extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; struct gate_struct64 { u16 offset_low ; u16 segment ; unsigned char ist : 3 ; unsigned char zero0 : 5 ; unsigned char type : 5 ; unsigned char dpl : 2 ; unsigned char p : 1 ; u16 offset_middle ; u32 offset_high ; u32 zero1 ; }; typedef struct gate_struct64 gate_desc; struct desc_ptr { unsigned short size ; unsigned long address ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct tss_struct; struct mm_struct; struct task_struct; struct cpumask; struct pv_cpu_ops { unsigned long (*get_debugreg)(int ) ; void (*set_debugreg)(int , unsigned long ) ; void (*clts)(void) ; unsigned long (*read_cr0)(void) ; void (*write_cr0)(unsigned long ) ; unsigned long (*read_cr4_safe)(void) ; unsigned long (*read_cr4)(void) ; void (*write_cr4)(unsigned long ) ; unsigned long (*read_cr8)(void) ; void (*write_cr8)(unsigned long ) ; void (*load_tr_desc)(void) ; void (*load_gdt)(struct desc_ptr const * ) ; void (*load_idt)(struct desc_ptr const * ) ; void (*store_idt)(struct desc_ptr * ) ; void (*set_ldt)(void const * , unsigned int ) ; unsigned long (*store_tr)(void) ; void (*load_tls)(struct thread_struct * , unsigned int ) ; void (*load_gs_index)(unsigned int ) ; void (*write_ldt_entry)(struct desc_struct * , int , void const * ) ; void (*write_gdt_entry)(struct desc_struct * , int , void const * , int ) ; void (*write_idt_entry)(gate_desc * , int , gate_desc const * ) ; void (*alloc_ldt)(struct desc_struct * , unsigned int ) ; void (*free_ldt)(struct desc_struct * , unsigned int ) ; void (*load_sp0)(struct tss_struct * , struct thread_struct * ) ; void (*set_iopl_mask)(unsigned int ) ; void (*wbinvd)(void) ; void (*io_delay)(void) ; void (*cpuid)(unsigned int * , unsigned int * , unsigned int * , unsigned int * ) ; u64 (*read_msr)(unsigned int , int * ) ; int (*write_msr)(unsigned int , unsigned int , unsigned int ) ; u64 (*read_tsc)(void) ; u64 (*read_pmc)(int ) ; unsigned long long (*read_tscp)(unsigned int * ) ; void (*usergs_sysret64)(void) ; void (*usergs_sysret32)(void) ; void (*iret)(void) ; void (*swapgs)(void) ; void (*start_context_switch)(struct task_struct * ) ; void (*end_context_switch)(struct task_struct * ) ; }; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long SYSENTER_stack[64U] ; }; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct vm_area_struct; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __anonstruct_nodemask_t_46 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_46 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct device_attribute; struct platform_device; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct sensor_device_attribute { struct device_attribute dev_attr ; int index ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_231 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_230 { struct __anonstruct____missing_field_name_231 __annonCompField58 ; }; struct lockref { union __anonunion____missing_field_name_230 __annonCompField59 ; }; struct vfsmount; struct __anonstruct____missing_field_name_233 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField60 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_232 __annonCompField61 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_234 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_234 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_238 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_237 { struct __anonstruct____missing_field_name_238 __annonCompField62 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_237 __annonCompField63 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct bdi_writeback; struct export_operations; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_242 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_242 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_243 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_243 __annonCompField65 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct writeback_control; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_246 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_247 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_248 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_246 __annonCompField66 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_247 __annonCompField67 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_248 __annonCompField68 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_249 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_249 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_251 { struct list_head link ; int state ; }; union __anonunion_fl_u_250 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_251 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_250 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; enum chips { w83627hf = 0, w83627thf = 1, w83697hf = 2, w83637hf = 3, w83687thf = 4 } ; struct w83627hf_sio_data { enum chips type ; int sioaddr ; }; struct w83627hf_data { unsigned short addr ; char const *name ; struct device *hwmon_dev ; struct mutex lock ; enum chips type ; struct mutex update_lock ; char valid ; unsigned long last_updated ; u8 in[9U] ; u8 in_max[9U] ; u8 in_min[9U] ; u8 fan[3U] ; u8 fan_min[3U] ; u16 temp[3U] ; u16 temp_max[3U] ; u16 temp_max_hyst[3U] ; u8 fan_div[3U] ; u8 vid ; u32 alarms ; u32 beep_mask ; u8 pwm[3U] ; u8 pwm_enable[3U] ; u8 pwm_freq[3U] ; u16 sens[3U] ; u8 vrm ; u8 vrm_ovt ; u8 scfg1 ; u8 scfg2 ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern struct pv_cpu_ops pv_cpu_ops ; extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; extern int kstrtoll(char const * , unsigned int , long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } __inline static int kstrtol(char const *s , unsigned int base , long *res ) { int tmp ; { tmp = kstrtoll(s, base, (long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; extern void *memset(void * , int , size_t ) ; __inline static void slow_down_io(void) { { (*(pv_cpu_ops.io_delay))(); return; } } __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_31(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_33(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_37(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_39(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_41(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_43(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_45(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_47(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_49(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_24(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_30(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_32(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_34(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_36(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_38(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_40(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_42(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_44(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_46(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_48(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_lock_of_w83627hf_data(struct mutex *lock ) ; void ldv_mutex_unlock_lock_of_w83627hf_data(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_update_lock_of_w83627hf_data(struct mutex *lock ) ; void ldv_mutex_unlock_update_lock_of_w83627hf_data(struct mutex *lock ) ; extern unsigned long volatile jiffies ; extern struct resource ioport_resource ; extern struct resource *__devm_request_region(struct device * , struct resource * , resource_size_t , resource_size_t , char const * ) ; __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outb_p(unsigned char value , int port ) { { outb((int )value, port); slow_down_io(); return; } } __inline static unsigned char inb_p(int port ) { unsigned char value ; unsigned char tmp ; { tmp = inb(port); value = tmp; slow_down_io(); return (value); } } struct device_attribute *sensor_dev_attr_in3_min_group0 ; int ldv_state_variable_47 ; int ldv_state_variable_20 ; struct device_attribute *sensor_dev_attr_in7_max_group0 ; struct device *sensor_dev_attr_in8_min_group1 ; struct device_attribute *sensor_dev_attr_in2_min_group0 ; struct device_attribute *sensor_dev_attr_fan3_div_group0 ; struct device_attribute *dev_attr_in0_min_group0 ; struct device *sensor_dev_attr_pwm1_enable_group1 ; struct device_attribute *sensor_dev_attr_in4_min_group0 ; struct device_attribute *sensor_dev_attr_pwm3_group0 ; struct device *sensor_dev_attr_fan1_beep_group1 ; struct device *sensor_dev_attr_temp3_max_hyst_group1 ; int ldv_state_variable_54 ; int ldv_state_variable_14 ; struct device_attribute *sensor_dev_attr_in0_beep_group0 ; int ldv_state_variable_37 ; int ldv_state_variable_17 ; int ldv_state_variable_51 ; struct device *sensor_dev_attr_in8_max_group1 ; struct device_attribute *sensor_dev_attr_pwm1_group0 ; int ldv_state_variable_66 ; int ldv_state_variable_19 ; int ldv_state_variable_27 ; int ldv_state_variable_9 ; struct device *sensor_dev_attr_temp2_max_hyst_group1 ; struct device_attribute *sensor_dev_attr_fan2_beep_group0 ; int ldv_state_variable_42 ; int ldv_state_variable_83 ; struct device *sensor_dev_attr_in3_max_group1 ; struct device *w83627hf_dev_pm_ops_group1 ; int ldv_state_variable_7 ; struct device *sensor_dev_attr_fan3_min_group1 ; struct device *dev_attr_beep_mask_group1 ; int ldv_state_variable_55 ; struct device_attribute *sensor_dev_attr_beep_enable_group0 ; struct device_attribute *sensor_dev_attr_in1_min_group0 ; struct device_attribute *sensor_dev_attr_temp1_beep_group0 ; int ldv_state_variable_80 ; struct device *sensor_dev_attr_pwm1_freq_group1 ; struct device_attribute *sensor_dev_attr_pwm2_enable_group0 ; int ldv_state_variable_64 ; int ldv_state_variable_26 ; int ldv_state_variable_28 ; struct device *sensor_dev_attr_temp2_max_group1 ; int LDV_IN_INTERRUPT = 1; struct device_attribute *sensor_dev_attr_in8_beep_group0 ; int ldv_state_variable_58 ; struct device *sensor_dev_attr_fan2_beep_group1 ; struct device_attribute *sensor_dev_attr_pwm3_freq_group0 ; struct device_attribute *sensor_dev_attr_pwm3_enable_group0 ; struct device_attribute *sensor_dev_attr_fan1_div_group0 ; int ldv_state_variable_93 ; struct device *sensor_dev_attr_pwm2_enable_group1 ; struct device *sensor_dev_attr_temp3_beep_group1 ; int ldv_state_variable_78 ; int ldv_state_variable_76 ; int ldv_state_variable_31 ; struct device *sensor_dev_attr_pwm1_group1 ; int ldv_state_variable_89 ; struct device_attribute *sensor_dev_attr_in5_min_group0 ; int ldv_state_variable_68 ; struct device *sensor_dev_attr_in5_max_group1 ; int ldv_state_variable_8 ; int ldv_state_variable_46 ; int ldv_state_variable_15 ; int ldv_state_variable_75 ; int ldv_state_variable_74 ; int ldv_state_variable_21 ; int ldv_state_variable_33 ; int ldv_state_variable_69 ; struct device *sensor_dev_attr_in4_min_group1 ; struct device *sensor_dev_attr_in2_beep_group1 ; struct device *sensor_dev_attr_in7_beep_group1 ; int ldv_state_variable_88 ; int ldv_state_variable_65 ; struct device_attribute *sensor_dev_attr_in8_max_group0 ; struct device_attribute *sensor_dev_attr_fan3_min_group0 ; struct device_attribute *sensor_dev_attr_fan2_min_group0 ; int ldv_state_variable_94 ; struct device *sensor_dev_attr_in3_beep_group1 ; struct device *sensor_dev_attr_temp2_beep_group1 ; int ldv_state_variable_70 ; struct device *sensor_dev_attr_in8_beep_group1 ; struct device_attribute *sensor_dev_attr_temp2_beep_group0 ; int ldv_state_variable_41 ; int ldv_state_variable_62 ; int ldv_state_variable_40 ; struct device *sensor_dev_attr_pwm3_group1 ; struct device_attribute *dev_attr_beep_mask_group0 ; struct device_attribute *sensor_dev_attr_in4_max_group0 ; int ldv_state_variable_10 ; struct device *sensor_dev_attr_temp3_type_group1 ; int ldv_state_variable_63 ; struct device *sensor_dev_attr_in5_min_group1 ; int ldv_state_variable_2 ; int ldv_state_variable_25 ; struct device_attribute *sensor_dev_attr_pwm2_freq_group0 ; struct device *dev_attr_vrm_group1 ; struct device *sensor_dev_attr_pwm3_enable_group1 ; int ldv_state_variable_11 ; int ldv_state_variable_79 ; int ldv_state_variable_18 ; struct device *sensor_dev_attr_in4_beep_group1 ; struct device *sensor_dev_attr_in1_min_group1 ; struct device *sensor_dev_attr_in3_min_group1 ; struct device *sensor_dev_attr_fan1_div_group1 ; int ldv_state_variable_32 ; struct device_attribute *sensor_dev_attr_temp3_beep_group0 ; struct device *sensor_dev_attr_fan2_div_group1 ; struct device_attribute *sensor_dev_attr_pwm1_freq_group0 ; struct device *sensor_dev_attr_temp1_beep_group1 ; int ldv_state_variable_90 ; struct device *sensor_dev_attr_in7_min_group1 ; struct device_attribute *sensor_dev_attr_in6_max_group0 ; struct device *sensor_dev_attr_in5_beep_group1 ; int ldv_state_variable_30 ; struct device_attribute *sensor_dev_attr_temp1_max_group0 ; struct device_attribute *sensor_dev_attr_fan3_beep_group0 ; int ldv_state_variable_0 ; int ldv_state_variable_81 ; struct device_attribute *sensor_dev_attr_in4_beep_group0 ; int ldv_state_variable_45 ; struct device_attribute *sensor_dev_attr_temp1_type_group0 ; struct device_attribute *dev_attr_vrm_group0 ; struct device_attribute *sensor_dev_attr_pwm2_group0 ; int ldv_state_variable_12 ; int ldv_state_variable_87 ; int ldv_state_variable_95 ; int ldv_state_variable_22 ; struct device *sensor_dev_attr_temp1_max_hyst_group1 ; struct device_attribute *sensor_dev_attr_in3_max_group0 ; struct device *sensor_dev_attr_in7_max_group1 ; int ldv_state_variable_73 ; struct device_attribute *sensor_dev_attr_in6_beep_group0 ; int ldv_state_variable_29 ; struct device *sensor_dev_attr_pwm2_freq_group1 ; struct device_attribute *sensor_dev_attr_in3_beep_group0 ; int ldv_state_variable_61 ; int ldv_state_variable_91 ; int ref_cnt ; struct device *sensor_dev_attr_fan2_min_group1 ; int ldv_state_variable_23 ; int ldv_state_variable_72 ; int ldv_state_variable_59 ; int ldv_state_variable_6 ; struct device *dev_attr_in0_max_group1 ; struct device_attribute *sensor_dev_attr_temp2_max_hyst_group0 ; int ldv_state_variable_50 ; struct device *sensor_dev_attr_in6_min_group1 ; int ldv_state_variable_84 ; struct device_attribute *sensor_dev_attr_in2_max_group0 ; struct device *sensor_dev_attr_in4_max_group1 ; int ldv_state_variable_86 ; int ldv_state_variable_44 ; struct device_attribute *sensor_dev_attr_temp1_max_hyst_group0 ; int ldv_state_variable_38 ; struct device_attribute *sensor_dev_attr_in8_min_group0 ; int ldv_state_variable_39 ; int ldv_state_variable_56 ; struct device_attribute *sensor_dev_attr_temp2_max_group0 ; int ldv_state_variable_3 ; struct device_attribute *sensor_dev_attr_in1_beep_group0 ; struct device *sensor_dev_attr_in2_max_group1 ; struct device *sensor_dev_attr_in1_max_group1 ; struct device_attribute *sensor_dev_attr_fan2_div_group0 ; int ldv_state_variable_52 ; int ldv_state_variable_4 ; struct device_attribute *sensor_dev_attr_temp3_max_group0 ; int ldv_state_variable_60 ; int ldv_state_variable_36 ; int ldv_state_variable_48 ; struct device *dev_attr_in0_min_group1 ; int probed_94 = 0; int ldv_state_variable_5 ; struct device_attribute *dev_attr_in0_max_group0 ; struct device *sensor_dev_attr_in1_beep_group1 ; struct device *sensor_dev_attr_fan1_min_group1 ; int ldv_state_variable_13 ; struct device *sensor_dev_attr_temp2_type_group1 ; struct device_attribute *sensor_dev_attr_in7_beep_group0 ; struct device_attribute *sensor_dev_attr_fan1_beep_group0 ; int ldv_state_variable_82 ; struct device_attribute *sensor_dev_attr_in5_beep_group0 ; struct device_attribute *sensor_dev_attr_pwm1_enable_group0 ; int ldv_state_variable_49 ; int ldv_state_variable_24 ; struct device *sensor_dev_attr_fan3_div_group1 ; struct device *sensor_dev_attr_fan3_beep_group1 ; struct device *sensor_dev_attr_in6_beep_group1 ; struct device_attribute *sensor_dev_attr_in7_min_group0 ; int ldv_state_variable_1 ; struct device *sensor_dev_attr_temp1_max_group1 ; int ldv_state_variable_85 ; struct device *sensor_dev_attr_temp1_type_group1 ; int ldv_state_variable_71 ; int ldv_state_variable_77 ; struct device_attribute *sensor_dev_attr_in5_max_group0 ; struct device *sensor_dev_attr_pwm3_freq_group1 ; struct platform_device *w83627hf_driver_group1 ; struct device *sensor_dev_attr_beep_enable_group1 ; int ldv_state_variable_16 ; struct device_attribute *sensor_dev_attr_in6_min_group0 ; int ldv_state_variable_43 ; struct device_attribute *sensor_dev_attr_temp2_type_group0 ; int ldv_state_variable_57 ; struct device_attribute *sensor_dev_attr_temp3_max_hyst_group0 ; struct device_attribute *sensor_dev_attr_temp3_type_group0 ; struct device *sensor_dev_attr_in2_min_group1 ; struct device_attribute *sensor_dev_attr_fan1_min_group0 ; int ldv_state_variable_67 ; int ldv_state_variable_53 ; int ldv_state_variable_34 ; int ldv_state_variable_92 ; struct device_attribute *sensor_dev_attr_in1_max_group0 ; struct device_attribute *sensor_dev_attr_in2_beep_group0 ; struct device *sensor_dev_attr_temp3_max_group1 ; struct device *sensor_dev_attr_in0_beep_group1 ; struct device *sensor_dev_attr_in6_max_group1 ; int ldv_state_variable_35 ; struct device *sensor_dev_attr_pwm2_group1 ; void ldv_initialize_sensor_device_attribute_79(void) ; void ldv_initialize_sensor_device_attribute_56(void) ; void ldv_initialize_sensor_device_attribute_63(void) ; void ldv_initialize_sensor_device_attribute_18(void) ; void ldv_initialize_sensor_device_attribute_6(void) ; void ldv_initialize_sensor_device_attribute_21(void) ; void ldv_initialize_sensor_device_attribute_52(void) ; void ldv_initialize_sensor_device_attribute_12(void) ; void ldv_initialize_sensor_device_attribute_20(void) ; void ldv_initialize_sensor_device_attribute_9(void) ; void ldv_initialize_sensor_device_attribute_55(void) ; void ldv_initialize_sensor_device_attribute_19(void) ; void ldv_initialize_sensor_device_attribute_88(void) ; void ldv_initialize_sensor_device_attribute_82(void) ; void ldv_initialize_device_attribute_67(void) ; void ldv_initialize_sensor_device_attribute_27(void) ; void ldv_initialize_sensor_device_attribute_24(void) ; void ldv_initialize_sensor_device_attribute_59(void) ; void ldv_initialize_sensor_device_attribute_70(void) ; void ldv_initialize_sensor_device_attribute_28(void) ; void ldv_initialize_sensor_device_attribute_10(void) ; void ldv_initialize_sensor_device_attribute_32(void) ; void ldv_initialize_sensor_device_attribute_13(void) ; void ldv_initialize_sensor_device_attribute_5(void) ; void ldv_platform_probe_94(int (*probe)(struct platform_device * ) ) ; void ldv_initialize_sensor_device_attribute_73(void) ; void ldv_initialize_device_attribute_68(void) ; void ldv_initialize_sensor_device_attribute_74(void) ; void ldv_initialize_sensor_device_attribute_65(void) ; void ldv_initialize_sensor_device_attribute_85(void) ; void ldv_initialize_sensor_device_attribute_25(void) ; void ldv_initialize_sensor_device_attribute_14(void) ; void ldv_initialize_sensor_device_attribute_58(void) ; void ldv_initialize_sensor_device_attribute_89(void) ; void ldv_initialize_sensor_device_attribute_31(void) ; void ldv_platform_driver_init_94(void) ; void ldv_initialize_sensor_device_attribute_8(void) ; void ldv_initialize_sensor_device_attribute_77(void) ; void ldv_initialize_sensor_device_attribute_91(void) ; void ldv_initialize_sensor_device_attribute_23(void) ; void ldv_initialize_sensor_device_attribute_61(void) ; void ldv_initialize_sensor_device_attribute_4(void) ; void ldv_initialize_sensor_device_attribute_83(void) ; void ldv_initialize_sensor_device_attribute_92(void) ; void ldv_initialize_sensor_device_attribute_11(void) ; void ldv_initialize_sensor_device_attribute_16(void) ; void ldv_initialize_sensor_device_attribute_3(void) ; void ldv_initialize_sensor_device_attribute_53(void) ; void ldv_initialize_sensor_device_attribute_26(void) ; void ldv_initialize_sensor_device_attribute_86(void) ; void ldv_initialize_device_attribute_33(void) ; void ldv_initialize_sensor_device_attribute_76(void) ; void ldv_initialize_sensor_device_attribute_80(void) ; void ldv_initialize_sensor_device_attribute_30(void) ; void ldv_initialize_sensor_device_attribute_7(void) ; void ldv_initialize_device_attribute_50(void) ; void ldv_initialize_sensor_device_attribute_22(void) ; void ldv_dev_pm_ops_95(void) ; void ldv_initialize_sensor_device_attribute_71(void) ; void ldv_initialize_sensor_device_attribute_2(void) ; void ldv_initialize_sensor_device_attribute_15(void) ; void ldv_initialize_sensor_device_attribute_17(void) ; void ldv_initialize_sensor_device_attribute_29(void) ; extern int sysfs_create_group(struct kobject * , struct attribute_group const * ) ; extern void sysfs_remove_group(struct kobject * , struct attribute_group const * ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { tmp = devm_kmalloc(dev, size, gfp | 32768U); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } __inline static void *dev_get_platdata(struct device const *dev ) { { return ((void *)dev->platform_data); } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void platform_device_unregister(struct platform_device * ) ; extern struct resource *platform_get_resource(struct platform_device * , unsigned int , unsigned int ) ; extern struct platform_device *platform_device_alloc(char const * , int ) ; extern int platform_device_add_resources(struct platform_device * , struct resource const * , unsigned int ) ; extern int platform_device_add_data(struct platform_device * , void const * , size_t ) ; extern int platform_device_add(struct platform_device * ) ; extern void platform_device_put(struct platform_device * ) ; extern int __platform_driver_register(struct platform_driver * , struct module * ) ; int ldv___platform_driver_register_50(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; extern void platform_driver_unregister(struct platform_driver * ) ; void ldv_platform_driver_unregister_51(struct platform_driver *ldv_func_arg1 ) ; void ldv_platform_driver_unregister_52(struct platform_driver *ldv_func_arg1 ) ; __inline static void *platform_get_drvdata(struct platform_device const *pdev___0 ) { void *tmp ; { tmp = dev_get_drvdata(& pdev___0->dev); return (tmp); } } __inline static void platform_set_drvdata(struct platform_device *pdev___0 , void *data ) { { dev_set_drvdata(& pdev___0->dev, data); return; } } extern struct device *hwmon_device_register(struct device * ) ; extern void hwmon_device_unregister(struct device * ) ; extern int vid_from_reg(int , u8 ) ; extern u8 vid_which_vrm(void) ; extern int acpi_check_resource_conflict(struct resource const * ) ; __inline static u16 LM75_TEMP_TO_REG(long temp ) { int ntemp ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __max1 = temp; __max2 = -55000L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 125000L; ntemp = (int )(__min1 < __min2 ? __min1 : __min2); ntemp = (ntemp < 0 ? -250 : 250) + ntemp; return ((u16 )((int )((unsigned short )(ntemp / 500)) << 7U)); } } __inline static int LM75_TEMP_FROM_REG(u16 reg ) { { return (((int )((short )reg) / 128) * 500); } } static struct platform_device *pdev ; static u8 force_i2c = 31U; static bool init = 1; static unsigned short force_id ; __inline static void superio_outb(struct w83627hf_sio_data *sio , int reg , int val ) { { outb((int )((unsigned char )reg), sio->sioaddr); outb((int )((unsigned char )val), sio->sioaddr + 1); return; } } __inline static int superio_inb(struct w83627hf_sio_data *sio , int reg ) { unsigned char tmp ; { outb((int )((unsigned char )reg), sio->sioaddr); tmp = inb(sio->sioaddr + 1); return ((int )tmp); } } __inline static void superio_select(struct w83627hf_sio_data *sio , int ld ) { { outb(7, sio->sioaddr); outb((int )((unsigned char )ld), sio->sioaddr + 1); return; } } __inline static void superio_enter(struct w83627hf_sio_data *sio ) { { outb(135, sio->sioaddr); outb(135, sio->sioaddr); return; } } __inline static void superio_exit(struct w83627hf_sio_data *sio ) { { outb(170, sio->sioaddr); return; } } static u16 const w83627hf_reg_temp[3U] = { 39U, 336U, 592U}; static u16 const w83627hf_reg_temp_hyst[3U] = { 58U, 339U, 595U}; static u16 const w83627hf_reg_temp_over[3U] = { 57U, 341U, 597U}; static u8 const W83627THF_REG_PWM_ENABLE[3U] = { 4U, 4U, 18U}; static u8 const W83627THF_PWM_ENABLE_SHIFT[3U] = { 2U, 4U, 1U}; static u8 const regpwm_627hf[2U] = { 90U, 91U}; static u8 const regpwm[3U] = { 1U, 3U, 17U}; static u8 const W83637HF_REG_PWM_FREQ[3U] = { 0U, 2U, 16U}; static u8 const BIT_SCFG1[3U] = { 2U, 4U, 8U}; static u8 const BIT_SCFG2[3U] = { 16U, 32U, 64U}; __inline static u8 FAN_TO_REG(long rpm , int div ) { long __min1 ; long __max1 ; long __max2 ; long __min2 ; long __min1___0 ; long __max1___0 ; long __max2___0 ; long __min2___0 ; { if (rpm == 0L) { return (255U); } else { } __max1 = rpm; __max2 = 1L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 1000000L; rpm = __min1 < __min2 ? __min1 : __min2; __max1___0 = (((long )div * rpm) / 2L + 1350000L) / ((long )div * rpm); __max2___0 = 1L; __min1___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; __min2___0 = 254L; return ((u8 )(__min1___0 < __min2___0 ? __min1___0 : __min2___0)); } } static u8 TEMP_TO_REG(long temp ) { int ntemp ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __max1 = temp; __max2 = -128000L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 127000L; ntemp = (int )(__min1 < __min2 ? __min1 : __min2); ntemp = (ntemp < 0 ? -500 : 500) + ntemp; return ((u8 )(ntemp / 1000)); } } static int TEMP_FROM_REG(u8 reg ) { { return ((int )((signed char )reg) * 1000); } } __inline static unsigned long pwm_freq_from_reg_627hf(u8 reg ) { unsigned long freq ; { freq = (unsigned long )(46870 >> (int )reg); return (freq); } } __inline static u8 pwm_freq_to_reg_627hf(unsigned long val ) { u8 i ; { i = 0U; goto ldv_30060; ldv_30059: ; if ((unsigned long )(((46870 >> (int )i) + (46870 >> ((int )i + 1))) / 2) < val) { goto ldv_30058; } else { } i = (u8 )((int )i + 1); ldv_30060: ; if ((unsigned int )i <= 3U) { goto ldv_30059; } else { } ldv_30058: ; return (i); } } __inline static unsigned long pwm_freq_from_reg(u8 reg ) { unsigned long clock ; { clock = (int )((signed char )reg) < 0 ? 