extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __le32; typedef __u64 __le64; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct bio_vec; struct llist_node; struct llist_head { struct llist_node *first ; }; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; unsigned int flags ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct dm_target; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct device_type; struct class; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_220 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_219 { struct __anonstruct____missing_field_name_220 __annonCompField58 ; }; struct lockref { union __anonunion____missing_field_name_219 __annonCompField59 ; }; struct vfsmount; struct __anonstruct____missing_field_name_222 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_221 { struct __anonstruct____missing_field_name_222 __annonCompField60 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_221 __annonCompField61 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_223 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_223 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_227 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_226 { struct __anonstruct____missing_field_name_227 __annonCompField62 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_226 __annonCompField63 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_230 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t __bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_230 __annonCompField64 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t __bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct bdi_writeback; struct export_operations; struct hd_geometry; struct iovec; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_231 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_231 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_232 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_232 __annonCompField65 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct writeback_control; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_235 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_236 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_237 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_235 __annonCompField66 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_236 __annonCompField67 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_237 __annonCompField68 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_238 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_238 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_240 { struct list_head link ; int state ; }; union __anonunion_fl_u_239 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_240 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_239 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct exception_table_entry { int insn ; int fixup ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; typedef int congested_fn(void * , int ); struct bdi_writeback_congested { unsigned long state ; atomic_t refcnt ; struct backing_dev_info *bdi ; int blkcg_id ; struct rb_node rb_node ; }; union __anonunion____missing_field_name_249 { struct work_struct release_work ; struct callback_head rcu ; }; struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long state ; unsigned long last_old_flush ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; struct percpu_counter stat[4U] ; struct bdi_writeback_congested *congested ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; spinlock_t work_lock ; struct list_head work_list ; struct delayed_work dwork ; struct percpu_ref refcnt ; struct fprop_local_percpu memcg_completions ; struct cgroup_subsys_state *memcg_css ; struct cgroup_subsys_state *blkcg_css ; struct list_head memcg_node ; struct list_head blkcg_node ; union __anonunion____missing_field_name_249 __annonCompField76 ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; atomic_long_t tot_write_bandwidth ; struct bdi_writeback wb ; struct radix_tree_root cgwb_tree ; struct rb_root cgwb_congested_tree ; atomic_t usage_cnt ; wait_queue_head_t wb_waitq ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_250 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_251 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_250 __annonCompField77 ; union __anonunion____missing_field_name_251 __annonCompField78 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; union __anonunion____missing_field_name_252 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_253 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_254 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_256 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_257 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_255 { struct __anonstruct_elv_256 elv ; struct __anonstruct_flush_257 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_252 __annonCompField79 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; unsigned int cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_253 __annonCompField80 ; union __anonunion____missing_field_name_254 __annonCompField81 ; union __anonunion____missing_field_name_255 __annonCompField82 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); typedef void elevator_registered_fn(struct request_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; elevator_registered_fn *elevator_registered_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; atomic_t mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; struct bdi_writeback *wb ; struct inode *inode ; int wb_id ; int wb_lcand_id ; int wb_tcand_id ; size_t wb_bytes ; size_t wb_lcand_bytes ; size_t wb_tcand_bytes ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct blkcg_policy_data; struct blkcg { struct cgroup_subsys_state css ; spinlock_t lock ; struct radix_tree_root blkg_tree ; struct blkcg_gq *blkg_hint ; struct hlist_head blkg_list ; struct blkcg_policy_data *pd[2U] ; struct list_head cgwb_list ; }; struct blkg_policy_data { struct blkcg_gq *blkg ; int plid ; struct list_head alloc_node ; }; struct blkcg_policy_data { int plid ; struct list_head alloc_node ; }; struct blkcg_gq { struct request_queue *q ; struct list_head q_node ; struct hlist_node blkcg_node ; struct blkcg *blkcg ; struct bdi_writeback_congested *wb_congested ; struct blkcg_gq *parent ; struct request_list rl ; atomic_t refcnt ; bool online ; struct blkg_policy_data *pd[2U] ; struct callback_head callback_head ; }; struct mddev; struct md_rdev; struct badblocks { int count ; int unacked_exist ; int shift ; u64 *page ; int changed ; seqlock_t lock ; sector_t sector ; sector_t size ; }; struct md_rdev { struct list_head same_set ; sector_t sectors ; struct mddev *mddev ; int last_events ; struct block_device *meta_bdev ; struct block_device *bdev ; struct page *sb_page ; struct page *bb_page ; int sb_loaded ; __u64 sb_events ; sector_t data_offset ; sector_t new_data_offset ; sector_t sb_start ; int sb_size ; int preferred_minor ; struct kobject kobj ; unsigned long flags ; wait_queue_head_t blocked_wait ; int desc_nr ; int raid_disk ; int new_raid_disk ; int saved_raid_disk ; sector_t recovery_offset ; atomic_t nr_pending ; atomic_t read_errors ; struct timespec last_read_error ; atomic_t corrected_errors ; struct work_struct del_work ; struct kernfs_node *sysfs_state ; struct badblocks badblocks ; }; struct md_cluster_info; struct md_personality; struct md_thread; struct bitmap; struct __anonstruct_bitmap_info_265 { struct file *file ; loff_t offset ; unsigned long space ; loff_t default_offset ; unsigned long default_space ; struct mutex mutex ; unsigned long chunksize ; unsigned long daemon_sleep ; unsigned long max_write_behind ; int external ; int nodes ; char cluster_name[64U] ; }; struct mddev { void *private ; struct md_personality *pers ; dev_t unit ; int md_minor ; struct list_head disks ; unsigned long flags ; int suspended ; atomic_t active_io ; int ro ; int sysfs_active ; int ready ; struct gendisk *gendisk ; struct kobject kobj ; int hold_active ; int major_version ; int minor_version ; int patch_version ; int persistent ; int external ; char metadata_type[17U] ; int chunk_sectors ; time_t ctime ; time_t utime ; int level ; int layout ; char clevel[16U] ; int raid_disks ; int max_disks ; sector_t dev_sectors ; sector_t array_sectors ; int external_size ; __u64 events ; int can_decrease_events ; char uuid[16U] ; sector_t reshape_position ; int delta_disks ; int new_level ; int new_layout ; int new_chunk_sectors ; int reshape_backwards ; struct md_thread *thread ; struct md_thread *sync_thread ; char *last_sync_action ; sector_t curr_resync ; sector_t curr_resync_completed ; unsigned long resync_mark ; sector_t resync_mark_cnt ; sector_t curr_mark_cnt ; sector_t resync_max_sectors ; atomic64_t resync_mismatches ; sector_t suspend_lo ; sector_t suspend_hi ; int sync_speed_min ; int sync_speed_max ; int parallel_resync ; int ok_start_degraded ; unsigned long recovery ; int recovery_disabled ; int in_sync ; struct mutex open_mutex ; struct mutex reconfig_mutex ; atomic_t active ; atomic_t openers ; int changed ; int degraded ; int merge_check_needed ; atomic_t recovery_active ; wait_queue_head_t recovery_wait ; sector_t recovery_cp ; sector_t resync_min ; sector_t resync_max ; struct kernfs_node *sysfs_state ; struct kernfs_node *sysfs_action ; struct work_struct del_work ; spinlock_t lock ; wait_queue_head_t sb_wait ; atomic_t pending_writes ; unsigned int safemode ; unsigned int safemode_delay ; struct timer_list safemode_timer ; atomic_t writes_pending ; struct request_queue *queue ; struct bitmap *bitmap ; struct __anonstruct_bitmap_info_265 bitmap_info ; atomic_t max_corr_read_errors ; struct list_head all_mddevs ; struct attribute_group *to_remove ; struct bio_set *bio_set ; struct bio *flush_bio ; atomic_t flush_pending ; struct work_struct flush_work ; struct work_struct event_work ; void (*sync_super)(struct mddev * , struct md_rdev * ) ; struct md_cluster_info *cluster_info ; }; struct md_personality { char *name ; int level ; struct list_head list ; struct module *owner ; void (*make_request)(struct mddev * , struct bio * ) ; int (*run)(struct mddev * ) ; void (*free)(struct mddev * , void * ) ; void (*status)(struct seq_file * , struct mddev * ) ; void (*error_handler)(struct mddev * , struct md_rdev * ) ; int (*hot_add_disk)(struct mddev * , struct md_rdev * ) ; int (*hot_remove_disk)(struct mddev * , struct md_rdev * ) ; int (*spare_active)(struct mddev * ) ; sector_t (*sync_request)(struct mddev * , sector_t , int * ) ; int (*resize)(struct mddev * , sector_t ) ; sector_t (*size)(struct mddev * , sector_t , int ) ; int (*check_reshape)(struct mddev * ) ; int (*start_reshape)(struct mddev * ) ; void (*finish_reshape)(struct mddev * ) ; void (*quiesce)(struct mddev * , int ) ; void *(*takeover)(struct mddev * ) ; int (*congested)(struct mddev * , int ) ; int (*mergeable_bvec)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) ; }; struct