___20 ; char *ldvarg23 ; void *tmp___21 ; size_t ldvarg27 ; char *ldvarg26 ; void *tmp___22 ; char *ldvarg28 ; void *tmp___23 ; char *ldvarg31 ; void *tmp___24 ; char *ldvarg29 ; void *tmp___25 ; size_t ldvarg30 ; struct device *ldvarg32 ; void *tmp___26 ; struct device_attribute *ldvarg34 ; void *tmp___27 ; char *ldvarg33 ; void *tmp___28 ; char *ldvarg37 ; void *tmp___29 ; char *ldvarg35 ; void *tmp___30 ; size_t ldvarg36 ; size_t ldvarg39 ; char *ldvarg40 ; void *tmp___31 ; char *ldvarg38 ; void *tmp___32 ; char *ldvarg41 ; void *tmp___33 ; char *ldvarg43 ; void *tmp___34 ; size_t ldvarg42 ; size_t ldvarg45 ; char *ldvarg44 ; void *tmp___35 ; char *ldvarg46 ; void *tmp___36 ; size_t ldvarg48 ; char *ldvarg49 ; void *tmp___37 ; char *ldvarg47 ; void *tmp___38 ; char *ldvarg51 ; void *tmp___39 ; struct device_attribute *ldvarg52 ; void *tmp___40 ; struct device *ldvarg50 ; void *tmp___41 ; size_t ldvarg54 ; char *ldvarg53 ; void *tmp___42 ; char *ldvarg55 ; void *tmp___43 ; char *ldvarg57 ; void *tmp___44 ; struct device_attribute *ldvarg58 ; void *tmp___45 ; struct device *ldvarg56 ; void *tmp___46 ; char *ldvarg61 ; void *tmp___47 ; size_t ldvarg60 ; char *ldvarg59 ; void *tmp___48 ; char *ldvarg63 ; void *tmp___49 ; struct device_attribute *ldvarg64 ; void *tmp___50 ; struct device *ldvarg62 ; void *tmp___51 ; struct device *ldvarg65 ; void *tmp___52 ; struct device_attribute *ldvarg67 ; void *tmp___53 ; char *ldvarg66 ; void *tmp___54 ; char *ldvarg70 ; void *tmp___55 ; char *ldvarg68 ; void *tmp___56 ; size_t ldvarg69 ; char *ldvarg73 ; void *tmp___57 ; char *ldvarg71 ; void *tmp___58 ; size_t ldvarg72 ; char *ldvarg76 ; void *tmp___59 ; char *ldvarg74 ; void *tmp___60 ; size_t ldvarg75 ; struct device *ldvarg77 ; void *tmp___61 ; struct device_attribute *ldvarg79 ; void *tmp___62 ; char *ldvarg78 ; void *tmp___63 ; char *ldvarg81 ; void *tmp___64 ; struct device *ldvarg80 ; void *tmp___65 ; struct device_attribute *ldvarg82 ; void *tmp___66 ; struct device_attribute *ldvarg85 ; void *tmp___67 ; char *ldvarg84 ; void *tmp___68 ; struct device *ldvarg83 ; void *tmp___69 ; struct device_attribute *ldvarg88 ; void *tmp___70 ; char *ldvarg87 ; void *tmp___71 ; struct device *ldvarg86 ; void *tmp___72 ; char *ldvarg91 ; void *tmp___73 ; char *ldvarg89 ; void *tmp___74 ; size_t ldvarg90 ; size_t ldvarg93 ; char *ldvarg94 ; void *tmp___75 ; char *ldvarg92 ; void *tmp___76 ; struct device *ldvarg95 ; void *tmp___77 ; struct device_attribute *ldvarg97 ; void *tmp___78 ; char *ldvarg96 ; void *tmp___79 ; struct device *ldvarg98 ; void *tmp___80 ; struct device_attribute *ldvarg100 ; void *tmp___81 ; char *ldvarg99 ; void *tmp___82 ; char *ldvarg102 ; void *tmp___83 ; struct device *ldvarg101 ; void *tmp___84 ; struct device_attribute *ldvarg103 ; void *tmp___85 ; struct device *ldvarg104 ; void *tmp___86 ; struct device_attribute *ldvarg106 ; void *tmp___87 ; char *ldvarg105 ; void *tmp___88 ; char *ldvarg108 ; void *tmp___89 ; struct device *ldvarg107 ; void *tmp___90 ; struct device_attribute *ldvarg109 ; void *tmp___91 ; char *ldvarg111 ; void *tmp___92 ; struct device *ldvarg110 ; void *tmp___93 ; struct device_attribute *ldvarg112 ; void *tmp___94 ; struct device *ldvarg113 ; void *tmp___95 ; char *ldvarg114 ; void *tmp___96 ; struct device_attribute *ldvarg115 ; void *tmp___97 ; struct device *ldvarg116 ; void *tmp___98 ; char *ldvarg117 ; void *tmp___99 ; struct device_attribute *ldvarg118 ; void *tmp___100 ; struct device_attribute *ldvarg121 ; void *tmp___101 ; char *ldvarg120 ; void *tmp___102 ; struct device *ldvarg119 ; void *tmp___103 ; size_t ldvarg123 ; char *ldvarg124 ; void *tmp___104 ; char *ldvarg122 ; void *tmp___105 ; char *ldvarg127 ; void *tmp___106 ; char *ldvarg125 ; void *tmp___107 ; size_t ldvarg126 ; size_t ldvarg129 ; char *ldvarg130 ; void *tmp___108 ; char *ldvarg128 ; void *tmp___109 ; char *ldvarg131 ; void *tmp___110 ; char *ldvarg133 ; void *tmp___111 ; size_t ldvarg132 ; struct device_attribute *ldvarg136 ; void *tmp___112 ; struct device *ldvarg134 ; void *tmp___113 ; char *ldvarg135 ; void *tmp___114 ; char *ldvarg138 ; void *tmp___115 ; struct device *ldvarg137 ; void *tmp___116 ; struct device_attribute *ldvarg139 ; void *tmp___117 ; int tmp___118 ; int tmp___119 ; int tmp___120 ; int tmp___121 ; int tmp___122 ; int tmp___123 ; int tmp___124 ; int tmp___125 ; int tmp___126 ; int tmp___127 ; int tmp___128 ; int tmp___129 ; int tmp___130 ; int tmp___131 ; int tmp___132 ; int tmp___133 ; int tmp___134 ; int tmp___135 ; int tmp___136 ; int tmp___137 ; int tmp___138 ; int tmp___139 ; int tmp___140 ; int tmp___141 ; int tmp___142 ; int tmp___143 ; int tmp___144 ; int tmp___145 ; int tmp___146 ; int tmp___147 ; int tmp___148 ; int tmp___149 ; int tmp___150 ; int tmp___151 ; int tmp___152 ; int tmp___153 ; int tmp___154 ; int tmp___155 ; int tmp___156 ; int tmp___157 ; int tmp___158 ; int tmp___159 ; int tmp___160 ; int tmp___161 ; int tmp___162 ; int tmp___163 ; int tmp___164 ; int tmp___165 ; int tmp___166 ; { tmp = ldv_init_zalloc(1UL); ldvarg0 = (char *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg2 = (char *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg4 = (char *)tmp___1; tmp___2 = ldv_init_zalloc(1416UL); ldvarg3 = (struct device *)tmp___2; tmp___3 = ldv_init_zalloc(48UL); ldvarg5 = (struct device_attribute *)tmp___3; tmp___4 = ldv_init_zalloc(48UL); ldvarg8 = (struct device_attribute *)tmp___4; tmp___5 = ldv_init_zalloc(1UL); ldvarg7 = (char *)tmp___5; tmp___6 = ldv_init_zalloc(1416UL); ldvarg6 = (struct device *)tmp___6; tmp___7 = ldv_init_zalloc(48UL); ldvarg11 = (struct device_attribute *)tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg10 = (char *)tmp___8; tmp___9 = ldv_init_zalloc(1416UL); ldvarg9 = (struct device *)tmp___9; tmp___10 = ldv_init_zalloc(48UL); ldvarg14 = (struct device_attribute *)tmp___10; tmp___11 = ldv_init_zalloc(1UL); ldvarg13 = (char *)tmp___11; tmp___12 = ldv_init_zalloc(1416UL); ldvarg12 = (struct device *)tmp___12; tmp___13 = ldv_init_zalloc(1UL); ldvarg17 = (char *)tmp___13; tmp___14 = ldv_init_zalloc(1UL); ldvarg15 = (char *)tmp___14; tmp___15 = ldv_init_zalloc(1416UL); ldvarg18 = (struct device *)tmp___15; tmp___16 = ldv_init_zalloc(48UL); ldvarg20 = (struct device_attribute *)tmp___16; tmp___17 = ldv_init_zalloc(1UL); ldvarg19 = (char *)tmp___17; tmp___18 = ldv_init_zalloc(32UL); ldvarg21 = (struct i2c_device_id *)tmp___18; tmp___19 = ldv_init_zalloc(64UL); ldvarg22 = (struct i2c_board_info *)tmp___19; tmp___20 = ldv_init_zalloc(1UL); ldvarg25 = (char *)tmp___20; tmp___21 = ldv_init_zalloc(1UL); ldvarg23 = (char *)tmp___21; tmp___22 = ldv_init_zalloc(1UL); ldvarg26 = (char *)tmp___22; tmp___23 = ldv_init_zalloc(1UL); ldvarg28 = (char *)tmp___23; tmp___24 = ldv_init_zalloc(1UL); ldvarg31 = (char *)tmp___24; tmp___25 = ldv_init_zalloc(1UL); ldvarg29 = (char *)tmp___25; tmp___26 = ldv_init_zalloc(1416UL); ldvarg32 = (struct device *)tmp___26; tmp___27 = ldv_init_zalloc(48UL); ldvarg34 = (struct device_attribute *)tmp___27; tmp___28 = ldv_init_zalloc(1UL); ldvarg33 = (char *)tmp___28; tmp___29 = ldv_init_zalloc(1UL); ldvarg37 = (char *)tmp___29; tmp___30 = ldv_init_zalloc(1UL); ldvarg35 = (char *)tmp___30; tmp___31 = ldv_init_zalloc(1UL); ldvarg40 = (char *)tmp___31; tmp___32 = ldv_init_zalloc(1UL); ldvarg38 = (char *)tmp___32; tmp___33 = ldv_init_zalloc(1UL); ldvarg41 = (char *)tmp___33; tmp___34 = ldv_init_zalloc(1UL); ldvarg43 = (char *)tmp___34; tmp___35 = ldv_init_zalloc(1UL); ldvarg44 = (char *)tmp___35; tmp___36 = ldv_init_zalloc(1UL); ldvarg46 = (char *)tmp___36; tmp___37 = ldv_init_zalloc(1UL); ldvarg49 = (char *)tmp___37; tmp___38 = ldv_init_zalloc(1UL); ldvarg47 = (char *)tmp___38; tmp___39 = ldv_init_zalloc(1UL); ldvarg51 = (char *)tmp___39; tmp___40 = ldv_init_zalloc(48UL); ldvarg52 = (struct device_attribute *)tmp___40; tmp___41 = ldv_init_zalloc(1416UL); ldvarg50 = (struct device *)tmp___41; tmp___42 = ldv_init_zalloc(1UL); ldvarg53 = (char *)tmp___42; tmp___43 = ldv_init_zalloc(1UL); ldvarg55 = (char *)tmp___43; tmp___44 = ldv_init_zalloc(1UL); ldvarg57 = (char *)tmp___44; tmp___45 = ldv_init_zalloc(48UL); ldvarg58 = (struct device_attribute *)tmp___45; tmp___46 = ldv_init_zalloc(1416UL); ldvarg56 = (struct device *)tmp___46; tmp___47 = ldv_init_zalloc(1UL); ldvarg61 = (char *)tmp___47; tmp___48 = ldv_init_zalloc(1UL); ldvarg59 = (char *)tmp___48; tmp___49 = ldv_init_zalloc(1UL); ldvarg63 = (char *)tmp___49; tmp___50 = ldv_init_zalloc(48UL); ldvarg64 = (struct device_attribute *)tmp___50; tmp___51 = ldv_init_zalloc(1416UL); ldvarg62 = (struct device *)tmp___51; tmp___52 = ldv_init_zalloc(1416UL); ldvarg65 = (struct device *)tmp___52; tmp___53 = ldv_init_zalloc(48UL); ldvarg67 = (struct device_attribute *)tmp___53; tmp___54 = ldv_init_zalloc(1UL); ldvarg66 = (char *)tmp___54; tmp___55 = ldv_init_zalloc(1UL); ldvarg70 = (char *)tmp___55; tmp___56 = ldv_init_zalloc(1UL); ldvarg68 = (char *)tmp___56; tmp___57 = ldv_init_zalloc(1UL); ldvarg73 = (char *)tmp___57; tmp___58 = ldv_init_zalloc(1UL); ldvarg71 = (char *)tmp___58; tmp___59 = ldv_init_zalloc(1UL); ldvarg76 = (char *)tmp___59; tmp___60 = ldv_init_zalloc(1UL); ldvarg74 = (char *)tmp___60; tmp___61 = ldv_init_zalloc(1416UL); ldvarg77 = (struct device *)tmp___61; tmp___62 = ldv_init_zalloc(48UL); ldvarg79 = (struct device_attribute *)tmp___62; tmp___63 = ldv_init_zalloc(1UL); ldvarg78 = (char *)tmp___63; tmp___64 = ldv_init_zalloc(1UL); ldvarg81 = (char *)tmp___64; tmp___65 = ldv_init_zalloc(1416UL); ldvarg80 = (struct device *)tmp___65; tmp___66 = ldv_init_zalloc(48UL); ldvarg82 = (struct device_attribute *)tmp___66; tmp___67 = ldv_init_zalloc(48UL); ldvarg85 = (struct device_attribute *)tmp___67; tmp___68 = ldv_init_zalloc(1UL); ldvarg84 = (char *)tmp___68; tmp___69 = ldv_init_zalloc(1416UL); ldvarg83 = (struct device *)tmp___69; tmp___70 = ldv_init_zalloc(48UL); ldvarg88 = (struct device_attribute *)tmp___70; tmp___71 = ldv_init_zalloc(1UL); ldvarg87 = (char *)tmp___71; tmp___72 = ldv_init_zalloc(1416UL); ldvarg86 = (struct device *)tmp___72; tmp___73 = ldv_init_zalloc(1UL); ldvarg91 = (char *)tmp___73; tmp___74 = ldv_init_zalloc(1UL); ldvarg89 = (char *)tmp___74; tmp___75 = ldv_init_zalloc(1UL); ldvarg94 = (char *)tmp___75; tmp___76 = ldv_init_zalloc(1UL); ldvarg92 = (char *)tmp___76; tmp___77 = ldv_init_zalloc(1416UL); ldvarg95 = (struct device *)tmp___77; tmp___78 = ldv_init_zalloc(48UL); ldvarg97 = (struct device_attribute *)tmp___78; tmp___79 = ldv_init_zalloc(1UL); ldvarg96 = (char *)tmp___79; tmp___80 = ldv_init_zalloc(1416UL); ldvarg98 = (struct device *)tmp___80; tmp___81 = ldv_init_zalloc(48UL); ldvarg100 = (struct device_attribute *)tmp___81; tmp___82 = ldv_init_zalloc(1UL); ldvarg99 = (char *)tmp___82; tmp___83 = ldv_init_zalloc(1UL); ldvarg102 = (char *)tmp___83; tmp___84 = ldv_init_zalloc(1416UL); ldvarg101 = (struct device *)tmp___84; tmp___85 = ldv_init_zalloc(48UL); ldvarg103 = (struct device_attribute *)tmp___85; tmp___86 = ldv_init_zalloc(1416UL); ldvarg104 = (struct device *)tmp___86; tmp___87 = ldv_init_zalloc(48UL); ldvarg106 = (struct device_attribute *)tmp___87; tmp___88 = ldv_init_zalloc(1UL); ldvarg105 = (char *)tmp___88; tmp___89 = ldv_init_zalloc(1UL); ldvarg108 = (char *)tmp___89; tmp___90 = ldv_init_zalloc(1416UL); ldvarg107 = (struct device *)tmp___90; tmp___91 = ldv_init_zalloc(48UL); ldvarg109 = (struct device_attribute *)tmp___91; tmp___92 = ldv_init_zalloc(1UL); ldvarg111 = (char *)tmp___92; tmp___93 = ldv_init_zalloc(1416UL); ldvarg110 = (struct device *)tmp___93; tmp___94 = ldv_init_zalloc(48UL); ldvarg112 = (struct device_attribute *)tmp___94; tmp___95 = ldv_init_zalloc(1416UL); ldvarg113 = (struct device *)tmp___95; tmp___96 = ldv_init_zalloc(1UL); ldvarg114 = (char *)tmp___96; tmp___97 = ldv_init_zalloc(48UL); ldvarg115 = (struct device_attribute *)tmp___97; tmp___98 = ldv_init_zalloc(1416UL); ldvarg116 = (struct device *)tmp___98; tmp___99 = ldv_init_zalloc(1UL); ldvarg117 = (char *)tmp___99; tmp___100 = ldv_init_zalloc(48UL); ldvarg118 = (struct device_attribute *)tmp___100; tmp___101 = ldv_init_zalloc(48UL); ldvarg121 = (struct device_attribute *)tmp___101; tmp___102 = ldv_init_zalloc(1UL); ldvarg120 = (char *)tmp___102; tmp___103 = ldv_init_zalloc(1416UL); ldvarg119 = (struct device *)tmp___103; tmp___104 = ldv_init_zalloc(1UL); ldvarg124 = (char *)tmp___104; tmp___105 = ldv_init_zalloc(1UL); ldvarg122 = (char *)tmp___105; tmp___106 = ldv_init_zalloc(1UL); ldvarg127 = (char *)tmp___106; tmp___107 = ldv_init_zalloc(1UL); ldvarg125 = (char *)tmp___107; tmp___108 = ldv_init_zalloc(1UL); ldvarg130 = (char *)tmp___108; tmp___109 = ldv_init_zalloc(1UL); ldvarg128 = (char *)tmp___109; tmp___110 = ldv_init_zalloc(1UL); ldvarg131 = (char *)tmp___110; tmp___111 = ldv_init_zalloc(1UL); ldvarg133 = (char *)tmp___111; tmp___112 = ldv_init_zalloc(48UL); ldvarg136 = (struct device_attribute *)tmp___112; tmp___113 = ldv_init_zalloc(1416UL); ldvarg134 = (struct device *)tmp___113; tmp___114 = ldv_init_zalloc(1UL); ldvarg135 = (char *)tmp___114; tmp___115 = ldv_init_zalloc(1UL); ldvarg138 = (char *)tmp___115; tmp___116 = ldv_init_zalloc(1416UL); ldvarg137 = (struct device *)tmp___116; tmp___117 = ldv_init_zalloc(48UL); ldvarg139 = (struct device_attribute *)tmp___117; ldv_initialize(); ldv_memset((void *)(& ldvarg1), 0, 8UL); ldv_memset((void *)(& ldvarg16), 0, 8UL); ldv_memset((void *)(& ldvarg24), 0, 8UL); ldv_memset((void *)(& ldvarg27), 0, 8UL); ldv_memset((void *)(& ldvarg30), 0, 8UL); ldv_memset((void *)(& ldvarg36), 0, 8UL); ldv_memset((void *)(& ldvarg39), 0, 8UL); ldv_memset((void *)(& ldvarg42), 0, 8UL); ldv_memset((void *)(& ldvarg45), 0, 8UL); ldv_memset((void *)(& ldvarg48), 0, 8UL); ldv_memset((void *)(& ldvarg54), 0, 8UL); ldv_memset((void *)(& ldvarg60), 0, 8UL); ldv_memset((void *)(& ldvarg69), 0, 8UL); ldv_memset((void *)(& ldvarg72), 0, 8UL); ldv_memset((void *)(& ldvarg75), 0, 8UL); ldv_memset((void *)(& ldvarg90), 0, 8UL); ldv_memset((void *)(& ldvarg93), 0, 8UL); ldv_memset((void *)(& ldvarg123), 0, 8UL); ldv_memset((void *)(& ldvarg126), 0, 8UL); ldv_memset((void *)(& ldvarg129), 0, 8UL); ldv_memset((void *)(& ldvarg132), 0, 8UL); ldv_state_variable_33 = 0; ldv_state_variable_32 = 0; ldv_state_variable_21 = 0; ldv_state_variable_7 = 0; ldv_state_variable_26 = 0; ldv_state_variable_17 = 0; ldv_state_variable_2 = 0; ldv_state_variable_1 = 0; ldv_state_variable_18 = 0; ldv_state_variable_30 = 0; ldv_state_variable_16 = 0; ldv_state_variable_44 = 0; ldv_state_variable_27 = 0; ldv_state_variable_25 = 0; ldv_state_variable_28 = 0; ldv_state_variable_40 = 0; ldv_state_variable_20 = 0; ldv_state_variable_14 = 0; ldv_state_variable_24 = 0; ldv_state_variable_10 = 0; ldv_state_variable_31 = 0; ldv_state_variable_35 = 0; ldv_state_variable_11 = 0; ldv_state_variable_42 = 0; ldv_state_variable_22 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_46 = 0; ldv_state_variable_13 = 0; ldv_state_variable_23 = 0; ldv_state_variable_29 = 0; ldv_state_variable_6 = 0; ldv_state_variable_39 = 0; ldv_state_variable_36 = 0; ldv_state_variable_3 = 0; ldv_state_variable_9 = 0; ldv_state_variable_41 = 0; ldv_state_variable_12 = 0; ldv_state_variable_47 = 0; ldv_state_variable_15 = 0; ldv_state_variable_38 = 0; ldv_state_variable_8 = 0; ldv_state_variable_4 = 0; ldv_state_variable_34 = 0; ldv_state_variable_45 = 0; ldv_state_variable_37 = 0; ldv_state_variable_43 = 0; ldv_state_variable_19 = 0; ldv_state_variable_5 = 0; ldv_23982: tmp___118 = __VERIFIER_nondet_int(); switch (tmp___118) { case 0: ; if (ldv_state_variable_33 != 0) { tmp___119 = __VERIFIER_nondet_int(); switch (tmp___119) { case 0: ; if (ldv_state_variable_33 == 1) { set_in_max(sensor_dev_attr_in4_max_group1, sensor_dev_attr_in4_max_group0, (char const *)ldvarg2, ldvarg1); ldv_state_variable_33 = 1; } else { } goto ldv_23765; case 1: ; if (ldv_state_variable_33 == 1) { show_in_max(sensor_dev_attr_in4_max_group1, sensor_dev_attr_in4_max_group0, ldvarg0); ldv_state_variable_33 = 1; } else { } goto ldv_23765; default: ldv_stop(); } ldv_23765: ; } else { } goto ldv_23768; case 1: ; if (ldv_state_variable_32 != 0) { tmp___120 = __VERIFIER_nondet_int(); switch (tmp___120) { case 0: ; if (ldv_state_variable_32 == 1) { show_in(ldvarg3, ldvarg5, ldvarg4); ldv_state_variable_32 = 1; } else { } goto ldv_23771; default: ldv_stop(); } ldv_23771: ; } else { } goto ldv_23768; case 2: ; if (ldv_state_variable_21 != 0) { tmp___121 = __VERIFIER_nondet_int(); switch (tmp___121) { case 0: ; if (ldv_state_variable_21 == 1) { show_fan(ldvarg6, ldvarg8, ldvarg7); ldv_state_variable_21 = 1; } else { } goto ldv_23775; default: ldv_stop(); } ldv_23775: ; } else { } goto ldv_23768; case 3: ; if (ldv_state_variable_7 != 0) { tmp___122 = __VERIFIER_nondet_int(); switch (tmp___122) { case 0: ; if (ldv_state_variable_7 == 1) { show_alarm(ldvarg9, ldvarg11, ldvarg10); ldv_state_variable_7 = 1; } else { } goto ldv_23779; default: ldv_stop(); } ldv_23779: ; } else { } goto ldv_23768; case 4: ; if (ldv_state_variable_26 != 0) { tmp___123 = __VERIFIER_nondet_int(); switch (tmp___123) { case 0: ; if (ldv_state_variable_26 == 1) { show_temp(ldvarg12, ldvarg14, ldvarg13); ldv_state_variable_26 = 1; } else { } goto ldv_23783; default: ldv_stop(); } ldv_23783: ; } else { } goto ldv_23768; case 5: ; if (ldv_state_variable_17 != 0) { tmp___124 = __VERIFIER_nondet_int(); switch (tmp___124) { case 0: ; if (ldv_state_variable_17 == 1) { set_fan_div(sensor_dev_attr_fan1_div_group1, sensor_dev_attr_fan1_div_group0, (char const *)ldvarg17, ldvarg16); ldv_state_variable_17 = 1; } else { } goto ldv_23787; case 1: ; if (ldv_state_variable_17 == 1) { show_fan_div(sensor_dev_attr_fan1_div_group1, sensor_dev_attr_fan1_div_group0, ldvarg15); ldv_state_variable_17 = 1; } else { } goto ldv_23787; default: ldv_stop(); } ldv_23787: ; } else { } goto ldv_23768; case 6: ; if (ldv_state_variable_2 != 0) { tmp___125 = __VERIFIER_nondet_int(); switch (tmp___125) { case 0: ; if (ldv_state_variable_2 == 1) { show_alarm(ldvarg18, ldvarg20, ldvarg19); ldv_state_variable_2 = 1; } else { } goto ldv_23792; default: ldv_stop(); } ldv_23792: ; } else { } goto ldv_23768; case 7: ; if (ldv_state_variable_1 != 0) { tmp___126 = __VERIFIER_nondet_int(); switch (tmp___126) { case 0: ; if (ldv_state_variable_1 == 1) { lm78_i2c_detect(lm78_driver_group0, ldvarg22); ldv_state_variable_1 = 1; } else { } if (ldv_state_variable_1 == 2) { lm78_i2c_detect(lm78_driver_group0, ldvarg22); ldv_state_variable_1 = 2; } else { } goto ldv_23796; case 1: ; if (ldv_state_variable_1 == 1) { ldv_retval_0 = lm78_i2c_probe(lm78_driver_group0, (struct i2c_device_id const *)ldvarg21); if (ldv_retval_0 == 0) { ldv_state_variable_1 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_23796; case 2: ; if (ldv_state_variable_1 == 2) { ldv_release_1(); ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_23796; default: ldv_stop(); } ldv_23796: ; } else { } goto ldv_23768; case 8: ; if (ldv_state_variable_18 != 0) { tmp___127 = __VERIFIER_nondet_int(); switch (tmp___127) { case 0: ; if (ldv_state_variable_18 == 1) { set_fan_min(sensor_dev_attr_fan3_min_group1, sensor_dev_attr_fan3_min_group0, (char const *)ldvarg25, ldvarg24); ldv_state_variable_18 = 1; } else { } goto ldv_23802; case 1: ; if (ldv_state_variable_18 == 1) { show_fan_min(sensor_dev_attr_fan3_min_group1, sensor_dev_attr_fan3_min_group0, ldvarg23); ldv_state_variable_18 = 1; } else { } goto ldv_23802; default: ldv_stop(); } ldv_23802: ; } else { } goto ldv_23768; case 9: ; if (ldv_state_variable_30 != 0) { tmp___128 = __VERIFIER_nondet_int(); switch (tmp___128) { case 0: ; if (ldv_state_variable_30 == 1) { set_in_max(sensor_dev_attr_in5_max_group1, sensor_dev_attr_in5_max_group0, (char const *)ldvarg28, ldvarg27); ldv_state_variable_30 = 1; } else { } goto ldv_23807; case 1: ; if (ldv_state_variable_30 == 1) { show_in_max(sensor_dev_attr_in5_max_group1, sensor_dev_attr_in5_max_group0, ldvarg26); ldv_state_variable_30 = 1; } else { } goto ldv_23807; default: ldv_stop(); } ldv_23807: ; } else { } goto ldv_23768; case 10: ; if (ldv_state_variable_16 != 0) { tmp___129 = __VERIFIER_nondet_int(); switch (tmp___129) { case 0: ; if (ldv_state_variable_16 == 1) { set_fan_div(sensor_dev_attr_fan2_div_group1, sensor_dev_attr_fan2_div_group0, (char const *)ldvarg31, ldvarg30); ldv_state_variable_16 = 1; } else { } goto ldv_23812; case 1: ; if (ldv_state_variable_16 == 1) { show_fan_div(sensor_dev_attr_fan2_div_group1, sensor_dev_attr_fan2_div_group0, ldvarg29); ldv_state_variable_16 = 1; } else { } goto ldv_23812; default: ldv_stop(); } ldv_23812: ; } else { } goto ldv_23768; case 11: ; if (ldv_state_variable_44 != 0) { tmp___130 = __VERIFIER_nondet_int(); switch (tmp___130) { case 0: ; if (ldv_state_variable_44 == 1) { show_in(ldvarg32, ldvarg34, ldvarg33); ldv_state_variable_44 = 1; } else { } goto ldv_23817; default: ldv_stop(); } ldv_23817: ; } else { } goto ldv_23768; case 12: ; if (ldv_state_variable_27 != 0) { tmp___131 = __VERIFIER_nondet_int(); switch (tmp___131) { case 0: ; if (ldv_state_variable_27 == 1) { set_in_max(sensor_dev_attr_in6_max_group1, sensor_dev_attr_in6_max_group0, (char const *)ldvarg37, ldvarg36); ldv_state_variable_27 = 1; } else { } goto ldv_23821; case 1: ; if (ldv_state_variable_27 == 1) { show_in_max(sensor_dev_attr_in6_max_group1, sensor_dev_attr_in6_max_group0, ldvarg35); ldv_state_variable_27 = 1; } else { } goto ldv_23821; default: ldv_stop(); } ldv_23821: ; } else { } goto ldv_23768; case 13: ; if (ldv_state_variable_25 != 0) { tmp___132 = __VERIFIER_nondet_int(); switch (tmp___132) { case 0: ; if (ldv_state_variable_25 == 1) { set_temp_over(dev_attr_temp1_max_group1, dev_attr_temp1_max_group0, (char const *)ldvarg40, ldvarg39); ldv_state_variable_25 = 1; } else { } goto ldv_23826; case 1: ; if (ldv_state_variable_25 == 1) { show_temp_over(dev_attr_temp1_max_group1, dev_attr_temp1_max_group0, ldvarg38); ldv_state_variable_25 = 1; } else { } goto ldv_23826; default: ldv_stop(); } ldv_23826: ; } else { } goto ldv_23768; case 14: ; if (ldv_state_variable_28 != 0) { tmp___133 = __VERIFIER_nondet_int(); switch (tmp___133) { case 0: ; if (ldv_state_variable_28 == 1) { set_in_min(sensor_dev_attr_in6_min_group1, sensor_dev_attr_in6_min_group0, (char const *)ldvarg43, ldvarg42); ldv_state_variable_28 = 1; } else { } goto ldv_23831; case 1: ; if (ldv_state_variable_28 == 1) { show_in_min(sensor_dev_attr_in6_min_group1, sensor_dev_attr_in6_min_group0, ldvarg41); ldv_state_variable_28 = 1; } else { } goto ldv_23831; default: ldv_stop(); } ldv_23831: ; } else { } goto ldv_23768; case 15: ; if (ldv_state_variable_40 != 0) { tmp___134 = __VERIFIER_nondet_int(); switch (tmp___134) { case 0: ; if (ldv_state_variable_40 == 1) { set_in_min(sensor_dev_attr_in2_min_group1, sensor_dev_attr_in2_min_group0, (char const *)ldvarg46, ldvarg45); ldv_state_variable_40 = 1; } else { } goto ldv_23836; case 1: ; if (ldv_state_variable_40 == 1) { show_in_min(sensor_dev_attr_in2_min_group1, sensor_dev_attr_in2_min_group0, ldvarg44); ldv_state_variable_40 = 1; } else { } goto ldv_23836; default: ldv_stop(); } ldv_23836: ; } else { } goto ldv_23768; case 16: ; if (ldv_state_variable_20 != 0) { tmp___135 = __VERIFIER_nondet_int(); switch (tmp___135) { case 0: ; if (ldv_state_variable_20 == 1) { set_fan_min(sensor_dev_attr_fan2_min_group1, sensor_dev_attr_fan2_min_group0, (char const *)ldvarg49, ldvarg48); ldv_state_variable_20 = 1; } else { } goto ldv_23841; case 1: ; if (ldv_state_variable_20 == 1) { show_fan_min(sensor_dev_attr_fan2_min_group1, sensor_dev_attr_fan2_min_group0, ldvarg47); ldv_state_variable_20 = 1; } else { } goto ldv_23841; default: ldv_stop(); } ldv_23841: ; } else { } goto ldv_23768; case 17: ; if (ldv_state_variable_14 != 0) { tmp___136 = __VERIFIER_nondet_int(); switch (tmp___136) { case 0: ; if (ldv_state_variable_14 == 1) { show_vid(ldvarg50, ldvarg52, ldvarg51); ldv_state_variable_14 = 1; } else { } goto ldv_23846; default: ldv_stop(); } ldv_23846: ; } else { } goto ldv_23768; case 18: ; if (ldv_state_variable_24 != 0) { tmp___137 = __VERIFIER_nondet_int(); switch (tmp___137) { case 0: ; if (ldv_state_variable_24 == 1) { set_temp_hyst(dev_attr_temp1_max_hyst_group1, dev_attr_temp1_max_hyst_group0, (char const *)ldvarg55, ldvarg54); ldv_state_variable_24 = 1; } else { } goto ldv_23850; case 1: ; if (ldv_state_variable_24 == 1) { show_temp_hyst(dev_attr_temp1_max_hyst_group1, dev_attr_temp1_max_hyst_group0, ldvarg53); ldv_state_variable_24 = 1; } else { } goto ldv_23850; default: ldv_stop(); } ldv_23850: ; } else { } goto ldv_23768; case 19: ; if (ldv_state_variable_10 != 0) { tmp___138 = __VERIFIER_nondet_int(); switch (tmp___138) { case 0: ; if (ldv_state_variable_10 == 1) { show_alarm(ldvarg56, ldvarg58, ldvarg57); ldv_state_variable_10 = 1; } else { } goto ldv_23855; default: ldv_stop(); } ldv_23855: ; } else { } goto ldv_23768; case 20: ; if (ldv_state_variable_31 != 0) { tmp___139 = __VERIFIER_nondet_int(); switch (tmp___139) { case 0: ; if (ldv_state_variable_31 == 1) { set_in_min(sensor_dev_attr_in5_min_group1, sensor_dev_attr_in5_min_group0, (char const *)ldvarg61, ldvarg60); ldv_state_variable_31 = 1; } else { } goto ldv_23859; case 1: ; if (ldv_state_variable_31 == 1) { show_in_min(sensor_dev_attr_in5_min_group1, sensor_dev_attr_in5_min_group0, ldvarg59); ldv_state_variable_31 = 1; } else { } goto ldv_23859; default: ldv_stop(); } ldv_23859: ; } else { } goto ldv_23768; case 21: ; if (ldv_state_variable_35 != 0) { tmp___140 = __VERIFIER_nondet_int(); switch (tmp___140) { case 0: ; if (ldv_state_variable_35 == 1) { show_in(ldvarg62, ldvarg64, ldvarg63); ldv_state_variable_35 = 1; } else { } goto ldv_23864; default: ldv_stop(); } ldv_23864: ; } else { } goto ldv_23768; case 22: ; if (ldv_state_variable_11 != 0) { tmp___141 = __VERIFIER_nondet_int(); switch (tmp___141) { case 0: ; if (ldv_state_variable_11 == 1) { show_alarm(ldvarg65, ldvarg67, ldvarg66); ldv_state_variable_11 = 1; } else { } goto ldv_23868; default: ldv_stop(); } ldv_23868: ; } else { } goto ldv_23768; case 23: ; if (ldv_state_variable_42 != 0) { tmp___142 = __VERIFIER_nondet_int(); switch (tmp___142) { case 0: ; if (ldv_state_variable_42 == 1) { set_in_max(sensor_dev_attr_in1_max_group1, sensor_dev_attr_in1_max_group0, (char const *)ldvarg70, ldvarg69); ldv_state_variable_42 = 1; } else { } goto ldv_23872; case 1: ; if (ldv_state_variable_42 == 1) { show_in_max(sensor_dev_attr_in1_max_group1, sensor_dev_attr_in1_max_group0, ldvarg68); ldv_state_variable_42 = 1; } else { } goto ldv_23872; default: ldv_stop(); } ldv_23872: ; } else { } goto ldv_23768; case 24: ; if (ldv_state_variable_22 != 0) { tmp___143 = __VERIFIER_nondet_int(); switch (tmp___143) { case 0: ; if (ldv_state_variable_22 == 1) { set_fan_min(sensor_dev_attr_fan1_min_group1, sensor_dev_attr_fan1_min_group0, (char const *)ldvarg73, ldvarg72); ldv_state_variable_22 = 1; } else { } goto ldv_23877; case 1: ; if (ldv_state_variable_22 == 1) { show_fan_min(sensor_dev_attr_fan1_min_group1, sensor_dev_attr_fan1_min_group0, ldvarg71); ldv_state_variable_22 = 1; } else { } goto ldv_23877; default: ldv_stop(); } ldv_23877: ; } else { } goto ldv_23768; case 25: ; if (ldv_state_variable_0 != 0) { tmp___144 = __VERIFIER_nondet_int(); switch (tmp___144) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { sm_lm78_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_23883; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_1 = sm_lm78_init(); if (ldv_retval_1 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_5 = 1; ldv_state_variable_19 = 1; ldv_state_variable_43 = 1; ldv_initialize_sensor_device_attribute_43(); ldv_state_variable_37 = 1; ldv_initialize_sensor_device_attribute_37(); ldv_state_variable_45 = 1; ldv_initialize_sensor_device_attribute_45(); ldv_state_variable_34 = 1; ldv_initialize_sensor_device_attribute_34(); ldv_state_variable_4 = 1; ldv_state_variable_8 = 1; ldv_state_variable_38 = 1; ldv_state_variable_15 = 1; ldv_state_variable_47 = 1; ldv_state_variable_12 = 1; ldv_state_variable_41 = 1; ldv_state_variable_9 = 1; ldv_state_variable_3 = 1; ldv_state_variable_36 = 1; ldv_initialize_sensor_device_attribute_36(); ldv_state_variable_39 = 1; ldv_initialize_sensor_device_attribute_39(); ldv_state_variable_6 = 1; ldv_state_variable_29 = 1; ldv_state_variable_23 = 1; ldv_state_variable_13 = 1; ldv_state_variable_46 = 1; ldv_initialize_sensor_device_attribute_46(); ldv_state_variable_22 = 1; ldv_initialize_sensor_device_attribute_22(); ldv_state_variable_42 = 1; ldv_initialize_sensor_device_attribute_42(); ldv_state_variable_11 = 1; ldv_state_variable_35 = 1; ldv_state_variable_31 = 1; ldv_initialize_sensor_device_attribute_31(); ldv_state_variable_10 = 1; ldv_state_variable_24 = 1; ldv_initialize_device_attribute_24(); ldv_state_variable_14 = 1; ldv_state_variable_20 = 1; ldv_initialize_sensor_device_attribute_20(); ldv_state_variable_40 = 1; ldv_initialize_sensor_device_attribute_40(); ldv_state_variable_28 = 1; ldv_initialize_sensor_device_attribute_28(); ldv_state_variable_25 = 1; ldv_initialize_device_attribute_25(); ldv_state_variable_27 = 1; ldv_initialize_sensor_device_attribute_27(); ldv_state_variable_44 = 1; ldv_state_variable_16 = 1; ldv_initialize_sensor_device_attribute_16(); ldv_state_variable_30 = 1; ldv_initialize_sensor_device_attribute_30(); ldv_state_variable_18 = 1; ldv_initialize_sensor_device_attribute_18(); ldv_state_variable_1 = 1; ldv_initialize_i2c_driver_1(); ldv_state_variable_2 = 1; ldv_state_variable_17 = 1; ldv_initialize_sensor_device_attribute_17(); ldv_state_variable_26 = 1; ldv_state_variable_7 = 1; ldv_state_variable_21 = 1; ldv_state_variable_32 = 1; ldv_state_variable_33 = 1; ldv_initialize_sensor_device_attribute_33(); } else { } if (ldv_retval_1 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_23883; default: ldv_stop(); } ldv_23883: ; } else { } goto ldv_23768; case 26: ; if (ldv_state_variable_46 != 0) { tmp___145 = __VERIFIER_nondet_int(); switch (tmp___145) { case 0: ; if (ldv_state_variable_46 == 1) { set_in_min(sensor_dev_attr_in0_min_group1, sensor_dev_attr_in0_min_group0, (char const *)ldvarg76, ldvarg75); ldv_state_variable_46 = 1; } else { } goto ldv_23888; case 1: ; if (ldv_state_variable_46 == 1) { show_in_min(sensor_dev_attr_in0_min_group1, sensor_dev_attr_in0_min_group0, ldvarg74); ldv_state_variable_46 = 1; } else { } goto ldv_23888; default: ldv_stop(); } ldv_23888: ; } else { } goto ldv_23768; case 27: ; if (ldv_state_variable_13 != 0) { tmp___146 = __VERIFIER_nondet_int(); switch (tmp___146) { case 0: ; if (ldv_state_variable_13 == 