extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; typedef int pao_T__; typedef int pao_T_____0; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; unsigned int flags ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct dm_block_validator; struct dm_block; struct dm_target; struct device_type; struct kobject; struct class; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_205 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_205 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_209 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_208 { struct __anonstruct____missing_field_name_209 __annonCompField57 ; }; struct lockref { union __anonunion____missing_field_name_208 __annonCompField58 ; }; struct vfsmount; struct __anonstruct____missing_field_name_211 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_210 { struct __anonstruct____missing_field_name_211 __annonCompField59 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_210 __annonCompField60 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_212 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_212 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_216 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_215 { struct __anonstruct____missing_field_name_216 __annonCompField61 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_215 __annonCompField62 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_219 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t __bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_219 __annonCompField63 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t __bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct bdi_writeback; struct export_operations; struct hd_geometry; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_220 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_220 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_221 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_221 __annonCompField64 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct writeback_control; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_224 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_225 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_226 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_224 __annonCompField65 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_225 __annonCompField66 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_226 __annonCompField67 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_227 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_227 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_229 { struct list_head link ; int state ; }; union __anonunion_fl_u_228 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_229 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_228 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; typedef int congested_fn(void * , int ); struct bdi_writeback_congested { unsigned long state ; atomic_t refcnt ; struct backing_dev_info *bdi ; int blkcg_id ; struct rb_node rb_node ; }; union __anonunion____missing_field_name_238 { struct work_struct release_work ; struct callback_head rcu ; }; struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long state ; unsigned long last_old_flush ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; struct percpu_counter stat[4U] ; struct bdi_writeback_congested *congested ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; spinlock_t work_lock ; struct list_head work_list ; struct delayed_work dwork ; struct percpu_ref refcnt ; struct fprop_local_percpu memcg_completions ; struct cgroup_subsys_state *memcg_css ; struct cgroup_subsys_state *blkcg_css ; struct list_head memcg_node ; struct list_head blkcg_node ; union __anonunion____missing_field_name_238 __annonCompField75 ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; atomic_long_t tot_write_bandwidth ; struct bdi_writeback wb ; struct radix_tree_root cgwb_tree ; struct rb_root cgwb_congested_tree ; atomic_t usage_cnt ; wait_queue_head_t wb_waitq ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_239 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_240 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_239 __annonCompField76 ; union __anonunion____missing_field_name_240 __annonCompField77 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; union __anonunion____missing_field_name_241 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_242 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_243 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_245 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_246 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_244 { struct __anonstruct_elv_245 elv ; struct __anonstruct_flush_246 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_241 __annonCompField78 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; unsigned int cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_242 __annonCompField79 ; union __anonunion____missing_field_name_243 __annonCompField80 ; union __anonunion____missing_field_name_244 __annonCompField81 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); typedef void elevator_registered_fn(struct request_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; elevator_registered_fn *elevator_registered_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; atomic_t mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; typedef uint64_t dm_block_t; struct dm_block_validator { char const *name ; void (*prepare_for_write)(struct dm_block_validator * , struct dm_block * , size_t ) ; int (*check)(struct dm_block_validator * , struct dm_block * , size_t ) ; }; struct dm_pool_metadata; struct dm_thin_device; typedef uint64_t dm_thin_id; struct dm_thin_lookup_result { dm_block_t block ; bool shared ; }; struct dm_bio_prison; struct dm_cell_key { int virtual ; dm_thin_id dev ; dm_block_t block_begin ; dm_block_t block_end ; }; struct dm_bio_prison_cell { struct list_head user_list ; struct rb_node node ; struct dm_cell_key key ; struct bio *holder ; struct bio_list bios ; }; struct dm_deferred_set; struct dm_deferred_entry; struct dm_dev; struct dm_table; struct mapped_device; enum ldv_25369 { STATUSTYPE_INFO = 0, STATUSTYPE_TABLE = 1 } ; typedef enum ldv_25369 status_type_t; union map_info { void *ptr ; }; struct dm_dev { struct block_device *bdev ; fmode_t mode ; char name[16U] ; }; struct target_type { uint64_t features ; char const *name ; struct module *module ; unsigned int version[3U] ; int (*ctr)(struct dm_target * , unsigned int , char ** ) ; void (*dtr)(struct dm_target * ) ; int (*map)(struct dm_target * , struct bio * ) ; int (*map_rq)(struct dm_target * , struct request * , union map_info * ) ; int (*clone_and_map_rq)(struct dm_target * , struct request * , union map_info * , struct request ** ) ; void (*release_clone_rq)(struct request * ) ; int (*end_io)(struct dm_target * , struct bio * , int ) ; int (*rq_end_io)(struct dm_target * , struct request * , int , union map_info * ) ; void (*presuspend)(struct dm_target * ) ; void (*presuspend_undo)(struct dm_target * ) ; void (*postsuspend)(struct dm_target * ) ; int (*preresume)(struct dm_target * ) ; void (*resume)(struct dm_target * ) ; void (*status)(struct dm_target * , status_type_t , unsigned int , char * , unsigned int ) ; int (*message)(struct dm_target * , unsigned int , char ** ) ; int (*ioctl)(struct dm_target * , unsigned int , unsigned long ) ; int (*merge)(struct dm_target * , struct bvec_merge_data * , struct bio_vec * , int ) ; int (*busy)(struct dm_target * ) ; int (*iterate_devices)(struct dm_target * , int (*)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void * ) ; void (*io_hints)(struct dm_target * , struct queue_limits * ) ; struct list_head list ; }; struct dm_target { struct dm_table *table ; struct target_type *type ; sector_t begin ; sector_t len ; uint32_t max_io_len ; unsigned int num_flush_bios ; unsigned int num_discard_bios ; unsigned int num_write_same_bios ; unsigned int per_bio_data_size ; unsigned int (*num_write_bios)(struct dm_target * , struct bio * ) ; void *private ; char *error ; bool flush_supported ; bool discards_supported ; bool split_discard_bios ; bool discard_zeroes_data_unsupported ; }; struct dm_target_callbacks { struct list_head list ; int (*congested_fn)(struct dm_target_callbacks * , int ) ; }; struct dm_arg_set { unsigned int argc ; char **argv ; }; struct dm_arg { unsigned int min ; unsigned int max ; char *error ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; struct bdi_writeback *wb ; struct inode *inode ; int wb_id ; int wb_lcand_id ; int wb_tcand_id ; size_t wb_bytes ; size_t wb_lcand_bytes ; size_t wb_tcand_bytes ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct blkcg_policy_data; struct blkcg { struct cgroup_subsys_state css ; spinlock_t lock ; struct radix_tree_root blkg_tree ; struct blkcg_gq *blkg_hint ; struct hlist_head blkg_list ; struct blkcg_policy_data *pd[2U] ; struct list_head cgwb_list ; }; struct blkg_policy_data { struct blkcg_gq *blkg ; int plid ; struct list_head alloc_node ; }; struct blkcg_policy_data { int plid ; struct list_head alloc_node ; }; struct blkcg_gq { struct request_queue *q ; struct list_head q_node ; struct hlist_node blkcg_node ; struct blkcg *blkcg ; struct bdi_writeback_congested *wb_congested ; struct blkcg_gq *parent ; struct request_list rl ; atomic_t refcnt ; bool online ; struct blkg_policy_data *pd[2U] ; struct callback_head callback_head ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; struct dm_io_region { struct block_device *bdev ; sector_t sector ; sector_t count ; }; struct dm_kcopyd_throttle { unsigned int throttle ; unsigned int num_io_jobs ; unsigned int io_period ; unsigned int total_period ; unsigned int last_jiffies ; }; struct dm_kcopyd_client; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_260 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_260 __annonCompField82 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum lock_space { VIRTUAL = 0, PHYSICAL = 1 } ; struct throttle { struct rw_semaphore lock ; unsigned long threshold ; bool throttle_applied ; }; struct dm_thin_new_mapping; enum pool_mode { PM_WRITE = 0, PM_OUT_OF_DATA_SPACE = 1, PM_READ_ONLY = 2, PM_FAIL = 3 } ; struct pool_features { enum pool_mode mode ; bool zero_new_blocks ; bool discard_enabled ; bool discard_passdown ; bool error_if_no_space ; }; struct thin_c; typedef void (*process_mapping_fn)(struct dm_thin_new_mapping * ); struct pool { struct list_head list ; struct dm_target *ti ; struct mapped_device *pool_md ; struct block_device *md_dev ; struct dm_pool_metadata *pmd ; dm_block_t low_water_blocks ; uint32_t sectors_per_block ; int sectors_per_block_shift ; struct pool_features pf ; bool low_water_triggered ; bool suspended ; struct dm_bio_prison *prison ; struct dm_kcopyd_client *copier ; struct workqueue_struct *wq ; struct throttle throttle ; struct work_struct worker ; struct delayed_work waker ; struct delayed_work no_space_timeout ; unsigned long last_commit_jiffies ; unsigned int ref_count ; spinlock_t lock ; struct bio_list deferred_flush_bios ; struct list_head prepared_mappings ; struct list_head prepared_discards ; struct list_head active_thins ; struct dm_deferred_set *shared_read_ds ; struct dm_deferred_set *all_io_ds ; struct dm_thin_new_mapping *next_mapping ; mempool_t *mapping_pool ; void (*process_bio)(struct thin_c * , struct bio * ) ; void (*process_discard)(struct thin_c * , struct bio * ) ; void (*process_cell)(struct thin_c * , struct dm_bio_prison_cell * ) ; void (*process_discard_cell)(struct thin_c * , struct dm_bio_prison_cell * ) ; void (*process_prepared_mapping)(struct dm_thin_new_mapping * ) ; void (*process_prepared_discard)(struct dm_thin_new_mapping * ) ; struct dm_bio_prison_cell *cell_sort_array[8192U] ; }; struct pool_c { struct dm_target *ti ; struct pool *pool ; struct dm_dev *data_dev ; struct dm_dev *metadata_dev ; struct dm_target_callbacks callbacks ; dm_block_t low_water_blocks ; struct pool_features requested_pf ; struct pool_features adjusted_pf ; }; struct thin_c { struct list_head list ; struct dm_dev *pool_dev ; struct dm_dev *origin_dev ; sector_t origin_size ; dm_thin_id dev_id ; struct pool *pool ; struct dm_thin_device *td ; struct mapped_device *thin_md ; bool requeue_mode ; spinlock_t lock ; struct list_head deferred_cells ; struct bio_list deferred_bio_list ; struct bio_list retry_on_resume_list ; struct rb_root sort_bio_list ; atomic_t refcount ; struct completion can_destroy ; }; struct dm_thin_pool_table { struct mutex mutex ; struct list_head pools ; }; struct dm_thin_endio_hook { struct thin_c *tc ; struct dm_deferred_entry *shared_read_entry ; struct dm_deferred_entry *all_io_entry ; struct dm_thin_new_mapping *overwrite_mapping ; struct rb_node rb_node ; struct dm_bio_prison_cell *cell ; }; union __anonunion___u_268 { struct list_head *__val ; char __c[1U] ; }; union __anonunion___u_270 { struct list_head *__val ; char __c[1U] ; }; struct dm_thin_new_mapping { struct list_head list ; bool pass_discard ; bool maybe_shared ; atomic_t prepare_actions ; int err ; struct thin_c *tc ; dm_block_t virt_begin ; dm_block_t virt_end ; dm_block_t data_block ; struct dm_bio_prison_cell *cell ; struct bio *bio ; bio_end_io_t *saved_bi_end_io ; }; struct remap_info { struct thin_c *tc ; struct bio_list defer_bios ; struct bio_list issue_bios ; }; union __anonunion___u_272 { struct list_head *__val ; char __c[1U] ; }; union __anonunion___u_274 { struct list_head *__val ; char __c[1U] ; }; union __anonunion___u_276 { struct list_head *__val ; char __c[1U] ; }; struct pool_work { struct work_struct worker ; struct completion complete ; }; struct noflush_work { struct pool_work pw ; struct thin_c *tc ; }; union __anonunion___u_278 { struct list_head *__val ; char __c[1U] ; }; union __anonunion___u_280 { struct list_head *__val ; char __c[1U] ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef bool ldv_func_ret_type___4; typedef bool ldv_func_ret_type___5; typedef __u32 __le32; typedef __u64 __le64; enum hrtimer_restart; struct dm_block_manager; struct dm_space_map { void (*destroy)(struct dm_space_map * ) ; int (*extend)(struct dm_space_map * , dm_block_t ) ; int (*get_nr_blocks)(struct dm_space_map * , dm_block_t * ) ; int (*get_nr_free)(struct dm_space_map * , dm_block_t * ) ; int (*get_count)(struct dm_space_map * , dm_block_t , uint32_t * ) ; int (*count_is_more_than_one)(struct dm_space_map * , dm_block_t , int * ) ; int (*set_count)(struct dm_space_map * , dm_block_t , uint32_t ) ; int (*commit)(struct dm_space_map * ) ; int (*inc_block)(struct dm_space_map * , dm_block_t ) ; int (*dec_block)(struct dm_space_map * , dm_block_t ) ; int (*new_block)(struct dm_space_map * , dm_block_t * ) ; int (*root_size)(struct dm_space_map * , size_t * ) ; int (*copy_root)(struct dm_space_map * , void * , size_t ) ; int (*register_threshold_callback)(struct dm_space_map * , dm_block_t , void (*)(void * ) , void * ) ; }; struct dm_transaction_manager; struct dm_btree_value_type { void *context ; uint32_t size ; void (*inc)(void * , void const * ) ; void (*dec)(void * , void const * ) ; int (*equal)(void * , void const * , void const * ) ; }; struct dm_btree_info { struct dm_transaction_manager *tm ; unsigned int levels ; struct dm_btree_value_type value_type ; }; struct thin_disk_superblock { __le32 csum ; __le32 flags ; __le64 blocknr ; __u8 uuid[16U] ; __le64 magic ; __le32 version ; __le32 time ; __le64 trans_id ; __le64 held_root ; __u8 data_space_map_root[128U] ; __u8 metadata_space_map_root[128U] ; __le64 data_mapping_root ; __le64 device_details_root ; __le32 data_block_size ; __le32 metadata_block_size ; __le64 metadata_nr_blocks ; __le32 compat_flags ; __le32 compat_ro_flags ; __le32 incompat_flags ; }; struct disk_device_details { __le64 mapped_blocks ; __le64 transaction_id ; __le32 creation_time ; __le32 snapshotted_time ; }; struct dm_pool_metadata { struct hlist_node hash ; struct block_device *bdev ; struct dm_block_manager *bm ; struct dm_space_map *metadata_sm ; struct dm_space_map *data_sm ; struct dm_transaction_manager *tm ; struct dm_transaction_manager *nb_tm ; struct dm_btree_info info ; struct dm_btree_info nb_info ; struct dm_btree_info tl_info ; struct dm_btree_info bl_info ; struct dm_btree_info details_info ; struct rw_semaphore root_lock ; uint32_t time ; dm_block_t root ; dm_block_t details_root ; struct list_head thin_devices ; uint64_t trans_id ; unsigned long flags ; sector_t data_block_size ; bool fail_io ; __u8 data_space_map_root[128U] ; __u8 metadata_space_map_root[128U] ; }; struct dm_thin_device { struct list_head list ; struct dm_pool_metadata *pmd ; dm_thin_id id ; int open_count ; bool changed ; bool aborted_with_changes ; uint64_t mapped_blocks ; uint64_t transaction_id ; uint32_t creation_time ; uint32_t snapshotted_time ; }; __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static void __read_once_size(void const volatile *p , void *res , int size ) { { switch (size) { case 1: *((__u8 *)res) = *((__u8 volatile *)p); goto ldv_880; case 2: *((__u16 *)res) = *((__u16 volatile *)p); goto ldv_880; case 4: *((__u32 *)res) = *((__u32 volatile *)p); goto ldv_880; case 8: *((__u64 *)res) = *((__u64 volatile *)p); goto ldv_880; default: __asm__ volatile ("": : : "memory"); __builtin_memcpy(res, (void const *)p, (unsigned long )size); __asm__ volatile ("": : : "memory"); } ldv_880: ; return; } } extern struct module __this_module ; __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static unsigned long __ffs(unsigned long word ) { { __asm__ ("rep; bsf %1,%0": "=r" (word): "rm" (word)); return (word); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { tmp___0 = fls64((__u64 )l); return ((unsigned int )tmp___0); } } __inline static unsigned long __rounddown_pow_of_two(unsigned long n ) { unsigned int tmp ; { tmp = fls_long(n); return (1UL << (int )(tmp - 1U)); } } extern int printk(char const * , ...) ; extern void ___might_sleep(char const * , int , int ) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern int scnprintf(char * , size_t , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; extern void __bad_percpu_size(void) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice(struct list_head const *list , struct list_head *head ) { int tmp ; { tmp = list_empty(list); if (tmp == 0) { __list_splice(list, head, head->next); } else { } return; } } __inline static void list_splice_init(struct list_head *list , struct list_head *head ) { int tmp ; { tmp = list_empty((struct list_head const *)list); if (tmp == 0) { __list_splice((struct list_head const *)list, head, head->next); INIT_LIST_HEAD(list); } else { } return; } } extern void *memset(void * , int , size_t ) ; extern int strcasecmp(char const * , char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((int )((signed char )c) != 0); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; __inline static int mutex_is_locked(struct mutex *lock ) { int tmp ; { tmp = atomic_read((atomic_t const *)(& lock->count)); return (tmp != 1); } } extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_28(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_27(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_29(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_dm_thin_pool_table(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_dm_thin_pool_table(struct mutex *lock ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6601; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6601; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6601; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_6601; default: __bad_percpu_size(); } ldv_6601: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6613; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6613; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6613; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6613; default: __bad_percpu_size(); } ldv_6613: ; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); return; } } extern void wait_for_completion(struct completion * ) ; extern void complete(struct completion * ) ; extern void synchronize_sched(void) ; __inline static void __rcu_read_lock(void) { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); return; } } __inline static void __rcu_read_unlock(void) { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); return; } } __inline static void synchronize_rcu(void) { { synchronize_sched(); return; } } extern bool rcu_is_watching(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { lock_acquire(map, 0U, 0, 2, 0, (struct lockdep_map *)0, 0UL); return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { lock_release(map, 1, 0UL); return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_watching(); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 849, "rcu_read_lock() used illegally while idle"); } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_watching(); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 900, "rcu_read_unlock() used illegally while idle"); } else { } } else { } __rcu_read_unlock(); rcu_lock_release(& rcu_lock_map); return; } } extern void rb_insert_color(struct rb_node * , struct rb_root * ) ; extern void rb_erase(struct rb_node * , struct rb_root * ) ; extern struct rb_node *rb_next(struct rb_node const * ) ; extern struct rb_node *rb_first(struct rb_root const * ) ; __inline static void rb_link_node(struct rb_node *node , struct rb_node *parent , struct rb_node **rb_link ) { struct rb_node *tmp ; { node->__rb_parent_color = (unsigned long )parent; tmp = (struct rb_node *)0; node->rb_right = tmp; node->rb_left = tmp; *rb_link = node; return; } } extern void delayed_work_timer_fn(unsigned long ) ; __inline static struct delayed_work *to_delayed_work(struct work_struct *work ) { struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; return ((struct delayed_work *)__mptr); } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; void ldv_destroy_workqueue_17(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_18(struct workqueue_struct *ldv_func_arg1 ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_flush_workqueue_26(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work(struct delayed_work * ) ; bool ldv_cancel_delayed_work_24(struct delayed_work *ldv_func_arg1 ) ; bool ldv_cancel_delayed_work_25(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_5(8192, wq, work); return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_6(8192, wq, dwork, delay); return (tmp); } } extern void __init_rwsem(struct rw_semaphore * , char const * , struct lock_class_key * ) ; extern void down_read(struct rw_semaphore * ) ; extern void down_write(struct rw_semaphore * ) ; extern void up_read(struct rw_semaphore * ) ; extern void up_write(struct rw_semaphore * ) ; extern void __list_add_rcu(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail_rcu(struct list_head *new , struct list_head *head ) { { __list_add_rcu(new, head->prev, head); return; } } __inline static void list_del_rcu(struct list_head *entry ) { { __list_del_entry(entry); entry->prev = (struct list_head *)-2401263026316508672L; return; } } extern int _cond_resched(void) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; struct work_struct *ldv_work_struct_3_1 ; struct work_struct *ldv_work_struct_1_3 ; struct work_struct *ldv_work_struct_2_1 ; int ldv_work_1_3 ; struct work_struct *ldv_work_struct_3_2 ; int ldv_state_variable_6 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_work_3_1 ; int ldv_state_variable_2 ; int ldv_work_1_1 ; int ldv_work_2_0 ; int ldv_work_3_2 ; struct work_struct *ldv_work_struct_3_0 ; int ldv_work_1_2 ; struct dm_block_validator *sb_validator_group1 ; int LDV_IN_INTERRUPT = 1; int ldv_work_3_0 ; struct work_struct *ldv_work_struct_2_3 ; struct work_struct *ldv_work_struct_2_0 ; struct work_struct *ldv_work_struct_1_2 ; struct dm_block *sb_validator_group0 ; struct work_struct *ldv_work_struct_2_2 ; int ldv_state_variable_3 ; int ldv_work_2_2 ; int ref_cnt ; struct dm_target *thin_target_group1 ; int ldv_work_3_3 ; int ldv_work_1_0 ; struct dm_target *pool_target_group1 ; int ldv_state_variable_1 ; int ldv_work_2_3 ; int ldv_state_variable_4 ; struct work_struct *ldv_work_struct_3_3 ; int ldv_work_2_1 ; void ldv_initialize_dm_block_validator_4(void) ; void call_and_disable_work_3(struct work_struct *work ) ; void work_init_3(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void disable_work_3(struct work_struct *work ) ; void disable_work_2(struct work_struct *work ) ; void disable_work_1(struct work_struct *work ) ; void invoke_work_3(void) ; void work_init_2(void) ; void work_init_1(void) ; void call_and_disable_all_2(int state ) ; void call_and_disable_all_1(int state ) ; void invoke_work_1(void) ; void activate_work_2(struct work_struct *work , int state ) ; void activate_work_3(struct work_struct *work , int state ) ; void ldv_target_type_5(void) ; void call_and_disable_all_3(int state ) ; void ldv_target_type_6(void) ; void activate_work_1(struct work_struct *work , int state ) ; void call_and_disable_work_2(struct work_struct *work ) ; void invoke_work_2(void) ; extern int ___ratelimit(struct ratelimit_state * , char const * ) ; __inline static loff_t i_size_read(struct inode const *inode ) { { return ((loff_t )inode->i_size); } } extern char const *bdevname(struct block_device * , char * ) ; extern void submit_bio(int , struct bio * ) ; extern mempool_t *mempool_create(int , mempool_alloc_t * , mempool_free_t * , void * ) ; extern void mempool_destroy(mempool_t * ) ; extern void *mempool_alloc(mempool_t * , gfp_t ) ; extern void mempool_free(void * , mempool_t * ) ; extern void *mempool_alloc_slab(gfp_t , void * ) ; extern void mempool_free_slab(void * , void * ) ; __inline static mempool_t *mempool_create_slab_pool(int min_nr , struct kmem_cache *kc ) { mempool_t *tmp ; { tmp = mempool_create(min_nr, & mempool_alloc_slab, & mempool_free_slab, (void *)kc); return (tmp); } } extern struct bio *bio_alloc_bioset(gfp_t , int , struct bio_set * ) ; extern struct bio_set *fs_bio_set ; __inline static struct bio *bio_alloc(gfp_t gfp_mask , unsigned int nr_iovecs ) { struct bio *tmp ; { tmp = bio_alloc_bioset(gfp_mask, (int )nr_iovecs, fs_bio_set); return (tmp); } } extern void bio_endio(struct bio * , int ) ; extern void bio_chain(struct bio * , struct bio * ) ; extern void zero_fill_bio(struct bio * ) ; __inline static int bio_list_empty(struct bio_list const *bl ) { { return ((unsigned long )bl->head == (unsigned long )((struct bio */* const */)0)); } } __inline static void bio_list_init(struct bio_list *bl ) { struct bio *tmp ; { tmp = (struct bio *)0; bl->tail = tmp; bl->head = tmp; return; } } __inline static void bio_list_add(struct bio_list *bl , struct bio *bio ) { { bio->bi_next = (struct bio *)0; if ((unsigned long )bl->tail != (unsigned long )((struct bio *)0)) { (bl->tail)->bi_next = bio; } else { bl->head = bio; } bl->tail = bio; return; } } __inline static void bio_list_merge(struct bio_list *bl , struct bio_list *bl2 ) { { if ((unsigned long )bl2->head == (unsigned long )((struct bio *)0)) { return; } else { } if ((unsigned long )bl->tail != (unsigned long )((struct bio *)0)) { (bl->tail)->bi_next = bl2->head; } else { bl->head = bl2->head; } bl->tail = bl2->tail; return; } } __inline static struct bio *bio_list_pop(struct bio_list *bl ) { struct bio *bio ; { bio = bl->head; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { bl->head = (bl->head)->bi_next; if ((unsigned long )bl->head == (unsigned long )((struct bio *)0)) { bl->tail = (struct bio *)0; } else { } bio->bi_next = (struct bio *)0; } else { } return (bio); } } extern void generic_make_request(struct bio * ) ; __inline static struct request_queue *bdev_get_queue(struct block_device *bdev ) { { return ((bdev->bd_disk)->queue); } } extern void blk_limits_io_min(struct queue_limits * , unsigned int ) ; extern void blk_limits_io_opt(struct queue_limits * , unsigned int ) ; extern void blk_start_plug(struct blk_plug * ) ; extern void blk_finish_plug(struct blk_plug * ) ; __inline static int bdev_discard_alignment(struct block_device *bdev ) { struct request_queue *q ; struct request_queue *tmp ; { tmp = bdev_get_queue(bdev); q = tmp; if ((unsigned long )bdev->bd_contains != (unsigned long )bdev) { return ((int )(bdev->bd_part)->discard_alignment); } else { } return ((int )q->limits.discard_alignment); } } struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev , sector_t data_block_size , bool format_device ) ; int dm_pool_metadata_close(struct dm_pool_metadata *pmd ) ; int dm_pool_create_thin(struct dm_pool_metadata *pmd , dm_thin_id dev ) ; int dm_pool_create_snap(struct dm_pool_metadata *pmd , dm_thin_id dev , dm_thin_id origin ) ; int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd , dm_thin_id dev ) ; int dm_pool_commit_metadata(struct dm_pool_metadata *pmd ) ; int dm_pool_abort_metadata(struct dm_pool_metadata *pmd ) ; int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd , uint64_t current_id , uint64_t new_id ) ; int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd , uint64_t *result ) ; int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd ) ; int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd ) ; int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd , dm_block_t *result ) ; int dm_pool_open_thin_device(struct dm_pool_metadata *pmd , dm_thin_id dev , struct dm_thin_device **td ) ; int dm_pool_close_thin_device(struct dm_thin_device *td ) ; dm_thin_id dm_thin_dev_id(struct dm_thin_device *td ) ; int dm_thin_find_block(struct dm_thin_device *td , dm_block_t block , int can_issue_io , struct dm_thin_lookup_result *result ) ; int dm_thin_find_mapped_range(struct dm_thin_device *td , dm_block_t begin , dm_block_t end , dm_block_t *thin_begin , dm_block_t *thin_end , dm_block_t *pool_begin , bool *maybe_shared ) ; int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd , dm_block_t *result ) ; int dm_thin_insert_block(struct dm_thin_device *td , dm_block_t block , dm_block_t data_block ) ; int dm_thin_remove_range(struct dm_thin_device *td , dm_block_t begin , dm_block_t end ) ; bool dm_thin_changed_this_transaction(struct dm_thin_device *td ) ; bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd ) ; bool dm_thin_aborted_changes(struct dm_thin_device *td ) ; int dm_thin_get_highest_mapped_block(struct dm_thin_device *td , dm_block_t *result ) ; int dm_thin_get_mapped_count(struct dm_thin_device *td , dm_block_t *result ) ; int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd , dm_block_t *result ) ; int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd , dm_block_t *result ) ; int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd , dm_block_t *result ) ; int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd , dm_block_t *result ) ; int dm_pool_block_is_used(struct dm_pool_metadata *pmd , dm_block_t b , bool *result ) ; int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd , dm_block_t new_count ) ; int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd , dm_block_t new_count ) ; void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd ) ; void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd ) ; int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd , dm_block_t threshold , void (*fn)(void * ) , void *context ) ; int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd ) ; bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd ) ; void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd ) ; extern struct dm_bio_prison *dm_bio_prison_create(void) ; extern void dm_bio_prison_destroy(struct dm_bio_prison * ) ; extern struct dm_bio_prison_cell *dm_bio_prison_alloc_cell(struct dm_bio_prison * , gfp_t ) ; extern void dm_bio_prison_free_cell(struct dm_bio_prison * , struct dm_bio_prison_cell * ) ; extern int dm_bio_detain(struct dm_bio_prison * , struct dm_cell_key * , struct bio * , struct dm_bio_prison_cell * , struct dm_bio_prison_cell ** ) ; extern void dm_cell_release(struct dm_bio_prison * , struct dm_bio_prison_cell * , struct bio_list * ) ; extern void dm_cell_release_no_holder(struct dm_bio_prison * , struct dm_bio_prison_cell * , struct bio_list * ) ; extern void dm_cell_error(struct dm_bio_prison * , struct dm_bio_prison_cell * , int ) ; extern void dm_cell_visit_release(struct dm_bio_prison * , void (*)(void * , struct dm_bio_prison_cell * ) , void * , struct dm_bio_prison_cell * ) ; extern struct dm_deferred_set *dm_deferred_set_create(void) ; extern void dm_deferred_set_destroy(struct dm_deferred_set * ) ; extern struct dm_deferred_entry *dm_deferred_entry_inc(struct dm_deferred_set * ) ; extern void dm_deferred_entry_dec(struct dm_deferred_entry * , struct list_head * ) ; extern int dm_deferred_set_add_work(struct dm_deferred_set * , struct list_head * ) ; extern int dm_get_device(struct dm_target * , char const * , fmode_t , struct dm_dev ** ) ; extern void dm_put_device(struct dm_target * , struct dm_dev * ) ; __inline static void *dm_per_bio_data(struct bio *bio , size_t data_size ) { { return ((void *)bio + (0xffffffffffffffe0UL - data_size)); } } __inline static struct bio *dm_bio_from_per_bio_data(void *data , size_t data_size ) { { return ((struct bio *)data + (data_size + 32UL)); } } extern int dm_register_target(struct target_type * ) ; extern void dm_unregister_target(struct target_type * ) ; extern int dm_read_arg_group(struct dm_arg * , struct dm_arg_set * , unsigned int * , char ** ) ; extern char const *dm_shift_arg(struct dm_arg_set * ) ; extern void dm_consume_args(struct dm_arg_set * , unsigned int ) ; extern struct mapped_device *dm_get_md(dev_t ) ; extern void dm_put(struct mapped_device * ) ; extern char const *dm_device_name(struct mapped_device * ) ; extern int dm_suspended(struct dm_target * ) ; extern int dm_noflush_suspending(struct dm_target * ) ; extern void dm_table_add_target_callbacks(struct dm_table * , struct dm_target_callbacks * ) ; extern int dm_set_target_max_io_len(struct dm_target * , sector_t ) ; extern fmode_t dm_table_get_mode(struct dm_table * ) ; extern struct mapped_device *dm_table_get_md(struct dm_table * ) ; extern void dm_table_event(struct dm_table * ) ; extern struct ratelimit_state dm_ratelimit_state ; __inline static int wb_congested(struct bdi_writeback *wb , int cong_bits ) { struct backing_dev_info *bdi ; int tmp ; { bdi = wb->bdi; if ((unsigned long )bdi->congested_fn != (unsigned long )((congested_fn *)0)) { tmp = (*(bdi->congested_fn))(bdi->congested_data, cong_bits); return (tmp); } else { } return ((int )((unsigned int )(wb->congested)->state & (unsigned int )cong_bits)); } } __inline static int bdi_congested(struct backing_dev_info *bdi , int cong_bits ) { int tmp ; { tmp = wb_congested(& bdi->wb, cong_bits); return (tmp); } } extern void dm_internal_suspend_noflush(struct mapped_device * ) ; extern void dm_internal_resume(struct mapped_device * ) ; extern struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle * ) ; extern void dm_kcopyd_client_destroy(struct dm_kcopyd_client * ) ; extern int dm_kcopyd_copy(struct dm_kcopyd_client * , struct dm_io_region * , unsigned int , struct dm_io_region * , unsigned int , void (*)(int , unsigned long , void * ) , void * ) ; extern int dm_kcopyd_zero(struct dm_kcopyd_client * , unsigned int , struct dm_io_region * , unsigned int , void (*)(int , unsigned long , void * ) , void * ) ; extern void sort(void * , size_t , size_t , int (*)(void const * , void const * ) , void (*)(void * , void * , int ) ) ; static unsigned int no_space_timeout_secs = 60U; static struct dm_kcopyd_throttle dm_kcopyd_throttle = {100U, 0U, 0U, 0U, 0U}; static void build_key(struct dm_thin_device *td , enum lock_space ls , dm_block_t b , dm_block_t e , struct dm_cell_key *key ) { { key->virtual = (unsigned int )ls == 0U; key->dev = dm_thin_dev_id(td); key->block_begin = b; key->block_end = e; return; } } static void build_data_key(struct dm_thin_device *td , dm_block_t b , struct dm_cell_key *key ) { { build_key(td, 1, b, b + 1ULL, key); return; } } static void build_virtual_key(struct dm_thin_device *td , dm_block_t b , struct dm_cell_key *key ) { { build_key(td, 0, b, b + 1ULL, key); return; } } static void throttle_init(struct throttle *t ) { struct lock_class_key __key ; { __init_rwsem(& t->lock, "&t->lock", & __key); t->throttle_applied = 0; return; } } static void throttle_work_start(struct throttle *t ) { { t->threshold = (unsigned long )jiffies + 250UL; return; } } static void throttle_work_update(struct throttle *t ) { { if (! t->throttle_applied && t->threshold < (unsigned long )jiffies) { down_write(& t->lock); t->throttle_applied = 1; } else { } return; } } static void throttle_work_complete(struct throttle *t ) { { if ((int )t->throttle_applied) { t->throttle_applied = 0; up_write(& t->lock); } else { } return; } } static void throttle_lock(struct throttle *t ) { { down_read(& t->lock); return; } } static void throttle_unlock(struct throttle *t ) { { up_read(& t->lock); return; } } static enum pool_mode get_pool_mode(struct pool *pool ) ; static void metadata_operation_failed(struct pool *pool , char const *op , int r ) ; static int __blkdev_issue_discard_async(struct block_device *bdev , sector_t sector , sector_t nr_sects , gfp_t gfp_mask , unsigned long flags , struct bio *parent_bio ) { struct request_queue *q ; struct request_queue *tmp ; int type ; unsigned int max_discard_sectors ; unsigned int granularity ; int alignment ; struct bio *bio ; int ret ; struct blk_plug plug ; int tmp___0 ; unsigned int _max1 ; unsigned int _max2 ; int tmp___1 ; unsigned int _min1 ; unsigned int _min2 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned int req_sects ; sector_t end_sect ; sector_t tmp___5 ; sector_t __min1 ; sector_t __min2 ; int _res ; int _res___0 ; { tmp = bdev_get_queue(bdev); q = tmp; type = 129; ret = 0; if ((unsigned long )q == (unsigned long )((struct request_queue *)0)) { return (-6); } else { } tmp___0 = constant_test_bit(14L, (unsigned long const volatile *)(& q->queue_flags)); if (tmp___0 == 0) { return (-95); } else { } _max1 = q->limits.discard_granularity >> 9; _max2 = 1U; granularity = _max1 > _max2 ? _max1 : _max2; tmp___1 = bdev_discard_alignment(bdev); alignment = (int )((unsigned int )(tmp___1 >> 9) % granularity); _min1 = q->limits.max_discard_sectors; _min2 = 8388607U; max_discard_sectors = _min1 < _min2 ? _min1 : _min2; max_discard_sectors = max_discard_sectors - max_discard_sectors % granularity; tmp___2 = ldv__builtin_expect(max_discard_sectors == 0U, 0L); if (tmp___2 != 0L) { return (-95); } else { } if ((int )flags & 1) { tmp___3 = constant_test_bit(14L, (unsigned long const volatile *)(& q->queue_flags)); if (tmp___3 == 0) { return (-95); } else { tmp___4 = constant_test_bit(17L, (unsigned long const volatile *)(& q->queue_flags)); if (tmp___4 == 0) { return (-95); } else { } } type = type | 256; } else { } blk_start_plug(& plug); goto ldv_35055; ldv_35054: bio = bio_alloc(gfp_mask, 1U); if ((unsigned long )bio == (unsigned long )((struct bio *)0)) { ret = -12; goto ldv_35045; } else { } __min1 = nr_sects; __min2 = (sector_t )max_discard_sectors; req_sects = (unsigned int )(__min1 < __min2 ? __min1 : __min2); end_sect = (sector_t )req_sects + sector; tmp___5 = end_sect; if ((sector_t )req_sects < nr_sects) { _res___0 = (int )(tmp___5 % (sector_t )granularity); tmp___5 = tmp___5 / (sector_t )granularity; if (_res___0 != alignment) { end_sect = end_sect - (sector_t )alignment; _res = (int )(end_sect % (sector_t )granularity); end_sect = end_sect / (sector_t )granularity; end_sect = (sector_t )granularity * end_sect + (sector_t )alignment; req_sects = (unsigned int )end_sect - (unsigned int )sector; } else { } } else { } bio_chain(bio, parent_bio); bio->bi_iter.bi_sector = sector; bio->bi_bdev = bdev; bio->bi_iter.bi_size = req_sects << 9; nr_sects = nr_sects - (sector_t )req_sects; sector = end_sect; submit_bio(type, bio); ___might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c", 424, 0); _cond_resched(); ldv_35055: ; if (nr_sects != 0UL) { goto ldv_35054; } else { } ldv_35045: blk_finish_plug(& plug); return (ret); } } static bool block_size_is_power_of_two(struct pool *pool ) { { return (pool->sectors_per_block_shift >= 0); } } static sector_t block_to_sectors(struct pool *pool , dm_block_t b ) { bool tmp ; { tmp = block_size_is_power_of_two(pool); return ((sector_t )((int )tmp ? b << pool->sectors_per_block_shift : (dm_block_t )pool->sectors_per_block * b)); } } static int issue_discard(struct thin_c *tc , dm_block_t data_b , dm_block_t data_e , struct bio *parent_bio ) { sector_t s ; sector_t tmp ; sector_t len ; sector_t tmp___0 ; int tmp___1 ; { tmp = block_to_sectors(tc->pool, data_b); s = tmp; tmp___0 = block_to_sectors(tc->pool, data_e - data_b); len = tmp___0; tmp___1 = __blkdev_issue_discard_async((tc->pool_dev)->bdev, s, len, 0U, 0UL, parent_bio); return (tmp___1); } } static void wake_worker(struct pool *pool ) { { queue_work(pool->wq, & pool->worker); return; } } static int bio_detain(struct pool *pool , struct dm_cell_key *key , struct bio *bio , struct dm_bio_prison_cell **cell_result ) { int r ; struct dm_bio_prison_cell *cell_prealloc ; { cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, 16U); r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); if (r != 0) { dm_bio_prison_free_cell(pool->prison, cell_prealloc); } else { } return (r); } } static void cell_release(struct pool *pool , struct dm_bio_prison_cell *cell , struct bio_list *bios ) { { dm_cell_release(pool->prison, cell, bios); dm_bio_prison_free_cell(pool->prison, cell); return; } } static void cell_visit_release(struct pool *pool , void (*fn)(void * , struct dm_bio_prison_cell * ) , void *context , struct dm_bio_prison_cell *cell ) { { dm_cell_visit_release(pool->prison, fn, context, cell); dm_bio_prison_free_cell(pool->prison, cell); return; } } static void cell_release_no_holder(struct pool *pool , struct dm_bio_prison_cell *cell , struct bio_list *bios ) { { dm_cell_release_no_holder(pool->prison, cell, bios); dm_bio_prison_free_cell(pool->prison, cell); return; } } static void cell_error_with_code(struct pool *pool , struct dm_bio_prison_cell *cell , int error_code ) { { dm_cell_error(pool->prison, cell, error_code); dm_bio_prison_free_cell(pool->prison, cell); return; } } static void cell_error(struct pool *pool , struct dm_bio_prison_cell *cell ) { { cell_error_with_code(pool, cell, -5); return; } } static void cell_success(struct pool *pool , struct dm_bio_prison_cell *cell ) { { cell_error_with_code(pool, cell, 0); return; } } static void cell_requeue(struct pool *pool , struct dm_bio_prison_cell *cell ) { { cell_error_with_code(pool, cell, 2); return; } } static struct dm_thin_pool_table dm_thin_pool_table ; static void pool_table_init(void) { struct lock_class_key __key ; { __mutex_init(& dm_thin_pool_table.mutex, "&dm_thin_pool_table.mutex", & __key); INIT_LIST_HEAD(& dm_thin_pool_table.pools); return; } } static void __pool_table_insert(struct pool *pool ) { int tmp ; long tmp___0 ; { tmp = mutex_is_locked(& dm_thin_pool_table.mutex); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (554), "i" (12UL)); ldv_35128: ; goto ldv_35128; } else { } list_add(& pool->list, & dm_thin_pool_table.pools); return; } } static void __pool_table_remove(struct pool *pool ) { int tmp ; long tmp___0 ; { tmp = mutex_is_locked(& dm_thin_pool_table.mutex); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (560), "i" (12UL)); ldv_35132: ; goto ldv_35132; } else { } list_del(& pool->list); return; } } static struct pool *__pool_table_lookup(struct mapped_device *md ) { struct pool *pool ; struct pool *tmp ; int tmp___0 ; long tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { pool = (struct pool *)0; tmp___0 = mutex_is_locked(& dm_thin_pool_table.mutex); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (568), "i" (12UL)); ldv_35138: ; goto ldv_35138; } else { } __mptr = (struct list_head const *)dm_thin_pool_table.pools.next; tmp = (struct pool *)__mptr; goto ldv_35145; ldv_35144: ; if ((unsigned long )tmp->pool_md == (unsigned long )md) { pool = tmp; goto ldv_35143; } else { } __mptr___0 = (struct list_head const *)tmp->list.next; tmp = (struct pool *)__mptr___0; ldv_35145: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& dm_thin_pool_table.pools)) { goto ldv_35144; } else { } ldv_35143: ; return (pool); } } static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev ) { struct pool *pool ; struct pool *tmp ; int tmp___0 ; long tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { pool = (struct pool *)0; tmp___0 = mutex_is_locked(& dm_thin_pool_table.mutex); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (584), "i" (12UL)); ldv_35151: ; goto ldv_35151; } else { } __mptr = (struct list_head const *)dm_thin_pool_table.pools.next; tmp = (struct pool *)__mptr; goto ldv_35158; ldv_35157: ; if ((unsigned long )tmp->md_dev == (unsigned long )md_dev) { pool = tmp; goto ldv_35156; } else { } __mptr___0 = (struct list_head const *)tmp->list.next; tmp = (struct pool *)__mptr___0; ldv_35158: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& dm_thin_pool_table.pools)) { goto ldv_35157; } else { } ldv_35156: ; return (pool); } } static void __merge_bio_list(struct bio_list *bios , struct bio_list *master ) { { bio_list_merge(bios, master); bio_list_init(master); return; } } static void error_bio_list(struct bio_list *bios , int error ) { struct bio *bio ; { goto ldv_35176; ldv_35175: bio_endio(bio, error); ldv_35176: bio = bio_list_pop(bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35175; } else { } return; } } static void error_thin_bio_list(struct thin_c *tc , struct bio_list *master , int error ) { struct bio_list bios ; unsigned long flags ; raw_spinlock_t *tmp ; { bio_list_init(& bios); tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); __merge_bio_list(& bios, master); spin_unlock_irqrestore(& tc->lock, flags); error_bio_list(& bios, error); return; } } static void requeue_deferred_cells(struct thin_c *tc ) { struct pool *pool ; unsigned long flags ; struct list_head cells ; struct dm_bio_prison_cell *cell ; struct dm_bio_prison_cell *tmp ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { pool = tc->pool; INIT_LIST_HEAD(& cells); tmp___0 = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp___0); list_splice_init(& tc->deferred_cells, & cells); spin_unlock_irqrestore(& tc->lock, flags); __mptr = (struct list_head const *)cells.next; cell = (struct dm_bio_prison_cell *)__mptr; __mptr___0 = (struct list_head const *)cell->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___0; goto ldv_35206; ldv_35205: cell_requeue(pool, cell); cell = tmp; __mptr___1 = (struct list_head const *)tmp->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___1; ldv_35206: ; if ((unsigned long )(& cell->user_list) != (unsigned long )(& cells)) { goto ldv_35205; } else { } return; } } static void requeue_io(struct thin_c *tc ) { struct bio_list bios ; unsigned long flags ; raw_spinlock_t *tmp ; { bio_list_init(& bios); tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); __merge_bio_list(& bios, & tc->deferred_bio_list); __merge_bio_list(& bios, & tc->retry_on_resume_list); spin_unlock_irqrestore(& tc->lock, flags); error_bio_list(& bios, 2); requeue_deferred_cells(tc); return; } } static void error_retry_list(struct pool *pool ) { struct thin_c *tc ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *________p1 ; struct list_head *_________p1 ; union __anonunion___u_268 __u ; int tmp ; struct list_head *__ptr___0 ; struct list_head const *__mptr___0 ; struct list_head *________p1___0 ; struct list_head *_________p1___0 ; union __anonunion___u_270 __u___0 ; int tmp___0 ; { rcu_read_lock(); __ptr = pool->active_thins.next; __read_once_size((void const volatile *)(& __ptr), (void *)(& __u.__c), 8); _________p1 = __u.__val; ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); __mptr = (struct list_head const *)________p1; tc = (struct thin_c *)__mptr; goto ldv_35249; ldv_35248: error_thin_bio_list(tc, & tc->retry_on_resume_list, -5); __ptr___0 = tc->list.next; __read_once_size((void const volatile *)(& __ptr___0), (void *)(& __u___0.__c), 8); _________p1___0 = __u___0.__val; ________p1___0 = _________p1___0; tmp___0 = debug_lockdep_rcu_enabled(); __mptr___0 = (struct list_head const *)________p1___0; tc = (struct thin_c *)__mptr___0; ldv_35249: ; if ((unsigned long )(& tc->list) != (unsigned long )(& pool->active_thins)) { goto ldv_35248; } else { } rcu_read_unlock(); return; } } static dm_block_t get_bio_block(struct thin_c *tc , struct bio *bio ) { struct pool *pool ; sector_t block_nr ; int _res ; bool tmp ; { pool = tc->pool; block_nr = bio->bi_iter.bi_sector; tmp = block_size_is_power_of_two(pool); if ((int )tmp) { block_nr = block_nr >> pool->sectors_per_block_shift; } else { _res = (int )(block_nr % (sector_t )pool->sectors_per_block); block_nr = block_nr / (sector_t )pool->sectors_per_block; } return ((dm_block_t )block_nr); } } static void get_bio_block_range(struct thin_c *tc , struct bio *bio , dm_block_t *begin , dm_block_t *end ) { struct pool *pool ; sector_t b ; sector_t e ; int _res ; int _res___0 ; bool tmp ; { pool = tc->pool; b = bio->bi_iter.bi_sector; e = (sector_t )(bio->bi_iter.bi_size >> 9) + b; b = (sector_t )(((unsigned long long )pool->sectors_per_block + (unsigned long long )b) - 1ULL); tmp = block_size_is_power_of_two(pool); if ((int )tmp) { b = b >> pool->sectors_per_block_shift; e = e >> pool->sectors_per_block_shift; } else { _res = (int )(b % (sector_t )pool->sectors_per_block); b = b / (sector_t )pool->sectors_per_block; _res___0 = (int )(e % (sector_t )pool->sectors_per_block); e = e / (sector_t )pool->sectors_per_block; } if (e < b) { e = b; } else { } *begin = (dm_block_t )b; *end = (dm_block_t )e; return; } } static void remap(struct thin_c *tc , struct bio *bio , dm_block_t block ) { struct pool *pool ; sector_t bi_sector ; int _res ; bool tmp ; { pool = tc->pool; bi_sector = bio->bi_iter.bi_sector; bio->bi_bdev = (tc->pool_dev)->bdev; tmp = block_size_is_power_of_two(pool); if ((int )tmp) { bio->bi_iter.bi_sector = (sector_t )((block << pool->sectors_per_block_shift) | (unsigned long long )((sector_t )(pool->sectors_per_block - 1U) & bi_sector)); } else { _res = (int )(bi_sector % (sector_t )pool->sectors_per_block); bi_sector = bi_sector / (sector_t )pool->sectors_per_block; bio->bi_iter.bi_sector = (sector_t )((dm_block_t )pool->sectors_per_block * block + (dm_block_t )_res); } return; } } static void remap_to_origin(struct thin_c *tc , struct bio *bio ) { { bio->bi_bdev = (tc->origin_dev)->bdev; return; } } static int bio_triggers_commit(struct thin_c *tc , struct bio *bio ) { bool tmp ; int tmp___0 ; { if (((unsigned long long )bio->bi_rw & 12288ULL) != 0ULL) { tmp = dm_thin_changed_this_transaction(tc->td); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } return (tmp___0); } } static void inc_all_io_entry(struct pool *pool , struct bio *bio ) { struct dm_thin_endio_hook *h ; void *tmp ; { if (((unsigned long long )bio->bi_rw & 128ULL) != 0ULL) { return; } else { } tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); return; } } static void issue(struct thin_c *tc , struct bio *bio ) { struct pool *pool ; unsigned long flags ; int tmp ; bool tmp___0 ; raw_spinlock_t *tmp___1 ; { pool = tc->pool; tmp = bio_triggers_commit(tc, bio); if (tmp == 0) { generic_make_request(bio); return; } else { } tmp___0 = dm_thin_aborted_changes(tc->td); if ((int )tmp___0) { bio_endio(bio, -5); return; } else { } tmp___1 = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp___1); bio_list_add(& pool->deferred_flush_bios, bio); spin_unlock_irqrestore(& pool->lock, flags); return; } } static void remap_to_origin_and_issue(struct thin_c *tc , struct bio *bio ) { { remap_to_origin(tc, bio); issue(tc, bio); return; } } static void remap_and_issue(struct thin_c *tc , struct bio *bio , dm_block_t block ) { { remap(tc, bio, block); issue(tc, bio); return; } } static void __complete_mapping_preparation(struct dm_thin_new_mapping *m ) { struct pool *pool ; int tmp ; { pool = (m->tc)->pool; tmp = atomic_dec_and_test(& m->prepare_actions); if (tmp != 0) { list_add_tail(& m->list, & pool->prepared_mappings); wake_worker(pool); } else { } return; } } static void complete_mapping_preparation(struct dm_thin_new_mapping *m ) { unsigned long flags ; struct pool *pool ; raw_spinlock_t *tmp ; { pool = (m->tc)->pool; tmp = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp); __complete_mapping_preparation(m); spin_unlock_irqrestore(& pool->lock, flags); return; } } static void copy_complete(int read_err , unsigned long write_err , void *context ) { struct dm_thin_new_mapping *m ; { m = (struct dm_thin_new_mapping *)context; m->err = read_err != 0 || write_err != 0UL ? -5 : 0; complete_mapping_preparation(m); return; } } static void overwrite_endio(struct bio *bio , int err ) { struct dm_thin_endio_hook *h ; void *tmp ; struct dm_thin_new_mapping *m ; { tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; m = h->overwrite_mapping; bio->bi_end_io = m->saved_bi_end_io; m->err = err; complete_mapping_preparation(m); return; } } static void cell_defer_no_holder(struct thin_c *tc , struct dm_bio_prison_cell *cell ) { struct pool *pool ; unsigned long flags ; raw_spinlock_t *tmp ; { pool = tc->pool; tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); cell_release_no_holder(pool, cell, & tc->deferred_bio_list); spin_unlock_irqrestore(& tc->lock, flags); wake_worker(pool); return; } } static void thin_defer_bio(struct thin_c *tc , struct bio *bio ) ; static void __inc_remap_and_issue_cell(void *context , struct dm_bio_prison_cell *cell ) { struct remap_info *info ; struct bio *bio ; { info = (struct remap_info *)context; goto ldv_35371; ldv_35370: ; if (((unsigned long long )bio->bi_rw & 12416ULL) != 0ULL) { bio_list_add(& info->defer_bios, bio); } else { inc_all_io_entry((info->tc)->pool, bio); bio_list_add(& info->issue_bios, bio); } ldv_35371: bio = bio_list_pop(& cell->bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35370; } else { } return; } } static void inc_remap_and_issue_cell(struct thin_c *tc , struct dm_bio_prison_cell *cell , dm_block_t block ) { struct bio *bio ; struct remap_info info ; { info.tc = tc; bio_list_init(& info.defer_bios); bio_list_init(& info.issue_bios); cell_visit_release(tc->pool, & __inc_remap_and_issue_cell, (void *)(& info), cell); goto ldv_35381; ldv_35380: thin_defer_bio(tc, bio); ldv_35381: bio = bio_list_pop(& info.defer_bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35380; } else { } goto ldv_35384; ldv_35383: remap_and_issue(info.tc, bio, block); ldv_35384: bio = bio_list_pop(& info.issue_bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35383; } else { } return; } } static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m ) { { cell_error((m->tc)->pool, m->cell); list_del(& m->list); mempool_free((void *)m, ((m->tc)->pool)->mapping_pool); return; } } static void process_prepared_mapping(struct dm_thin_new_mapping *m ) { struct thin_c *tc ; struct pool *pool ; struct bio *bio ; int r ; { tc = m->tc; pool = tc->pool; bio = m->bio; if (m->err != 0) { cell_error(pool, m->cell); goto out; } else { } r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); if (r != 0) { metadata_operation_failed(pool, "dm_thin_insert_block", r); cell_error(pool, m->cell); goto out; } else { } if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { inc_remap_and_issue_cell(tc, m->cell, m->data_block); bio_endio(bio, 0); } else { inc_all_io_entry(tc->pool, (m->cell)->holder); remap_and_issue(tc, (m->cell)->holder, m->data_block); inc_remap_and_issue_cell(tc, m->cell, m->data_block); } out: list_del(& m->list); mempool_free((void *)m, pool->mapping_pool); return; } } static void free_discard_mapping(struct dm_thin_new_mapping *m ) { struct thin_c *tc ; { tc = m->tc; if ((unsigned long )m->cell != (unsigned long )((struct dm_bio_prison_cell *)0)) { cell_defer_no_holder(tc, m->cell); } else { } mempool_free((void *)m, (tc->pool)->mapping_pool); return; } } static void process_prepared_discard_fail(struct dm_thin_new_mapping *m ) { { bio_endio(m->bio, -5); free_discard_mapping(m); return; } } static void process_prepared_discard_success(struct dm_thin_new_mapping *m ) { { bio_endio(m->bio, 0); free_discard_mapping(m); return; } } static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m ) { int r ; struct thin_c *tc ; { tc = m->tc; r = dm_thin_remove_range(tc->td, (m->cell)->key.block_begin, (m->cell)->key.block_end); if (r != 0) { metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); bio_endio(m->bio, -5); } else { bio_endio(m->bio, 0); } cell_defer_no_holder(tc, m->cell); mempool_free((void *)m, (tc->pool)->mapping_pool); return; } } static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m ) { int r ; bool used ; struct thin_c *tc ; struct pool *pool ; dm_block_t b ; dm_block_t e ; dm_block_t end ; { used = 1; tc = m->tc; pool = tc->pool; b = m->data_block; end = (m->data_block + m->virt_end) - m->virt_begin; goto ldv_35430; ldv_35429: ; goto ldv_35424; ldv_35423: r = dm_pool_block_is_used(pool->pmd, b, & used); if (r != 0) { return (r); } else { } if (! used) { goto ldv_35422; } else { } b = b + 1ULL; ldv_35424: ; if (b < end) { goto ldv_35423; } else { } ldv_35422: ; if (b == end) { goto ldv_35425; } else { } e = b + 1ULL; goto ldv_35428; ldv_35427: r = dm_pool_block_is_used(pool->pmd, e, & used); if (r != 0) { return (r); } else { } if ((int )used) { goto ldv_35426; } else { } e = e + 1ULL; ldv_35428: ; if (e != end) { goto ldv_35427; } else { } ldv_35426: r = issue_discard(tc, b, e, m->bio); if (r != 0) { return (r); } else { } b = e; ldv_35430: ; if (b != end) { goto ldv_35429; } else { } ldv_35425: ; return (0); } } static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m ) { int r ; struct thin_c *tc ; struct pool *pool ; { tc = m->tc; pool = tc->pool; r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); if (r != 0) { metadata_operation_failed(pool, "dm_thin_remove_range", r); } else if ((int )m->maybe_shared) { r = passdown_double_checking_shared_status(m); } else { r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio); } bio_endio(m->bio, r); cell_defer_no_holder(tc, m->cell); mempool_free((void *)m, pool->mapping_pool); return; } } static void process_prepared(struct pool *pool , struct list_head *head , process_mapping_fn (**fn)(struct dm_thin_new_mapping * ) ) { unsigned long flags ; struct list_head maps ; struct dm_thin_new_mapping *m ; struct dm_thin_new_mapping *tmp ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { INIT_LIST_HEAD(& maps); tmp___0 = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp___0); list_splice_init(head, & maps); spin_unlock_irqrestore(& pool->lock, flags); __mptr = (struct list_head const *)maps.next; m = (struct dm_thin_new_mapping *)__mptr; __mptr___0 = (struct list_head const *)m->list.next; tmp = (struct dm_thin_new_mapping *)__mptr___0; goto ldv_35456; ldv_35455: (*(*fn))(m); m = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct dm_thin_new_mapping *)__mptr___1; ldv_35456: ; if ((unsigned long )(& m->list) != (unsigned long )(& maps)) { goto ldv_35455; } else { } return; } } static int io_overlaps_block(struct pool *pool , struct bio *bio ) { { return (bio->bi_iter.bi_size == pool->sectors_per_block << 9); } } static int io_overwrites_block(struct pool *pool , struct bio *bio ) { int tmp ; int tmp___0 ; { if ((int )bio->bi_rw & 1) { tmp = io_overlaps_block(pool, bio); if (tmp != 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } return (tmp___0); } } static void save_and_set_endio(struct bio *bio , bio_end_io_t **save , bio_end_io_t *fn ) { { *save = bio->bi_end_io; bio->bi_end_io = fn; return; } } static int ensure_next_mapping(struct pool *pool ) { void *tmp ; { if ((unsigned long )pool->next_mapping != (unsigned long )((struct dm_thin_new_mapping *)0)) { return (0); } else { } tmp = mempool_alloc(pool->mapping_pool, 32U); pool->next_mapping = (struct dm_thin_new_mapping *)tmp; return ((unsigned long )pool->next_mapping != (unsigned long )((struct dm_thin_new_mapping *)0) ? 0 : -12); } } static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool ) { struct dm_thin_new_mapping *m ; long tmp ; { m = pool->next_mapping; tmp = ldv__builtin_expect((unsigned long )pool->next_mapping == (unsigned long )((struct dm_thin_new_mapping *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (1171), "i" (12UL)); ldv_35478: ; goto ldv_35478; } else { } memset((void *)m, 0, 88UL); INIT_LIST_HEAD(& m->list); m->bio = (struct bio *)0; pool->next_mapping = (struct dm_thin_new_mapping *)0; return (m); } } static void ll_zero(struct thin_c *tc , struct dm_thin_new_mapping *m , sector_t begin , sector_t end ) { int r ; struct dm_io_region to ; int tmp ; { to.bdev = (tc->pool_dev)->bdev; to.sector = begin; to.count = end - begin; r = dm_kcopyd_zero((tc->pool)->copier, 1U, & to, 0U, & copy_complete, (void *)m); if (r < 0) { tmp = ___ratelimit(& dm_ratelimit_state, "ll_zero"); if (tmp != 0) { printk("\vdevice-mapper: thin: dm_kcopyd_zero() failed\n"); } else { } copy_complete(1, 1UL, (void *)m); } else { } return; } } static void remap_and_issue_overwrite(struct thin_c *tc , struct bio *bio , dm_block_t data_begin , struct dm_thin_new_mapping *m ) { struct pool *pool ; struct dm_thin_endio_hook *h ; void *tmp ; { pool = tc->pool; tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; h->overwrite_mapping = m; m->bio = bio; save_and_set_endio(bio, & m->saved_bi_end_io, & overwrite_endio); inc_all_io_entry(pool, bio); remap_and_issue(tc, bio, data_begin); return; } } static void schedule_copy(struct thin_c *tc , dm_block_t virt_block , struct dm_dev *origin , dm_block_t data_origin , dm_block_t data_dest , struct dm_bio_prison_cell *cell , struct bio *bio , sector_t len ) { int r ; struct pool *pool ; struct dm_thin_new_mapping *m ; struct dm_thin_new_mapping *tmp ; int tmp___0 ; struct dm_io_region from ; struct dm_io_region to ; int tmp___1 ; int tmp___2 ; { pool = tc->pool; tmp = get_next_mapping(pool); m = tmp; m->tc = tc; m->virt_begin = virt_block; m->virt_end = virt_block + 1ULL; m->data_block = data_dest; m->cell = cell; atomic_set(& m->prepare_actions, 3); tmp___0 = dm_deferred_set_add_work(pool->shared_read_ds, & m->list); if (tmp___0 == 0) { complete_mapping_preparation(m); } else { } tmp___2 = io_overwrites_block(pool, bio); if (tmp___2 != 0) { remap_and_issue_overwrite(tc, bio, data_dest, m); } else { from.bdev = origin->bdev; from.sector = (sector_t )((dm_block_t )pool->sectors_per_block * data_origin); from.count = len; to.bdev = (tc->pool_dev)->bdev; to.sector = (sector_t )((dm_block_t )pool->sectors_per_block * data_dest); to.count = len; r = dm_kcopyd_copy(pool->copier, & from, 1U, & to, 0U, & copy_complete, (void *)m); if (r < 0) { tmp___1 = ___ratelimit(& dm_ratelimit_state, "schedule_copy"); if (tmp___1 != 0) { printk("\vdevice-mapper: thin: dm_kcopyd_copy() failed\n"); } else { } copy_complete(1, 1UL, (void *)m); } else { } if ((sector_t )pool->sectors_per_block > len && (int )pool->pf.zero_new_blocks) { atomic_inc(& m->prepare_actions); ll_zero(tc, m, (sector_t )((dm_block_t )pool->sectors_per_block * data_dest + (unsigned long long )len), (sector_t )((data_dest + 1ULL) * (dm_block_t )pool->sectors_per_block)); } else { } } complete_mapping_preparation(m); return; } } static void schedule_internal_copy(struct thin_c *tc , dm_block_t virt_block , dm_block_t data_origin , dm_block_t data_dest , struct dm_bio_prison_cell *cell , struct bio *bio ) { { schedule_copy(tc, virt_block, tc->pool_dev, data_origin, data_dest, cell, bio, (sector_t )(tc->pool)->sectors_per_block); return; } } static void schedule_zero(struct thin_c *tc , dm_block_t virt_block , dm_block_t data_block , struct dm_bio_prison_cell *cell , struct bio *bio ) { struct pool *pool ; struct dm_thin_new_mapping *m ; struct dm_thin_new_mapping *tmp ; int tmp___0 ; { pool = tc->pool; tmp = get_next_mapping(pool); m = tmp; atomic_set(& m->prepare_actions, 1); m->tc = tc; m->virt_begin = virt_block; m->virt_end = virt_block + 1ULL; m->data_block = data_block; m->cell = cell; if ((int )pool->pf.zero_new_blocks) { tmp___0 = io_overwrites_block(pool, bio); if (tmp___0 != 0) { remap_and_issue_overwrite(tc, bio, data_block, m); } else { ll_zero(tc, m, (sector_t )((dm_block_t )pool->sectors_per_block * data_block), (sector_t )((data_block + 1ULL) * (dm_block_t )pool->sectors_per_block)); } } else { process_prepared_mapping(m); } return; } } static void schedule_external_copy(struct thin_c *tc , dm_block_t virt_block , dm_block_t data_dest , struct dm_bio_prison_cell *cell , struct bio *bio ) { struct pool *pool ; sector_t virt_block_begin ; sector_t virt_block_end ; { pool = tc->pool; virt_block_begin = (sector_t )((dm_block_t )pool->sectors_per_block * virt_block); virt_block_end = (sector_t )((virt_block + 1ULL) * (dm_block_t )pool->sectors_per_block); if (tc->origin_size >= virt_block_end) { schedule_copy(tc, virt_block, tc->origin_dev, virt_block, data_dest, cell, bio, (sector_t )pool->sectors_per_block); } else if (tc->origin_size > virt_block_begin) { schedule_copy(tc, virt_block, tc->origin_dev, virt_block, data_dest, cell, bio, tc->origin_size - virt_block_begin); } else { schedule_zero(tc, virt_block, data_dest, cell, bio); } return; } } static void set_pool_mode(struct pool *pool , enum pool_mode new_mode ) ; static void check_for_space(struct pool *pool ) { int r ; dm_block_t nr_free ; enum pool_mode tmp ; { tmp = get_pool_mode(pool); if ((unsigned int )tmp != 1U) { return; } else { } r = dm_pool_get_free_block_count(pool->pmd, & nr_free); if (r != 0) { return; } else { } if (nr_free != 0ULL) { set_pool_mode(pool, 0); } else { } return; } } static int commit(struct pool *pool ) { int r ; enum pool_mode tmp ; { tmp = get_pool_mode(pool); if ((unsigned int )tmp > 1U) { return (-22); } else { } r = dm_pool_commit_metadata(pool->pmd); if (r != 0) { metadata_operation_failed(pool, "dm_pool_commit_metadata", r); } else { check_for_space(pool); } return (r); } } static void check_low_water_mark(struct pool *pool , dm_block_t free_blocks ) { unsigned long flags ; char const *tmp ; raw_spinlock_t *tmp___0 ; { if (pool->low_water_blocks >= free_blocks && ! pool->low_water_triggered) { tmp = dm_device_name(pool->pool_md); printk("\fdevice-mapper: thin: %s: reached low water mark for data device: sending event.\n", tmp); tmp___0 = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp___0); pool->low_water_triggered = 1; spin_unlock_irqrestore(& pool->lock, flags); dm_table_event((pool->ti)->table); } else { } return; } } static int alloc_data_block(struct thin_c *tc , dm_block_t *result ) { int r ; dm_block_t free_blocks ; struct pool *pool ; int __ret_warn_on ; enum pool_mode tmp ; long tmp___0 ; long tmp___1 ; { pool = tc->pool; tmp = get_pool_mode(pool); __ret_warn_on = (unsigned int )tmp != 0U; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c", 1407); } else { } tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { return (-22); } else { } r = dm_pool_get_free_block_count(pool->pmd, & free_blocks); if (r != 0) { metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); return (r); } else { } check_low_water_mark(pool, free_blocks); if (free_blocks == 0ULL) { r = commit(pool); if (r != 0) { return (r); } else { } r = dm_pool_get_free_block_count(pool->pmd, & free_blocks); if (r != 0) { metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); return (r); } else { } if (free_blocks == 0ULL) { set_pool_mode(pool, 1); return (-28); } else { } } else { } r = dm_pool_alloc_data_block(pool->pmd, result); if (r != 0) { metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); return (r); } else { } return (0); } } static void retry_on_resume(struct bio *bio ) { struct dm_thin_endio_hook *h ; void *tmp ; struct thin_c *tc ; unsigned long flags ; raw_spinlock_t *tmp___0 ; { tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; tc = h->tc; tmp___0 = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp___0); bio_list_add(& tc->retry_on_resume_list, bio); spin_unlock_irqrestore(& tc->lock, flags); return; } } static int should_error_unserviceable_bio(struct pool *pool ) { enum pool_mode m ; enum pool_mode tmp ; int tmp___0 ; int tmp___1 ; { tmp = get_pool_mode(pool); m = tmp; switch ((unsigned int )m) { case 0U: tmp___0 = ___ratelimit(& dm_ratelimit_state, "should_error_unserviceable_bio"); if (tmp___0 != 0) { printk("\vdevice-mapper: thin: bio unserviceable, yet pool is in PM_WRITE mode\n"); } else { } return (-5); case 1U: ; return ((int )pool->pf.error_if_no_space ? -28 : 0); case 2U: ; case 3U: ; return (-5); default: tmp___1 = ___ratelimit(& dm_ratelimit_state, "should_error_unserviceable_bio"); if (tmp___1 != 0) { printk("\vdevice-mapper: thin: bio unserviceable, yet pool has an unknown mode\n"); } else { } return (-5); } } } static void handle_unserviceable_bio(struct pool *pool , struct bio *bio ) { int error ; int tmp ; { tmp = should_error_unserviceable_bio(pool); error = tmp; if (error != 0) { bio_endio(bio, error); } else { retry_on_resume(bio); } return; } } static void retry_bios_on_resume(struct pool *pool , struct dm_bio_prison_cell *cell ) { struct bio *bio ; struct bio_list bios ; int error ; { error = should_error_unserviceable_bio(pool); if (error != 0) { cell_error_with_code(pool, cell, error); return; } else { } bio_list_init(& bios); cell_release(pool, cell, & bios); goto ldv_35600; ldv_35599: retry_on_resume(bio); ldv_35600: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35599; } else { } return; } } static void process_discard_cell_no_passdown(struct thin_c *tc , struct dm_bio_prison_cell *virt_cell ) { struct pool *pool ; struct dm_thin_new_mapping *m ; struct dm_thin_new_mapping *tmp ; int tmp___0 ; { pool = tc->pool; tmp = get_next_mapping(pool); m = tmp; m->tc = tc; m->virt_begin = virt_cell->key.block_begin; m->virt_end = virt_cell->key.block_end; m->cell = virt_cell; m->bio = virt_cell->holder; tmp___0 = dm_deferred_set_add_work(pool->all_io_ds, & m->list); if (tmp___0 == 0) { (*(pool->process_prepared_discard))(m); } else { } return; } } __inline static void __bio_inc_remaining(struct bio *bio ) { { bio->bi_flags = bio->bi_flags | 256UL; __asm__ volatile ("": : : "memory"); atomic_inc(& bio->__bi_remaining); return; } } static void break_up_discard_bio(struct thin_c *tc , dm_block_t begin , dm_block_t end , struct bio *bio ) { struct pool *pool ; int r ; bool maybe_shared ; struct dm_cell_key data_key ; struct dm_bio_prison_cell *data_cell ; struct dm_thin_new_mapping *m ; dm_block_t virt_begin ; dm_block_t virt_end ; dm_block_t data_begin ; int tmp ; int tmp___0 ; { pool = tc->pool; goto ldv_35627; ldv_35628: r = ensure_next_mapping(pool); if (r != 0) { return; } else { } r = dm_thin_find_mapped_range(tc->td, begin, end, & virt_begin, & virt_end, & data_begin, & maybe_shared); if (r != 0) { goto ldv_35626; } else { } build_key(tc->td, 1, data_begin, (virt_end - virt_begin) + data_begin, & data_key); tmp = bio_detain(tc->pool, & data_key, (struct bio *)0, & data_cell); if (tmp != 0) { begin = virt_end; goto ldv_35627; } else { } m = get_next_mapping(pool); m->tc = tc; m->maybe_shared = maybe_shared; m->virt_begin = virt_begin; m->virt_end = virt_end; m->data_block = data_begin; m->cell = data_cell; m->bio = bio; __bio_inc_remaining(bio); tmp___0 = dm_deferred_set_add_work(pool->all_io_ds, & m->list); if (tmp___0 == 0) { (*(pool->process_prepared_discard))(m); } else { } begin = virt_end; ldv_35627: ; if (begin != end) { goto ldv_35628; } else { } ldv_35626: ; return; } } static void process_discard_cell_passdown(struct thin_c *tc , struct dm_bio_prison_cell *virt_cell ) { struct bio *bio ; struct dm_thin_endio_hook *h ; void *tmp ; { bio = virt_cell->holder; tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; h->cell = virt_cell; break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); bio_endio(bio, 0); return; } } static void process_discard_bio(struct thin_c *tc , struct bio *bio ) { dm_block_t begin ; dm_block_t end ; struct dm_cell_key virt_key ; struct dm_bio_prison_cell *virt_cell ; int tmp ; { get_bio_block_range(tc, bio, & begin, & end); if (begin == end) { bio_endio(bio, 0); return; } else { } build_key(tc->td, 0, begin, end, & virt_key); tmp = bio_detain(tc->pool, & virt_key, bio, & virt_cell); if (tmp != 0) { return; } else { } (*((tc->pool)->process_discard_cell))(tc, virt_cell); return; } } static