md_thread { void (*run)(struct md_thread * ) ; struct mddev *mddev ; wait_queue_head_t wqueue ; unsigned long flags ; struct task_struct *tsk ; unsigned long timeout ; void *private ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_266 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_266 __annonCompField83 ; unsigned long nr_segs ; }; struct r5conf; struct r5worker_group; struct disk_info { struct md_rdev *rdev ; struct md_rdev *replacement ; }; struct r5worker { struct work_struct work ; struct r5worker_group *group ; struct list_head temp_inactive_list[8U] ; bool working ; }; struct r5worker_group { struct list_head handle_list ; struct r5conf *conf ; struct r5worker *workers ; int stripes_cnt ; }; struct flex_array; struct raid5_percpu { struct page *spare_page ; struct flex_array *scribble ; }; struct r5conf { struct hlist_head *stripe_hashtbl ; spinlock_t hash_locks[8U] ; struct mddev *mddev ; int chunk_sectors ; int level ; int algorithm ; int rmw_level ; int max_degraded ; int raid_disks ; int max_nr_stripes ; int min_nr_stripes ; sector_t reshape_progress ; sector_t reshape_safe ; int previous_raid_disks ; int prev_chunk_sectors ; int prev_algo ; short generation ; seqcount_t gen_lock ; unsigned long reshape_checkpoint ; long long min_offset_diff ; struct list_head handle_list ; struct list_head hold_list ; struct list_head delayed_list ; struct list_head bitmap_list ; struct bio *retry_read_aligned ; struct bio *retry_read_aligned_list ; atomic_t preread_active_stripes ; atomic_t active_aligned_reads ; atomic_t pending_full_writes ; int bypass_count ; int bypass_threshold ; int skip_copy ; struct list_head *last_hold ; atomic_t reshape_stripes ; int active_name ; char cache_name[2U][32U] ; struct kmem_cache *slab_cache ; int seq_flush ; int seq_write ; int quiesce ; int fullsync ; int recovery_disabled ; struct raid5_percpu *percpu ; struct notifier_block cpu_notify ; atomic_t active_stripes ; struct list_head inactive_list[8U] ; atomic_t empty_inactive_list_nr ; struct llist_head released_stripes ; wait_queue_head_t wait_for_quiescent ; wait_queue_head_t wait_for_stripe[8U] ; wait_queue_head_t wait_for_overlap ; unsigned long cache_state ; struct shrinker shrinker ; int pool_size ; spinlock_t device_lock ; struct disk_info *disks ; struct md_thread *thread ; struct list_head temp_inactive_list[8U] ; struct r5worker_group *worker_groups ; int group_cnt ; int worker_cnt_per_group ; }; struct bitmap_page { char *map ; unsigned char hijacked : 1 ; unsigned char pending : 1 ; unsigned int count : 30 ; }; struct bitmap_counts { spinlock_t lock ; struct bitmap_page *bp ; unsigned long pages ; unsigned long missing_pages ; unsigned long chunkshift ; unsigned long chunks ; }; struct bitmap_storage { struct file *file ; struct page *sb_page ; struct page **filemap ; unsigned long *filemap_attr ; unsigned long file_pages ; unsigned long bytes ; }; struct bitmap { struct bitmap_counts counts ; struct mddev *mddev ; __u64 events_cleared ; int need_sync ; struct bitmap_storage storage ; unsigned long flags ; int allclean ; atomic_t behind_writes ; unsigned long behind_writes_used ; unsigned long daemon_lastrun ; unsigned long last_end_sync ; atomic_t pending_writes ; wait_queue_head_t write_wait ; wait_queue_head_t overflow_wait ; wait_queue_head_t behind_wait ; struct kernfs_node *sysfs_can_clear ; int cluster_slot ; }; struct dm_dev; struct dm_table; enum ldv_26601 { STATUSTYPE_INFO = 0, STATUSTYPE_TABLE = 1 } ; typedef enum ldv_26601 status_type_t; union map_info { void *ptr ; }; struct dm_dev { struct block_device *bdev ; fmode_t mode ; char name[16U] ; }; struct target_type { uint64_t features ; char const *name ; struct module *module ; unsigned int version[3U] ; int (*ctr)(struct dm_target * , unsigned int , char ** ) ; void (*dtr)(struct dm_target * ) ; int (*map)(struct dm_target * , struct bio * ) ; int (*map_rq)(struct dm_target * , struct request * , union map_info * ) ; int (*clone_and_map_rq)(struct dm_target * , struct request * , union map_info * , struct request ** ) ; void (*release_clone_rq)(struct request * ) ; int (*end_io)(struct dm_target * , struct bio * , int ) ; int (*rq_end_io)(struct dm_target * , struct request * , int , union map_info * ) ; void (*presuspend)(struct dm_target * ) ; void (*presuspend_undo)(struct dm_target * ) ; void (*postsuspend)(struct dm_target * ) ; int (*preresume)(struct dm_target * ) ; void (*resume)(struct dm_target * ) ; void (*status)(struct dm_target * , status_type_t , unsigned int , char * , unsigned int ) ; int (*message)(struct dm_target * , unsigned int , char ** ) ; int (*ioctl)(struct dm_target * , unsigned int , unsigned long ) ; int (*merge)(struct dm_target * , struct bvec_merge_data * , struct bio_vec * , int ) ; int (*busy)(struct dm_target * ) ; int (*iterate_devices)(struct dm_target * , int (*)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void * ) ; void (*io_hints)(struct dm_target * , struct queue_limits * ) ; struct list_head list ; }; struct dm_target { struct dm_table *table ; struct target_type *type ; sector_t begin ; sector_t len ; uint32_t max_io_len ; unsigned int num_flush_bios ; unsigned int num_discard_bios ; unsigned int num_write_same_bios ; unsigned int per_bio_data_size ; unsigned int (*num_write_bios)(struct dm_target * , struct bio * ) ; void *private ; char *error ; bool flush_supported ; bool discards_supported ; bool split_discard_bios ; bool discard_zeroes_data_unsupported ; }; struct dm_target_callbacks { struct list_head list ; int (*congested_fn)(struct dm_target_callbacks * , int ) ; }; struct raid_dev { struct dm_dev *meta_dev ; struct dm_dev *data_dev ; struct md_rdev rdev ; }; struct raid_type; struct raid_set { struct dm_target *ti ; uint32_t bitmap_loaded ; uint32_t ctr_flags ; struct mddev md ; struct raid_type *raid_type ; struct dm_target_callbacks callbacks ; struct raid_dev dev[0U] ; }; struct raid_type { char const *name ; char const *descr ; unsigned int const parity_devs ; unsigned int const minimal_devs ; unsigned int const level ; unsigned int const algorithm ; }; struct dm_raid_superblock { __le32 magic ; __le32 features ; __le32 num_devices ; __le32 array_position ; __le64 events ; __le64 failed_devices ; __le64 disk_recovery_offset ; __le64 array_resync_offset ; __le32 level ; __le32 layout ; __le32 stripe_sectors ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___6; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } __inline static unsigned int __arch_hweight32(unsigned int w ) { unsigned int res ; { res = 0U; __asm__ ("661:\n\tcall __sw_hweight32\n662:\n.skip -(((6651f-6641f)-(662b-661b)) > 0) * ((6651f-6641f)-(662b-661b)),0x90\n663:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6641f - .\n .word ( 4*32+23)\n .byte 663b-661b\n .byte 6651f-6641f\n .byte 663b-662b\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6641:\n\t.byte 0xf3,0x40,0x0f,0xb8,0xc7\n6651:\n\t.popsection": "=a" (res): "D" (w)); return (res); } } __inline static bool is_power_of_2(unsigned long n ) { { return ((bool )(n != 0UL && ((n - 1UL) & n) == 0UL)); } } extern int printk(char const * , ...) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } extern int scnprintf(char * , size_t , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { __list_del_entry(entry); INIT_LIST_HEAD(entry); return; } } extern void *memset(void * , int , size_t ) ; extern int strcmp(char const * , char const * ) ; extern int strcasecmp(char const * , char const * ) ; __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; __inline static long atomic64_read(atomic64_t const *v ) { long __var ; { __var = 0L; return ((long )*((long const volatile *)(& v->counter))); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; int ldv_mutex_trylock_20(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern int mutex_lock_interruptible(struct mutex * ) ; int ldv_mutex_lock_interruptible_17(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_lock_interruptible_reconfig_mutex_of_mddev(struct mutex *lock ) ; void ldv_mutex_lock_reconfig_mutex_of_mddev(struct mutex *lock ) ; int ldv_mutex_trylock_reconfig_mutex_of_mddev(struct mutex *lock ) ; extern void __init_work(struct work_struct * , int ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { tmp = alloc_pages_current(gfp_mask, order); return (tmp); } } extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } int LDV_IN_INTERRUPT = 1; struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; struct work_struct *ldv_work_struct_1_2 ; struct work_struct *ldv_work_struct_1_3 ; int ldv_work_1_3 ; int ldv_state_variable_0 ; int ldv_work_1_1 ; int ldv_state_variable_2 ; int ref_cnt ; struct dm_target *raid_target_group1 ; int ldv_work_1_0 ; int ldv_state_variable_1 ; int ldv_work_1_2 ; void call_and_disable_all_1(int state ) ; void invoke_work_1(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void ldv_target_type_2(void) ; void disable_work_1(struct work_struct *work ) ; void activate_work_1(struct work_struct *work , int state ) ; void work_init_1(void) ; __inline static loff_t i_size_read(struct inode const *inode ) { { return ((loff_t )inode->i_size); } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static struct request_queue *bdev_get_queue(struct block_device *bdev ) { { return ((bdev->bd_disk)->queue); } } extern void blk_limits_io_min(struct queue_limits * , unsigned int ) ; extern void blk_limits_io_opt(struct queue_limits * , unsigned int ) ; __inline static unsigned short queue_logical_block_size(struct request_queue *q ) { int retval ; { retval = 512; if ((unsigned long )q != (unsigned long )((struct request_queue *)0) && (unsigned int )q->limits.logical_block_size != 0U) { retval = (int )q->limits.logical_block_size; } else { } return ((unsigned short )retval); } } __inline static unsigned short bdev_logical_block_size(struct block_device *bdev ) { struct request_queue *tmp ; unsigned short tmp___0 ; { tmp = bdev_get_queue(bdev); tmp___0 = queue_logical_block_size(tmp); return (tmp___0); } } __inline static void mddev_lock_nointr(struct mddev *mddev ) { { ldv_mutex_lock_18(& mddev->reconfig_mutex); return; } } extern void mddev_unlock(struct mddev * ) ; extern void md_wakeup_thread(struct md_thread * ) ; extern void md_reap_sync_thread(struct mddev * ) ; extern void md_error(struct mddev * , struct md_rdev * ) ; extern int mddev_congested(struct mddev * , int ) ; extern int sync_page_io(struct md_rdev * , sector_t , int , struct page * , int , bool ) ; extern void mddev_init(struct mddev * ) ; extern int md_run(struct mddev * ) ; extern void md_stop(struct mddev * ) ; extern void md_stop_writes(struct mddev * ) ; extern int md_rdev_init(struct md_rdev * ) ; extern void md_rdev_clear(struct md_rdev * ) ; extern void mddev_suspend(struct mddev * ) ; extern void mddev_resume(struct mddev * ) ; extern int raid5_set_cache_size(struct mddev * , int ) ; extern int bitmap_load(struct mddev * ) ; extern int