180000UL : 24000000UL; reg = (unsigned int )reg & 127U; if ((unsigned int )reg == 0U) { reg = (u8 )((int )reg + 1); } else { } return (clock / (unsigned long )((int )reg << 8)); } } __inline static u8 pwm_freq_to_reg(unsigned long val ) { { if (val > 93749UL) { return (1U); } else { } if (val > 719UL) { return ((u8 )(24000000UL / (val << 8))); } else { } if (val <= 5UL) { return (255U); } else { return ((unsigned int )((u8 )(180000UL / (val << 8))) | 128U); } } } __inline static u8 DIV_TO_REG(long val ) { int i ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __max1 = val; __max2 = 1L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 128L; val = (__min1 < __min2 ? __min1 : __min2) >> 1; i = 0; goto ldv_30080; ldv_30079: ; if (val == 0L) { goto ldv_30078; } else { } val = val >> 1; i = i + 1; ldv_30080: ; if (i <= 6) { goto ldv_30079; } else { } ldv_30078: ; return ((u8 )i); } } static int w83627hf_probe(struct platform_device *pdev___0 ) ; static int w83627hf_remove(struct platform_device *pdev___0 ) ; static int w83627hf_read_value(struct w83627hf_data *data , u16 reg ) ; static int w83627hf_write_value(struct w83627hf_data *data , u16 reg , u16 value ) ; static void w83627hf_update_fan_div(struct w83627hf_data *data ) ; static struct w83627hf_data *w83627hf_update_device(struct device *dev ) ; static void w83627hf_init_device(struct platform_device *pdev___0 ) ; static int w83627hf_suspend(struct device *dev ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = w83627hf_update_device(dev); data = tmp; ldv_mutex_lock_12(& data->update_lock); tmp___0 = w83627hf_read_value(data, 93); data->scfg1 = (u8 )tmp___0; tmp___1 = w83627hf_read_value(data, 89); data->scfg2 = (u8 )tmp___1; ldv_mutex_unlock_13(& data->update_lock); return (0); } } static int w83627hf_resume(struct device *dev ) { struct w83627hf_data *data ; void *tmp ; int i ; int num_temps ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; num_temps = (unsigned int )data->type == 2U ? 2 : 3; ldv_mutex_lock_14(& data->update_lock); i = 0; goto ldv_30139; ldv_30138: ; if (((unsigned int )data->type == 2U && i == 1) || (((unsigned int )data->type != 0U && (unsigned int )data->type != 2U) && (i == 5 || i == 6))) { goto ldv_30137; } else { } w83627hf_write_value(data, (int )(i <= 6 ? (unsigned int )((u16 )i) * 2U + 43U : (unsigned int )((u16 )(i + 675)) * 2U), (int )data->in_max[i]); w83627hf_write_value(data, (int )(i <= 6 ? (unsigned int )((u16 )(i + 22)) * 2U : (unsigned int )((u16 )(i + -7)) * 2U + 1365U), (int )data->in_min[i]); ldv_30137: i = i + 1; ldv_30139: ; if (i <= 8) { goto ldv_30138; } else { } i = 0; goto ldv_30142; ldv_30141: w83627hf_write_value(data, (int )((unsigned int )((u16 )i) + 59U), (int )data->fan_min[i]); i = i + 1; ldv_30142: ; if (i <= 2) { goto ldv_30141; } else { } i = 0; goto ldv_30145; ldv_30144: w83627hf_write_value(data, (int )w83627hf_reg_temp_over[i], (int )data->temp_max[i]); w83627hf_write_value(data, (int )w83627hf_reg_temp_hyst[i], (int )data->temp_max_hyst[i]); i = i + 1; ldv_30145: ; if (i < num_temps) { goto ldv_30144; } else { } if (((unsigned int )data->type == 1U || (unsigned int )data->type == 3U) || (unsigned int )data->type == 4U) { w83627hf_write_value(data, 24, (int )data->vrm_ovt); } else { } w83627hf_write_value(data, 93, (int )data->scfg1); w83627hf_write_value(data, 89, (int )data->scfg2); data->valid = 0; ldv_mutex_unlock_15(& data->update_lock); return (0); } } static struct dev_pm_ops const w83627hf_dev_pm_ops = {0, 0, & w83627hf_suspend, & w83627hf_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct platform_driver w83627hf_driver = {& w83627hf_probe, & w83627hf_remove, 0, 0, 0, {"w83627hf", 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & w83627hf_dev_pm_ops, 0}, 0, (_Bool)0}; static ssize_t show_in_input(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )((int )data->in[nr] * 16)); return ((ssize_t )tmp___0); } } static ssize_t show_in_min(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )((int )data->in_min[nr] * 16)); return ((ssize_t )tmp___0); } } static ssize_t show_in_max(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )((int )data->in_max[nr] * 16)); return ((ssize_t )tmp___0); } } static ssize_t store_in_min(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; long val ; int err ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtol(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_16(& data->update_lock); __max1 = (val + 8L) / 16L; __max2 = 0L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255L; data->in_min[nr] = (u8 )(__min1 < __min2 ? __min1 : __min2); w83627hf_write_value(data, (int )(nr <= 6 ? (unsigned int )((u16 )(nr + 22)) * 2U : (unsigned int )((u16 )(nr + -7)) * 2U + 1365U), (int )data->in_min[nr]); ldv_mutex_unlock_17(& data->update_lock); return ((ssize_t )count); } } static ssize_t store_in_max(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; long val ; int err ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtol(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_18(& data->update_lock); __max1 = (val + 8L) / 16L; __max2 = 0L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255L; data->in_max[nr] = (u8 )(__min1 < __min2 ? __min1 : __min2); w83627hf_write_value(data, (int )(nr <= 6 ? (unsigned int )((u16 )nr) * 2U + 43U : (unsigned int )((u16 )(nr + 675)) * 2U), (int )data->in_max[nr]); ldv_mutex_unlock_19(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_in1_input = {{{"in1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_in1_min = {{{"in1_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 1}; static struct sensor_device_attribute sensor_dev_attr_in1_max = {{{"in1_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_input = {{{"in2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_in2_min = {{{"in2_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 2}; static struct sensor_device_attribute sensor_dev_attr_in2_max = {{{"in2_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_input = {{{"in3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 3}; static struct sensor_device_attribute sensor_dev_attr_in3_min = {{{"in3_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 3}; static struct sensor_device_attribute sensor_dev_attr_in3_max = {{{"in3_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_input = {{{"in4_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 4}; static struct sensor_device_attribute sensor_dev_attr_in4_min = {{{"in4_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 4}; static struct sensor_device_attribute sensor_dev_attr_in4_max = {{{"in4_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 4}; static struct sensor_device_attribute sensor_dev_attr_in5_input = {{{"in5_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 5}; static struct sensor_device_attribute sensor_dev_attr_in5_min = {{{"in5_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 5}; static struct sensor_device_attribute sensor_dev_attr_in5_max = {{{"in5_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 5}; static struct sensor_device_attribute sensor_dev_attr_in6_input = {{{"in6_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 6}; static struct sensor_device_attribute sensor_dev_attr_in6_min = {{{"in6_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 6}; static struct sensor_device_attribute sensor_dev_attr_in6_max = {{{"in6_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 6}; static struct sensor_device_attribute sensor_dev_attr_in7_input = {{{"in7_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 7}; static struct sensor_device_attribute sensor_dev_attr_in7_min = {{{"in7_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 7}; static struct sensor_device_attribute sensor_dev_attr_in7_max = {{{"in7_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 7}; static struct sensor_device_attribute sensor_dev_attr_in8_input = {{{"in8_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 8}; static struct sensor_device_attribute sensor_dev_attr_in8_min = {{{"in8_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & store_in_min}, 8}; static struct sensor_device_attribute sensor_dev_attr_in8_max = {{{"in8_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & store_in_max}, 8}; static ssize_t show_in_0(struct w83627hf_data *data , char *buf , u8 reg ) { long in0 ; int tmp ; { if ((int )data->vrm_ovt & 1 && (((unsigned int )data->type == 1U || (unsigned int )data->type == 3U) || (unsigned int )data->type == 4U)) { in0 = (long )(((int )reg * 488 + 70050) / 100); } else { in0 = (long )((int )reg * 16); } tmp = sprintf(buf, "%ld\n", in0); return ((ssize_t )tmp); } } static ssize_t show_regs_in_0(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; ssize_t tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = show_in_0(data, buf, (int )data->in[0]); return (tmp___0); } } static ssize_t show_regs_in_min0(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; ssize_t tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = show_in_0(data, buf, (int )data->in_min[0]); return (tmp___0); } } static ssize_t show_regs_in_max0(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; ssize_t tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = show_in_0(data, buf, (int )data->in_max[0]); return (tmp___0); } } static ssize_t store_regs_in_min0(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct w83627hf_data *data ; void *tmp ; unsigned long val ; int err ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; unsigned long __min1___0 ; unsigned long __max1___0 ; unsigned long __max2___0 ; unsigned long __min2___0 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_20(& data->update_lock); if ((int )data->vrm_ovt & 1 && (((unsigned int )data->type == 1U || (unsigned int )data->type == 3U) || (unsigned int )data->type == 4U)) { __max1 = (val * 100UL - 69756UL) / 488UL; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255UL; data->in_min[0] = (u8 )(__min1 < __min2 ? __min1 : __min2); } else { __max1___0 = (val + 8UL) / 16UL; __max2___0 = 0UL; __min1___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; __min2___0 = 255UL; data->in_min[0] = (u8 )(__min1___0 < __min2___0 ? __min1___0 : __min2___0); } w83627hf_write_value(data, 44, (int )data->in_min[0]); ldv_mutex_unlock_21(& data->update_lock); return ((ssize_t )count); } } static ssize_t store_regs_in_max0(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct w83627hf_data *data ; void *tmp ; unsigned long val ; int err ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; unsigned long __min1___0 ; unsigned long __max1___0 ; unsigned long __max2___0 ; unsigned long __min2___0 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_22(& data->update_lock); if ((int )data->vrm_ovt & 1 && (((unsigned int )data->type == 1U || (unsigned int )data->type == 3U) || (unsigned int )data->type == 4U)) { __max1 = (val * 100UL - 69756UL) / 488UL; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255UL; data->in_max[0] = (u8 )(__min1 < __min2 ? __min1 : __min2); } else { __max1___0 = (val + 8UL) / 16UL; __max2___0 = 0UL; __min1___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; __min2___0 = 255UL; data->in_max[0] = (u8 )(__min1___0 < __min2___0 ? __min1___0 : __min2___0); } w83627hf_write_value(data, 43, (int )data->in_max[0]); ldv_mutex_unlock_23(& data->update_lock); return ((ssize_t )count); } } static struct device_attribute dev_attr_in0_input = {{"in0_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_regs_in_0, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_in0_min = {{"in0_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_regs_in_min0, & store_regs_in_min0}; static struct device_attribute dev_attr_in0_max = {{"in0_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_regs_in_max0, & store_regs_in_max0}; static ssize_t show_fan_input(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (unsigned int )data->fan[nr] != 0U ? ((unsigned int )data->fan[nr] != 255U ? 1350000L / ((long )data->fan[nr] * (long )(1 << (int )data->fan_div[nr])) : 0L) : -1L); return ((ssize_t )tmp___0); } } static ssize_t show_fan_min(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (unsigned int )data->fan_min[nr] != 0U ? ((unsigned int )data->fan_min[nr] != 255U ? 1350000L / ((long )data->fan_min[nr] * (long )(1 << (int )data->fan_div[nr])) : 0L) : -1L); return ((ssize_t )tmp___0); } } static ssize_t store_fan_min(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; unsigned long val ; int err ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_24(& data->update_lock); data->fan_min[nr] = FAN_TO_REG((long )val, 1 << (int )data->fan_div[nr]); w83627hf_write_value(data, (int )((unsigned int )((u16 )nr) + 59U), (int )data->fan_min[nr]); ldv_mutex_unlock_25(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_fan1_input = {{{"fan1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan1_min = {{{"fan1_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & store_fan_min}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan2_input = {{{"fan2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan2_min = {{{"fan2_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & store_fan_min}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan3_input = {{{"fan3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_input, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_fan3_min = {{{"fan3_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & store_fan_min}, 2}; static ssize_t show_temp(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; u16 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = data->temp[nr]; if (nr != 0) { tmp___1 = LM75_TEMP_FROM_REG((int )tmp___0); tmp___3 = (long )tmp___1; } else { tmp___2 = TEMP_FROM_REG((int )((u8 )tmp___0)); tmp___3 = (long )tmp___2; } tmp___4 = sprintf(buf, "%ld\n", tmp___3); return ((ssize_t )tmp___4); } } static ssize_t show_temp_max(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; u16 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = data->temp_max[nr]; if (nr != 0) { tmp___1 = LM75_TEMP_FROM_REG((int )tmp___0); tmp___3 = (long )tmp___1; } else { tmp___2 = TEMP_FROM_REG((int )((u8 )tmp___0)); tmp___3 = (long )tmp___2; } tmp___4 = sprintf(buf, "%ld\n", tmp___3); return ((ssize_t )tmp___4); } } static ssize_t show_temp_max_hyst(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; u16 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = data->temp_max_hyst[nr]; if (nr != 0) { tmp___1 = LM75_TEMP_FROM_REG((int )tmp___0); tmp___3 = (long )tmp___1; } else { tmp___2 = TEMP_FROM_REG((int )((u8 )tmp___0)); tmp___3 = (long )tmp___2; } tmp___4 = sprintf(buf, "%ld\n", tmp___3); return ((ssize_t )tmp___4); } } static ssize_t store_temp_max(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; u16 tmp___0 ; long val ; int err ; u16 tmp___1 ; u8 tmp___2 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtol(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } if (nr != 0) { tmp___1 = LM75_TEMP_TO_REG(val); tmp___0 = tmp___1; } else { tmp___2 = TEMP_TO_REG(val); tmp___0 = (u16 )tmp___2; } ldv_mutex_lock_26(& data->update_lock); data->temp_max[nr] = tmp___0; w83627hf_write_value(data, (int )w83627hf_reg_temp_over[nr], (int )tmp___0); ldv_mutex_unlock_27(& data->update_lock); return ((ssize_t )count); } } static ssize_t store_temp_max_hyst(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; u16 tmp___0 ; long val ; int err ; u16 tmp___1 ; u8 tmp___2 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtol(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } if (nr != 0) { tmp___1 = LM75_TEMP_TO_REG(val); tmp___0 = tmp___1; } else { tmp___2 = TEMP_TO_REG(val); tmp___0 = (u16 )tmp___2; } ldv_mutex_lock_28(& data->update_lock); data->temp_max_hyst[nr] = tmp___0; w83627hf_write_value(data, (int )w83627hf_reg_temp_hyst[nr], (int )tmp___0); ldv_mutex_unlock_29(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_temp1_input = {{{"temp1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp1_max = {{{"temp1_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & store_temp_max}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp1_max_hyst = {{{"temp1_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max_hyst, & store_temp_max_hyst}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp2_input = {{{"temp2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp2_max = {{{"temp2_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & store_temp_max}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp2_max_hyst = {{{"temp2_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max_hyst, & store_temp_max_hyst}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp3_input = {{{"temp3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_temp3_max = {{{"temp3_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & store_temp_max}, 2}; static struct sensor_device_attribute sensor_dev_attr_temp3_max_hyst = {{{"temp3_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max_hyst, & store_temp_max_hyst}, 2}; static ssize_t show_vid_reg(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = vid_from_reg((int )data->vid, (int )data->vrm); tmp___1 = sprintf(buf, "%ld\n", (long )tmp___0); return ((ssize_t )tmp___1); } } static struct device_attribute dev_attr_cpu0_vid = {{"cpu0_vid", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_vid_reg, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_vrm_reg(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; void *tmp ; int tmp___0 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; tmp___0 = sprintf(buf, "%ld\n", (long )data->vrm); return ((ssize_t )tmp___0); } } static ssize_t store_vrm_reg(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct w83627hf_data *data ; void *tmp ; unsigned long val ; int err ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } if (val > 255UL) { return (-22L); } else { } data->vrm = (u8 )val; return ((ssize_t )count); } } static struct device_attribute dev_attr_vrm = {{"vrm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_vrm_reg, & store_vrm_reg}; static ssize_t show_alarms_reg(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )data->alarms); return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_alarms = {{"alarms", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarms_reg, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_alarm(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; int bitnr ; struct device_attribute const *__mptr ; int tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; bitnr = ((struct sensor_device_attribute *)__mptr)->index; tmp___0 = sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1U); return ((ssize_t )tmp___0); } } static struct sensor_device_attribute sensor_dev_attr_in0_alarm = {{{"in0_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 0}; static struct sensor_device_attribute sensor_dev_attr_in1_alarm = {{{"in1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_alarm = {{{"in2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_alarm = {{{"in3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_alarm = {{{"in4_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 8}; static struct sensor_device_attribute sensor_dev_attr_in5_alarm = {{{"in5_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 9}; static struct sensor_device_attribute sensor_dev_attr_in6_alarm = {{{"in6_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 10}; static struct sensor_device_attribute sensor_dev_attr_in7_alarm = {{{"in7_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 16}; static struct sensor_device_attribute sensor_dev_attr_in8_alarm = {{{"in8_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 17}; static struct sensor_device_attribute sensor_dev_attr_fan1_alarm = {{{"fan1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 6}; static struct sensor_device_attribute sensor_dev_attr_fan2_alarm = {{{"fan2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 7}; static struct sensor_device_attribute sensor_dev_attr_fan3_alarm = {{{"fan3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 11}; static struct sensor_device_attribute sensor_dev_attr_temp1_alarm = {{{"temp1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 4}; static struct sensor_device_attribute sensor_dev_attr_temp2_alarm = {{{"temp2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 5}; static struct sensor_device_attribute sensor_dev_attr_temp3_alarm = {{{"temp3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 13}; static ssize_t show_beep_mask(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )data->beep_mask & 16744447L); return ((ssize_t )tmp___0); } } static ssize_t store_beep_mask(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct w83627hf_data *data ; void *tmp ; unsigned long val ; int err ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_30(& data->update_lock); data->beep_mask = (data->beep_mask & 32768U) | ((u32 )val & 16744447U); w83627hf_write_value(data, 86, (int )((u16 )data->beep_mask) & 255); w83627hf_write_value(data, 1107, (int )((u16 )(data->beep_mask >> 16)) & 