extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; unsigned int flags ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct dm_target; struct dm_block_validator; struct dm_block; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_208 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField56 ; }; struct lockref { union __anonunion____missing_field_name_207 __annonCompField57 ; }; struct path; struct vfsmount; struct __anonstruct____missing_field_name_210 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_209 { struct __anonstruct____missing_field_name_210 __annonCompField58 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_209 __annonCompField59 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_211 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_211 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_215 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_214 { struct __anonstruct____missing_field_name_215 __annonCompField60 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_214 __annonCompField61 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_218 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t __bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_218 __annonCompField62 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t __bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct bdi_writeback; struct export_operations; struct hd_geometry; struct kiocb; struct kobject; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_219 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_219 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_220 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_220 __annonCompField63 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct writeback_control; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_223 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_224 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_225 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_223 __annonCompField64 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_224 __annonCompField65 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_225 __annonCompField66 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_226 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_226 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_228 { struct list_head link ; int state ; }; union __anonunion_fl_u_227 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_228 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_227 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_237 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_238 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_237 __annonCompField74 ; union __anonunion____missing_field_name_238 __annonCompField75 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct device_type; struct class; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_239 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_239 __annonCompField76 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; typedef int congested_fn(void * , int ); struct bdi_writeback_congested { unsigned long state ; atomic_t refcnt ; struct backing_dev_info *bdi ; int blkcg_id ; struct rb_node rb_node ; }; union __anonunion____missing_field_name_240 { struct work_struct release_work ; struct callback_head rcu ; }; struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long state ; unsigned long last_old_flush ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; struct percpu_counter stat[4U] ; struct bdi_writeback_congested *congested ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; spinlock_t work_lock ; struct list_head work_list ; struct delayed_work dwork ; struct percpu_ref refcnt ; struct fprop_local_percpu memcg_completions ; struct cgroup_subsys_state *memcg_css ; struct cgroup_subsys_state *blkcg_css ; struct list_head memcg_node ; struct list_head blkcg_node ; union __anonunion____missing_field_name_240 __annonCompField77 ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; atomic_long_t tot_write_bandwidth ; struct bdi_writeback wb ; struct radix_tree_root cgwb_tree ; struct rb_root cgwb_congested_tree ; atomic_t usage_cnt ; wait_queue_head_t wb_waitq ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; union __anonunion____missing_field_name_241 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_242 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_243 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_245 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_246 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_244 { struct __anonstruct_elv_245 elv ; struct __anonstruct_flush_246 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_241 __annonCompField78 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; unsigned int cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_242 __annonCompField79 ; union __anonunion____missing_field_name_243 __annonCompField80 ; union __anonunion____missing_field_name_244 __annonCompField81 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); typedef void elevator_registered_fn(struct request_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; elevator_registered_fn *elevator_registered_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; atomic_t mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct dm_dev; struct dm_table; struct mapped_device; enum ldv_25084 { STATUSTYPE_INFO = 0, STATUSTYPE_TABLE = 1 } ; typedef enum ldv_25084 status_type_t; union map_info { void *ptr ; }; struct dm_dev { struct block_device *bdev ; fmode_t mode ; char name[16U] ; }; struct target_type { uint64_t features ; char const *name ; struct module *module ; unsigned int version[3U] ; int (*ctr)(struct dm_target * , unsigned int , char ** ) ; void (*dtr)(struct dm_target * ) ; int (*map)(struct dm_target * , struct bio * ) ; int (*map_rq)(struct dm_target * , struct request * , union map_info * ) ; int (*clone_and_map_rq)(struct dm_target * , struct request * , union map_info * , struct request ** ) ; void (*release_clone_rq)(struct request * ) ; int (*end_io)(struct dm_target * , struct bio * , int ) ; int (*rq_end_io)(struct dm_target * , struct request * , int , union map_info * ) ; void (*presuspend)(struct dm_target * ) ; void (*presuspend_undo)(struct dm_target * ) ; void (*postsuspend)(struct dm_target * ) ; int (*preresume)(struct dm_target * ) ; void (*resume)(struct dm_target * ) ; void (*status)(struct dm_target * , status_type_t , unsigned int , char * , unsigned int ) ; int (*message)(struct dm_target * , unsigned int , char ** ) ; int (*ioctl)(struct dm_target * , unsigned int , unsigned long ) ; int (*merge)(struct dm_target * , struct bvec_merge_data * , struct bio_vec * , int ) ; int (*busy)(struct dm_target * ) ; int (*iterate_devices)(struct dm_target * , int (*)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void * ) ; void (*io_hints)(struct dm_target * , struct queue_limits * ) ; struct list_head list ; }; struct dm_target { struct dm_table *table ; struct target_type *type ; sector_t begin ; sector_t len ; uint32_t max_io_len ; unsigned int num_flush_bios ; unsigned int num_discard_bios ; unsigned int num_write_same_bios ; unsigned int per_bio_data_size ; unsigned int (*num_write_bios)(struct dm_target * , struct bio * ) ; void *private ; char *error ; bool flush_supported ; bool discards_supported ; bool split_discard_bios ; bool discard_zeroes_data_unsupported ; }; struct dm_target_callbacks { struct list_head list ; int (*congested_fn)(struct dm_target_callbacks * , int ) ; }; struct dm_io; struct dm_target_io { struct dm_io *io ; struct dm_target *ti ; unsigned int target_bio_nr ; unsigned int *len_ptr ; struct bio clone ; }; struct dm_arg_set { unsigned int argc ; char **argv ; }; struct dm_arg { unsigned int min ; unsigned int max ; char *error ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; struct bdi_writeback *wb ; struct inode *inode ; int wb_id ; int wb_lcand_id ; int wb_tcand_id ; size_t wb_bytes ; size_t wb_lcand_bytes ; size_t wb_tcand_bytes ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct blkcg_policy_data; struct blkcg { struct cgroup_subsys_state css ; spinlock_t lock ; struct radix_tree_root blkg_tree ; struct blkcg_gq *blkg_hint ; struct hlist_head blkg_list ; struct blkcg_policy_data *pd[2U] ; struct list_head cgwb_list ; }; struct blkg_policy_data { struct blkcg_gq *blkg ; int plid ; struct list_head alloc_node ; }; struct blkcg_policy_data { int plid ; struct list_head alloc_node ; }; struct blkcg_gq { struct request_queue *q ; struct list_head q_node ; struct hlist_node blkcg_node ; struct blkcg *blkcg ; struct bdi_writeback_congested *wb_congested ; struct blkcg_gq *parent ; struct request_list rl ; atomic_t refcnt ; bool online ; struct blkg_policy_data *pd[2U] ; struct callback_head callback_head ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; typedef uint64_t dm_block_t; struct dm_block_validator { char const *name ; void (*prepare_for_write)(struct dm_block_validator * , struct dm_block * , size_t ) ; int (*check)(struct dm_block_validator * , struct dm_block * , size_t ) ; }; typedef uint64_t dm_thin_id; struct dm_bio_prison; struct dm_cell_key { int virtual ; dm_thin_id dev ; dm_block_t block_begin ; dm_block_t block_end ; }; struct dm_bio_prison_cell { struct list_head user_list ; struct rb_node node ; struct dm_cell_key key ; struct bio *holder ; struct bio_list bios ; }; struct dm_deferred_set; struct dm_deferred_entry; struct dm_bio_details { struct block_device *bi_bdev ; unsigned long bi_flags ; struct bvec_iter bi_iter ; }; typedef dm_block_t dm_oblock_t; typedef uint32_t dm_cblock_t; typedef dm_block_t dm_dblock_t; enum policy_operation { POLICY_HIT = 0, POLICY_MISS = 1, POLICY_NEW = 2, POLICY_REPLACE = 3 } ; struct policy_locker; struct policy_locker { int (*fn)(struct policy_locker * , dm_oblock_t ) ; }; struct policy_result { enum policy_operation op ; dm_oblock_t old_oblock ; dm_cblock_t cblock ; }; struct dm_cache_policy { void (*destroy)(struct dm_cache_policy * ) ; int (*map)(struct dm_cache_policy * , dm_oblock_t , bool , bool , bool , struct bio * , struct policy_locker * , struct policy_result * ) ; int (*lookup)(struct dm_cache_policy * , dm_oblock_t , dm_cblock_t * ) ; void (*set_dirty)(struct dm_cache_policy * , dm_oblock_t ) ; void (*clear_dirty)(struct dm_cache_policy * , dm_oblock_t ) ; int (*load_mapping)(struct dm_cache_policy * , dm_oblock_t , dm_cblock_t , uint32_t , bool ) ; int (*walk_mappings)(struct dm_cache_policy * , int (*)(void * , dm_cblock_t , dm_oblock_t , uint32_t ) , void * ) ; void (*remove_mapping)(struct dm_cache_policy * , dm_oblock_t ) ; void (*force_mapping)(struct dm_cache_policy * , dm_oblock_t , dm_oblock_t ) ; int (*remove_cblock)(struct dm_cache_policy * , dm_cblock_t ) ; int (*writeback_work)(struct dm_cache_policy * , dm_oblock_t * , dm_cblock_t * , bool ) ; dm_cblock_t (*residency)(struct dm_cache_policy * ) ; void (*tick)(struct dm_cache_policy * , bool ) ; int (*emit_config_values)(struct dm_cache_policy * , char * , unsigned int , ssize_t * ) ; int (*set_config_value)(struct dm_cache_policy * , char const * , char const * ) ; void *private ; }; struct dm_cache_metadata; struct dm_cache_statistics { uint32_t read_hits ; uint32_t read_misses ; uint32_t write_hits ; uint32_t write_misses ; }; struct dm_io_region { struct block_device *bdev ; sector_t sector ; sector_t count ; }; struct dm_kcopyd_throttle { unsigned int throttle ; unsigned int num_io_jobs ; unsigned int io_period ; unsigned int total_period ; unsigned int last_jiffies ; }; struct dm_kcopyd_client; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_260 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_260 __annonCompField82 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct io_tracker { spinlock_t lock ; sector_t in_flight ; unsigned long idle_time ; unsigned long last_update_time ; }; struct dm_hook_info { bio_end_io_t *bi_end_io ; void *bi_private ; }; enum cache_metadata_mode { CM_WRITE = 0, CM_READ_ONLY = 1, CM_FAIL = 2 } ; enum cache_io_mode { CM_IO_WRITEBACK = 0, CM_IO_WRITETHROUGH = 1, CM_IO_PASSTHROUGH = 2 } ; struct cache_features { enum cache_metadata_mode mode ; enum cache_io_mode io_mode ; }; struct cache_stats { atomic_t read_hit ; atomic_t read_miss ; atomic_t write_hit ; atomic_t write_miss ; atomic_t demotion ; atomic_t promotion ; atomic_t copies_avoided ; atomic_t cache_cell_clash ; atomic_t commit_count ; atomic_t discard_count ; }; struct cblock_range { dm_cblock_t begin ; dm_cblock_t end ; }; struct invalidation_request { struct list_head list ; struct cblock_range *cblocks ; atomic_t complete ; int err ; wait_queue_head_t result_wait ; }; struct cache { struct dm_target *ti ; struct dm_target_callbacks callbacks ; struct dm_cache_metadata *cmd ; struct dm_dev *metadata_dev ; struct dm_dev *origin_dev ; struct dm_dev *cache_dev ; dm_oblock_t origin_blocks ; sector_t origin_sectors ; dm_cblock_t cache_size ; uint32_t sectors_per_block ; int sectors_per_block_shift ; spinlock_t lock ; struct list_head deferred_cells ; struct bio_list deferred_bios ; struct bio_list deferred_flush_bios ; struct bio_list deferred_writethrough_bios ; struct list_head quiesced_migrations ; struct list_head completed_migrations ; struct list_head need_commit_migrations ; sector_t migration_threshold ; wait_queue_head_t migration_wait ; atomic_t nr_allocated_migrations ; atomic_t nr_io_migrations ; wait_queue_head_t quiescing_wait ; atomic_t quiescing ; atomic_t quiescing_ack ; atomic_t nr_dirty ; unsigned long *dirty_bitset ; dm_dblock_t discard_nr_blocks ; unsigned long *discard_bitset ; uint32_t discard_block_size ; unsigned int nr_ctr_args ; char const **ctr_args ; struct dm_kcopyd_client *copier ; struct workqueue_struct *wq ; struct work_struct worker ; struct delayed_work waker ; unsigned long last_commit_jiffies ; struct dm_bio_prison *prison ; struct dm_deferred_set *all_io_ds ; mempool_t *migration_pool ; struct dm_cache_policy *policy ; unsigned int policy_nr_args ; bool need_tick_bio ; bool sized ; bool invalidate ; bool commit_requested ; bool loaded_mappings ; bool loaded_discards ; struct cache_features features ; struct cache_stats stats ; spinlock_t invalidation_lock ; struct list_head invalidation_requests ; struct io_tracker origin_tracker ; }; struct per_bio_data { bool tick ; unsigned char req_nr : 2 ; struct dm_deferred_entry *all_io_entry ; struct dm_hook_info hook_info ; sector_t len ; struct cache *cache ; dm_cblock_t cblock ; struct dm_bio_details bio_details ; }; struct dm_cache_migration { struct list_head list ; struct cache *cache ; unsigned long start_jiffies ; dm_oblock_t old_oblock ; dm_oblock_t new_oblock ; dm_cblock_t cblock ; bool err ; bool discard ; bool writeback ; bool demote ; bool promote ; bool requeue_holder ; bool invalidate ; struct dm_bio_prison_cell *old_ocell ; struct dm_bio_prison_cell *new_ocell ; }; struct prealloc { struct dm_cache_migration *mg ; struct dm_bio_prison_cell *cell1 ; struct dm_bio_prison_cell *cell2 ; }; struct inc_detail { struct cache *cache ; struct bio_list bios_for_issue ; struct bio_list unhandled_bios ; bool any_writes ; }; struct old_oblock_lock { struct policy_locker locker ; struct cache *cache ; struct prealloc *structs ; struct dm_bio_prison_cell *cell ; }; struct cache_args { struct dm_target *ti ; struct dm_dev *metadata_dev ; struct dm_dev *cache_dev ; sector_t cache_sectors ; struct dm_dev *origin_dev ; sector_t origin_sectors ; uint32_t block_size ; char const *policy_name ; int policy_argc ; char const **policy_argv ; struct cache_features features ; }; struct discard_load_info { struct cache *cache ; dm_block_t block_size ; dm_block_t discard_begin ; dm_block_t discard_end ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef bool ldv_func_ret_type___4; typedef __u32 __le32; typedef __u64 __le64; enum hrtimer_restart; struct dm_block_manager; struct dm_transaction_manager; struct dm_space_map; struct dm_btree_value_type { void *context ; uint32_t size ; void (*inc)(void * , void const * ) ; void (*dec)(void * , void const * ) ; int (*equal)(void * , void const * , void const * ) ; }; struct dm_btree_info { struct dm_transaction_manager *tm ; unsigned int levels ; struct dm_btree_value_type value_type ; }; struct dm_array_info { struct dm_transaction_manager *tm ; struct dm_btree_value_type value_type ; struct dm_btree_info btree_info ; }; struct dm_disk_bitset { struct dm_array_info array_info ; uint32_t current_index ; uint64_t current_bits ; bool current_index_set ; bool dirty ; }; struct dm_space_map { void (*destroy)(struct dm_space_map * ) ; int (*extend)(struct dm_space_map * , dm_block_t ) ; int (*get_nr_blocks)(struct dm_space_map * , dm_block_t * ) ; int (*get_nr_free)(struct dm_space_map * , dm_block_t * ) ; int (*get_count)(struct dm_space_map * , dm_block_t , uint32_t * ) ; int (*count_is_more_than_one)(struct dm_space_map * , dm_block_t , int * ) ; int (*set_count)(struct dm_space_map * , dm_block_t , uint32_t ) ; int (*commit)(struct dm_space_map * ) ; int (*inc_block)(struct dm_space_map * , dm_block_t ) ; int (*dec_block)(struct dm_space_map * , dm_block_t ) ; int (*new_block)(struct dm_space_map * , dm_block_t * ) ; int (*root_size)(struct dm_space_map * , size_t * ) ; int (*copy_root)(struct dm_space_map * , void * , size_t ) ; int (*register_threshold_callback)(struct dm_space_map * , dm_block_t , void (*)(void * ) , void * ) ; }; struct cache_disk_superblock { __le32 csum ; __le32 flags ; __le64 blocknr ; __u8 uuid[16U] ; __le64 magic ; __le32 version ; __u8 policy_name[16U] ; __le32 policy_hint_size ; __u8 metadata_space_map_root[128U] ; __le64 mapping_root ; __le64 hint_root ; __le64 discard_root ; __le64 discard_block_size ; __le64 discard_nr_blocks ; __le32 data_block_size ; __le32 metadata_block_size ; __le32 cache_blocks ; __le32 compat_flags ; __le32 compat_ro_flags ; __le32 incompat_flags ; __le32 read_hits ; __le32 read_misses ; __le32 write_hits ; __le32 write_misses ; __le32 policy_version[3U] ; }; struct dm_cache_metadata { atomic_t ref_count ; struct list_head list ; struct block_device *bdev ; struct dm_block_manager *bm ; struct dm_space_map *metadata_sm ; struct dm_transaction_manager *tm ; struct dm_array_info info ; struct dm_array_info hint_info ; struct dm_disk_bitset discard_info ; struct rw_semaphore root_lock ; unsigned long flags ; dm_block_t root ; dm_block_t hint_root ; dm_block_t discard_root ; sector_t discard_block_size ; dm_dblock_t discard_nr_blocks ; sector_t data_block_size ; dm_cblock_t cache_blocks ; bool changed ; bool clean_when_opened ; char policy_name[16U] ; unsigned int policy_version[3U] ; size_t policy_hint_size ; struct dm_cache_statistics stats ; __u8 metadata_space_map_root[128U] ; bool fail_io ; }; struct thunk { int (*fn)(void * , dm_oblock_t , dm_cblock_t , bool , uint32_t , bool ) ; void *context ; struct dm_cache_metadata *cmd ; bool respect_dirty_flags ; bool hints_valid ; }; enum hrtimer_restart; struct dm_cache_policy_type { struct list_head list ; char name[16U] ; unsigned int version[3U] ; struct dm_cache_policy_type *real ; size_t hint_size ; struct module *owner ; struct dm_cache_policy *(*create)(dm_cblock_t , sector_t , sector_t ) ; }; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static unsigned long __ffs(unsigned long word ) { { __asm__ ("rep; bsf %1,%0": "=r" (word): "rm" (word)); return (word); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern int scnprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice(struct list_head const *list , struct list_head *head ) { int tmp ; { tmp = list_empty(list); if (tmp == 0) { __list_splice(list, head, head->next); } else { } return; } } __inline static void list_splice_init(struct list_head *list , struct list_head *head ) { int tmp ; { tmp = list_empty((struct list_head const *)list); if (tmp == 0) { __list_splice((struct list_head const *)list, head, head->next); INIT_LIST_HEAD(list); } else { } return; } } extern void *memset(void * , int , size_t ) ; extern int strcasecmp(char const * , char const * ) ; extern char *kstrdup(char const * , gfp_t ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; extern void __xadd_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((int )((signed char )c) != 0); } } __inline static int atomic_add_return(int i , atomic_t *v ) { int __ret ; { __ret = i; switch (4UL) { case 1UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddb %b0, %1\n": "+q" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; case 2UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddw %w0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; case 4UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddl %0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; case 8UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddq %q0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; default: __xadd_wrong_size(); } ldv_5596: ; return (__ret + i); } } __inline static int atomic_sub_return(int i , atomic_t *v ) { int tmp ; { tmp = atomic_add_return(- i, v); return (tmp); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_15(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_16(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern void delayed_work_timer_fn(unsigned long ) ; __inline static struct delayed_work *to_delayed_work(struct work_struct *work ) { struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; return ((struct delayed_work *)__mptr); } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; void ldv_destroy_workqueue_19(struct workqueue_struct *ldv_func_arg1 ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_flush_workqueue_18(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work(struct delayed_work * ) ; bool ldv_cancel_delayed_work_17(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_5(8192, wq, work); return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_6(8192, wq, dwork, delay); return (tmp); } } extern void schedule(void) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && 0xffffffffffffffffUL / size < n) { return ((void *)0); } else { } tmp = __kmalloc(n * size, flags); return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc_array(n, size, flags | 32768U); return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; struct work_struct *ldv_work_struct_1_3 ; struct work_struct *ldv_work_struct_2_1 ; int ldv_work_1_3 ; int ldv_state_variable_0 ; int ldv_state_variable_2 ; int ldv_work_1_1 ; int ldv_work_2_0 ; struct dm_target *cache_target_group1 ; int ldv_work_1_2 ; struct dm_block_validator *sb_validator_group1 ; int LDV_IN_INTERRUPT = 1; struct work_struct *ldv_work_struct_2_3 ; struct work_struct *ldv_work_struct_2_0 ; struct work_struct *ldv_work_struct_1_2 ; struct dm_block *sb_validator_group0 ; struct work_struct *ldv_work_struct_2_2 ; int ldv_work_2_2 ; int ldv_state_variable_3 ; int ref_cnt ; int ldv_work_1_0 ; int ldv_state_variable_1 ; int ldv_work_2_3 ; int ldv_state_variable_4 ; int ldv_work_2_1 ; void ldv_initialize_dm_block_validator_3(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void disable_work_2(struct work_struct *work ) ; void disable_work_1(struct work_struct *work ) ; void work_init_2(void) ; void work_init_1(void) ; void call_and_disable_all_2(int state ) ; void call_and_disable_all_1(int state ) ; void invoke_work_1(void) ; void activate_work_2(struct work_struct *work , int state ) ; void activate_work_1(struct work_struct *work , int state ) ; void call_and_disable_work_2(struct work_struct *work ) ; void invoke_work_2(void) ; void ldv_target_type_4(void) ; __inline static loff_t i_size_read(struct inode const *inode ) { { return ((loff_t )inode->i_size); } } extern char const *bdevname(struct block_device * , char * ) ; extern mempool_t *mempool_create(int , mempool_alloc_t * , mempool_free_t * , void * ) ; extern void mempool_destroy(mempool_t * ) ; extern void *mempool_alloc(mempool_t * , gfp_t ) ; extern void mempool_free(void * , mempool_t * ) ; extern void *mempool_alloc_slab(gfp_t , void * ) ; extern void mempool_free_slab(void * , void * ) ; __inline static mempool_t *mempool_create_slab_pool(int min_nr , struct kmem_cache *kc ) { mempool_t *tmp ; { tmp = mempool_create(min_nr, & mempool_alloc_slab, & mempool_free_slab, (void *)kc); return (tmp); } } extern void bio_endio(struct bio * , int ) ; __inline static int bio_list_empty(struct bio_list const *bl ) { { return ((unsigned long )bl->head == (unsigned long )((struct bio */* const */)0)); } } __inline static void bio_list_init(struct bio_list *bl ) { struct bio *tmp ; { tmp = (struct bio *)0; bl->tail = tmp; bl->head = tmp; return; } } __inline static void bio_list_add(struct bio_list *bl , struct bio *bio ) { { bio->bi_next = (struct bio *)0; if ((unsigned long )bl->tail != (unsigned long )((struct bio *)0)) { (bl->tail)->bi_next = bio; } else { bl->head = bio; } bl->tail = bio; return; } } __inline static void bio_list_merge(struct bio_list *bl , struct bio_list *bl2 ) { { if ((unsigned long )bl2->head == (unsigned long )((struct bio *)0)) { return; } else { } if ((unsigned long )bl->tail != (unsigned long )((struct bio *)0)) { (bl->tail)->bi_next = bl2->head; } else { bl->head = bl2->head; } bl->tail = bl2->tail; return; } } __inline static struct bio *bio_list_pop(struct bio_list *bl ) { struct bio *bio ; { bio = bl->head; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { bl->head = (bl->head)->bi_next; if ((unsigned long )bl->head == (unsigned long )((struct bio *)0)) { bl->tail = (struct bio *)0; } else { } bio->bi_next = (struct bio *)0; } else { } return (bio); } } extern int ___ratelimit(struct ratelimit_state * , char const * ) ; extern void generic_make_request(struct bio * ) ; __inline static struct request_queue *bdev_get_queue(struct block_device *bdev ) { { return ((bdev->bd_disk)->queue); } } extern void blk_limits_io_min(struct queue_limits * , unsigned int ) ; extern void blk_limits_io_opt(struct queue_limits * , unsigned int ) ; extern int dm_get_device(struct dm_target * , char const * , fmode_t , struct dm_dev ** ) ; extern void dm_put_device(struct dm_target * , struct dm_dev * ) ; __inline static void *dm_per_bio_data(struct bio *bio , size_t data_size ) { { return ((void *)bio + (0xffffffffffffffe0UL - data_size)); } } __inline static unsigned int dm_bio_get_target_bio_nr(struct bio const *bio ) { struct bio const *__mptr ; { __mptr = bio; return (((struct dm_target_io *)__mptr + 0xffffffffffffffe0UL)->target_bio_nr); } } extern int dm_register_target(struct target_type * ) ; extern void dm_unregister_target(struct target_type * ) ; extern int dm_read_arg_group(struct dm_arg * , struct dm_arg_set * , unsigned int * , char ** ) ; extern char const *dm_shift_arg(struct dm_arg_set * ) ; extern void dm_consume_args(struct dm_arg_set * , unsigned int ) ; extern char const *dm_device_name(struct mapped_device * ) ; extern int dm_suspended(struct dm_target * ) ; extern void dm_table_add_target_callbacks(struct dm_table * , struct dm_target_callbacks * ) ; extern int dm_set_target_max_io_len(struct dm_target * , sector_t ) ; extern struct mapped_device *dm_table_get_md(struct dm_table * ) ; extern void dm_table_event(struct dm_table * ) ; extern struct ratelimit_state dm_ratelimit_state ; __inline static int wb_congested(struct bdi_writeback *wb , int cong_bits ) { struct backing_dev_info *bdi ; int tmp ; { bdi = wb->bdi; if ((unsigned long )bdi->congested_fn != (unsigned long )((congested_fn *)0)) { tmp = (*(bdi->congested_fn))(bdi->congested_data, cong_bits); return (tmp); } else { } return ((int )((unsigned int )(wb->congested)->state & (unsigned int )cong_bits)); } } __inline static int bdi_congested(struct backing_dev_info *bdi , int cong_bits ) { int tmp ; { tmp = wb_congested(& bdi->wb, cong_bits); return (tmp); } } extern struct dm_bio_prison *dm_bio_prison_create(void) ; extern void dm_bio_prison_destroy(struct dm_bio_prison * ) ; extern struct dm_bio_prison_cell *dm_bio_prison_alloc_cell(struct dm_bio_prison * , gfp_t ) ; extern void dm_bio_prison_free_cell(struct dm_bio_prison * , struct dm_bio_prison_cell * ) ; extern int dm_get_cell(struct dm_bio_prison * , struct dm_cell_key * , struct dm_bio_prison_cell * , struct dm_bio_prison_cell ** ) ; extern int dm_bio_detain(struct dm_bio_prison * , struct dm_cell_key * , struct bio * , struct dm_bio_prison_cell * , struct dm_bio_prison_cell ** ) ; extern void dm_cell_release(struct dm_bio_prison * , struct dm_bio_prison_cell * , struct bio_list * ) ; extern void dm_cell_release_no_holder(struct dm_bio_prison * , struct dm_bio_prison_cell * , struct bio_list * ) ; extern void dm_cell_error(struct dm_bio_prison * , struct dm_bio_prison_cell * , int ) ; extern void dm_cell_visit_release(struct dm_bio_prison * , void (*)(void * , struct dm_bio_prison_cell * ) , void * , struct dm_bio_prison_cell * ) ; extern int dm_cell_promote_or_release(struct dm_bio_prison * , struct dm_bio_prison_cell * ) ; extern struct dm_deferred_set *dm_deferred_set_create(void) ; extern void dm_deferred_set_destroy(struct dm_deferred_set * ) ; extern struct dm_deferred_entry *dm_deferred_entry_inc(struct dm_deferred_set * ) ; extern void dm_deferred_entry_dec(struct dm_deferred_entry * , struct list_head * ) ; extern int dm_deferred_set_add_work(struct dm_deferred_set * , struct list_head * ) ; __inline static void dm_bio_record(struct dm_bio_details *bd , struct bio *bio ) { { bd->bi_bdev = bio->bi_bdev; bd->bi_flags = bio->bi_flags; bd->bi_iter = bio->bi_iter; return; } } __inline static void dm_bio_restore(struct dm_bio_details *bd , struct bio *bio ) { { bio->bi_bdev = bd->bi_bdev; bio->bi_flags = bd->bi_flags; bio->bi_iter = bd->bi_iter; return; } } __inline static dm_oblock_t to_oblock(dm_block_t b ) { { return (b); } } __inline static dm_block_t from_oblock(dm_oblock_t b ) { { return (b); } } __inline static dm_cblock_t to_cblock(uint32_t b ) { { return (b); } } __inline static uint32_t from_cblock(dm_cblock_t b ) { { return (b); } } __inline static dm_dblock_t to_dblock(dm_block_t b ) { { return (b); } } __inline static dm_block_t from_dblock(dm_dblock_t b ) { { return (b); } } extern void *vzalloc(unsigned long ) ; extern void vfree(void const * ) ; __inline static int policy_map(struct dm_cache_policy *p , dm_oblock_t oblock , bool can_block , bool can_migrate , bool discarded_oblock , struct bio *bio , struct policy_locker *locker , struct policy_result *result ) { int tmp ; { tmp = (*(p->map))(p, oblock, (int )can_block, (int )can_migrate, (int )discarded_oblock, bio, locker, result); return (tmp); } } __inline static void policy_set_dirty(struct dm_cache_policy *p , dm_oblock_t oblock ) { { if ((unsigned long )p->set_dirty != (unsigned long )((void (*)(struct dm_cache_policy * , dm_oblock_t ))0)) { (*(p->set_dirty))(p, oblock); } else { } return; } } __inline static void policy_clear_dirty(struct dm_cache_policy *p , dm_oblock_t oblock ) { { if ((unsigned long )p->clear_dirty != (unsigned long )((void (*)(struct dm_cache_policy * , dm_oblock_t ))0)) { (*(p->clear_dirty))(p, oblock); } else { } return; } } __inline static int policy_load_mapping(struct dm_cache_policy *p , dm_oblock_t oblock , dm_cblock_t cblock , uint32_t hint , bool hint_valid ) { int tmp ; { tmp = (*(p->load_mapping))(p, oblock, cblock, hint, (int )hint_valid); return (tmp); } } __inline static int policy_writeback_work(struct dm_cache_policy *p , dm_oblock_t *oblock , dm_cblock_t *cblock , bool critical_only ) { int tmp ; int tmp___0 ; { if ((unsigned long )p->writeback_work != (unsigned long )((int (*)(struct dm_cache_policy * , dm_oblock_t * , dm_cblock_t * , bool ))0)) { tmp = (*(p->writeback_work))(p, oblock, cblock, (int )critical_only); tmp___0 = tmp; } else { tmp___0 = -2; } return (tmp___0); } } __inline static void policy_remove_mapping(struct dm_cache_policy *p , dm_oblock_t oblock ) { { (*(p->remove_mapping))(p, oblock); return; } } __inline static int policy_remove_cblock(struct dm_cache_policy *p , dm_cblock_t cblock ) { int tmp ; { tmp = (*(p->remove_cblock))(p, cblock); return (tmp); } } __inline static void policy_force_mapping(struct dm_cache_policy *p , dm_oblock_t current_oblock , dm_oblock_t new_oblock ) { { return; } } __inline static dm_cblock_t policy_residency(struct dm_cache_policy *p ) { dm_cblock_t tmp ; { tmp = (*(p->residency))(p); return (tmp); } } __inline static void policy_tick(struct dm_cache_policy *p , bool can_block ) { { if ((unsigned long )p->tick != (unsigned long )((void (*)(struct dm_cache_policy * , bool ))0)) { return; } else { } return; } } __inline static int policy_emit_config_values(struct dm_cache_policy *p , char *result , unsigned int maxlen , ssize_t *sz_ptr ) { ssize_t sz ; int tmp ; int tmp___0 ; ssize_t tmp___1 ; { sz = *sz_ptr; if ((unsigned long )p->emit_config_values != (unsigned long )((int (*)(struct dm_cache_policy * , char * , unsigned int , ssize_t * ))0)) { tmp = (*(p->emit_config_values))(p, result, maxlen, sz_ptr); return (tmp); } else { } if ((ssize_t )maxlen > sz) { tmp___0 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "0 "); tmp___1 = (ssize_t )tmp___0; } else { tmp___1 = 0L; } sz = tmp___1 + sz; *sz_ptr = sz; return (0); } } __inline static int policy_set_config_value(struct dm_cache_policy *p , char const *key , char const *value ) { int tmp ; int tmp___0 ; { if ((unsigned long )p->set_config_value != (unsigned long )((int (*)(struct dm_cache_policy * , char const * , char const * ))0)) { tmp = (*(p->set_config_value))(p, key, value); tmp___0 = tmp; } else { tmp___0 = -22; } return (tmp___0); } } __inline static size_t bitset_size_in_bytes(unsigned int nr_entries ) { { return ((unsigned long )((nr_entries + 63U) / 64U) * 8UL); } } __inline static unsigned long *alloc_bitset(unsigned int nr_entries ) { size_t s ; size_t tmp ; void *tmp___0 ; { tmp = bitset_size_in_bytes(nr_entries); s = tmp; tmp___0 = vzalloc(s); return ((unsigned long *)tmp___0); } } __inline static void clear_bitset(void *bitset , unsigned int nr_entries ) { size_t s ; size_t tmp ; { tmp = bitset_size_in_bytes(nr_entries); s = tmp; memset(bitset, 0, s); return; } } __inline static void free_bitset(unsigned long *bits ) { { vfree((void const *)bits); return; } } struct dm_cache_policy *dm_cache_policy_create(char const *name , dm_cblock_t cache_size , sector_t origin_size , sector_t cache_block_size ) ; void dm_cache_policy_destroy(struct dm_cache_policy *p ) ; char const *dm_cache_policy_get_name(struct dm_cache_policy *p ) ; size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p ) ; struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev , sector_t data_block_size , bool may_format_device , size_t policy_hint_size ) ; void dm_cache_metadata_close(struct dm_cache_metadata *cmd ) ; int dm_cache_resize(struct dm_cache_metadata *cmd , dm_cblock_t new_cache_size ) ; int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd , sector_t discard_block_size , dm_dblock_t new_nr_entries ) ; int dm_cache_load_discards(struct dm_cache_metadata *cmd , int (*fn)(void * , sector_t , dm_dblock_t , bool ) , void *context ) ; int dm_cache_set_discard(struct dm_cache_metadata *cmd , dm_dblock_t dblock , bool discard___0 ) ; int dm_cache_remove_mapping(struct dm_cache_metadata *cmd , dm_cblock_t cblock ) ; int dm_cache_insert_mapping(struct dm_cache_metadata *cmd , dm_cblock_t cblock , dm_oblock_t oblock ) ; int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd ) ; int dm_cache_load_mappings(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy , int (*fn)(void * , dm_oblock_t , dm_cblock_t , bool , uint32_t , bool ) , void *context ) ; int dm_cache_set_dirty(struct dm_cache_metadata *cmd , dm_cblock_t cblock , bool dirty ) ; void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd , struct dm_cache_statistics *stats ) ; void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd , struct dm_cache_statistics *stats ) ; int dm_cache_commit(struct dm_cache_metadata *cmd , bool clean_shutdown ) ; int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd , dm_block_t *result ) ; int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd , dm_block_t *result ) ; int dm_cache_write_hints(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy ) ; int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd , bool *result ) ; bool dm_cache_metadata_needs_check(struct dm_cache_metadata *cmd ) ; int dm_cache_metadata_set_needs_check(struct dm_cache_metadata *cmd ) ; void dm_cache_metadata_set_read_only(struct dm_cache_metadata *cmd ) ; void dm_cache_metadata_set_read_write(struct dm_cache_metadata *cmd ) ; int dm_cache_metadata_abort(struct dm_cache_metadata *cmd ) ; extern struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle * ) ; extern void dm_kcopyd_client_destroy(struct dm_kcopyd_client * ) ; extern int dm_kcopyd_copy(struct dm_kcopyd_client * , struct dm_io_region * , unsigned int , struct dm_io_region * , unsigned int , void (*)(int , unsigned long , void * ) , void * ) ; static struct dm_kcopyd_throttle dm_kcopyd_throttle = {100U, 0U, 0U, 0U, 0U}; static void iot_init(struct io_tracker *iot ) { struct lock_class_key __key ; { spinlock_check(& iot->lock); __raw_spin_lock_init(& iot->lock.__annonCompField17.rlock, "&(&iot->lock)->rlock", & __key); iot->in_flight = 0UL; iot->idle_time = 0UL; iot->last_update_time = jiffies; return; } } static bool __iot_idle_for(struct io_tracker *iot , unsigned long jifs ) { { if (iot->in_flight != 0UL) { return (0); } else { } return ((bool )((long )((iot->idle_time + jifs) - (unsigned long )jiffies) < 0L)); } } static bool iot_idle_for(struct io_tracker *iot , unsigned long jifs ) { bool r ; unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& iot->lock); flags = _raw_spin_lock_irqsave(tmp); r = __iot_idle_for(iot, jifs); spin_unlock_irqrestore(& iot->lock, flags); return (r); } } static void iot_io_begin(struct io_tracker *iot , sector_t len ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& iot->lock); flags = _raw_spin_lock_irqsave(tmp); iot->in_flight = iot->in_flight + len; spin_unlock_irqrestore(& iot->lock, flags); return; } } static void __iot_io_end(struct io_tracker *iot , sector_t len ) { { iot->in_flight = iot->in_flight - len; if (iot->in_flight == 0UL) { iot->idle_time = jiffies; } else { } return; } } static void iot_io_end(struct io_tracker *iot , sector_t len ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& iot->lock); flags = _raw_spin_lock_irqsave(tmp); __iot_io_end(iot, len); spin_unlock_irqrestore(& iot->lock, flags); return; } } static void dm_hook_bio(struct dm_hook_info *h , struct bio *bio , bio_end_io_t *bi_end_io , void *bi_private ) { { h->bi_end_io = bio->bi_end_io; h->bi_private = bio->bi_private; bio->bi_end_io = bi_end_io; bio->bi_private = bi_private; return; } } static void dm_unhook_bio(struct dm_hook_info *h , struct bio *bio ) { { bio->bi_end_io = h->bi_end_io; bio->bi_private = h->bi_private; return; } } static enum cache_metadata_mode get_cache_mode(struct cache *cache ) ; static void wake_worker(struct cache *cache ) { { queue_work(cache->wq, & cache->worker); return; } } static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache ) { struct dm_bio_prison_cell *tmp ; { tmp = dm_bio_prison_alloc_cell(cache->prison, 0U); return (tmp); } } static void free_prison_cell(struct cache *cache , struct dm_bio_prison_cell *cell ) { { dm_bio_prison_free_cell(cache->prison, cell); return; } } static struct dm_cache_migration *alloc_migration(struct cache *cache ) { struct dm_cache_migration *mg ; void *tmp ; { tmp = mempool_alloc(cache->migration_pool, 0U); mg = (struct dm_cache_migration *)tmp; if ((unsigned long )mg != (unsigned long )((struct dm_cache_migration *)0)) { mg->cache = cache; atomic_inc(& (mg->cache)->nr_allocated_migrations); } else { } return (mg); } } static void free_migration(struct dm_cache_migration *mg ) { struct cache *cache ; int tmp ; { cache = mg->cache; tmp = atomic_dec_and_test(& cache->nr_allocated_migrations); if (tmp != 0) { __wake_up(& cache->migration_wait, 3U, 1, (void *)0); } else { } mempool_free((void *)mg, cache->migration_pool); wake_worker(cache); return; } } static int prealloc_data_structs(struct cache *cache , struct prealloc *p ) { { if ((unsigned long )p->mg == (unsigned long )((struct dm_cache_migration *)0)) { p->mg = alloc_migration(cache); if ((unsigned long )p->mg == (unsigned long )((struct dm_cache_migration *)0)) { return (-12); } else { } } else { } if ((unsigned long )p->cell1 == (unsigned long )((struct dm_bio_prison_cell *)0)) { p->cell1 = alloc_prison_cell(cache); if ((unsigned long )p->cell1 == (unsigned long )((struct dm_bio_prison_cell *)0)) { return (-12); } else { } } else { } if ((unsigned long )p->cell2 == (unsigned long )((struct dm_bio_prison_cell *)0)) { p->cell2 = alloc_prison_cell(cache); if ((unsigned long )p->cell2 == (unsigned long )((struct dm_bio_prison_cell *)0)) { return (-12); } else { } } else { } return (0); } } static void prealloc_free_structs(struct cache *cache , struct prealloc *p ) { { if ((unsigned long )p->cell2 != (unsigned long )((struct dm_bio_prison_cell *)0)) { free_prison_cell(cache, p->cell2); } else { } if ((unsigned long )p->cell1 != (unsigned long )((struct dm_bio_prison_cell *)0)) { free_prison_cell(cache, p->cell1); } else { } if ((unsigned long )p->mg != (unsigned long )((struct dm_cache_migration *)0)) { free_migration(p->mg); } else { } return; } } static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p ) { struct dm_cache_migration *mg ; long tmp ; { mg = p->mg; tmp = ldv__builtin_expect((unsigned long )mg == (unsigned long )((struct dm_cache_migration *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (469), "i" (12UL)); ldv_35483: ; goto ldv_35483; } else { } p->mg = (struct dm_cache_migration *)0; return (mg); } } static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p ) { struct dm_bio_prison_cell *r ; { r = (struct dm_bio_prison_cell *)0; if ((unsigned long )p->cell1 != (unsigned long )((struct dm_bio_prison_cell *)0)) { r = p->cell1; p->cell1 = (struct dm_bio_prison_cell *)0; } else if ((unsigned long )p->cell2 != (unsigned long )((struct dm_bio_prison_cell *)0)) { r = p->cell2; p->cell2 = (struct dm_bio_prison_cell *)0; } else { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (491), "i" (12UL)); ldv_35488: ; goto ldv_35488; } return (r); } } static void prealloc_put_cell(struct prealloc *p , struct dm_bio_prison_cell *cell ) { { if ((unsigned long )p->cell2 == (unsigned long )((struct dm_bio_prison_cell *)0)) { p->cell2 = cell; } else if ((unsigned long )p->cell1 == (unsigned long )((struct dm_bio_prison_cell *)0)) { p->cell1 = cell; } else { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (509), "i" (12UL)); ldv_35493: ; goto ldv_35493; } return; } } static void build_key(dm_oblock_t begin , dm_oblock_t end , struct dm_cell_key *key ) { { key->virtual = 0; key->dev = 0ULL; key->block_begin = from_oblock(begin); key->block_end = from_oblock(end); return; } } static int bio_detain_range(struct cache *cache , dm_oblock_t oblock_begin , dm_oblock_t oblock_end , struct bio *bio , struct dm_bio_prison_cell *cell_prealloc , void (*free_fn)(void * , struct dm_bio_prison_cell * ) , void *free_context , struct dm_bio_prison_cell **cell_result ) { int r ; struct dm_cell_key key ; { build_key(oblock_begin, oblock_end, & key); r = dm_bio_detain(cache->prison, & key, bio, cell_prealloc, cell_result); if (r != 0) { (*free_fn)(free_context, cell_prealloc); } else { } return (r); } } static int bio_detain(struct cache *cache , dm_oblock_t oblock , struct bio *bio , struct dm_bio_prison_cell *cell_prealloc , void (*free_fn)(void * , struct dm_bio_prison_cell * ) , void *free_context , struct dm_bio_prison_cell **cell_result ) { dm_oblock_t end ; dm_block_t tmp ; dm_oblock_t tmp___0 ; int tmp___1 ; { tmp = from_oblock(oblock); tmp___0 = to_oblock(tmp + 1ULL); end = tmp___0; tmp___1 = bio_detain_range(cache, oblock, end, bio, cell_prealloc, free_fn, free_context, cell_result); return (tmp___1); } } static int get_cell(struct cache *cache , dm_oblock_t oblock , struct prealloc *structs , struct dm_bio_prison_cell **cell_result ) { int r ; struct dm_cell_key key ; struct dm_bio_prison_cell *cell_prealloc ; dm_block_t tmp ; dm_oblock_t tmp___0 ; { cell_prealloc = prealloc_get_cell(structs); tmp = from_oblock(oblock); tmp___0 = to_oblock(tmp + 1ULL); build_key(oblock, tmp___0, & key); r = dm_get_cell(cache->prison, & key, cell_prealloc, cell_result); if (r != 0) { prealloc_put_cell(structs, cell_prealloc); } else { } return (r); } } static bool is_dirty(struct cache *cache , dm_cblock_t b ) { uint32_t tmp ; int tmp___0 ; { tmp = from_cblock(b); tmp___0 = variable_test_bit((long )tmp, (unsigned long const volatile *)cache->dirty_bitset); return (tmp___0 != 0); } } static void set_dirty(struct cache *cache , dm_oblock_t oblock , dm_cblock_t cblock ) { uint32_t tmp ; int tmp___0 ; { tmp = from_cblock(cblock); tmp___0 = test_and_set_bit((long )tmp, (unsigned long volatile *)cache->dirty_bitset); if (tmp___0 == 0) { atomic_inc(& cache->nr_dirty); policy_set_dirty(cache->policy, oblock); } else { } return; } } static void clear_dirty(struct cache *cache , dm_oblock_t oblock , dm_cblock_t cblock ) { int tmp ; uint32_t tmp___0 ; int tmp___1 ; { tmp___0 = from_cblock(cblock); tmp___1 = test_and_clear_bit((long )tmp___0, (unsigned long volatile *)cache->dirty_bitset); if (tmp___1 != 0) { policy_clear_dirty(cache->policy, oblock); tmp = atomic_sub_return(1, & cache->nr_dirty); if (tmp == 0) { dm_table_event((cache->ti)->table); } else { } } else { } return; } } static bool block_size_is_power_of_two(struct cache *cache ) { { return (cache->sectors_per_block_shift >= 0); } } static dm_block_t block_div(dm_block_t b , uint32_t n ) { uint32_t __base ; uint32_t __rem ; { __base = n; __rem = (uint32_t )(b % (dm_block_t )__base); b = b / (dm_block_t )__base; return (b); } } static dm_block_t oblocks_per_dblock(struct cache *cache ) { dm_block_t oblocks ; bool tmp ; { oblocks = (dm_block_t )cache->discard_block_size; tmp = block_size_is_power_of_two(cache); if ((int )tmp) { oblocks = oblocks >> cache->sectors_per_block_shift; } else { oblocks = block_div(oblocks, cache->sectors_per_block); } return (oblocks); } } static dm_dblock_t oblock_to_dblock(struct cache *cache , dm_oblock_t oblock ) { dm_block_t tmp ; dm_block_t tmp___0 ; dm_block_t tmp___1 ; dm_dblock_t tmp___2 ; { tmp = oblocks_per_dblock(cache); tmp___0 = from_oblock(oblock); tmp___1 = block_div(tmp___0, (uint32_t )tmp); tmp___2 = to_dblock(tmp___1); return (tmp___2); } } static dm_oblock_t dblock_to_oblock(struct cache *cache , dm_dblock_t dblock ) { dm_block_t tmp ; dm_block_t tmp___0 ; dm_oblock_t tmp___1 ; { tmp = from_dblock(dblock); tmp___0 = oblocks_per_dblock(cache); tmp___1 = to_oblock(tmp * tmp___0); return (tmp___1); } } static void set_discard(struct cache *cache , dm_dblock_t b ) { unsigned long flags ; dm_block_t tmp ; dm_block_t tmp___0 ; long tmp___1 ; raw_spinlock_t *tmp___2 ; dm_block_t tmp___3 ; { tmp = from_dblock(b); tmp___0 = from_dblock(cache->discard_nr_blocks); tmp___1 = ldv__builtin_expect(tmp >= tmp___0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (643), "i" (12UL)); ldv_35574: ; goto ldv_35574; } else { } atomic_inc(& cache->stats.discard_count); tmp___2 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___2); tmp___3 = from_dblock(b); set_bit((long )tmp___3, (unsigned long volatile *)cache->discard_bitset); spin_unlock_irqrestore(& cache->lock, flags); return; } } static void clear_discard(struct cache *cache , dm_dblock_t b ) { unsigned long flags ; raw_spinlock_t *tmp ; dm_block_t tmp___0 ; { tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = from_dblock(b); clear_bit((long )tmp___0, (unsigned long volatile *)cache->discard_bitset); spin_unlock_irqrestore(& cache->lock, flags); return; } } static bool is_discarded(struct cache *cache , dm_dblock_t b ) { int r ; unsigned long flags ; raw_spinlock_t *tmp ; dm_block_t tmp___0 ; { tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = from_dblock(b); r = variable_test_bit((long )tmp___0, (unsigned long const volatile *)cache->discard_bitset); spin_unlock_irqrestore(& cache->lock, flags); return (r != 0); } } static bool is_discarded_oblock(struct cache *cache , dm_oblock_t b ) { int r ; unsigned long flags ; raw_spinlock_t *tmp ; dm_dblock_t tmp___0 ; dm_block_t tmp___1 ; { tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = oblock_to_dblock(cache, b); tmp___1 = from_dblock(tmp___0); r = variable_test_bit((long )tmp___1, (unsigned long const volatile *)cache->discard_bitset); spin_unlock_irqrestore(& cache->lock, flags); return (r != 0); } } static void load_stats(struct cache *cache ) { struct dm_cache_statistics stats ; { dm_cache_metadata_get_stats(cache->cmd, & stats); atomic_set(& cache->stats.read_hit, (int )stats.read_hits); atomic_set(& cache->stats.read_miss, (int )stats.read_misses); atomic_set(& cache->stats.write_hit, (int )stats.write_hits); atomic_set(& cache->stats.write_miss, (int )stats.write_misses); return; } } static void save_stats(struct cache *cache ) { struct dm_cache_statistics stats ; enum cache_metadata_mode tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = get_cache_mode(cache); if ((unsigned int )tmp != 0U) { return; } else { } tmp___0 = atomic_read((atomic_t const *)(& cache->stats.read_hit)); stats.read_hits = (uint32_t )tmp___0; tmp___1 = atomic_read((atomic_t const *)(& cache->stats.read_miss)); stats.read_misses = (uint32_t )tmp___1; tmp___2 = atomic_read((atomic_t const *)(& cache->stats.write_hit)); stats.write_hits = (uint32_t )tmp___2; tmp___3 = atomic_read((atomic_t const *)(& cache->stats.write_miss)); stats.write_misses = (uint32_t )tmp___3; dm_cache_metadata_set_stats(cache->cmd, & stats); return; } } static bool writethrough_mode(struct cache_features *f ) { { return ((unsigned int )f->io_mode == 1U); } } static bool writeback_mode(struct cache_features *f ) { { return ((unsigned int )f->io_mode == 0U); } } static bool passthrough_mode(struct cache_features *f ) { { return ((unsigned int )f->io_mode == 2U); } } static size_t get_per_bio_data_size(struct cache *cache ) { bool tmp ; { tmp = writethrough_mode(& cache->features); return ((int )tmp ? 