dm_get_device(struct dm_target * , char const * , fmode_t , struct dm_dev ** ) ; extern void dm_put_device(struct dm_target * , struct dm_dev * ) ; extern int dm_register_target(struct target_type * ) ; extern void dm_unregister_target(struct target_type * ) ; extern void dm_table_add_target_callbacks(struct dm_table * , struct dm_target_callbacks * ) ; extern int dm_set_target_max_io_len(struct dm_target * , sector_t ) ; extern fmode_t dm_table_get_mode(struct dm_table * ) ; extern void dm_table_event(struct dm_table * ) ; __inline static sector_t to_sector(unsigned long n ) { { return (n >> 9); } } static bool devices_handle_discard_safely = 0; static struct raid_type raid_types[11U] = { {"raid0", "RAID0 (striping)", 0U, 2U, 0U, 0U}, {"raid1", "RAID1 (mirroring)", 0U, 2U, 1U, 0U}, {"raid10", "RAID10 (striped mirrors)", 0U, 2U, 10U, 4294967295U}, {"raid4", "RAID4 (dedicated parity disk)", 1U, 2U, 5U, 4U}, {"raid5_la", "RAID5 (left asymmetric)", 1U, 2U, 5U, 0U}, {"raid5_ra", "RAID5 (right asymmetric)", 1U, 2U, 5U, 1U}, {"raid5_ls", "RAID5 (left symmetric)", 1U, 2U, 5U, 2U}, {"raid5_rs", "RAID5 (right symmetric)", 1U, 2U, 5U, 3U}, {"raid6_zr", "RAID6 (zero restart)", 2U, 4U, 6U, 8U}, {"raid6_nr", "RAID6 (N restart)", 2U, 4U, 6U, 9U}, {"raid6_nc", "RAID6 (N continue)", 2U, 4U, 6U, 10U}}; static char *raid10_md_layout_to_format(int layout ) { { if ((layout & 65536) != 0 && (layout & 131072) != 0) { return ((char *)"offset"); } else { } if ((layout & 255) > 1) { return ((char *)"near"); } else { } return ((char *)"far"); } } static unsigned int raid10_md_layout_to_copies(int layout ) { { if ((layout & 255) > 1) { return ((unsigned int )layout & 255U); } else { } return ((unsigned int )(layout >> 8) & 255U); } } static int raid10_format_to_md_layout(char *format , unsigned int copies ) { unsigned int n ; unsigned int f ; int tmp ; int tmp___0 ; int tmp___1 ; { n = 1U; f = 1U; tmp = strcasecmp("near", (char const *)format); if (tmp == 0) { n = copies; } else { f = copies; } tmp___0 = strcasecmp("offset", (char const *)format); if (tmp___0 == 0) { return ((int )(((f << 8) | n) | 196608U)); } else { } tmp___1 = strcasecmp("far", (char const *)format); if (tmp___1 == 0) { return ((int )(((f << 8) | n) | 131072U)); } else { } return ((int )((f << 8) | n)); } } static struct raid_type *get_raid_type(char *name ) { int i ; int tmp ; { i = 0; goto ldv_35694; ldv_35693: tmp = strcmp(raid_types[i].name, (char const *)name); if (tmp == 0) { return ((struct raid_type *)(& raid_types) + (unsigned long )i); } else { } i = i + 1; ldv_35694: ; if ((unsigned int )i <= 10U) { goto ldv_35693; } else { } return ((struct raid_type *)0); } } static struct raid_set *context_alloc(struct dm_target *ti , struct raid_type *raid_type , unsigned int raid_devs ) { unsigned int i ; struct raid_set *rs ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { if ((unsigned int )raid_type->parity_devs >= raid_devs) { ti->error = (char *)"Insufficient number of devices"; tmp = ERR_PTR(-22L); return ((struct raid_set *)tmp); } else { } tmp___0 = kzalloc((unsigned long )raid_devs * 848UL + 2144UL, 208U); rs = (struct raid_set *)tmp___0; if ((unsigned long )rs == (unsigned long )((struct raid_set *)0)) { ti->error = (char *)"Cannot allocate raid context"; tmp___1 = ERR_PTR(-12L); return ((struct raid_set *)tmp___1); } else { } mddev_init(& rs->md); rs->ti = ti; rs->raid_type = raid_type; rs->md.raid_disks = (int )raid_devs; rs->md.level = (int )raid_type->level; rs->md.new_level = rs->md.level; rs->md.layout = (int )raid_type->algorithm; rs->md.new_layout = rs->md.layout; rs->md.delta_disks = 0; rs->md.recovery_cp = 0UL; i = 0U; goto ldv_35704; ldv_35703: md_rdev_init(& rs->dev[i].rdev); i = i + 1U; ldv_35704: ; if (i < raid_devs) { goto ldv_35703; } else { } return (rs); } } static void context_free(struct raid_set *rs ) { int i ; { i = 0; goto ldv_35711; ldv_35710: ; if ((unsigned long )rs->dev[i].meta_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(rs->ti, rs->dev[i].meta_dev); } else { } md_rdev_clear(& rs->dev[i].rdev); if ((unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(rs->ti, rs->dev[i].data_dev); } else { } i = i + 1; ldv_35711: ; if (rs->md.raid_disks > i) { goto ldv_35710; } else { } kfree((void const *)rs); return; } } static int dev_parms(struct raid_set *rs , char **argv ) { int i ; int rebuild ; int metadata_available ; int ret ; fmode_t tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; fmode_t tmp___3 ; int tmp___4 ; { rebuild = 0; metadata_available = 0; ret = 0; i = 0; goto ldv_35723; ldv_35722: rs->dev[i].rdev.raid_disk = i; rs->dev[i].meta_dev = (struct dm_dev *)0; rs->dev[i].data_dev = (struct dm_dev *)0; rs->dev[i].rdev.data_offset = 0UL; rs->dev[i].rdev.mddev = & rs->md; tmp___0 = strcmp((char const *)*argv, "-"); if (tmp___0 != 0) { tmp = dm_table_get_mode((rs->ti)->table); ret = dm_get_device(rs->ti, (char const *)*argv, tmp, & rs->dev[i].meta_dev); (rs->ti)->error = (char *)"RAID metadata device lookup failure"; if (ret != 0) { return (ret); } else { } rs->dev[i].rdev.sb_page = alloc_pages(208U, 0U); if ((unsigned long )rs->dev[i].rdev.sb_page == (unsigned long )((struct page *)0)) { return (-12); } else { } } else { } tmp___2 = strcmp((char const *)*(argv + 1UL), "-"); if (tmp___2 == 0) { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___1 == 0 && rs->dev[i].rdev.recovery_offset == 0UL) { (rs->ti)->error = (char *)"Drive designated for rebuild not specified"; return (-22); } else { } (rs->ti)->error = (char *)"No data device supplied with metadata device"; if ((unsigned long )rs->dev[i].meta_dev != (unsigned long )((struct dm_dev *)0)) { return (-22); } else { } goto ldv_35721; } else { } tmp___3 = dm_table_get_mode((rs->ti)->table); ret = dm_get_device(rs->ti, (char const *)*(argv + 1UL), tmp___3, & rs->dev[i].data_dev); if (ret != 0) { (rs->ti)->error = (char *)"RAID device lookup failure"; return (ret); } else { } if ((unsigned long )rs->dev[i].meta_dev != (unsigned long )((struct dm_dev *)0)) { metadata_available = 1; rs->dev[i].rdev.meta_bdev = (rs->dev[i].meta_dev)->bdev; } else { } rs->dev[i].rdev.bdev = (rs->dev[i].data_dev)->bdev; list_add(& rs->dev[i].rdev.same_set, & rs->md.disks); tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___4 == 0) { rebuild = rebuild + 1; } else { } ldv_35721: i = i + 1; argv = argv + 2UL; ldv_35723: ; if (rs->md.raid_disks > i) { goto ldv_35722; } else { } if (metadata_available != 0) { rs->md.external = 0; rs->md.persistent = 1; rs->md.major_version = 2; } else if (rebuild != 0 && rs->md.recovery_cp == 0UL) { printk("\vdevice-mapper: raid: Unable to rebuild drive while array is not in-sync\n"); (rs->ti)->error = (char *)"RAID device lookup failure"; return (-22); } else { } return (0); } } static int validate_region_size(struct raid_set *rs , unsigned long region_size ) { unsigned long min_region_size ; int tmp ; bool tmp___0 ; int tmp___1 ; { min_region_size = (rs->ti)->len / 2097152UL; if (region_size == 0UL) { if (min_region_size > 8192UL) { if (((min_region_size - 1UL) & min_region_size) != 0UL) { tmp = fls((int )region_size); region_size = (unsigned long )(1 << tmp); } else { } printk("\016device-mapper: raid: Choosing default region size of %lu sectors\n", region_size); } else { printk("\016device-mapper: raid: Choosing default region size of 4MiB\n"); region_size = 8192UL; } } else { if ((rs->ti)->len < region_size) { (rs->ti)->error = (char *)"Supplied region size is too large"; return (-22); } else { } if (region_size < min_region_size) { printk("\vdevice-mapper: raid: Supplied region_size (%lu sectors) below minimum (%lu)\n", region_size, min_region_size); (rs->ti)->error = (char *)"Supplied region size is too small"; return (-22); } else { } tmp___0 = is_power_of_2(region_size); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { (rs->ti)->error = (char *)"Region size is not a power of 2"; return (-22); } else { } if ((unsigned long )rs->md.chunk_sectors > region_size) { (rs->ti)->error = (char *)"Region size is smaller than the chunk size"; return (-22); } else { } } rs->md.bitmap_info.chunksize = region_size << 9; return (0); } } static int validate_raid_redundancy(struct raid_set *rs ) { unsigned int i ; unsigned int rebuild_cnt ; unsigned int rebuilds_per_group ; unsigned int copies ; unsigned int d ; unsigned int group_size ; unsigned int last_group_start ; int tmp ; int tmp___0 ; char *tmp___1 ; int tmp___2 ; int tmp___3 ; { rebuild_cnt = 0U; rebuilds_per_group = 0U; i = 0U; goto ldv_35741; ldv_35740: tmp = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp == 0 || (unsigned long )rs->dev[i].rdev.sb_page == (unsigned long )((struct page *)0)) { rebuild_cnt = rebuild_cnt + 1U; } else { } i = i + 1U; ldv_35741: ; if ((unsigned int )rs->md.raid_disks > i) { goto ldv_35740; } else { } switch ((rs->raid_type)->level) { case 1U: ; if ((unsigned int )rs->md.raid_disks <= rebuild_cnt) { goto too_many; } else { } goto ldv_35745; case 4U: ; case 5U: ; case 6U: ; if ((unsigned int )(rs->raid_type)->parity_devs < rebuild_cnt) { goto too_many; } else { } goto ldv_35745; case 10U: copies = raid10_md_layout_to_copies(rs->md.layout); if (rebuild_cnt < copies) { goto ldv_35745; } else { } tmp___1 = raid10_md_layout_to_format(rs->md.layout); tmp___2 = strcmp("near", (char const *)tmp___1); if (tmp___2 == 0) { i = 0U; goto ldv_35751; ldv_35750: ; if (i % copies == 0U) { rebuilds_per_group = 0U; } else { } d = i % (unsigned int )rs->md.raid_disks; if ((unsigned long )rs->dev[d].rdev.sb_page == (unsigned long )((struct page *)0)) { goto _L; } else { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[d].rdev.flags)); if (tmp___0 == 0) { _L: /* CIL Label */ rebuilds_per_group = rebuilds_per_group + 1U; if (rebuilds_per_group >= copies) { goto too_many; } else { } } else { } } i = i + 1U; ldv_35751: ; if ((unsigned int )rs->md.raid_disks * copies > i) { goto ldv_35750; } else { } goto ldv_35745; } else { } group_size = (unsigned int )rs->md.raid_disks / copies; last_group_start = (unsigned int )rs->md.raid_disks / group_size - 1U; last_group_start = last_group_start * group_size; i = 0U; goto ldv_35754; ldv_35753: ; if (i % copies == 0U && i <= last_group_start) { rebuilds_per_group = 0U; } else { } if ((unsigned long )rs->dev[i].rdev.sb_page == (unsigned long )((struct page *)0)) { goto _L___0; } else { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___3 == 0) { _L___0: /* CIL Label */ rebuilds_per_group = rebuilds_per_group + 1U; if (rebuilds_per_group >= copies) { goto too_many; } else { } } else { } } i = i + 1U; ldv_35754: ; if ((unsigned int )rs->md.raid_disks > i) { goto ldv_35753; } else { } goto ldv_35745; default: ; if (rebuild_cnt != 0U) { return (-22); } else { } } ldv_35745: ; return (0); too_many: ; return (-22); } } static int parse_raid_params(struct raid_set *rs , char **argv , unsigned int num_raid_params ) { char *raid10_format ; unsigned int raid10_copies ; unsigned int i ; unsigned long value ; unsigned long region_size ; sector_t sectors_per_dev ; sector_t max_io_len ; char *key ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int _res ; int _res___0 ; { raid10_format = (char *)"near"; raid10_copies = 2U; region_size = 0UL; sectors_per_dev = (rs->ti)->len; tmp___1 = kstrtoul((char const *)*argv, 10U, & value); if (tmp___1 < 0) { (rs->ti)->error = (char *)"Bad chunk size"; return (-22); } else if ((unsigned int )(rs->raid_type)->level == 1U) { if (value != 0UL) { printk("\vdevice-mapper: raid: Ignoring chunk size parameter for RAID 1\n"); } else { } value = 0UL; } else { tmp = is_power_of_2(value); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { (rs->ti)->error = (char *)"Chunk size must be a power of 2"; return (-22); } else if (value <= 7UL) { (rs->ti)->error = (char *)"Chunk size value is too small"; return (-22); } else { } } tmp___2 = (int )value; rs->md.chunk_sectors = tmp___2; rs->md.new_chunk_sectors = tmp___2; argv = argv + 1; num_raid_params = num_raid_params - 1U; i = 0U; goto ldv_35771; ldv_35770: set_bit(1L, (unsigned long volatile *)(& rs->dev[i].rdev.flags)); rs->dev[i].rdev.recovery_offset = 0xffffffffffffffffUL; i = i + 1U; ldv_35771: ; if ((unsigned int )rs->md.raid_disks > i) { goto ldv_35770; } else { } i = 0U; goto ldv_35775; ldv_35774: tmp___3 = strcasecmp((char const *)*(argv + (unsigned long )i), "nosync"); if (tmp___3 == 0) { rs->md.recovery_cp = 0xffffffffffffffffUL; rs->ctr_flags = rs->ctr_flags | 2U; goto ldv_35773; } else { } tmp___4 = strcasecmp((char const *)*(argv + (unsigned long )i), "sync"); if (tmp___4 == 0) { rs->md.recovery_cp = 0UL; rs->ctr_flags = rs->ctr_flags | 1U; goto ldv_35773; } else { } if (i + 1U >= num_raid_params) { (rs->ti)->error = (char *)"Wrong number of raid parameters given"; return (-22); } else { } tmp___5 = i; i = i + 1U; key = *(argv + (unsigned long )tmp___5); tmp___9 = strcasecmp((char const *)key, "raid10_format"); if (tmp___9 == 0) { if ((unsigned int )(rs->raid_type)->level != 10U) { (rs->ti)->error = (char *)"\'raid10_format\' is an invalid parameter for this RAID type"; return (-22); } else { } tmp___6 = strcmp("near", (char const *)*(argv + (unsigned long )i)); if (tmp___6 != 0) { tmp___7 = strcmp("far", (char const *)*(argv + (unsigned long )i)); if (tmp___7 != 0) { tmp___8 = strcmp("offset", (char const *)*(argv + (unsigned long )i)); if (tmp___8 != 0) { (rs->ti)->error = (char *)"Invalid \'raid10_format\' value given"; return (-22); } else { } } else { } } else { } raid10_format = *(argv + (unsigned long )i); rs->ctr_flags = rs->ctr_flags | 1024U; goto ldv_35773; } else { } tmp___10 = kstrtoul((char const *)*(argv + (unsigned long )i), 10U, & value); if (tmp___10 < 0) { (rs->ti)->error = (char *)"Bad numerical argument given in raid params"; return (-22); } else { } tmp___20 = strcasecmp((char const *)key, "rebuild"); if (tmp___20 == 0) { if ((unsigned long )rs->md.raid_disks <= value) { (rs->ti)->error = (char *)"Invalid rebuild index given"; return (-22); } else { } clear_bit(1L, (unsigned long volatile *)(& rs->dev[value].rdev.flags)); rs->dev[value].rdev.recovery_offset = 0UL; rs->ctr_flags = rs->ctr_flags | 4U; } else { tmp___19 = strcasecmp((char const *)key, "write_mostly"); if (tmp___19 == 0) { if ((unsigned int )(rs->raid_type)->level != 1U) { (rs->ti)->error = (char *)"write_mostly option is only valid for RAID1"; return (-22); } else { } if ((unsigned long )rs->md.raid_disks <= value) { (rs->ti)->error = (char *)"Invalid write_mostly drive index given"; return (-22); } else { } set_bit(4L, (unsigned long volatile *)(& rs->dev[value].rdev.flags)); } else { tmp___18 = strcasecmp((char const *)key, "max_write_behind"); if (tmp___18 == 0) { if ((unsigned int )(rs->raid_type)->level != 1U) { (rs->ti)->error = (char *)"max_write_behind option is only valid for RAID1"; return (-22); } else { } rs->ctr_flags = rs->ctr_flags | 64U; value = value / 2UL; if (value > 16383UL) { (rs->ti)->error = (char *)"Max write-behind limit out of range"; return (-22); } else { } rs->md.bitmap_info.max_write_behind = value; } else { tmp___17 = strcasecmp((char const *)key, "daemon_sleep"); if (tmp___17 == 0) { rs->ctr_flags = rs->ctr_flags | 8U; if (value == 0UL || (long )value < 0L) { (rs->ti)->error = (char *)"daemon sleep period out of range"; return (-22); } else { } rs->md.bitmap_info.daemon_sleep = value; } else { tmp___16 = strcasecmp((char const *)key, "stripe_cache"); if (tmp___16 == 0) { rs->ctr_flags = rs->ctr_flags | 128U; value = value / 2UL; if ((unsigned int )(rs->raid_type)->level != 5U && (unsigned int )(rs->raid_type)->level != 6U) { (rs->ti)->error = (char *)"Inappropriate argument: stripe_cache"; return (-22); } else { } tmp___11 = raid5_set_cache_size(& rs->md, (int )value); if (tmp___11 != 0) { (rs->ti)->error = (char *)"Bad stripe_cache size"; return (-22); } else { } } else { tmp___15 = strcasecmp((char const *)key, "min_recovery_rate"); if (tmp___15 == 0) { rs->ctr_flags = rs->ctr_flags | 16U; if (value > 2147483647UL) { (rs->ti)->error = (char *)"min_recovery_rate out of range"; return (-22); } else { } rs->md.sync_speed_min = (int )value; } else { tmp___14 = strcasecmp((char const *)key, "max_recovery_rate"); if (tmp___14 == 0) { rs->ctr_flags = rs->ctr_flags | 32U; if (value > 2147483647UL) { (rs->ti)->error = (char *)"max_recovery_rate out of range"; return (-22); } else { } rs->md.sync_speed_max = (int )value; } else { tmp___13 = strcasecmp((char const *)key, "region_size"); if (tmp___13 == 0) { rs->ctr_flags = rs->ctr_flags | 256U; region_size = value; } else { tmp___12 = strcasecmp((char const *)key, "raid10_copies"); if (tmp___12 == 0 && (unsigned int )(rs->raid_type)->level == 10U) { if (value <= 1UL || value > 255UL) { (rs->ti)->error = (char *)"Bad value for \'raid10_copies\'"; return (-22); } else { } rs->ctr_flags = rs->ctr_flags | 512U; raid10_copies = (unsigned int )value; } else { printk("\vdevice-mapper: raid: Unable to parse RAID parameter: %s\n", key); (rs->ti)->error = (char *)"Unable to parse RAID parameters"; return (-22); } } } } } } } } } ldv_35773: i = i + 1U; ldv_35775: ; if (i < num_raid_params) { goto ldv_35774; } else { } tmp___21 = validate_region_size(rs, region_size); if (tmp___21 != 0) { return (-22); } else { } if (rs->md.chunk_sectors != 0) { max_io_len = (sector_t )rs->md.chunk_sectors; } else { max_io_len = region_size; } tmp___22 = dm_set_target_max_io_len(rs->ti, max_io_len); if (tmp___22 != 0) { return (-22); } else { } if ((unsigned int )(rs->raid_type)->level == 10U) { if ((unsigned int )rs->md.raid_disks < raid10_copies) { (rs->ti)->error = (char *)"Not enough devices to satisfy specification"; return (-22); } else { } tmp___23 = strcmp("near", (char const *)raid10_format); if (tmp___23 != 0 && raid10_copies > 2U) { (rs->ti)->error = (char *)"Too many copies for given RAID10 format."; return (-22); } else { } sectors_per_dev = (rs->ti)->len * (sector_t )raid10_copies; _res = (int )(sectors_per_dev % (sector_t )rs->md.raid_disks); sectors_per_dev = sectors_per_dev / (sector_t )rs->md.raid_disks; rs->md.layout = raid10_format_to_md_layout(raid10_format, raid10_copies); rs->md.new_layout = rs->md.layout; } else if ((unsigned int )(rs->raid_type)->level == 0U || (unsigned int )(rs->raid_type)->level > 1U) { _res___0 = (int )(sectors_per_dev % (sector_t )((unsigned int )rs->md.raid_disks - (unsigned int )(rs->raid_type)->parity_devs)); sectors_per_dev = sectors_per_dev / (sector_t )((unsigned int )rs->md.raid_disks - (unsigned int )(rs->raid_type)->parity_devs); if (_res___0 != 0) { (rs->ti)->error = (char *)"Target length not divisible by number of data devices"; return (-22); } else { } } else { } rs->md.dev_sectors = sectors_per_dev; rs->md.persistent = 0; rs->md.external = 1; return (0); } } static void do_table_event(struct work_struct *ws ) { struct raid_set *rs ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)ws; rs = (struct raid_set *)__mptr + 0xfffffffffffff820UL; dm_table_event((rs->ti)->table); return; } } static int raid_is_congested(struct dm_target_callbacks *cb , int bits ) { struct raid_set *rs ; struct dm_target_callbacks const *__mptr ; int tmp ; { __mptr = (struct dm_target_callbacks const *)cb; rs = (struct raid_set *)__mptr + 0xfffffffffffff7b8UL; tmp = mddev_congested(& rs->md, bits); return (tmp); } } static int read_disk_sb(struct md_rdev *rdev , int size ) { long tmp ; int tmp___0 ; { tmp = ldv__builtin_expect((unsigned long )rdev->sb_page == (unsigned long )((struct page *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/988/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-raid.c"), "i" (791), "i" (12UL)); ldv_35810: ; goto ldv_35810; } else { } if (rdev->sb_loaded != 0) { return (0); } else { } tmp___0 = sync_page_io(rdev, 0UL, size, rdev->sb_page, 0, 1); if (tmp___0 == 0) { printk("\vdevice-mapper: raid: Failed to read superblock of device at position %d\n", rdev->raid_disk); md_error(rdev->mddev, rdev); return (-22); } else { } rdev->sb_loaded = 1; return (0); } } static void super_sync(struct mddev *mddev , struct md_rdev *rdev ) { int i ; uint64_t failed_devices ; struct dm_raid_superblock *sb ; struct raid_set *rs ; struct mddev const *__mptr ; void *tmp ; int tmp___0 ; { __mptr = (struct mddev const *)mddev; rs = (struct raid_set *)__mptr + 0xfffffffffffffff0UL; tmp = lowmem_page_address((struct page const *)rdev->sb_page); sb = (struct dm_raid_superblock *)tmp; failed_devices = sb->failed_devices; i = 0; goto ldv_35822; ldv_35821: ; if ((unsigned long )rs->dev[i].data_dev == (unsigned long )((struct dm_dev *)0)) { failed_devices = (1ULL << i) | failed_devices; } else { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___0 != 0) { failed_devices = (1ULL << i) | failed_devices; } else { } } i = i + 1; ldv_35822: ; if (mddev->raid_disks > i) { goto ldv_35821; } else { } memset((void *)sb + 1U, 0, (unsigned long )rdev->sb_size - 60UL); sb->magic = 1683123524U; sb->features = 0U; sb->num_devices = (unsigned int )mddev->raid_disks; sb->array_position = (unsigned int )rdev->raid_disk; sb->events = mddev->events; sb->failed_devices = failed_devices; sb->disk_recovery_offset = (unsigned long long )rdev->recovery_offset; sb->array_resync_offset = (unsigned long long )mddev->recovery_cp; sb->level = (unsigned int )mddev->level; sb->layout = (unsigned int )mddev->layout; sb->stripe_sectors = (unsigned int )mddev->chunk_sectors; return; } } static int super_load(struct md_rdev *rdev , struct md_rdev *refdev ) { int ret ; struct dm_raid_superblock *sb ; struct dm_raid_superblock *refsb ; uint64_t events_sb ; uint64_t events_refsb ; unsigned short tmp ; void *tmp___0 ; int tmp___1 ; void *tmp___2 ; { rdev->sb_start = 0UL; tmp = bdev_logical_block_size(rdev->meta_bdev); rdev->sb_size = (int )tmp; if ((unsigned int )rdev->sb_size <= 59U || (unsigned int )rdev->sb_size > 4096U) { printk("\vdevice-mapper: raid: superblock size of a logical block is no longer valid\n"); return (-22); } else { } ret = read_disk_sb(rdev, rdev->sb_size); if (ret != 