255); w83627hf_write_value(data, 87, (int )((u16 )(data->beep_mask >> 8)) & 255); ldv_mutex_unlock_31(& data->update_lock); return ((ssize_t )count); } } static struct device_attribute dev_attr_beep_mask = {{"beep_mask", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep_mask, & store_beep_mask}; static ssize_t show_beep(struct device *dev , struct device_attribute *attr , char *buf ) { struct w83627hf_data *data ; struct w83627hf_data *tmp ; int bitnr ; struct device_attribute const *__mptr ; int tmp___0 ; { tmp = w83627hf_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; bitnr = ((struct sensor_device_attribute *)__mptr)->index; tmp___0 = sprintf(buf, "%u\n", (data->beep_mask >> bitnr) & 1U); return ((ssize_t )tmp___0); } } static ssize_t store_beep(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct w83627hf_data *data ; void *tmp ; int bitnr ; struct device_attribute const *__mptr ; u8 reg ; unsigned long bit ; int err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; __mptr = (struct device_attribute const *)attr; bitnr = ((struct sensor_device_attribute *)__mptr)->index; err = kstrtoul(buf, 10U, & bit); if (err != 0) { return ((ssize_t )err); } else { } if ((bit & 0xfffffffffffffffeUL) != 0UL) { return (-22L); } else { } ldv_mutex_lock_32(& data->update_lock); if (bit != 0UL) { data->beep_mask = data->beep_mask | (u32 )(1 << bitnr); } else { data->beep_mask = data->beep_mask & (u32 )(~ (1 << bitnr)); } if (bitnr <= 7) { tmp___0 = w83627hf_read_value(data, 86); reg = (u8 )tmp___0; if (bit != 0UL) { reg = (u8 )((int )((signed char )(1 << bitnr)) | (int )((signed char )reg)); } else { reg = (u8 )(~ ((int )((signed char )(1 << bitnr))) & (int )((signed char )reg)); } w83627hf_write_value(data, 86, (int )reg); } else if (bitnr <= 15) { tmp___1 = w83627hf_read_value(data, 87); reg = (u8 )tmp___1; if (bit != 0UL) { reg = (u8 )((int )((signed char )(1 << (bitnr + -8))) | (int )((signed char )reg)); } else { reg = (u8 )(~ ((int )((signed char )(1 << (bitnr + -8)))) & (int )((signed char )reg)); } w83627hf_write_value(data, 87, (int )reg); } else { tmp___2 = w83627hf_read_value(data, 1107); reg = (u8 )tmp___2; if (bit != 0UL) { reg = (u8 )((int )((signed char )(1 << (bitnr + -16))) | (int )((signed char )reg)); } else { reg = (u8 )(~ ((int )((signed char )(1 << (bitnr + -16)))) & (int )((signed char )reg)); } w83627hf_write_value(data, 1107, (int )reg); } ldv_mutex_unlock_33(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_in0_beep = {{{"in0_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 0}; static struct sensor_device_attribute sensor_dev_attr_in1_beep = {{{"in1_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_beep = {{{"in2_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_beep = {{{"in3_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_beep = {{{"in4_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 8}; static struct sensor_device_attribute sensor_dev_attr_in5_beep = {{{"in5_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 9}; static struct sensor_device_attribute sensor_dev_attr_in6_beep = {{{"in6_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 10}; static struct sensor_device_attribute sensor_dev_attr_in7_beep = {{{"in7_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 16}; static struct sensor_device_attribute sensor_dev_attr_in8_beep = {{{"in8_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 17}; static struct sensor_device_attribute sensor_dev_attr_fan1_beep = {{{"fan1_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 6}; static struct sensor_device_attribute sensor_dev_attr_fan2_beep = {{{"fan2_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 7}; static struct sensor_device_attribute sensor_dev_attr_fan3_beep = {{{"fan3_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 11}; static struct sensor_device_attribute sensor_dev_attr_temp1_beep = {{{"temp1_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 4}; static struct sensor_device_attribute sensor_dev_attr_temp2_beep = {{{"temp2_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 5}; static struct sensor_device_attribute sensor_dev_attr_temp3_beep = {{{"temp3_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 13}; static struct sensor_device_attribute sensor_dev_attr_beep_enable = {{{"beep_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 15}; static ssize_t show_fan_div(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )(1 << (int )data->fan_div[nr])); return ((ssize_t )tmp___0); } } static ssize_t store_fan_div(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; unsigned long min ; u8 reg ; unsigned long val ; int err ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_34(& data->update_lock); min = (unsigned int )data->fan_min[nr] != 0U ? ((unsigned int )data->fan_min[nr] != 255U ? (unsigned long )(1350000 / ((int )data->fan_min[nr] << (int )data->fan_div[nr])) : 0UL) : 0xffffffffffffffffUL; data->fan_div[nr] = DIV_TO_REG((long )val); tmp___0 = w83627hf_read_value(data, nr == 2 ? 75 : 71); reg = (u8 )(((int )((signed char )tmp___0) & (nr == 0 ? -49 : 63)) | (int )((signed char )(((int )data->fan_div[nr] & 3) << (nr == 0 ? 4 : 6)))); w83627hf_write_value(data, nr == 2 ? 75 : 71, (int )reg); tmp___1 = w83627hf_read_value(data, 93); reg = (u8 )(((int )((signed char )tmp___1) & ~ ((int )((signed char )(1 << (nr + 5))))) | (int )((signed char )(((int )data->fan_div[nr] & 4) << (nr + 3)))); w83627hf_write_value(data, 93, (int )reg); data->fan_min[nr] = FAN_TO_REG((long )min, 1 << (int )data->fan_div[nr]); w83627hf_write_value(data, (int )((unsigned int )((u16 )nr) + 59U), (int )data->fan_min[nr]); ldv_mutex_unlock_35(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_fan1_div = {{{"fan1_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & store_fan_div}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan2_div = {{{"fan2_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & store_fan_div}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan3_div = {{{"fan3_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & store_fan_div}, 2}; static ssize_t show_pwm(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )data->pwm[nr]); return ((ssize_t )tmp___0); } } static ssize_t store_pwm(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; unsigned long val ; int err ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; int tmp___0 ; unsigned long __min1___0 ; unsigned long __max1___0 ; unsigned long __max2___0 ; unsigned long __min2___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_36(& data->update_lock); if ((unsigned int )data->type == 1U) { __max1 = val; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255UL; data->pwm[nr] = (unsigned int )((u8 )(__min1 < __min2 ? __min1 : __min2)) & 240U; tmp___0 = w83627hf_read_value(data, (int )((unsigned int )data->type == 0U ? regpwm_627hf[nr] : regpwm[nr])); w83627hf_write_value(data, (int )((unsigned int )data->type == 0U ? regpwm_627hf[nr] : regpwm[nr]), (int )((u16 )((int )((short )data->pwm[nr]) | ((int )((short )tmp___0) & 15)))); } else { __max1___0 = val; __max2___0 = 0UL; __min1___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; __min2___0 = 255UL; data->pwm[nr] = (u8 )(__min1___0 < __min2___0 ? __min1___0 : __min2___0); w83627hf_write_value(data, (int )((unsigned int )data->type == 0U ? regpwm_627hf[nr] : regpwm[nr]), (int )data->pwm[nr]); } ldv_mutex_unlock_37(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_pwm1 = {{{"pwm1", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, 0}; static struct sensor_device_attribute sensor_dev_attr_pwm2 = {{{"pwm2", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, 1}; static struct sensor_device_attribute sensor_dev_attr_pwm3 = {{{"pwm3", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, 2}; static ssize_t show_pwm_enable(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", (int )data->pwm_enable[nr]); return ((ssize_t )tmp___0); } } static ssize_t store_pwm_enable(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; u8 reg ; unsigned long val ; int err ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } if (val == 0UL || val > 3UL) { return (-22L); } else { } ldv_mutex_lock_38(& data->update_lock); data->pwm_enable[nr] = (u8 )val; tmp___0 = w83627hf_read_value(data, (int )W83627THF_REG_PWM_ENABLE[nr]); reg = (u8 )tmp___0; reg = (u8 )(~ ((int )((signed char )(3 << (int )W83627THF_PWM_ENABLE_SHIFT[nr]))) & (int )((signed char )reg)); reg = (int )((u8 )((val - 1UL) << (int )W83627THF_PWM_ENABLE_SHIFT[nr])) | (int )reg; w83627hf_write_value(data, (int )W83627THF_REG_PWM_ENABLE[nr], (int )reg); ldv_mutex_unlock_39(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_pwm1_enable = {{{"pwm1_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_enable, & store_pwm_enable}, 0}; static struct sensor_device_attribute sensor_dev_attr_pwm2_enable = {{{"pwm2_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_enable, & store_pwm_enable}, 1}; static struct sensor_device_attribute sensor_dev_attr_pwm3_enable = {{{"pwm3_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_enable, & store_pwm_enable}, 2}; static ssize_t show_pwm_freq(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; unsigned long tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; int tmp___3 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; if ((unsigned int )data->type == 0U) { tmp___0 = pwm_freq_from_reg_627hf((int )data->pwm_freq[nr]); tmp___1 = sprintf(buf, "%ld\n", tmp___0); return ((ssize_t )tmp___1); } else { tmp___2 = pwm_freq_from_reg((int )data->pwm_freq[nr]); tmp___3 = sprintf(buf, "%ld\n", tmp___2); return ((ssize_t )tmp___3); } } } static ssize_t store_pwm_freq(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; u8 mask[2U] ; unsigned long val ; int err ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; mask[0] = 248U; mask[1] = 143U; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_40(& data->update_lock); if ((unsigned int )data->type == 0U) { data->pwm_freq[nr] = pwm_freq_to_reg_627hf(val); tmp___0 = w83627hf_read_value(data, 92); w83627hf_write_value(data, 92, (int )((u16 )((int )((short )((int )data->pwm_freq[nr] << nr * 4)) | ((int )((short )tmp___0) & (int )((short )mask[nr]))))); } else { data->pwm_freq[nr] = pwm_freq_to_reg(val); w83627hf_write_value(data, (int )W83637HF_REG_PWM_FREQ[nr], (int )data->pwm_freq[nr]); } ldv_mutex_unlock_41(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_pwm1_freq = {{{"pwm1_freq", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_freq, & store_pwm_freq}, 0}; static struct sensor_device_attribute sensor_dev_attr_pwm2_freq = {{{"pwm2_freq", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_freq, & store_pwm_freq}, 1}; static struct sensor_device_attribute sensor_dev_attr_pwm3_freq = {{{"pwm3_freq", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_freq, & store_pwm_freq}, 2}; static ssize_t show_temp_type(struct device *dev , struct device_attribute *devattr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; struct w83627hf_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = w83627hf_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%ld\n", (long )data->sens[nr]); return ((ssize_t )tmp___0); } } static ssize_t store_temp_type(struct device *dev , struct device_attribute *devattr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct w83627hf_data *data ; void *tmp ; unsigned long val ; u32 tmp___0 ; int err ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { __mptr = (struct device_attribute const *)devattr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_42(& data->update_lock); switch (val) { case 1UL: tmp___1 = w83627hf_read_value(data, 93); tmp___0 = (u32 )tmp___1; w83627hf_write_value(data, 93, (int )((u16 )BIT_SCFG1[nr]) | (int )((u16 )tmp___0)); tmp___2 = w83627hf_read_value(data, 89); tmp___0 = (u32 )tmp___2; w83627hf_write_value(data, 89, (int )((u16 )BIT_SCFG2[nr]) | (int )((u16 )tmp___0)); data->sens[nr] = (u16 )val; goto ldv_31717; case 2UL: tmp___3 = w83627hf_read_value(data, 93); tmp___0 = (u32 )tmp___3; w83627hf_write_value(data, 93, (int )((u16 )BIT_SCFG1[nr]) | (int )((u16 )tmp___0)); tmp___4 = w83627hf_read_value(data, 89); tmp___0 = (u32 )tmp___4; w83627hf_write_value(data, 89, ~ ((int )((u16 )BIT_SCFG2[nr])) & (int )((u16 )tmp___0)); data->sens[nr] = (u16 )val; goto ldv_31717; case 3435UL: dev_warn((struct device const *)dev, "Sensor type %d is deprecated, please use 4 instead\n", 3435); case 4UL: tmp___5 = w83627hf_read_value(data, 93); tmp___0 = (u32 )tmp___5; w83627hf_write_value(data, 93, ~ ((int )((u16 )BIT_SCFG1[nr])) & (int )((u16 )tmp___0)); data->sens[nr] = (u16 )val; goto ldv_31717; default: dev_err((struct device const *)dev, "Invalid sensor type %ld; must be 1, 2, or 4\n", (long )val); goto ldv_31717; } ldv_31717: ldv_mutex_unlock_43(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_temp1_type = {{{"temp1_type", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_type, & store_temp_type}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp2_type = {{{"temp2_type", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_type, & store_temp_type}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp3_type = {{{"temp3_type", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_type, & store_temp_type}, 2}; static ssize_t show_name(struct device *dev , struct device_attribute *devattr , char *buf ) { struct w83627hf_data *data ; void *tmp ; int tmp___0 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; tmp___0 = sprintf(buf, "%s\n", data->name); return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_name = {{"name", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_name, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static int w83627hf_find(int sioaddr , unsigned short *addr , struct w83627hf_sio_data *sio_data ) { int err ; u16 val ; char *names[5U] ; int tmp ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { err = -19; names[0] = (char *)"W83627HF"; names[1] = (char *)"W83627THF"; names[2] = (char *)"W83697HF"; names[3] = (char *)"W83637HF"; names[4] = (char *)"W83687THF"; sio_data->sioaddr = sioaddr; superio_enter(sio_data); if ((unsigned int )force_id == 0U) { tmp = superio_inb(sio_data, 32); val = (u16 )tmp; } else { val = force_id; } switch ((int )val) { case 82: sio_data->type = 0; goto ldv_31789; case 130: sio_data->type = 1; goto ldv_31789; case 96: sio_data->type = 2; goto ldv_31789; case 112: sio_data->type = 3; goto ldv_31789; case 133: sio_data->type = 4; goto ldv_31789; case 255: ; goto exit; default: descriptor.modname = "w83627hf"; descriptor.function = "w83627hf_find"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8244/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/w83627hf.c"; descriptor.format = "w83627hf: Unsupported chip (DEVID=0x%02x)\n"; descriptor.lineno = 1311U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor, "w83627hf: w83627hf: Unsupported chip (DEVID=0x%02x)\n", (int )val); } else { } goto exit; } ldv_31789: superio_select(sio_data, 11); tmp___1 = superio_inb(sio_data, 96); tmp___2 = superio_inb(sio_data, 97); val = (u16 )((int )((short )(tmp___1 << 8)) | (int )((short )tmp___2)); *addr = (unsigned int )val & 65528U; if ((unsigned int )*addr == 0U) { printk("\fw83627hf: Base address not set, skipping\n"); goto exit; } else { } tmp___3 = superio_inb(sio_data, 48); val = (u16 )tmp___3; if (((int )val & 1) == 0) { printk("\fw83627hf: Enabling HWM logical device\n"); superio_outb(sio_data, 48, (int )((unsigned int )val | 1U)); } else { } err = 0; printk("\016w83627hf: w83627hf: Found %s chip at %#x\n", names[(unsigned int )sio_data->type], (int )*addr); exit: superio_exit(sio_data); return (err); } } static struct attribute *w83627hf_attributes[59U] = { & dev_attr_in0_input.attr, & dev_attr_in0_min.attr, & dev_attr_in0_max.attr, & sensor_dev_attr_in0_alarm.dev_attr.attr, & sensor_dev_attr_in0_beep.dev_attr.attr, & sensor_dev_attr_in2_input.dev_attr.attr, & sensor_dev_attr_in2_min.dev_attr.attr, & sensor_dev_attr_in2_max.dev_attr.attr, & sensor_dev_attr_in2_alarm.dev_attr.attr, & sensor_dev_attr_in2_beep.dev_attr.attr, & sensor_dev_attr_in3_input.dev_attr.attr, & sensor_dev_attr_in3_min.dev_attr.attr, & sensor_dev_attr_in3_max.dev_attr.attr, & sensor_dev_attr_in3_alarm.dev_attr.attr, & sensor_dev_attr_in3_beep.dev_attr.attr, & sensor_dev_attr_in4_input.dev_attr.attr, & sensor_dev_attr_in4_min.dev_attr.attr, & sensor_dev_attr_in4_max.dev_attr.attr, & sensor_dev_attr_in4_alarm.dev_attr.attr, & sensor_dev_attr_in4_beep.dev_attr.attr, & sensor_dev_attr_in7_input.dev_attr.attr, & sensor_dev_attr_in7_min.dev_attr.attr, & sensor_dev_attr_in7_max.dev_attr.attr, & sensor_dev_attr_in7_alarm.dev_attr.attr, & sensor_dev_attr_in7_beep.dev_attr.attr, & sensor_dev_attr_in8_input.dev_attr.attr, & sensor_dev_attr_in8_min.dev_attr.attr, & sensor_dev_attr_in8_max.dev_attr.attr, & sensor_dev_attr_in8_alarm.dev_attr.attr, & sensor_dev_attr_in8_beep.dev_attr.attr, & sensor_dev_attr_fan1_input.dev_attr.attr, & sensor_dev_attr_fan1_min.dev_attr.attr, & sensor_dev_attr_fan1_div.dev_attr.attr, & sensor_dev_attr_fan1_alarm.dev_attr.attr, & sensor_dev_attr_fan1_beep.dev_attr.attr, & sensor_dev_attr_fan2_input.dev_attr.attr, & sensor_dev_attr_fan2_min.dev_attr.attr, & sensor_dev_attr_fan2_div.dev_attr.attr, & sensor_dev_attr_fan2_alarm.dev_attr.attr, & sensor_dev_attr_fan2_beep.dev_attr.attr, & sensor_dev_attr_temp1_input.dev_attr.attr, & sensor_dev_attr_temp1_max.dev_attr.attr, & sensor_dev_attr_temp1_max_hyst.dev_attr.attr, & sensor_dev_attr_temp1_type.dev_attr.attr, & sensor_dev_attr_temp1_alarm.dev_attr.attr, & sensor_dev_attr_temp1_beep.dev_attr.attr, & sensor_dev_attr_temp2_input.dev_attr.attr, & sensor_dev_attr_temp2_max.dev_attr.attr, & sensor_dev_attr_temp2_max_hyst.dev_attr.attr, & sensor_dev_attr_temp2_type.dev_attr.attr, & sensor_dev_attr_temp2_alarm.dev_attr.attr, & sensor_dev_attr_temp2_beep.dev_attr.attr, & dev_attr_alarms.attr, & sensor_dev_attr_beep_enable.dev_attr.attr, & dev_attr_beep_mask.attr, & sensor_dev_attr_pwm1.dev_attr.attr, & sensor_dev_attr_pwm2.dev_attr.attr, & dev_attr_name.attr, (struct attribute *)0}; static struct attribute_group const w83627hf_group = {0, 0, (struct attribute **)(& w83627hf_attributes), 0}; static struct attribute *w83627hf_attributes_opt[34U] = { & sensor_dev_attr_in1_input.dev_attr.attr, & sensor_dev_attr_in1_min.dev_attr.attr, & sensor_dev_attr_in1_max.dev_attr.attr, & sensor_dev_attr_in1_alarm.dev_attr.attr, & sensor_dev_attr_in1_beep.dev_attr.attr, & sensor_dev_attr_in5_input.dev_attr.attr, & sensor_dev_attr_in5_min.dev_attr.attr, & sensor_dev_attr_in5_max.dev_attr.attr, & sensor_dev_attr_in5_alarm.dev_attr.attr, & sensor_dev_attr_in5_beep.dev_attr.attr, & sensor_dev_attr_in6_input.dev_attr.attr, & sensor_dev_attr_in6_min.dev_attr.attr, & sensor_dev_attr_in6_max.dev_attr.attr, & sensor_dev_attr_in6_alarm.dev_attr.attr, & sensor_dev_attr_in6_beep.dev_attr.attr, & sensor_dev_attr_fan3_input.dev_attr.attr, & sensor_dev_attr_fan3_min.dev_attr.attr, & sensor_dev_attr_fan3_div.dev_attr.attr, & sensor_dev_attr_fan3_alarm.dev_attr.attr, & sensor_dev_attr_fan3_beep.dev_attr.attr, & sensor_dev_attr_temp3_input.dev_attr.attr, & sensor_dev_attr_temp3_max.dev_attr.attr, & sensor_dev_attr_temp3_max_hyst.dev_attr.attr, & sensor_dev_attr_temp3_type.dev_attr.attr, & sensor_dev_attr_temp3_alarm.dev_attr.attr, & sensor_dev_attr_temp3_beep.dev_attr.attr, & sensor_dev_attr_pwm3.dev_attr.attr, & sensor_dev_attr_pwm1_freq.dev_attr.attr, & sensor_dev_attr_pwm2_freq.dev_attr.attr, & sensor_dev_attr_pwm3_freq.dev_attr.attr, & sensor_dev_attr_pwm1_enable.dev_attr.attr, & sensor_dev_attr_pwm2_enable.dev_attr.attr, & sensor_dev_attr_pwm3_enable.dev_attr.attr, (struct attribute *)0}; static struct attribute_group const w83627hf_group_opt = {0, 0, (struct attribute **)(& w83627hf_attributes_opt), 0}; static int w83627hf_probe(struct platform_device *pdev___0 ) { struct device *dev ; struct w83627hf_sio_data *sio_data ; void *tmp ; struct w83627hf_data *data ; struct resource *res ; int err ; int i ; char const *names[5U] ; struct resource *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int tmp___2 ; long tmp___3 ; bool tmp___4 ; { dev = & pdev___0->dev; tmp = dev_get_platdata((struct device const *)dev); sio_data = (struct w83627hf_sio_data *)tmp; names[0] = "w83627hf"; names[1] = "w83627thf"; names[2] = "w83697hf"; names[3] = "w83637hf"; names[4] = "w83687thf"; res = platform_get_resource(pdev___0, 256U, 0U); tmp___0 = __devm_request_region(dev, & ioport_resource, res->start, 2ULL, "w83627hf"); if ((unsigned long )tmp___0 == (unsigned long )((struct resource *)0)) { dev_err((struct device const *)dev, "Failed to request region 0x%lx-0x%lx\n", (unsigned long )res->start, (unsigned long )(res->start + 1ULL)); return (-16); } else { } tmp___1 = devm_kzalloc(dev, 456UL, 208U); data = (struct w83627hf_data *)tmp___1; if ((unsigned long )data == (unsigned long )((struct w83627hf_data *)0)) { return (-12); } else { } data->addr = (unsigned short )res->start; data->type = sio_data->type; data->name = names[(unsigned int )sio_data->type]; __mutex_init(& data->lock, "&data->lock", & __key); __mutex_init(& data->update_lock, "&data->update_lock", & __key___0); platform_set_drvdata(pdev___0, (void *)data); w83627hf_init_device(pdev___0); i = 0; goto ldv_31816; ldv_31815: tmp___2 = w83627hf_read_value(data, (int )((unsigned int )((u16 )i) + 59U)); data->fan_min[i] = (u8 )tmp___2; i = i + 1; ldv_31816: ; if (i <= 2) { goto ldv_31815; } else { } w83627hf_update_fan_div(data); err = sysfs_create_group(& dev->kobj, & w83627hf_group); if (err != 0) { return (err); } else { } if ((unsigned int )data->type == 0U || (unsigned int )data->type == 2U) { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in5_input.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in5_min.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in5_max.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in5_alarm.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in5_beep.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in6_input.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in6_min.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in6_max.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in6_alarm.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in6_beep.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm1_freq.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm2_freq.dev_attr)); if (err != 0) { goto error; } else { } } } } } } } } } } } } } else { } if ((unsigned int )data->type != 2U) { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in1_input.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in1_min.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in1_max.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in1_alarm.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_in1_beep.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_fan3_input.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_fan3_min.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_fan3_div.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_fan3_alarm.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_fan3_beep.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_temp3_input.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_temp3_max.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_temp3_max_hyst.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_temp3_alarm.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_temp3_beep.