1) { show_alarms(ldvarg77, ldvarg79, ldvarg78); ldv_state_variable_13 = 1; } else { } goto ldv_23893; default: ldv_stop(); } ldv_23893: ; } else { } goto ldv_23768; case 28: ; if (ldv_state_variable_23 != 0) { tmp___147 = __VERIFIER_nondet_int(); switch (tmp___147) { case 0: ; if (ldv_state_variable_23 == 1) { show_fan(ldvarg80, ldvarg82, ldvarg81); ldv_state_variable_23 = 1; } else { } goto ldv_23897; default: ldv_stop(); } ldv_23897: ; } else { } goto ldv_23768; case 29: ; if (ldv_state_variable_29 != 0) { tmp___148 = __VERIFIER_nondet_int(); switch (tmp___148) { case 0: ; if (ldv_state_variable_29 == 1) { show_in(ldvarg83, ldvarg85, ldvarg84); ldv_state_variable_29 = 1; } else { } goto ldv_23901; default: ldv_stop(); } ldv_23901: ; } else { } goto ldv_23768; case 30: ; if (ldv_state_variable_6 != 0) { tmp___149 = __VERIFIER_nondet_int(); switch (tmp___149) { case 0: ; if (ldv_state_variable_6 == 1) { show_alarm(ldvarg86, ldvarg88, ldvarg87); ldv_state_variable_6 = 1; } else { } goto ldv_23905; default: ldv_stop(); } ldv_23905: ; } else { } goto ldv_23768; case 31: ; if (ldv_state_variable_39 != 0) { tmp___150 = __VERIFIER_nondet_int(); switch (tmp___150) { case 0: ; if (ldv_state_variable_39 == 1) { set_in_max(sensor_dev_attr_in2_max_group1, sensor_dev_attr_in2_max_group0, (char const *)ldvarg91, ldvarg90); ldv_state_variable_39 = 1; } else { } goto ldv_23909; case 1: ; if (ldv_state_variable_39 == 1) { show_in_max(sensor_dev_attr_in2_max_group1, sensor_dev_attr_in2_max_group0, ldvarg89); ldv_state_variable_39 = 1; } else { } goto ldv_23909; default: ldv_stop(); } ldv_23909: ; } else { } goto ldv_23768; case 32: ; if (ldv_state_variable_36 != 0) { tmp___151 = __VERIFIER_nondet_int(); switch (tmp___151) { case 0: ; if (ldv_state_variable_36 == 1) { set_in_max(sensor_dev_attr_in3_max_group1, sensor_dev_attr_in3_max_group0, (char const *)ldvarg94, ldvarg93); ldv_state_variable_36 = 1; } else { } goto ldv_23914; case 1: ; if (ldv_state_variable_36 == 1) { show_in_max(sensor_dev_attr_in3_max_group1, sensor_dev_attr_in3_max_group0, ldvarg92); ldv_state_variable_36 = 1; } else { } goto ldv_23914; default: ldv_stop(); } ldv_23914: ; } else { } goto ldv_23768; case 33: ; if (ldv_state_variable_3 != 0) { tmp___152 = __VERIFIER_nondet_int(); switch (tmp___152) { case 0: ; if (ldv_state_variable_3 == 1) { show_alarm(ldvarg95, ldvarg97, ldvarg96); ldv_state_variable_3 = 1; } else { } goto ldv_23919; default: ldv_stop(); } ldv_23919: ; } else { } goto ldv_23768; case 34: ; if (ldv_state_variable_9 != 0) { tmp___153 = __VERIFIER_nondet_int(); switch (tmp___153) { case 0: ; if (ldv_state_variable_9 == 1) { show_alarm(ldvarg98, ldvarg100, ldvarg99); ldv_state_variable_9 = 1; } else { } goto ldv_23923; default: ldv_stop(); } ldv_23923: ; } else { } goto ldv_23768; case 35: ; if (ldv_state_variable_41 != 0) { tmp___154 = __VERIFIER_nondet_int(); switch (tmp___154) { case 0: ; if (ldv_state_variable_41 == 1) { show_in(ldvarg101, ldvarg103, ldvarg102); ldv_state_variable_41 = 1; } else { } goto ldv_23927; default: ldv_stop(); } ldv_23927: ; } else { } goto ldv_23768; case 36: ; if (ldv_state_variable_12 != 0) { tmp___155 = __VERIFIER_nondet_int(); switch (tmp___155) { case 0: ; if (ldv_state_variable_12 == 1) { show_alarm(ldvarg104, ldvarg106, ldvarg105); ldv_state_variable_12 = 1; } else { } goto ldv_23931; default: ldv_stop(); } ldv_23931: ; } else { } goto ldv_23768; case 37: ; if (ldv_state_variable_47 != 0) { tmp___156 = __VERIFIER_nondet_int(); switch (tmp___156) { case 0: ; if (ldv_state_variable_47 == 1) { show_in(ldvarg107, ldvarg109, ldvarg108); ldv_state_variable_47 = 1; } else { } goto ldv_23935; default: ldv_stop(); } ldv_23935: ; } else { } goto ldv_23768; case 38: ; if (ldv_state_variable_15 != 0) { tmp___157 = __VERIFIER_nondet_int(); switch (tmp___157) { case 0: ; if (ldv_state_variable_15 == 1) { show_fan_div(ldvarg110, ldvarg112, ldvarg111); ldv_state_variable_15 = 1; } else { } goto ldv_23939; default: ldv_stop(); } ldv_23939: ; } else { } goto ldv_23768; case 39: ; if (ldv_state_variable_38 != 0) { tmp___158 = __VERIFIER_nondet_int(); switch (tmp___158) { case 0: ; if (ldv_state_variable_38 == 1) { show_in(ldvarg113, ldvarg115, ldvarg114); ldv_state_variable_38 = 1; } else { } goto ldv_23943; default: ldv_stop(); } ldv_23943: ; } else { } goto ldv_23768; case 40: ; if (ldv_state_variable_8 != 0) { tmp___159 = __VERIFIER_nondet_int(); switch (tmp___159) { case 0: ; if (ldv_state_variable_8 == 1) { show_alarm(ldvarg116, ldvarg118, ldvarg117); ldv_state_variable_8 = 1; } else { } goto ldv_23947; default: ldv_stop(); } ldv_23947: ; } else { } goto ldv_23768; case 41: ; if (ldv_state_variable_4 != 0) { tmp___160 = __VERIFIER_nondet_int(); switch (tmp___160) { case 0: ; if (ldv_state_variable_4 == 1) { show_alarm(ldvarg119, ldvarg121, ldvarg120); ldv_state_variable_4 = 1; } else { } goto ldv_23951; default: ldv_stop(); } ldv_23951: ; } else { } goto ldv_23768; case 42: ; if (ldv_state_variable_34 != 0) { tmp___161 = __VERIFIER_nondet_int(); switch (tmp___161) { case 0: ; if (ldv_state_variable_34 == 