0) { return (ret); } else { } tmp___0 = lowmem_page_address((struct page const *)rdev->sb_page); sb = (struct dm_raid_superblock *)tmp___0; if (sb->magic != 1683123524U) { super_sync(rdev->mddev, rdev); set_bit(10L, (unsigned long volatile *)(& rdev->flags)); set_bit(0L, (unsigned long volatile *)(& (rdev->mddev)->flags)); return ((unsigned long )refdev == (unsigned long )((struct md_rdev *)0)); } else { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); if (tmp___1 == 0 && rdev->recovery_offset == 0UL) { super_sync(rdev->mddev, rdev); set_bit(10L, (unsigned long volatile *)(& rdev->flags)); set_bit(0L, (unsigned long volatile *)(& (rdev->mddev)->flags)); return ((unsigned long )refdev == (unsigned long )((struct md_rdev *)0)); } else { } } if ((unsigned long )refdev == (unsigned long )((struct md_rdev *)0)) { return (1); } else { } events_sb = sb->events; tmp___2 = lowmem_page_address((struct page const *)refdev->sb_page); refsb = (struct dm_raid_superblock *)tmp___2; events_refsb = refsb->events; return (events_sb > events_refsb); } } static int super_init_validation(struct mddev *mddev , struct md_rdev *rdev ) { int role ; struct raid_set *rs ; struct mddev const *__mptr ; uint64_t events_sb ; uint64_t failed_devices ; struct dm_raid_superblock *sb ; uint32_t new_devs ; uint32_t rebuilds ; struct md_rdev *r ; struct dm_raid_superblock *sb2 ; void *tmp ; unsigned int tmp___0 ; char *tmp___1 ; unsigned int tmp___2 ; char *tmp___3 ; struct list_head const *__mptr___0 ; int tmp___4 ; int tmp___5 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; void *tmp___6 ; int tmp___7 ; struct list_head const *__mptr___3 ; { __mptr = (struct mddev const *)mddev; rs = (struct raid_set *)__mptr + 0xfffffffffffffff0UL; new_devs = 0U; rebuilds = 0U; tmp = lowmem_page_address((struct page const *)rdev->sb_page); sb = (struct dm_raid_superblock *)tmp; events_sb = sb->events; failed_devices = sb->failed_devices; mddev->events = events_sb != 0ULL ? events_sb != 0ULL : 1ULL; if (sb->level != (__le32 )mddev->level) { printk("\vdevice-mapper: raid: Reshaping arrays not yet supported. (RAID level change)\n"); return (-22); } else { } if (sb->layout != (__le32 )mddev->layout) { printk("\vdevice-mapper: raid: Reshaping arrays not yet supported. (RAID layout change)\n"); printk("\vdevice-mapper: raid: 0x%X vs 0x%X\n", sb->layout, mddev->layout); tmp___0 = raid10_md_layout_to_copies((int )sb->layout); tmp___1 = raid10_md_layout_to_format((int )sb->layout); printk("\vdevice-mapper: raid: Old layout: %s w/ %d copies\n", tmp___1, tmp___0); tmp___2 = raid10_md_layout_to_copies(mddev->layout); tmp___3 = raid10_md_layout_to_format(mddev->layout); printk("\vdevice-mapper: raid: New layout: %s w/ %d copies\n", tmp___3, tmp___2); return (-22); } else { } if (sb->stripe_sectors != (__le32 )mddev->chunk_sectors) { printk("\vdevice-mapper: raid: Reshaping arrays not yet supported. (stripe sectors change)\n"); return (-22); } else { } if ((unsigned int )(rs->raid_type)->level != 1U && sb->num_devices != (__le32 )mddev->raid_disks) { printk("\vdevice-mapper: raid: Reshaping arrays not yet supported. (device count change)\n"); return (-22); } else { } if ((rs->ctr_flags & 3U) == 0U) { mddev->recovery_cp = (sector_t )sb->array_resync_offset; } else { } __mptr___0 = (struct list_head const *)mddev->disks.next; r = (struct md_rdev *)__mptr___0; goto ldv_35853; ldv_35852: tmp___5 = constant_test_bit(1L, (unsigned long const volatile *)(& r->flags)); if (tmp___5 == 0) { printk("\016device-mapper: raid: Device %d specified for rebuild: Clearing superblock\n", r->raid_disk); rebuilds = rebuilds + 1U; } else { tmp___4 = constant_test_bit(10L, (unsigned long const volatile *)(& r->flags)); if (tmp___4 != 0) { new_devs = new_devs + 1U; } else { } } __mptr___1 = (struct list_head const *)r->same_set.next; r = (struct md_rdev *)__mptr___1; ldv_35853: ; if ((unsigned long )(& r->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_35852; } else { } if (rebuilds == 0U) { if ((uint32_t )mddev->raid_disks == new_devs) { printk("\016device-mapper: raid: Superblocks created for new array\n"); set_bit(3L, (unsigned long volatile *)(& mddev->flags)); } else if (new_devs != 0U) { printk("\vdevice-mapper: raid: New device injected into existing array without \'rebuild\' parameter specified\n"); return (-22); } else { } } else if (new_devs != 0U) { printk("\vdevice-mapper: raid: \'rebuild\' devices cannot be injected into an array with other first-time devices\n"); return (-22); } else if (mddev->recovery_cp != 0xffffffffffffffffUL) { printk("\vdevice-mapper: raid: \'rebuild\' specified while array is not in-sync\n"); return (-22); } else { } __mptr___2 = (struct list_head const *)mddev->disks.next; r = (struct md_rdev *)__mptr___2; goto ldv_35861; ldv_35860: ; if ((unsigned long )r->sb_page == (unsigned long )((struct page *)0)) { goto ldv_35859; } else { } tmp___6 = lowmem_page_address((struct page const *)r->sb_page); sb2 = (struct dm_raid_superblock *)tmp___6; sb2->failed_devices = 0ULL; tmp___7 = constant_test_bit(10L, (unsigned long const volatile *)(& r->flags)); if (tmp___7 == 0 && r->raid_disk >= 0) { role = (int )sb2->array_position; if (r->raid_disk != role) { if ((unsigned int )(rs->raid_type)->level != 1U) { (rs->ti)->error = (char *)"Cannot change device positions in RAID array"; return (-22); } else { } printk("\016device-mapper: raid: RAID1 device #%d now at position #%d\n", role, r->raid_disk); } else { } if (((uint64_t )(1 << role) & failed_devices) != 0ULL) { set_bit(0L, (unsigned long volatile *)(& r->flags)); } else { } } else { } ldv_35859: __mptr___3 = (struct list_head const *)r->same_set.next; r = (struct md_rdev *)__mptr___3; ldv_35861: ; if ((unsigned long )(& r->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_35860; } else { } return (0); } } static int super_validate(struct raid_set *rs , struct md_rdev *rdev ) { struct mddev *mddev ; struct dm_raid_superblock *sb ; void *tmp ; int tmp___0 ; sector_t tmp___1 ; int tmp___2 ; int tmp___3 ; { mddev = & rs->md; tmp = lowmem_page_address((struct page const *)rdev->sb_page); sb = (struct dm_raid_superblock *)tmp; if (mddev->events == 0ULL) { tmp___0 = super_init_validation(mddev, rdev); if (tmp___0 != 0) { return (-22); } else { } } else { } if ((unsigned int )(rs->raid_type)->level != 0U) { tmp___1 = to_sector(4096UL); mddev->bitmap_info.offset = (loff_t )tmp___1; } else { mddev->bitmap_info.offset = 0LL; } (rdev->mddev)->bitmap_info.default_offset = mddev->bitmap_info.offset; tmp___2 = constant_test_bit(10L, (unsigned long const volatile *)(& rdev->flags)); if (tmp___2 == 0) { rdev->recovery_offset = (sector_t )sb->disk_recovery_offset; if (rdev->recovery_offset != 0xffffffffffffffffUL) { clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); } else { } } else { } tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); if (tmp___3 != 0) { clear_bit(0L, (unsigned long volatile *)(& rdev->flags)); clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); rdev->saved_raid_disk = rdev->raid_disk; rdev->recovery_offset = 0UL; } else { } clear_bit(10L, (unsigned long volatile *)(& rdev->flags)); return (0); } } static int analyse_superblocks(struct dm_target *ti , struct raid_set *rs ) { int ret ; struct raid_dev *dev ; struct md_rdev *rdev ; struct md_rdev *tmp ; struct md_rdev *freshest ; struct mddev *mddev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; loff_t tmp___0 ; struct md_rdev const *__mptr___1 ; struct list_head const *__mptr___2 ; int tmp___1 ; int tmp___2 ; struct list_head const *__mptr___3 ; int tmp___3 ; struct list_head const *__mptr___4 ; { mddev = & rs->md; freshest = (struct md_rdev *)0; __mptr = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr; __mptr___0 = (struct list_head const *)rdev->same_set.next; tmp = (struct md_rdev *)__mptr___0; goto ldv_35893; ldv_35892: tmp___0 = i_size_read((struct inode const *)(rdev->bdev)->bd_inode); rdev->sectors = to_sector((unsigned long )tmp___0); if ((int )rs->ctr_flags & 1) { goto ldv_35885; } else { } if ((unsigned long )rdev->meta_bdev == (unsigned long )((struct block_device *)0)) { goto ldv_35885; } else { } ret = super_load(rdev, freshest); switch (ret) { case 1: freshest = rdev; goto ldv_35887; case 0: ; goto ldv_35887; default: __mptr___1 = (struct md_rdev const *)rdev; dev = (struct raid_dev *)__mptr___1 + 0xfffffffffffffff0UL; if ((unsigned long )dev->meta_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ti, dev->meta_dev); } else { } dev->meta_dev = (struct dm_dev *)0; rdev->meta_bdev = (struct block_device *)0; if ((unsigned long )rdev->sb_page != (unsigned long )((struct page *)0)) { put_page(rdev->sb_page); } else { } rdev->sb_page = (struct page *)0; rdev->sb_loaded = 0; if ((unsigned long )dev->data_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ti, dev->data_dev); } else { } dev->data_dev = (struct dm_dev *)0; rdev->bdev = (struct block_device *)0; list_del(& rdev->same_set); } ldv_35887: ; ldv_35885: rdev = tmp; __mptr___2 = (struct list_head const *)tmp->same_set.next; tmp = (struct md_rdev *)__mptr___2; ldv_35893: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_35892; } else { } if ((unsigned long )freshest == (unsigned long )((struct md_rdev *)0)) { return (0); } else { } tmp___1 = validate_raid_redundancy(rs); if (tmp___1 != 0) { (rs->ti)->error = (char *)"Insufficient redundancy to activate array"; return (-22); } else { } ti->error = (char *)"Unable to assemble array: Invalid superblocks"; tmp___2 = super_validate(rs, freshest); if (tmp___2 != 0) { return (-22); } else { } __mptr___3 = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr___3; goto ldv_35900; ldv_35899: ; if ((unsigned long )rdev != (unsigned long )freshest) { tmp___3 = super_validate(rs, rdev); if (tmp___3 != 0) { return (-22); } else { } } else { } __mptr___4 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___4; ldv_35900: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_35899; } else { } return (0); } } static void configure_discard_support(struct dm_target *ti , struct raid_set *rs ) { int i ; bool raid456 ; struct request_queue *q ; int tmp ; { ti->discards_supported = 0; raid456 = (bool )((rs->md.level == 4 || rs->md.level == 5) || rs->md.level == 6); i = 0; goto ldv_35911; ldv_35910: ; if ((unsigned long )rs->dev[i].rdev.bdev == (unsigned long )((struct block_device *)0)) { goto ldv_35909; } else { } q = bdev_get_queue(rs->dev[i].rdev.bdev); if ((unsigned long )q == (unsigned long )((struct request_queue *)0)) { return; } else { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& q->queue_flags)); if (tmp == 0) { return; } else { } } if ((int )raid456) { if ((unsigned int )q->limits.discard_zeroes_data == 0U) { return; } else { } if (! devices_handle_discard_safely) { printk("\vdevice-mapper: raid: raid456 discard support disabled due to discard_zeroes_data uncertainty.\n"); printk("\vdevice-mapper: raid: Set dm-raid.devices_handle_discard_safely=Y to override.