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_temp3_type.dev_attr)); if (err != 0) { goto error; } else { } } } } } } } } } } } } } } } } } else { } if ((unsigned int )data->type != 2U && (unsigned int )data->vid != 255U) { data->vrm = vid_which_vrm(); err = device_create_file(dev, (struct device_attribute const *)(& dev_attr_cpu0_vid)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& dev_attr_vrm)); if (err != 0) { goto error; } else { } } } else { } if (((unsigned int )data->type == 1U || (unsigned int )data->type == 3U) || (unsigned int )data->type == 4U) { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm3.dev_attr)); if (err != 0) { goto error; } else { } } else { } if ((unsigned int )data->type == 3U || (unsigned int )data->type == 4U) { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm1_freq.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm2_freq.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm3_freq.dev_attr)); if (err != 0) { goto error; } else { } } } } else { } if ((unsigned int )data->type != 0U) { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm1_enable.dev_attr)); if (err != 0) { goto error; } else { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm2_enable.dev_attr)); if (err != 0) { goto error; } else { } } } else { } if (((unsigned int )data->type == 1U || (unsigned int )data->type == 3U) || (unsigned int )data->type == 4U) { err = device_create_file(dev, (struct device_attribute const *)(& sensor_dev_attr_pwm3_enable.dev_attr)); if (err != 0) { goto error; } else { } } else { } data->hwmon_dev = hwmon_device_register(dev); tmp___4 = IS_ERR((void const *)data->hwmon_dev); if ((int )tmp___4) { tmp___3 = PTR_ERR((void const *)data->hwmon_dev); err = (int )tmp___3; goto error; } else { } return (0); error: sysfs_remove_group(& dev->kobj, & w83627hf_group); sysfs_remove_group(& dev->kobj, & w83627hf_group_opt); return (err); } } static int w83627hf_remove(struct platform_device *pdev___0 ) { struct w83627hf_data *data ; void *tmp ; { tmp = platform_get_drvdata((struct platform_device const *)pdev___0); data = (struct w83627hf_data *)tmp; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(& pdev___0->dev.kobj, & w83627hf_group); sysfs_remove_group(& pdev___0->dev.kobj, & w83627hf_group_opt); return (0); } } __inline static void w83627hf_set_bank(struct w83627hf_data *data , u16 reg ) { { if (((int )reg & 240) == 80) { outb_p(78, (int )data->addr); outb_p((int )((unsigned char )((int )reg >> 8)), (int )data->addr + 1); } else { } return; } } __inline static void w83627hf_reset_bank(struct w83627hf_data *data , u16 reg ) { { if (((int )reg & 65280) != 0) { outb_p(78, (int )data->addr); outb_p(0, (int )data->addr + 1); } else { } return; } } static int w83627hf_read_value(struct w83627hf_data *data , u16 reg ) { int res ; int word_sized ; unsigned char tmp ; unsigned char tmp___0 ; { ldv_mutex_lock_44(& data->lock); word_sized = (((int )reg & 65280) == 256 || ((int )reg & 65280) == 512) && ((((int )reg & 255) == 80 || ((int )reg & 255) == 83) || ((int )reg & 255) == 85); w83627hf_set_bank(data, (int )reg); outb_p((int )((unsigned char )reg), (int )data->addr); tmp = inb_p((int )data->addr + 1); res = (int )tmp; if (word_sized != 0) { outb_p((int )((unsigned int )((unsigned char )reg) + 1U), (int )data->addr); tmp___0 = inb_p((int )data->addr + 1); res = (res << 8) + (int )tmp___0; } else { } w83627hf_reset_bank(data, (int )reg); ldv_mutex_unlock_45(& data->lock); return (res); } } static int w83627thf_read_gpio5(struct platform_device *pdev___0 ) { struct w83627hf_sio_data *sio_data ; void *tmp ; int res ; int sel ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; int tmp___2 ; struct _ddebug descriptor___0 ; long tmp___3 ; int tmp___4 ; { tmp = dev_get_platdata((struct device const *)(& pdev___0->dev)); sio_data = (struct w83627hf_sio_data *)tmp; res = 255; superio_enter(sio_data); superio_select(sio_data, 7); tmp___1 = superio_inb(sio_data, 48); if ((tmp___1 & 8) == 0) { descriptor.modname = "w83627hf"; descriptor.function = "w83627thf_read_gpio5"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8244/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/w83627hf.c"; descriptor.format = "GPIO5 disabled, no VID function\n"; descriptor.lineno = 1649U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev___0->dev), "GPIO5 disabled, no VID function\n"); } else { } goto exit; } else { } tmp___2 = superio_inb(sio_data, 243); sel = tmp___2 & 63; if ((sel & 31) != 31) { descriptor___0.modname = "w83627hf"; descriptor___0.function = "w83627thf_read_gpio5"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8244/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/w83627hf.c"; descriptor___0.format = "GPIO5 not configured for VID function\n"; descriptor___0.lineno = 1660U; descriptor___0.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& pdev___0->dev), "GPIO5 not configured for VID function\n"); } else { } goto exit; } else { } _dev_info((struct device const *)(& pdev___0->dev), "Reading VID from GPIO5\n"); tmp___4 = superio_inb(sio_data, 244); res = tmp___4 & sel; exit: superio_exit(sio_data); return (res); } } static int w83687thf_read_vid(struct platform_device *pdev___0 ) { struct w83627hf_sio_data *sio_data ; void *tmp ; int res ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; { tmp = dev_get_platdata((struct device const *)(& pdev___0->dev)); sio_data = (struct w83627hf_sio_data *)tmp; res = 255; superio_enter(sio_data); superio_select(sio_data, 11); tmp___1 = superio_inb(sio_data, 41); if ((tmp___1 & 4) == 0) { descriptor.modname = "w83627hf"; descriptor.function = "w83687thf_read_vid"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8244/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/w83627hf.c"; descriptor.format = "VID disabled, no VID function\n"; descriptor.lineno = 1682U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev___0->dev), "VID disabled, no VID function\n"); } else { } goto exit; } else { } tmp___3 = superio_inb(sio_data, 240); if ((tmp___3 & 16) == 0) { descriptor___0.modname = "w83627hf"; descriptor___0.function = "w83687thf_read_vid"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8244/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/w83627hf.c"; descriptor___0.format = "VID configured as output, no VID function\n"; descriptor___0.lineno = 1689U; descriptor___0.flags = 1U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& pdev___0->dev), "VID configured as output, no VID function\n"); } else { } goto exit; } else { } tmp___4 = superio_inb(sio_data, 241); res = tmp___4 & 63; exit: superio_exit(sio_data); return (res); } } static int w83627hf_write_value(struct w83627hf_data *data , u16 reg , u16 value ) { int word_sized ; { ldv_mutex_lock_46(& data->lock); word_sized = (((int )reg & 65280) == 256 || ((int )reg & 65280) == 512) && (((int )reg & 255) == 83 || ((int )reg & 255) == 85); w83627hf_set_bank(data, (int )reg); outb_p((int )((unsigned char )reg), (int )data->addr); if (word_sized != 0) { outb_p((int )((unsigned char )((int )value >> 8)), (int )data->addr + 1); outb_p((int )((unsigned int )((unsigned char )reg) + 1U), (int )data->addr); } else { } outb_p((int )((unsigned char )value), (int )data->addr + 1); w83627hf_reset_bank(data, (int )reg); ldv_mutex_unlock_47(& data->lock); return (0); } } static void w83627hf_init_device(struct platform_device *pdev___0 ) { struct w83627hf_data *data ; void *tmp ; int i ; enum chips type ; u8 tmp___0 ; int lo ; int tmp___1 ; int hi ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { tmp = platform_get_drvdata((struct platform_device const *)pdev___0); data = (struct w83627hf_data *)tmp; type = data->type; if ((unsigned int )type == 0U) { w83627hf_write_value(data, 74, 137); w83627hf_write_value(data, 72, (int )force_i2c); } else { } if ((unsigned int )type == 0U || (unsigned int )type == 3U) { tmp___1 = w83627hf_read_value(data, 71); lo = tmp___1; tmp___2 = w83627hf_read_value(data, 73); hi = tmp___2; data->vid = (u8 )(((int )((signed char )lo) & 15) | (int )((signed char )((hi & 1) << 4))); } else if ((unsigned int )type == 1U) { tmp___3 = w83627thf_read_gpio5(pdev___0); data->vid = (u8 )tmp___3; } else if ((unsigned int )type == 4U) { tmp___4 = w83687thf_read_vid(pdev___0); data->vid = (u8 )tmp___4; } else { } if (((unsigned int )type == 1U || (unsigned int )type == 3U) || (unsigned int )type == 4U) { tmp___5 = w83627hf_read_value(data, 24); data->vrm_ovt = (u8 )tmp___5; } else { } tmp___6 = w83627hf_read_value(data, 93); tmp___0 = (u8 )tmp___6; i = 1; goto ldv_31873; ldv_31872: ; if ((unsigned int )((int )((unsigned char )BIT_SCFG1[i + -1]) & (int )tmp___0) == 0U) { data->sens[i + -1] = 4U; } else { tmp___7 = w83627hf_read_value(data, 89); if ((tmp___7 & (int )BIT_SCFG2[i + -1]) != 0) { data->sens[i + -1] = 1U; } else { data->sens[i + -1] = 2U; } } if ((unsigned int )type == 2U && i == 2) { goto ldv_31871; } else { } i = i + 1; ldv_31873: ; if (i <= 3) { goto ldv_31872; } else { } ldv_31871: ; if ((int )init) { tmp___8 = w83627hf_read_value(data, 338); tmp___0 = (u8 )tmp___8; if ((int )tmp___0 & 1) { dev_warn((struct device const *)(& pdev___0->dev), "Enabling temp2, readings might not make sense\n"); w83627hf_write_value(data, 338, (int )tmp___0 & 254); } else { } if ((unsigned int )type != 2U) { tmp___9 = w83627hf_read_value(data, 594); tmp___0 = (u8 )tmp___9; if ((int )tmp___0 & 1) { dev_warn((struct device const *)(& pdev___0->dev), "Enabling temp3, readings might not make sense\n"); w83627hf_write_value(data, 594, (int )tmp___0 & 254); } else { } } else { } } else { } tmp___10 = w83627hf_read_value(data, 64); w83627hf_write_value(data, 64, (int )((u16 )(((int )((short )tmp___10) & 246) | 1))); tmp___11 = w83627hf_read_value(data, 93); tmp___0 = (u8 )tmp___11; if (((int )tmp___0 & 1) == 0) { w83627hf_write_value(data, 93, (int )((unsigned int )tmp___0 | 1U)); } else { } return; } } static void w83627hf_update_fan_div(struct w83627hf_data *data ) { int reg ; int tmp ; { reg = w83627hf_read_value(data, 71); data->fan_div[0] = (unsigned int )((u8 )(reg >> 4)) & 3U; data->fan_div[1] = (unsigned int )((u8 )(reg >> 6)) & 3U; if ((unsigned int )data->type != 2U) { tmp = w83627hf_read_value(data, 75); data->fan_div[2] = (unsigned int )((u8 )(tmp >> 6)) & 3U; } else { } reg = w83627hf_read_value(data, 93); data->fan_div[0] = (u8 )((int )((signed char )data->fan_div[0]) | ((int )((signed char )(reg >> 3)) & 4)); data->fan_div[1] = (u8 )((int )((signed char )data->fan_div[1]) | ((int )((signed char )(reg >> 4)) & 4)); if ((unsigned int )data->type != 2U) { data->fan_div[2] = (u8 )((int )((signed char )data->fan_div[2]) | ((int )((signed char )(reg >> 5)) & 4)); } else { } return; } } static struct w83627hf_data *w83627hf_update_device(struct device *dev ) { struct w83627hf_data *data ; void *tmp ; int i ; int num_temps ; int num_pwms ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; u8 tmp___5 ; int tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; u8 tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct w83627hf_data *)tmp; num_temps = (unsigned int )data->type == 2U ? 2 : 3; num_pwms = (unsigned int )data->type == 2U ? 2 : 3; ldv_mutex_lock_48(& data->update_lock); if ((long )((data->last_updated - (unsigned long )jiffies) + 375UL) < 0L || (int )((signed char )data->valid) == 0) { i = 0; goto ldv_31893; ldv_31892: ; if (((unsigned int )data->type == 2U && i == 1) || (((unsigned int )data->type != 0U && (unsigned int )data->type != 2U) && (i == 5 || i == 6))) { goto ldv_31891; } else { } tmp___0 = w83627hf_read_value(data, (int )(i <= 6 ? (unsigned int )((u16 )i) + 32U : (unsigned int )((u16 )i) + 1353U)); data->in[i] = (u8 )tmp___0; tmp___1 = w83627hf_read_value(data, (int )(i <= 6 ? (unsigned int )((u16 )(i + 22)) * 2U : (unsigned int )((u16 )(i + -7)) * 2U + 1365U)); data->in_min[i] = (u8 )tmp___1; tmp___2 = w83627hf_read_value(data, (int )(i <= 6 ? (unsigned int )((u16 )i) * 2U + 43U : (unsigned int )((u16 )(i + 675)) * 2U)); data->in_max[i] = (u8 )tmp___2; ldv_31891: i = i + 1; ldv_31893: ; if (i <= 8) { goto ldv_31892; } else { } i = 0; goto ldv_31896; ldv_31895: tmp___3 = w83627hf_read_value(data, (int )((unsigned int )((u16 )i) + 40U)); data->fan[i] = (u8 )tmp___3; tmp___4 = w83627hf_read_value(data, (int )((unsigned int )((u16 )i) + 59U)); data->fan_min[i] = (u8 )tmp___4; i = i + 1; ldv_31896: ; if (i <= 2) { goto ldv_31895; } else { } i = 0; goto ldv_31901; ldv_31900: tmp___6 = w83627hf_read_value(data, (int )((unsigned int )data->type == 0U ? regpwm_627hf[i] : regpwm[i])); tmp___5 = (u8 )tmp___6; if ((unsigned int )data->type == 1U) { tmp___5 = (unsigned int )tmp___5 & 240U; } else { } data->pwm[i] = tmp___5; if (i == 1 && ((unsigned int )data->type == 0U || (unsigned int )data->type == 2U)) { goto ldv_31899; } else { } i = i + 1; ldv_31901: ; if (i <= 2) { goto ldv_31900; } else { } ldv_31899: ; if ((unsigned int )data->type == 0U) { tmp___8 = w83627hf_read_value(data, 92); tmp___7 = (u8 )tmp___8; data->pwm_freq[0] = (unsigned int )tmp___7 & 7U; data->pwm_freq[1] = (unsigned int )((u8 )((int )tmp___7 >> 4)) & 7U; } else if ((unsigned int )data->type != 1U) { i = 1; goto ldv_31905; ldv_31904: tmp___9 = w83627hf_read_value(data, (int )W83637HF_REG_PWM_FREQ[i + -1]); data->pwm_freq[i + -1] = (u8 )tmp___9; if (i == 2 && (unsigned int )data->type == 2U) { goto ldv_31903; } else { } i = i + 1; ldv_31905: ; if (i <= 3) { goto ldv_31904; } else { } ldv_31903: ; } else { } if ((unsigned int )data->type != 0U) { i = 0; goto ldv_31908; ldv_31907: tmp___11 = w83627hf_read_value(data, (int )W83627THF_REG_PWM_ENABLE[i]); tmp___10 = (u8 )tmp___11; data->pwm_enable[i] = ((unsigned int )((u8 )((int )tmp___10 >> (int )W83627THF_PWM_ENABLE_SHIFT[i])) & 3U) + 1U; i = i + 1; ldv_31908: ; if (i < num_pwms) { goto ldv_31907; } else { } } else { } i = 0; goto ldv_31911; ldv_31910: tmp___12 = w83627hf_read_value(data, (int )w83627hf_reg_temp[i]); data->temp[i] = (u16 )tmp___12; tmp___13 = w83627hf_read_value(data, (int )w83627hf_reg_temp_over[i]); data->temp_max[i] = (u16 )tmp___13; tmp___14 = w83627hf_read_value(data, (int )w83627hf_reg_temp_hyst[i]); data->temp_max_hyst[i] = (u16 )tmp___14; i = i + 1; ldv_31911: ; if (i < num_temps) { goto ldv_31910; } else { } w83627hf_update_fan_div(data); tmp___15 = w83627hf_read_value(data, 1113); tmp___16 = w83627hf_read_value(data, 1114); tmp___17 = w83627hf_read_value(data, 1115); data->alarms = (u32 )((tmp___15 | (tmp___16 << 8)) | (tmp___17 << 16)); i = w83627hf_read_value(data, 87); tmp___18 = w83627hf_read_value(data, 86); tmp___19 = w83627hf_read_value(data, 1107); data->beep_mask = (u32 )(((i << 8) | tmp___18) | (tmp___19 << 16)); data->last_updated = jiffies; data->valid = 1; } else { } ldv_mutex_unlock_49(& data->update_lock); return (data); } } static int w83627hf_device_add(unsigned short address , struct w83627hf_sio_data const *sio_data ) { struct resource res ; int err ; { res.start = (unsigned long long )((int )address + 5); res.end = (unsigned long long )((int )address + 6); res.name = "w83627hf"; res.flags = 256UL; res.parent = 0; res.sibling = 0; res.child = 0; err = acpi_check_resource_conflict((struct resource const *)(& res)); if (err != 0) { goto exit; } else { } pdev = platform_device_alloc("w83627hf", (int )address); if ((unsigned long )pdev == (unsigned long )((struct platform_device *)0)) { err = -12; printk("\vw83627hf: Device allocation failed\n"); goto exit; } else { } err = platform_device_add_resources(pdev, (struct resource const *)(& res), 1U); if (err != 0) { printk("\vw83627hf: Device resource addition failed (%d)\n", err); goto exit_device_put; } else { } err = platform_device_add_data(pdev, (void const *)sio_data, 8UL); if (err != 0) { printk("\vw83627hf: Platform data allocation failed\n"); goto exit_device_put; } else { } err = platform_device_add(pdev); if (err != 0) { printk("\vw83627hf: Device addition failed (%d)\n", err); goto exit_device_put; } else { } return (0); exit_device_put: platform_device_put(pdev); exit: ; return (err); } } static int sensors_w83627hf_init(void) { int err ; unsigned short address ; struct w83627hf_sio_data sio_data ; int tmp ; int tmp___0 ; { tmp = w83627hf_find(46, & address, & sio_data); if (tmp != 0) { tmp___0 = w83627hf_find(78, & address, & sio_data); if (tmp___0 != 0) { return (-19); } else { } } else { } err = ldv___platform_driver_register_50(& w83627hf_driver, & __this_module); if (err != 0) { goto exit; } else { } err = w83627hf_device_add((int )address, (struct w83627hf_sio_data const *)(& sio_data)); if (err != 0) { goto exit_driver; } else { } return (0); exit_driver: ldv_platform_driver_unregister_51(& w83627hf_driver); exit: ; return (err); } } static void sensors_w83627hf_exit(void) { { platform_device_unregister(pdev); ldv_platform_driver_unregister_52(& w83627hf_driver); return; } } extern int ldv_complete_95(void) ; extern int ldv_suspend_noirq_95(void) ; int ldv_retval_2 ; extern int ldv_prepare_95(void) ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_6 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; extern int ldv_resume_early_95(void) ; int ldv_retval_9 ; extern int ldv_resume_noirq_95(void) ; int ldv_retval_4 ; void ldv_check_final_state(void) ; extern int ldv_suspend_late_95(void) ; int ldv_retval_8 ; int ldv_retval_3 ; int ldv_retval_7 ; void ldv_initialize_sensor_device_attribute_79(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in5_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in5_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_56(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp2_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp2_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_63(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan2_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan2_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_18(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp3_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp3_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_6(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm2_freq_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm2_freq_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_21(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan3_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan3_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_52(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp3_max_hyst_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp3_max_hyst_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_12(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm2_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm2_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_20(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp1_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp1_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_9(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm2_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm2_enable_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_55(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp2_max_hyst_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp2_max_hyst_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_19(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp2_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp2_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_88(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in2_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in2_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_82(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in4_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in4_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_67(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_in0_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_in0_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_27(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in5_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in5_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_24(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in8_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in8_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_59(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp1_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp1_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_70(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in8_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in8_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_28(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in4_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in4_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_10(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm1_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm1_enable_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_32(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in0_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in0_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_13(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm1_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm1_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_5(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm3_freq_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm3_freq_group1 = (struct device *)tmp___0; return; } } void ldv_platform_probe_94(int (*probe)(struct platform_device * ) ) { int err ; { err = (*probe)(w83627hf_driver_group1); if (err == 0) { probed_94 = 1; ref_cnt = ref_cnt + 1; } else { } return; } } void ldv_initialize_sensor_device_attribute_73(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in7_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in7_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_68(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_in0_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_in0_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_74(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in7_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in7_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_65(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan1_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan1_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_85(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in3_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in3_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_25(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in7_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in7_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_14(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan3_div_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan3_div_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_58(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp1_max_hyst_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp1_max_hyst_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_89(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in2_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in2_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_31(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in1_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in1_beep_group1 = (struct device *)tmp___0; return; } } void ldv_platform_driver_init_94(void) { void *tmp ; { tmp = ldv_init_zalloc(1472UL); w83627hf_driver_group1 = (struct platform_device *)tmp; return; } } void