96UL : 40UL); } } static struct per_bio_data *get_per_bio_data(struct bio *bio , size_t data_size ) { struct per_bio_data *pb ; void *tmp ; long tmp___0 ; { tmp = dm_per_bio_data(bio, data_size); pb = (struct per_bio_data *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )pb == (unsigned long )((struct per_bio_data *)0), 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (746), "i" (12UL)); ldv_35629: ; goto ldv_35629; } else { } return (pb); } } static struct per_bio_data *init_per_bio_data(struct bio *bio , size_t data_size ) { struct per_bio_data *pb ; struct per_bio_data *tmp ; unsigned int tmp___0 ; { tmp = get_per_bio_data(bio, data_size); pb = tmp; pb->tick = 0; tmp___0 = dm_bio_get_target_bio_nr((struct bio const *)bio); pb->req_nr = (unsigned char )tmp___0; pb->all_io_entry = (struct dm_deferred_entry *)0; pb->len = 0UL; return (pb); } } static void remap_to_origin(struct cache *cache , struct bio *bio ) { { bio->bi_bdev = (cache->origin_dev)->bdev; return; } } static void remap_to_cache(struct cache *cache , struct bio *bio , dm_cblock_t cblock ) { sector_t bi_sector ; sector_t block ; uint32_t tmp ; int _res ; bool tmp___0 ; int tmp___1 ; { bi_sector = bio->bi_iter.bi_sector; tmp = from_cblock(cblock); block = (sector_t )tmp; bio->bi_bdev = (cache->cache_dev)->bdev; tmp___0 = block_size_is_power_of_two(cache); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { _res = (int )(bi_sector % (sector_t )cache->sectors_per_block); bi_sector = bi_sector / (sector_t )cache->sectors_per_block; bio->bi_iter.bi_sector = (sector_t )cache->sectors_per_block * block + (sector_t )_res; } else { bio->bi_iter.bi_sector = (block << cache->sectors_per_block_shift) | ((sector_t )(cache->sectors_per_block - 1U) & bi_sector); } return; } } static void check_if_tick_bio_needed(struct cache *cache , struct bio *bio ) { unsigned long flags ; size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; raw_spinlock_t *tmp___1 ; { tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; tmp___1 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___1); if ((int )cache->need_tick_bio && ((unsigned long long )bio->bi_rw & 12416ULL) == 0ULL) { pb->tick = 1; cache->need_tick_bio = 0; } else { } spin_unlock_irqrestore(& cache->lock, flags); return; } } static void remap_to_origin_clear_discard(struct cache *cache , struct bio *bio , dm_oblock_t oblock ) { dm_dblock_t tmp ; { check_if_tick_bio_needed(cache, bio); remap_to_origin(cache, bio); if ((int )bio->bi_rw & 1) { tmp = oblock_to_dblock(cache, oblock); clear_discard(cache, tmp); } else { } return; } } static void remap_to_cache_dirty(struct cache *cache , struct bio *bio , dm_oblock_t oblock , dm_cblock_t cblock ) { dm_dblock_t tmp ; { check_if_tick_bio_needed(cache, bio); remap_to_cache(cache, bio, cblock); if ((int )bio->bi_rw & 1) { set_dirty(cache, oblock, cblock); tmp = oblock_to_dblock(cache, oblock); clear_discard(cache, tmp); } else { } return; } } static dm_oblock_t get_bio_block(struct cache *cache , struct bio *bio ) { sector_t block_nr ; int _res ; bool tmp ; int tmp___0 ; dm_oblock_t tmp___1 ; { block_nr = bio->bi_iter.bi_sector; tmp = block_size_is_power_of_two(cache); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { _res = (int )(block_nr % (sector_t )cache->sectors_per_block); block_nr = block_nr / (sector_t )cache->sectors_per_block; } else { block_nr = block_nr >> cache->sectors_per_block_shift; } tmp___1 = to_oblock((dm_block_t )block_nr); return (tmp___1); } } static int bio_triggers_commit(struct cache *cache , struct bio *bio ) { { return ((int )bio->bi_rw & 12288); } } static void inc_ds(struct cache *cache , struct bio *bio , struct dm_bio_prison_cell *cell ) { size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; long tmp___1 ; long tmp___2 ; { tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; tmp___1 = ldv__builtin_expect((unsigned long )cell == (unsigned long )((struct dm_bio_prison_cell *)0), 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (849), "i" (12UL)); ldv_35687: ; goto ldv_35687; } else { } tmp___2 = ldv__builtin_expect((unsigned long )pb->all_io_entry != (unsigned long )((struct dm_deferred_entry *)0), 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (850), "i" (12UL)); ldv_35688: ; goto ldv_35688; } else { } pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); return; } } static bool accountable_bio(struct cache *cache , struct bio *bio ) { { return ((bool )((unsigned long )bio->bi_bdev == (unsigned long )(cache->origin_dev)->bdev && ((unsigned long long )bio->bi_rw & 128ULL) == 0ULL)); } } static void accounted_begin(struct cache *cache , struct bio *bio ) { size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; bool tmp___1 ; { tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; tmp___1 = accountable_bio(cache, bio); if ((int )tmp___1) { pb->len = (sector_t )(bio->bi_iter.bi_size >> 9); iot_io_begin(& cache->origin_tracker, pb->len); } else { } return; } } static void accounted_complete(struct cache *cache , struct bio *bio ) { size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; { tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; iot_io_end(& cache->origin_tracker, pb->len); return; } } static void accounted_request(struct cache *cache , struct bio *bio ) { { accounted_begin(cache, bio); generic_make_request(bio); return; } } static void issue(struct cache *cache , struct bio *bio ) { unsigned long flags ; int tmp ; raw_spinlock_t *tmp___0 ; { tmp = bio_triggers_commit(cache, bio); if (tmp == 0) { accounted_request(cache, bio); return; } else { } tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); cache->commit_requested = 1; bio_list_add(& cache->deferred_flush_bios, bio); spin_unlock_irqrestore(& cache->lock, flags); return; } } static void inc_and_issue(struct cache *cache , struct bio *bio , struct dm_bio_prison_cell *cell ) { { inc_ds(cache, bio, cell); issue(cache, bio); return; } } static void defer_writethrough_bio(struct cache *cache , struct bio *bio ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_add(& cache->deferred_writethrough_bios, bio); spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void writethrough_endio(struct bio *bio , int err ) { struct per_bio_data *pb ; struct per_bio_data *tmp ; { tmp = get_per_bio_data(bio, 96UL); pb = tmp; dm_unhook_bio(& pb->hook_info, bio); if (err != 0) { bio_endio(bio, err); return; } else { } dm_bio_restore(& pb->bio_details, bio); remap_to_cache(pb->cache, bio, pb->cblock); defer_writethrough_bio(pb->cache, bio); return; } } static void remap_to_origin_then_cache(struct cache *cache , struct bio *bio , dm_oblock_t oblock , dm_cblock_t cblock ) { struct per_bio_data *pb ; struct per_bio_data *tmp ; { tmp = get_per_bio_data(bio, 96UL); pb = tmp; pb->cache = cache; pb->cblock = cblock; dm_hook_bio(& pb->hook_info, bio, & writethrough_endio, (void *)0); dm_bio_record(& pb->bio_details, bio); remap_to_origin_clear_discard(pb->cache, bio, oblock); return; } } static enum cache_metadata_mode get_cache_mode(struct cache *cache ) { { return (cache->features.mode); } } static char const *cache_device_name(struct cache *cache ) { struct mapped_device *tmp ; char const *tmp___0 ; { tmp = dm_table_get_md((cache->ti)->table); tmp___0 = dm_device_name(tmp); return (tmp___0); } } static void notify_mode_switch(struct cache *cache , enum cache_metadata_mode mode ) { char const *descs[3U] ; char const *tmp ; { descs[0] = "write"; descs[1] = "read-only"; descs[2] = "fail"; dm_table_event((cache->ti)->table); tmp = cache_device_name(cache); printk("\016device-mapper: cache: %s: switching cache to %s mode\n", tmp, descs[(int )mode]); return; } } static void set_cache_mode(struct cache *cache , enum cache_metadata_mode new_mode ) { bool needs_check ; bool tmp ; enum cache_metadata_mode old_mode ; enum cache_metadata_mode tmp___0 ; char const *tmp___1 ; { tmp = dm_cache_metadata_needs_check(cache->cmd); needs_check = tmp; tmp___0 = get_cache_mode(cache); old_mode = tmp___0; if ((unsigned int )new_mode == 0U && (int )needs_check) { tmp___1 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: unable to switch cache to write mode until repaired.\n", tmp___1); if ((unsigned int )old_mode != (unsigned int )new_mode) { new_mode = old_mode; } else { new_mode = 1; } } else { } if ((unsigned int )old_mode == 2U) { new_mode = 2; } else { } switch ((unsigned int )new_mode) { case 2U: ; case 1U: dm_cache_metadata_set_read_only(cache->cmd); goto ldv_35761; case 0U: dm_cache_metadata_set_read_write(cache->cmd); goto ldv_35761; } ldv_35761: cache->features.mode = new_mode; if ((unsigned int )new_mode != (unsigned int )old_mode) { notify_mode_switch(cache, new_mode); } else { } return; } } static void abort_transaction(struct cache *cache ) { char const *dev_name___0 ; char const *tmp ; enum cache_metadata_mode tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = cache_device_name(cache); dev_name___0 = tmp; tmp___0 = get_cache_mode(cache); if ((unsigned int )tmp___0 != 0U) { return; } else { } tmp___1 = dm_cache_metadata_set_needs_check(cache->cmd); if (tmp___1 != 0) { printk("\vdevice-mapper: cache: %s: failed to set \'needs_check\' flag in metadata\n", dev_name___0); set_cache_mode(cache, 2); } else { } tmp___2 = ___ratelimit(& dm_ratelimit_state, "abort_transaction"); if (tmp___2 != 0) { printk("\vdevice-mapper: cache: %s: aborting current metadata transaction\n", dev_name___0); } else { } tmp___3 = dm_cache_metadata_abort(cache->cmd); if (tmp___3 != 0) { printk("\vdevice-mapper: cache: %s: failed to abort metadata transaction\n", dev_name___0); set_cache_mode(cache, 2); } else { } return; } } static void metadata_operation_failed(struct cache *cache , char const *op , int r ) { char const *tmp ; int tmp___0 ; { tmp___0 = ___ratelimit(& dm_ratelimit_state, "metadata_operation_failed"); if (tmp___0 != 0) { tmp = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: metadata operation \'%s\' failed: error = %d\n", tmp, op, r); } else { } abort_transaction(cache); set_cache_mode(cache, 1); return; } } static void inc_io_migrations(struct cache *cache ) { { atomic_inc(& cache->nr_io_migrations); return; } } static void dec_io_migrations(struct cache *cache ) { { atomic_dec(& cache->nr_io_migrations); return; } } static void __cell_release(struct cache *cache , struct dm_bio_prison_cell *cell , bool holder , struct bio_list *bios ) { { (*((int )holder ? & dm_cell_release : & dm_cell_release_no_holder))(cache->prison, cell, bios); free_prison_cell(cache, cell); return; } } static bool discard_or_flush(struct bio *bio ) { { return (((unsigned long long )bio->bi_rw & 12416ULL) != 0ULL); } } static void __cell_defer(struct cache *cache , struct dm_bio_prison_cell *cell ) { bool tmp ; { tmp = discard_or_flush(cell->holder); if ((int )tmp) { __cell_release(cache, cell, 1, & cache->deferred_bios); } else { list_add_tail(& cell->user_list, & cache->deferred_cells); } return; } } static void cell_defer(struct cache *cache , struct dm_bio_prison_cell *cell , bool holder ) { unsigned long flags ; int tmp ; raw_spinlock_t *tmp___0 ; { if (! holder) { tmp = dm_cell_promote_or_release(cache->prison, cell); if (tmp != 0) { free_prison_cell(cache, cell); return; } else { } } else { } tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); __cell_defer(cache, cell); spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void cell_error_with_code(struct cache *cache , struct dm_bio_prison_cell *cell , int err ) { { dm_cell_error(cache->prison, cell, err); dm_bio_prison_free_cell(cache->prison, cell); return; } } static void cell_requeue(struct cache *cache , struct dm_bio_prison_cell *cell ) { { cell_error_with_code(cache, cell, 2); return; } } static void free_io_migration(struct dm_cache_migration *mg ) { { dec_io_migrations(mg->cache); free_migration(mg); return; } } static void migration_failure(struct dm_cache_migration *mg ) { struct cache *cache ; char const *dev_name___0 ; char const *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { cache = mg->cache; tmp = cache_device_name(cache); dev_name___0 = tmp; if ((int )mg->writeback) { tmp___0 = ___ratelimit(& dm_ratelimit_state, "migration_failure"); if (tmp___0 != 0) { printk("\vdevice-mapper: cache: %s: writeback failed; couldn\'t copy block\n", dev_name___0); } else { } set_dirty(cache, mg->old_oblock, mg->cblock); cell_defer(cache, mg->old_ocell, 0); } else if ((int )mg->demote) { tmp___1 = ___ratelimit(& dm_ratelimit_state, "migration_failure"); if (tmp___1 != 0) { printk("\vdevice-mapper: cache: %s: demotion failed; couldn\'t copy block\n", dev_name___0); } else { } policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); cell_defer(cache, mg->old_ocell, (int )mg->promote ? 0 : 1); if ((int )mg->promote) { cell_defer(cache, mg->new_ocell, 1); } else { } } else { tmp___2 = ___ratelimit(& dm_ratelimit_state, "migration_failure"); if (tmp___2 != 0) { printk("\vdevice-mapper: cache: %s: promotion failed; couldn\'t copy block\n", dev_name___0); } else { } policy_remove_mapping(cache->policy, mg->new_oblock); cell_defer(cache, mg->new_ocell, 1); } free_io_migration(mg); return; } } static void migration_success_pre_commit(struct dm_cache_migration *mg ) { int r ; unsigned long flags ; struct cache *cache ; char const *tmp ; int tmp___0 ; char const *tmp___1 ; int tmp___2 ; raw_spinlock_t *tmp___3 ; { cache = mg->cache; if ((int )mg->writeback) { clear_dirty(cache, mg->old_oblock, mg->cblock); cell_defer(cache, mg->old_ocell, 0); free_io_migration(mg); return; } else if ((int )mg->demote) { r = dm_cache_remove_mapping(cache->cmd, mg->cblock); if (r != 0) { tmp___0 = ___ratelimit(& dm_ratelimit_state, "migration_success_pre_commit"); if (tmp___0 != 0) { tmp = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: demotion failed; couldn\'t update on disk metadata\n", tmp); } else { } metadata_operation_failed(cache, "dm_cache_remove_mapping", r); policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); if ((int )mg->promote) { cell_defer(cache, mg->new_ocell, 1); } else { } free_io_migration(mg); return; } else { } } else { r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock); if (r != 0) { tmp___2 = ___ratelimit(& dm_ratelimit_state, "migration_success_pre_commit"); if (tmp___2 != 0) { tmp___1 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: promotion failed; couldn\'t update on disk metadata\n", tmp___1); } else { } metadata_operation_failed(cache, "dm_cache_insert_mapping", r); policy_remove_mapping(cache->policy, mg->new_oblock); free_io_migration(mg); return; } else { } } tmp___3 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___3); list_add_tail(& mg->list, & cache->need_commit_migrations); cache->commit_requested = 1; spin_unlock_irqrestore(& cache->lock, flags); return; } } static void migration_success_post_commit(struct dm_cache_migration *mg ) { unsigned long flags ; struct cache *cache ; char const *tmp ; int tmp___0 ; raw_spinlock_t *tmp___1 ; { cache = mg->cache; if ((int )mg->writeback) { tmp___0 = ___ratelimit(& dm_ratelimit_state, "migration_success_post_commit"); if (tmp___0 != 0) { tmp = cache_device_name(cache); printk("\fdevice-mapper: cache: %s: writeback unexpectedly triggered commit\n", tmp); } else { } return; } else if ((int )mg->demote) { cell_defer(cache, mg->old_ocell, (int )mg->promote ? 0 : 1); if ((int )mg->promote) { mg->demote = 0; tmp___1 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___1); list_add_tail(& mg->list, & cache->quiesced_migrations); spin_unlock_irqrestore(& cache->lock, flags); } else { if ((int )mg->invalidate) { policy_remove_mapping(cache->policy, mg->old_oblock); } else { } free_io_migration(mg); } } else { if ((int )mg->requeue_holder) { clear_dirty(cache, mg->new_oblock, mg->cblock); cell_defer(cache, mg->new_ocell, 1); } else { set_dirty(cache, mg->new_oblock, mg->cblock); bio_endio((mg->new_ocell)->holder, 0); cell_defer(cache, mg->new_ocell, 0); } free_io_migration(mg); } return; } } static void copy_complete(int read_err , unsigned long write_err , void *context ) { unsigned long flags ; struct dm_cache_migration *mg ; struct cache *cache ; raw_spinlock_t *tmp ; { mg = (struct dm_cache_migration *)context; cache = mg->cache; if (read_err != 0 || write_err != 0UL) { mg->err = 1; } else { } tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); list_add_tail(& mg->list, & cache->completed_migrations); spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void issue_copy(struct dm_cache_migration *mg ) { int r ; struct dm_io_region o_region ; struct dm_io_region c_region ; struct cache *cache ; sector_t cblock ; uint32_t tmp ; dm_block_t tmp___0 ; dm_block_t tmp___1 ; char const *tmp___2 ; int tmp___3 ; { cache = mg->cache; tmp = from_cblock(mg->cblock); cblock = (sector_t )tmp; o_region.bdev = (cache->origin_dev)->bdev; o_region.count = (sector_t )cache->sectors_per_block; c_region.bdev = (cache->cache_dev)->bdev; c_region.sector = (sector_t )cache->sectors_per_block * cblock; c_region.count = (sector_t )cache->sectors_per_block; if ((int )mg->writeback || (int )mg->demote) { tmp___0 = from_oblock(mg->old_oblock); o_region.sector = (sector_t )(tmp___0 * (dm_block_t )cache->sectors_per_block); r = dm_kcopyd_copy(cache->copier, & c_region, 1U, & o_region, 0U, & copy_complete, (void *)mg); } else { tmp___1 = from_oblock(mg->new_oblock); o_region.sector = (sector_t )(tmp___1 * (dm_block_t )cache->sectors_per_block); r = dm_kcopyd_copy(cache->copier, & o_region, 1U, & c_region, 0U, & copy_complete, (void *)mg); } if (r < 0) { tmp___3 = ___ratelimit(& dm_ratelimit_state, "issue_copy"); if (tmp___3 != 0) { tmp___2 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: issuing migration failed\n", tmp___2); } else { } migration_failure(mg); } else { } return; } } static void overwrite_endio(struct bio *bio , int err ) { struct dm_cache_migration *mg ; struct cache *cache ; size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; unsigned long flags ; raw_spinlock_t *tmp___1 ; { mg = (struct dm_cache_migration *)bio->bi_private; cache = mg->cache; tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; dm_unhook_bio(& pb->hook_info, bio); if (err != 0) { mg->err = 1; } else { } mg->requeue_holder = 0; tmp___1 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___1); list_add_tail(& mg->list, & cache->completed_migrations); spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void issue_overwrite(struct dm_cache_migration *mg , struct bio *bio ) { size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; { tmp = get_per_bio_data_size(mg->cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; dm_hook_bio(& pb->hook_info, bio, & overwrite_endio, (void *)mg); remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock); accounted_request(mg->cache, bio); return; } } static bool bio_writes_complete_block(struct cache *cache , struct bio *bio ) { { return ((bool )((int )bio->bi_rw & 1 && bio->bi_iter.bi_size == cache->sectors_per_block << 9)); } } static void avoid_copy(struct dm_cache_migration *mg ) { { atomic_inc(& (mg->cache)->stats.copies_avoided); migration_success_pre_commit(mg); return; } } static void calc_discard_block_range(struct cache *cache , struct bio *bio , dm_dblock_t *b , dm_dblock_t *e ) { sector_t sb ; sector_t se ; sector_t _r ; int _res ; dm_block_t tmp ; { sb = bio->bi_iter.bi_sector; se = bio->bi_iter.bi_sector + (sector_t )(bio->bi_iter.bi_size >> 9); _r = ((sector_t )cache->discard_block_size + sb) - 1UL; _res = (int )(_r % (sector_t )cache->discard_block_size); _r = _r / (sector_t )cache->discard_block_size; *b = to_dblock((dm_block_t )_r); if (se - sb < (sector_t )cache->discard_block_size) { *e = *b; } else { tmp = block_div((dm_block_t )se, cache->discard_block_size); *e = to_dblock(tmp); } return; } } static void issue_discard(struct dm_cache_migration *mg ) { dm_dblock_t b ; dm_dblock_t e ; struct bio *bio ; dm_block_t tmp ; { bio = (mg->new_ocell)->holder; calc_discard_block_range(mg->cache, bio, & b, & e); goto ldv_35903; ldv_35902: set_discard(mg->cache, b); tmp = from_dblock(b); b = to_dblock(tmp + 1ULL); ldv_35903: ; if (b != e) { goto ldv_35902; } else { } bio_endio(bio, 0); cell_defer(mg->cache, mg->new_ocell, 0); free_migration(mg); return; } } static void issue_copy_or_discard(struct dm_cache_migration *mg ) { bool avoid ; struct cache *cache ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; struct bio *bio ; bool tmp___3 ; bool tmp___4 ; { cache = mg->cache; if ((int )mg->discard) { issue_discard(mg); return; } else { } if ((int )mg->writeback || (int )mg->demote) { tmp = is_dirty(cache, mg->cblock); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___2 = 1; } else { tmp___1 = is_discarded_oblock(cache, mg->old_oblock); if ((int )tmp___1) { tmp___2 = 1; } else { tmp___2 = 0; } } avoid = (bool )tmp___2; } else { bio = (mg->new_ocell)->holder; avoid = is_discarded_oblock(cache, mg->new_oblock); tmp___3 = writeback_mode(& cache->features); if ((int )tmp___3 && ! avoid) { tmp___4 = bio_writes_complete_block(cache, bio); if ((int )tmp___4) { issue_overwrite(mg, bio); return; } else { } } else { } } if ((int )avoid) { avoid_copy(mg); } else { issue_copy(mg); } return; } } static void complete_migration(struct dm_cache_migration *mg ) { { if ((int )mg->err) { migration_failure(mg); } else { migration_success_pre_commit(mg); } return; } } static void process_migrations(struct cache *cache , struct list_head *head , void (*fn)(struct dm_cache_migration * ) ) { unsigned long flags ; struct list_head list ; struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { INIT_LIST_HEAD(& list); tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); list_splice_init(head, & list); spin_unlock_irqrestore(& cache->lock, flags); __mptr = (struct list_head const *)list.next; mg = (struct dm_cache_migration *)__mptr; __mptr___0 = (struct list_head const *)mg->list.next; tmp = (struct dm_cache_migration *)__mptr___0; goto ldv_35934; ldv_35933: (*fn)(mg); mg = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct dm_cache_migration *)__mptr___1; ldv_35934: ; if ((unsigned long )(& mg->list) != (unsigned long )(& list)) { goto ldv_35933; } else { } return; } } static void __queue_quiesced_migration(struct dm_cache_migration *mg ) { { list_add_tail(& mg->list, & (mg->cache)->quiesced_migrations); return; } } static void queue_quiesced_migration(struct dm_cache_migration *mg ) { unsigned long flags ; struct cache *cache ; raw_spinlock_t *tmp ; { cache = mg->cache; tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); __queue_quiesced_migration(mg); spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void queue_quiesced_migrations(struct cache *cache , struct list_head *work ) { unsigned long flags ; struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); __mptr = (struct list_head const *)work->next; mg = (struct dm_cache_migration *)__mptr; __mptr___0 = (struct list_head const *)mg->list.next; tmp = (struct dm_cache_migration *)__mptr___0; goto ldv_35964; ldv_35963: __queue_quiesced_migration(mg); mg = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct dm_cache_migration *)__mptr___1; ldv_35964: ; if ((unsigned long )(& mg->list) != (unsigned long )work) { goto ldv_35963; } else { } spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void check_for_quiesced_migrations(struct cache *cache , struct per_bio_data *pb ) { struct list_head work ; int tmp ; { if ((unsigned long )pb->all_io_entry == (unsigned long )((struct dm_deferred_entry *)0)) { return; } else { } INIT_LIST_HEAD(& work); dm_deferred_entry_dec(pb->all_io_entry, & work); tmp = list_empty((struct list_head const *)(& work)); if (tmp == 0) { queue_quiesced_migrations(cache, & work); } else { } return; } } static void quiesce_migration(struct dm_cache_migration *mg ) { int tmp ; { tmp = dm_deferred_set_add_work((mg->cache)->all_io_ds, & mg->list); if (tmp == 0) { queue_quiesced_migration(mg); } else { } return; } } static void promote(struct cache *cache , struct prealloc *structs , dm_oblock_t oblock , dm_cblock_t cblock , struct dm_bio_prison_cell *cell ) { struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; { tmp = prealloc_get_migration(structs); mg = tmp; mg->err = 0; mg->discard = 0; mg->writeback = 0; mg->demote = 0; mg->promote = 1; mg->requeue_holder = 1; mg->invalidate = 0; mg->cache = cache; mg->new_oblock = oblock; mg->cblock = cblock; mg->old_ocell = (struct dm_bio_prison_cell *)0; mg->new_ocell = cell; mg->start_jiffies = jiffies; inc_io_migrations(cache); quiesce_migration(mg); return; } } static void writeback(struct cache *cache , struct prealloc *structs , dm_oblock_t oblock , dm_cblock_t cblock , struct dm_bio_prison_cell *cell ) { struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; { tmp = prealloc_get_migration(structs); mg = tmp; mg->err = 0; mg->discard = 0; mg->writeback = 1; mg->demote = 0; mg->promote = 0; mg->requeue_holder = 1; mg->invalidate = 0; mg->cache = cache; mg->old_oblock = oblock; mg->cblock = cblock; mg->old_ocell = cell; mg->new_ocell = (struct dm_bio_prison_cell *)0; mg->start_jiffies = jiffies; inc_io_migrations(cache); quiesce_migration(mg); return; } } static void demote_then_promote(struct cache *cache , struct prealloc *structs , dm_oblock_t old_oblock , dm_oblock_t new_oblock , dm_cblock_t cblock , struct dm_bio_prison_cell *old_ocell , struct dm_bio_prison_cell *new_ocell ) { struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; { tmp = prealloc_get_migration(structs); mg = tmp; mg->err = 0; mg->discard = 0; mg->writeback = 0; mg->demote = 1; mg->promote = 1; mg->requeue_holder = 1; mg->invalidate = 0; mg->cache = cache; mg->old_oblock = old_oblock; mg->new_oblock = new_oblock; mg->cblock = cblock; mg->old_ocell = old_ocell; mg->new_ocell = new_ocell; mg->start_jiffies = jiffies; inc_io_migrations(cache); quiesce_migration(mg); return; } } static void invalidate(struct cache *cache , struct prealloc *structs , dm_oblock_t oblock , dm_cblock_t cblock , struct dm_bio_prison_cell *cell ) { struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; { tmp = prealloc_get_migration(structs); mg = tmp; mg->err = 0; mg->discard = 0; mg->writeback = 0; mg->demote = 1; mg->promote = 0; mg->requeue_holder = 1; mg->invalidate = 1; mg->cache = cache; mg->old_oblock = oblock; mg->cblock = cblock; mg->old_ocell = cell; mg->new_ocell = (struct dm_bio_prison_cell *)0; mg->start_jiffies = jiffies; inc_io_migrations(cache); quiesce_migration(mg); return; } } static void discard(struct cache *cache , struct prealloc *structs , struct dm_bio_prison_cell *cell ) { struct dm_cache_migration *mg ; struct dm_cache_migration *tmp ; { tmp = prealloc_get_migration(structs); mg = tmp; mg->err = 0; mg->discard = 1; mg->writeback = 0; mg->demote = 0; mg->promote = 0; mg->requeue_holder = 0; mg->invalidate = 0; mg->cache = cache; mg->old_ocell = (struct dm_bio_prison_cell *)0; mg->new_ocell = cell; mg->start_jiffies = jiffies; quiesce_migration(mg); return; } } static void defer_bio(struct cache *cache , struct bio *bio ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_add(& cache->deferred_bios, bio); spin_unlock_irqrestore(& cache->lock, flags); wake_worker(cache); return; } } static void process_flush_bio(struct cache *cache , struct bio *bio ) { size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; long tmp___1 ; { tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; tmp___1 = ldv__builtin_expect(bio->bi_iter.bi_size != 0U, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (1611), "i" (12UL)); ldv_36028: ; goto ldv_36028; } else { } if ((unsigned int )*((unsigned char *)pb + 0UL) == 0U) { remap_to_origin(cache, bio); } else { remap_to_cache(cache, bio, 0U); } issue(cache, bio); return; } } static void process_discard_bio(struct cache *cache , struct prealloc *structs , struct bio *bio ) { int r ; dm_dblock_t b ; dm_dblock_t e ; struct dm_bio_prison_cell *cell_prealloc ; struct dm_bio_prison_cell *new_ocell ; dm_oblock_t tmp ; dm_oblock_t tmp___0 ; { calc_discard_block_range(cache, bio, & b, & e); if (b == e) { bio_endio(bio, 0); return; } else { } cell_prealloc = prealloc_get_cell(structs); tmp = dblock_to_oblock(cache, e); tmp___0 = dblock_to_oblock(cache, b); r = bio_detain_range(cache, tmp___0, tmp, bio, cell_prealloc, (void (*)(void * , struct dm_bio_prison_cell * ))(& prealloc_put_cell), (void *)structs, & new_ocell); if (r > 0) { return; } else { } discard(cache, structs, new_ocell); return; } } static bool spare_migration_bandwidth(struct cache *cache ) { sector_t current_volume ; int tmp ; { tmp = atomic_read((atomic_t const *)(& cache->nr_io_migrations)); current_volume = (sector_t )((uint32_t )(tmp + 1) * cache->sectors_per_block); return (cache->migration_threshold > current_volume); } } static void inc_hit_counter(struct cache *cache , struct bio *bio ) { { atomic_inc((bio->bi_rw & 1UL) == 0UL ? & cache->stats.read_hit : & cache->stats.write_hit); return; } } static void inc_miss_counter(struct cache *cache , struct bio *bio ) { { atomic_inc((bio->bi_rw & 1UL) == 0UL ? & cache->stats.read_miss : & cache->stats.write_miss); return; } } static void inc_fn(void *context , struct dm_bio_prison_cell *cell ) { struct bio *bio ; struct inc_detail *detail ; struct cache *cache ; bool tmp ; { detail = (struct inc_detail *)context; cache = detail->cache; inc_ds(cache, cell->holder, cell); if ((int )(cell->holder)->bi_rw & 1) { detail->any_writes = 1; } else { } goto ldv_36063; ldv_36064: tmp = discard_or_flush(bio); if ((int )tmp) { bio_list_add(& detail->unhandled_bios, bio); goto ldv_36063; } else { } if ((int )bio->bi_rw & 1) { detail->any_writes = 1; } else { } bio_list_add(& detail->bios_for_issue, bio); inc_ds(cache, bio, cell); ldv_36063: bio = bio_list_pop(& cell->bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_36064; } else { } return; } } static void remap_cell_to_origin_clear_discard(struct cache *cache , struct dm_bio_prison_cell *cell , dm_oblock_t oblock , bool issue_holder ) { struct bio *bio ; unsigned long flags ; struct inc_detail detail ; raw_spinlock_t *tmp ; dm_dblock_t tmp___0 ; { detail.cache = cache; bio_list_init(& detail.bios_for_issue); bio_list_init(& detail.unhandled_bios); detail.any_writes = 0; tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); dm_cell_visit_release(cache->prison, & inc_fn, (void *)(& detail), cell); bio_list_merge(& cache->deferred_bios, & detail.unhandled_bios); spin_unlock_irqrestore(& cache->lock, flags); remap_to_origin(cache, cell->holder); if ((int )issue_holder) { issue(cache, cell->holder); } else { accounted_begin(cache, cell->holder); } if ((int )detail.any_writes) { tmp___0 = oblock_to_dblock(cache, oblock); clear_discard(cache, tmp___0); } else { } goto ldv_36079; ldv_36078: remap_to_origin(cache, bio); issue(cache, bio); ldv_36079: bio = bio_list_pop(& detail.bios_for_issue); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_36078; } else { } return; } } static void remap_cell_to_cache_dirty(struct cache *cache , struct dm_bio_prison_cell *cell , dm_oblock_t oblock , dm_cblock_t cblock , bool issue_holder ) { struct bio *bio ; unsigned long flags ; struct inc_detail detail ; raw_spinlock_t *tmp ; dm_dblock_t tmp___0 ; { detail.cache = cache; bio_list_init(& detail.bios_for_issue); bio_list_init(& detail.unhandled_bios); detail.any_writes = 0; tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); dm_cell_visit_release(cache->prison, & inc_fn, (void *)(& detail), cell); bio_list_merge(& cache->deferred_bios, & detail.unhandled_bios); spin_unlock_irqrestore(& cache->lock, flags); remap_to_cache(cache, cell->holder, cblock); if ((int )issue_holder) { issue(cache, cell->holder); } else { accounted_begin(cache, cell->holder); } if ((int )detail.any_writes) { set_dirty(cache, oblock, cblock); tmp___0 = oblock_to_dblock(cache, oblock); clear_discard(cache, tmp___0); } else { } goto ldv_36095; ldv_36094: remap_to_cache(cache, bio, cblock); issue(cache, bio); ldv_36095: bio = bio_list_pop(& detail.bios_for_issue); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_36094; } else { } return; } } static int null_locker(struct policy_locker *locker , dm_oblock_t b ) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c"), "i" (1780), "i" (12UL)); ldv_36106: ; goto ldv_36106; return (0); } } static int cell_locker(struct policy_locker *locker , dm_oblock_t b ) { struct old_oblock_lock *l ; struct policy_locker const *__mptr ; struct dm_bio_prison_cell *cell_prealloc ; struct dm_bio_prison_cell *tmp ; int tmp___0 ; { __mptr = (struct policy_locker const *)locker; l = (struct old_oblock_lock *)__mptr; tmp = prealloc_get_cell(l->structs); cell_prealloc = tmp; tmp___0 = bio_detain(l->cache, b, (struct bio *)0, cell_prealloc, (void (*)(void * , struct dm_bio_prison_cell * ))(& prealloc_put_cell), (void *)l->structs, & l->cell); return (tmp___0); } } static void process_cell(struct cache *cache , struct prealloc *structs , struct dm_bio_prison_cell *new_ocell ) { int r ; bool release_cell ; struct bio *bio ; dm_oblock_t block ; dm_oblock_t tmp ; struct policy_result lookup_result ; bool passthrough ; bool tmp___0 ; bool fast_promotion ; bool can_migrate ; struct old_oblock_lock ool ; bool tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; bool tmp___7 ; int tmp___8 ; char const *tmp___9 ; int tmp___10 ; { release_cell = 1; bio = new_ocell->holder; tmp = get_bio_block(cache, bio); block = tmp; tmp___0 = passthrough_mode(& cache->features); passthrough = tmp___0; tmp___1 = is_discarded_oblock(cache, block); if ((int )tmp___1) { tmp___3 = 1; } else { tmp___2 = bio_writes_complete_block(cache, bio); if ((int )tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } fast_promotion = (bool )tmp___3; if (! passthrough) { if ((int )fast_promotion) { tmp___5 = 1; } else { tmp___4 = spare_migration_bandwidth(cache); if ((int )tmp___4) { tmp___5 = 1; } else { tmp___5 = 0; } } } else { tmp___5 = 0; } can_migrate = (bool )tmp___5; ool.locker.fn = & cell_locker; ool.cache = cache; ool.structs = structs; ool.cell = (struct dm_bio_prison_cell *)0; r = policy_map(cache->policy, block, 1, (int )can_migrate, (int )fast_promotion, bio, & ool.locker, & lookup_result); if (r == -11) { lookup_result.op = 1; } else { } switch ((unsigned int )lookup_result.op) { case 0U: ; if ((int )passthrough) { inc_miss_counter(cache, bio); if ((int )bio->bi_rw & 1) { atomic_inc(& cache->stats.demotion); invalidate(cache, structs, block, lookup_result.cblock, new_ocell); release_cell = 0; } else { remap_to_origin_clear_discard(cache, bio, block); inc_and_issue(cache, bio, new_ocell); } } else { inc_hit_counter(cache, bio); if ((int )bio->bi_rw & 1) { tmp___6 = writethrough_mode(& cache->features); if ((int )tmp___6) { tmp___7 = is_dirty(cache, lookup_result.cblock); if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); inc_and_issue(cache, bio, new_ocell); } else { remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, 1); release_cell = 0; } } else { remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, 1); release_cell = 0; } } else { remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, 1); release_cell = 0; } } goto ldv_36130; case 1U: inc_miss_counter(cache, bio); remap_cell_to_origin_clear_discard(cache, new_ocell, block, 1); release_cell = 0; goto ldv_36130; case 2U: atomic_inc(& cache->stats.promotion); promote(cache, structs, block, lookup_result.cblock, new_ocell); release_cell = 0; goto ldv_36130; case 3U: atomic_inc(& cache->stats.demotion); atomic_inc(& cache->stats.promotion); demote_then_promote(cache, structs, lookup_result.old_oblock, block, lookup_result.cblock, ool.cell, new_ocell); release_cell = 0; goto ldv_36130; default: tmp___10 = ___ratelimit(& dm_ratelimit_state, "process_cell"); if (tmp___10 != 0) { tmp___9 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: %s: erroring bio, unknown policy op: %u\n", tmp___9, "process_cell", (unsigned int )lookup_result.op); } else { } bio_endio(bio, -5); } ldv_36130: ; if ((int )release_cell) { cell_defer(cache, new_ocell, 0); } else { } return; } } static void process_bio(struct cache *cache , struct prealloc *structs , struct bio *bio ) { int r ; dm_oblock_t block ; dm_oblock_t tmp ; struct dm_bio_prison_cell *cell_prealloc ; struct dm_bio_prison_cell *new_ocell ; { tmp = get_bio_block(cache, bio); block = tmp; cell_prealloc = prealloc_get_cell(structs); r = bio_detain(cache, block, bio, cell_prealloc, (void (*)(void * , struct dm_bio_prison_cell * ))(& prealloc_put_cell), (void *)structs, & new_ocell); if (r > 0) { return; } else { } process_cell(cache, structs, new_ocell); return; } } static int need_commit_due_to_time(struct cache *cache ) { { return (cache->last_commit_jiffies > (unsigned long )jiffies || cache->last_commit_jiffies + 250UL < (unsigned long )jiffies); } } static int commit(struct cache *cache , bool clean_shutdown ) { int r ; enum cache_metadata_mode tmp ; { tmp = get_cache_mode(cache); if ((unsigned int )tmp != 0U) { return (-22); } else { } atomic_inc(& cache->stats.commit_count); r = dm_cache_commit(cache->cmd, (int )clean_shutdown); if (r != 0) { metadata_operation_failed(cache, "dm_cache_commit", r); } else { } return (r); } } static int commit_if_needed(struct cache *cache ) { int r ; int tmp ; int tmp___0 ; { r = 0; if ((int )cache->commit_requested) { goto _L; } else { tmp = need_commit_due_to_time(cache); if (tmp != 0) { _L: /* CIL Label */ tmp___0 = dm_cache_changed_this_transaction(cache->cmd); if (tmp___0 != 0) { r = commit(cache, 0); cache->commit_requested = 0; cache->last_commit_jiffies = jiffies; } else { } } else { } } return (r); } } static void process_deferred_bios(struct cache *cache ) { unsigned long flags ; struct bio_list bios ; struct bio *bio ; struct prealloc structs ; raw_spinlock_t *tmp ; raw_spinlock_t *tmp___0 ; int tmp___1 ; int tmp___2 ; { memset((void *)(& structs), 0, 24UL); bio_list_init(& bios); tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_merge(& bios, & cache->deferred_bios); bio_list_init(& cache->deferred_bios); spin_unlock_irqrestore(& cache->lock, flags); goto ldv_36172; ldv_36171: tmp___1 = prealloc_data_structs(cache, & structs); if (tmp___1 != 0) { tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); bio_list_merge(& cache->deferred_bios, & bios); spin_unlock_irqrestore(& cache->lock, flags); goto ldv_36170; } else { } bio = bio_list_pop(& bios); if (((unsigned long long )bio->bi_rw & 8192ULL) != 0ULL) { process_flush_bio(cache, bio); } else if (((unsigned long long )bio->bi_rw & 128ULL) != 0ULL) { process_discard_bio(cache, & structs, bio); } else { process_bio(cache, & structs, bio); } ldv_36172: tmp___2 = bio_list_empty((struct bio_list const *)(& bios)); if (tmp___2 == 0) { goto ldv_36171; } else { } ldv_36170: prealloc_free_structs(cache, & structs); return; } } static void process_deferred_cells(struct cache *cache ) { unsigned long flags ; struct dm_bio_prison_cell *cell ; struct dm_bio_prison_cell *tmp ; struct list_head cells ; struct prealloc structs ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; raw_spinlock_t *tmp___1 ; int tmp___2 ; struct list_head const *__mptr___1 ; { memset((void *)(& structs), 0, 24UL); INIT_LIST_HEAD(& cells); tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); list_splice_init(& cache->deferred_cells, & cells); spin_unlock_irqrestore(& cache->lock, flags); __mptr = (struct list_head const *)cells.next; cell = (struct dm_bio_prison_cell *)__mptr; __mptr___0 = (struct list_head const *)cell->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___0; goto ldv_36195; ldv_36194: tmp___2 = prealloc_data_structs(cache, & structs); if (tmp___2 != 0) { tmp___1 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___1); list_splice((struct list_head const *)(& cells), & cache->deferred_cells); spin_unlock_irqrestore(& cache->lock, flags); goto ldv_36193; } else { } process_cell(cache, & structs, cell); cell = tmp; __mptr___1 = (struct list_head const *)tmp->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___1; ldv_36195: ; if ((unsigned long )(& cell->user_list) != (unsigned long )(& cells)) { goto ldv_36194; } else { } ldv_36193: prealloc_free_structs(cache, & structs); return; } } static void process_deferred_flush_bios(struct cache *cache , bool submit_bios ) { unsigned long flags ; struct bio_list bios ; struct bio *bio ; raw_spinlock_t *tmp ; { bio_list_init(& bios); tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_merge(& bios, & cache->deferred_flush_bios); bio_list_init(& cache->deferred_flush_bios); spin_unlock_irqrestore(& cache->lock, flags); goto ldv_36207; ldv_36206: ; if ((int )submit_bios) { accounted_request(cache, bio); } else { bio_endio(bio, -5); } ldv_36207: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_36206; } else { } return; } } static void process_deferred_writethrough_bios(struct cache *cache ) { unsigned long flags ; struct bio_list bios ; struct bio *bio ; raw_spinlock_t *tmp ; { bio_list_init(& bios); tmp = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_merge(& bios, & cache->deferred_writethrough_bios); bio_list_init(& cache->deferred_writethrough_bios); spin_unlock_irqrestore(& cache->lock, flags); goto ldv_36219; ldv_36218: accounted_request(cache, bio); ldv_36219: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_36218; } else { } return; } } static void writeback_some_dirty_blocks(struct cache *cache ) { int r ; dm_oblock_t oblock ; dm_cblock_t cblock ; struct prealloc structs ; struct dm_bio_prison_cell *old_ocell ; bool busy ; bool tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; { r = 0; tmp = iot_idle_for(& cache->origin_tracker, 250UL); if ((int )tmp != 0) { tmp___0 = 0; } else { tmp___0 = 1; } busy = (bool )tmp___0; memset((void *)(& structs), 0, 24UL); goto ldv_36232; ldv_36231: tmp___1 = prealloc_data_structs(cache, & structs); if (tmp___1 != 0) { goto ldv_36230; } else { } r = policy_writeback_work(cache->policy, & oblock, & cblock, (int )busy); if (r != 0) { goto ldv_36230; } else { } r = get_cell(cache, oblock, & structs, & old_ocell); if (r != 0) { policy_set_dirty(cache->policy, oblock); goto ldv_36230; } else { } writeback(cache, & structs, oblock, cblock, old_ocell); ldv_36232: tmp___2 = spare_migration_bandwidth(cache); if ((int )tmp___2) { goto ldv_36231; } else { } ldv_36230: prealloc_free_structs(cache, & structs); return; } } static void process_invalidation_request(struct cache *cache , struct invalidation_request *req ) { int r ; uint64_t begin ; uint32_t tmp ; uint64_t end ; uint32_t tmp___0 ; dm_cblock_t tmp___1 ; dm_cblock_t tmp___2 ; char const *tmp___3 ; { r = 0; tmp = from_cblock((req->cblocks)->begin); begin = (uint64_t )tmp; tmp___0 = from_cblock((req->cblocks)->end); end = (uint64_t )tmp___0; goto ldv_36242; ldv_36241: tmp___1 = to_cblock((uint32_t )begin); r = policy_remove_cblock(cache->policy, tmp___1); if (r == 0) { tmp___2 = to_cblock((uint32_t )begin); r = dm_cache_remove_mapping(cache->cmd, tmp___2); if (r != 0) { metadata_operation_failed(cache, "dm_cache_remove_mapping", r); goto ldv_36240; } else { } } else if (r == -61) { r = 0; } else { tmp___3 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: policy_remove_cblock failed\n", tmp___3); goto ldv_36240; } begin = begin + 1ULL; ldv_36242: ; if (begin != end) { goto ldv_36241; } else { } ldv_36240: cache->commit_requested = 1; req->err = r; atomic_set(& req->complete, 1); __wake_up(& req->result_wait, 3U, 1, (void *)0); return; } } static void process_invalidation_requests(struct cache *cache ) { struct list_head list ; struct invalidation_request *req ; struct invalidation_request *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { INIT_LIST_HEAD(& list); spin_lock(& cache->invalidation_lock); list_splice_init(& cache->invalidation_requests, & list); spin_unlock(& cache->invalidation_lock); __mptr = (struct list_head const *)list.next; req = (struct invalidation_request *)__mptr; __mptr___0 = (struct list_head const *)req->list.next; tmp = (struct invalidation_request *)__mptr___0; goto ldv_36256; ldv_36255: process_invalidation_request(cache, req); req = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct invalidation_request *)__mptr___1; ldv_36256: ; if ((unsigned long )(& req->list) != (unsigned long )(& list)) { goto ldv_36255; } else { } return; } } static bool is_quiescing(struct cache *cache ) { int tmp ; { tmp = atomic_read((atomic_t const *)(& cache->quiescing)); return (tmp != 0); } } static void ack_quiescing(struct cache *cache ) { bool tmp ; { tmp = is_quiescing(cache); if ((int )tmp) { atomic_inc(& cache->quiescing_ack); __wake_up(& cache->quiescing_wait, 3U, 1, (void *)0); } else { } return; } } static void wait_for_quiescing_ack(struct cache *cache ) { int tmp ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___0 ; int tmp___1 ; { __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c", 2166, 0); tmp = atomic_read((atomic_t const *)(& cache->quiescing_ack)); if (tmp != 0) { goto ldv_36267; } else { } __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_36273: tmp___0 = prepare_to_wait_event(& cache->quiescing_wait, & __wait, 2); __int = tmp___0; tmp___1 = atomic_read((atomic_t const *)(& cache->quiescing_ack)); if (tmp___1 != 0) { goto ldv_36272; } else { } schedule(); goto ldv_36273; ldv_36272: finish_wait(& cache->quiescing_wait, & __wait); ldv_36267: ; return; } } static void start_quiescing(struct cache *cache ) { { atomic_inc(& cache->quiescing); wait_for_quiescing_ack(cache); return; } } static void stop_quiescing(struct cache *cache ) { { atomic_set(& cache->quiescing, 0); atomic_set(& cache->quiescing_ack, 0); return; } } static void wait_for_migrations(struct cache *cache ) { int tmp ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___0 ; int tmp___1 ; { __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c", 2183, 0); tmp = atomic_read((atomic_t const *)(& cache->nr_allocated_migrations)); if (tmp == 0) { goto ldv_36284; } else { } __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_36290: tmp___0 = prepare_to_wait_event(& cache->migration_wait, & __wait, 2); __int = tmp___0; tmp___1 = atomic_read((atomic_t const *)(& cache->nr_allocated_migrations)); if (tmp___1 == 0) { goto ldv_36289; } else { } schedule(); goto ldv_36290; ldv_36289: finish_wait(& cache->migration_wait, & __wait); ldv_36284: ; return; } } static void stop_worker(struct cache *cache ) { { ldv_cancel_delayed_work_17(& cache->waker); ldv_flush_workqueue_18(cache->wq); return; } } static void requeue_deferred_cells(struct cache *cache ) { unsigned long flags ; struct list_head cells ; struct dm_bio_prison_cell *cell ; struct dm_bio_prison_cell *tmp ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { INIT_LIST_HEAD(& cells); tmp___0 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___0); list_splice_init(& cache->deferred_cells, & cells); spin_unlock_irqrestore(& cache->lock, flags); __mptr = (struct list_head const *)cells.next; cell = (struct dm_bio_prison_cell *)__mptr; __mptr___0 = (struct list_head const *)cell->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___0; goto ldv_36312; ldv_36311: cell_requeue(cache, cell); cell = tmp; __mptr___1 = (struct list_head const *)tmp->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___1; ldv_36312: ; if ((unsigned long )(& cell->user_list) != (unsigned long )(& cells)) { goto ldv_36311; } else { } return; } } static void requeue_deferred_bios(struct cache *cache ) { struct bio *bio ; struct bio_list bios ; { bio_list_init(& bios); bio_list_merge(& bios, & cache->deferred_bios); bio_list_init(& cache->deferred_bios); goto ldv_36320; ldv_36319: bio_endio(bio, 2); ldv_36320: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_36319; } else { } return; } } static int more_work(struct cache *cache ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; bool tmp___11 ; { tmp___11 = is_quiescing(cache); if ((int )tmp___11) { tmp = list_empty((struct list_head const *)(& cache->quiesced_migrations)); if (tmp == 0) { tmp___2 = 1; } else { tmp___0 = list_empty((struct list_head const *)(& cache->completed_migrations)); if (tmp___0 == 0) { tmp___2 = 1; } else { tmp___1 = list_empty((struct list_head const *)(& cache->need_commit_migrations)); if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } } return (tmp___2); } else { tmp___3 = bio_list_empty((struct bio_list const *)(& cache->deferred_bios)); if (tmp___3 == 0) { tmp___10 = 1; } else { tmp___4 = list_empty((struct list_head const *)(& cache->deferred_cells)); if (tmp___4 == 0) { tmp___10 = 1; } else { tmp___5 = bio_list_empty((struct bio_list const *)(& cache->deferred_flush_bios)); if (tmp___5 == 0) { tmp___10 = 1; } else { tmp___6 = bio_list_empty((struct bio_list const *)(& cache->deferred_writethrough_bios)); if (tmp___6 == 0) { tmp___10 = 1; } else { tmp___7 = list_empty((struct list_head const *)(& cache->quiesced_migrations)); if (tmp___7 == 0) { tmp___10 = 1; } else { tmp___8 = list_empty((struct list_head const *)(& cache->completed_migrations)); if (tmp___8 == 0) { tmp___10 = 1; } else { tmp___9 = list_empty((struct list_head const *)(& cache->need_commit_migrations)); if (tmp___9 == 0) { tmp___10 = 1; } else if ((int )cache->invalidate) { tmp___10 = 1; } else { tmp___10 = 0; } } } } } } } return (tmp___10); } } } static void do_worker(struct work_struct *ws ) { struct cache *cache ; struct work_struct const *__mptr ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { __mptr = (struct work_struct const *)ws; cache = (struct cache *)__mptr + 0xfffffffffffffde0UL; ldv_36331: tmp = is_quiescing(cache); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { writeback_some_dirty_blocks(cache); process_deferred_writethrough_bios(cache); process_deferred_bios(cache); process_deferred_cells(cache); process_invalidation_requests(cache); } else { } process_migrations(cache, & cache->quiesced_migrations, & issue_copy_or_discard); process_migrations(cache, & cache->completed_migrations, & complete_migration); tmp___1 = commit_if_needed(cache); if (tmp___1 != 0) { process_deferred_flush_bios(cache, 0); process_migrations(cache, & cache->need_commit_migrations, & migration_failure); } else { process_deferred_flush_bios(cache, 1); process_migrations(cache, & cache->need_commit_migrations, & migration_success_post_commit); } ack_quiescing(cache); tmp___2 = more_work(cache); if (tmp___2 != 0) { goto ldv_36331; } else { } return; } } static void do_waker(struct work_struct *ws ) { struct cache *cache ; struct delayed_work const *__mptr ; struct delayed_work *tmp ; { tmp = to_delayed_work(ws); __mptr = (struct delayed_work const *)tmp; cache = (struct cache *)__mptr + 0xfffffffffffffd90UL; policy_tick(cache->policy, 1); wake_worker(cache); queue_delayed_work(cache->wq, & cache->waker, 250UL); return; } } static int is_congested(struct dm_dev *dev , int bdi_bits ) { struct request_queue *q ; struct request_queue *tmp ; int tmp___0 ; { tmp = bdev_get_queue(dev->bdev); q = tmp; tmp___0 = bdi_congested(& q->backing_dev_info, bdi_bits); return (tmp___0); } } static int cache_is_congested(struct dm_target_callbacks *cb , int bdi_bits ) { struct cache *cache ; struct dm_target_callbacks const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct dm_target_callbacks const *)cb; cache = (struct cache *)__mptr + 0xfffffffffffffff8UL; tmp = is_congested(cache->origin_dev, bdi_bits); if (tmp != 0) { tmp___1 = 1; } else { tmp___0 = is_congested(cache->cache_dev, bdi_bits); if (tmp___0 != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } return (tmp___1); } } static void destroy(struct cache *cache ) { unsigned int i ; { if ((unsigned long )cache->migration_pool != (unsigned long )((mempool_t *)0)) { mempool_destroy(cache->migration_pool); } else { } if ((unsigned long )cache->all_io_ds != (unsigned long )((struct dm_deferred_set *)0)) { dm_deferred_set_destroy(cache->all_io_ds); } else { } if ((unsigned long )cache->prison != (unsigned long )((struct dm_bio_prison *)0)) { dm_bio_prison_destroy(cache->prison); } else { } if ((unsigned long )cache->wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_19(cache->wq); } else { } if ((unsigned long )cache->dirty_bitset != (unsigned long )((unsigned long *)0UL)) { free_bitset(cache->dirty_bitset); } else { } if ((unsigned long )cache->discard_bitset != (unsigned long )((unsigned long *)0UL)) { free_bitset(cache->discard_bitset); } else { } if ((unsigned long )cache->copier != (unsigned long )((struct dm_kcopyd_client *)0)) { dm_kcopyd_client_destroy(cache->copier); } else { } if ((unsigned long )cache->cmd != (unsigned long )((struct dm_cache_metadata *)0)) { dm_cache_metadata_close(cache->cmd); } else { } if ((unsigned long )cache->metadata_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(cache->ti, cache->metadata_dev); } else { } if ((unsigned long )cache->origin_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(cache->ti, cache->origin_dev); } else { } if ((unsigned long )cache->cache_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(cache->ti, cache->cache_dev); } else { } if ((unsigned long )cache->policy != (unsigned long )((struct dm_cache_policy *)0)) { dm_cache_policy_destroy(cache->policy); } else { } i = 0U; goto ldv_36356; ldv_36355: kfree((void const *)*(cache->ctr_args + (unsigned long )i)); i = i + 1U; ldv_36356: ; if (cache->nr_ctr_args > i) { goto ldv_36355; } else { } kfree((void const *)cache->ctr_args); kfree((void const *)cache); return; } } static void cache_dtr(struct dm_target *ti ) { struct cache *cache ; { cache = (struct cache *)ti->private; destroy(cache); return; } } static sector_t get_dev_size(struct dm_dev *dev ) { loff_t tmp ; { tmp = i_size_read((struct inode const *)(dev->bdev)->bd_inode); return ((sector_t )(tmp >> 9)); } } static void destroy_cache_args(struct cache_args *ca ) { { if ((unsigned long )ca->metadata_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ca->ti, ca->metadata_dev); } else { } if ((unsigned long )ca->cache_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ca->ti, ca->cache_dev); } else { } if ((unsigned long )ca->origin_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ca->ti, ca->origin_dev); } else { } kfree((void const *)ca); return; } } static bool at_least_one_arg(struct dm_arg_set *as , char **error ) { { if (as->argc == 0U) { *error = (char *)"Insufficient args"; return (0); } else { } return (1); } } static int parse_metadata_dev(struct cache_args *ca , struct dm_arg_set *as , char **error ) { int r ; sector_t metadata_dev_size ; char b[32U] ; bool tmp ; int tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; { tmp = at_least_one_arg(as, error); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-22); } else { } tmp___1 = dm_shift_arg(as); r = dm_get_device(ca->ti, tmp___1, 3U, & ca->metadata_dev); if (r != 0) { *error = (char *)"Error opening metadata device"; return (r); } else { } metadata_dev_size = get_dev_size(ca->metadata_dev); if (metadata_dev_size > 33554432UL) { tmp___2 = bdevname((ca->metadata_dev)->bdev, (char *)(& b)); printk("\fdevice-mapper: cache: Metadata device %s is larger than %u sectors: excess space will not be used.\n", tmp___2, 33292800); } else { } return (0); } } static int parse_cache_dev(struct cache_args *ca , struct dm_arg_set *as , char **error ) { int r ; bool tmp ; int tmp___0 ; char const *tmp___1 ; { tmp = at_least_one_arg(as, error); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-22); } else { } tmp___1 = dm_shift_arg(as); r = dm_get_device(ca->ti, tmp___1, 3U, & ca->cache_dev); if (r != 0) { *error = (char *)"Error opening cache device"; return (r); } else { } ca->cache_sectors = get_dev_size(ca->cache_dev); return (0); } } static int parse_origin_dev(struct cache_args *ca , struct dm_arg_set *as , char **error ) { int r ; bool tmp ; int tmp___0 ; char const *tmp___1 ; { tmp = at_least_one_arg(as, error); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-22); } else { } tmp___1 = dm_shift_arg(as); r = dm_get_device(ca->ti, tmp___1, 3U, & ca->origin_dev); if (r != 0) { *error = (char *)"Error opening origin device"; return (r); } else { } ca->origin_sectors = get_dev_size(ca->origin_dev); if ((ca->ti)->len > ca->origin_sectors) { *error = (char *)"Device size larger than cached device"; return (-22); } else { } return (0); } } static int parse_block_size(struct cache_args *ca , struct dm_arg_set *as , char **error ) { unsigned long block_size___0 ; bool tmp ; int tmp___0 ; char const *tmp___1 ; int tmp___2 ; { tmp = at_least_one_arg(as, error); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-22); } else { } tmp___1 = dm_shift_arg(as); tmp___2 = kstrtoul(tmp___1, 10U, & block_size___0); if ((((tmp___2 != 0 || block_size___0 == 0UL) || block_size___0 <= 63UL) || block_size___0 > 2097152UL) || (block_size___0 & 63UL) != 0UL) { *error = (char *)"Invalid data block size"; return (-22); } else { } if (ca->cache_sectors < block_size___0) { *error = (char *)"Data block size is larger than the cache device"; return (-22); } else { } ca->block_size = (uint32_t )block_size___0; return (0); } } static void init_features(struct cache_features *cf ) { { cf->mode = 0; cf->io_mode = 0; return; } } static int parse_features(struct cache_args *ca , struct dm_arg_set *as , char **error ) { struct dm_arg _args[1U] ; int r ; unsigned int argc ; char const *arg ; struct cache_features *cf ; int tmp ; int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; { _args[0].min = 0U; _args[0].max = 1U; _args[0].error = (char *)"Invalid number of cache feature arguments"; cf = & ca->features; init_features(cf); r = dm_read_arg_group((struct dm_arg *)(& _args), as, & argc, error); if (r != 0) { return (-22); } else { } goto ldv_36424; ldv_36423: arg = dm_shift_arg(as); tmp___1 = strcasecmp(arg, "writeback"); if (tmp___1 == 0) { cf->io_mode = 0; } else { tmp___0 = strcasecmp(arg, "writethrough"); if (tmp___0 == 0) { cf->io_mode = 1; } else { tmp = strcasecmp(arg, "passthrough"); if (tmp == 0) { cf->io_mode = 2; } else { *error = (char *)"Unrecognised cache feature requested"; return (-22); } } } ldv_36424: tmp___2 = argc; argc = argc - 1U; if (tmp___2 != 0U) { goto ldv_36423; } else { } return (0); } } static int parse_policy(struct cache_args *ca , struct dm_arg_set *as , char **error ) { struct dm_arg _args[1U] ; int r ; bool tmp ; int tmp___0 ; { _args[0].min = 0U; _args[0].max = 1024U; _args[0].error = (char *)"Invalid number of policy arguments"; tmp = at_least_one_arg(as, error); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-22); } else { } ca->policy_name = dm_shift_arg(as); r = dm_read_arg_group((struct dm_arg *)(& _args), as, (unsigned int *)(& ca->policy_argc), error); if (r != 0) { return (-22); } else { } ca->policy_argv = (char const **)as->argv; dm_consume_args(as, (unsigned int )ca->policy_argc); return (0); } } static int parse_cache_args(struct cache_args *ca , int argc , char **argv , char **error ) { int r ; struct dm_arg_set as ; { as.argc = (unsigned int )argc; as.argv = argv; r = parse_metadata_dev(ca, & as, error); if (r != 0) { return (r); } else { } r = parse_cache_dev(ca, & as, error); if (r != 0) { return (r); } else { } r = parse_origin_dev(ca, & as, error); if (r != 0) { return (r); } else { } r = parse_block_size(ca, & as, error); if (r != 0) { return (r); } else { } r = parse_features(ca, & as, error); if (r != 0) { return (r); } else { } r = parse_policy(ca, & as, error); if (r != 0) { return (r); } else { } return (0); } } static struct kmem_cache *migration_cache ; static int process_config_option(struct cache *cache , char const *key , char const *value ) { unsigned long tmp ; int tmp___0 ; int tmp___1 ; { tmp___1 = strcasecmp(key, "migration_threshold"); if (tmp___1 == 0) { tmp___0 = kstrtoul(value, 10U, & tmp); if (tmp___0 != 0) { return (-22); } else { } cache->migration_threshold = tmp; return (0); } else { } return (1); } } static int set_config_value(struct cache *cache , char const *key , char const *value ) { int r ; int tmp ; { tmp = process_config_option(cache, key, value); r = tmp; if (r == 1) { r = policy_set_config_value(cache->policy, key, value); } else { } if (r != 0) { printk("\fdevice-mapper: cache: bad config value for %s: %s\n", key, value); } else { } return (r); } } static int set_config_values(struct cache *cache , int argc , char const **argv ) { int r ; { r = 0; if (argc & 1) { printk("\fdevice-mapper: cache: Odd number of policy arguments given but they should be pairs.