1) { set_in_min(sensor_dev_attr_in4_min_group1, sensor_dev_attr_in4_min_group0, (char const *)ldvarg124, ldvarg123); ldv_state_variable_34 = 1; } else { } goto ldv_23955; case 1: ; if (ldv_state_variable_34 == 1) { show_in_min(sensor_dev_attr_in4_min_group1, sensor_dev_attr_in4_min_group0, ldvarg122); ldv_state_variable_34 = 1; } else { } goto ldv_23955; default: ldv_stop(); } ldv_23955: ; } else { } goto ldv_23768; case 43: ; if (ldv_state_variable_45 != 0) { tmp___162 = __VERIFIER_nondet_int(); switch (tmp___162) { case 0: ; if (ldv_state_variable_45 == 1) { set_in_max(sensor_dev_attr_in0_max_group1, sensor_dev_attr_in0_max_group0, (char const *)ldvarg127, ldvarg126); ldv_state_variable_45 = 1; } else { } goto ldv_23960; case 1: ; if (ldv_state_variable_45 == 1) { show_in_max(sensor_dev_attr_in0_max_group1, sensor_dev_attr_in0_max_group0, ldvarg125); ldv_state_variable_45 = 1; } else { } goto ldv_23960; default: ldv_stop(); } ldv_23960: ; } else { } goto ldv_23768; case 44: ; if (ldv_state_variable_37 != 0) { tmp___163 = __VERIFIER_nondet_int(); switch (tmp___163) { case 0: ; if (ldv_state_variable_37 == 1) { set_in_min(sensor_dev_attr_in3_min_group1, sensor_dev_attr_in3_min_group0, (char const *)ldvarg130, ldvarg129); ldv_state_variable_37 = 1; } else { } goto ldv_23965; case 1: ; if (ldv_state_variable_37 == 1) { show_in_min(sensor_dev_attr_in3_min_group1, sensor_dev_attr_in3_min_group0, ldvarg128); ldv_state_variable_37 = 1; } else { } goto ldv_23965; default: ldv_stop(); } ldv_23965: ; } else { } goto ldv_23768; case 45: ; if (ldv_state_variable_43 != 0) { tmp___164 = __VERIFIER_nondet_int(); switch (tmp___164) { case 0: ; if (ldv_state_variable_43 == 1) { set_in_min(sensor_dev_attr_in1_min_group1, sensor_dev_attr_in1_min_group0, (char const *)ldvarg133, ldvarg132); ldv_state_variable_43 = 1; } else { } goto ldv_23970; case 1: ; if (ldv_state_variable_43 == 1) { show_in_min(sensor_dev_attr_in1_min_group1, sensor_dev_attr_in1_min_group0, ldvarg131); ldv_state_variable_43 = 1; } else { } goto ldv_23970; default: ldv_stop(); } ldv_23970: ; } else { } goto ldv_23768; case 46: ; if (ldv_state_variable_19 != 0) { tmp___165 = __VERIFIER_nondet_int(); switch (tmp___165) { case 0: ; if (ldv_state_variable_19 == 1) { show_fan(ldvarg134, ldvarg136, ldvarg135); ldv_state_variable_19 = 1; } else { } goto ldv_23975; default: ldv_stop(); } ldv_23975: ; } else { } goto ldv_23768; case 47: ; if (ldv_state_variable_5 != 0) { tmp___166 = __VERIFIER_nondet_int(); switch (tmp___166) { case 0: ; if (ldv_state_variable_5 == 1) { show_alarm(ldvarg137, ldvarg139, ldvarg138); ldv_state_variable_5 = 1; } else { } goto ldv_23979; default: ldv_stop(); } ldv_23979: ; } else { } goto ldv_23768; default: ldv_stop(); } ldv_23768: ; goto ldv_23982; ldv_final: ldv_check_final_state(); return 0; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_lm78_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_lm78_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_update_lock_of_lm78_data = 1; int ldv_mutex_lock_interruptible_update_lock_of_lm78_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_lm78_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_update_lock_of_lm78_data = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_update_lock_of_lm78_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_lm78_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_update_lock_of_lm78_data = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_update_lock_of_lm78_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_lm78_data != 1) { ldv_error(); } else { } ldv_mutex_update_lock_of_lm78_data = 2; return; } } int ldv_mutex_trylock_update_lock_of_lm78_data(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_update_lock_of_lm78_data != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_update_lock_of_lm78_data = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_update_lock_of_lm78_data(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_update_lock_of_lm78_data != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_update_lock_of_lm78_data = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_update_lock_of_lm78_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_lm78_data == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_update_lock_of_lm78_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_lm78_data != 2) { ldv_error(); } else { } ldv_mutex_update_lock_of_lm78_data = 1; return; } } void ldv_usb_lock_device_update_lock_of_lm78_data(void) { { ldv_mutex_lock_update_lock_of_lm78_data((struct mutex *)0); return; } } int ldv_usb_trylock_device_update_lock_of_lm78_data(void) { int tmp ; { tmp = ldv_mutex_trylock_update_lock_of_lm78_data((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_update_lock_of_lm78_data(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_update_lock_of_lm78_data((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_update_lock_of_lm78_data(void) { { ldv_mutex_unlock_update_lock_of_lm78_data((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_update_lock_of_lm78_data != 1) { ldv_error(); } else { } return; } }