ldv_initialize_sensor_device_attribute_8(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm3_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm3_enable_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_77(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in6_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in6_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_91(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in1_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in1_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_23(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan1_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan1_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_61(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan3_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan3_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_4(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp1_type_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp1_type_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_83(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in4_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in4_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_92(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in1_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in1_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_11(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm3_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm3_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_16(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan1_div_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan1_div_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_3(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp2_type_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp2_type_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_53(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp3_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp3_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_26(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in6_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in6_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_86(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in3_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in3_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_33(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_beep_mask_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_beep_mask_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_76(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in6_max_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in6_max_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_80(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in5_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in5_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_30(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in2_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in2_beep_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_7(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_pwm1_freq_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_pwm1_freq_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_50(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_vrm_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_vrm_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_22(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan2_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan2_beep_group1 = (struct device *)tmp___0; return; } } void ldv_dev_pm_ops_95(void) { void *tmp ; { tmp = ldv_init_zalloc(1416UL); w83627hf_dev_pm_ops_group1 = (struct device *)tmp; return; } } void ldv_initialize_sensor_device_attribute_71(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in8_min_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in8_min_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_2(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_temp3_type_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_temp3_type_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_15(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_fan2_div_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_fan2_div_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_17(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_beep_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_beep_enable_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_sensor_device_attribute_29(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); sensor_dev_attr_in3_beep_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); sensor_dev_attr_in3_beep_group1 = (struct device *)tmp___0; return; } } int main(void) { size_t ldvarg1 ; char *ldvarg0 ; void *tmp ; char *ldvarg2 ; void *tmp___0 ; size_t ldvarg4 ; char *ldvarg3 ; void *tmp___1 ; char *ldvarg5 ; void *tmp___2 ; struct device_attribute *ldvarg8 ; void *tmp___3 ; char *ldvarg7 ; void *tmp___4 ; struct device *ldvarg6 ; void *tmp___5 ; char *ldvarg11 ; void *tmp___6 ; size_t ldvarg10 ; char *ldvarg9 ; void *tmp___7 ; char *ldvarg14 ; void *tmp___8 ; size_t ldvarg13 ; char *ldvarg12 ; void *tmp___9 ; char *ldvarg17 ; void *tmp___10 ; size_t ldvarg16 ; char *ldvarg15 ; void *tmp___11 ; char *ldvarg18 ; void *tmp___12 ; char *ldvarg20 ; void *tmp___13 ; size_t ldvarg19 ; char *ldvarg21 ; void *tmp___14 ; char *ldvarg23 ; void *tmp___15 ; size_t ldvarg22 ; char *ldvarg24 ; void *tmp___16 ; char *ldvarg26 ; void *tmp___17 ; size_t ldvarg25 ; char *ldvarg27 ; void *tmp___18 ; char *ldvarg29 ; void *tmp___19 ; size_t ldvarg28 ; struct device_attribute *ldvarg32 ; void *tmp___20 ; char *ldvarg31 ; void *tmp___21 ; struct device *ldvarg30 ; void *tmp___22 ; char *ldvarg35 ; void *tmp___23 ; size_t ldvarg34 ; char *ldvarg33 ; void *tmp___24 ; char *ldvarg37 ; void *tmp___25 ; struct device *ldvarg36 ; void *tmp___26 ; struct device_attribute *ldvarg38 ; void *tmp___27 ; char *ldvarg39 ; void *tmp___28 ; char *ldvarg41 ; void *tmp___29 ; size_t ldvarg40 ; char *ldvarg43 ; void *tmp___30 ; struct device *ldvarg42 ; void *tmp___31 ; struct device_attribute *ldvarg44 ; void *tmp___32 ; char *ldvarg45 ; void *tmp___33 ; char *ldvarg47 ; void *tmp___34 ; size_t ldvarg46 ; char *ldvarg48 ; void *tmp___35 ; size_t ldvarg49 ; char *ldvarg50 ; void *tmp___36 ; struct device *ldvarg51 ; void *tmp___37 ; struct device_attribute *ldvarg53 ; void *tmp___38 ; char *ldvarg52 ; void *tmp___39 ; char *ldvarg54 ; void *tmp___40 ; size_t ldvarg55 ; char *ldvarg56 ; void *tmp___41 ; char *ldvarg57 ; void *tmp___42 ; size_t ldvarg58 ; char *ldvarg59 ; void *tmp___43 ; size_t ldvarg61 ; char *ldvarg60 ; void *tmp___44 ; char *ldvarg62 ; void *tmp___45 ; char *ldvarg65 ; void *tmp___46 ; char *ldvarg63 ; void *tmp___47 ; size_t ldvarg64 ; size_t ldvarg67 ; char *ldvarg66 ; void *tmp___48 ; char *ldvarg68 ; void *tmp___49 ; size_t ldvarg70 ; char *ldvarg71 ; void *tmp___50 ; char *ldvarg69 ; void *tmp___51 ; char *ldvarg73 ; void *tmp___52 ; struct device_attribute *ldvarg74 ; void *tmp___53 ; struct device *ldvarg72 ; void *tmp___54 ; char *ldvarg77 ; void *tmp___55 ; size_t ldvarg76 ; char *ldvarg75 ; void *tmp___56 ; size_t ldvarg79 ; char *ldvarg80 ; void *tmp___57 ; char *ldvarg78 ; void *tmp___58 ; struct device *ldvarg81 ; void *tmp___59 ; char *ldvarg82 ; void *tmp___60 ; struct device_attribute *ldvarg83 ; void *tmp___61 ; char *ldvarg85 ; void *tmp___62 ; struct device *ldvarg84 ; void *tmp___63 ; struct device_attribute *ldvarg86 ; void *tmp___64 ; char *ldvarg88 ; void *tmp___65 ; struct device_attribute *ldvarg89 ; void *tmp___66 ; struct device *ldvarg87 ; void *tmp___67 ; char *ldvarg91 ; void *tmp___68 ; struct device_attribute *ldvarg92 ; void *tmp___69 ; struct device *ldvarg90 ; void *tmp___70 ; char *ldvarg93 ; void *tmp___71 ; char *ldvarg95 ; void *tmp___72 ; size_t ldvarg94 ; char *ldvarg98 ; void *tmp___73 ; size_t ldvarg97 ; char *ldvarg96 ; void *tmp___74 ; char *ldvarg101 ; void *tmp___75 ; size_t ldvarg100 ; char *ldvarg99 ; void *tmp___76 ; char *ldvarg104 ; void *tmp___77 ; char *ldvarg102 ; void *tmp___78 ; size_t ldvarg103 ; char *ldvarg106 ; void *tmp___79 ; struct device *ldvarg105 ; void *tmp___80 ; struct device_attribute *ldvarg107 ; void *tmp___81 ; struct device_attribute *ldvarg110 ; void *tmp___82 ; struct device *ldvarg108 ; void *tmp___83 ; char *ldvarg109 ; void *tmp___84 ; char *ldvarg111 ; void *tmp___85 ; size_t ldvarg112 ; char *ldvarg113 ; void *tmp___86 ; struct device_attribute *ldvarg116 ; void *tmp___87 ; struct device *ldvarg114 ; void *tmp___88 ; char *ldvarg115 ; void *tmp___89 ; char *ldvarg119 ; void *tmp___90 ; char *ldvarg117 ; void *tmp___91 ; size_t ldvarg118 ; size_t ldvarg121 ; char *ldvarg122 ; void *tmp___92 ; char *ldvarg120 ; void *tmp___93 ; struct device *ldvarg123 ; void *tmp___94 ; char *ldvarg124 ; void *tmp___95 ; struct device_attribute *ldvarg125 ; void *tmp___96 ; size_t ldvarg127 ; char *ldvarg128 ; void *tmp___97 ; char *ldvarg126 ; void *tmp___98 ; struct device_attribute *ldvarg131 ; void *tmp___99 ; struct device *ldvarg129 ; void *tmp___100 ; char *ldvarg130 ; void *tmp___101 ; char *ldvarg134 ; void *tmp___102 ; size_t ldvarg133 ; char *ldvarg132 ; void *tmp___103 ; size_t ldvarg136 ; char *ldvarg137 ; void *tmp___104 ; char *ldvarg135 ; void *tmp___105 ; struct device *ldvarg138 ; void *tmp___106 ; struct device_attribute *ldvarg140 ; void *tmp___107 ; char *ldvarg139 ; void *tmp___108 ; struct device_attribute *ldvarg143 ; void *tmp___109 ; char *ldvarg142 ; void *tmp___110 ; struct device *ldvarg141 ; void *tmp___111 ; size_t ldvarg145 ; char *ldvarg146 ; void *tmp___112 ; char *ldvarg144 ; void *tmp___113 ; char *ldvarg147 ; void *tmp___114 ; char *ldvarg149 ; void *tmp___115 ; size_t ldvarg148 ; char *ldvarg150 ; void *tmp___116 ; size_t ldvarg151 ; char *ldvarg152 ; void *tmp___117 ; char *ldvarg154 ; void *tmp___118 ; struct device *ldvarg153 ; void *tmp___119 ; struct device_attribute *ldvarg155 ; void *tmp___120 ; struct device *ldvarg156 ; void *tmp___121 ; char *ldvarg157 ; void *tmp___122 ; struct device_attribute *ldvarg158 ; void *tmp___123 ; char *ldvarg159 ; void *tmp___124 ; char *ldvarg161 ; void *tmp___125 ; size_t ldvarg160 ; char *ldvarg164 ; void *tmp___126 ; size_t ldvarg163 ; char *ldvarg162 ; void *tmp___127 ; char *ldvarg167 ; void *tmp___128 ; char *ldvarg165 ; void *tmp___129 ; size_t ldvarg166 ; char *ldvarg170 ; void *tmp___130 ; char *ldvarg168 ; void *tmp___131 ; size_t ldvarg169 ; char *ldvarg171 ; void *tmp___132 ; char *ldvarg173 ; void *tmp___133 ; size_t ldvarg172 ; char *ldvarg175 ; void *tmp___134 ; struct device *ldvarg174 ; void *tmp___135 ; struct device_attribute *ldvarg176 ; void *tmp___136 ; char *ldvarg177 ; void *tmp___137 ; size_t ldvarg178 ; char *ldvarg179 ; void *tmp___138 ; size_t ldvarg181 ; char *ldvarg180 ; void *tmp___139 ; char *ldvarg182 ; void *tmp___140 ; char *ldvarg183 ; void *tmp___141 ; char *ldvarg185 ; void *tmp___142 ; size_t ldvarg184 ; size_t ldvarg187 ; char *ldvarg188 ; void *tmp___143 ; char *ldvarg186 ; void *tmp___144 ; char *ldvarg191 ; void *tmp___145 ; size_t ldvarg190 ; char *ldvarg189 ; void *tmp___146 ; size_t ldvarg193 ; char *ldvarg192 ; void *tmp___147 ; char *ldvarg194 ; void *tmp___148 ; struct device_attribute *ldvarg197 ; void *tmp___149 ; struct device *ldvarg195 ; void *tmp___150 ; char *ldvarg196 ; void *tmp___151 ; struct device_attribute *ldvarg200 ; void *tmp___152 ; struct device *ldvarg198 ; void *tmp___153 ; char *ldvarg199 ; void *tmp___154 ; char *ldvarg203 ; void *tmp___155 ; char *ldvarg201 ; void *tmp___156 ; size_t ldvarg202 ; struct device *ldvarg204 ; void *tmp___157 ; char *ldvarg205 ; void *tmp___158 ; struct device_attribute *ldvarg206 ; void *tmp___159 ; char *ldvarg209 ; void *tmp___160 ; size_t ldvarg208 ; char *ldvarg207 ; void *tmp___161 ; char *ldvarg211 ; void *tmp___162 ; struct device_attribute *ldvarg212 ; void *tmp___163 ; struct device *ldvarg210 ; void *tmp___164 ; char *ldvarg213 ; void *tmp___165 ; char *ldvarg215 ; void *tmp___166 ; size_t ldvarg214 ; char *ldvarg218 ; void *tmp___167 ; size_t ldvarg217 ; char *ldvarg216 ; void *tmp___168 ; size_t ldvarg220 ; char *ldvarg221 ; void *tmp___169 ; char *ldvarg219 ; void *tmp___170 ; char *ldvarg224 ; void *tmp___171 ; char *ldvarg222 ; void *tmp___172 ; size_t ldvarg223 ; struct device *ldvarg225 ; void *tmp___173 ; struct device_attribute *ldvarg227 ; void *tmp___174 ; char *ldvarg226 ; void *tmp___175 ; struct device_attribute *ldvarg230 ; void *tmp___176 ; char *ldvarg229 ; void *tmp___177 ; struct device *ldvarg228 ; void *tmp___178 ; char *ldvarg233 ; void *tmp___179 ; char *ldvarg231 ; void *tmp___180 ; size_t ldvarg232 ; char *ldvarg234 ; void *tmp___181 ; char *ldvarg236 ; void *tmp___182 ; size_t ldvarg235 ; size_t ldvarg238 ; char *ldvarg237 ; void *tmp___183 ; char *ldvarg239 ; void *tmp___184 ; char *ldvarg242 ; void *tmp___185 ; char *ldvarg240 ; void *tmp___186 ; size_t ldvarg241 ; size_t ldvarg244 ; char *ldvarg243 ; void *tmp___187 ; char *ldvarg245 ; void *tmp___188 ; struct device *ldvarg246 ; void *tmp___189 ; char *ldvarg247 ; void *tmp___190 ; struct device_attribute *ldvarg248 ; void *tmp___191 ; size_t ldvarg250 ; char *ldvarg249 ; void *tmp___192 ; char *ldvarg251 ; void *tmp___193 ; struct device *ldvarg252 ; void *tmp___194 ; struct device_attribute *ldvarg254 ; void *tmp___195 ; char *ldvarg253 ; void *tmp___196 ; char *ldvarg256 ; void *tmp___197 ; struct device_attribute *ldvarg257 ; void *tmp___198 ; struct device *ldvarg255 ; void *tmp___199 ; size_t ldvarg259 ; char *ldvarg258 ; void *tmp___200 ; char *ldvarg260 ; void *tmp___201 ; struct device_attribute *ldvarg263 ; void *tmp___202 ; char *ldvarg262 ; void *tmp___203 ; struct device *ldvarg261 ; void *tmp___204 ; char *ldvarg266 ; void *tmp___205 ; char *ldvarg264 ; void *tmp___206 ; size_t ldvarg265 ; struct device_attribute *ldvarg269 ; void *tmp___207 ; struct device *ldvarg267 ; void *tmp___208 ; char *ldvarg268 ; void *tmp___209 ; struct device_attribute *ldvarg272 ; void *tmp___210 ; char *ldvarg271 ; void *tmp___211 ; struct device *ldvarg270 ; void *tmp___212 ; struct device_attribute *ldvarg275 ; void *tmp___213 ; struct device *ldvarg273 ; void *tmp___214 ; char *ldvarg274 ; void *tmp___215 ; char *ldvarg278 ; void *tmp___216 ; size_t ldvarg277 ; char *ldvarg276 ; void *tmp___217 ; int tmp___218 ; int tmp___219 ; int tmp___220 ; int tmp___221 ; int tmp___222 ; int tmp___223 ; int tmp___224 ; int tmp___225 ; int tmp___226 ; int tmp___227 ; int tmp___228 ; int tmp___229 ; int tmp___230 ; int tmp___231 ; int tmp___232 ; int tmp___233 ; int tmp___234 ; int tmp___235 ; int tmp___236 ; int tmp___237 ; int tmp___238 ; int tmp___239 ; int tmp___240 ; int tmp___241 ; int tmp___242 ; int tmp___243 ; int tmp___244 ; int tmp___245 ; int tmp___246 ; int tmp___247 ; int tmp___248 ; int tmp___249 ; int tmp___250 ; int tmp___251 ; int tmp___252 ; int tmp___253 ; int tmp___254 ; int tmp___255 ; int tmp___256 ; int tmp___257 ; int tmp___258 ; int tmp___259 ; int tmp___260 ; int tmp___261 ; int tmp___262 ; int tmp___263 ; int tmp___264 ; int tmp___265 ; int tmp___266 ; int tmp___267 ; int tmp___268 ; int tmp___269 ; int tmp___270 ; int tmp___271 ; int tmp___272 ; int tmp___273 ; int tmp___274 ; int tmp___275 ; int tmp___276 ; int tmp___277 ; int tmp___278 ; int tmp___279 ; int tmp___280 ; int tmp___281 ; int tmp___282 ; int tmp___283 ; int tmp___284 ; int tmp___285 ; int tmp___286 ; int tmp___287 ; int tmp___288 ; int tmp___289 ; int tmp___290 ; int tmp___291 ; int tmp___292 ; int tmp___293 ; int tmp___294 ; int tmp___295 ; int tmp___296 ; int tmp___297 ; int tmp___298 ; int tmp___299 ; int tmp___300 ; int tmp___301 ; int tmp___302 ; int tmp___303 ; int tmp___304 ; int tmp___305 ; int tmp___306 ; int tmp___307 ; int tmp___308 ; int tmp___309 ; int tmp___310 ; int tmp___311 ; int tmp___312 ; int tmp___313 ; int tmp___314 ; { tmp = ldv_init_zalloc(1UL); ldvarg0 = (char *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg2 = (char *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg3 = (char *)tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg5 = (char *)tmp___2; tmp___3 = ldv_init_zalloc(48UL); ldvarg8 = (struct device_attribute *)tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg7 = (char *)tmp___4; tmp___5 = ldv_init_zalloc(1416UL); ldvarg6 = (struct device *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg11 = (char *)tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg9 = (char *)tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg14 = (char *)tmp___8; tmp___9 = ldv_init_zalloc(1UL); ldvarg12 = (char *)tmp___9; tmp___10 = ldv_init_zalloc(1UL); ldvarg17 = (char *)tmp___10; tmp___11 = ldv_init_zalloc(1UL); ldvarg15 = (char *)tmp___11; tmp___12 = ldv_init_zalloc(1UL); ldvarg18 = (char *)tmp___12; tmp___13 = ldv_init_zalloc(1UL); ldvarg20 = (char *)tmp___13; tmp___14 = ldv_init_zalloc(1UL); ldvarg21 = (char *)tmp___14; tmp___15 = ldv_init_zalloc(1UL); ldvarg23 = (char *)tmp___15; tmp___16 = ldv_init_zalloc(1UL); ldvarg24 = (char *)tmp___16; tmp___17 = ldv_init_zalloc(1UL); ldvarg26 = (char *)tmp___17; tmp___18 = ldv_init_zalloc(1UL); ldvarg27 = (char *)tmp___18; tmp___19 = ldv_init_zalloc(1UL); ldvarg29 = (char *)tmp___19; tmp___20 = ldv_init_zalloc(48UL); ldvarg32 = (struct device_attribute *)tmp___20; tmp___21 = ldv_init_zalloc(1UL); ldvarg31 = (char *)tmp___21; tmp___22 = ldv_init_zalloc(1416UL); ldvarg30 = (struct device *)tmp___22; tmp___23 = ldv_init_zalloc(1UL); ldvarg35 = (char *)tmp___23; tmp___24 = ldv_init_zalloc(1UL); ldvarg33 = (char *)tmp___24; tmp___25 = ldv_init_zalloc(1UL); ldvarg37 = (char *)tmp___25; tmp___26 = ldv_init_zalloc(1416UL); ldvarg36 = (struct device *)tmp___26; tmp___27 = ldv_init_zalloc(48UL); ldvarg38 = (struct device_attribute *)tmp___27; tmp___28 = ldv_init_zalloc(1UL); ldvarg39 = (char *)tmp___28; tmp___29 = ldv_init_zalloc(1UL); ldvarg41 = (char *)tmp___29; tmp___30 = ldv_init_zalloc(1UL); ldvarg43 = (char *)tmp___30; tmp___31 = ldv_init_zalloc(1416UL); ldvarg42 = (struct device *)tmp___31; tmp___32 = ldv_init_zalloc(48UL); ldvarg44 = (struct device_attribute *)tmp___32; tmp___33 = ldv_init_zalloc(1UL); ldvarg45 = (char *)tmp___33; tmp___34 = ldv_init_zalloc(1UL); ldvarg47 = (char *)tmp___34; tmp___35 = ldv_init_zalloc(1UL); ldvarg48 = (char *)tmp___35; tmp___36 = ldv_init_zalloc(1UL); ldvarg50 = (char *)tmp___36; tmp___37 = ldv_init_zalloc(1416UL); ldvarg51 = (struct device *)tmp___37; tmp___38 = ldv_init_zalloc(48UL); ldvarg53 = (struct device_attribute *)tmp___38; tmp___39 = ldv_init_zalloc(1UL); ldvarg52 = (char *)tmp___39; tmp___40 = ldv_init_zalloc(1UL); ldvarg54 = (char *)tmp___40; tmp___41 = ldv_init_zalloc(1UL); ldvarg56 = (char *)tmp___41; tmp___42 = ldv_init_zalloc(1UL); ldvarg57 = (char *)tmp___42; tmp___43 = ldv_init_zalloc(1UL); ldvarg59 = (char *)tmp___43; tmp___44 = ldv_init_zalloc(1UL); ldvarg60 = (char *)tmp___44; tmp___45 = ldv_init_zalloc(1UL); ldvarg62 = (char *)tmp___45; tmp___46 = ldv_init_zalloc(1UL); ldvarg65 = (char *)tmp___46; tmp___47 = ldv_init_zalloc(1UL); ldvarg63 = (char *)tmp___47; tmp___48 = ldv_init_zalloc(1UL); ldvarg66 = (char *)tmp___48; tmp___49 = ldv_init_zalloc(1UL); ldvarg68 = (char *)tmp___49; tmp___50 = ldv_init_zalloc(1UL); ldvarg71 = (char *)tmp___50; tmp___51 = ldv_init_zalloc(1UL); ldvarg69 = (char *)tmp___51; tmp___52 = ldv_init_zalloc(1UL); ldvarg73 = (char *)tmp___52; tmp___53 = ldv_init_zalloc(48UL); ldvarg74 = (struct device_attribute *)tmp___53; tmp___54 = ldv_init_zalloc(1416UL); ldvarg72 = (struct device *)tmp___54; tmp___55 = ldv_init_zalloc(1UL); ldvarg77 = (char *)tmp___55; tmp___56 = ldv_init_zalloc(1UL); ldvarg75 = (char *)tmp___56; tmp___57 = ldv_init_zalloc(1UL); ldvarg80 = (char *)tmp___57; tmp___58 = ldv_init_zalloc(1UL); ldvarg78 = (char *)tmp___58; tmp___59 = ldv_init_zalloc(1416UL); ldvarg81 = (struct device *)tmp___59; tmp___60 = ldv_init_zalloc(1UL); ldvarg82 = (char *)tmp___60; tmp___61 = ldv_init_zalloc(48UL); ldvarg83 = (struct device_attribute *)tmp___61; tmp___62 = ldv_init_zalloc(1UL); ldvarg85 = (char *)tmp___62; tmp___63 = ldv_init_zalloc(1416UL); ldvarg84 = (struct device *)tmp___63; tmp___64 = ldv_init_zalloc(48UL); ldvarg86 = (struct device_attribute *)tmp___64; tmp___65 = ldv_init_zalloc(1UL); ldvarg88 = (char *)tmp___65; tmp___66 = ldv_init_zalloc(48UL); ldvarg89 = (struct device_attribute *)tmp___66; tmp___67 = ldv_init_zalloc(1416UL); ldvarg87 = (struct device *)tmp___67; tmp___68 = ldv_init_zalloc(1UL); ldvarg91 = (char *)tmp___68; tmp___69 = ldv_init_zalloc(48UL); ldvarg92 = (struct device_attribute *)tmp___69; tmp___70 = ldv_init_zalloc(1416UL); ldvarg90 = (struct device *)tmp___70; tmp___71 = ldv_init_zalloc(1UL); ldvarg93 = (char *)tmp___71; tmp___72 = ldv_init_zalloc(1UL); ldvarg95 = (char *)tmp___72; tmp___73 = ldv_init_zalloc(1UL); ldvarg98 = (char *)tmp___73; tmp___74 = ldv_init_zalloc(1UL); ldvarg96 = (char *)tmp___74; tmp___75 = ldv_init_zalloc(1UL); ldvarg101 = (char *)tmp___75; tmp___76 = ldv_init_zalloc(1UL); ldvarg99 = (char *)tmp___76; tmp___77 = ldv_init_zalloc(1UL); ldvarg104 = (char *)tmp___77; tmp___78 = ldv_init_zalloc(1UL); ldvarg102 = (char *)tmp___78; tmp___79 = ldv_init_zalloc(1UL); ldvarg106 = (char *)tmp___79; tmp___80 = ldv_init_zalloc(1416UL); ldvarg105 = (struct device *)tmp___80; tmp___81 = ldv_init_zalloc(48UL); ldvarg107 = (struct device_attribute *)tmp___81; tmp___82 = ldv_init_zalloc(48UL); ldvarg110 = (struct device_attribute *)tmp___82; tmp___83 = ldv_init_zalloc(1416UL); ldvarg108 = (struct device *)tmp___83; tmp___84 = ldv_init_zalloc(1UL); ldvarg109 = (char *)tmp___84; tmp___85 = ldv_init_zalloc(1UL); ldvarg111 = (char *)tmp___85; tmp___86 = ldv_init_zalloc(1UL); ldvarg113 = (char *)tmp___86; tmp___87 = ldv_init_zalloc(48UL); ldvarg116 = (struct device_attribute *)tmp___87; tmp___88 = ldv_init_zalloc(1416UL); ldvarg114 = (struct device *)tmp___88; tmp___89 = ldv_init_zalloc(1UL); ldvarg115 = (char *)tmp___89; tmp___90 = ldv_init_zalloc(1UL); ldvarg119 = (char *)tmp___90; tmp___91 = ldv_init_zalloc(1UL); ldvarg117 = (char *)tmp___91; tmp___92 = ldv_init_zalloc(1UL); ldvarg122 = (char *)tmp___92; tmp___93 = ldv_init_zalloc(1UL); ldvarg120 = (char *)tmp___93; tmp___94 = ldv_init_zalloc(1416UL); ldvarg123 = (struct device *)tmp___94; tmp___95 = ldv_init_zalloc(1UL); ldvarg124 = (char *)tmp___95; tmp___96 = ldv_init_zalloc(48UL); ldvarg125 = (struct device_attribute *)tmp___96; tmp___97 = ldv_init_zalloc(1UL); ldvarg128 = (char *)tmp___97; tmp___98 = ldv_init_zalloc(1UL); ldvarg126 = (char *)tmp___98; tmp___99 = ldv_init_zalloc(48UL); ldvarg131 = (struct device_attribute *)tmp___99; tmp___100 = ldv_init_zalloc(1416UL); ldvarg129 = (struct device *)tmp___100; tmp___101 = ldv_init_zalloc(1UL); ldvarg130 = (char *)tmp___101; tmp___102 = ldv_init_zalloc(1UL); ldvarg134 = (char *)tmp___102; tmp___103 = ldv_init_zalloc(1UL); ldvarg132 = (char *)tmp___103; tmp___104 = ldv_init_zalloc(1UL); ldvarg137 = (char *)tmp___104; tmp___105 = ldv_init_zalloc(1UL); ldvarg135 = (char *)tmp___105; tmp___106 = ldv_init_zalloc(1416UL); ldvarg138 = (struct device *)tmp___106; tmp___107 = ldv_init_zalloc(48UL); ldvarg140 = (struct device_attribute *)tmp___107; tmp___108 = ldv_init_zalloc(1UL); ldvarg139 = (char *)tmp___108; tmp___109 = ldv_init_zalloc(48UL); ldvarg143 = (struct device_attribute *)tmp___109; tmp___110 = ldv_init_zalloc(1UL); ldvarg142 = (char *)tmp___110; tmp___111 = ldv_init_zalloc(1416UL); ldvarg141 = (struct device *)tmp___111; tmp___112 = ldv_init_zalloc(1UL); ldvarg146 = (char *)tmp___112; tmp___113 = ldv_init_zalloc(1UL); ldvarg144 = (char *)tmp___113; tmp___114 = ldv_init_zalloc(1UL); ldvarg147 = (char *)tmp___114; tmp___115 = ldv_init_zalloc(1UL); ldvarg149 = (char *)tmp___115; tmp___116 = ldv_init_zalloc(1UL); ldvarg150 = (char *)tmp___116; tmp___117 = ldv_init_zalloc(1UL); ldvarg152 = (char *)tmp___117; tmp___118 = ldv_init_zalloc(1UL); ldvarg154 = (char *)tmp___118; tmp___119 = ldv_init_zalloc(1416UL); ldvarg153 = (struct device *)tmp___119; tmp___120 = ldv_init_zalloc(48UL); ldvarg155 = (struct device_attribute *)tmp___120; tmp___121 = ldv_init_zalloc(1416UL); ldvarg156 = (struct device *)tmp___121; tmp___122 = ldv_init_zalloc(1UL); ldvarg157 = (char *)tmp___122; tmp___123 = ldv_init_zalloc(48UL); ldvarg158 = (struct device_attribute *)tmp___123; tmp___124 = ldv_init_zalloc(1UL); ldvarg159 = (char *)tmp___124; tmp___125 = ldv_init_zalloc(1UL); ldvarg161 = (char *)tmp___125; tmp___126 = ldv_init_zalloc(1UL); ldvarg164 = (char *)tmp___126; tmp___127 = ldv_init_zalloc(1UL); ldvarg162 = (char *)tmp___127; tmp___128 = ldv_init_zalloc(1UL); ldvarg167 = (char *)tmp___128; tmp___129 = ldv_init_zalloc(1UL); ldvarg165 = (char *)tmp___129; tmp___130 = ldv_init_zalloc(1UL); ldvarg170 = (char *)tmp___130; tmp___131 = ldv_init_zalloc(1UL); ldvarg168 = (char *)tmp___131; tmp___132 = ldv_init_zalloc(1UL); ldvarg171 = (char *)tmp___132; tmp___133 = ldv_init_zalloc(1UL); ldvarg173 = (char *)tmp___133; tmp___134 = ldv_init_zalloc(1UL); ldvarg175 = (char *)tmp___134; tmp___135 = ldv_init_zalloc(1416UL); ldvarg174 = (struct device *)tmp___135; tmp___136 = ldv_init_zalloc(48UL); ldvarg176 = (struct device_attribute *)tmp___136; tmp___137 = ldv_init_zalloc(1UL); ldvarg177 = (char *)tmp___137; tmp___138 = ldv_init_zalloc(1UL); ldvarg179 = (char *)tmp___138; tmp___139 = ldv_init_zalloc(1UL); ldvarg180 = (char *)tmp___139; tmp___140 = ldv_init_zalloc(1UL); ldvarg182 = (char *)tmp___140; tmp___141 = ldv_init_zalloc(1UL); ldvarg183 = (char *)tmp___141; tmp___142 = ldv_init_zalloc(1UL); ldvarg185 = (char *)tmp___142; tmp___143 = ldv_init_zalloc(1UL); ldvarg188 = (char *)tmp___143; tmp___144 = ldv_init_zalloc(1UL); ldvarg186 = (char *)tmp___144; tmp___145 = ldv_init_zalloc(1UL); ldvarg191 = (char *)tmp___145; tmp___146 = ldv_init_zalloc(1UL); ldvarg189 = (char *)tmp___146; tmp___147 = ldv_init_zalloc(1UL); ldvarg192 = (char *)tmp___147; tmp___148 = ldv_init_zalloc(1UL); ldvarg194 = (char *)tmp___148; tmp___149 = ldv_init_zalloc(48UL); ldvarg197 = (struct device_attribute *)tmp___149; tmp___150 = ldv_init_zalloc(1416UL); ldvarg195 = (struct device *)tmp___150; tmp___151 = ldv_init_zalloc(1UL); ldvarg196 = (char *)tmp___151; tmp___152 = ldv_init_zalloc(48UL); ldvarg200 = (struct device_attribute *)tmp___152; tmp___153 = ldv_init_zalloc(1416UL); ldvarg198 = (struct device *)tmp___153; tmp___154 = ldv_init_zalloc(1UL); ldvarg199 = (char *)tmp___154; tmp___155 = ldv_init_zalloc(1UL); ldvarg203 = (char *)tmp___155; tmp___156 = ldv_init_zalloc(1UL); ldvarg201 = (char *)tmp___156; tmp___157 = ldv_init_zalloc(1416UL); ldvarg204 = (struct device *)tmp___157; tmp___158 = ldv_init_zalloc(1UL); ldvarg205 = (char *)tmp___158; tmp___159 = ldv_init_zalloc(48UL); ldvarg206 = (struct device_attribute *)tmp___159; tmp___160 = ldv_init_zalloc(1UL); ldvarg209 = (char *)tmp___160; tmp___161 = ldv_init_zalloc(1UL); ldvarg207 = (char *)tmp___161; tmp___162 = ldv_init_zalloc(1UL); ldvarg211 = (char *)tmp___162; tmp___163 = ldv_init_zalloc(48UL); ldvarg212 = (struct device_attribute *)tmp___163; tmp___164 = ldv_init_zalloc(1416UL); ldvarg210 = (struct device *)tmp___164; tmp___165 = ldv_init_zalloc(1UL); ldvarg213 = (char *)tmp___165; tmp___166 = ldv_init_zalloc(1UL); ldvarg215 = (char *)tmp___166; tmp___167 = ldv_init_zalloc(1UL); ldvarg218 = (char *)tmp___167; tmp___168 = ldv_init_zalloc(1UL); ldvarg216 = (char *)tmp___168; tmp___169 = ldv_init_zalloc(1UL); ldvarg221 = (char *)tmp___169; tmp___170 = ldv_init_zalloc(1UL); ldvarg219 = (char *)tmp___170; tmp___171 = ldv_init_zalloc(1UL); ldvarg224 = (char *)tmp___171; tmp___172 = ldv_init_zalloc(1UL); ldvarg222 = (char *)tmp___172; tmp___173 = ldv_init_zalloc(1416UL); ldvarg225 = (struct device *)tmp___173; tmp___174 = ldv_init_zalloc(48UL); ldvarg227 = (struct device_attribute *)tmp___174; tmp___175 = ldv_init_zalloc(1UL); ldvarg226 = (char *)tmp___175; tmp___176 = ldv_init_zalloc(48UL); ldvarg230 = (struct device_attribute *)tmp___176; tmp___177 = ldv_init_zalloc(1UL); ldvarg229 = (char *)tmp___177; tmp___178 = ldv_init_zalloc(1416UL); ldvarg228 = (struct device *)tmp___178; tmp___179 = ldv_init_zalloc(1UL); ldvarg233 = (char *)tmp___179; tmp___180 = ldv_init_zalloc(1UL); ldvarg231 = (char *)tmp___180; tmp___181 = ldv_init_zalloc(1UL); ldvarg234 = (char *)tmp___181; tmp___182 = ldv_init_zalloc(1UL); ldvarg236 = (char *)tmp___182; tmp___183 = ldv_init_zalloc(1UL); ldvarg237 = (char *)tmp___183; tmp___184 = ldv_init_zalloc(1UL); ldvarg239 = (char *)tmp___184; tmp___185 = ldv_init_zalloc(1UL); ldvarg242 = (char *)tmp___185; tmp___186 = ldv_init_zalloc(1UL); ldvarg240 = (char *)tmp___186; tmp___187 = ldv_init_zalloc(1UL); ldvarg243 = (char *)tmp___187; tmp___188 = ldv_init_zalloc(1UL); ldvarg245 = (char *)tmp___188; tmp___189 = ldv_init_zalloc(1416UL); ldvarg246 = (struct device *)tmp___189; tmp___190 = ldv_init_zalloc(1UL); ldvarg247 = (char *)tmp___190; tmp___191 = ldv_init_zalloc(48UL); ldvarg248 = (struct device_attribute *)tmp___191; tmp___192 = ldv_init_zalloc(1UL); ldvarg249 = (char *)tmp___192; tmp___193 = ldv_init_zalloc(1UL); ldvarg251 = (char *)tmp___193; tmp___194 = ldv_init_zalloc(1416UL); ldvarg252 = (struct device *)tmp___194; tmp___195 = ldv_init_zalloc(48UL); ldvarg254 = (struct device_attribute *)tmp___195; tmp___196 = ldv_init_zalloc(1UL); ldvarg253 = (char *)tmp___196; tmp___197 = ldv_init_zalloc(1UL); ldvarg256 = (char *)tmp___197; tmp___198 = ldv_init_zalloc(48UL); ldvarg257 = (struct device_attribute *)tmp___198; tmp___199 = ldv_init_zalloc(1416UL); ldvarg255 = (struct device *)tmp___199; tmp___200 = ldv_init_zalloc(1UL); ldvarg258 = (char *)tmp___200; tmp___201 = ldv_init_zalloc(1UL); ldvarg260 = (char *)tmp___201; tmp___202 = ldv_init_zalloc(48UL); ldvarg263 = (struct device_attribute *)tmp___202; tmp___203 = ldv_init_zalloc(1UL); ldvarg262 = (char *)tmp___203; tmp___204 = ldv_init_zalloc(1416UL); ldvarg261 = (struct device *)tmp___204; tmp___205 = ldv_init_zalloc(1UL); ldvarg266 = (char *)tmp___205; tmp___206 = ldv_init_zalloc(1UL); ldvarg264 = (char *)tmp___206; tmp___207 = ldv_init_zalloc(48UL); ldvarg269 = (struct device_attribute *)tmp___207; tmp___208 = ldv_init_zalloc(1416UL); ldvarg267 = (struct device *)tmp___208; tmp___209 = ldv_init_zalloc(1UL); ldvarg268 = (char *)tmp___209; tmp___210 = ldv_init_zalloc(48UL); ldvarg272 = (struct device_attribute *)tmp___210; tmp___211 = ldv_init_zalloc(1UL); ldvarg271 = (char *)tmp___211; tmp___212 = ldv_init_zalloc(1416UL); ldvarg270 = (struct device *)tmp___212; tmp___213 = ldv_init_zalloc(48UL); ldvarg275 = (struct device_attribute *)tmp___213; tmp___214 = ldv_init_zalloc(1416UL); ldvarg273 = (struct device *)tmp___214; tmp___215 = ldv_init_zalloc(1UL); ldvarg274 = (char *)tmp___215; tmp___216 = ldv_init_zalloc(1UL); ldvarg278 = (char *)tmp___216; tmp___217 = ldv_init_zalloc(1UL); ldvarg276 = (char *)tmp___217; ldv_initialize(); ldv_memset((void *)(& ldvarg1), 0, 8UL); ldv_memset((void *)(& ldvarg4), 0, 8UL); ldv_memset((void *)(& ldvarg10), 0, 8UL); ldv_memset((void *)(& ldvarg13), 0, 8UL); ldv_memset((void *)(& ldvarg16), 0, 8UL); ldv_memset((void *)(& ldvarg19), 0, 8UL); ldv_memset((void *)(& ldvarg22), 0, 8UL); ldv_memset((void *)(& ldvarg25), 0, 8UL); ldv_memset((void *)(& ldvarg28), 0, 8UL); ldv_memset((void *)(& ldvarg34), 0, 8UL); ldv_memset((void *)(& ldvarg40), 0, 8UL); ldv_memset((void *)(& ldvarg46), 0, 8UL); ldv_memset((void *)(& ldvarg49), 0, 8UL); ldv_memset((void *)(& ldvarg55), 0, 8UL); ldv_memset((void *)(& ldvarg58), 0, 8UL); ldv_memset((void *)(& ldvarg61), 0, 8UL); ldv_memset((void *)(& ldvarg64), 0, 8UL); ldv_memset((void *)(& ldvarg67), 0, 8UL); ldv_memset((void *)(& ldvarg70), 0, 8UL); ldv_memset((void *)(& ldvarg76), 0, 8UL); ldv_memset((void *)(& ldvarg79), 0, 8UL); ldv_memset((void *)(& ldvarg94), 0, 8UL); ldv_memset((void *)(& ldvarg97), 0, 8UL); ldv_memset((void *)(& ldvarg100), 0, 8UL); ldv_memset((void *)(& ldvarg103), 0, 8UL); ldv_memset((void *)(& ldvarg112), 0, 8UL); ldv_memset((void *)(& ldvarg118), 0, 8UL); ldv_memset((void *)(& ldvarg121), 0, 8UL); ldv_memset((void *)(& ldvarg127), 0, 8UL); ldv_memset((void *)(& ldvarg133), 0, 8UL); ldv_memset((void *)(& ldvarg136), 0, 8UL); ldv_memset((void *)(& ldvarg145), 0, 8UL); ldv_memset((void *)(& ldvarg148), 0, 8UL); ldv_memset((void *)(& ldvarg151), 0, 8UL); ldv_memset((void *)(& ldvarg160), 0, 8UL); ldv_memset((void *)(& ldvarg163), 0, 8UL); ldv_memset((void *)(& ldvarg166), 0, 8UL); ldv_memset((void *)(& ldvarg169), 0, 8UL); ldv_memset((void *)(& ldvarg172), 0, 8UL); ldv_memset((void *)(& ldvarg178), 0, 8UL); ldv_memset((void *)(& ldvarg181), 0, 8UL); ldv_memset((void *)(& ldvarg184), 0, 8UL); ldv_memset((void *)(& ldvarg187), 0, 8UL); ldv_memset((void *)(& ldvarg190), 0, 8UL); ldv_memset((void *)(& ldvarg193), 0, 8UL); ldv_memset((void *)(& ldvarg202), 0, 8UL); ldv_memset((void *)(& ldvarg208), 0, 8UL); ldv_memset((void *)(& ldvarg214), 0, 8UL); ldv_memset((void *)(& ldvarg217), 0, 8UL); ldv_memset((void *)(& ldvarg220), 0, 8UL); ldv_memset((void *)(& ldvarg223), 0, 8UL); ldv_memset((void *)(& ldvarg232), 0, 8UL); ldv_memset((void *)(& ldvarg235), 0, 8UL); ldv_memset((void *)(& ldvarg238), 0, 8UL); ldv_memset((void *)(& ldvarg241), 0, 8UL); ldv_memset((void *)(& ldvarg244), 0, 8UL); ldv_memset((void *)(& ldvarg250), 0, 8UL); ldv_memset((void *)(& ldvarg259), 0, 8UL); ldv_memset((void *)(& ldvarg265), 0, 8UL); ldv_memset((void *)(& ldvarg277), 0, 8UL); ldv_state_variable_33 = 0; ldv_state_variable_32 = 0; ldv_state_variable_90 = 0; ldv_state_variable_63 = 0; ldv_state_variable_21 = 0; ldv_state_variable_71 = 0; ldv_state_variable_7 = 0; ldv_state_variable_80 = 0; ldv_state_variable_26 = 0; ldv_state_variable_18 = 0; ldv_state_variable_72 = 0; ldv_state_variable_16 = 0; ldv_state_variable_44 = 0; ldv_state_variable_55 = 0; ldv_state_variable_84 = 0; ldv_state_variable_74 = 0; ldv_state_variable_27 = 0; ldv_state_variable_95 = 0; ldv_state_variable_57 = 0; ldv_state_variable_61 = 0; ldv_state_variable_20 = 0; ldv_state_variable_92 = 0; ldv_state_variable_89 = 0; ldv_state_variable_10 = 0; ldv_state_variable_31 = 0; ldv_state_variable_35 = 0; ldv_state_variable_11 = 0; ldv_state_variable_91 = 0; ldv_state_variable_78 = 0; ldv_state_variable_48 = 0; ldv_state_variable_87 = 0; ldv_state_variable_93 = 0; ldv_state_variable_77 = 0; ldv_state_variable_65 = 0; ldv_state_variable_29 = 0; ldv_state_variable_50 = 0; ldv_state_variable_39 = 0; ldv_state_variable_64 = 0; ldv_state_variable_58 = 0; ldv_state_variable_41 = 0; ldv_state_variable_12 = 0; ldv_state_variable_15 = 0; ldv_state_variable_81 = 0; ldv_state_variable_52 = 0; ldv_state_variable_60 = 0; ldv_state_variable_56 = 0; ldv_state_variable_73 = 0; ldv_state_variable_66 = 0; ldv_state_variable_45 = 0; ldv_state_variable_86 = 0; ldv_state_variable_76 = 0; ldv_state_variable_19 = 0; ldv_state_variable_62 = 0; ldv_state_variable_54 = 0; ldv_state_variable_67 = 0; ldv_state_variable_70 = 0; ldv_state_variable_68 = 0; ldv_state_variable_2 = 0; ldv_state_variable_17 = 0; ldv_state_variable_1 = 0; ldv_state_variable_88 = 0; ldv_state_variable_30 = 0; ldv_state_variable_82 = 0; ldv_state_variable_25 = 0; ldv_state_variable_28 = 0; ldv_state_variable_83 = 0; ldv_state_variable_75 = 0; ldv_state_variable_40 = 0; ldv_state_variable_14 = 0; ldv_state_variable_69 = 0; ldv_state_variable_59 = 0; ldv_state_variable_49 = 0; ldv_state_variable_24 = 0; ldv_state_variable_53 = 0; ldv_state_variable_79 = 0; ldv_state_variable_22 = 0; ldv_state_variable_42 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_46 = 0; ldv_state_variable_23 = 0; ldv_state_variable_13 = 0; ldv_state_variable_6 = 0; ldv_state_variable_85 = 0; ldv_state_variable_3 = 0; ldv_state_variable_36 = 0; ldv_state_variable_94 = 0; ldv_state_variable_9 = 0; ldv_state_variable_51 = 0; ldv_state_variable_47 = 0; ldv_state_variable_8 = 0; ldv_state_variable_38 = 0; ldv_state_variable_4 = 0; ldv_state_variable_34 = 0; ldv_state_variable_37 = 0; ldv_state_variable_43 = 0; ldv_state_variable_5 = 0; ldv_33094: tmp___218 = __VERIFIER_nondet_int(); switch (tmp___218) { case 0: ; if (ldv_state_variable_33 != 0) { tmp___219 = __VERIFIER_nondet_int(); switch (tmp___219) { case 0: ; if (ldv_state_variable_33 == 1) { store_beep_mask(dev_attr_beep_mask_group1, dev_attr_beep_mask_group0, (char const *)ldvarg2, ldvarg1); ldv_state_variable_33 = 1; } else { } goto ldv_32640; case 1: ; if (ldv_state_variable_33 == 1) { show_beep_mask(dev_attr_beep_mask_group1, dev_attr_beep_mask_group0, ldvarg0); ldv_state_variable_33 = 1; } else { } goto ldv_32640; default: ldv_stop(); } ldv_32640: ; } else { } goto ldv_32643; case 1: ; if (ldv_state_variable_32 != 0) { tmp___220 = __VERIFIER_nondet_int(); switch (tmp___220) { case 0: ; if (ldv_state_variable_32 == 1) { store_beep(sensor_dev_attr_in0_beep_group1, sensor_dev_attr_in0_beep_group0, (char const *)ldvarg5, ldvarg4); ldv_state_variable_32 = 1; } else { } goto ldv_32646; case 1: ; if (ldv_state_variable_32 == 1) { show_beep(sensor_dev_attr_in0_beep_group1, sensor_dev_attr_in0_beep_group0, ldvarg3); ldv_state_variable_32 = 1; } else { } goto ldv_32646; default: ldv_stop(); } ldv_32646: ; } else { } goto ldv_32643; case 2: ; if (ldv_state_variable_90 != 0) { tmp___221 = __VERIFIER_nondet_int(); switch (tmp___221) { case 0: ; if (ldv_state_variable_90 == 1) { show_in_input(ldvarg6, ldvarg8, ldvarg7); ldv_state_variable_90 = 1; } else { } goto ldv_32651; default: ldv_stop(); } ldv_32651: ; } else { } goto ldv_32643; case 3: ; if (ldv_state_variable_63 != 0) { tmp___222 = __VERIFIER_nondet_int(); switch (tmp___222) { case 0: ; if (ldv_state_variable_63 == 1) { store_fan_min(sensor_dev_attr_fan2_min_group1, sensor_dev_attr_fan2_min_group0, (char const *)ldvarg11, ldvarg10); ldv_state_variable_63 = 1; } else { } goto ldv_32655; case 1: ; if (ldv_state_variable_63 == 1) { show_fan_min(sensor_dev_attr_fan2_min_group1, sensor_dev_attr_fan2_min_group0, ldvarg9); ldv_state_variable_63 = 1; } else { } goto ldv_32655; default: ldv_stop(); } ldv_32655: ; } else { } goto ldv_32643; case 4: ; if (ldv_state_variable_21 != 0) { tmp___223 = __VERIFIER_nondet_int(); switch (tmp___223) { case 0: ; if (ldv_state_variable_21 == 1) { store_beep(sensor_dev_attr_fan3_beep_group1, sensor_dev_attr_fan3_beep_group0, (char const *)ldvarg14, ldvarg13); ldv_state_variable_21 = 1; } else { } goto ldv_32660; case 1: ; if (ldv_state_variable_21 == 1) { show_beep(sensor_dev_attr_fan3_beep_group1, sensor_dev_attr_fan3_beep_group0, ldvarg12); ldv_state_variable_21 = 1; } else { } goto ldv_32660; default: ldv_stop(); } ldv_32660: ; } else { } goto ldv_32643; case 5: ; if (ldv_state_variable_71 != 0) { tmp___224 = __VERIFIER_nondet_int(); switch (tmp___224) { case 0: ; if (ldv_state_variable_71 == 1) { store_in_min(sensor_dev_attr_in8_min_group1, sensor_dev_attr_in8_min_group0, (char const *)ldvarg17, ldvarg16); ldv_state_variable_71 = 1; } else { } goto ldv_32665; case 1: ; if (ldv_state_variable_71 == 1) { show_in_min(sensor_dev_attr_in8_min_group1, sensor_dev_attr_in8_min_group0, ldvarg15); ldv_state_variable_71 = 1; } else { } goto ldv_32665; default: ldv_stop(); } ldv_32665: ; } else { } goto ldv_32643; case 6: ; if (ldv_state_variable_7 != 0) { tmp___225 = __VERIFIER_nondet_int(); switch (tmp___225) { case 0: ; if (ldv_state_variable_7 == 1) { store_pwm_freq(sensor_dev_attr_pwm1_freq_group1, sensor_dev_attr_pwm1_freq_group0, (char const *)ldvarg20, ldvarg19); ldv_state_variable_7 = 1; } else { } goto ldv_32670; case 1: ; if (ldv_state_variable_7 == 1) { show_pwm_freq(sensor_dev_attr_pwm1_freq_group1, sensor_dev_attr_pwm1_freq_group0, ldvarg18); ldv_state_variable_7 = 1; } else { } goto ldv_32670; default: ldv_stop(); } ldv_32670: ; } else { } goto ldv_32643; case 7: ; if (ldv_state_variable_80 != 0) { tmp___226 = __VERIFIER_nondet_int(); switch (tmp___226) { case 0: ; if (ldv_state_variable_80 == 1) { store_in_min(sensor_dev_attr_in5_min_group1, sensor_dev_attr_in5_min_group0, (char const *)ldvarg23, ldvarg22); ldv_state_variable_80 = 1; } else { } goto ldv_32675; case 1: ; if (ldv_state_variable_80 == 1) { show_in_min(sensor_dev_attr_in5_min_group1, sensor_dev_attr_in5_min_group0, ldvarg21); ldv_state_variable_80 = 1; } else { } goto ldv_32675; default: ldv_stop(); } ldv_32675: ; } else { } goto ldv_32643; case 8: ; if (ldv_state_variable_26 != 0) { tmp___227 = __VERIFIER_nondet_int(); switch (tmp___227) { case 0: ; if (ldv_state_variable_26 == 1) { store_beep(sensor_dev_attr_in6_beep_group1, sensor_dev_attr_in6_beep_group0, (char const *)ldvarg26, ldvarg25); ldv_state_variable_26 = 1; } else { } goto ldv_32680; case 1: ; if (ldv_state_variable_26 == 1) { show_beep(sensor_dev_attr_in6_beep_group1, sensor_dev_attr_in6_beep_group0, ldvarg24); ldv_state_variable_26 = 1; } else { } goto ldv_32680; default: ldv_stop(); } ldv_32680: ; } else { } goto ldv_32643; case 9: ; if (ldv_state_variable_18 != 0) { tmp___228 = __VERIFIER_nondet_int(); switch (tmp___228) { case 0: ; if (ldv_state_variable_18 == 1) { store_beep(sensor_dev_attr_temp3_beep_group1, sensor_dev_attr_temp3_beep_group0, (char const *)ldvarg29, ldvarg28); ldv_state_variable_18 = 1; } else { } goto ldv_32685; case 1: ; if (ldv_state_variable_18 == 1) { show_beep(sensor_dev_attr_temp3_beep_group1, sensor_dev_attr_temp3_beep_group0, ldvarg27); ldv_state_variable_18 = 1; } else { } goto ldv_32685; default: ldv_stop(); } ldv_32685: ; } else { } goto ldv_32643; case 10: ; if (ldv_state_variable_72 != 0) { tmp___229 = __VERIFIER_nondet_int(); switch (tmp___229) { case 0: ; if (ldv_state_variable_72 == 1) { show_in_input(ldvarg30, ldvarg32, ldvarg31); ldv_state_variable_72 = 1; } else { } goto ldv_32690; default: ldv_stop(); } ldv_32690: ; } else { } goto ldv_32643; case 11: ; if (ldv_state_variable_16 != 0) { tmp___230 = __VERIFIER_nondet_int(); switch (tmp___230) { case 0: ; if (ldv_state_variable_16 == 1) { store_fan_div(sensor_dev_attr_fan1_div_group1, sensor_dev_attr_fan1_div_group0, (char const *)ldvarg35, ldvarg34); ldv_state_variable_16 = 1; } else { } goto ldv_32694; case 1: ; if (ldv_state_variable_16 == 1) { show_fan_div(sensor_dev_attr_fan1_div_group1, sensor_dev_attr_fan1_div_group0, ldvarg33); ldv_state_variable_16 = 1; } else { } goto ldv_32694; default: ldv_stop(); } ldv_32694: ; } else { } goto ldv_32643; case 12: ; if (ldv_state_variable_44 != 0) { tmp___231 = __VERIFIER_nondet_int(); switch (tmp___231) { case 0: ; if (ldv_state_variable_44 == 1) { show_alarm(ldvarg36, ldvarg38, ldvarg37); ldv_state_variable_44 = 1; } else { } goto ldv_32699; default: ldv_stop(); } ldv_32699: ; } else { } goto ldv_32643; case 13: ; if (ldv_state_variable_55 != 0) { tmp___232 = __VERIFIER_nondet_int(); switch (tmp___232) { case 0: ; if (ldv_state_variable_55 == 1) { store_temp_max_hyst(sensor_dev_attr_temp2_max_hyst_group1, sensor_dev_attr_temp2_max_hyst_group0, (char const *)ldvarg41, ldvarg40); ldv_state_variable_55 = 1; } else { } goto ldv_32703; case 1: ; if (ldv_state_variable_55 == 1) { show_temp_max_hyst(sensor_dev_attr_temp2_max_hyst_group1, sensor_dev_attr_temp2_max_hyst_group0, ldvarg39); ldv_state_variable_55 = 1; } else { } goto ldv_32703; default: ldv_stop(); } ldv_32703: ; } else { } goto ldv_32643; case 14: ; if (ldv_state_variable_84 != 0) { tmp___233 = __VERIFIER_nondet_int(); switch (tmp___233) { case 0: ; if (ldv_state_variable_84 == 1) { show_in_input(ldvarg42, ldvarg44, ldvarg43); ldv_state_variable_84 = 1; } else { } goto ldv_32708; default: ldv_stop(); } ldv_32708: ; } else { } goto ldv_32643; case 15: ; if (ldv_state_variable_74 != 0) { tmp___234 = __VERIFIER_nondet_int(); switch (tmp___234) { case 0: ; if (ldv_state_variable_74 == 1) { store_in_min(sensor_dev_attr_in7_min_group1, sensor_dev_attr_in7_min_group0, (char const *)ldvarg47, ldvarg46); ldv_state_variable_74 = 1; } else { } goto ldv_32712; case 1: ; if (ldv_state_variable_74 == 1) { show_in_min(sensor_dev_attr_in7_min_group1, sensor_dev_attr_in7_min_group0, ldvarg45); ldv_state_variable_74 = 1; } else { } goto ldv_32712; default: ldv_stop(); } ldv_32712: ; } else { } goto ldv_32643; case 16: ; if (ldv_state_variable_27 != 0) { tmp___235 = __VERIFIER_nondet_int(); switch (tmp___235) { case 0: ; if (ldv_state_variable_27 == 1) { store_beep(sensor_dev_attr_in5_beep_group1, sensor_dev_attr_in5_beep_group0, (char const *)ldvarg50, ldvarg49); ldv_state_variable_27 = 1; } else { } goto ldv_32717; case 1: ; if (ldv_state_variable_27 == 1) { show_beep(sensor_dev_attr_in5_beep_group1, sensor_dev_attr_in5_beep_group0, ldvarg48); ldv_state_variable_27 = 1; } else { } goto ldv_32717; default: ldv_stop(); } ldv_32717: ; } else { } goto ldv_32643; case 17: ; if (ldv_state_variable_95 != 0) { tmp___236 = __VERIFIER_nondet_int(); switch (tmp___236) { case 0: ; if (ldv_state_variable_95 == 2) { ldv_retval_6 = w83627hf_suspend(w83627hf_dev_pm_ops_group1); if (ldv_retval_6 == 0) { ldv_state_variable_95 = 3; } else { } } else { } goto ldv_32722; case 1: ; if (ldv_state_variable_95 == 6) { ldv_retval_5 = w83627hf_resume(w83627hf_dev_pm_ops_group1); if (ldv_retval_5 == 0) { ldv_state_variable_95 = 7; } else { } } else { } goto ldv_32722; case 2: ; if (ldv_state_variable_95 == 3) { ldv_retval_4 = ldv_suspend_late_95(); if (ldv_retval_4 == 0) { ldv_state_variable_95 = 4; } else { } } else { } goto ldv_32722; case 3: ; if (ldv_state_variable_95 == 4) { ldv_retval_3 = ldv_resume_early_95(); if (ldv_retval_3 == 0) { ldv_state_variable_95 = 6; } else { } } else { } goto ldv_32722; case 4: ; if (ldv_state_variable_95 == 5) { ldv_retval_2 = ldv_resume_noirq_95(); if (ldv_retval_2 == 0) { ldv_state_variable_95 = 6; } else { } } else { } goto ldv_32722; case 5: ; if (ldv_state_variable_95 == 1) { ldv_retval_1 = ldv_prepare_95(); if (ldv_retval_1 == 0) { ldv_state_variable_95 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_32722; case 6: ; if (ldv_state_variable_95 == 3) { ldv_retval_0 = ldv_suspend_noirq_95(); if (ldv_retval_0 == 0) { ldv_state_variable_95 = 5; } else { } } else { } goto ldv_32722; case 7: ; if (ldv_state_variable_95 == 7) { ldv_complete_95(); ldv_state_variable_95 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_32722; default: ldv_stop(); } ldv_32722: ; } else { } goto ldv_32643; case 18: ; if (ldv_state_variable_57 != 0) { tmp___237 = __VERIFIER_nondet_int(); switch (tmp___237) { case 0: ; if (ldv_state_variable_57 == 1) { show_temp(ldvarg51, ldvarg53, ldvarg52); ldv_state_variable_57 = 1; } else { } goto ldv_32733; default: ldv_stop(); } ldv_32733: ; } else { } goto ldv_32643; case 19: ; if (ldv_state_variable_61 != 0) { tmp___238 = __VERIFIER_nondet_int(); switch (tmp___238) { case 0: ; if (ldv_state_variable_61 == 1) { store_fan_min(sensor_dev_attr_fan3_min_group1, sensor_dev_attr_fan3_min_group0, (char const *)ldvarg56, ldvarg55); ldv_state_variable_61 = 1; } else { } goto ldv_32737; case 1: ; if (ldv_state_variable_61 == 1) { show_fan_min(sensor_dev_attr_fan3_min_group1, sensor_dev_attr_fan3_min_group0, ldvarg54); ldv_state_variable_61 = 1; } else { } goto ldv_32737; default: ldv_stop(); } ldv_32737: ; } else { } goto ldv_32643; case 20: ; if (ldv_state_variable_20 != 0) { tmp___239 = __VERIFIER_nondet_int(); switch (tmp___239) { case 0: ; if (ldv_state_variable_20 == 