\n"); return (-22); } else { } goto ldv_36462; ldv_36461: r = set_config_value(cache, *argv, *(argv + 1UL)); if (r != 0) { goto ldv_36460; } else { } argc = argc + -2; argv = argv + 2UL; ldv_36462: ; if (argc != 0) { goto ldv_36461; } else { } ldv_36460: ; return (r); } } static int create_cache_policy(struct cache *cache , struct cache_args *ca , char **error ) { struct dm_cache_policy *p ; struct dm_cache_policy *tmp ; long tmp___0 ; bool tmp___1 ; { tmp = dm_cache_policy_create(ca->policy_name, cache->cache_size, cache->origin_sectors, (sector_t )cache->sectors_per_block); p = tmp; tmp___1 = IS_ERR((void const *)p); if ((int )tmp___1) { *error = (char *)"Error creating cache\'s policy"; tmp___0 = PTR_ERR((void const *)p); return ((int )tmp___0); } else { } cache->policy = p; return (0); } } static bool too_many_discard_blocks(sector_t discard_block_size , sector_t origin_size ) { int _res ; { _res = (int )(origin_size % discard_block_size); origin_size = origin_size / discard_block_size; return (origin_size > 16384UL); } } static sector_t calculate_discard_block_size(sector_t cache_block_size , sector_t origin_size ) { sector_t discard_block_size ; bool tmp ; { discard_block_size = cache_block_size; if (origin_size != 0UL) { goto ldv_36481; ldv_36480: discard_block_size = discard_block_size * 2UL; ldv_36481: tmp = too_many_discard_blocks(discard_block_size, origin_size); if ((int )tmp) { goto ldv_36480; } else { } } else { } return (discard_block_size); } } static void set_cache_size(struct cache *cache , dm_cblock_t size ) { dm_block_t nr_blocks ; uint32_t tmp ; int tmp___0 ; { tmp = from_cblock(size); nr_blocks = (dm_block_t )tmp; if (nr_blocks > 1048576ULL && cache->cache_size != size) { tmp___0 = ___ratelimit(& dm_ratelimit_state, "set_cache_size"); if (tmp___0 != 0) { printk("\fdevice-mapper: cache: You have created a cache device with a lot of individual cache blocks (%llu)\nAll these mappings can consume a lot of kernel memory, and take some time to read/write.\nPlease consider increasing the cache block size to reduce the overall cache block count.\n", nr_blocks); } else { } } else { } cache->cache_size = size; return; } } static int cache_create(struct cache_args *ca , struct cache **result ) { int r ; char **error ; struct cache *cache ; struct dm_target *ti ; dm_block_t origin_blocks ; struct dm_cache_metadata *cmd ; bool may_format ; void *tmp ; size_t tmp___0 ; struct dm_dev *tmp___1 ; struct dm_dev *tmp___2 ; sector_t tmp___3 ; int tmp___4 ; dm_block_t cache_size ; dm_cblock_t tmp___5 ; unsigned long tmp___6 ; dm_cblock_t tmp___7 ; size_t tmp___8 ; long tmp___9 ; bool tmp___10 ; enum cache_metadata_mode tmp___11 ; bool all_clean ; bool tmp___12 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; uint32_t tmp___13 ; uint32_t tmp___14 ; sector_t tmp___15 ; sector_t _r ; int _res ; dm_block_t tmp___16 ; dm_block_t tmp___17 ; long tmp___18 ; bool tmp___19 ; struct lock_class_key __key___2 ; char const *__lock_name ; struct workqueue_struct *tmp___20 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___5 ; struct lock_class_key __key___6 ; { r = 0; error = & (ca->ti)->error; ti = ca->ti; may_format = (unsigned int )ca->features.mode == 0U; tmp = kzalloc(1128UL, 208U); cache = (struct cache *)tmp; if ((unsigned long )cache == (unsigned long )((struct cache *)0)) { return (-12); } else { } cache->ti = ca->ti; ti->private = (void *)cache; ti->num_flush_bios = 2U; ti->flush_supported = 1; ti->num_discard_bios = 1U; ti->discards_supported = 1; ti->discard_zeroes_data_unsupported = 1; ti->split_discard_bios = 0; cache->features = ca->features; tmp___0 = get_per_bio_data_size(cache); ti->per_bio_data_size = (unsigned int )tmp___0; cache->callbacks.congested_fn = & cache_is_congested; dm_table_add_target_callbacks(ti->table, & cache->callbacks); cache->metadata_dev = ca->metadata_dev; cache->origin_dev = ca->origin_dev; cache->cache_dev = ca->cache_dev; tmp___2 = (struct dm_dev *)0; ca->cache_dev = tmp___2; tmp___1 = tmp___2; ca->origin_dev = tmp___1; ca->metadata_dev = tmp___1; tmp___3 = ca->origin_sectors; cache->origin_sectors = tmp___3; origin_blocks = (dm_block_t )tmp___3; origin_blocks = block_div(origin_blocks, ca->block_size); cache->origin_blocks = to_oblock(origin_blocks); cache->sectors_per_block = ca->block_size; tmp___4 = dm_set_target_max_io_len(ti, (sector_t )cache->sectors_per_block); if (tmp___4 != 0) { r = -22; goto bad; } else { } if ((ca->block_size & (ca->block_size - 1U)) != 0U) { cache_size = (dm_block_t )ca->cache_sectors; cache->sectors_per_block_shift = -1; cache_size = block_div(cache_size, ca->block_size); tmp___5 = to_cblock((uint32_t )cache_size); set_cache_size(cache, tmp___5); } else { tmp___6 = __ffs((unsigned long )ca->block_size); cache->sectors_per_block_shift = (int )tmp___6; tmp___7 = to_cblock((uint32_t )(ca->cache_sectors >> cache->sectors_per_block_shift)); set_cache_size(cache, tmp___7); } r = create_cache_policy(cache, ca, error); if (r != 0) { goto bad; } else { } cache->policy_nr_args = (unsigned int )ca->policy_argc; cache->migration_threshold = 2048UL; r = set_config_values(cache, ca->policy_argc, ca->policy_argv); if (r != 0) { *error = (char *)"Error setting cache policy\'s config values"; goto bad; } else { } tmp___8 = dm_cache_policy_get_hint_size(cache->policy); cmd = dm_cache_metadata_open((cache->metadata_dev)->bdev, (sector_t )ca->block_size, (int )may_format, tmp___8); tmp___10 = IS_ERR((void const *)cmd); if ((int )tmp___10) { *error = (char *)"Error creating metadata object"; tmp___9 = PTR_ERR((void const *)cmd); r = (int )tmp___9; goto bad; } else { } cache->cmd = cmd; set_cache_mode(cache, 0); tmp___11 = get_cache_mode(cache); if ((unsigned int )tmp___11 != 0U) { *error = (char *)"Unable to get write access to metadata, please check/repair metadata."; r = -22; goto bad; } else { } tmp___12 = passthrough_mode(& cache->features); if ((int )tmp___12) { r = dm_cache_metadata_all_clean(cache->cmd, & all_clean); if (r != 0) { *error = (char *)"dm_cache_metadata_all_clean() failed"; goto bad; } else { } if (! all_clean) { *error = (char *)"Cannot enter passthrough mode unless all blocks are clean"; r = -22; goto bad; } else { } } else { } spinlock_check(& cache->lock); __raw_spin_lock_init(& cache->lock.__annonCompField17.rlock, "&(&cache->lock)->rlock", & __key); INIT_LIST_HEAD(& cache->deferred_cells); bio_list_init(& cache->deferred_bios); bio_list_init(& cache->deferred_flush_bios); bio_list_init(& cache->deferred_writethrough_bios); INIT_LIST_HEAD(& cache->quiesced_migrations); INIT_LIST_HEAD(& cache->completed_migrations); INIT_LIST_HEAD(& cache->need_commit_migrations); atomic_set(& cache->nr_allocated_migrations, 0); atomic_set(& cache->nr_io_migrations, 0); __init_waitqueue_head(& cache->migration_wait, "&cache->migration_wait", & __key___0); __init_waitqueue_head(& cache->quiescing_wait, "&cache->quiescing_wait", & __key___1); atomic_set(& cache->quiescing, 0); atomic_set(& cache->quiescing_ack, 0); r = -12; atomic_set(& cache->nr_dirty, 0); tmp___13 = from_cblock(cache->cache_size); cache->dirty_bitset = alloc_bitset(tmp___13); if ((unsigned long )cache->dirty_bitset == (unsigned long )((unsigned long *)0UL)) { *error = (char *)"could not allocate dirty bitset"; goto bad; } else { } tmp___14 = from_cblock(cache->cache_size); clear_bitset((void *)cache->dirty_bitset, tmp___14); tmp___15 = calculate_discard_block_size((sector_t )cache->sectors_per_block, cache->origin_sectors); cache->discard_block_size = (uint32_t )tmp___15; _r = (cache->origin_sectors + (sector_t )cache->discard_block_size) - 1UL; _res = (int )(_r % (sector_t )cache->discard_block_size); _r = _r / (sector_t )cache->discard_block_size; cache->discard_nr_blocks = to_dblock((dm_block_t )_r); tmp___16 = from_dblock(cache->discard_nr_blocks); cache->discard_bitset = alloc_bitset((unsigned int )tmp___16); if ((unsigned long )cache->discard_bitset == (unsigned long )((unsigned long *)0UL)) { *error = (char *)"could not allocate discard bitset"; goto bad; } else { } tmp___17 = from_dblock(cache->discard_nr_blocks); clear_bitset((void *)cache->discard_bitset, (unsigned int )tmp___17); cache->copier = dm_kcopyd_client_create(& dm_kcopyd_throttle); tmp___19 = IS_ERR((void const *)cache->copier); if ((int )tmp___19) { *error = (char *)"could not create kcopyd client"; tmp___18 = PTR_ERR((void const *)cache->copier); r = (int )tmp___18; goto bad; } else { } __lock_name = "\"dm-\" \"cache\""; tmp___20 = __alloc_workqueue_key("dm-cache", 131082U, 1, & __key___2, __lock_name); cache->wq = tmp___20; if ((unsigned long )cache->wq == (unsigned long )((struct workqueue_struct *)0)) { *error = (char *)"could not create workqueue for metadata object"; goto bad; } else { } __init_work(& cache->worker, 0); __constr_expr_0.counter = 137438953408L; cache->worker.data = __constr_expr_0; lockdep_init_map(& cache->worker.lockdep_map, "(&cache->worker)", & __key___3, 0); INIT_LIST_HEAD(& cache->worker.entry); cache->worker.func = & do_worker; __init_work(& cache->waker.work, 0); __constr_expr_1.counter = 137438953408L; cache->waker.work.data = __constr_expr_1; lockdep_init_map(& cache->waker.work.lockdep_map, "(&(&cache->waker)->work)", & __key___4, 0); INIT_LIST_HEAD(& cache->waker.work.entry); cache->waker.work.func = & do_waker; init_timer_key(& cache->waker.timer, 2097152U, "(&(&cache->waker)->timer)", & __key___5); cache->waker.timer.function = & delayed_work_timer_fn; cache->waker.timer.data = (unsigned long )(& cache->waker); cache->last_commit_jiffies = jiffies; cache->prison = dm_bio_prison_create(); if ((unsigned long )cache->prison == (unsigned long )((struct dm_bio_prison *)0)) { *error = (char *)"could not create bio prison"; goto bad; } else { } cache->all_io_ds = dm_deferred_set_create(); if ((unsigned long )cache->all_io_ds == (unsigned long )((struct dm_deferred_set *)0)) { *error = (char *)"could not create all_io deferred set"; goto bad; } else { } cache->migration_pool = mempool_create_slab_pool(128, migration_cache); if ((unsigned long )cache->migration_pool == (unsigned long )((mempool_t *)0)) { *error = (char *)"Error creating cache\'s migration mempool"; goto bad; } else { } cache->need_tick_bio = 1; cache->sized = 0; cache->invalidate = 0; cache->commit_requested = 0; cache->loaded_mappings = 0; cache->loaded_discards = 0; load_stats(cache); atomic_set(& cache->stats.demotion, 0); atomic_set(& cache->stats.promotion, 0); atomic_set(& cache->stats.copies_avoided, 0); atomic_set(& cache->stats.cache_cell_clash, 0); atomic_set(& cache->stats.commit_count, 0); atomic_set(& cache->stats.discard_count, 0); spinlock_check(& cache->invalidation_lock); __raw_spin_lock_init(& cache->invalidation_lock.__annonCompField17.rlock, "&(&cache->invalidation_lock)->rlock", & __key___6); INIT_LIST_HEAD(& cache->invalidation_requests); iot_init(& cache->origin_tracker); *result = cache; return (0); bad: destroy(cache); return (r); } } static int copy_ctr_args(struct cache *cache , int argc , char const **argv ) { unsigned int i ; char const **copy ; void *tmp ; char *tmp___0 ; unsigned int tmp___1 ; { tmp = kcalloc((size_t )argc, 8UL, 208U); copy = (char const **)tmp; if ((unsigned long )copy == (unsigned long )((char const **)0)) { return (-12); } else { } i = 0U; goto ldv_36530; ldv_36529: tmp___0 = kstrdup(*(argv + (unsigned long )i), 208U); *(copy + (unsigned long )i) = (char const *)tmp___0; if ((unsigned long )*(copy + (unsigned long )i) == (unsigned long )((char const *)0)) { goto ldv_36527; ldv_36526: kfree((void const *)*(copy + (unsigned long )i)); ldv_36527: tmp___1 = i; i = i - 1U; if (tmp___1 != 0U) { goto ldv_36526; } else { } kfree((void const *)copy); return (-12); } else { } i = i + 1U; ldv_36530: ; if ((unsigned int )argc > i) { goto ldv_36529; } else { } cache->nr_ctr_args = (unsigned int )argc; cache->ctr_args = copy; return (0); } } static int cache_ctr(struct dm_target *ti , unsigned int argc , char **argv ) { int r ; struct cache_args *ca ; struct cache *cache ; void *tmp ; { r = -22; cache = (struct cache *)0; tmp = kzalloc(88UL, 208U); ca = (struct cache_args *)tmp; if ((unsigned long )ca == (unsigned long )((struct cache_args *)0)) { ti->error = (char *)"Error allocating memory for cache"; return (-12); } else { } ca->ti = ti; r = parse_cache_args(ca, (int )argc, argv, & ti->error); if (r != 0) { goto out; } else { } r = cache_create(ca, & cache); if (r != 0) { goto out; } else { } r = copy_ctr_args(cache, (int )(argc - 3U), (char const **)argv + 3UL); if (r != 0) { destroy(cache); goto out; } else { } ti->private = (void *)cache; out: destroy_cache_args(ca); return (r); } } static int cache_map(struct dm_target *ti , struct bio *bio ) { struct cache *cache ; int r ; struct dm_bio_prison_cell *cell ; dm_oblock_t block ; dm_oblock_t tmp ; size_t pb_data_size ; size_t tmp___0 ; bool can_migrate ; bool fast_promotion ; struct policy_result lookup_result ; struct per_bio_data *pb ; struct per_bio_data *tmp___1 ; struct old_oblock_lock ool ; dm_block_t tmp___2 ; dm_block_t tmp___3 ; long tmp___4 ; bool tmp___5 ; bool tmp___6 ; bool tmp___7 ; int tmp___8 ; char const *tmp___9 ; int tmp___10 ; bool tmp___11 ; bool tmp___12 ; int tmp___13 ; bool tmp___14 ; char const *tmp___15 ; int tmp___16 ; { cache = (struct cache *)ti->private; cell = (struct dm_bio_prison_cell *)0; tmp = get_bio_block(cache, bio); block = tmp; tmp___0 = get_per_bio_data_size(cache); pb_data_size = tmp___0; can_migrate = 0; tmp___1 = init_per_bio_data(bio, pb_data_size); pb = tmp___1; ool.locker.fn = & null_locker; tmp___2 = from_oblock(block); tmp___3 = from_oblock(cache->origin_blocks); tmp___4 = ldv__builtin_expect(tmp___2 >= tmp___3, 0L); if (tmp___4 != 0L) { remap_to_origin(cache, bio); accounted_begin(cache, bio); return (1); } else { } tmp___5 = discard_or_flush(bio); if ((int )tmp___5) { defer_bio(cache, bio); return (0); } else { } cell = alloc_prison_cell(cache); if ((unsigned long )cell == (unsigned long )((struct dm_bio_prison_cell *)0)) { defer_bio(cache, bio); return (0); } else { } r = bio_detain(cache, block, bio, cell, (void (*)(void * , struct dm_bio_prison_cell * ))(& free_prison_cell), (void *)cache, & cell); if (r != 0) { if (r < 0) { defer_bio(cache, bio); } else { } return (0); } else { } tmp___6 = is_discarded_oblock(cache, block); if ((int )tmp___6) { tmp___8 = 1; } else { tmp___7 = bio_writes_complete_block(cache, bio); if ((int )tmp___7) { tmp___8 = 1; } else { tmp___8 = 0; } } fast_promotion = (bool )tmp___8; r = policy_map(cache->policy, block, 0, (int )can_migrate, (int )fast_promotion, bio, & ool.locker, & lookup_result); if (r == -11) { cell_defer(cache, cell, 1); return (0); } else if (r != 0) { tmp___10 = ___ratelimit(& dm_ratelimit_state, "cache_map"); if (tmp___10 != 0) { tmp___9 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: Unexpected return from cache replacement policy: %d\n", tmp___9, r); } else { } cell_defer(cache, cell, 0); bio_endio(bio, -5); return (0); } else { } r = 1; switch ((unsigned int )lookup_result.op) { case 0U: tmp___14 = passthrough_mode(& cache->features); if ((int )tmp___14) { if ((int )bio->bi_rw & 1) { cell_defer(cache, cell, 1); r = 0; } else { inc_miss_counter(cache, bio); remap_to_origin_clear_discard(cache, bio, block); accounted_begin(cache, bio); inc_ds(cache, bio, cell); cell_defer(cache, cell, 0); } } else { inc_hit_counter(cache, bio); if ((int )bio->bi_rw & 1) { tmp___11 = writethrough_mode(& cache->features); if ((int )tmp___11) { tmp___12 = is_dirty(cache, lookup_result.cblock); if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); accounted_begin(cache, bio); inc_ds(cache, bio, cell); cell_defer(cache, cell, 0); } else { remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, 0); } } else { remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, 0); } } else { remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, 0); } } goto ldv_36557; case 1U: inc_miss_counter(cache, bio); if ((unsigned int )*((unsigned char *)pb + 0UL) != 0U) { bio_endio(bio, 0); cell_defer(cache, cell, 0); r = 0; } else { remap_cell_to_origin_clear_discard(cache, cell, block, 0); } goto ldv_36557; default: tmp___16 = ___ratelimit(& dm_ratelimit_state, "cache_map"); if (tmp___16 != 0) { tmp___15 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: %s: erroring bio: unknown policy op: %u\n", tmp___15, "cache_map", (unsigned int )lookup_result.op); } else { } cell_defer(cache, cell, 0); bio_endio(bio, -5); r = 0; } ldv_36557: ; return (r); } } static int cache_end_io(struct dm_target *ti , struct bio *bio , int error ) { struct cache *cache ; unsigned long flags ; size_t pb_data_size ; size_t tmp ; struct per_bio_data *pb ; struct per_bio_data *tmp___0 ; raw_spinlock_t *tmp___1 ; { cache = (struct cache *)ti->private; tmp = get_per_bio_data_size(cache); pb_data_size = tmp; tmp___0 = get_per_bio_data(bio, pb_data_size); pb = tmp___0; if ((int )pb->tick) { policy_tick(cache->policy, 0); tmp___1 = spinlock_check(& cache->lock); flags = _raw_spin_lock_irqsave(tmp___1); cache->need_tick_bio = 1; spin_unlock_irqrestore(& cache->lock, flags); } else { } check_for_quiesced_migrations(cache, pb); accounted_complete(cache, bio); return (0); } } static int write_dirty_bitset(struct cache *cache ) { unsigned int i ; unsigned int r ; enum cache_metadata_mode tmp ; dm_cblock_t tmp___0 ; bool tmp___1 ; dm_cblock_t tmp___2 ; int tmp___3 ; uint32_t tmp___4 ; { tmp = get_cache_mode(cache); if ((unsigned int )tmp != 0U) { return (-22); } else { } i = 0U; goto ldv_36578; ldv_36577: tmp___0 = to_cblock(i); tmp___1 = is_dirty(cache, tmp___0); tmp___2 = to_cblock(i); tmp___3 = dm_cache_set_dirty(cache->cmd, tmp___2, (int )tmp___1); r = (unsigned int )tmp___3; if (r != 0U) { metadata_operation_failed(cache, "dm_cache_set_dirty", (int )r); return ((int )r); } else { } i = i + 1U; ldv_36578: tmp___4 = from_cblock(cache->cache_size); if (tmp___4 > i) { goto ldv_36577; } else { } return (0); } } static int write_discard_bitset(struct cache *cache ) { unsigned int i ; unsigned int r ; enum cache_metadata_mode tmp ; int tmp___0 ; char const *tmp___1 ; dm_dblock_t tmp___2 ; bool tmp___3 ; dm_dblock_t tmp___4 ; int tmp___5 ; dm_block_t tmp___6 ; { tmp = get_cache_mode(cache); if ((unsigned int )tmp != 0U) { return (-22); } else { } tmp___0 = dm_cache_discard_bitset_resize(cache->cmd, (sector_t )cache->discard_block_size, cache->discard_nr_blocks); r = (unsigned int )tmp___0; if (r != 0U) { tmp___1 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not resize on-disk discard bitset\n", tmp___1); metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", (int )r); return ((int )r); } else { } i = 0U; goto ldv_36586; ldv_36585: tmp___2 = to_dblock((dm_block_t )i); tmp___3 = is_discarded(cache, tmp___2); tmp___4 = to_dblock((dm_block_t )i); tmp___5 = dm_cache_set_discard(cache->cmd, tmp___4, (int )tmp___3); r = (unsigned int )tmp___5; if (r != 0U) { metadata_operation_failed(cache, "dm_cache_set_discard", (int )r); return ((int )r); } else { } i = i + 1U; ldv_36586: tmp___6 = from_dblock(cache->discard_nr_blocks); if ((dm_block_t )i < tmp___6) { goto ldv_36585; } else { } return (0); } } static int write_hints(struct cache *cache ) { int r ; enum cache_metadata_mode tmp ; { tmp = get_cache_mode(cache); if ((unsigned int )tmp != 0U) { return (-22); } else { } r = dm_cache_write_hints(cache->cmd, cache->policy); if (r != 0) { metadata_operation_failed(cache, "dm_cache_write_hints", r); return (r); } else { } return (0); } } static bool sync_metadata(struct cache *cache ) { int r1 ; int r2 ; int r3 ; int r4 ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; { r1 = write_dirty_bitset(cache); if (r1 != 0) { tmp = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not write dirty bitset\n", tmp); } else { } r2 = write_discard_bitset(cache); if (r2 != 0) { tmp___0 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not write discard bitset\n", tmp___0); } else { } save_stats(cache); r3 = write_hints(cache); if (r3 != 0) { tmp___1 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not write hints\n", tmp___1); } else { } r4 = commit(cache, (int )((bool )((r1 == 0 && r2 == 0) && r3 == 0))); if (r4 != 0) { tmp___2 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not write cache metadata\n", tmp___2); } else { } return ((bool )(((r1 == 0 && r2 == 0) && r3 == 0) && r4 == 0)); } } static void cache_postsuspend(struct dm_target *ti ) { struct cache *cache ; enum cache_metadata_mode tmp ; { cache = (struct cache *)ti->private; start_quiescing(cache); wait_for_migrations(cache); stop_worker(cache); requeue_deferred_bios(cache); requeue_deferred_cells(cache); stop_quiescing(cache); tmp = get_cache_mode(cache); if ((unsigned int )tmp == 0U) { sync_metadata(cache); } else { } return; } } static int load_mapping(void *context , dm_oblock_t oblock , dm_cblock_t cblock , bool dirty , uint32_t hint , bool hint_valid ) { int r ; struct cache *cache ; { cache = (struct cache *)context; r = policy_load_mapping(cache->policy, oblock, cblock, hint, (int )hint_valid); if (r != 0) { return (r); } else { } if ((int )dirty) { set_dirty(cache, oblock, cblock); } else { clear_dirty(cache, oblock, cblock); } return (0); } } static void discard_load_info_init(struct cache *cache , struct discard_load_info *li ) { dm_block_t tmp ; { li->cache = cache; tmp = 0ULL; li->discard_end = tmp; li->discard_begin = tmp; return; } } static void set_discard_range(struct discard_load_info *li ) { sector_t b ; sector_t e ; sector_t _r ; int _res ; int _res___0 ; dm_block_t tmp ; dm_block_t tmp___0 ; dm_dblock_t tmp___1 ; { if (li->discard_begin == li->discard_end) { return; } else { } b = (sector_t )(li->discard_begin * li->block_size); e = (sector_t )(li->discard_end * li->block_size); _r = ((sector_t )(li->cache)->discard_block_size + b) - 1UL; _res = (int )(_r % (sector_t )(li->cache)->discard_block_size); _r = _r / (sector_t )(li->cache)->discard_block_size; b = _r; _res___0 = (int )(e % (sector_t )(li->cache)->discard_block_size); e = e / (sector_t )(li->cache)->discard_block_size; tmp___0 = from_dblock((li->cache)->discard_nr_blocks); if (tmp___0 < (unsigned long long )e) { tmp = from_dblock((li->cache)->discard_nr_blocks); e = (sector_t )tmp; } else { } goto ldv_36634; ldv_36633: tmp___1 = to_dblock((dm_block_t )b); set_discard(li->cache, tmp___1); b = b + 1UL; ldv_36634: ; if (b < e) { goto ldv_36633; } else { } return; } } static int load_discard(void *context , sector_t discard_block_size , dm_dblock_t dblock , bool discard___0 ) { struct discard_load_info *li ; dm_block_t tmp ; dm_block_t tmp___0 ; { li = (struct discard_load_info *)context; li->block_size = (dm_block_t )discard_block_size; if ((int )discard___0) { tmp = from_dblock(dblock); if (tmp == li->discard_end) { li->discard_end = li->discard_end + 1ULL; } else { set_discard_range(li); li->discard_begin = from_dblock(dblock); li->discard_end = li->discard_begin + 1ULL; } } else { set_discard_range(li); tmp___0 = 0ULL; li->discard_end = tmp___0; li->discard_begin = tmp___0; } return (0); } } static dm_cblock_t get_cache_dev_size(struct cache *cache ) { sector_t size ; sector_t tmp ; int _res ; dm_cblock_t tmp___0 ; { tmp = get_dev_size(cache->cache_dev); size = tmp; _res = (int )(size % (sector_t )cache->sectors_per_block); size = size / (sector_t )cache->sectors_per_block; tmp___0 = to_cblock((uint32_t )size); return (tmp___0); } } static bool can_resize(struct cache *cache , dm_cblock_t new_size ) { uint32_t tmp ; uint32_t tmp___0 ; uint32_t tmp___1 ; uint32_t tmp___2 ; char const *tmp___3 ; bool tmp___4 ; uint32_t tmp___5 ; uint32_t tmp___6 ; { tmp = from_cblock(new_size); tmp___0 = from_cblock(cache->cache_size); if (tmp > tmp___0) { return (1); } else { } goto ldv_36654; ldv_36653: tmp___1 = from_cblock(new_size); new_size = to_cblock(tmp___1 + 1U); tmp___4 = is_dirty(cache, new_size); if ((int )tmp___4) { tmp___2 = from_cblock(new_size); tmp___3 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: unable to shrink cache; cache block %llu is dirty\n", tmp___3, (unsigned long long )tmp___2); return (0); } else { } ldv_36654: tmp___5 = from_cblock(new_size); tmp___6 = from_cblock(cache->cache_size); if (tmp___5 < tmp___6) { goto ldv_36653; } else { } return (1); } } static int resize_cache_dev(struct cache *cache , dm_cblock_t new_size ) { int r ; char const *tmp ; { r = dm_cache_resize(cache->cmd, new_size); if (r != 0) { tmp = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not resize cache metadata\n", tmp); metadata_operation_failed(cache, "dm_cache_resize", r); return (r); } else { } set_cache_size(cache, new_size); return (0); } } static int cache_preresume(struct dm_target *ti ) { int r ; struct cache *cache ; dm_cblock_t csize ; dm_cblock_t tmp ; bool tmp___0 ; int tmp___1 ; char const *tmp___2 ; struct discard_load_info li ; dm_block_t tmp___3 ; char const *tmp___4 ; { r = 0; cache = (struct cache *)ti->private; tmp = get_cache_dev_size(cache); csize = tmp; if (! cache->sized) { r = resize_cache_dev(cache, csize); if (r != 0) { return (r); } else { } cache->sized = 1; } else if (cache->cache_size != csize) { tmp___0 = can_resize(cache, csize); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } r = resize_cache_dev(cache, csize); if (r != 0) { return (r); } else { } } else { } if (! cache->loaded_mappings) { r = dm_cache_load_mappings(cache->cmd, cache->policy, & load_mapping, (void *)cache); if (r != 0) { tmp___2 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not load cache mappings\n", tmp___2); metadata_operation_failed(cache, "dm_cache_load_mappings", r); return (r); } else { } cache->loaded_mappings = 1; } else { } if (! cache->loaded_discards) { tmp___3 = from_dblock(cache->discard_nr_blocks); clear_bitset((void *)cache->discard_bitset, (unsigned int )tmp___3); discard_load_info_init(cache, & li); r = dm_cache_load_discards(cache->cmd, & load_discard, (void *)(& li)); if (r != 0) { tmp___4 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: could not load origin discards\n", tmp___4); metadata_operation_failed(cache, "dm_cache_load_discards", r); return (r); } else { } set_discard_range(& li); cache->loaded_discards = 1; } else { } return (r); } } static void cache_resume(struct dm_target *ti ) { struct cache *cache ; { cache = (struct cache *)ti->private; cache->need_tick_bio = 1; do_waker(& cache->waker.work); return; } } static void cache_status(struct dm_target *ti , status_type_t type , unsigned int status_flags , char *result , unsigned int maxlen ) { int r ; unsigned int i ; ssize_t sz ; dm_block_t nr_free_blocks_metadata ; dm_block_t nr_blocks_metadata ; char buf[32U] ; struct cache *cache ; dm_cblock_t residency ; int tmp ; ssize_t tmp___0 ; enum cache_metadata_mode tmp___1 ; int tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; uint32_t tmp___12 ; uint32_t tmp___13 ; int tmp___14 ; ssize_t tmp___15 ; int tmp___16 ; ssize_t tmp___17 ; int tmp___18 ; ssize_t tmp___19 ; int tmp___20 ; ssize_t tmp___21 ; char const *tmp___22 ; bool tmp___23 ; bool tmp___24 ; bool tmp___25 ; int tmp___26 ; ssize_t tmp___27 ; char const *tmp___28 ; int tmp___29 ; ssize_t tmp___30 ; char const *tmp___31 ; int tmp___32 ; ssize_t tmp___33 ; int tmp___34 ; ssize_t tmp___35 ; enum cache_metadata_mode tmp___36 ; int tmp___37 ; ssize_t tmp___38 ; int tmp___39 ; ssize_t tmp___40 ; int tmp___41 ; ssize_t tmp___42 ; int tmp___43 ; ssize_t tmp___44 ; int tmp___45 ; ssize_t tmp___46 ; int tmp___47 ; ssize_t tmp___48 ; { r = 0; sz = 0L; nr_free_blocks_metadata = 0ULL; nr_blocks_metadata = 0ULL; cache = (struct cache *)ti->private; switch ((unsigned int )type) { case 0U: tmp___1 = get_cache_mode(cache); if ((unsigned int )tmp___1 == 2U) { if ((ssize_t )maxlen > sz) { tmp = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "Fail"); tmp___0 = (ssize_t )tmp; } else { tmp___0 = 0L; } sz = tmp___0 + sz; goto ldv_36688; } else { } if ((status_flags & 1U) == 0U) { tmp___2 = dm_suspended(ti); if (tmp___2 == 0) { commit(cache, 0); } else { } } else { } r = dm_cache_get_free_metadata_block_count(cache->cmd, & nr_free_blocks_metadata); if (r != 0) { tmp___3 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: dm_cache_get_free_metadata_block_count returned %d\n", tmp___3, r); goto err; } else { } r = dm_cache_get_metadata_dev_size(cache->cmd, & nr_blocks_metadata); if (r != 0) { tmp___4 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: dm_cache_get_metadata_dev_size returned %d\n", tmp___4, r); goto err; } else { } residency = policy_residency(cache->policy); if ((ssize_t )maxlen > sz) { tmp___5 = atomic_read((atomic_t const *)(& cache->nr_dirty)); tmp___6 = atomic_read((atomic_t const *)(& cache->stats.promotion)); tmp___7 = atomic_read((atomic_t const *)(& cache->stats.demotion)); tmp___8 = atomic_read((atomic_t const *)(& cache->stats.write_miss)); tmp___9 = atomic_read((atomic_t const *)(& cache->stats.write_hit)); tmp___10 = atomic_read((atomic_t const *)(& cache->stats.read_miss)); tmp___11 = atomic_read((atomic_t const *)(& cache->stats.read_hit)); tmp___12 = from_cblock(cache->cache_size); tmp___13 = from_cblock(residency); tmp___14 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ", 8U, nr_blocks_metadata - nr_free_blocks_metadata, nr_blocks_metadata, cache->sectors_per_block, (unsigned long long )tmp___13, (unsigned long long )tmp___12, (unsigned int )tmp___11, (unsigned int )tmp___10, (unsigned int )tmp___9, (unsigned int )tmp___8, (unsigned int )tmp___7, (unsigned int )tmp___6, (unsigned long )tmp___5); tmp___15 = (ssize_t )tmp___14; } else { tmp___15 = 0L; } sz = tmp___15 + sz; tmp___25 = writethrough_mode(& cache->features); if ((int )tmp___25) { if ((ssize_t )maxlen > sz) { tmp___16 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "1 writethrough "); tmp___17 = (ssize_t )tmp___16; } else { tmp___17 = 0L; } sz = tmp___17 + sz; } else { tmp___24 = passthrough_mode(& cache->features); if ((int )tmp___24) { if ((ssize_t )maxlen > sz) { tmp___18 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "1 passthrough "); tmp___19 = (ssize_t )tmp___18; } else { tmp___19 = 0L; } sz = tmp___19 + sz; } else { tmp___23 = writeback_mode(& cache->features); if ((int )tmp___23) { if ((ssize_t )maxlen > sz) { tmp___20 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "1 writeback "); tmp___21 = (ssize_t )tmp___20; } else { tmp___21 = 0L; } sz = tmp___21 + sz; } else { tmp___22 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: internal error: unknown io mode: %d\n", tmp___22, (int )cache->features.io_mode); goto err; } } } if ((ssize_t )maxlen > sz) { tmp___26 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "2 migration_threshold %llu ", (unsigned long long )cache->migration_threshold); tmp___27 = (ssize_t )tmp___26; } else { tmp___27 = 0L; } sz = tmp___27 + sz; if ((ssize_t )maxlen > sz) { tmp___28 = dm_cache_policy_get_name(cache->policy); tmp___29 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%s ", tmp___28); tmp___30 = (ssize_t )tmp___29; } else { tmp___30 = 0L; } sz = tmp___30 + sz; if ((ssize_t )maxlen > sz) { r = policy_emit_config_values(cache->policy, result, maxlen, & sz); if (r != 0) { tmp___31 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: policy_emit_config_values returned %d\n", tmp___31, r); } else { } } else { } tmp___36 = get_cache_mode(cache); if ((unsigned int )tmp___36 == 1U) { if ((ssize_t )maxlen > sz) { tmp___32 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "ro "); tmp___33 = (ssize_t )tmp___32; } else { tmp___33 = 0L; } sz = tmp___33 + sz; } else { if ((ssize_t )maxlen > sz) { tmp___34 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "rw "); tmp___35 = (ssize_t )tmp___34; } else { tmp___35 = 0L; } sz = tmp___35 + sz; } goto ldv_36688; case 1U: sprintf((char *)(& buf), "%u:%u", ((cache->metadata_dev)->bdev)->bd_dev >> 20, ((cache->metadata_dev)->bdev)->bd_dev & 1048575U); if ((ssize_t )maxlen > sz) { tmp___37 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%s ", (char *)(& buf)); tmp___38 = (ssize_t )tmp___37; } else { tmp___38 = 0L; } sz = tmp___38 + sz; sprintf((char *)(& buf), "%u:%u", ((cache->cache_dev)->bdev)->bd_dev >> 20, ((cache->cache_dev)->bdev)->bd_dev & 1048575U); if ((ssize_t )maxlen > sz) { tmp___39 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%s ", (char *)(& buf)); tmp___40 = (ssize_t )tmp___39; } else { tmp___40 = 0L; } sz = tmp___40 + sz; sprintf((char *)(& buf), "%u:%u", ((cache->origin_dev)->bdev)->bd_dev >> 20, ((cache->origin_dev)->bdev)->bd_dev & 1048575U); if ((ssize_t )maxlen > sz) { tmp___41 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%s", (char *)(& buf)); tmp___42 = (ssize_t )tmp___41; } else { tmp___42 = 0L; } sz = tmp___42 + sz; i = 0U; goto ldv_36695; ldv_36694: ; if ((ssize_t )maxlen > sz) { tmp___43 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), " %s", *(cache->ctr_args + (unsigned long )i)); tmp___44 = (ssize_t )tmp___43; } else { tmp___44 = 0L; } sz = tmp___44 + sz; i = i + 1U; ldv_36695: ; if (cache->nr_ctr_args - 1U > i) { goto ldv_36694; } else { } if (cache->nr_ctr_args != 0U) { if ((ssize_t )maxlen > sz) { tmp___45 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), " %s", *(cache->ctr_args + (unsigned long )(cache->nr_ctr_args - 1U))); tmp___46 = (ssize_t )tmp___45; } else { tmp___46 = 0L; } sz = tmp___46 + sz; } else { } } ldv_36688: ; return; err: ; if ((ssize_t )maxlen > sz) { tmp___47 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "Error"); tmp___48 = (ssize_t )tmp___47; } else { tmp___48 = 0L; } sz = tmp___48 + sz; return; } } static int parse_cblock_range(struct cache *cache , char const *str , struct cblock_range *result ) { char dummy ; uint64_t b ; uint64_t e ; int r ; uint32_t tmp ; char const *tmp___0 ; { r = sscanf(str, "%llu-%llu%c", & b, & e, & dummy); if (r < 0) { return (r); } else { } if (r == 2) { result->begin = to_cblock((uint32_t )b); result->end = to_cblock((uint32_t )e); return (0); } else { } r = sscanf(str, "%llu%c", & b, & dummy); if (r < 0) { return (r); } else { } if (r == 1) { result->begin = to_cblock((uint32_t )b); tmp = from_cblock(result->begin); result->end = to_cblock(tmp + 1U); return (0); } else { } tmp___0 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: invalid cblock range \'%s\'\n", tmp___0, str); return (-22); } } static int validate_cblock_range(struct cache *cache , struct cblock_range *range ) { uint64_t b ; uint32_t tmp ; uint64_t e ; uint32_t tmp___0 ; uint64_t n ; uint32_t tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; { tmp = from_cblock(range->begin); b = (uint64_t )tmp; tmp___0 = from_cblock(range->end); e = (uint64_t )tmp___0; tmp___1 = from_cblock(cache->cache_size); n = (uint64_t )tmp___1; if (b >= n) { tmp___2 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: begin cblock out of range: %llu >= %llu\n", tmp___2, b, n); return (-22); } else { } if (e > n) { tmp___3 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: end cblock out of range: %llu > %llu\n", tmp___3, e, n); return (-22); } else { } if (b >= e) { tmp___4 = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: invalid cblock range: %llu >= %llu\n", tmp___4, b, e); return (-22); } else { } return (0); } } static int request_invalidation(struct cache *cache , struct cblock_range *range ) { struct invalidation_request req ; struct lock_class_key __key ; int tmp ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___0 ; int tmp___1 ; { INIT_LIST_HEAD(& req.list); req.cblocks = range; atomic_set(& req.complete, 0); req.err = 0; __init_waitqueue_head(& req.result_wait, "&req.result_wait", & __key); spin_lock(& cache->invalidation_lock); list_add(& req.list, & cache->invalidation_requests); spin_unlock(& cache->invalidation_lock); wake_worker(cache); __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/970/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-cache-target.c", 3692, 0); tmp = atomic_read((atomic_t const *)(& req.complete)); if (tmp != 0) { goto ldv_36719; } else { } __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_36725: tmp___0 = prepare_to_wait_event(& req.result_wait, & __wait, 2); __int = tmp___0; tmp___1 = atomic_read((atomic_t const *)(& req.complete)); if (tmp___1 != 0) { goto ldv_36724; } else { } schedule(); goto ldv_36725; ldv_36724: finish_wait(& req.result_wait, & __wait); ldv_36719: ; return (req.err); } } static int process_invalidate_cblocks_message(struct cache *cache , unsigned int count , char const **cblock_ranges ) { int r ; unsigned int i ; struct cblock_range range ; char const *tmp ; bool tmp___0 ; int tmp___1 ; { r = 0; tmp___0 = passthrough_mode(& cache->features); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { tmp = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: cache has to be in passthrough mode for invalidation\n", tmp); return (-1); } else { } i = 0U; goto ldv_36737; ldv_36736: r = parse_cblock_range(cache, *(cblock_ranges + (unsigned long )i), & range); if (r != 0) { goto ldv_36735; } else { } r = validate_cblock_range(cache, & range); if (r != 0) { goto ldv_36735; } else { } r = request_invalidation(cache, & range); if (r != 0) { goto ldv_36735; } else { } i = i + 1U; ldv_36737: ; if (i < count) { goto ldv_36736; } else { } ldv_36735: ; return (r); } } static int cache_message(struct dm_target *ti , unsigned int argc , char **argv ) { struct cache *cache ; char const *tmp ; enum cache_metadata_mode tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { cache = (struct cache *)ti->private; if (argc == 0U) { return (-22); } else { } tmp___0 = get_cache_mode(cache); if ((unsigned int )tmp___0 != 0U) { tmp = cache_device_name(cache); printk("\vdevice-mapper: cache: %s: unable to service cache target messages in READ_ONLY or FAIL mode\n", tmp); return (-95); } else { } tmp___2 = strcasecmp((char const *)*argv, "invalidate_cblocks"); if (tmp___2 == 0) { tmp___1 = process_invalidate_cblocks_message(cache, argc - 1U, (char const **)argv + 1UL); return (tmp___1); } else { } if (argc != 2U) { return (-22); } else { } tmp___3 = set_config_value(cache, (char const *)*argv, (char const *)*(argv + 1UL)); return (tmp___3); } } static int cache_iterate_devices(struct dm_target *ti , int (*fn)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void *data ) { int r ; struct cache *cache ; sector_t tmp ; { r = 0; cache = (struct cache *)ti->private; tmp = get_dev_size(cache->cache_dev); r = (*fn)(ti, cache->cache_dev, 0UL, tmp, data); if (r == 0) { r = (*fn)(ti, cache->origin_dev, 0UL, ti->len, data); } else { } return (r); } } static int cache_bvec_merge(struct dm_target *ti , struct bvec_merge_data *bvm , struct bio_vec *biovec , int max_size ) { struct cache *cache ; struct request_queue *q ; struct request_queue *tmp ; int _min1 ; int _min2 ; int tmp___0 ; { cache = (struct cache *)ti->private; tmp = bdev_get_queue((cache->origin_dev)->bdev); q = tmp; if ((unsigned long )q->merge_bvec_fn == (unsigned long )((merge_bvec_fn *)0)) { return (max_size); } else { } bvm->bi_bdev = (cache->origin_dev)->bdev; _min1 = max_size; tmp___0 = (*(q->merge_bvec_fn))(q, bvm, biovec); _min2 = tmp___0; return (_min1 < _min2 ? _min1 : _min2); } } static void set_discard_limits(struct cache *cache , struct queue_limits *limits ) { sector_t __min1 ; sector_t __min2 ; { __min1 = (sector_t )(cache->discard_block_size * 1024U); __min2 = cache->origin_sectors; limits->max_discard_sectors = (unsigned int )(__min1 < __min2 ? __min1 : __min2); limits->discard_granularity = cache->discard_block_size << 9; return; } } static void cache_io_hints(struct dm_target *ti , struct queue_limits *limits ) { struct cache *cache ; uint64_t io_opt_sectors ; uint32_t __base ; uint32_t __rem ; { cache = (struct cache *)ti->private; io_opt_sectors = (uint64_t )(limits->io_opt >> 9); if ((uint64_t )cache->sectors_per_block > io_opt_sectors) { blk_limits_io_min(limits, cache->sectors_per_block << 9); blk_limits_io_opt(limits, cache->sectors_per_block << 9); } else { __base = cache->sectors_per_block; __rem = (uint32_t )(io_opt_sectors % (uint64_t )__base); io_opt_sectors = io_opt_sectors / (uint64_t )__base; if (__rem != 0U) { blk_limits_io_min(limits, cache->sectors_per_block << 9); blk_limits_io_opt(limits, cache->sectors_per_block << 9); } else { } } set_discard_limits(cache, limits); return; } } static struct target_type cache_target = {0ULL, "cache", & __this_module, {1U, 7U, 0U}, & cache_ctr, & cache_dtr, & cache_map, 0, 0, 0, & cache_end_io, 0, 0, 0, & cache_postsuspend, & cache_preresume, & cache_resume, & cache_status, & cache_message, 0, & cache_bvec_merge, 0, & cache_iterate_devices, & cache_io_hints, {0, 0}}; static int dm_cache_init(void) { int r ; { r = dm_register_target(& cache_target); if (r != 0) { printk("\vdevice-mapper: cache: cache target registration failed: %d\n", r); return (r); } else { } migration_cache = kmem_cache_create("dm_cache_migration", 72UL, 8UL, 0UL, (void (*)(void * ))0); if ((unsigned long )migration_cache == (unsigned long )((struct kmem_cache *)0)) { dm_unregister_target(& cache_target); return (-12); } else { } return (0); } } static void dm_cache_exit(void) { { dm_unregister_target(& cache_target); kmem_cache_destroy(migration_cache); return; } } int ldv_retval_0 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; void ldv_check_final_state(void) ; extern int ldv_presuspend_4(void) ; int ldv_retval_2 ; void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { do_worker(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { do_worker(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { do_worker(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { do_worker(work); ldv_work_1_3 = 1; return; } else { } return; } } void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_36837; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_36837; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_36837; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_36837; default: ldv_stop(); } ldv_36837: ; return; } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { do_waker(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { do_waker(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { do_waker(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { do_waker(work); ldv_work_2_3 = 1; return; } else { } return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_36863; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_36863; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_36863; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_36863; default: ldv_stop(); } ldv_36863: ; return; } } void ldv_target_type_4(void) { void *tmp ; { tmp = ldv_init_zalloc(88UL); cache_target_group1 = (struct dm_target *)tmp; return; } } void ldv_main_exported_3(void) ; int main(void) { struct bio_vec *ldvarg11 ; void *tmp ; struct queue_limits *ldvarg7 ; void *tmp___0 ; unsigned int ldvarg3 ; struct bvec_merge_data *ldvarg12 ; void *tmp___1 ; void *ldvarg8 ; void *tmp___2 ; unsigned int ldvarg1 ; int ldvarg13 ; int ldvarg10 ; int (*ldvarg9)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; char *ldvarg0 ; void *tmp___3 ; unsigned int ldvarg5 ; unsigned int ldvarg16 ; struct bio *ldvarg6 ; void *tmp___4 ; char **ldvarg15 ; void *tmp___5 ; char **ldvarg4 ; void *tmp___6 ; struct bio *ldvarg14 ; void *tmp___7 ; status_type_t ldvarg2 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { tmp = ldv_init_zalloc(16UL); ldvarg11 = (struct bio_vec *)tmp; tmp___0 = ldv_init_zalloc(80UL); ldvarg7 = (struct queue_limits *)tmp___0; tmp___1 = ldv_init_zalloc(32UL); ldvarg12 = (struct bvec_merge_data *)tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg8 = tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg0 = (char *)tmp___3; tmp___4 = ldv_init_zalloc(136UL); ldvarg6 = (struct bio *)tmp___4; tmp___5 = ldv_init_zalloc(8UL); ldvarg15 = (char **)tmp___5; tmp___6 = ldv_init_zalloc(8UL); ldvarg4 = (char **)tmp___6; tmp___7 = ldv_init_zalloc(136UL); ldvarg14 = (struct bio *)tmp___7; ldv_initialize(); ldv_memset((void *)(& ldvarg3), 0, 4UL); ldv_memset((void *)(& ldvarg1), 0, 4UL); ldv_memset((void *)(& ldvarg13), 0, 4UL); ldv_memset((void *)(& ldvarg10), 0, 4UL); ldv_memset((void *)(& ldvarg9), 0, 8UL); ldv_memset((void *)(& ldvarg5), 0, 4UL); ldv_memset((void *)(& ldvarg16), 0, 4UL); ldv_memset((void *)(& ldvarg2), 0, 4UL); ldv_state_variable_4 = 0; work_init_1(); ldv_state_variable_1 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_3 = 0; work_init_2(); ldv_state_variable_2 = 1; ldv_36934: tmp___8 = __VERIFIER_nondet_int(); switch (tmp___8) { case 0: ; if (ldv_state_variable_4 != 0) { tmp___9 = __VERIFIER_nondet_int(); switch (tmp___9) { case 0: ; if (ldv_state_variable_4 == 1) { ldv_retval_1 = cache_ctr(cache_target_group1, ldvarg16, ldvarg15); if (ldv_retval_1 == 0) { ldv_state_variable_4 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_36909; case 1: ; if (ldv_state_variable_4 == 4) { cache_end_io(cache_target_group1, ldvarg14, ldvarg13); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 1) { cache_end_io(cache_target_group1, ldvarg14, ldvarg13); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { cache_end_io(cache_target_group1, ldvarg14, ldvarg13); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_end_io(cache_target_group1, ldvarg14, ldvarg13); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_end_io(cache_target_group1, ldvarg14, ldvarg13); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 2: ; if (ldv_state_variable_4 == 4) { cache_dtr(cache_target_group1); ldv_state_variable_4 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_4 == 3) { cache_dtr(cache_target_group1); ldv_state_variable_4 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_4 == 2) { cache_dtr(cache_target_group1); ldv_state_variable_4 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_4 == 5) { cache_dtr(cache_target_group1); ldv_state_variable_4 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_36909; case 3: ; if (ldv_state_variable_4 == 4) { cache_bvec_merge(cache_target_group1, ldvarg12, ldvarg11, ldvarg10); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 1) { cache_bvec_merge(cache_target_group1, ldvarg12, ldvarg11, ldvarg10); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { cache_bvec_merge(cache_target_group1, ldvarg12, ldvarg11, ldvarg10); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_bvec_merge(cache_target_group1, ldvarg12, ldvarg11, ldvarg10); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_bvec_merge(cache_target_group1, ldvarg12, ldvarg11, ldvarg10); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 4: ; if (ldv_state_variable_4 == 4) { cache_iterate_devices(cache_target_group1, ldvarg9, ldvarg8); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 1) { cache_iterate_devices(cache_target_group1, ldvarg9, ldvarg8); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { cache_iterate_devices(cache_target_group1, ldvarg9, ldvarg8); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_iterate_devices(cache_target_group1, ldvarg9, ldvarg8); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_iterate_devices(cache_target_group1, ldvarg9, ldvarg8); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 5: ; if (ldv_state_variable_4 == 4) { ldv_retval_0 = cache_preresume(cache_target_group1); if (ldv_retval_0 == 0) { ldv_state_variable_4 = 5; } else { } } else { } goto ldv_36909; case 6: ; if (ldv_state_variable_4 == 4) { cache_io_hints(cache_target_group1, ldvarg7); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 1) { cache_io_hints(cache_target_group1, ldvarg7); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { cache_io_hints(cache_target_group1, ldvarg7); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_io_hints(cache_target_group1, ldvarg7); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_io_hints(cache_target_group1, ldvarg7); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 7: ; if (ldv_state_variable_4 == 4) { cache_map(cache_target_group1, ldvarg6); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 3) { cache_map(cache_target_group1, ldvarg6); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_map(cache_target_group1, ldvarg6); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_map(cache_target_group1, ldvarg6); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 8: ; if (ldv_state_variable_4 == 4) { cache_message(cache_target_group1, ldvarg5, ldvarg4); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 1) { cache_message(cache_target_group1, ldvarg5, ldvarg4); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { cache_message(cache_target_group1, ldvarg5, ldvarg4); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_message(cache_target_group1, ldvarg5, ldvarg4); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_message(cache_target_group1, ldvarg5, ldvarg4); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 9: ; if (ldv_state_variable_4 == 3) { cache_postsuspend(cache_target_group1); ldv_state_variable_4 = 4; } else { } goto ldv_36909; case 10: ; if (ldv_state_variable_4 == 4) { cache_status(cache_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 1) { cache_status(cache_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { cache_status(cache_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { cache_status(cache_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { cache_status(cache_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_4 = 5; } else { } goto ldv_36909; case 11: ; if (ldv_state_variable_4 == 5) { cache_resume(cache_target_group1); ldv_state_variable_4 = 2; } else { } goto ldv_36909; case 12: ; if (ldv_state_variable_4 == 2) { ldv_presuspend_4(); ldv_state_variable_4 = 3; } else { } goto ldv_36909; default: ldv_stop(); } ldv_36909: ; } else { } goto ldv_36923; case 1: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_36923; case 2: ; if (ldv_state_variable_0 != 0) { tmp___10 = __VERIFIER_nondet_int(); switch (tmp___10) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { dm_cache_exit(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_36928; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_2 = dm_cache_init(); if (ldv_retval_2 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_2 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_3 = 1; ldv_initialize_dm_block_validator_3(); ldv_state_variable_4 = 1; ldv_target_type_4(); } else { } } else { } goto ldv_36928; default: ldv_stop(); } ldv_36928: ; } else { } goto ldv_36923; case 3: ; if (ldv_state_variable_3 != 0) { ldv_main_exported_3(); } else { } goto ldv_36923; case 4: ; if (ldv_state_variable_2 != 0) { invoke_work_2(); } else { } goto ldv_36923; default: ldv_stop(); } ldv_36923: ; goto ldv_36934; ldv_final: ldv_check_final_state(); return 0; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_15(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } bool ldv_cancel_delayed_work_17(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work(ldv_func_arg1); ldv_func_res = tmp; disable_work_1(& ldv_func_arg1->work); return (ldv_func_res); } } void ldv_flush_workqueue_18(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } void ldv_destroy_workqueue_19(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } void *ldv_err_ptr(long error ) ; extern void list_del(struct list_head * ) ; extern void *memcpy(void * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; int ldv_mutex_trylock_47(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_45(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_48(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_49(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_52(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_54(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_55(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_57(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_44(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_46(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_50(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_51(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_53(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_56(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_table_lock(struct mutex *lock ) ; void ldv_mutex_unlock_table_lock(struct mutex *lock ) ; bool ldv_queue_work_on_39(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_41(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_40(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_43(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_42(struct