\n"); return; } else { } } else { } ldv_35909: i = i + 1; ldv_35911: ; if (rs->md.raid_disks > i) { goto ldv_35910; } else { } ti->discards_supported = 1; ti->split_discard_bios = (bool )(rs->md.level == 1 || rs->md.level == 10); ti->num_discard_bios = 1U; return; } } static int raid_ctr(struct dm_target *ti , unsigned int argc , char **argv ) { int ret ; struct raid_type *rt ; unsigned long num_raid_params ; unsigned long num_raid_devs ; struct raid_set *rs ; int tmp ; int tmp___0 ; long tmp___1 ; bool tmp___2 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { rs = (struct raid_set *)0; if (argc <= 1U) { ti->error = (char *)"Too few arguments"; return (-22); } else { } rt = get_raid_type(*argv); if ((unsigned long )rt == (unsigned long )((struct raid_type *)0)) { ti->error = (char *)"Unrecognised raid_type"; return (-22); } else { } argc = argc - 1U; argv = argv + 1; tmp = kstrtoul((char const *)*argv, 10U, & num_raid_params); if (tmp < 0) { ti->error = (char *)"Cannot understand number of RAID parameters"; return (-22); } else { } argc = argc - 1U; argv = argv + 1; if ((unsigned long )argc <= num_raid_params) { ti->error = (char *)"Arguments do not agree with counts given"; return (-22); } else { } tmp___0 = kstrtoul((char const *)*(argv + num_raid_params), 10U, & num_raid_devs); if (tmp___0 < 0 || num_raid_devs > 253UL) { ti->error = (char *)"Cannot understand number of raid devices"; return (-22); } else { } argc = (argc - (unsigned int )num_raid_params) - 1U; if ((unsigned long )argc != num_raid_devs * 2UL) { ti->error = (char *)"Supplied RAID devices does not match the count given"; return (-22); } else { } rs = context_alloc(ti, rt, (unsigned int )num_raid_devs); tmp___2 = IS_ERR((void const *)rs); if ((int )tmp___2) { tmp___1 = PTR_ERR((void const *)rs); return ((int )tmp___1); } else { } ret = parse_raid_params(rs, argv, (unsigned int )num_raid_params); if (ret != 0) { goto bad; } else { } argv = argv + (num_raid_params + 1UL); ret = dev_parms(rs, argv); if (ret != 0) { goto bad; } else { } rs->md.sync_super = & super_sync; ret = analyse_superblocks(ti, rs); if (ret != 0) { goto bad; } else { } __init_work(& rs->md.event_work, 0); __constr_expr_0.counter = 137438953408L; rs->md.event_work.data = __constr_expr_0; lockdep_init_map(& rs->md.event_work.lockdep_map, "(&rs->md.event_work)", & __key, 0); INIT_LIST_HEAD(& rs->md.event_work.entry); rs->md.event_work.func = & do_table_event; ti->private = (void *)rs; ti->num_flush_bios = 1U; configure_discard_support(ti, rs); mddev_lock_nointr(& rs->md); ret = md_run(& rs->md); rs->md.in_sync = 0; mddev_unlock(& rs->md); if (ret != 0) { ti->error = (char *)"Fail to run raid array"; goto bad; } else { } if (ti->len != rs->md.array_sectors) { ti->error = (char *)"Array size does not match requested target length"; ret = -22; goto size_mismatch; } else { } rs->callbacks.congested_fn = & raid_is_congested; dm_table_add_target_callbacks(ti->table, & rs->callbacks); mddev_suspend(& rs->md); return (0); size_mismatch: md_stop(& rs->md); bad: context_free(rs); return (ret); } } static void raid_dtr(struct dm_target *ti ) { struct raid_set *rs ; { rs = (struct raid_set *)ti->private; list_del_init(& rs->callbacks.list); md_stop(& rs->md); context_free(rs); return; } } static int raid_map(struct dm_target *ti , struct bio *bio ) { struct raid_set *rs ; struct mddev *mddev ; { rs = (struct raid_set *)ti->private; mddev = & rs->md; (*((mddev->pers)->make_request))(mddev, bio); return (0); } } static char const *decipher_sync_action(struct mddev *mddev ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp = constant_test_bit(9L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp != 0) { return ("frozen"); } else { } tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___5 != 0) { goto _L; } else if (mddev->ro == 0) { tmp___6 = constant_test_bit(5L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___6 != 0) { _L: /* CIL Label */ tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___0 != 0) { return ("reshape"); } else { } tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___3 != 0) { tmp___2 = constant_test_bit(6L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___2 == 0) { return ("resync"); } else { tmp___1 = constant_test_bit(7L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___1 != 0) { return ("check"); } else { } } return ("repair"); } else { } tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___4 != 0) { return ("recover"); } else { } } else { } } else { } return ("idle"); } } static void raid_status(struct dm_target *ti , status_type_t type , unsigned int status_flags , char *result , unsigned int maxlen ) { struct raid_set *rs ; unsigned int raid_param_cnt ; unsigned int sz ; int i ; int array_in_sync ; sector_t sync ; int tmp ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; unsigned int tmp___7 ; int tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; unsigned int tmp___13 ; char const *tmp___14 ; int tmp___15 ; unsigned int tmp___16 ; long tmp___18 ; unsigned long long tmp___19 ; int tmp___20 ; int tmp___21 ; unsigned int tmp___22 ; int tmp___23 ; int tmp___24 ; unsigned int tmp___25 ; int tmp___26 ; unsigned int tmp___27 ; int tmp___28 ; unsigned int tmp___29 ; int tmp___30 ; unsigned int tmp___31 ; int tmp___32 ; unsigned int tmp___33 ; int tmp___34 ; int tmp___35 ; unsigned int tmp___36 ; int tmp___37 ; unsigned int tmp___38 ; int tmp___39 ; unsigned int tmp___40 ; int tmp___41 ; unsigned int tmp___42 ; int tmp___43 ; int tmp___44 ; unsigned int tmp___45 ; struct r5conf *conf ; int tmp___46 ; unsigned int tmp___47 ; int tmp___48 ; unsigned int tmp___49 ; unsigned int tmp___50 ; int tmp___51 ; unsigned int tmp___52 ; char *tmp___53 ; int tmp___54 ; unsigned int tmp___55 ; int tmp___56 ; unsigned int tmp___57 ; int tmp___58 ; unsigned int tmp___59 ; int tmp___60 ; unsigned int tmp___61 ; int tmp___62 ; unsigned int tmp___63 ; int tmp___64 ; unsigned int tmp___65 ; { rs = (struct raid_set *)ti->private; raid_param_cnt = 1U; sz = 0U; array_in_sync = 0; switch ((unsigned int )type) { case 0U: ; if (sz < maxlen) { tmp = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%s %d ", (rs->raid_type)->name, rs->md.raid_disks); tmp___0 = (unsigned int )tmp; } else { tmp___0 = 0U; } sz = tmp___0 + sz; if ((unsigned int )(rs->raid_type)->level != 0U) { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& rs->md.recovery)); if (tmp___1 != 0) { sync = rs->md.curr_resync_completed; } else { sync = rs->md.recovery_cp; } if (rs->md.resync_max_sectors <= sync) { array_in_sync = 1; sync = rs->md.resync_max_sectors; } else { tmp___3 = constant_test_bit(6L, (unsigned long const volatile *)(& rs->md.recovery)); if (tmp___3 != 0) { array_in_sync = 1; } else { i = 0; goto ldv_35955; ldv_35954: tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___2 == 0) { array_in_sync = 1; } else { } i = i + 1; ldv_35955: ; if (rs->md.raid_disks > i) { goto ldv_35954; } else { } } } } else { array_in_sync = 1; sync = rs->md.resync_max_sectors; } i = 0; goto ldv_35958; ldv_35957: tmp___11 = constant_test_bit(0L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___11 != 0) { if (sz < maxlen) { tmp___4 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "D"); tmp___5 = (unsigned int )tmp___4; } else { tmp___5 = 0U; } sz = tmp___5 + sz; } else if (array_in_sync == 0) { goto _L; } else { tmp___10 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___10 == 0) { _L: /* CIL Label */ if (sz < maxlen) { tmp___6 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "a"); tmp___7 = (unsigned int )tmp___6; } else { tmp___7 = 0U; } sz = tmp___7 + sz; } else { if (sz < maxlen) { tmp___8 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "A"); tmp___9 = (unsigned int )tmp___8; } else { tmp___9 = 0U; } sz = tmp___9 + sz; } } i = i + 1; ldv_35958: ; if (rs->md.raid_disks > i) { goto ldv_35957; } else { } if (sz < maxlen) { tmp___12 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " %llu/%llu", (unsigned long long )sync, (unsigned long long )rs->md.resync_max_sectors); tmp___13 = (unsigned int )tmp___12; } else { tmp___13 = 0U; } sz = tmp___13 + sz; if (sz < maxlen) { tmp___14 = decipher_sync_action(& rs->md); tmp___15 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " %s", tmp___14); tmp___16 = (unsigned int )tmp___15; } else { tmp___16 = 0U; } sz = tmp___16 + sz; if (sz < maxlen) { tmp___20 = strcmp((char const *)rs->md.last_sync_action, "check"); if (tmp___20 == 0) { tmp___18 = atomic64_read((atomic64_t const *)(& rs->md.resync_mismatches)); tmp___19 = (unsigned long long )tmp___18; } else { tmp___19 = 0ULL; } tmp___21 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " %llu", tmp___19); tmp___22 = (unsigned int )tmp___21; } else { tmp___22 = 0U; } sz = tmp___22 + sz; goto ldv_35960; case 1U: i = 0; goto ldv_35963; ldv_35962: ; if ((rs->ctr_flags & 4U) != 0U && (unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { tmp___23 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___23 == 0) { raid_param_cnt = raid_param_cnt + 2U; } else { } } else { } if ((unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { tmp___24 = constant_test_bit(4L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___24 != 0) { raid_param_cnt = raid_param_cnt + 2U; } else { } } else { } i = i + 1; ldv_35963: ; if (rs->md.raid_disks > i) { goto ldv_35962; } else { } tmp___25 = __arch_hweight32(rs->ctr_flags & 4294967291U); raid_param_cnt = tmp___25 * 2U + raid_param_cnt; if ((rs->ctr_flags & 3U) != 0U) { raid_param_cnt = raid_param_cnt - 1U; } else { } if (sz < maxlen) { tmp___26 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%s %u %u", (rs->raid_type)->name, raid_param_cnt, rs->md.chunk_sectors); tmp___27 = (unsigned int )tmp___26; } else { tmp___27 = 0U; } sz = tmp___27 + sz; if ((int )rs->ctr_flags & 1 && rs->md.recovery_cp == 0xffffffffffffffffUL) { if (sz < maxlen) { tmp___28 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " sync"); tmp___29 = (unsigned int )tmp___28; } else { tmp___29 = 0U; } sz = tmp___29 + sz; } else { } if ((rs->ctr_flags & 2U) != 0U) { if (sz < maxlen) { tmp___30 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " nosync"); tmp___31 = (unsigned int )tmp___30; } else { tmp___31 = 0U; } sz = tmp___31 + sz; } else { } i = 0; goto ldv_35966; ldv_35965: ; if ((rs->ctr_flags & 4U) != 0U && (unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { tmp___34 = constant_test_bit(1L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___34 == 0) { if (sz < maxlen) { tmp___32 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " rebuild %u", i); tmp___33 = (unsigned int )tmp___32; } else { tmp___33 = 0U; } sz = tmp___33 + sz; } else { } } else { } i = i + 1; ldv_35966: ; if (rs->md.raid_disks > i) { goto ldv_35965; } else { } if ((rs->ctr_flags & 8U) != 0U) { if (sz < maxlen) { tmp___35 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " daemon_sleep %lu", rs->md.bitmap_info.daemon_sleep); tmp___36 = (unsigned int )tmp___35; } else { tmp___36 = 0U; } sz = tmp___36 + sz; } else { } if ((rs->ctr_flags & 16U) != 0U) { if (sz < maxlen) { tmp___37 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " min_recovery_rate %d", rs->md.sync_speed_min); tmp___38 = (unsigned int )tmp___37; } else { tmp___38 = 0U; } sz = tmp___38 + sz; } else { } if ((rs->ctr_flags & 32U) != 0U) { if (sz < maxlen) { tmp___39 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " max_recovery_rate %d", rs->md.sync_speed_max); tmp___40 = (unsigned int )tmp___39; } else { tmp___40 = 0U; } sz = tmp___40 + sz; } else { } i = 0; goto ldv_35969; ldv_35968: ; if ((unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { tmp___43 = constant_test_bit(4L, (unsigned long const volatile *)(& rs->dev[i].rdev.flags)); if (tmp___43 != 0) { if (sz < maxlen) { tmp___41 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " write_mostly %u", i); tmp___42 = (unsigned int )tmp___41; } else { tmp___42 = 0U; } sz = tmp___42 + sz; } else { } } else { } i = i + 1; ldv_35969: ; if (rs->md.raid_disks > i) { goto ldv_35968; } else { } if ((rs->ctr_flags & 64U) != 0U) { if (sz < maxlen) { tmp___44 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " max_write_behind %lu", rs->md.bitmap_info.max_write_behind); tmp___45 = (unsigned int )tmp___44; } else { tmp___45 = 0U; } sz = tmp___45 + sz; } else { } if ((rs->ctr_flags & 128U) != 0U) { conf = (struct r5conf *)rs->md.private; if (sz < maxlen) { tmp___46 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " stripe_cache %d", (unsigned long )conf != (unsigned long )((struct r5conf *)0) ? conf->max_nr_stripes * 2 : 0); tmp___47 = (unsigned int )tmp___46; } else { tmp___47 = 0U; } sz = tmp___47 + sz; } else { } if ((rs->ctr_flags & 256U) != 0U) { if (sz < maxlen) { tmp___48 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " region_size %lu", rs->md.bitmap_info.chunksize >> 9); tmp___49 = (unsigned int )tmp___48; } else { tmp___49 = 0U; } sz = tmp___49 + sz; } else { } if ((rs->ctr_flags & 512U) != 0U) { if (sz < maxlen) { tmp___50 = raid10_md_layout_to_copies(rs->md.layout); tmp___51 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " raid10_copies %u", tmp___50); tmp___52 = (unsigned int )tmp___51; } else { tmp___52 = 0U; } sz = tmp___52 + sz; } else { } if ((rs->ctr_flags & 1024U) != 0U) { if (sz < maxlen) { tmp___53 = raid10_md_layout_to_format(rs->md.layout); tmp___54 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " raid10_format %s", tmp___53); tmp___55 = (unsigned int )tmp___54; } else { tmp___55 = 0U; } sz = tmp___55 + sz; } else { } if (sz < maxlen) { tmp___56 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " %d", rs->md.raid_disks); tmp___57 = (unsigned int )tmp___56; } else { tmp___57 = 0U; } sz = tmp___57 + sz; i = 0; goto ldv_35973; ldv_35972: ; if ((unsigned long )rs->dev[i].meta_dev != (unsigned long )((struct dm_dev *)0)) { if (sz < maxlen) { tmp___58 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " %s", (char *)(& (rs->dev[i].meta_dev)->name)); tmp___59 = (unsigned int )tmp___58; } else { tmp___59 = 0U; } sz = tmp___59 + sz; } else { if (sz < maxlen) { tmp___60 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " -"); tmp___61 = (unsigned int )tmp___60; } else { tmp___61 = 0U; } sz = tmp___61 + sz; } if ((unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { if (sz < maxlen) { tmp___62 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " %s", (char *)(& (rs->dev[i].data_dev)->name)); tmp___63 = (unsigned int )tmp___62; } else { tmp___63 = 0U; } sz = tmp___63 + sz; } else { if (sz < maxlen) { tmp___64 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " -"); tmp___65 = (unsigned int )tmp___64; } else { tmp___65 = 0U; } sz = tmp___65 + sz; } i = i + 1; ldv_35973: ; if (rs->md.raid_disks > i) { goto ldv_35972; } else { } } ldv_35960: ; return; } } static int raid_message(struct dm_target *ti , unsigned int argc , char **argv ) { struct raid_set *rs ; struct mddev *mddev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { rs = (struct raid_set *)ti->private; mddev = & rs->md; tmp = strcasecmp((char const *)*argv, "reshape"); if (tmp == 0) { printk("\vdevice-mapper: raid: Reshape not supported.\n"); return (-22); } else { } if ((unsigned long )mddev->pers == (unsigned long )((struct md_personality *)0) || (unsigned long )(mddev->pers)->sync_request == (unsigned long )((sector_t (*)(struct mddev * , sector_t , int * ))0)) { return (-22); } else { } tmp___0 = strcasecmp((char const *)*argv, "frozen"); if (tmp___0 == 0) { set_bit(9L, (unsigned long volatile *)(& mddev->recovery)); } else { clear_bit(9L, (unsigned long volatile *)(& mddev->recovery)); } tmp___7 = strcasecmp((char const *)*argv, "idle"); if (tmp___7 == 0) { goto _L; } else { tmp___8 = strcasecmp((char const *)*argv, "frozen"); if (tmp___8 == 0) { _L: /* CIL Label */ if ((unsigned long )mddev->sync_thread != (unsigned long )((struct md_thread *)0)) { set_bit(3L, (unsigned long volatile *)(& mddev->recovery)); md_reap_sync_thread(mddev); } else { } } else { tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___5 != 0) { return (-16); } else { tmp___6 = constant_test_bit(5L, (unsigned long const volatile *)(& mddev->recovery)); if (tmp___6 != 0) { return (-16); } else { tmp___4 = strcasecmp((char const *)*argv, "resync"); if (tmp___4 == 0) { set_bit(5L, (unsigned long volatile *)(& mddev->recovery)); } else { tmp___3 = strcasecmp((char const *)*argv, "recover"); if (tmp___3 == 0) { set_bit(2L, (unsigned long volatile *)(& mddev->recovery)); set_bit(5L, (unsigned long volatile *)(& mddev->recovery)); } else { tmp___2 = strcasecmp((char const *)*argv, "check"); if (tmp___2 == 0) { set_bit(7L, (unsigned long volatile *)(& mddev->recovery)); } else { tmp___1 = strcasecmp((char const *)*argv, "repair"); if (tmp___1 != 0) { return (-22); } else { } } set_bit(6L, (unsigned long volatile *)(& mddev->recovery)); set_bit(1L, (unsigned long volatile *)(& mddev->recovery)); } } } } } } if (mddev->ro == 2) { mddev->ro = 0; if (mddev->suspended == 0) { md_wakeup_thread(mddev->sync_thread); } else { } } else { } set_bit(5L, (unsigned long volatile *)(& mddev->recovery)); if (mddev->suspended == 0) { md_wakeup_thread(mddev->thread); } else { } return (0); } } static int raid_iterate_devices(struct dm_target *ti , int (*fn)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void *data ) { struct raid_set *rs ; unsigned int i ; int ret ; { rs = (struct raid_set *)ti->private; ret = 0; i = 0U; goto ldv_35991; ldv_35990: ; if ((unsigned long )rs->dev[i].data_dev != (unsigned long )((struct dm_dev *)0)) { ret = (*fn)(ti, rs->dev[i].data_dev, 0UL, rs->md.dev_sectors, data); } else { } i = i + 1U; ldv_35991: ; if (ret == 0 && (unsigned int )rs->md.raid_disks > i) { goto ldv_35990; } else { } return (ret); } } static void raid_io_hints(struct dm_target *ti , struct queue_limits *limits ) { struct raid_set *rs ; unsigned int chunk_size ; struct r5conf *conf ; { rs = (struct raid_set *)ti->private; chunk_size = (unsigned int )(rs->md.chunk_sectors << 9); conf = (struct r5conf *)rs->md.private; blk_limits_io_min(limits, chunk_size); blk_limits_io_opt(limits, (unsigned int )(conf->raid_disks - conf->max_degraded) * chunk_size); return; } } static void raid_presuspend(struct dm_target *ti ) { struct raid_set *rs ; { rs = (struct raid_set *)ti->private; md_stop_writes(& rs->md); return; } } static void raid_postsuspend(struct dm_target *ti ) { struct raid_set *rs ; { rs = (struct raid_set *)ti->private; mddev_suspend(& rs->md); return; } } static void attempt_restore_of_faulty_devices(struct raid_set *rs ) { int i ; uint64_t failed_devices ; uint64_t cleared_failed_devices ; unsigned long flags ; struct dm_raid_superblock *sb ; struct md_rdev *r ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct list_head const *__mptr ; void *tmp___3 ; struct list_head const *__mptr___0 ; { cleared_failed_devices = 0ULL; i = 0; goto ldv_36019; ldv_36018: r = & rs->dev[i].rdev; tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& r->flags)); if (tmp___1 != 0 && (unsigned long )r->sb_page != (unsigned long )((struct page *)0)) { tmp___2 = sync_page_io(r, 0UL, r->sb_size, r->sb_page, 0, 1); if (tmp___2 != 0) { printk("\016device-mapper: raid: Faulty %s device #%d has readable super block. Attempting to revive it.\n", (rs->raid_type)->name, i); if (r->raid_disk >= 0) { tmp = (*(((r->mddev)->pers)->hot_remove_disk))(r->mddev, r); if (tmp != 0) { goto ldv_36017; } else { } } else { } r->raid_disk = i; r->saved_raid_disk = i; flags = r->flags; clear_bit(0L, (unsigned long volatile *)(& r->flags)); clear_bit(7L, (unsigned long volatile *)(& r->flags)); clear_bit(1L, (unsigned long volatile *)(& r->flags)); tmp___0 = (*(((r->mddev)->pers)->hot_add_disk))(r->mddev, r); if (tmp___0 != 0) { r->raid_disk = -1; r->saved_raid_disk = -1; r->flags = flags; } else { r->recovery_offset = 0UL; cleared_failed_devices = (uint64_t )(1 << i) | cleared_failed_devices; } } else { } } else { } ldv_36017: i = i + 1; ldv_36019: ; if (rs->md.raid_disks > i) { goto ldv_36018; } else { } if (cleared_failed_devices != 0ULL) { __mptr = (struct list_head const *)rs->md.disks.next; r = (struct md_rdev *)__mptr; goto ldv_36026; ldv_36025: tmp___3 = lowmem_page_address((struct page const *)r->sb_page); sb = (struct dm_raid_superblock *)tmp___3; failed_devices = sb->failed_devices; failed_devices = ~ cleared_failed_devices & failed_devices; sb->failed_devices = failed_devices; __mptr___0 = (struct list_head const *)r->same_set.next; r = (struct md_rdev *)__mptr___0; ldv_36026: ; if ((unsigned long )(& r->same_set) != (unsigned long )(& rs->md.disks)) { goto ldv_36025; } else { } } else { } return; } } static void raid_resume(struct dm_target *ti ) { struct raid_set *rs ; { rs = (struct raid_set *)ti->private; if ((unsigned int )(rs->raid_type)->level != 0U) { set_bit(0L, (unsigned long volatile *)(& rs->md.flags)); if (rs->bitmap_loaded == 0U) { bitmap_load(& rs->md); rs->bitmap_loaded = 1U; } else { attempt_restore_of_faulty_devices(rs); } clear_bit(9L, (unsigned long volatile *)(& rs->md.recovery)); } else { } mddev_resume(& rs->md); return; } } static int raid_merge(struct dm_target *ti , struct bvec_merge_data *bvm , struct bio_vec *biovec , int max_size ) { struct raid_set *rs ; struct md_personality *pers ; int _min1 ; int _min2 ; int tmp ; { rs = (struct raid_set *)ti->private; pers = rs->md.pers; if ((unsigned long )pers != (unsigned long )((struct md_personality *)0) && (unsigned long )pers->mergeable_bvec != (unsigned long )((int (*)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ))0)) { _min1 = max_size; tmp = (*(pers->mergeable_bvec))(& rs->md, bvm, biovec); _min2 = tmp; return (_min1 < _min2 ? _min1 : _min2); } else { } return (rs->md.chunk_sectors); } } static struct target_type raid_target = {0ULL, "raid", & __this_module, {1U, 7U, 0U}, & raid_ctr, & raid_dtr, & raid_map, 0, 0, 0, 0, 0, & raid_presuspend, 0, & raid_postsuspend, 0, & raid_resume, & raid_status, & raid_message, 0, & raid_merge, 0, & raid_iterate_devices, & raid_io_hints, {0, 0}}; static int dm_raid_init(void) { int tmp ; { printk("\016device-mapper: raid: Loading target version %u.