1) { store_beep(sensor_dev_attr_temp1_beep_group1, sensor_dev_attr_temp1_beep_group0, (char const *)ldvarg59, ldvarg58); ldv_state_variable_20 = 1; } else { } goto ldv_32742; case 1: ; if (ldv_state_variable_20 == 1) { show_beep(sensor_dev_attr_temp1_beep_group1, sensor_dev_attr_temp1_beep_group0, ldvarg57); ldv_state_variable_20 = 1; } else { } goto ldv_32742; default: ldv_stop(); } ldv_32742: ; } else { } goto ldv_32643; case 21: ; if (ldv_state_variable_92 != 0) { tmp___240 = __VERIFIER_nondet_int(); switch (tmp___240) { case 0: ; if (ldv_state_variable_92 == 1) { store_in_min(sensor_dev_attr_in1_min_group1, sensor_dev_attr_in1_min_group0, (char const *)ldvarg62, ldvarg61); ldv_state_variable_92 = 1; } else { } goto ldv_32747; case 1: ; if (ldv_state_variable_92 == 1) { show_in_min(sensor_dev_attr_in1_min_group1, sensor_dev_attr_in1_min_group0, ldvarg60); ldv_state_variable_92 = 1; } else { } goto ldv_32747; default: ldv_stop(); } ldv_32747: ; } else { } goto ldv_32643; case 22: ; if (ldv_state_variable_89 != 0) { tmp___241 = __VERIFIER_nondet_int(); switch (tmp___241) { case 0: ; if (ldv_state_variable_89 == 1) { store_in_min(sensor_dev_attr_in2_min_group1, sensor_dev_attr_in2_min_group0, (char const *)ldvarg65, ldvarg64); ldv_state_variable_89 = 1; } else { } goto ldv_32752; case 1: ; if (ldv_state_variable_89 == 1) { show_in_min(sensor_dev_attr_in2_min_group1, sensor_dev_attr_in2_min_group0, ldvarg63); ldv_state_variable_89 = 1; } else { } goto ldv_32752; default: ldv_stop(); } ldv_32752: ; } else { } goto ldv_32643; case 23: ; if (ldv_state_variable_10 != 0) { tmp___242 = __VERIFIER_nondet_int(); switch (tmp___242) { case 0: ; if (ldv_state_variable_10 == 1) { store_pwm_enable(sensor_dev_attr_pwm1_enable_group1, sensor_dev_attr_pwm1_enable_group0, (char const *)ldvarg68, ldvarg67); ldv_state_variable_10 = 1; } else { } goto ldv_32757; case 1: ; if (ldv_state_variable_10 == 1) { show_pwm_enable(sensor_dev_attr_pwm1_enable_group1, sensor_dev_attr_pwm1_enable_group0, ldvarg66); ldv_state_variable_10 = 1; } else { } goto ldv_32757; default: ldv_stop(); } ldv_32757: ; } else { } goto ldv_32643; case 24: ; if (ldv_state_variable_31 != 0) { tmp___243 = __VERIFIER_nondet_int(); switch (tmp___243) { case 0: ; if (ldv_state_variable_31 == 1) { store_beep(sensor_dev_attr_in1_beep_group1, sensor_dev_attr_in1_beep_group0, (char const *)ldvarg71, ldvarg70); ldv_state_variable_31 = 1; } else { } goto ldv_32762; case 1: ; if (ldv_state_variable_31 == 1) { show_beep(sensor_dev_attr_in1_beep_group1, sensor_dev_attr_in1_beep_group0, ldvarg69); ldv_state_variable_31 = 1; } else { } goto ldv_32762; default: ldv_stop(); } ldv_32762: ; } else { } goto ldv_32643; case 25: ; if (ldv_state_variable_35 != 0) { tmp___244 = __VERIFIER_nondet_int(); switch (tmp___244) { case 0: ; if (ldv_state_variable_35 == 1) { show_alarm(ldvarg72, ldvarg74, ldvarg73); ldv_state_variable_35 = 1; } else { } goto ldv_32767; default: ldv_stop(); } ldv_32767: ; } else { } goto ldv_32643; case 26: ; if (ldv_state_variable_11 != 0) { tmp___245 = __VERIFIER_nondet_int(); switch (tmp___245) { case 0: ; if (ldv_state_variable_11 == 1) { store_pwm(sensor_dev_attr_pwm3_group1, sensor_dev_attr_pwm3_group0, (char const *)ldvarg77, ldvarg76); ldv_state_variable_11 = 1; } else { } goto ldv_32771; case 1: ; if (ldv_state_variable_11 == 1) { show_pwm(sensor_dev_attr_pwm3_group1, sensor_dev_attr_pwm3_group0, ldvarg75); ldv_state_variable_11 = 1; } else { } goto ldv_32771; default: ldv_stop(); } ldv_32771: ; } else { } goto ldv_32643; case 27: ; if (ldv_state_variable_91 != 0) { tmp___246 = __VERIFIER_nondet_int(); switch (tmp___246) { case 0: ; if (ldv_state_variable_91 == 1) { store_in_max(sensor_dev_attr_in1_max_group1, sensor_dev_attr_in1_max_group0, (char const *)ldvarg80, ldvarg79); ldv_state_variable_91 = 1; } else { } goto ldv_32776; case 1: ; if (ldv_state_variable_91 == 1) { show_in_max(sensor_dev_attr_in1_max_group1, sensor_dev_attr_in1_max_group0, ldvarg78); ldv_state_variable_91 = 1; } else { } goto ldv_32776; default: ldv_stop(); } ldv_32776: ; } else { } goto ldv_32643; case 28: ; if (ldv_state_variable_78 != 0) { tmp___247 = __VERIFIER_nondet_int(); switch (tmp___247) { case 0: ; if (ldv_state_variable_78 == 1) { show_in_input(ldvarg81, ldvarg83, ldvarg82); ldv_state_variable_78 = 1; } else { } goto ldv_32781; default: ldv_stop(); } ldv_32781: ; } else { } goto ldv_32643; case 29: ; if (ldv_state_variable_48 != 0) { tmp___248 = __VERIFIER_nondet_int(); switch (tmp___248) { case 0: ; if (ldv_state_variable_48 == 1) { show_alarm(ldvarg84, ldvarg86, ldvarg85); ldv_state_variable_48 = 1; } else { } goto ldv_32785; default: ldv_stop(); } ldv_32785: ; } else { } goto ldv_32643; case 30: ; if (ldv_state_variable_87 != 0) { tmp___249 = __VERIFIER_nondet_int(); switch (tmp___249) { case 0: ; if (ldv_state_variable_87 == 1) { show_in_input(ldvarg87, ldvarg89, ldvarg88); ldv_state_variable_87 = 1; } else { } goto ldv_32789; default: ldv_stop(); } ldv_32789: ; } else { } goto ldv_32643; case 31: ; if (ldv_state_variable_93 != 0) { tmp___250 = __VERIFIER_nondet_int(); switch (tmp___250) { case 0: ; if (ldv_state_variable_93 == 1) { show_in_input(ldvarg90, ldvarg92, ldvarg91); ldv_state_variable_93 = 1; } else { } goto ldv_32793; default: ldv_stop(); } ldv_32793: ; } else { } goto ldv_32643; case 32: ; if (ldv_state_variable_77 != 0) { tmp___251 = __VERIFIER_nondet_int(); switch (tmp___251) { case 0: ; if (ldv_state_variable_77 == 1) { store_in_min(sensor_dev_attr_in6_min_group1, sensor_dev_attr_in6_min_group0, (char const *)ldvarg95, ldvarg94); ldv_state_variable_77 = 1; } else { } goto ldv_32797; case 1: ; if (ldv_state_variable_77 == 1) { show_in_min(sensor_dev_attr_in6_min_group1, sensor_dev_attr_in6_min_group0, ldvarg93); ldv_state_variable_77 = 1; } else { } goto ldv_32797; default: ldv_stop(); } ldv_32797: ; } else { } goto ldv_32643; case 33: ; if (ldv_state_variable_65 != 0) { tmp___252 = __VERIFIER_nondet_int(); switch (tmp___252) { case 0: ; if (ldv_state_variable_65 == 1) { store_fan_min(sensor_dev_attr_fan1_min_group1, sensor_dev_attr_fan1_min_group0, (char const *)ldvarg98, ldvarg97); ldv_state_variable_65 = 1; } else { } goto ldv_32802; case 1: ; if (ldv_state_variable_65 == 1) { show_fan_min(sensor_dev_attr_fan1_min_group1, sensor_dev_attr_fan1_min_group0, ldvarg96); ldv_state_variable_65 = 1; } else { } goto ldv_32802; default: ldv_stop(); } ldv_32802: ; } else { } goto ldv_32643; case 34: ; if (ldv_state_variable_29 != 0) { tmp___253 = __VERIFIER_nondet_int(); switch (tmp___253) { case 0: ; if (ldv_state_variable_29 == 1) { store_beep(sensor_dev_attr_in3_beep_group1, sensor_dev_attr_in3_beep_group0, (char const *)ldvarg101, ldvarg100); ldv_state_variable_29 = 1; } else { } goto ldv_32807; case 1: ; if (ldv_state_variable_29 == 1) { show_beep(sensor_dev_attr_in3_beep_group1, sensor_dev_attr_in3_beep_group0, ldvarg99); ldv_state_variable_29 = 1; } else { } goto ldv_32807; default: ldv_stop(); } ldv_32807: ; } else { } goto ldv_32643; case 35: ; if (ldv_state_variable_50 != 0) { tmp___254 = __VERIFIER_nondet_int(); switch (tmp___254) { case 0: ; if (ldv_state_variable_50 == 1) { store_vrm_reg(dev_attr_vrm_group1, dev_attr_vrm_group0, (char const *)ldvarg104, ldvarg103); ldv_state_variable_50 = 1; } else { } goto ldv_32812; case 1: ; if (ldv_state_variable_50 == 1) { show_vrm_reg(dev_attr_vrm_group1, dev_attr_vrm_group0, ldvarg102); ldv_state_variable_50 = 1; } else { } goto ldv_32812; default: ldv_stop(); } ldv_32812: ; } else { } goto ldv_32643; case 36: ; if (ldv_state_variable_39 != 0) { tmp___255 = __VERIFIER_nondet_int(); switch (tmp___255) { case 0: ; if (ldv_state_variable_39 == 1) { show_alarm(ldvarg105, ldvarg107, ldvarg106); ldv_state_variable_39 = 1; } else { } goto ldv_32817; default: ldv_stop(); } ldv_32817: ; } else { } goto ldv_32643; case 37: ; if (ldv_state_variable_64 != 0) { tmp___256 = __VERIFIER_nondet_int(); switch (tmp___256) { case 0: ; if (ldv_state_variable_64 == 1) { show_fan_input(ldvarg108, ldvarg110, ldvarg109); ldv_state_variable_64 = 1; } else { } goto ldv_32821; default: ldv_stop(); } ldv_32821: ; } else { } goto ldv_32643; case 38: ; if (ldv_state_variable_58 != 0) { tmp___257 = __VERIFIER_nondet_int(); switch (tmp___257) { case 0: ; if (ldv_state_variable_58 == 1) { store_temp_max_hyst(sensor_dev_attr_temp1_max_hyst_group1, sensor_dev_attr_temp1_max_hyst_group0, (char const *)ldvarg113, ldvarg112); ldv_state_variable_58 = 1; } else { } goto ldv_32825; case 1: ; if (ldv_state_variable_58 == 1) { show_temp_max_hyst(sensor_dev_attr_temp1_max_hyst_group1, sensor_dev_attr_temp1_max_hyst_group0, ldvarg111); ldv_state_variable_58 = 1; } else { } goto ldv_32825; default: ldv_stop(); } ldv_32825: ; } else { } goto ldv_32643; case 39: ; if (ldv_state_variable_41 != 0) { tmp___258 = __VERIFIER_nondet_int(); switch (tmp___258) { case 0: ; if (ldv_state_variable_41 == 1) { show_alarm(ldvarg114, ldvarg116, ldvarg115); ldv_state_variable_41 = 1; } else { } goto ldv_32830; default: ldv_stop(); } ldv_32830: ; } else { } goto ldv_32643; case 40: ; if (ldv_state_variable_12 != 0) { tmp___259 = __VERIFIER_nondet_int(); switch (tmp___259) { case 0: ; if (ldv_state_variable_12 == 1) { store_pwm(sensor_dev_attr_pwm2_group1, sensor_dev_attr_pwm2_group0, (char const *)ldvarg119, ldvarg118); ldv_state_variable_12 = 1; } else { } goto ldv_32834; case 1: ; if (ldv_state_variable_12 == 1) { show_pwm(sensor_dev_attr_pwm2_group1, sensor_dev_attr_pwm2_group0, ldvarg117); ldv_state_variable_12 = 1; } else { } goto ldv_32834; default: ldv_stop(); } ldv_32834: ; } else { } goto ldv_32643; case 41: ; if (ldv_state_variable_15 != 0) { tmp___260 = __VERIFIER_nondet_int(); switch (tmp___260) { case 0: ; if (ldv_state_variable_15 == 1) { store_fan_div(sensor_dev_attr_fan2_div_group1, sensor_dev_attr_fan2_div_group0, (char const *)ldvarg122, ldvarg121); ldv_state_variable_15 = 1; } else { } goto ldv_32839; case 1: ; if (ldv_state_variable_15 == 1) { show_fan_div(sensor_dev_attr_fan2_div_group1, sensor_dev_attr_fan2_div_group0, ldvarg120); ldv_state_variable_15 = 1; } else { } goto ldv_32839; default: ldv_stop(); } ldv_32839: ; } else { } goto ldv_32643; case 42: ; if (ldv_state_variable_81 != 0) { tmp___261 = __VERIFIER_nondet_int(); switch (tmp___261) { case 0: ; if (ldv_state_variable_81 == 1) { show_in_input(ldvarg123, ldvarg125, ldvarg124); ldv_state_variable_81 = 1; } else { } goto ldv_32844; default: ldv_stop(); } ldv_32844: ; } else { } goto ldv_32643; case 43: ; if (ldv_state_variable_52 != 0) { tmp___262 = __VERIFIER_nondet_int(); switch (tmp___262) { case 0: ; if (ldv_state_variable_52 == 1) { store_temp_max_hyst(sensor_dev_attr_temp3_max_hyst_group1, sensor_dev_attr_temp3_max_hyst_group0, (char const *)ldvarg128, ldvarg127); ldv_state_variable_52 = 1; } else { } goto ldv_32848; case 1: ; if (ldv_state_variable_52 == 1) { show_temp_max_hyst(sensor_dev_attr_temp3_max_hyst_group1, sensor_dev_attr_temp3_max_hyst_group0, ldvarg126); ldv_state_variable_52 = 1; } else { } goto ldv_32848; default: ldv_stop(); } ldv_32848: ; } else { } goto ldv_32643; case 44: ; if (ldv_state_variable_60 != 0) { tmp___263 = __VERIFIER_nondet_int(); switch (tmp___263) { case 0: ; if (ldv_state_variable_60 == 1) { show_temp(ldvarg129, ldvarg131, ldvarg130); ldv_state_variable_60 = 1; } else { } goto ldv_32853; default: ldv_stop(); } ldv_32853: ; } else { } goto ldv_32643; case 45: ; if (ldv_state_variable_56 != 0) { tmp___264 = __VERIFIER_nondet_int(); switch (tmp___264) { case 0: ; if (ldv_state_variable_56 == 1) { store_temp_max(sensor_dev_attr_temp2_max_group1, sensor_dev_attr_temp2_max_group0, (char const *)ldvarg134, ldvarg133); ldv_state_variable_56 = 1; } else { } goto ldv_32857; case 1: ; if (ldv_state_variable_56 == 1) { show_temp_max(sensor_dev_attr_temp2_max_group1, sensor_dev_attr_temp2_max_group0, ldvarg132); ldv_state_variable_56 = 1; } else { } goto ldv_32857; default: ldv_stop(); } ldv_32857: ; } else { } goto ldv_32643; case 46: ; if (ldv_state_variable_73 != 0) { tmp___265 = __VERIFIER_nondet_int(); switch (tmp___265) { case 0: ; if (ldv_state_variable_73 == 1) { store_in_max(sensor_dev_attr_in7_max_group1, sensor_dev_attr_in7_max_group0, (char const *)ldvarg137, ldvarg136); ldv_state_variable_73 = 1; } else { } goto ldv_32862; case 1: ; if (ldv_state_variable_73 == 1) { show_in_max(sensor_dev_attr_in7_max_group1, sensor_dev_attr_in7_max_group0, ldvarg135); ldv_state_variable_73 = 1; } else { } goto ldv_32862; default: ldv_stop(); } ldv_32862: ; } else { } goto ldv_32643; case 47: ; if (ldv_state_variable_66 != 0) { tmp___266 = __VERIFIER_nondet_int(); switch (tmp___266) { case 0: ; if (ldv_state_variable_66 == 1) { show_fan_input(ldvarg138, ldvarg140, ldvarg139); ldv_state_variable_66 = 1; } else { } goto ldv_32867; default: ldv_stop(); } ldv_32867: ; } else { } goto ldv_32643; case 48: ; if (ldv_state_variable_45 != 0) { tmp___267 = __VERIFIER_nondet_int(); switch (tmp___267) { case 0: ; if (ldv_state_variable_45 == 1) { show_alarm(ldvarg141, ldvarg143, ldvarg142); ldv_state_variable_45 = 1; } else { } goto ldv_32871; default: ldv_stop(); } ldv_32871: ; } else { } goto ldv_32643; case 49: ; if (ldv_state_variable_86 != 0) { tmp___268 = __VERIFIER_nondet_int(); switch (tmp___268) { case 0: ; if (ldv_state_variable_86 == 1) { store_in_min(sensor_dev_attr_in3_min_group1, sensor_dev_attr_in3_min_group0, (char const *)ldvarg146, ldvarg145); ldv_state_variable_86 = 1; } else { } goto ldv_32875; case 1: ; if (ldv_state_variable_86 == 1) { show_in_min(sensor_dev_attr_in3_min_group1, sensor_dev_attr_in3_min_group0, ldvarg144); ldv_state_variable_86 = 1; } else { } goto ldv_32875; default: ldv_stop(); } ldv_32875: ; } else { } goto ldv_32643; case 50: ; if (ldv_state_variable_76 != 0) { tmp___269 = __VERIFIER_nondet_int(); switch (tmp___269) { case 0: ; if (ldv_state_variable_76 == 1) { store_in_max(sensor_dev_attr_in6_max_group1, sensor_dev_attr_in6_max_group0, (char const *)ldvarg149, ldvarg148); ldv_state_variable_76 = 1; } else { } goto ldv_32880; case 1: ; if (ldv_state_variable_76 == 1) { show_in_max(sensor_dev_attr_in6_max_group1, sensor_dev_attr_in6_max_group0, ldvarg147); ldv_state_variable_76 = 1; } else { } goto ldv_32880; default: ldv_stop(); } ldv_32880: ; } else { } goto ldv_32643; case 51: ; if (ldv_state_variable_19 != 0) { tmp___270 = __VERIFIER_nondet_int(); switch (tmp___270) { case 0: ; if (ldv_state_variable_19 == 1) { store_beep(sensor_dev_attr_temp2_beep_group1, sensor_dev_attr_temp2_beep_group0, (char const *)ldvarg152, ldvarg151); ldv_state_variable_19 = 1; } else { } goto ldv_32885; case 1: ; if (ldv_state_variable_19 == 1) { show_beep(sensor_dev_attr_temp2_beep_group1, sensor_dev_attr_temp2_beep_group0, ldvarg150); ldv_state_variable_19 = 1; } else { } goto ldv_32885; default: ldv_stop(); } ldv_32885: ; } else { } goto ldv_32643; case 52: ; if (ldv_state_variable_62 != 0) { tmp___271 = __VERIFIER_nondet_int(); switch (tmp___271) { case 0: ; if (ldv_state_variable_62 == 1) { show_fan_input(ldvarg153, ldvarg155, ldvarg154); ldv_state_variable_62 = 1; } else { } goto ldv_32890; default: ldv_stop(); } ldv_32890: ; } else { } goto ldv_32643; case 53: ; if (ldv_state_variable_54 != 0) { tmp___272 = __VERIFIER_nondet_int(); switch (tmp___272) { case 0: ; if (ldv_state_variable_54 == 1) { show_temp(ldvarg156, ldvarg158, ldvarg157); ldv_state_variable_54 = 1; } else { } goto ldv_32894; default: ldv_stop(); } ldv_32894: ; } else { } goto ldv_32643; case 54: ; if (ldv_state_variable_67 != 0) { tmp___273 = __VERIFIER_nondet_int(); switch (tmp___273) { case 0: ; if (ldv_state_variable_67 == 1) { store_regs_in_max0(dev_attr_in0_max_group1, dev_attr_in0_max_group0, (char const *)ldvarg161, ldvarg160); ldv_state_variable_67 = 1; } else { } goto ldv_32898; case 1: ; if (ldv_state_variable_67 == 1) { show_regs_in_max0(dev_attr_in0_max_group1, dev_attr_in0_max_group0, ldvarg159); ldv_state_variable_67 = 1; } else { } goto ldv_32898; default: ldv_stop(); } ldv_32898: ; } else { } goto ldv_32643; case 55: ; if (ldv_state_variable_70 != 0) { tmp___274 = __VERIFIER_nondet_int(); switch (tmp___274) { case 0: ; if (ldv_state_variable_70 == 1) { store_in_max(sensor_dev_attr_in8_max_group1, sensor_dev_attr_in8_max_group0, (char const *)ldvarg164, ldvarg163); ldv_state_variable_70 = 1; } else { } goto ldv_32903; case 1: ; if (ldv_state_variable_70 == 1) { show_in_max(sensor_dev_attr_in8_max_group1, sensor_dev_attr_in8_max_group0, ldvarg162); ldv_state_variable_70 = 1; } else { } goto ldv_32903; default: ldv_stop(); } ldv_32903: ; } else { } goto ldv_32643; case 56: ; if (ldv_state_variable_68 != 0) { tmp___275 = __VERIFIER_nondet_int(); switch (tmp___275) { case 0: ; if (ldv_state_variable_68 == 1) { store_regs_in_min0(dev_attr_in0_min_group1, dev_attr_in0_min_group0, (char const *)ldvarg167, ldvarg166); ldv_state_variable_68 = 1; } else { } goto ldv_32908; case 1: ; if (ldv_state_variable_68 == 1) { show_regs_in_min0(dev_attr_in0_min_group1, dev_attr_in0_min_group0, ldvarg165); ldv_state_variable_68 = 1; } else { } goto ldv_32908; default: ldv_stop(); } ldv_32908: ; } else { } goto ldv_32643; case 57: ; if (ldv_state_variable_2 != 0) { tmp___276 = __VERIFIER_nondet_int(); switch (tmp___276) { case 0: ; if (ldv_state_variable_2 == 1) { store_temp_type(sensor_dev_attr_temp3_type_group1, sensor_dev_attr_temp3_type_group0, (char const *)ldvarg170, ldvarg169); ldv_state_variable_2 = 1; } else { } goto ldv_32913; case 1: ; if (ldv_state_variable_2 == 1) { show_temp_type(sensor_dev_attr_temp3_type_group1, sensor_dev_attr_temp3_type_group0, ldvarg168); ldv_state_variable_2 = 1; } else { } goto ldv_32913; default: ldv_stop(); } ldv_32913: ; } else { } goto ldv_32643; case 58: ; if (ldv_state_variable_17 != 0) { tmp___277 = __VERIFIER_nondet_int(); switch (tmp___277) { case 0: ; if (ldv_state_variable_17 == 1) { store_beep(sensor_dev_attr_beep_enable_group1, sensor_dev_attr_beep_enable_group0, (char const *)ldvarg173, ldvarg172); ldv_state_variable_17 = 1; } else { } goto ldv_32918; case 1: ; if (ldv_state_variable_17 == 1) { show_beep(sensor_dev_attr_beep_enable_group1, sensor_dev_attr_beep_enable_group0, ldvarg171); ldv_state_variable_17 = 1; } else { } goto ldv_32918; default: ldv_stop(); } ldv_32918: ; } else { } goto ldv_32643; case 59: ; if (ldv_state_variable_1 != 0) { tmp___278 = __VERIFIER_nondet_int(); switch (tmp___278) { case 0: ; if (ldv_state_variable_1 == 1) { show_name(ldvarg174, ldvarg176, ldvarg175); ldv_state_variable_1 = 1; } else { } goto ldv_32923; default: ldv_stop(); } ldv_32923: ; } else { } goto ldv_32643; case 60: ; if (ldv_state_variable_88 != 0) { tmp___279 = __VERIFIER_nondet_int(); switch (tmp___279) { case 0: ; if (ldv_state_variable_88 == 1) { store_in_max(sensor_dev_attr_in2_max_group1, sensor_dev_attr_in2_max_group0, (char const *)ldvarg179, ldvarg178); ldv_state_variable_88 = 1; } else { } goto ldv_32927; case 1: ; if (ldv_state_variable_88 == 1) { show_in_max(sensor_dev_attr_in2_max_group1, sensor_dev_attr_in2_max_group0, ldvarg177); ldv_state_variable_88 = 1; } else { } goto ldv_32927; default: ldv_stop(); } ldv_32927: ; } else { } goto ldv_32643; case 61: ; if (ldv_state_variable_30 != 0) { tmp___280 = __VERIFIER_nondet_int(); switch (tmp___280) { case 0: ; if (ldv_state_variable_30 == 1) { store_beep(sensor_dev_attr_in2_beep_group1, sensor_dev_attr_in2_beep_group0, (char const *)ldvarg182, ldvarg181); ldv_state_variable_30 = 1; } else { } goto ldv_32932; case 1: ; if (ldv_state_variable_30 == 1) { show_beep(sensor_dev_attr_in2_beep_group1, sensor_dev_attr_in2_beep_group0, ldvarg180); ldv_state_variable_30 = 1; } else { } goto ldv_32932; default: ldv_stop(); } ldv_32932: ; } else { } goto ldv_32643; case 62: ; if (ldv_state_variable_82 != 0) { tmp___281 = __VERIFIER_nondet_int(); switch (tmp___281) { case 0: ; if (ldv_state_variable_82 == 1) { store_in_max(sensor_dev_attr_in4_max_group1, sensor_dev_attr_in4_max_group0, (char const *)ldvarg185, ldvarg184); ldv_state_variable_82 = 1; } else { } goto ldv_32937; case 1: ; if (ldv_state_variable_82 == 1) { show_in_max(sensor_dev_attr_in4_max_group1, sensor_dev_attr_in4_max_group0, ldvarg183); ldv_state_variable_82 = 1; } else { } goto ldv_32937; default: ldv_stop(); } ldv_32937: ; } else { } goto ldv_32643; case 63: ; if (ldv_state_variable_25 != 0) { tmp___282 = __VERIFIER_nondet_int(); switch (tmp___282) { case 0: ; if (ldv_state_variable_25 == 1) { store_beep(sensor_dev_attr_in7_beep_group1, sensor_dev_attr_in7_beep_group0, (char const *)ldvarg188, ldvarg187); ldv_state_variable_25 = 1; } else { } goto ldv_32942; case 1: ; if (ldv_state_variable_25 == 1) { show_beep(sensor_dev_attr_in7_beep_group1, sensor_dev_attr_in7_beep_group0, ldvarg186); ldv_state_variable_25 = 1; } else { } goto ldv_32942; default: ldv_stop(); } ldv_32942: ; } else { } goto ldv_32643; case 64: ; if (ldv_state_variable_28 != 0) { tmp___283 = __VERIFIER_nondet_int(); switch (tmp___283) { case 0: ; if (ldv_state_variable_28 == 1) { store_beep(sensor_dev_attr_in4_beep_group1, sensor_dev_attr_in4_beep_group0, (char const *)ldvarg191, ldvarg190); ldv_state_variable_28 = 1; } else { } goto ldv_32947; case 1: ; if (ldv_state_variable_28 == 1) { show_beep(sensor_dev_attr_in4_beep_group1, sensor_dev_attr_in4_beep_group0, ldvarg189); ldv_state_variable_28 = 1; } else { } goto ldv_32947; default: ldv_stop(); } ldv_32947: ; } else { } goto ldv_32643; case 65: ; if (ldv_state_variable_83 != 0) { tmp___284 = __VERIFIER_nondet_int(); switch (tmp___284) { case 0: ; if (ldv_state_variable_83 == 1) { store_in_min(sensor_dev_attr_in4_min_group1, sensor_dev_attr_in4_min_group0, (char const *)ldvarg194, ldvarg193); ldv_state_variable_83 = 1; } else { } goto ldv_32952; case 1: ; if (ldv_state_variable_83 == 1) { show_in_min(sensor_dev_attr_in4_min_group1, sensor_dev_attr_in4_min_group0, ldvarg192); ldv_state_variable_83 = 1; } else { } goto ldv_32952; default: ldv_stop(); } ldv_32952: ; } else { } goto ldv_32643; case 66: ; if (ldv_state_variable_75 != 0) { tmp___285 = __VERIFIER_nondet_int(); switch (tmp___285) { case 0: ; if (ldv_state_variable_75 == 1) { show_in_input(ldvarg195, ldvarg197, ldvarg196); ldv_state_variable_75 = 1; } else { } goto ldv_32957; default: ldv_stop(); } ldv_32957: ; } else { } goto ldv_32643; case 67: ; if (ldv_state_variable_40 != 0) { tmp___286 = __VERIFIER_nondet_int(); switch (tmp___286) { case 0: ; if (ldv_state_variable_40 == 1) { show_alarm(ldvarg198, ldvarg200, ldvarg199); ldv_state_variable_40 = 1; } else { } goto ldv_32961; default: ldv_stop(); } ldv_32961: ; } else { } goto ldv_32643; case 68: ; if (ldv_state_variable_14 != 0) { tmp___287 = __VERIFIER_nondet_int(); switch (tmp___287) { case 0: ; if (ldv_state_variable_14 == 1) { store_fan_div(sensor_dev_attr_fan3_div_group1, sensor_dev_attr_fan3_div_group0, (char const *)ldvarg203, ldvarg202); ldv_state_variable_14 = 1; } else { } goto ldv_32965; case 1: ; if (ldv_state_variable_14 == 1) { show_fan_div(sensor_dev_attr_fan3_div_group1, sensor_dev_attr_fan3_div_group0, ldvarg201); ldv_state_variable_14 = 1; } else { } goto ldv_32965; default: ldv_stop(); } ldv_32965: ; } else { } goto ldv_32643; case 69: ; if (ldv_state_variable_69 != 0) { tmp___288 = __VERIFIER_nondet_int(); switch (tmp___288) { case 0: ; if (ldv_state_variable_69 == 1) { show_regs_in_0(ldvarg204, ldvarg206, ldvarg205); ldv_state_variable_69 = 1; } else { } goto ldv_32970; default: ldv_stop(); } ldv_32970: ; } else { } goto ldv_32643; case 70: ; if (ldv_state_variable_59 != 0) { tmp___289 = __VERIFIER_nondet_int(); switch (tmp___289) { case 0: ; if (ldv_state_variable_59 == 1) { store_temp_max(sensor_dev_attr_temp1_max_group1, sensor_dev_attr_temp1_max_group0, (char