workqueue_struct *ldv_func_arg1 ) ; extern void __init_rwsem(struct rw_semaphore * , char const * , struct lock_class_key * ) ; extern void down_read(struct rw_semaphore * ) ; extern void down_write(struct rw_semaphore * ) ; extern void up_read(struct rw_semaphore * ) ; extern void up_write(struct rw_semaphore * ) ; __inline static int get_disk_ro(struct gendisk *disk ) { { return (disk->part0.policy); } } extern dm_block_t dm_block_location(struct dm_block * ) ; extern void *dm_block_data(struct dm_block * ) ; extern struct dm_block_manager *dm_block_manager_create(struct block_device * , unsigned int , unsigned int , unsigned int ) ; extern void dm_block_manager_destroy(struct dm_block_manager * ) ; extern unsigned int dm_bm_block_size(struct dm_block_manager * ) ; extern int dm_bm_read_lock(struct dm_block_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_bm_write_lock(struct dm_block_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_bm_write_lock_zero(struct dm_block_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_bm_unlock(struct dm_block * ) ; extern int dm_bm_flush(struct dm_block_manager * ) ; extern bool dm_bm_is_read_only(struct dm_block_manager * ) ; extern void dm_bm_set_read_only(struct dm_block_manager * ) ; extern void dm_bm_set_read_write(struct dm_block_manager * ) ; extern u32 dm_bm_checksum(void const * , size_t , u32 ) ; __inline static int policy_walk_mappings(struct dm_cache_policy *p , int (*fn)(void * , dm_cblock_t , dm_oblock_t , uint32_t ) , void *context ) { int tmp ; int tmp___0 ; { if ((unsigned long )p->walk_mappings != (unsigned long )((int (*)(struct dm_cache_policy * , int (*)(void * , dm_cblock_t , dm_oblock_t , uint32_t ) , void * ))0)) { tmp = (*(p->walk_mappings))(p, fn, context); tmp___0 = tmp; } else { tmp___0 = 0; } return (tmp___0); } } unsigned int const *dm_cache_policy_get_version(struct dm_cache_policy *p ) ; extern void dm_tm_destroy(struct dm_transaction_manager * ) ; extern int dm_tm_pre_commit(struct dm_transaction_manager * ) ; extern int dm_tm_commit(struct dm_transaction_manager * , struct dm_block * ) ; extern int dm_tm_create_with_sm(struct dm_block_manager * , dm_block_t , struct dm_transaction_manager ** , struct dm_space_map ** ) ; extern int dm_tm_open_with_sm(struct dm_block_manager * , dm_block_t , void * , size_t , struct dm_transaction_manager ** , struct dm_space_map ** ) ; dm_cblock_t dm_cache_size(struct dm_cache_metadata *cmd ) ; void dm_cache_dump(struct dm_cache_metadata *cmd ) ; extern void dm_array_info_init(struct dm_array_info * , struct dm_transaction_manager * , struct dm_btree_value_type * ) ; extern int dm_array_empty(struct dm_array_info * , dm_block_t * ) ; extern int dm_array_resize(struct dm_array_info * , dm_block_t , uint32_t , uint32_t , void const * , dm_block_t * ) ; extern int dm_array_del(struct dm_array_info * , dm_block_t ) ; extern int dm_array_get_value(struct dm_array_info * , dm_block_t , uint32_t , void * ) ; extern int dm_array_set_value(struct dm_array_info * , dm_block_t , uint32_t , void const * , dm_block_t * ) ; extern int dm_array_walk(struct dm_array_info * , dm_block_t , int (*)(void * , uint64_t , void * ) , void * ) ; extern void dm_disk_bitset_init(struct dm_transaction_manager * , struct dm_disk_bitset * ) ; extern int dm_bitset_empty(struct dm_disk_bitset * , dm_block_t * ) ; extern int dm_bitset_resize(struct dm_disk_bitset * , dm_block_t , uint32_t , uint32_t , bool , dm_block_t * ) ; extern int dm_bitset_set_bit(struct dm_disk_bitset * , dm_block_t , uint32_t , dm_block_t * ) ; extern int dm_bitset_clear_bit(struct dm_disk_bitset * , dm_block_t , uint32_t , dm_block_t * ) ; extern int dm_bitset_test_bit(struct dm_disk_bitset * , dm_block_t , uint32_t , dm_block_t * , bool * ) ; extern int dm_bitset_flush(struct dm_disk_bitset * , dm_block_t , dm_block_t * ) ; __inline static void dm_sm_destroy(struct dm_space_map *sm ) { { (*(sm->destroy))(sm); return; } } __inline static int dm_sm_get_nr_blocks(struct dm_space_map *sm , dm_block_t *count ) { int tmp ; { tmp = (*(sm->get_nr_blocks))(sm, count); return (tmp); } } __inline static int dm_sm_get_nr_free(struct dm_space_map *sm , dm_block_t *count ) { int tmp ; { tmp = (*(sm->get_nr_free))(sm, count); return (tmp); } } __inline static int dm_sm_root_size(struct dm_space_map *sm , size_t *result ) { int tmp ; { tmp = (*(sm->root_size))(sm, result); return (tmp); } } __inline static int dm_sm_copy_root(struct dm_space_map *sm , void *copy_to_here_le , size_t len ) { int tmp ; { tmp = (*(sm->copy_root))(sm, copy_to_here_le, len); return (tmp); } } static void sb_prepare_for_write(struct dm_block_validator *v , struct dm_block *b , size_t sb_block_size ) { struct cache_disk_superblock *disk_super ; void *tmp ; { tmp = dm_block_data(b); disk_super = (struct cache_disk_superblock *)tmp; disk_super->blocknr = dm_block_location(b); disk_super->csum = dm_bm_checksum((void const *)(& disk_super->flags), sb_block_size - 4UL, 9031977U); return; } } static int check_metadata_version(struct cache_disk_superblock *disk_super ) { uint32_t metadata_version ; { metadata_version = disk_super->version; if (metadata_version == 0U || metadata_version > 1U) { printk("\vdevice-mapper: cache metadata: Cache metadata version %u found, but only versions between %u and %u supported.\n", metadata_version, 1, 1); return (-22); } else { } return (0); } } static int sb_check(struct dm_block_validator *v , struct dm_block *b , size_t sb_block_size ) { struct cache_disk_superblock *disk_super ; void *tmp ; __le32 csum_le ; dm_block_t tmp___0 ; dm_block_t tmp___1 ; int tmp___2 ; { tmp = dm_block_data(b); disk_super = (struct cache_disk_superblock *)tmp; tmp___1 = dm_block_location(b); if (tmp___1 != disk_super->blocknr) { tmp___0 = dm_block_location(b); printk("\vdevice-mapper: cache metadata: sb_check failed: blocknr %llu: wanted %llu\n", disk_super->blocknr, tmp___0); return (-15); } else { } if (disk_super->magic != 1623043ULL) { printk("\vdevice-mapper: cache metadata: sb_check failed: magic %llu: wanted %llu\n", disk_super->magic, 1623043ULL); return (-84); } else { } csum_le = dm_bm_checksum((void const *)(& disk_super->flags), sb_block_size - 4UL, 9031977U); if (disk_super->csum != csum_le) { printk("\vdevice-mapper: cache metadata: sb_check failed: csum %u: wanted %u\n", csum_le, disk_super->csum); return (-84); } else { } tmp___2 = check_metadata_version(disk_super); return (tmp___2); } } static struct dm_block_validator sb_validator = {"superblock", & sb_prepare_for_write, & sb_check}; static int superblock_read_lock(struct dm_cache_metadata *cmd , struct dm_block **sblock ) { int tmp ; { tmp = dm_bm_read_lock(cmd->bm, 0ULL, & sb_validator, sblock); return (tmp); } } static int superblock_lock_zero(struct dm_cache_metadata *cmd , struct dm_block **sblock ) { int tmp ; { tmp = dm_bm_write_lock_zero(cmd->bm, 0ULL, & sb_validator, sblock); return (tmp); } } static int superblock_lock(struct dm_cache_metadata *cmd , struct dm_block **sblock ) { int tmp ; { tmp = dm_bm_write_lock(cmd->bm, 0ULL, & sb_validator, sblock); return (tmp); } } static int __superblock_all_zeroes(struct dm_block_manager *bm , bool *result ) { int r ; unsigned int i ; struct dm_block *b ; __le64 *data_le ; __le64 zero ; unsigned int sb_block_size ; unsigned int tmp ; void *tmp___0 ; int tmp___1 ; { zero = 0ULL; tmp = dm_bm_block_size(bm); sb_block_size = tmp / 8U; r = dm_bm_read_lock(bm, 0ULL, (struct dm_block_validator *)0, & b); if (r != 0) { return (r); } else { } tmp___0 = dm_block_data(b); data_le = (__le64 *)tmp___0; *result = 1; i = 0U; goto ldv_33025; ldv_33024: ; if (*(data_le + (unsigned long )i) != zero) { *result = 0; goto ldv_33023; } else { } i = i + 1U; ldv_33025: ; if (i < sb_block_size) { goto ldv_33024; } else { } ldv_33023: tmp___1 = dm_bm_unlock(b); return (tmp___1); } } static void __setup_mapping_info(struct dm_cache_metadata *cmd ) { struct dm_btree_value_type vt ; { vt.context = (void *)0; vt.size = 8U; vt.inc = (void (*)(void * , void const * ))0; vt.dec = (void (*)(void * , void const * ))0; vt.equal = (int (*)(void * , void const * , void const * ))0; dm_array_info_init(& cmd->info, cmd->tm, & vt); if (cmd->policy_hint_size != 0UL) { vt.size = 4U; dm_array_info_init(& cmd->hint_info, cmd->tm, & vt); } else { } return; } } static int __save_sm_root(struct dm_cache_metadata *cmd ) { int r ; size_t metadata_len ; int tmp ; { r = dm_sm_root_size(cmd->metadata_sm, & metadata_len); if (r < 0) { return (r); } else { } tmp = dm_sm_copy_root(cmd->metadata_sm, (void *)(& cmd->metadata_space_map_root), metadata_len); return (tmp); } } static void __copy_sm_root(struct dm_cache_metadata *cmd , struct cache_disk_superblock *disk_super ) { { memcpy((void *)(& disk_super->metadata_space_map_root), (void const *)(& cmd->metadata_space_map_root), 128UL); return; } } static int __write_initial_superblock(struct dm_cache_metadata *cmd ) { int r ; struct dm_block *sblock ; struct cache_disk_superblock *disk_super ; sector_t bdev_size ; loff_t tmp ; void *tmp___0 ; int tmp___1 ; { tmp = i_size_read((struct inode const *)(cmd->bdev)->bd_inode); bdev_size = (sector_t )(tmp >> 9); if (bdev_size > 33292800UL) { bdev_size = 33292800UL; } else { } r = dm_tm_pre_commit(cmd->tm); if (r < 0) { return (r); } else { } r = __save_sm_root(cmd); if (r != 0) { return (r); } else { } r = superblock_lock_zero(cmd, & sblock); if (r != 0) { return (r); } else { } tmp___0 = dm_block_data(sblock); disk_super = (struct cache_disk_superblock *)tmp___0; disk_super->flags = 0U; memset((void *)(& disk_super->uuid), 0, 16UL); disk_super->magic = 1623043ULL; disk_super->version = 1U; memset((void *)(& disk_super->policy_name), 0, 16UL); memset((void *)(& disk_super->policy_version), 0, 12UL); disk_super->policy_hint_size = 0U; __copy_sm_root(cmd, disk_super); disk_super->mapping_root = cmd->root; disk_super->hint_root = cmd->hint_root; disk_super->discard_root = cmd->discard_root; disk_super->discard_block_size = (unsigned long long )cmd->discard_block_size; disk_super->discard_nr_blocks = from_dblock(cmd->discard_nr_blocks); disk_super->metadata_block_size = 8U; disk_super->data_block_size = (unsigned int )cmd->data_block_size; disk_super->cache_blocks = 0U; disk_super->read_hits = 0U; disk_super->read_misses = 0U; disk_super->write_hits = 0U; disk_super->write_misses = 0U; tmp___1 = dm_tm_commit(cmd->tm, sblock); return (tmp___1); } } static int __format_metadata(struct dm_cache_metadata *cmd ) { int r ; { r = dm_tm_create_with_sm(cmd->bm, 0ULL, & cmd->tm, & cmd->metadata_sm); if (r < 0) { printk("\vdevice-mapper: cache metadata: tm_create_with_sm failed\n"); return (r); } else { } __setup_mapping_info(cmd); r = dm_array_empty(& cmd->info, & cmd->root); if (r < 0) { goto bad; } else { } dm_disk_bitset_init(cmd->tm, & cmd->discard_info); r = dm_bitset_empty(& cmd->discard_info, & cmd->discard_root); if (r < 0) { goto bad; } else { } cmd->discard_block_size = 0UL; cmd->discard_nr_blocks = 0ULL; r = __write_initial_superblock(cmd); if (r != 0) { goto bad; } else { } cmd->clean_when_opened = 1; return (0); bad: dm_tm_destroy(cmd->tm); dm_sm_destroy(cmd->metadata_sm); return (r); } } static int __check_incompat_features(struct cache_disk_superblock *disk_super , struct dm_cache_metadata *cmd ) { uint32_t features ; int tmp ; { features = disk_super->incompat_flags; if (features != 0U) { printk("\vdevice-mapper: cache metadata: could not access metadata due to unsupported optional features (%lx).\n", (unsigned long )features); return (-22); } else { } tmp = get_disk_ro((cmd->bdev)->bd_disk); if (tmp != 0) { return (0); } else { } features = disk_super->compat_ro_flags; if (features != 0U) { printk("\vdevice-mapper: cache metadata: could not access metadata RDWR due to unsupported optional features (%lx).\n", (unsigned long )features); return (-22); } else { } return (0); } } static int __open_metadata(struct dm_cache_metadata *cmd ) { int r ; struct dm_block *sblock ; struct cache_disk_superblock *disk_super ; unsigned long sb_flags ; void *tmp ; int tmp___0 ; int tmp___1 ; { r = superblock_read_lock(cmd, & sblock); if (r < 0) { printk("\vdevice-mapper: cache metadata: couldn\'t read lock superblock\n"); return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct cache_disk_superblock *)tmp; if ((sector_t )disk_super->data_block_size != cmd->data_block_size) { printk("\vdevice-mapper: cache metadata: changing the data block size (from %u to %llu) is not supported\n", disk_super->data_block_size, (unsigned long long )cmd->data_block_size); r = -22; goto bad; } else { } r = __check_incompat_features(disk_super, cmd); if (r < 0) { goto bad; } else { } r = dm_tm_open_with_sm(cmd->bm, 0ULL, (void *)(& disk_super->metadata_space_map_root), 128UL, & cmd->tm, & cmd->metadata_sm); if (r < 0) { printk("\vdevice-mapper: cache metadata: tm_open_with_sm failed\n"); goto bad; } else { } __setup_mapping_info(cmd); dm_disk_bitset_init(cmd->tm, & cmd->discard_info); sb_flags = (unsigned long )disk_super->flags; tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& sb_flags)); cmd->clean_when_opened = tmp___0 != 0; tmp___1 = dm_bm_unlock(sblock); return (tmp___1); bad: dm_bm_unlock(sblock); return (r); } } static int __open_or_format_metadata(struct dm_cache_metadata *cmd , bool format_device ) { int r ; bool unformatted ; int tmp ; int tmp___0 ; int tmp___1 ; { unformatted = 0; r = __superblock_all_zeroes(cmd->bm, & unformatted); if (r != 0) { return (r); } else { } if ((int )unformatted) { if ((int )format_device) { tmp = __format_metadata(cmd); tmp___0 = tmp; } else { tmp___0 = -1; } return (tmp___0); } else { } tmp___1 = __open_metadata(cmd); return (tmp___1); } } static int __create_persistent_data_objects(struct dm_cache_metadata *cmd , bool may_format_device ) { int r ; long tmp ; bool tmp___0 ; { cmd->bm = dm_block_manager_create(cmd->bdev, 4096U, 64U, 5U); tmp___0 = IS_ERR((void const *)cmd->bm); if ((int )tmp___0) { printk("\vdevice-mapper: cache metadata: could not create block manager\n"); tmp = PTR_ERR((void const *)cmd->bm); return ((int )tmp); } else { } r = __open_or_format_metadata(cmd, (int )may_format_device); if (r != 0) { dm_block_manager_destroy(cmd->bm); } else { } return (r); } } static void __destroy_persistent_data_objects(struct dm_cache_metadata *cmd ) { { dm_sm_destroy(cmd->metadata_sm); dm_tm_destroy(cmd->tm); dm_block_manager_destroy(cmd->bm); return; } } static void update_flags(struct cache_disk_superblock *disk_super , unsigned long (*mutator)(unsigned long ) ) { uint32_t sb_flags ; unsigned long tmp ; { tmp = (*mutator)((unsigned long )disk_super->flags); sb_flags = (uint32_t )tmp; disk_super->flags = sb_flags; return; } } static unsigned long set_clean_shutdown(unsigned long flags ) { { set_bit(0L, (unsigned long volatile *)(& flags)); return (flags); } } static unsigned long clear_clean_shutdown(unsigned long flags ) { { clear_bit(0L, (unsigned long volatile *)(& flags)); return (flags); } } static void read_superblock_fields(struct dm_cache_metadata *cmd , struct cache_disk_superblock *disk_super ) { { cmd->flags = (unsigned long )disk_super->flags; cmd->root = disk_super->mapping_root; cmd->hint_root = disk_super->hint_root; cmd->discard_root = disk_super->discard_root; cmd->discard_block_size = (sector_t )disk_super->discard_block_size; cmd->discard_nr_blocks = to_dblock(disk_super->discard_nr_blocks); cmd->data_block_size = (sector_t )disk_super->data_block_size; cmd->cache_blocks = to_cblock(disk_super->cache_blocks); strncpy((char *)(& cmd->policy_name), (char const *)(& disk_super->policy_name), 16UL); cmd->policy_version[0] = disk_super->policy_version[0]; cmd->policy_version[1] = disk_super->policy_version[1]; cmd->policy_version[2] = disk_super->policy_version[2]; cmd->policy_hint_size = (size_t )disk_super->policy_hint_size; cmd->stats.read_hits = disk_super->read_hits; cmd->stats.read_misses = disk_super->read_misses; cmd->stats.write_hits = disk_super->write_hits; cmd->stats.write_misses = disk_super->write_misses; cmd->changed = 0; return; } } static int __begin_transaction_flags(struct dm_cache_metadata *cmd , unsigned long (*mutator)(unsigned long ) ) { int r ; struct cache_disk_superblock *disk_super ; struct dm_block *sblock ; void *tmp ; int tmp___0 ; { r = superblock_lock(cmd, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct cache_disk_superblock *)tmp; update_flags(disk_super, mutator); read_superblock_fields(cmd, disk_super); dm_bm_unlock(sblock); tmp___0 = dm_bm_flush(cmd->bm); return (tmp___0); } } static int __begin_transaction(struct dm_cache_metadata *cmd ) { int r ; struct cache_disk_superblock *disk_super ; struct dm_block *sblock ; void *tmp ; { r = superblock_read_lock(cmd, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct cache_disk_superblock *)tmp; read_superblock_fields(cmd, disk_super); dm_bm_unlock(sblock); return (0); } } static int __commit_transaction(struct dm_cache_metadata *cmd , unsigned long (*mutator)(unsigned long ) ) { int r ; struct cache_disk_superblock *disk_super ; struct dm_block *sblock ; void *tmp ; int tmp___0 ; { r = dm_bitset_flush(& cmd->discard_info, cmd->discard_root, & cmd->discard_root); if (r != 0) { return (r); } else { } r = dm_tm_pre_commit(cmd->tm); if (r < 0) { return (r); } else { } r = __save_sm_root(cmd); if (r != 0) { return (r); } else { } r = superblock_lock(cmd, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct cache_disk_superblock *)tmp; if ((unsigned long )mutator != (unsigned long )((unsigned long (*)(unsigned long ))0)) { update_flags(disk_super, mutator); } else { } disk_super->flags = (unsigned int )cmd->flags; disk_super->mapping_root = cmd->root; disk_super->hint_root = cmd->hint_root; disk_super->discard_root = cmd->discard_root; disk_super->discard_block_size = (unsigned long long )cmd->discard_block_size; disk_super->discard_nr_blocks = from_dblock(cmd->discard_nr_blocks); disk_super->cache_blocks = from_cblock(cmd->cache_blocks); strncpy((char *)(& disk_super->policy_name), (char const *)(& cmd->policy_name), 16UL); disk_super->policy_version[0] = cmd->policy_version[0]; disk_super->policy_version[1] = cmd->policy_version[1]; disk_super->policy_version[2] = cmd->policy_version[2]; disk_super->read_hits = cmd->stats.read_hits; disk_super->read_misses = cmd->stats.read_misses; disk_super->write_hits = cmd->stats.write_hits; disk_super->write_misses = cmd->stats.write_misses; __copy_sm_root(cmd, disk_super); tmp___0 = dm_tm_commit(cmd->tm, sblock); return (tmp___0); } } static __le64 pack_value(dm_oblock_t block , unsigned int flags ) { uint64_t value ; dm_block_t tmp ; { tmp = from_oblock(block); value = tmp; value = value << 16; value = ((uint64_t )flags & 65535ULL) | value; return (value); } } static void unpack_value(__le64 value_le , dm_oblock_t *block , unsigned int *flags ) { uint64_t value ; uint64_t b ; { value = value_le; b = value >> 16; *block = to_oblock(b); *flags = (unsigned int )value & 65535U; return; } } static struct dm_cache_metadata *metadata_open(struct block_device *bdev , sector_t data_block_size , bool may_format_device , size_t policy_hint_size ) { int r ; struct dm_cache_metadata *cmd ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; void *tmp___1 ; void *tmp___2 ; { tmp = kzalloc(808UL, 208U); cmd = (struct dm_cache_metadata *)tmp; if ((unsigned long )cmd == (unsigned long )((struct dm_cache_metadata *)0)) { printk("\vdevice-mapper: cache metadata: could not allocate metadata struct\n"); tmp___0 = ERR_PTR(-12L); return ((struct dm_cache_metadata *)tmp___0); } else { } atomic_set(& cmd->ref_count, 1); __init_rwsem(& cmd->root_lock, "&cmd->root_lock", & __key); cmd->bdev = bdev; cmd->data_block_size = data_block_size; cmd->cache_blocks = 0U; cmd->policy_hint_size = policy_hint_size; cmd->changed = 1; cmd->fail_io = 0; r = __create_persistent_data_objects(cmd, (int )may_format_device); if (r != 0) { kfree((void const *)cmd); tmp___1 = ERR_PTR((long )r); return ((struct dm_cache_metadata *)tmp___1); } else { } r = __begin_transaction_flags(cmd, & clear_clean_shutdown); if (r < 0) { dm_cache_metadata_close(cmd); tmp___2 = ERR_PTR((long )r); return ((struct dm_cache_metadata *)tmp___2); } else { } return (cmd); } } static struct mutex table_lock = {{1}, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "table_lock.wait_lock", 0, 0UL}}}}, {& table_lock.wait_list, & table_lock.wait_list}, 0, (void *)(& table_lock), {0, {0, 0}, "table_lock", 0, 0UL}}; static struct list_head table = {& table, & table}; static struct dm_cache_metadata *lookup(struct block_device *bdev ) { struct dm_cache_metadata *cmd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)table.next; cmd = (struct dm_cache_metadata *)__mptr + 0xfffffffffffffff8UL; goto ldv_33148; ldv_33147: ; if ((unsigned long )cmd->bdev == (unsigned long )bdev) { atomic_inc(& cmd->ref_count); return (cmd); } else { } __mptr___0 = (struct list_head const *)cmd->list.next; cmd = (struct dm_cache_metadata *)__mptr___0 + 0xfffffffffffffff8UL; ldv_33148: ; if ((unsigned long )(& cmd->list) != (unsigned long )(& table)) { goto ldv_33147; } else { } return ((struct dm_cache_metadata *)0); } } static struct dm_cache_metadata *lookup_or_open(struct block_device *bdev , sector_t data_block_size , bool may_format_device , size_t policy_hint_size ) { struct dm_cache_metadata *cmd ; struct dm_cache_metadata *cmd2 ; bool tmp ; int tmp___0 ; { ldv_mutex_lock_51(& table_lock); cmd = lookup(bdev); ldv_mutex_unlock_52(& table_lock); if ((unsigned long )cmd != (unsigned long )((struct dm_cache_metadata *)0)) { return (cmd); } else { } cmd = metadata_open(bdev, data_block_size, (int )may_format_device, policy_hint_size); tmp = IS_ERR((void const *)cmd); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { ldv_mutex_lock_53(& table_lock); cmd2 = lookup(bdev); if ((unsigned long )cmd2 != (unsigned long )((struct dm_cache_metadata *)0)) { ldv_mutex_unlock_54(& table_lock); __destroy_persistent_data_objects(cmd); kfree((void const *)cmd); return (cmd2); } else { } list_add(& cmd->list, & table); ldv_mutex_unlock_55(& table_lock); } else { } return (cmd); } } static bool same_params(struct dm_cache_metadata *cmd , sector_t data_block_size ) { { if (cmd->data_block_size != data_block_size) { printk("\vdevice-mapper: cache metadata: data_block_size (%llu) different from that in metadata (%llu)\n\n", (unsigned long long )data_block_size, (unsigned long long )cmd->data_block_size); return (0); } else { } return (1); } } struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev , sector_t data_block_size , bool may_format_device , size_t policy_hint_size ) { struct dm_cache_metadata *cmd ; struct dm_cache_metadata *tmp ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; { tmp = lookup_or_open(bdev, data_block_size, (int )may_format_device, policy_hint_size); cmd = tmp; tmp___1 = IS_ERR((void const *)cmd); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = same_params(cmd, data_block_size); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { dm_cache_metadata_close(cmd); tmp___0 = ERR_PTR(-22L); return ((struct dm_cache_metadata *)tmp___0); } else { } } else { } return (cmd); } } void dm_cache_metadata_close(struct dm_cache_metadata *cmd ) { int tmp ; { tmp = atomic_dec_and_test(& cmd->ref_count); if (tmp != 0) { ldv_mutex_lock_56(& table_lock); list_del(& cmd->list); ldv_mutex_unlock_57(& table_lock); if (! cmd->fail_io) { __destroy_persistent_data_objects(cmd); } else { } kfree((void const *)cmd); } else { } return; } } static int block_unmapped_or_clean(struct dm_cache_metadata *cmd , dm_cblock_t b , bool *result ) { int r ; __le64 value ; dm_oblock_t ob ; unsigned int flags ; uint32_t tmp ; { tmp = from_cblock(b); r = dm_array_get_value(& cmd->info, cmd->root, tmp, (void *)(& value)); if (r != 0) { printk("\vdevice-mapper: cache metadata: block_unmapped_or_clean failed\n"); return (r); } else { } unpack_value(value, & ob, & flags); *result = (bool )((flags & 1U) == 0U || (flags & 2U) == 0U); return (0); } } static int blocks_are_unmapped_or_clean(struct dm_cache_metadata *cmd , dm_cblock_t begin , dm_cblock_t end , bool *result ) { int r ; uint32_t tmp ; uint32_t tmp___0 ; { *result = 1; goto ldv_33189; ldv_33188: r = block_unmapped_or_clean(cmd, begin, result); if (r != 0) { return (r); } else { } if (! *result) { tmp = from_cblock(begin); printk("\vdevice-mapper: cache metadata: cache block %llu is dirty\n", (unsigned long long )tmp); return (0); } else { } tmp___0 = from_cblock(begin); begin = to_cblock(tmp___0 + 1U); ldv_33189: ; if (begin != end) { goto ldv_33188; } else { } return (0); } } int dm_cache_resize(struct dm_cache_metadata *cmd , dm_cblock_t new_cache_size ) { int r ; bool clean ; __le64 null_mapping ; __le64 tmp ; bool tmp___0 ; uint32_t tmp___1 ; uint32_t tmp___2 ; uint32_t tmp___3 ; uint32_t tmp___4 ; { tmp = pack_value(0ULL, 0U); null_mapping = tmp; if ((int )cmd->fail_io) { return (-22); } else { tmp___0 = dm_bm_is_read_only(cmd->bm); if ((int )tmp___0) { return (-22); } else { } } down_write(& cmd->root_lock); tmp___1 = from_cblock(new_cache_size); tmp___2 = from_cblock(cmd->cache_blocks); if (tmp___1 < tmp___2) { r = blocks_are_unmapped_or_clean(cmd, new_cache_size, cmd->cache_blocks, & clean); if (r != 0) { goto out; } else { } if (! clean) { printk("\vdevice-mapper: cache metadata: unable to shrink cache due to dirty blocks\n"); r = -22; goto out; } else { } } else { } tmp___3 = from_cblock(new_cache_size); tmp___4 = from_cblock(cmd->cache_blocks); r = dm_array_resize(& cmd->info, cmd->root, tmp___4, tmp___3, (void const *)(& null_mapping), & cmd->root); if (r == 0) { cmd->cache_blocks = new_cache_size; } else { } cmd->changed = 1; out: up_write(& cmd->root_lock); return (r); } } int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd , sector_t discard_block_size , dm_dblock_t new_nr_entries ) { int r ; bool tmp ; dm_block_t tmp___0 ; dm_block_t tmp___1 ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); tmp___0 = from_dblock(new_nr_entries); tmp___1 = from_dblock(cmd->discard_nr_blocks); r = dm_bitset_resize(& cmd->discard_info, cmd->discard_root, (uint32_t )tmp___1, (uint32_t )tmp___0, 0, & cmd->discard_root); if (r == 0) { cmd->discard_block_size = discard_block_size; cmd->discard_nr_blocks = new_nr_entries; } else { } cmd->changed = 1; up_write(& cmd->root_lock); return (r); } } static int __set_discard(struct dm_cache_metadata *cmd , dm_dblock_t b ) { dm_block_t tmp ; int tmp___0 ; { tmp = from_dblock(b); tmp___0 = dm_bitset_set_bit(& cmd->discard_info, cmd->discard_root, (uint32_t )tmp, & cmd->discard_root); return (tmp___0); } } static int __clear_discard(struct dm_cache_metadata *cmd , dm_dblock_t b ) { dm_block_t tmp ; int tmp___0 ; { tmp = from_dblock(b); tmp___0 = dm_bitset_clear_bit(& cmd->discard_info, cmd->discard_root, (uint32_t )tmp, & cmd->discard_root); return (tmp___0); } } static int __is_discarded(struct dm_cache_metadata *cmd , dm_dblock_t b , bool *is_discarded___0 ) { dm_block_t tmp ; int tmp___0 ; { tmp = from_dblock(b); tmp___0 = dm_bitset_test_bit(& cmd->discard_info, cmd->discard_root, (uint32_t )tmp, & cmd->discard_root, is_discarded___0); return (tmp___0); } } static int __discard(struct dm_cache_metadata *cmd , dm_dblock_t dblock , bool discard___0 ) { int r ; { r = (*((int )discard___0 ? & __set_discard : & __clear_discard))(cmd, dblock); if (r != 0) { return (r); } else { } cmd->changed = 1; return (0); } } int dm_cache_set_discard(struct dm_cache_metadata *cmd , dm_dblock_t dblock , bool discard___0 ) { int r ; bool tmp ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); r = __discard(cmd, dblock, (int )discard___0); up_write(& cmd->root_lock); return (r); } } static int __load_discards(struct dm_cache_metadata *cmd , int (*fn)(void * , sector_t , dm_dblock_t , bool ) , void *context ) { int r ; dm_block_t b ; bool discard___0 ; dm_dblock_t dblock ; dm_dblock_t tmp ; dm_block_t tmp___0 ; { r = 0; b = 0ULL; goto ldv_33241; ldv_33240: tmp = to_dblock(b); dblock = tmp; if ((int )cmd->clean_when_opened) { r = __is_discarded(cmd, dblock, & discard___0); if (r != 0) { return (r); } else { } } else { discard___0 = 0; } r = (*fn)(context, cmd->discard_block_size, dblock, (int )discard___0); if (r != 0) { goto ldv_33239; } else { } b = b + 1ULL; ldv_33241: tmp___0 = from_dblock(cmd->discard_nr_blocks); if (tmp___0 > b) { goto ldv_33240; } else { } ldv_33239: ; return (r); } } int dm_cache_load_discards(struct dm_cache_metadata *cmd , int (*fn)(void * , sector_t , dm_dblock_t , bool ) , void *context ) { int r ; { down_read(& cmd->root_lock); r = __load_discards(cmd, fn, context); up_read(& cmd->root_lock); return (r); } } dm_cblock_t dm_cache_size(struct dm_cache_metadata *cmd ) { dm_cblock_t r ; { down_read(& cmd->root_lock); r = cmd->cache_blocks; up_read(& cmd->root_lock); return (r); } } static int __remove(struct dm_cache_metadata *cmd , dm_cblock_t cblock ) { int r ; __le64 value ; __le64 tmp ; uint32_t tmp___0 ; { tmp = pack_value(0ULL, 0U); value = tmp; tmp___0 = from_cblock(cblock); r = dm_array_set_value(& cmd->info, cmd->root, tmp___0, (void const *)(& value), & cmd->root); if (r != 0) { return (r); } else { } cmd->changed = 1; return (0); } } int dm_cache_remove_mapping(struct dm_cache_metadata *cmd , dm_cblock_t cblock ) { int r ; bool tmp ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); r = __remove(cmd, cblock); up_write(& cmd->root_lock); return (r); } } static int __insert(struct dm_cache_metadata *cmd , dm_cblock_t cblock , dm_oblock_t oblock ) { int r ; __le64 value ; __le64 tmp ; uint32_t tmp___0 ; { tmp = pack_value(oblock, 1U); value = tmp; tmp___0 = from_cblock(cblock); r = dm_array_set_value(& cmd->info, cmd->root, tmp___0, (void const *)(& value), & cmd->root); if (r != 0) { return (r); } else { } cmd->changed = 1; return (0); } } int dm_cache_insert_mapping(struct dm_cache_metadata *cmd , dm_cblock_t cblock , dm_oblock_t oblock ) { int r ; bool tmp ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); r = __insert(cmd, cblock, oblock); up_write(& cmd->root_lock); return (r); } } static bool policy_unchanged(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy ) { char const *policy_name ; char const *tmp ; unsigned int const *policy_version ; unsigned int const *tmp___0 ; size_t policy_hint_size ; size_t tmp___1 ; int tmp___2 ; { tmp = dm_cache_policy_get_name(policy); policy_name = tmp; tmp___0 = dm_cache_policy_get_version(policy); policy_version = tmp___0; tmp___1 = dm_cache_policy_get_hint_size(policy); policy_hint_size = tmp___1; tmp___2 = strncmp((char const *)(& cmd->policy_name), policy_name, 16UL); if (tmp___2 != 0) { return (0); } else { } if (cmd->policy_version[0] != (unsigned int )*policy_version) { return (0); } else { } if (cmd->policy_hint_size != policy_hint_size) { return (0); } else { } return (1); } } static bool hints_array_initialized(struct dm_cache_metadata *cmd ) { { return ((bool )(cmd->hint_root != 0ULL && cmd->policy_hint_size != 0UL)); } } static bool hints_array_available(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy ) { bool tmp ; bool tmp___0 ; int tmp___1 ; { if ((int )cmd->clean_when_opened) { tmp = policy_unchanged(cmd, policy); if ((int )tmp) { tmp___0 = hints_array_initialized(cmd); if ((int )tmp___0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } } else { tmp___1 = 0; } return ((bool )tmp___1); } } static int __load_mapping(void *context , uint64_t cblock , void *leaf ) { int r ; bool dirty ; __le64 value ; __le32 hint_value ; dm_oblock_t oblock ; unsigned int flags ; struct thunk *thunk ; struct dm_cache_metadata *cmd ; dm_cblock_t tmp ; { r = 0; hint_value = 0U; thunk = (struct thunk *)context; cmd = thunk->cmd; memcpy((void *)(& value), (void const *)leaf, 8UL); unpack_value(value, & oblock, & flags); if ((int )flags & 1) { if ((int )thunk->hints_valid) { r = dm_array_get_value(& cmd->hint_info, cmd->hint_root, (uint32_t )cblock, (void *)(& hint_value)); if (r != 0 && r != -61) { return (r); } else { } } else { } dirty = (int )thunk->respect_dirty_flags ? (flags & 2U) != 0U : 1; tmp = to_cblock((uint32_t )cblock); r = (*(thunk->fn))(thunk->context, oblock, tmp, (int )dirty, hint_value, (int )thunk->hints_valid); } else { } return (r); } } static int __load_mappings(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy , int (*fn)(void * , dm_oblock_t , dm_cblock_t , bool , uint32_t , bool ) , void *context ) { struct thunk thunk ; int tmp ; { thunk.fn = fn; thunk.context = context; thunk.cmd = cmd; thunk.respect_dirty_flags = cmd->clean_when_opened; thunk.hints_valid = hints_array_available(cmd, policy); tmp = dm_array_walk(& cmd->info, cmd->root, & __load_mapping, (void *)(& thunk)); return (tmp); } } int dm_cache_load_mappings(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy , int (*fn)(void * , dm_oblock_t , dm_cblock_t , bool , uint32_t , bool ) , void *context ) { int r ; { down_read(& cmd->root_lock); r = __load_mappings(cmd, policy, fn, context); up_read(& cmd->root_lock); return (r); } } static int __dump_mapping(void *context , uint64_t cblock , void *leaf ) { int r ; __le64 value ; dm_oblock_t oblock ; unsigned int flags ; { r = 0; memcpy((void *)(& value), (void const *)leaf, 8UL); unpack_value(value, & oblock, & flags); return (r); } } static int __dump_mappings(struct dm_cache_metadata *cmd ) { int tmp ; { tmp = dm_array_walk(& cmd->info, cmd->root, & __dump_mapping, (void *)0); return (tmp); } } void dm_cache_dump(struct dm_cache_metadata *cmd ) { { down_read(& cmd->root_lock); __dump_mappings(cmd); up_read(& cmd->root_lock); return; } } int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd ) { int r ; { down_read(& cmd->root_lock); r = (int )cmd->changed; up_read(& cmd->root_lock); return (r); } } static int __dirty(struct dm_cache_metadata *cmd , dm_cblock_t cblock , bool dirty ) { int r ; unsigned int flags ; dm_oblock_t oblock ; __le64 value ; uint32_t tmp ; uint32_t tmp___0 ; { tmp = from_cblock(cblock); r = dm_array_get_value(& cmd->info, cmd->root, tmp, (void *)(& value)); if (r != 0) { return (r); } else { } unpack_value(value, & oblock, & flags); if (((flags & 2U) != 0U && (int )dirty) || ((flags & 2U) == 0U && ! dirty)) { return (0); } else { } value = pack_value(oblock, (flags & 4294967293U) | ((int )dirty ? 2U : 0U)); tmp___0 = from_cblock(cblock); r = dm_array_set_value(& cmd->info, cmd->root, tmp___0, (void const *)(& value), & cmd->root); if (r != 0) { return (r); } else { } cmd->changed = 1; return (0); } } int dm_cache_set_dirty(struct dm_cache_metadata *cmd , dm_cblock_t cblock , bool dirty ) { int r ; bool tmp ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); r = __dirty(cmd, cblock, (int )dirty); up_write(& cmd->root_lock); return (r); } } void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd , struct dm_cache_statistics *stats ) { { down_read(& cmd->root_lock); *stats = cmd->stats; up_read(& cmd->root_lock); return; } } void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd , struct dm_cache_statistics *stats ) { bool tmp ; { if ((int )cmd->fail_io) { return; } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return; } else { } } down_write(& cmd->root_lock); cmd->stats = *stats; up_write(& cmd->root_lock); return; } } int dm_cache_commit(struct dm_cache_metadata *cmd , bool clean_shutdown ) { int r ; unsigned long (*mutator)(unsigned long ) ; bool tmp ; { mutator = (int )clean_shutdown ? & set_clean_shutdown : & clear_clean_shutdown; if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); r = __commit_transaction(cmd, mutator); if (r != 0) { goto out; } else { } r = __begin_transaction(cmd); out: up_write(& cmd->root_lock); return (r); } } int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd , dm_block_t *result ) { int r ; { r = -22; down_read(& cmd->root_lock); r = dm_sm_get_nr_free(cmd->metadata_sm, result); up_read(& cmd->root_lock); return (r); } } int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd , dm_block_t *result ) { int r ; { r = -22; down_read(& cmd->root_lock); r = dm_sm_get_nr_blocks(cmd->metadata_sm, result); up_read(& cmd->root_lock); return (r); } } static int begin_hints(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy ) { int r ; __le32 value ; size_t hint_size ; char const *policy_name ; char const *tmp ; unsigned int const *policy_version ; unsigned int const *tmp___0 ; size_t tmp___1 ; uint32_t tmp___2 ; bool tmp___3 ; int tmp___4 ; { tmp = dm_cache_policy_get_name(policy); policy_name = tmp; tmp___0 = dm_cache_policy_get_version(policy); policy_version = tmp___0; if ((int )((signed char )*policy_name) == 0) { return (-22); } else { tmp___1 = strlen(policy_name); if (tmp___1 > 15UL) { return (-22); } else { } } tmp___3 = policy_unchanged(cmd, policy); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { strncpy((char *)(& cmd->policy_name), policy_name, 16UL); memcpy((void *)(& cmd->policy_version), (void const *)policy_version, 12UL); hint_size = dm_cache_policy_get_hint_size(policy); if (hint_size == 0UL) { return (0); } else { } cmd->policy_hint_size = hint_size; if (cmd->hint_root != 0ULL) { r = dm_array_del(& cmd->hint_info, cmd->hint_root); if (r != 0) { return (r); } else { } } else { } r = dm_array_empty(& cmd->hint_info, & cmd->hint_root); if (r != 0) { return (r); } else { } value = 0U; tmp___2 = from_cblock(cmd->cache_blocks); r = dm_array_resize(& cmd->hint_info, cmd->hint_root, 0U, tmp___2, (void const *)(& value), & cmd->hint_root); if (r != 0) { return (r); } else { } } else { } return (0); } } static int save_hint(void *context , dm_cblock_t cblock , dm_oblock_t oblock , uint32_t hint ) { struct dm_cache_metadata *cmd ; __le32 value ; int r ; uint32_t tmp ; { cmd = (struct dm_cache_metadata *)context; value = hint; tmp = from_cblock(cblock); r = dm_array_set_value(& cmd->hint_info, cmd->hint_root, tmp, (void const *)(& value), & cmd->hint_root); cmd->changed = 1; return (r); } } static int write_hints___0(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy ) { int r ; int tmp ; { r = begin_hints(cmd, policy); if (r != 0) { printk("\vdevice-mapper: cache metadata: begin_hints failed\n"); return (r); } else { } tmp = policy_walk_mappings(policy, & save_hint, (void *)cmd); return (tmp); } } int dm_cache_write_hints(struct dm_cache_metadata *cmd , struct dm_cache_policy *policy ) { int r ; bool tmp ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); r = write_hints___0(cmd, policy); up_write(& cmd->root_lock); return (r); } } int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd , bool *result ) { int tmp ; { tmp = blocks_are_unmapped_or_clean(cmd, 0U, cmd->cache_blocks, result); return (tmp); } } void dm_cache_metadata_set_read_only(struct dm_cache_metadata *cmd ) { bool tmp ; { if ((int )cmd->fail_io) { return; } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return; } else { } } down_write(& cmd->root_lock); dm_bm_set_read_only(cmd->bm); up_write(& cmd->root_lock); return; } } void dm_cache_metadata_set_read_write(struct dm_cache_metadata *cmd ) { bool tmp ; { if ((int )cmd->fail_io) { return; } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return; } else { } } down_write(& cmd->root_lock); dm_bm_set_read_write(cmd->bm); up_write(& cmd->root_lock); return; } } int dm_cache_metadata_set_needs_check(struct dm_cache_metadata *cmd ) { int r ; struct dm_block *sblock ; struct cache_disk_superblock *disk_super ; void *tmp ; { down_write(& cmd->root_lock); set_bit(1L, (unsigned long volatile *)(& cmd->flags)); r = superblock_lock(cmd, & sblock); if (r != 0) { printk("\vdevice-mapper: cache metadata: couldn\'t read superblock\n"); goto out; } else { } tmp = dm_block_data(sblock); disk_super = (struct cache_disk_superblock *)tmp; disk_super->flags = (unsigned int )cmd->flags; dm_bm_unlock(sblock); out: up_write(& cmd->root_lock); return (r); } } bool dm_cache_metadata_needs_check(struct dm_cache_metadata *cmd ) { bool needs_check ; int tmp ; { down_read(& cmd->root_lock); tmp = constant_test_bit(1L, (unsigned long const volatile *)(& cmd->flags)); needs_check = tmp != 0; up_read(& cmd->root_lock); return (needs_check); } } int dm_cache_metadata_abort(struct dm_cache_metadata *cmd ) { int r ; bool tmp ; { if ((int )cmd->fail_io) { return (-22); } else { tmp = dm_bm_is_read_only(cmd->bm); if ((int )tmp) { return (-22); } else { } } down_write(& cmd->root_lock); __destroy_persistent_data_objects(cmd); r = __create_persistent_data_objects(cmd, 0); if (r != 0) { cmd->fail_io = 1; } else { } up_write(& cmd->root_lock); return (r); } } extern int ldv_release_3(void) ; extern int ldv_probe_3(void) ; void ldv_initialize_dm_block_validator_3(void) { void *tmp ; void *tmp___0 ; { tmp = __VERIFIER_nondet_pointer(); sb_validator_group0 = (struct dm_block *)tmp; tmp___0 = ldv_init_zalloc(24UL); sb_validator_group1 = (struct dm_block_validator *)tmp___0; return; } } void ldv_main_exported_3(void) { size_t ldvarg17 ; size_t ldvarg18 ; int tmp ; { ldv_memset((void *)(& ldvarg17), 0, 8UL); ldv_memset((void *)(& ldvarg18), 0, 8UL); tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_3 == 1) { sb_check(sb_validator_group1, sb_validator_group0, ldvarg18); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { sb_check(sb_validator_group1, sb_validator_group0, ldvarg18); ldv_state_variable_3 = 2; } else { } goto ldv_33448; case 1: ; if (ldv_state_variable_3 == 2) { sb_prepare_for_write(sb_validator_group1, sb_validator_group0, ldvarg17); ldv_state_variable_3 = 2; } else { } goto ldv_33448; case 2: ; if (ldv_state_variable_3 == 2) { ldv_release_3(); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_33448; case 3: ; if (ldv_state_variable_3 == 1) { ldv_probe_3(); ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_33448; default: ldv_stop(); } ldv_33448: ; return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { tmp = ldv_err_ptr(error); return (tmp); } } bool ldv_queue_work_on_39(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_40(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_41(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_42(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_43(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_44(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_45(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_46(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_47(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_48(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_49(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_50(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_51(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_table_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_52(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_table_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_53(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_table_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_54(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_table_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_55(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_table_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_56(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_table_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_57(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_table_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { __list_del_entry(entry); INIT_LIST_HEAD(entry); return; } } extern int strcmp(char const * , char const * ) ; __inline static void *ERR_PTR(long error ) ; __inline static bool IS_ERR(void const *ptr ) ; int ldv_mutex_trylock_89(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_87(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_90(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_91(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_86(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_88(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_92(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_81(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_83(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_82(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_85(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_84(struct workqueue_struct *ldv_func_arg1 ) ; int dm_cache_policy_register(struct dm_cache_policy_type *type ) ; void dm_cache_policy_unregister(struct dm_cache_policy_type *type ) ; extern int __request_module(bool , char const * , ...) ; extern bool try_module_get(struct module * ) ; extern void module_put(struct module * ) ; static spinlock_t register_lock = {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "register_lock", 0, 0UL}}}}; static struct list_head register_list = {& register_list, & register_list}; static struct dm_cache_policy_type *__find_policy(char const *name ) { struct dm_cache_policy_type *t ; struct list_head const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)register_list.next; t = (struct dm_cache_policy_type *)__mptr; goto ldv_34700; ldv_34699: tmp = strcmp((char const *)(& t->name), name); if (tmp == 0) { return (t); } else { } __mptr___0 = (struct list_head const *)t->list.next; t = (struct dm_cache_policy_type *)__mptr___0; ldv_34700: ; if ((unsigned long )(& t->list) != (unsigned long )(& register_list)) { goto ldv_34699; } else { } return ((struct dm_cache_policy_type *)0); } } static struct dm_cache_policy_type *__get_policy_once(char const *name ) { struct dm_cache_policy_type *t ; struct dm_cache_policy_type *tmp ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { tmp = __find_policy(name); t = tmp; if ((unsigned long )t != (unsigned long )((struct dm_cache_policy_type *)0)) { tmp___1 = try_module_get(t->owner); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { printk("\fdevice-mapper: cache-policy: couldn\'t get module %s\n", name); tmp___0 = ERR_PTR(-22L); t = (struct dm_cache_policy_type *)tmp___0; } else { } } else { } return (t); } } static struct dm_cache_policy_type *get_policy_once(char const *name ) { struct dm_cache_policy_type *t ; { spin_lock(& register_lock); t = __get_policy_once(name); spin_unlock(& register_lock); return (t); } } static struct dm_cache_policy_type *get_policy(char const *name ) { struct dm_cache_policy_type *t ; bool tmp ; bool tmp___0 ; { t = get_policy_once(name); tmp = IS_ERR((void const *)t); if ((int )tmp) { return ((struct dm_cache_policy_type *)0); } else { } if ((unsigned long )t != (unsigned long )((struct dm_cache_policy_type *)0)) { return (t); } else { } __request_module(1, "dm-cache-%s", name); t = get_policy_once(name); tmp___0 = IS_ERR((void const *)t); if ((int )tmp___0) { return ((struct dm_cache_policy_type *)0); } else { } return (t); } } static void put_policy(struct dm_cache_policy_type *t ) { { module_put(t->owner); return; } } int dm_cache_policy_register(struct dm_cache_policy_type *type ) { int r ; struct dm_cache_policy_type *tmp ; { if (type->hint_size != 0UL && type->hint_size != 4UL) { printk("\fdevice-mapper: cache-policy: hint size must be 0 or 4 but %llu supplied.\n", (unsigned long long )type->hint_size); return (-22); } else { } spin_lock(& register_lock); tmp = __find_policy((char const *)(& type->name)); if ((unsigned long )tmp != (unsigned long )((struct dm_cache_policy_type *)0)) { printk("\fdevice-mapper: cache-policy: attempt to register policy under duplicate name %s\n", (char *)(& type->name)); r = -22; } else { list_add(& type->list, & register_list); r = 0; } spin_unlock(& register_lock); return (r); } } static char const __kstrtab_dm_cache_policy_register[25U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_register ; struct kernel_symbol const __ksymtab_dm_cache_policy_register = {(unsigned long )(& dm_cache_policy_register), (char const *)(& __kstrtab_dm_cache_policy_register)}; void dm_cache_policy_unregister(struct dm_cache_policy_type *type ) { { spin_lock(& register_lock); list_del_init(& type->list); spin_unlock(& register_lock); return; } } static char const __kstrtab_dm_cache_policy_unregister[27U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_unregister ; struct kernel_symbol const __ksymtab_dm_cache_policy_unregister = {(unsigned long )(& dm_cache_policy_unregister), (char const *)(& __kstrtab_dm_cache_policy_unregister)}; struct dm_cache_policy *dm_cache_policy_create(char const *name , dm_cblock_t cache_size , sector_t origin_size , sector_t cache_block_size ) { struct dm_cache_policy *p ; struct dm_cache_policy_type *type ; void *tmp ; void *tmp___0 ; { p = (struct dm_cache_policy *)0; type = get_policy(name); if ((unsigned long )type == (unsigned long )((struct dm_cache_policy_type *)0)) { printk("\fdevice-mapper: cache-policy: unknown policy type\n"); tmp = ERR_PTR(-22L); return ((struct dm_cache_policy *)tmp); } else { } p = (*(type->create))(cache_size, origin_size, cache_block_size); if ((unsigned long )p == (unsigned long )((struct dm_cache_policy *)0)) { put_policy(type); tmp___0 = ERR_PTR(-12L); return ((struct dm_cache_policy *)tmp___0); } else { } p->private = (void *)type; return (p); } } static char const __kstrtab_dm_cache_policy_create[23U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'c', 'r', 'e', 'a', 't', 'e', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_create ; struct kernel_symbol const __ksymtab_dm_cache_policy_create = {(unsigned long )(& dm_cache_policy_create), (char const *)(& __kstrtab_dm_cache_policy_create)}; void dm_cache_policy_destroy(struct dm_cache_policy *p ) { struct dm_cache_policy_type *t ; { t = (struct dm_cache_policy_type *)p->private; (*(p->destroy))(p); put_policy(t); return; } } static char const __kstrtab_dm_cache_policy_destroy[24U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'd', 'e', 's', 't', 'r', 'o', 'y', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_destroy ; struct kernel_symbol const __ksymtab_dm_cache_policy_destroy = {(unsigned long )(& dm_cache_policy_destroy), (char const *)(& __kstrtab_dm_cache_policy_destroy)}; char const *dm_cache_policy_get_name(struct dm_cache_policy *p ) { struct dm_cache_policy_type *t ; { t = (struct dm_cache_policy_type *)p->private; if ((unsigned long )t->real != (unsigned long )((struct dm_cache_policy_type *)0)) { return ((char const *)(& (t->real)->name)); } else { } return ((char const *)(& t->name)); } } static char const __kstrtab_dm_cache_policy_get_name[25U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'g', 'e', 't', '_', 'n', 'a', 'm', 'e', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_get_name ; struct kernel_symbol const __ksymtab_dm_cache_policy_get_name = {(unsigned long )(& dm_cache_policy_get_name), (char const *)(& __kstrtab_dm_cache_policy_get_name)}; unsigned int const *dm_cache_policy_get_version(struct dm_cache_policy *p ) { struct dm_cache_policy_type *t ; { t = (struct dm_cache_policy_type *)p->private; return ((unsigned int const *)(& t->version)); } } static char const __kstrtab_dm_cache_policy_get_version[28U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'g', 'e', 't', '_', 'v', 'e', 'r', 's', 'i', 'o', 'n', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_get_version ; struct kernel_symbol const __ksymtab_dm_cache_policy_get_version = {(unsigned long )(& dm_cache_policy_get_version), (char const *)(& __kstrtab_dm_cache_policy_get_version)}; size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p ) { struct dm_cache_policy_type *t ; { t = (struct dm_cache_policy_type *)p->private; return (t->hint_size); } } static char const __kstrtab_dm_cache_policy_get_hint_size[30U] = { 'd', 'm', '_', 'c', 'a', 'c', 'h', 'e', '_', 'p', 'o', 'l', 'i', 'c', 'y', '_', 'g', 'e', 't', '_', 'h', 'i', 'n', 't', '_', 's', 'i', 'z', 'e', '\000'}; struct kernel_symbol const __ksymtab_dm_cache_policy_get_hint_size ; struct kernel_symbol const __ksymtab_dm_cache_policy_get_hint_size = {(unsigned long )(& dm_cache_policy_get_hint_size), (char const *)(& __kstrtab_dm_cache_policy_get_hint_size)}; bool ldv_queue_work_on_81(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_82(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_83(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_84(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_85(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_86(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_87(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_88(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_89(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_90(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_91(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_92(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_table_lock = 1; int ldv_mutex_lock_interruptible_table_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_table_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_table_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_table_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_table_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_table_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_table_lock(struct mutex *lock ) { { if (ldv_mutex_table_lock != 1) { ldv_error(); } else { } ldv_mutex_table_lock = 2; return; } } int ldv_mutex_trylock_table_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_table_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_table_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_table_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_table_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_table_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_table_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_table_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_table_lock(struct mutex *lock ) { { if (ldv_mutex_table_lock != 2) { ldv_error(); } else { } ldv_mutex_table_lock = 1; return; } } void ldv_usb_lock_device_table_lock(void) { { ldv_mutex_lock_table_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_table_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_table_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_table_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_table_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_table_lock(void) { { ldv_mutex_unlock_table_lock((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_table_lock != 1) { ldv_error(); } else { } return; } }