%u.%u\n", raid_target.version[0], raid_target.version[1], raid_target.version[2]); tmp = dm_register_target(& raid_target); return (tmp); } } static void dm_raid_exit(void) { { dm_unregister_target(& raid_target); return; } } extern int ldv_preresume_2(void) ; int ldv_retval_0 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; void ldv_check_final_state(void) ; int ldv_retval_2 ; void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; do_table_event(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_36105; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; do_table_event(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_36105; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; do_table_event(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_36105; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; do_table_event(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_36105; default: ldv_stop(); } ldv_36105: ; return; } } void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { do_table_event(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { do_table_event(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { do_table_event(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { do_table_event(work); ldv_work_1_3 = 1; return; } else { } return; } } void ldv_target_type_2(void) { void *tmp ; { tmp = ldv_init_zalloc(88UL); raid_target_group1 = (struct dm_target *)tmp; return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } int main(void) { void *ldvarg11 ; void *tmp ; struct queue_limits *ldvarg7 ; void *tmp___0 ; unsigned int ldvarg3 ; char *ldvarg0 ; void *tmp___1 ; int (*ldvarg12)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; unsigned int ldvarg5 ; struct bio *ldvarg6 ; void *tmp___2 ; int ldvarg8 ; unsigned int ldvarg1 ; unsigned int ldvarg14 ; char **ldvarg4 ; void *tmp___3 ; char **ldvarg13 ; void *tmp___4 ; struct bvec_merge_data *ldvarg10 ; void *tmp___5 ; struct bio_vec *ldvarg9 ; void *tmp___6 ; status_type_t ldvarg2 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { tmp = ldv_init_zalloc(1UL); ldvarg11 = tmp; tmp___0 = ldv_init_zalloc(80UL); ldvarg7 = (struct queue_limits *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg0 = (char *)tmp___1; tmp___2 = ldv_init_zalloc(136UL); ldvarg6 = (struct bio *)tmp___2; tmp___3 = ldv_init_zalloc(8UL); ldvarg4 = (char **)tmp___3; tmp___4 = ldv_init_zalloc(8UL); ldvarg13 = (char **)tmp___4; tmp___5 = ldv_init_zalloc(32UL); ldvarg10 = (struct bvec_merge_data *)tmp___5; tmp___6 = ldv_init_zalloc(16UL); ldvarg9 = (struct bio_vec *)tmp___6; ldv_initialize(); ldv_memset((void *)(& ldvarg3), 0, 4UL); ldv_memset((void *)(& ldvarg12), 0, 8UL); ldv_memset((void *)(& ldvarg5), 0, 4UL); ldv_memset((void *)(& ldvarg8), 0, 4UL); ldv_memset((void *)(& ldvarg1), 0, 4UL); ldv_memset((void *)(& ldvarg14), 0, 4UL); ldv_memset((void *)(& ldvarg2), 0, 4UL); work_init_1(); ldv_state_variable_1 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_2 = 0; ldv_36186: tmp___7 = __VERIFIER_nondet_int(); switch (tmp___7) { case 0: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_36163; case 1: ; if (ldv_state_variable_0 != 0) { tmp___8 = __VERIFIER_nondet_int(); switch (tmp___8) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { dm_raid_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_36167; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_0 = dm_raid_init(); if (ldv_retval_0 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_2 = 1; ldv_target_type_2(); } else { } if (ldv_retval_0 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_36167; default: ldv_stop(); } ldv_36167: ; } else { } goto ldv_36163; case 2: ; if (ldv_state_variable_2 != 0) { tmp___9 = __VERIFIER_nondet_int(); switch (tmp___9) { case 0: ; if (ldv_state_variable_2 == 1) { ldv_retval_2 = raid_ctr(raid_target_group1, ldvarg14, ldvarg13); if (ldv_retval_2 == 0) { ldv_state_variable_2 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_36172; case 1: ; if (ldv_state_variable_2 == 4) { raid_dtr(raid_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_2 == 3) { raid_dtr(raid_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_2 == 2) { raid_dtr(raid_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_2 == 5) { raid_dtr(raid_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_36172; case 2: ; if (ldv_state_variable_2 == 4) { raid_iterate_devices(raid_target_group1, ldvarg12, ldvarg11); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { raid_iterate_devices(raid_target_group1, ldvarg12, ldvarg11); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { raid_iterate_devices(raid_target_group1, ldvarg12, ldvarg11); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { raid_iterate_devices(raid_target_group1, ldvarg12, ldvarg11); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { raid_iterate_devices(raid_target_group1, ldvarg12, ldvarg11); ldv_state_variable_2 = 5; } else { } goto ldv_36172; case 3: ; if (ldv_state_variable_2 == 4) { raid_merge(raid_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { raid_merge(raid_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { raid_merge(raid_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { raid_merge(raid_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { raid_merge(raid_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_2 = 5; } else { } goto ldv_36172; case 4: ; if (ldv_state_variable_2 == 4) { raid_io_hints(raid_target_group1, ldvarg7); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { raid_io_hints(raid_target_group1, ldvarg7); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { raid_io_hints(raid_target_group1, ldvarg7); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { raid_io_hints(raid_target_group1, ldvarg7); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { raid_io_hints(raid_target_group1, ldvarg7); ldv_state_variable_2 = 5; } else { } goto ldv_36172; case 5: ; if (ldv_state_variable_2 == 4) { raid_map(raid_target_group1, ldvarg6); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 3) { raid_map(raid_target_group1, ldvarg6); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { raid_map(raid_target_group1, ldvarg6); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { raid_map(raid_target_group1, ldvarg6); ldv_state_variable_2 = 5; } else { } goto ldv_36172; case 6: ; if (ldv_state_variable_2 == 4) { raid_message(raid_target_group1, ldvarg5, ldvarg4); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { raid_message(raid_target_group1, ldvarg5, ldvarg4); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { raid_message(raid_target_group1, ldvarg5, ldvarg4); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { raid_message(raid_target_group1, ldvarg5, ldvarg4); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { raid_message(raid_target_group1, ldvarg5, ldvarg4); ldv_state_variable_2 = 5; } else { } goto ldv_36172; case 7: ; if (ldv_state_variable_2 == 3) { raid_postsuspend(raid_target_group1); ldv_state_variable_2 = 4; } else { } goto ldv_36172; case 8: ; if (ldv_state_variable_2 == 4) { raid_status(raid_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { raid_status(raid_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { raid_status(raid_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { raid_status(raid_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { raid_status(raid_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_2 = 5; } else { } goto ldv_36172; case 9: ; if (ldv_state_variable_2 == 2) { raid_presuspend(raid_target_group1); ldv_state_variable_2 = 3; } else { } goto ldv_36172; case 10: ; if (ldv_state_variable_2 == 5) { raid_resume(raid_target_group1); ldv_state_variable_2 = 2; } else { } goto ldv_36172; case 11: ; if (ldv_state_variable_2 == 4) { ldv_retval_1 = ldv_preresume_2(); if (ldv_retval_1 == 0) { ldv_state_variable_2 = 5; } else { } } else { } goto ldv_36172; default: ldv_stop(); } ldv_36172: ; } else { } goto ldv_36163; default: ldv_stop(); } ldv_36163: ; goto ldv_36186; ldv_final: ldv_check_final_state(); return 0; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { tmp = ldv_err_ptr(error); return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_lock_interruptible_17(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_lock_interruptible(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_lock_interruptible_reconfig_mutex_of_mddev(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_reconfig_mutex_of_mddev(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_20(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_reconfig_mutex_of_mddev(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_reconfig_mutex_of_mddev = 1; int ldv_mutex_lock_interruptible_reconfig_mutex_of_mddev(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reconfig_mutex_of_mddev != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_reconfig_mutex_of_mddev = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_reconfig_mutex_of_mddev(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reconfig_mutex_of_mddev != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_reconfig_mutex_of_mddev = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_reconfig_mutex_of_mddev(struct mutex *lock ) { { if (ldv_mutex_reconfig_mutex_of_mddev != 1) { ldv_error(); } else { } ldv_mutex_reconfig_mutex_of_mddev = 2; return; } } int ldv_mutex_trylock_reconfig_mutex_of_mddev(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_reconfig_mutex_of_mddev != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_reconfig_mutex_of_mddev = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_reconfig_mutex_of_mddev(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_reconfig_mutex_of_mddev != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_reconfig_mutex_of_mddev = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_reconfig_mutex_of_mddev(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reconfig_mutex_of_mddev == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_reconfig_mutex_of_mddev(struct mutex *lock ) { { if (ldv_mutex_reconfig_mutex_of_mddev != 2) { ldv_error(); } else { } ldv_mutex_reconfig_mutex_of_mddev = 1; return; } } void ldv_usb_lock_device_reconfig_mutex_of_mddev(void) { { ldv_mutex_lock_reconfig_mutex_of_mddev((struct mutex *)0); return; } } int ldv_usb_trylock_device_reconfig_mutex_of_mddev(void) { int tmp ; { tmp = ldv_mutex_trylock_reconfig_mutex_of_mddev((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_reconfig_mutex_of_mddev(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_reconfig_mutex_of_mddev((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_reconfig_mutex_of_mddev(void) { { ldv_mutex_unlock_reconfig_mutex_of_mddev((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_reconfig_mutex_of_mddev != 1) { ldv_error(); } else { } return; } }