const *)ldvarg209, ldvarg208); ldv_state_variable_59 = 1; } else { } goto ldv_32974; case 1: ; if (ldv_state_variable_59 == 1) { show_temp_max(sensor_dev_attr_temp1_max_group1, sensor_dev_attr_temp1_max_group0, ldvarg207); ldv_state_variable_59 = 1; } else { } goto ldv_32974; default: ldv_stop(); } ldv_32974: ; } else { } goto ldv_32643; case 71: ; if (ldv_state_variable_49 != 0) { tmp___290 = __VERIFIER_nondet_int(); switch (tmp___290) { case 0: ; if (ldv_state_variable_49 == 1) { show_alarms_reg(ldvarg210, ldvarg212, ldvarg211); ldv_state_variable_49 = 1; } else { } goto ldv_32979; default: ldv_stop(); } ldv_32979: ; } else { } goto ldv_32643; case 72: ; if (ldv_state_variable_24 != 0) { tmp___291 = __VERIFIER_nondet_int(); switch (tmp___291) { case 0: ; if (ldv_state_variable_24 == 1) { store_beep(sensor_dev_attr_in8_beep_group1, sensor_dev_attr_in8_beep_group0, (char const *)ldvarg215, ldvarg214); ldv_state_variable_24 = 1; } else { } goto ldv_32983; case 1: ; if (ldv_state_variable_24 == 1) { show_beep(sensor_dev_attr_in8_beep_group1, sensor_dev_attr_in8_beep_group0, ldvarg213); ldv_state_variable_24 = 1; } else { } goto ldv_32983; default: ldv_stop(); } ldv_32983: ; } else { } goto ldv_32643; case 73: ; if (ldv_state_variable_53 != 0) { tmp___292 = __VERIFIER_nondet_int(); switch (tmp___292) { case 0: ; if (ldv_state_variable_53 == 1) { store_temp_max(sensor_dev_attr_temp3_max_group1, sensor_dev_attr_temp3_max_group0, (char const *)ldvarg218, ldvarg217); ldv_state_variable_53 = 1; } else { } goto ldv_32988; case 1: ; if (ldv_state_variable_53 == 1) { show_temp_max(sensor_dev_attr_temp3_max_group1, sensor_dev_attr_temp3_max_group0, ldvarg216); ldv_state_variable_53 = 1; } else { } goto ldv_32988; default: ldv_stop(); } ldv_32988: ; } else { } goto ldv_32643; case 74: ; if (ldv_state_variable_79 != 0) { tmp___293 = __VERIFIER_nondet_int(); switch (tmp___293) { case 0: ; if (ldv_state_variable_79 == 1) { store_in_max(sensor_dev_attr_in5_max_group1, sensor_dev_attr_in5_max_group0, (char const *)ldvarg221, ldvarg220); ldv_state_variable_79 = 1; } else { } goto ldv_32993; case 1: ; if (ldv_state_variable_79 == 1) { show_in_max(sensor_dev_attr_in5_max_group1, sensor_dev_attr_in5_max_group0, ldvarg219); ldv_state_variable_79 = 1; } else { } goto ldv_32993; default: ldv_stop(); } ldv_32993: ; } else { } goto ldv_32643; case 75: ; if (ldv_state_variable_22 != 0) { tmp___294 = __VERIFIER_nondet_int(); switch (tmp___294) { case 0: ; if (ldv_state_variable_22 == 1) { store_beep(sensor_dev_attr_fan2_beep_group1, sensor_dev_attr_fan2_beep_group0, (char const *)ldvarg224, ldvarg223); ldv_state_variable_22 = 1; } else { } goto ldv_32998; case 1: ; if (ldv_state_variable_22 == 1) { show_beep(sensor_dev_attr_fan2_beep_group1, sensor_dev_attr_fan2_beep_group0, ldvarg222); ldv_state_variable_22 = 1; } else { } goto ldv_32998; default: ldv_stop(); } ldv_32998: ; } else { } goto ldv_32643; case 76: ; if (ldv_state_variable_42 != 0) { tmp___295 = __VERIFIER_nondet_int(); switch (tmp___295) { case 0: ; if (ldv_state_variable_42 == 1) { show_alarm(ldvarg225, ldvarg227, ldvarg226); ldv_state_variable_42 = 1; } else { } goto ldv_33003; default: ldv_stop(); } ldv_33003: ; } else { } goto ldv_32643; case 77: ; if (ldv_state_variable_0 != 0) { tmp___296 = __VERIFIER_nondet_int(); switch (tmp___296) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { sensors_w83627hf_exit(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_33008; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_7 = sensors_w83627hf_init(); if (ldv_retval_7 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_7 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_5 = 1; ldv_initialize_sensor_device_attribute_5(); ldv_state_variable_43 = 1; ldv_state_variable_37 = 1; ldv_state_variable_34 = 1; ldv_state_variable_4 = 1; ldv_initialize_sensor_device_attribute_4(); ldv_state_variable_38 = 1; ldv_state_variable_8 = 1; ldv_initialize_sensor_device_attribute_8(); ldv_state_variable_47 = 1; ldv_state_variable_51 = 1; ldv_state_variable_9 = 1; ldv_initialize_sensor_device_attribute_9(); ldv_state_variable_36 = 1; ldv_state_variable_3 = 1; ldv_initialize_sensor_device_attribute_3(); ldv_state_variable_85 = 1; ldv_initialize_sensor_device_attribute_85(); ldv_state_variable_6 = 1; ldv_initialize_sensor_device_attribute_6(); ldv_state_variable_13 = 1; ldv_initialize_sensor_device_attribute_13(); ldv_state_variable_23 = 1; ldv_initialize_sensor_device_attribute_23(); ldv_state_variable_46 = 1; ldv_state_variable_42 = 1; ldv_state_variable_22 = 1; ldv_initialize_sensor_device_attribute_22(); ldv_state_variable_79 = 1; ldv_initialize_sensor_device_attribute_79(); ldv_state_variable_53 = 1; ldv_initialize_sensor_device_attribute_53(); ldv_state_variable_24 = 1; ldv_initialize_sensor_device_attribute_24(); ldv_state_variable_49 = 1; ldv_state_variable_59 = 1; ldv_initialize_sensor_device_attribute_59(); ldv_state_variable_69 = 1; ldv_state_variable_14 = 1; ldv_initialize_sensor_device_attribute_14(); ldv_state_variable_40 = 1; ldv_state_variable_75 = 1; ldv_state_variable_83 = 1; ldv_initialize_sensor_device_attribute_83(); ldv_state_variable_28 = 1; ldv_initialize_sensor_device_attribute_28(); ldv_state_variable_25 = 1; ldv_initialize_sensor_device_attribute_25(); ldv_state_variable_82 = 1; ldv_initialize_sensor_device_attribute_82(); ldv_state_variable_30 = 1; ldv_initialize_sensor_device_attribute_30(); ldv_state_variable_88 = 1; ldv_initialize_sensor_device_attribute_88(); ldv_state_variable_1 = 1; ldv_state_variable_17 = 1; ldv_initialize_sensor_device_attribute_17(); ldv_state_variable_2 = 1; ldv_initialize_sensor_device_attribute_2(); ldv_state_variable_68 = 1; ldv_initialize_device_attribute_68(); ldv_state_variable_70 = 1; ldv_initialize_sensor_device_attribute_70(); ldv_state_variable_67 = 1; ldv_initialize_device_attribute_67(); ldv_state_variable_54 = 1; ldv_state_variable_62 = 1; ldv_state_variable_19 = 1; ldv_initialize_sensor_device_attribute_19(); ldv_state_variable_76 = 1; ldv_initialize_sensor_device_attribute_76(); ldv_state_variable_86 = 1; ldv_initialize_sensor_device_attribute_86(); ldv_state_variable_45 = 1; ldv_state_variable_66 = 1; ldv_state_variable_73 = 1; ldv_initialize_sensor_device_attribute_73(); ldv_state_variable_56 = 1; ldv_initialize_sensor_device_attribute_56(); ldv_state_variable_60 = 1; ldv_state_variable_52 = 1; ldv_initialize_sensor_device_attribute_52(); ldv_state_variable_81 = 1; ldv_state_variable_15 = 1; ldv_initialize_sensor_device_attribute_15(); ldv_state_variable_12 = 1; ldv_initialize_sensor_device_attribute_12(); ldv_state_variable_41 = 1; ldv_state_variable_58 = 1; ldv_initialize_sensor_device_attribute_58(); ldv_state_variable_64 = 1; ldv_state_variable_39 = 1; ldv_state_variable_50 = 1; ldv_initialize_device_attribute_50(); ldv_state_variable_29 = 1; ldv_initialize_sensor_device_attribute_29(); ldv_state_variable_65 = 1; ldv_initialize_sensor_device_attribute_65(); ldv_state_variable_77 = 1; ldv_initialize_sensor_device_attribute_77(); ldv_state_variable_93 = 1; ldv_state_variable_87 = 1; ldv_state_variable_48 = 1; ldv_state_variable_78 = 1; ldv_state_variable_91 = 1; ldv_initialize_sensor_device_attribute_91(); ldv_state_variable_11 = 1; ldv_initialize_sensor_device_attribute_11(); ldv_state_variable_35 = 1; ldv_state_variable_31 = 1; ldv_initialize_sensor_device_attribute_31(); ldv_state_variable_10 = 1; ldv_initialize_sensor_device_attribute_10(); ldv_state_variable_89 = 1; ldv_initialize_sensor_device_attribute_89(); ldv_state_variable_92 = 1; ldv_initialize_sensor_device_attribute_92(); ldv_state_variable_20 = 1; ldv_initialize_sensor_device_attribute_20(); ldv_state_variable_61 = 1; ldv_initialize_sensor_device_attribute_61(); ldv_state_variable_57 = 1; ldv_state_variable_95 = 1; ldv_dev_pm_ops_95(); ldv_state_variable_27 = 1; ldv_initialize_sensor_device_attribute_27(); ldv_state_variable_74 = 1; ldv_initialize_sensor_device_attribute_74(); ldv_state_variable_84 = 1; ldv_state_variable_55 = 1; ldv_initialize_sensor_device_attribute_55(); ldv_state_variable_44 = 1; ldv_state_variable_16 = 1; ldv_initialize_sensor_device_attribute_16(); ldv_state_variable_72 = 1; ldv_state_variable_18 = 1; ldv_initialize_sensor_device_attribute_18(); ldv_state_variable_26 = 1; ldv_initialize_sensor_device_attribute_26(); ldv_state_variable_80 = 1; ldv_initialize_sensor_device_attribute_80(); ldv_state_variable_7 = 1; ldv_initialize_sensor_device_attribute_7(); ldv_state_variable_71 = 1; ldv_initialize_sensor_device_attribute_71(); ldv_state_variable_21 = 1; ldv_initialize_sensor_device_attribute_21(); ldv_state_variable_63 = 1; ldv_initialize_sensor_device_attribute_63(); ldv_state_variable_90 = 1; ldv_state_variable_32 = 1; ldv_initialize_sensor_device_attribute_32(); ldv_state_variable_33 = 1; ldv_initialize_device_attribute_33(); } else { } } else { } goto ldv_33008; default: ldv_stop(); } ldv_33008: ; } else { } goto ldv_32643; case 78: ; if (ldv_state_variable_46 != 0) { tmp___297 = __VERIFIER_nondet_int(); switch (tmp___297) { case 0: ; if (ldv_state_variable_46 == 1) { show_alarm(ldvarg228, ldvarg230, ldvarg229); ldv_state_variable_46 = 1; } else { } goto ldv_33013; default: ldv_stop(); } ldv_33013: ; } else { } goto ldv_32643; case 79: ; if (ldv_state_variable_23 != 0) { tmp___298 = __VERIFIER_nondet_int(); switch (tmp___298) { case 0: ; if (ldv_state_variable_23 == 1) { store_beep(sensor_dev_attr_fan1_beep_group1, sensor_dev_attr_fan1_beep_group0, (char const *)ldvarg233, ldvarg232); ldv_state_variable_23 = 1; } else { } goto ldv_33017; case 1: ; if (ldv_state_variable_23 == 1) { show_beep(sensor_dev_attr_fan1_beep_group1, sensor_dev_attr_fan1_beep_group0, ldvarg231); ldv_state_variable_23 = 1; } else { } goto ldv_33017; default: ldv_stop(); } ldv_33017: ; } else { } goto ldv_32643; case 80: ; if (ldv_state_variable_13 != 0) { tmp___299 = __VERIFIER_nondet_int(); switch (tmp___299) { case 0: ; if (ldv_state_variable_13 == 1) { store_pwm(sensor_dev_attr_pwm1_group1, sensor_dev_attr_pwm1_group0, (char const *)ldvarg236, ldvarg235); ldv_state_variable_13 = 1; } else { } goto ldv_33022; case 1: ; if (ldv_state_variable_13 == 1) { show_pwm(sensor_dev_attr_pwm1_group1, sensor_dev_attr_pwm1_group0, ldvarg234); ldv_state_variable_13 = 1; } else { } goto ldv_33022; default: ldv_stop(); } ldv_33022: ; } else { } goto ldv_32643; case 81: ; if (ldv_state_variable_6 != 0) { tmp___300 = __VERIFIER_nondet_int(); switch (tmp___300) { case 0: ; if (ldv_state_variable_6 == 1) { store_pwm_freq(sensor_dev_attr_pwm2_freq_group1, sensor_dev_attr_pwm2_freq_group0, (char const *)ldvarg239, ldvarg238); ldv_state_variable_6 = 1; } else { } goto ldv_33027; case 1: ; if (ldv_state_variable_6 == 1) { show_pwm_freq(sensor_dev_attr_pwm2_freq_group1, sensor_dev_attr_pwm2_freq_group0, ldvarg237); ldv_state_variable_6 = 1; } else { } goto ldv_33027; default: ldv_stop(); } ldv_33027: ; } else { } goto ldv_32643; case 82: ; if (ldv_state_variable_85 != 0) { tmp___301 = __VERIFIER_nondet_int(); switch (tmp___301) { case 0: ; if (ldv_state_variable_85 == 1) { store_in_max(sensor_dev_attr_in3_max_group1, sensor_dev_attr_in3_max_group0, (char const *)ldvarg242, ldvarg241); ldv_state_variable_85 = 1; } else { } goto ldv_33032; case 1: ; if (ldv_state_variable_85 == 1) { show_in_max(sensor_dev_attr_in3_max_group1, sensor_dev_attr_in3_max_group0, ldvarg240); ldv_state_variable_85 = 1; } else { } goto ldv_33032; default: ldv_stop(); } ldv_33032: ; } else { } goto ldv_32643; case 83: ; if (ldv_state_variable_3 != 0) { tmp___302 = __VERIFIER_nondet_int(); switch (tmp___302) { case 0: ; if (ldv_state_variable_3 == 1) { store_temp_type(sensor_dev_attr_temp2_type_group1, sensor_dev_attr_temp2_type_group0, (char const *)ldvarg245, ldvarg244); ldv_state_variable_3 = 1; } else { } goto ldv_33037; case 1: ; if (ldv_state_variable_3 == 1) { show_temp_type(sensor_dev_attr_temp2_type_group1, sensor_dev_attr_temp2_type_group0, ldvarg243); ldv_state_variable_3 = 1; } else { } goto ldv_33037; default: ldv_stop(); } ldv_33037: ; } else { } goto ldv_32643; case 84: ; if (ldv_state_variable_36 != 0) { tmp___303 = __VERIFIER_nondet_int(); switch (tmp___303) { case 0: ; if (ldv_state_variable_36 == 1) { show_alarm(ldvarg246, ldvarg248, ldvarg247); ldv_state_variable_36 = 1; } else { } goto ldv_33042; default: ldv_stop(); } ldv_33042: ; } else { } goto ldv_32643; case 85: ; if (ldv_state_variable_94 != 0) { tmp___304 = __VERIFIER_nondet_int(); switch (tmp___304) { case 0: ; if (ldv_state_variable_94 == 1) { ldv_retval_9 = w83627hf_probe(w83627hf_driver_group1); if (ldv_retval_9 == 0) { ldv_state_variable_94 = 2; ref_cnt = ref_cnt + 1; probed_94 = 1; } else { } } else { } goto ldv_33046; case 1: ; if (ldv_state_variable_94 == 1 && probed_94 == 1) { ldv_retval_8 = w83627hf_remove(w83627hf_driver_group1); if (ldv_retval_8 == 0) { ldv_state_variable_94 = 1; ref_cnt = ref_cnt - 1; probed_94 = 0; } else { } } else { } if (ldv_state_variable_94 == 2 && probed_94 == 1) { ldv_retval_8 = w83627hf_remove(w83627hf_driver_group1); if (ldv_retval_8 == 0) { ldv_state_variable_94 = 1; ref_cnt = ref_cnt - 1; probed_94 = 0; } else { } } else { } goto ldv_33046; default: ldv_stop(); } ldv_33046: ; } else { } goto ldv_32643; case 86: ; if (ldv_state_variable_9 != 0) { tmp___305 = __VERIFIER_nondet_int(); switch (tmp___305) { case 0: ; if (ldv_state_variable_9 == 1) { store_pwm_enable(sensor_dev_attr_pwm2_enable_group1, sensor_dev_attr_pwm2_enable_group0, (char const *)ldvarg251, ldvarg250); ldv_state_variable_9 = 1; } else { } goto ldv_33051; case 1: ; if (ldv_state_variable_9 == 1) { show_pwm_enable(sensor_dev_attr_pwm2_enable_group1, sensor_dev_attr_pwm2_enable_group0, ldvarg249); ldv_state_variable_9 = 1; } else { } goto ldv_33051; default: ldv_stop(); } ldv_33051: ; } else { } goto ldv_32643; case 87: ; if (ldv_state_variable_51 != 0) { tmp___306 = __VERIFIER_nondet_int(); switch (tmp___306) { case 0: ; if (ldv_state_variable_51 == 1) { show_vid_reg(ldvarg252, ldvarg254, ldvarg253); ldv_state_variable_51 = 1; } else { } goto ldv_33056; default: ldv_stop(); } ldv_33056: ; } else { } goto ldv_32643; case 88: ; if (ldv_state_variable_47 != 0) { tmp___307 = __VERIFIER_nondet_int(); switch (tmp___307) { case 0: ; if (ldv_state_variable_47 == 1) { show_alarm(ldvarg255, ldvarg257, ldvarg256); ldv_state_variable_47 = 1; } else { } goto ldv_33060; default: ldv_stop(); } ldv_33060: ; } else { } goto ldv_32643; case 89: ; if (ldv_state_variable_8 != 0) { tmp___308 = __VERIFIER_nondet_int(); switch (tmp___308) { case 0: ; if (ldv_state_variable_8 == 1) { store_pwm_enable(sensor_dev_attr_pwm3_enable_group1, sensor_dev_attr_pwm3_enable_group0, (char const *)ldvarg260, ldvarg259); ldv_state_variable_8 = 1; } else { } goto ldv_33064; case 1: ; if (ldv_state_variable_8 == 1) { show_pwm_enable(sensor_dev_attr_pwm3_enable_group1, sensor_dev_attr_pwm3_enable_group0, ldvarg258); ldv_state_variable_8 = 1; } else { } goto ldv_33064; default: ldv_stop(); } ldv_33064: ; } else { } goto ldv_32643; case 90: ; if (ldv_state_variable_38 != 0) { tmp___309 = __VERIFIER_nondet_int(); switch (tmp___309) { case 0: ; if (ldv_state_variable_38 == 1) { show_alarm(ldvarg261, ldvarg263, ldvarg262); ldv_state_variable_38 = 1; } else { } goto ldv_33069; default: ldv_stop(); } ldv_33069: ; } else { } goto ldv_32643; case 91: ; if (ldv_state_variable_4 != 0) { tmp___310 = __VERIFIER_nondet_int(); switch (tmp___310) { case 0: ; if (ldv_state_variable_4 == 1) { store_temp_type(sensor_dev_attr_temp1_type_group1, sensor_dev_attr_temp1_type_group0, (char const *)ldvarg266, ldvarg265); ldv_state_variable_4 = 1; } else { } goto ldv_33073; case 1: ; if (ldv_state_variable_4 == 1) { show_temp_type(sensor_dev_attr_temp1_type_group1, sensor_dev_attr_temp1_type_group0, ldvarg264); ldv_state_variable_4 = 1; } else { } goto ldv_33073; default: ldv_stop(); } ldv_33073: ; } else { } goto ldv_32643; case 92: ; if (ldv_state_variable_34 != 0) { tmp___311 = __VERIFIER_nondet_int(); switch (tmp___311) { case 0: ; if (ldv_state_variable_34 == 1) { show_alarm(ldvarg267, ldvarg269, ldvarg268); ldv_state_variable_34 = 1; } else { } goto ldv_33078; default: ldv_stop(); } ldv_33078: ; } else { } goto ldv_32643; case 93: ; if (ldv_state_variable_37 != 0) { tmp___312 = __VERIFIER_nondet_int(); switch (tmp___312) { case 0: ; if (ldv_state_variable_37 == 1) { show_alarm(ldvarg270, ldvarg272, ldvarg271); ldv_state_variable_37 = 1; } else { } goto ldv_33082; default: ldv_stop(); } ldv_33082: ; } else { } goto ldv_32643; case 94: ; if (ldv_state_variable_43 != 0) { tmp___313 = __VERIFIER_nondet_int(); switch (tmp___313) { case 0: ; if (ldv_state_variable_43 == 1) { show_alarm(ldvarg273, ldvarg275, ldvarg274); ldv_state_variable_43 = 1; } else { } goto ldv_33086; default: ldv_stop(); } ldv_33086: ; } else { } goto ldv_32643; case 95: ; if (ldv_state_variable_5 != 0) { tmp___314 = __VERIFIER_nondet_int(); switch (tmp___314) { case 0: ; if (ldv_state_variable_5 == 1) { store_pwm_freq(sensor_dev_attr_pwm3_freq_group1, sensor_dev_attr_pwm3_freq_group0, (char const *)ldvarg278, ldvarg277); ldv_state_variable_5 = 1; } else { } goto ldv_33090; case 1: ; if (ldv_state_variable_5 == 1) { show_pwm_freq(sensor_dev_attr_pwm3_freq_group1, sensor_dev_attr_pwm3_freq_group0, ldvarg276); ldv_state_variable_5 = 1; } else { } goto ldv_33090; default: ldv_stop(); } ldv_33090: ; } else { } goto ldv_32643; default: ldv_stop(); } ldv_32643: ; goto ldv_33094; ldv_final: ldv_check_final_state(); return 0; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_30(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_31(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_32(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_33(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_34(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_36(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_37(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_38(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_39(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_40(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_41(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_42(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_43(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_44(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_45(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_46(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_47(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_48(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_49(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_w83627hf_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv___platform_driver_register_50(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; { tmp = __platform_driver_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; ldv_state_variable_94 = 1; ldv_platform_driver_init_94(); return (ldv_func_res); } } void ldv_platform_driver_unregister_51(struct platform_driver *ldv_func_arg1 ) { { platform_driver_unregister(ldv_func_arg1); ldv_state_variable_94 = 0; return; } } void ldv_platform_driver_unregister_52(struct platform_driver *ldv_func_arg1 ) { { platform_driver_unregister(ldv_func_arg1); ldv_state_variable_94 = 0; return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_lock_of_w83627hf_data = 1; int ldv_mutex_lock_interruptible_lock_of_w83627hf_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_w83627hf_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_w83627hf_data = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock_of_w83627hf_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_w83627hf_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_w83627hf_data = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock_of_w83627hf_data(struct mutex *lock ) { { if (ldv_mutex_lock_of_w83627hf_data != 1) { ldv_error(); } else { } ldv_mutex_lock_of_w83627hf_data = 2; return; } } int ldv_mutex_trylock_lock_of_w83627hf_data(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock_of_w83627hf_data != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock_of_w83627hf_data = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_w83627hf_data(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock_of_w83627hf_data != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock_of_w83627hf_data = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock_of_w83627hf_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_w83627hf_data == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock_of_w83627hf_data(struct mutex *lock ) { { if (ldv_mutex_lock_of_w83627hf_data != 2) { ldv_error(); } else { } ldv_mutex_lock_of_w83627hf_data = 1; return; } } void ldv_usb_lock_device_lock_of_w83627hf_data(void) { { ldv_mutex_lock_lock_of_w83627hf_data((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock_of_w83627hf_data(void) { int tmp ; { tmp = ldv_mutex_trylock_lock_of_w83627hf_data((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock_of_w83627hf_data(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock_of_w83627hf_data((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock_of_w83627hf_data(void) { { ldv_mutex_unlock_lock_of_w83627hf_data((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_update_lock_of_w83627hf_data = 1; int ldv_mutex_lock_interruptible_update_lock_of_w83627hf_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_w83627hf_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_update_lock_of_w83627hf_data = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_update_lock_of_w83627hf_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_w83627hf_data != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_update_lock_of_w83627hf_data = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_update_lock_of_w83627hf_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_w83627hf_data != 1) { ldv_error(); } else { } ldv_mutex_update_lock_of_w83627hf_data = 2; return; } } int ldv_mutex_trylock_update_lock_of_w83627hf_data(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_update_lock_of_w83627hf_data != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_update_lock_of_w83627hf_data = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_update_lock_of_w83627hf_data(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_update_lock_of_w83627hf_data != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_update_lock_of_w83627hf_data = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_update_lock_of_w83627hf_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_w83627hf_data == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_update_lock_of_w83627hf_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_w83627hf_data != 2) { ldv_error(); } else { } ldv_mutex_update_lock_of_w83627hf_data = 1; return; } } void ldv_usb_lock_device_update_lock_of_w83627hf_data(void) { { ldv_mutex_lock_update_lock_of_w83627hf_data((struct mutex *)0); return; } } int ldv_usb_trylock_device_update_lock_of_w83627hf_data(void) { int tmp ; { tmp = ldv_mutex_trylock_update_lock_of_w83627hf_data((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_update_lock_of_w83627hf_data(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_update_lock_of_w83627hf_data((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_update_lock_of_w83627hf_data(void) { { ldv_mutex_unlock_update_lock_of_w83627hf_data((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_lock_of_w83627hf_data != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_update_lock_of_w83627hf_data != 1) { ldv_error(); } else { } return; } }