void break_sharing(struct thin_c *tc , struct bio *bio , dm_block_t block , struct dm_cell_key *key , struct dm_thin_lookup_result *lookup_result , struct dm_bio_prison_cell *cell ) { int r ; dm_block_t data_block ; struct pool *pool ; int tmp ; { pool = tc->pool; r = alloc_data_block(tc, & data_block); switch (r) { case 0: schedule_internal_copy(tc, block, lookup_result->block, data_block, cell, bio); goto ldv_35655; case -28: retry_bios_on_resume(pool, cell); goto ldv_35655; default: tmp = ___ratelimit(& dm_ratelimit_state, "break_sharing"); if (tmp != 0) { printk("\vdevice-mapper: thin: %s: alloc_data_block() failed: error = %d\n", "break_sharing", r); } else { } cell_error(pool, cell); goto ldv_35655; } ldv_35655: ; return; } } static void __remap_and_issue_shared_cell(void *context , struct dm_bio_prison_cell *cell ) { struct remap_info *info ; struct bio *bio ; struct dm_thin_endio_hook *h ; void *tmp ; { info = (struct remap_info *)context; goto ldv_35667; ldv_35666: ; if ((int )bio->bi_rw & 1 || ((unsigned long long )bio->bi_rw & 12416ULL) != 0ULL) { bio_list_add(& info->defer_bios, bio); } else { tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; h->shared_read_entry = dm_deferred_entry_inc(((info->tc)->pool)->shared_read_ds); inc_all_io_entry((info->tc)->pool, bio); bio_list_add(& info->issue_bios, bio); } ldv_35667: bio = bio_list_pop(& cell->bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35666; } else { } return; } } static void remap_and_issue_shared_cell(struct thin_c *tc , struct dm_bio_prison_cell *cell , dm_block_t block ) { struct bio *bio ; struct remap_info info ; { info.tc = tc; bio_list_init(& info.defer_bios); bio_list_init(& info.issue_bios); cell_visit_release(tc->pool, & __remap_and_issue_shared_cell, (void *)(& info), cell); goto ldv_35677; ldv_35676: thin_defer_bio(tc, bio); ldv_35677: bio = bio_list_pop(& info.defer_bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35676; } else { } goto ldv_35680; ldv_35679: remap_and_issue(tc, bio, block); ldv_35680: bio = bio_list_pop(& info.issue_bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35679; } else { } return; } } static void process_shared_bio(struct thin_c *tc , struct bio *bio , dm_block_t block , struct dm_thin_lookup_result *lookup_result , struct dm_bio_prison_cell *virt_cell ) { struct dm_bio_prison_cell *data_cell ; struct pool *pool ; struct dm_cell_key key ; int tmp ; struct dm_thin_endio_hook *h ; void *tmp___0 ; { pool = tc->pool; build_data_key(tc->td, lookup_result->block, & key); tmp = bio_detain(pool, & key, bio, & data_cell); if (tmp != 0) { cell_defer_no_holder(tc, virt_cell); return; } else { } if ((int )bio->bi_rw & 1 && bio->bi_iter.bi_size != 0U) { break_sharing(tc, bio, block, & key, lookup_result, data_cell); cell_defer_no_holder(tc, virt_cell); } else { tmp___0 = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp___0; h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); inc_all_io_entry(pool, bio); remap_and_issue(tc, bio, lookup_result->block); remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); } return; } } static void provision_block(struct thin_c *tc , struct bio *bio , dm_block_t block , struct dm_bio_prison_cell *cell ) { int r ; dm_block_t data_block ; struct pool *pool ; int tmp ; { pool = tc->pool; if (bio->bi_iter.bi_size == 0U) { inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); remap_and_issue(tc, bio, 0ULL); return; } else { } if ((bio->bi_rw & 1UL) == 0UL) { zero_fill_bio(bio); cell_defer_no_holder(tc, cell); bio_endio(bio, 0); return; } else { } r = alloc_data_block(tc, & data_block); switch (r) { case 0: ; if ((unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { schedule_external_copy(tc, block, data_block, cell, bio); } else { schedule_zero(tc, block, data_block, cell, bio); } goto ldv_35703; case -28: retry_bios_on_resume(pool, cell); goto ldv_35703; default: tmp = ___ratelimit(& dm_ratelimit_state, "provision_block"); if (tmp != 0) { printk("\vdevice-mapper: thin: %s: alloc_data_block() failed: error = %d\n", "provision_block", r); } else { } cell_error(pool, cell); goto ldv_35703; } ldv_35703: ; return; } } static void process_cell(struct thin_c *tc , struct dm_bio_prison_cell *cell ) { int r ; struct pool *pool ; struct bio *bio ; dm_block_t block ; dm_block_t tmp ; struct dm_thin_lookup_result lookup_result ; int tmp___0 ; { pool = tc->pool; bio = cell->holder; tmp = get_bio_block(tc, bio); block = tmp; if ((int )tc->requeue_mode) { cell_requeue(pool, cell); return; } else { } r = dm_thin_find_block(tc->td, block, 1, & lookup_result); switch (r) { case 0: ; if ((int )lookup_result.shared) { process_shared_bio(tc, bio, block, & lookup_result, cell); } else { inc_all_io_entry(pool, bio); remap_and_issue(tc, bio, lookup_result.block); inc_remap_and_issue_cell(tc, cell, lookup_result.block); } goto ldv_35717; case -61: ; if ((bio->bi_rw & 1UL) == 0UL && (unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); if (bio->bi_iter.bi_sector + (sector_t )(bio->bi_iter.bi_size >> 9) <= tc->origin_size) { remap_to_origin_and_issue(tc, bio); } else if (bio->bi_iter.bi_sector < tc->origin_size) { zero_fill_bio(bio); bio->bi_iter.bi_size = ((unsigned int )tc->origin_size - (unsigned int )bio->bi_iter.bi_sector) << 9U; remap_to_origin_and_issue(tc, bio); } else { zero_fill_bio(bio); bio_endio(bio, 0); } } else { provision_block(tc, bio, block, cell); } goto ldv_35717; default: tmp___0 = ___ratelimit(& dm_ratelimit_state, "process_cell"); if (tmp___0 != 0) { printk("\vdevice-mapper: thin: %s: dm_thin_find_block() failed: error = %d\n", "process_cell", r); } else { } cell_defer_no_holder(tc, cell); bio_endio(bio, -5); goto ldv_35717; } ldv_35717: ; return; } } static void process_bio(struct thin_c *tc , struct bio *bio ) { struct pool *pool ; dm_block_t block ; dm_block_t tmp ; struct dm_bio_prison_cell *cell ; struct dm_cell_key key ; int tmp___0 ; { pool = tc->pool; tmp = get_bio_block(tc, bio); block = tmp; build_virtual_key(tc->td, block, & key); tmp___0 = bio_detain(pool, & key, bio, & cell); if (tmp___0 != 0) { return; } else { } process_cell(tc, cell); return; } } static void __process_bio_read_only(struct thin_c *tc , struct bio *bio , struct dm_bio_prison_cell *cell ) { int r ; int rw ; dm_block_t block ; dm_block_t tmp ; struct dm_thin_lookup_result lookup_result ; int tmp___0 ; { rw = (int )bio->bi_rw & 1; tmp = get_bio_block(tc, bio); block = tmp; r = dm_thin_find_block(tc->td, block, 1, & lookup_result); switch (r) { case 0: ; if (((int )lookup_result.shared && rw == 1) && bio->bi_iter.bi_size != 0U) { handle_unserviceable_bio(tc->pool, bio); if ((unsigned long )cell != (unsigned long )((struct dm_bio_prison_cell *)0)) { cell_defer_no_holder(tc, cell); } else { } } else { inc_all_io_entry(tc->pool, bio); remap_and_issue(tc, bio, lookup_result.block); if ((unsigned long )cell != (unsigned long )((struct dm_bio_prison_cell *)0)) { inc_remap_and_issue_cell(tc, cell, lookup_result.block); } else { } } goto ldv_35739; case -61: ; if ((unsigned long )cell != (unsigned long )((struct dm_bio_prison_cell *)0)) { cell_defer_no_holder(tc, cell); } else { } if (rw != 0) { handle_unserviceable_bio(tc->pool, bio); goto ldv_35739; } else { } if ((unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { inc_all_io_entry(tc->pool, bio); remap_to_origin_and_issue(tc, bio); goto ldv_35739; } else { } zero_fill_bio(bio); bio_endio(bio, 0); goto ldv_35739; default: tmp___0 = ___ratelimit(& dm_ratelimit_state, "__process_bio_read_only"); if (tmp___0 != 0) { printk("\vdevice-mapper: thin: %s: dm_thin_find_block() failed: error = %d\n", "__process_bio_read_only", r); } else { } if ((unsigned long )cell != (unsigned long )((struct dm_bio_prison_cell *)0)) { cell_defer_no_holder(tc, cell); } else { } bio_endio(bio, -5); goto ldv_35739; } ldv_35739: ; return; } } static void process_bio_read_only(struct thin_c *tc , struct bio *bio ) { { __process_bio_read_only(tc, bio, (struct dm_bio_prison_cell *)0); return; } } static void process_cell_read_only(struct thin_c *tc , struct dm_bio_prison_cell *cell ) { { __process_bio_read_only(tc, cell->holder, cell); return; } } static void process_bio_success(struct thin_c *tc , struct bio *bio ) { { bio_endio(bio, 0); return; } } static void process_bio_fail(struct thin_c *tc , struct bio *bio ) { { bio_endio(bio, -5); return; } } static void process_cell_success(struct thin_c *tc , struct dm_bio_prison_cell *cell ) { { cell_success(tc->pool, cell); return; } } static void process_cell_fail(struct thin_c *tc , struct dm_bio_prison_cell *cell ) { { cell_error(tc->pool, cell); return; } } static int need_commit_due_to_time(struct pool *pool ) { { return ((long )((unsigned long )jiffies - pool->last_commit_jiffies) < 0L || (long )((pool->last_commit_jiffies - (unsigned long )jiffies) + 250UL) < 0L); } } static void __thin_bio_rb_add(struct thin_c *tc , struct bio *bio ) { struct rb_node **rbp ; struct rb_node *parent ; struct dm_thin_endio_hook *pbd ; sector_t bi_sector ; struct rb_node const *__mptr ; struct bio *tmp ; void *tmp___0 ; { bi_sector = bio->bi_iter.bi_sector; rbp = & tc->sort_bio_list.rb_node; parent = (struct rb_node *)0; goto ldv_35793; ldv_35792: parent = *rbp; __mptr = (struct rb_node const *)parent; pbd = (struct dm_thin_endio_hook *)__mptr + 0xffffffffffffffe0UL; tmp = dm_bio_from_per_bio_data((void *)pbd, 64UL); if (tmp->bi_iter.bi_sector > bi_sector) { rbp = & (*rbp)->rb_left; } else { rbp = & (*rbp)->rb_right; } ldv_35793: ; if ((unsigned long )*rbp != (unsigned long )((struct rb_node *)0)) { goto ldv_35792; } else { } tmp___0 = dm_per_bio_data(bio, 64UL); pbd = (struct dm_thin_endio_hook *)tmp___0; rb_link_node(& pbd->rb_node, parent, rbp); rb_insert_color(& pbd->rb_node, & tc->sort_bio_list); return; } } static void __extract_sorted_bios(struct thin_c *tc ) { struct rb_node *node ; struct dm_thin_endio_hook *pbd ; struct bio *bio ; struct rb_node const *__mptr ; int __ret_warn_on ; long tmp ; { node = rb_first((struct rb_root const *)(& tc->sort_bio_list)); goto ldv_35804; ldv_35803: __mptr = (struct rb_node const *)node; pbd = (struct dm_thin_endio_hook *)__mptr + 0xffffffffffffffe0UL; bio = dm_bio_from_per_bio_data((void *)pbd, 64UL); bio_list_add(& tc->deferred_bio_list, bio); rb_erase(& pbd->rb_node, & tc->sort_bio_list); node = rb_next((struct rb_node const *)node); ldv_35804: ; if ((unsigned long )node != (unsigned long )((struct rb_node *)0)) { goto ldv_35803; } else { } __ret_warn_on = (unsigned long )tc->sort_bio_list.rb_node != (unsigned long )((struct rb_node *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c", 2016); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); return; } } static void __sort_thin_deferred_bios(struct thin_c *tc ) { struct bio *bio ; struct bio_list bios ; { bio_list_init(& bios); bio_list_merge(& bios, & tc->deferred_bio_list); bio_list_init(& tc->deferred_bio_list); goto ldv_35814; ldv_35813: __thin_bio_rb_add(tc, bio); ldv_35814: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35813; } else { } __extract_sorted_bios(tc); return; } } static void process_thin_deferred_bios(struct thin_c *tc ) { struct pool *pool ; unsigned long flags ; struct bio *bio ; struct bio_list bios ; struct blk_plug plug ; unsigned int count ; raw_spinlock_t *tmp ; int tmp___0 ; raw_spinlock_t *tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; { pool = tc->pool; count = 0U; if ((int )tc->requeue_mode) { error_thin_bio_list(tc, & tc->deferred_bio_list, 2); return; } else { } bio_list_init(& bios); tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = bio_list_empty((struct bio_list const *)(& tc->deferred_bio_list)); if (tmp___0 != 0) { spin_unlock_irqrestore(& tc->lock, flags); return; } else { } __sort_thin_deferred_bios(tc); bio_list_merge(& bios, & tc->deferred_bio_list); bio_list_init(& tc->deferred_bio_list); spin_unlock_irqrestore(& tc->lock, flags); blk_start_plug(& plug); goto ldv_35833; ldv_35832: tmp___2 = ensure_next_mapping(pool); if (tmp___2 != 0) { tmp___1 = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp___1); bio_list_add(& tc->deferred_bio_list, bio); bio_list_merge(& tc->deferred_bio_list, & bios); spin_unlock_irqrestore(& tc->lock, flags); goto ldv_35831; } else { } if (((unsigned long long )bio->bi_rw & 128ULL) != 0ULL) { (*(pool->process_discard))(tc, bio); } else { (*(pool->process_bio))(tc, bio); } tmp___3 = count; count = count + 1U; if ((tmp___3 & 127U) == 0U) { throttle_work_update(& pool->throttle); dm_pool_issue_prefetches(pool->pmd); } else { } ldv_35833: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35832; } else { } ldv_35831: blk_finish_plug(& plug); return; } } static int cmp_cells(void const *lhs , void const *rhs ) { struct dm_bio_prison_cell *lhs_cell ; struct dm_bio_prison_cell *rhs_cell ; long tmp ; long tmp___0 ; { lhs_cell = *((struct dm_bio_prison_cell **)lhs); rhs_cell = *((struct dm_bio_prison_cell **)rhs); tmp = ldv__builtin_expect((unsigned long )lhs_cell->holder == (unsigned long )((struct bio *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (2103), "i" (12UL)); ldv_35840: ; goto ldv_35840; } else { } tmp___0 = ldv__builtin_expect((unsigned long )rhs_cell->holder == (unsigned long )((struct bio *)0), 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (2104), "i" (12UL)); ldv_35841: ; goto ldv_35841; } else { } if ((lhs_cell->holder)->bi_iter.bi_sector < (rhs_cell->holder)->bi_iter.bi_sector) { return (-1); } else { } if ((lhs_cell->holder)->bi_iter.bi_sector > (rhs_cell->holder)->bi_iter.bi_sector) { return (1); } else { } return (0); } } static unsigned int sort_cells(struct pool *pool , struct list_head *cells ) { unsigned int count ; struct dm_bio_prison_cell *cell ; struct dm_bio_prison_cell *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; unsigned int tmp___0 ; struct list_head const *__mptr___1 ; { count = 0U; __mptr = (struct list_head const *)cells->next; cell = (struct dm_bio_prison_cell *)__mptr; __mptr___0 = (struct list_head const *)cell->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___0; goto ldv_35857; ldv_35856: ; if (count > 8191U) { goto ldv_35855; } else { } tmp___0 = count; count = count + 1U; pool->cell_sort_array[tmp___0] = cell; list_del(& cell->user_list); cell = tmp; __mptr___1 = (struct list_head const *)tmp->user_list.next; tmp = (struct dm_bio_prison_cell *)__mptr___1; ldv_35857: ; if ((unsigned long )(& cell->user_list) != (unsigned long )cells) { goto ldv_35856; } else { } ldv_35855: sort((void *)(& pool->cell_sort_array), (size_t )count, 8UL, & cmp_cells, (void (*)(void * , void * , int ))0); return (count); } } static void process_thin_deferred_cells(struct thin_c *tc ) { struct pool *pool ; unsigned long flags ; struct list_head cells ; struct dm_bio_prison_cell *cell ; unsigned int i ; unsigned int j ; unsigned int count ; raw_spinlock_t *tmp ; int tmp___0 ; long tmp___1 ; raw_spinlock_t *tmp___2 ; int tmp___3 ; int tmp___4 ; { pool = tc->pool; INIT_LIST_HEAD(& cells); tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); list_splice_init(& tc->deferred_cells, & cells); spin_unlock_irqrestore(& tc->lock, flags); tmp___0 = list_empty((struct list_head const *)(& cells)); if (tmp___0 != 0) { return; } else { } ldv_35881: count = sort_cells(tc->pool, & cells); i = 0U; goto ldv_35879; ldv_35878: cell = pool->cell_sort_array[i]; tmp___1 = ldv__builtin_expect((unsigned long )cell->holder == (unsigned long )((struct bio *)0), 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (2155), "i" (12UL)); ldv_35871: ; goto ldv_35871; } else { } tmp___3 = ensure_next_mapping(pool); if (tmp___3 != 0) { j = i; goto ldv_35873; ldv_35872: list_add(& (pool->cell_sort_array[j])->user_list, & cells); j = j + 1U; ldv_35873: ; if (j < count) { goto ldv_35872; } else { } tmp___2 = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp___2); list_splice((struct list_head const *)(& cells), & tc->deferred_cells); spin_unlock_irqrestore(& tc->lock, flags); return; } else { } if (((unsigned long long )(cell->holder)->bi_rw & 128ULL) != 0ULL) { (*(pool->process_discard_cell))(tc, cell); } else { (*(pool->process_cell))(tc, cell); } i = i + 1U; ldv_35879: ; if (i < count) { goto ldv_35878; } else { } tmp___4 = list_empty((struct list_head const *)(& cells)); if (tmp___4 == 0) { goto ldv_35881; } else { } return; } } static void thin_get(struct thin_c *tc ) ; static void thin_put(struct thin_c *tc ) ; static struct thin_c *get_first_thin(struct pool *pool ) { struct thin_c *tc ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *________p1 ; struct list_head *_________p1 ; union __anonunion___u_272 __u ; int tmp ; int tmp___0 ; { tc = (struct thin_c *)0; rcu_read_lock(); tmp___0 = list_empty((struct list_head const *)(& pool->active_thins)); if (tmp___0 == 0) { __ptr = pool->active_thins.next; __read_once_size((void const volatile *)(& __ptr), (void *)(& __u.__c), 8); _________p1 = __u.__val; ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); __mptr = (struct list_head const *)________p1; tc = (struct thin_c *)__mptr; thin_get(tc); } else { } rcu_read_unlock(); return (tc); } } static struct thin_c *get_next_thin(struct pool *pool , struct thin_c *tc ) { struct thin_c *old_tc ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *________p1 ; struct list_head *_________p1 ; union __anonunion___u_274 __u ; int tmp ; struct list_head *__ptr___0 ; struct list_head const *__mptr___0 ; struct list_head *________p1___0 ; struct list_head *_________p1___0 ; union __anonunion___u_276 __u___0 ; int tmp___0 ; { old_tc = tc; rcu_read_lock(); __ptr = tc->list.next; __read_once_size((void const volatile *)(& __ptr), (void *)(& __u.__c), 8); _________p1 = __u.__val; ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); __mptr = (struct list_head const *)________p1; tc = (struct thin_c *)__mptr; goto ldv_35939; ldv_35938: thin_get(tc); thin_put(old_tc); rcu_read_unlock(); return (tc); __ptr___0 = tc->list.next; __read_once_size((void const volatile *)(& __ptr___0), (void *)(& __u___0.__c), 8); _________p1___0 = __u___0.__val; ________p1___0 = _________p1___0; tmp___0 = debug_lockdep_rcu_enabled(); __mptr___0 = (struct list_head const *)________p1___0; tc = (struct thin_c *)__mptr___0; ldv_35939: ; if ((unsigned long )(& tc->list) != (unsigned long )(& pool->active_thins)) { goto ldv_35938; } else { } thin_put(old_tc); rcu_read_unlock(); return ((struct thin_c *)0); } } static void process_deferred_bios(struct pool *pool ) { unsigned long flags ; struct bio *bio ; struct bio_list bios ; struct thin_c *tc ; raw_spinlock_t *tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tc = get_first_thin(pool); goto ldv_35949; ldv_35948: process_thin_deferred_cells(tc); process_thin_deferred_bios(tc); tc = get_next_thin(pool, tc); ldv_35949: ; if ((unsigned long )tc != (unsigned long )((struct thin_c *)0)) { goto ldv_35948; } else { } bio_list_init(& bios); tmp = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_merge(& bios, & pool->deferred_flush_bios); bio_list_init(& pool->deferred_flush_bios); spin_unlock_irqrestore(& pool->lock, flags); tmp___0 = bio_list_empty((struct bio_list const *)(& bios)); if (tmp___0 != 0) { tmp___1 = dm_pool_changed_this_transaction(pool->pmd); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return; } else { tmp___3 = need_commit_due_to_time(pool); if (tmp___3 == 0) { return; } else { } } } else { } tmp___4 = commit(pool); if (tmp___4 != 0) { goto ldv_35955; ldv_35954: bio_endio(bio, -5); ldv_35955: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35954; } else { } return; } else { } pool->last_commit_jiffies = jiffies; goto ldv_35958; ldv_35957: generic_make_request(bio); ldv_35958: bio = bio_list_pop(& bios); if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_35957; } else { } return; } } static void do_worker(struct work_struct *ws ) { struct pool *pool ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)ws; pool = (struct pool *)__mptr + 0xfffffffffffffee8UL; throttle_work_start(& pool->throttle); dm_pool_issue_prefetches(pool->pmd); throttle_work_update(& pool->throttle); process_prepared(pool, & pool->prepared_mappings, & pool->process_prepared_mapping); throttle_work_update(& pool->throttle); process_prepared(pool, & pool->prepared_discards, & pool->process_prepared_discard); throttle_work_update(& pool->throttle); process_deferred_bios(pool); throttle_work_complete(& pool->throttle); return; } } static void do_waker(struct work_struct *ws ) { struct pool *pool ; struct delayed_work const *__mptr ; struct delayed_work *tmp ; { tmp = to_delayed_work(ws); __mptr = (struct delayed_work const *)tmp; pool = (struct pool *)__mptr + 0xfffffffffffffe98UL; wake_worker(pool); queue_delayed_work(pool->wq, & pool->waker, 250UL); return; } } static void do_no_space_timeout(struct work_struct *ws ) { struct pool *pool ; struct delayed_work const *__mptr ; struct delayed_work *tmp ; enum pool_mode tmp___0 ; { tmp = to_delayed_work(ws); __mptr = (struct delayed_work const *)tmp; pool = (struct pool *)__mptr + 0xfffffffffffffdb8UL; tmp___0 = get_pool_mode(pool); if ((unsigned int )tmp___0 == 1U && ! pool->pf.error_if_no_space) { set_pool_mode(pool, 2); } else { } return; } } static struct pool_work *to_pool_work(struct work_struct *ws ) { struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)ws; return ((struct pool_work *)__mptr); } } static void pool_work_complete(struct pool_work *pw ) { { complete(& pw->complete); return; } } static void pool_work_wait(struct pool_work *pw , struct pool *pool , void (*fn)(struct work_struct * ) ) { struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { __init_work(& pw->worker, 1); __constr_expr_0.counter = 137438953408L; pw->worker.data = __constr_expr_0; lockdep_init_map(& pw->worker.lockdep_map, "(&pw->worker)", & __key, 0); INIT_LIST_HEAD(& pw->worker.entry); pw->worker.func = fn; init_completion(& pw->complete); queue_work(pool->wq, & pw->worker); wait_for_completion(& pw->complete); return; } } static struct noflush_work *to_noflush(struct work_struct *ws ) { struct pool_work const *__mptr ; struct pool_work *tmp ; { tmp = to_pool_work(ws); __mptr = (struct pool_work const *)tmp; return ((struct noflush_work *)__mptr); } } static void do_noflush_start(struct work_struct *ws ) { struct noflush_work *w ; struct noflush_work *tmp ; { tmp = to_noflush(ws); w = tmp; (w->tc)->requeue_mode = 1; requeue_io(w->tc); pool_work_complete(& w->pw); return; } } static void do_noflush_stop(struct work_struct *ws ) { struct noflush_work *w ; struct noflush_work *tmp ; { tmp = to_noflush(ws); w = tmp; (w->tc)->requeue_mode = 0; pool_work_complete(& w->pw); return; } } static void noflush_work(struct thin_c *tc , void (*fn)(struct work_struct * ) ) { struct noflush_work w ; { w.tc = tc; pool_work_wait(& w.pw, tc->pool, fn); return; } } static enum pool_mode get_pool_mode(struct pool *pool ) { { return (pool->pf.mode); } } static void notify_of_pool_mode_change(struct pool *pool , char const *new_mode ) { char const *tmp ; { dm_table_event((pool->ti)->table); tmp = dm_device_name(pool->pool_md); printk("\016device-mapper: thin: %s: switching pool to %s mode\n", tmp, new_mode); return; } } static bool passdown_enabled(struct pool_c *pt ) { { return (pt->adjusted_pf.discard_passdown); } } static void set_discard_callbacks(struct pool *pool ) { struct pool_c *pt ; bool tmp ; { pt = (struct pool_c *)(pool->ti)->private; tmp = passdown_enabled(pt); if ((int )tmp) { pool->process_discard_cell = & process_discard_cell_passdown; pool->process_prepared_discard = & process_prepared_discard_passdown; } else { pool->process_discard_cell = & process_discard_cell_no_passdown; pool->process_prepared_discard = & process_prepared_discard_no_passdown; } return; } } static void set_pool_mode(struct pool *pool , enum pool_mode new_mode ) { struct pool_c *pt ; bool needs_check ; bool tmp ; enum pool_mode old_mode ; enum pool_mode tmp___0 ; unsigned long no_space_timeout ; unsigned int __var ; char const *tmp___1 ; { pt = (struct pool_c *)(pool->ti)->private; tmp = dm_pool_metadata_needs_check(pool->pmd); needs_check = tmp; tmp___0 = get_pool_mode(pool); old_mode = tmp___0; __var = 0U; no_space_timeout = (unsigned long )((unsigned int )*((unsigned int volatile *)(& no_space_timeout_secs)) * 250U); if ((unsigned int )new_mode == 0U && (int )needs_check) { tmp___1 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: unable to switch pool to write mode until repaired.\n", tmp___1); if ((unsigned int )old_mode != (unsigned int )new_mode) { new_mode = old_mode; } else { new_mode = 2; } } else { } if ((unsigned int )old_mode == 3U) { new_mode = old_mode; } else { } switch ((unsigned int )new_mode) { case 3U: ; if ((unsigned int )old_mode != (unsigned int )new_mode) { notify_of_pool_mode_change(pool, "failure"); } else { } dm_pool_metadata_read_only(pool->pmd); pool->process_bio = & process_bio_fail; pool->process_discard = & process_bio_fail; pool->process_cell = & process_cell_fail; pool->process_discard_cell = & process_cell_fail; pool->process_prepared_mapping = & process_prepared_mapping_fail; pool->process_prepared_discard = & process_prepared_discard_fail; error_retry_list(pool); goto ldv_36044; case 2U: ; if ((unsigned int )old_mode != (unsigned int )new_mode) { notify_of_pool_mode_change(pool, "read-only"); } else { } dm_pool_metadata_read_only(pool->pmd); pool->process_bio = & process_bio_read_only; pool->process_discard = & process_bio_success; pool->process_cell = & process_cell_read_only; pool->process_discard_cell = & process_cell_success; pool->process_prepared_mapping = & process_prepared_mapping_fail; pool->process_prepared_discard = & process_prepared_discard_success; error_retry_list(pool); goto ldv_36044; case 1U: ; if ((unsigned int )old_mode != (unsigned int )new_mode) { notify_of_pool_mode_change(pool, "out-of-data-space"); } else { } pool->process_bio = & process_bio_read_only; pool->process_discard = & process_discard_bio; pool->process_cell = & process_cell_read_only; pool->process_prepared_mapping = & process_prepared_mapping; set_discard_callbacks(pool); if (! pool->pf.error_if_no_space && no_space_timeout != 0UL) { queue_delayed_work(pool->wq, & pool->no_space_timeout, no_space_timeout); } else { } goto ldv_36044; case 0U: ; if ((unsigned int )old_mode != (unsigned int )new_mode) { notify_of_pool_mode_change(pool, "write"); } else { } dm_pool_metadata_read_write(pool->pmd); pool->process_bio = & process_bio; pool->process_discard = & process_discard_bio; pool->process_cell = & process_cell; pool->process_prepared_mapping = & process_prepared_mapping; set_discard_callbacks(pool); goto ldv_36044; } ldv_36044: pool->pf.mode = new_mode; pt->adjusted_pf.mode = new_mode; return; } } static void abort_transaction(struct pool *pool ) { char const *dev_name___0 ; char const *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = dm_device_name(pool->pool_md); dev_name___0 = tmp; tmp___0 = ___ratelimit(& dm_ratelimit_state, "abort_transaction"); if (tmp___0 != 0) { printk("\vdevice-mapper: thin: %s: aborting current metadata transaction\n", dev_name___0); } else { } tmp___1 = dm_pool_abort_metadata(pool->pmd); if (tmp___1 != 0) { printk("\vdevice-mapper: thin: %s: failed to abort metadata transaction\n", dev_name___0); set_pool_mode(pool, 3); } else { } tmp___2 = dm_pool_metadata_set_needs_check(pool->pmd); if (tmp___2 != 0) { printk("\vdevice-mapper: thin: %s: failed to set \'needs_check\' flag in metadata\n", dev_name___0); set_pool_mode(pool, 3); } else { } return; } } static void metadata_operation_failed(struct pool *pool , char const *op , int r ) { char const *tmp ; int tmp___0 ; { tmp___0 = ___ratelimit(& dm_ratelimit_state, "metadata_operation_failed"); if (tmp___0 != 0) { tmp = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: metadata operation \'%s\' failed: error = %d\n", tmp, op, r); } else { } abort_transaction(pool); set_pool_mode(pool, 2); return; } } static void thin_defer_bio(struct thin_c *tc , struct bio *bio ) { unsigned long flags ; struct pool *pool ; raw_spinlock_t *tmp ; { pool = tc->pool; tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); bio_list_add(& tc->deferred_bio_list, bio); spin_unlock_irqrestore(& tc->lock, flags); wake_worker(pool); return; } } static void thin_defer_bio_with_throttle(struct thin_c *tc , struct bio *bio ) { struct pool *pool ; { pool = tc->pool; throttle_lock(& pool->throttle); thin_defer_bio(tc, bio); throttle_unlock(& pool->throttle); return; } } static void thin_defer_cell(struct thin_c *tc , struct dm_bio_prison_cell *cell ) { unsigned long flags ; struct pool *pool ; raw_spinlock_t *tmp ; { pool = tc->pool; throttle_lock(& pool->throttle); tmp = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp); list_add_tail(& cell->user_list, & tc->deferred_cells); spin_unlock_irqrestore(& tc->lock, flags); throttle_unlock(& pool->throttle); wake_worker(pool); return; } } static void thin_hook_bio(struct thin_c *tc , struct bio *bio ) { struct dm_thin_endio_hook *h ; void *tmp ; { tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; h->tc = tc; h->shared_read_entry = (struct dm_deferred_entry *)0; h->all_io_entry = (struct dm_deferred_entry *)0; h->overwrite_mapping = (struct dm_thin_new_mapping *)0; h->cell = (struct dm_bio_prison_cell *)0; return; } } static int thin_bio_map(struct dm_target *ti , struct bio *bio ) { int r ; struct thin_c *tc ; dm_block_t block ; dm_block_t tmp ; struct dm_thin_device *td ; struct dm_thin_lookup_result result ; struct dm_bio_prison_cell *virt_cell ; struct dm_bio_prison_cell *data_cell ; struct dm_cell_key key ; enum pool_mode tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; { tc = (struct thin_c *)ti->private; tmp = get_bio_block(tc, bio); block = tmp; td = tc->td; thin_hook_bio(tc, bio); if ((int )tc->requeue_mode) { bio_endio(bio, 2); return (0); } else { } tmp___0 = get_pool_mode(tc->pool); if ((unsigned int )tmp___0 == 3U) { bio_endio(bio, -5); return (0); } else { } if (((unsigned long long )bio->bi_rw & 12416ULL) != 0ULL) { thin_defer_bio_with_throttle(tc, bio); return (0); } else { } build_virtual_key(tc->td, block, & key); tmp___1 = bio_detain(tc->pool, & key, bio, & virt_cell); if (tmp___1 != 0) { return (0); } else { } r = dm_thin_find_block(td, block, 0, & result); switch (r) { case 0: tmp___2 = ldv__builtin_expect((long )result.shared, 0L); if (tmp___2 != 0L) { thin_defer_cell(tc, virt_cell); return (0); } else { } build_data_key(tc->td, result.block, & key); tmp___3 = bio_detain(tc->pool, & key, bio, & data_cell); if (tmp___3 != 0) { cell_defer_no_holder(tc, virt_cell); return (0); } else { } inc_all_io_entry(tc->pool, bio); cell_defer_no_holder(tc, data_cell); cell_defer_no_holder(tc, virt_cell); remap(tc, bio, result.block); return (1); case -61: ; case -11: thin_defer_cell(tc, virt_cell); return (0); default: bio_endio(bio, -5); cell_defer_no_holder(tc, virt_cell); return (0); } } } static int pool_is_congested(struct dm_target_callbacks *cb , int bdi_bits ) { struct pool_c *pt ; struct dm_target_callbacks const *__mptr ; struct request_queue *q ; enum pool_mode tmp ; int tmp___0 ; { __mptr = (struct dm_target_callbacks const *)cb; pt = (struct pool_c *)__mptr + 0xffffffffffffffe0UL; tmp = get_pool_mode(pt->pool); if ((unsigned int )tmp == 1U) { return (1); } else { } q = bdev_get_queue((pt->data_dev)->bdev); tmp___0 = bdi_congested(& q->backing_dev_info, bdi_bits); return (tmp___0); } } static void requeue_bios(struct pool *pool ) { unsigned long flags ; struct thin_c *tc ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *________p1 ; struct list_head *_________p1 ; union __anonunion___u_278 __u ; int tmp ; raw_spinlock_t *tmp___0 ; struct list_head *__ptr___0 ; struct list_head const *__mptr___0 ; struct list_head *________p1___0 ; struct list_head *_________p1___0 ; union __anonunion___u_280 __u___0 ; int tmp___1 ; { rcu_read_lock(); __ptr = pool->active_thins.next; __read_once_size((void const volatile *)(& __ptr), (void *)(& __u.__c), 8); _________p1 = __u.__val; ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); __mptr = (struct list_head const *)________p1; tc = (struct thin_c *)__mptr; goto ldv_36148; ldv_36147: tmp___0 = spinlock_check(& tc->lock); flags = _raw_spin_lock_irqsave(tmp___0); bio_list_merge(& tc->deferred_bio_list, & tc->retry_on_resume_list); bio_list_init(& tc->retry_on_resume_list); spin_unlock_irqrestore(& tc->lock, flags); __ptr___0 = tc->list.next; __read_once_size((void const volatile *)(& __ptr___0), (void *)(& __u___0.__c), 8); _________p1___0 = __u___0.__val; ________p1___0 = _________p1___0; tmp___1 = debug_lockdep_rcu_enabled(); __mptr___0 = (struct list_head const *)________p1___0; tc = (struct thin_c *)__mptr___0; ldv_36148: ; if ((unsigned long )(& tc->list) != (unsigned long )(& pool->active_thins)) { goto ldv_36147; } else { } rcu_read_unlock(); return; } } static bool data_dev_supports_discard(struct pool_c *pt ) { struct request_queue *q ; struct request_queue *tmp ; int tmp___0 ; int tmp___1 ; { tmp = bdev_get_queue((pt->data_dev)->bdev); q = tmp; if ((unsigned long )q != (unsigned long )((struct request_queue *)0)) { tmp___0 = constant_test_bit(14L, (unsigned long const volatile *)(& q->queue_flags)); if (tmp___0 != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return ((bool )tmp___1); } } static bool is_factor(sector_t block_size___0 , uint32_t n ) { int _res ; { _res = (int )(block_size___0 % (sector_t )n); block_size___0 = block_size___0 / (sector_t )n; return (_res == 0); } } static void disable_passdown_if_not_supported(struct pool_c *pt ) { struct pool *pool ; struct block_device *data_bdev ; struct queue_limits *data_limits ; struct request_queue *tmp ; char const *reason ; char buf[32U] ; bool tmp___0 ; int tmp___1 ; char const *tmp___2 ; { pool = pt->pool; data_bdev = (pt->data_dev)->bdev; tmp = bdev_get_queue(data_bdev); data_limits = & tmp->limits; reason = (char const *)0; if (! pt->adjusted_pf.discard_passdown) { return; } else { } tmp___0 = data_dev_supports_discard(pt); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { reason = "discard unsupported"; } else if (data_limits->max_discard_sectors < pool->sectors_per_block) { reason = "max discard sectors smaller than a block"; } else { } if ((unsigned long )reason != (unsigned long )((char const *)0)) { tmp___2 = bdevname(data_bdev, (char *)(& buf)); printk("\fdevice-mapper: thin: Data device (%s) %s: Disabling discard passdown.\n", tmp___2, reason); pt->adjusted_pf.discard_passdown = 0; } else { } return; } } static int bind_control_target(struct pool *pool , struct dm_target *ti ) { struct pool_c *pt ; enum pool_mode old_mode ; enum pool_mode tmp ; enum pool_mode new_mode ; { pt = (struct pool_c *)ti->private; tmp = get_pool_mode(pool); old_mode = tmp; new_mode = pt->adjusted_pf.mode; pt->adjusted_pf.mode = old_mode; pool->ti = ti; pool->pf = pt->adjusted_pf; pool->low_water_blocks = pt->low_water_blocks; set_pool_mode(pool, new_mode); return (0); } } static void unbind_control_target(struct pool *pool , struct dm_target *ti ) { { if ((unsigned long )pool->ti == (unsigned long )ti) { pool->ti = (struct dm_target *)0; } else { } return; } } static void pool_features_init(struct pool_features *pf ) { { pf->mode = 0; pf->zero_new_blocks = 1; pf->discard_enabled = 1; pf->discard_passdown = 1; pf->error_if_no_space = 0; return; } } static void __pool_destroy(struct pool *pool ) { int tmp ; { __pool_table_remove(pool); tmp = dm_pool_metadata_close(pool->pmd); if (tmp < 0) { printk("\fdevice-mapper: thin: %s: dm_pool_metadata_close() failed.\n", "__pool_destroy"); } else { } dm_bio_prison_destroy(pool->prison); dm_kcopyd_client_destroy(pool->copier); if ((unsigned long )pool->wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_17(pool->wq); } else { } if ((unsigned long )pool->next_mapping != (unsigned long )((struct dm_thin_new_mapping *)0)) { mempool_free((void *)pool->next_mapping, pool->mapping_pool); } else { } mempool_destroy(pool->mapping_pool); dm_deferred_set_destroy(pool->shared_read_ds); dm_deferred_set_destroy(pool->all_io_ds); kfree((void const *)pool); return; } } static struct kmem_cache *_new_mapping_cache ; static struct pool *pool_create(struct mapped_device *pool_md , struct block_device *metadata_dev , unsigned long block_size___0 , int read_only , char **error ) { int r ; void *err_p ; struct pool *pool ; struct dm_pool_metadata *pmd ; bool format_device ; bool tmp ; void *tmp___0 ; unsigned long tmp___1 ; long tmp___2 ; bool tmp___3 ; struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp___4 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; int tmp___5 ; { format_device = read_only == 0; pmd = dm_pool_metadata_open(metadata_dev, block_size___0, (int )format_device); tmp = IS_ERR((void const *)pmd); if ((int )tmp) { *error = (char *)"Error creating metadata object"; return ((struct pool *)pmd); } else { } tmp___0 = kmalloc(66576UL, 208U); pool = (struct pool *)tmp___0; if ((unsigned long )pool == (unsigned long )((struct pool *)0)) { *error = (char *)"Error allocating memory for pool"; err_p = ERR_PTR(-12L); goto bad_pool; } else { } pool->pmd = pmd; pool->sectors_per_block = (uint32_t )block_size___0; if (((block_size___0 - 1UL) & block_size___0) != 0UL) { pool->sectors_per_block_shift = -1; } else { tmp___1 = __ffs(block_size___0); pool->sectors_per_block_shift = (int )tmp___1; } pool->low_water_blocks = 0ULL; pool_features_init(& pool->pf); pool->prison = dm_bio_prison_create(); if ((unsigned long )pool->prison == (unsigned long )((struct dm_bio_prison *)0)) { *error = (char *)"Error creating pool\'s bio prison"; err_p = ERR_PTR(-12L); goto bad_prison; } else { } pool->copier = dm_kcopyd_client_create(& dm_kcopyd_throttle); tmp___3 = IS_ERR((void const *)pool->copier); if ((int )tmp___3) { tmp___2 = PTR_ERR((void const *)pool->copier); r = (int )tmp___2; *error = (char *)"Error creating pool\'s kcopyd client"; err_p = ERR_PTR((long )r); goto bad_kcopyd_client; } else { } __lock_name = "\"dm-\" \"thin\""; tmp___4 = __alloc_workqueue_key("dm-thin", 131082U, 1, & __key, __lock_name); pool->wq = tmp___4; if ((unsigned long )pool->wq == (unsigned long )((struct workqueue_struct *)0)) { *error = (char *)"Error creating pool\'s workqueue"; err_p = ERR_PTR(-12L); goto bad_wq; } else { } throttle_init(& pool->throttle); __init_work(& pool->worker, 0); __constr_expr_0.counter = 137438953408L; pool->worker.data = __constr_expr_0; lockdep_init_map(& pool->worker.lockdep_map, "(&pool->worker)", & __key___0, 0); INIT_LIST_HEAD(& pool->worker.entry); pool->worker.func = & do_worker; __init_work(& pool->waker.work, 0); __constr_expr_1.counter = 137438953408L; pool->waker.work.data = __constr_expr_1; lockdep_init_map(& pool->waker.work.lockdep_map, "(&(&pool->waker)->work)", & __key___1, 0); INIT_LIST_HEAD(& pool->waker.work.entry); pool->waker.work.func = & do_waker; init_timer_key(& pool->waker.timer, 2097152U, "(&(&pool->waker)->timer)", & __key___2); pool->waker.timer.function = & delayed_work_timer_fn; pool->waker.timer.data = (unsigned long )(& pool->waker); __init_work(& pool->no_space_timeout.work, 0); __constr_expr_2.counter = 137438953408L; pool->no_space_timeout.work.data = __constr_expr_2; lockdep_init_map(& pool->no_space_timeout.work.lockdep_map, "(&(&pool->no_space_timeout)->work)", & __key___3, 0); INIT_LIST_HEAD(& pool->no_space_timeout.work.entry); pool->no_space_timeout.work.func = & do_no_space_timeout; init_timer_key(& pool->no_space_timeout.timer, 2097152U, "(&(&pool->no_space_timeout)->timer)", & __key___4); pool->no_space_timeout.timer.function = & delayed_work_timer_fn; pool->no_space_timeout.timer.data = (unsigned long )(& pool->no_space_timeout); spinlock_check(& pool->lock); __raw_spin_lock_init(& pool->lock.__annonCompField17.rlock, "&(&pool->lock)->rlock", & __key___5); bio_list_init(& pool->deferred_flush_bios); INIT_LIST_HEAD(& pool->prepared_mappings); INIT_LIST_HEAD(& pool->prepared_discards); INIT_LIST_HEAD(& pool->active_thins); pool->low_water_triggered = 0; pool->suspended = 1; pool->shared_read_ds = dm_deferred_set_create(); if ((unsigned long )pool->shared_read_ds == (unsigned long )((struct dm_deferred_set *)0)) { *error = (char *)"Error creating pool\'s shared read deferred set"; err_p = ERR_PTR(-12L); goto bad_shared_read_ds; } else { } pool->all_io_ds = dm_deferred_set_create(); if ((unsigned long )pool->all_io_ds == (unsigned long )((struct dm_deferred_set *)0)) { *error = (char *)"Error creating pool\'s all io deferred set"; err_p = ERR_PTR(-12L); goto bad_all_io_ds; } else { } pool->next_mapping = (struct dm_thin_new_mapping *)0; pool->mapping_pool = mempool_create_slab_pool(1024, _new_mapping_cache); if ((unsigned long )pool->mapping_pool == (unsigned long )((mempool_t *)0)) { *error = (char *)"Error creating pool\'s mapping mempool"; err_p = ERR_PTR(-12L); goto bad_mapping_pool; } else { } pool->ref_count = 1U; pool->last_commit_jiffies = jiffies; pool->pool_md = pool_md; pool->md_dev = metadata_dev; __pool_table_insert(pool); return (pool); bad_mapping_pool: dm_deferred_set_destroy(pool->all_io_ds); bad_all_io_ds: dm_deferred_set_destroy(pool->shared_read_ds); bad_shared_read_ds: ldv_destroy_workqueue_18(pool->wq); bad_wq: dm_kcopyd_client_destroy(pool->copier); bad_kcopyd_client: dm_bio_prison_destroy(pool->prison); bad_prison: kfree((void const *)pool); bad_pool: tmp___5 = dm_pool_metadata_close(pmd); if (tmp___5 != 0) { printk("\fdevice-mapper: thin: %s: dm_pool_metadata_close() failed.\n", "pool_create"); } else { } return ((struct pool *)err_p); } } static void __pool_inc(struct pool *pool ) { int tmp ; long tmp___0 ; { tmp = mutex_is_locked(& dm_thin_pool_table.mutex); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (2921), "i" (12UL)); ldv_36222: ; goto ldv_36222; } else { } pool->ref_count = pool->ref_count + 1U; return; } } static void __pool_dec(struct pool *pool ) { int tmp ; long tmp___0 ; long tmp___1 ; { tmp = mutex_is_locked(& dm_thin_pool_table.mutex); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (2927), "i" (12UL)); ldv_36226: ; goto ldv_36226; } else { } tmp___1 = ldv__builtin_expect(pool->ref_count == 0U, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin.c"), "i" (2928), "i" (12UL)); ldv_36227: ; goto ldv_36227; } else { } pool->ref_count = pool->ref_count - 1U; if (pool->ref_count == 0U) { __pool_destroy(pool); } else { } return; } } static struct pool *__pool_find(struct mapped_device *pool_md , struct block_device *metadata_dev , unsigned long block_size___0 , int read_only , char **error , int *created ) { struct pool *pool ; struct pool *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = __pool_table_lookup_metadata_dev(metadata_dev); pool = tmp; if ((unsigned long )pool != (unsigned long )((struct pool *)0)) { if ((unsigned long )pool->pool_md != (unsigned long )pool_md) { *error = (char *)"metadata device already in use by a pool"; tmp___0 = ERR_PTR(-16L); return ((struct pool *)tmp___0); } else { } __pool_inc(pool); } else { pool = __pool_table_lookup(pool_md); if ((unsigned long )pool != (unsigned long )((struct pool *)0)) { if ((unsigned long )pool->md_dev != (unsigned long )metadata_dev) { *error = (char *)"different pool cannot replace a pool"; tmp___1 = ERR_PTR(-22L); return ((struct pool *)tmp___1); } else { } __pool_inc(pool); } else { pool = pool_create(pool_md, metadata_dev, block_size___0, read_only, error); *created = 1; } } return (pool); } } static void pool_dtr(struct dm_target *ti ) { struct pool_c *pt ; { pt = (struct pool_c *)ti->private; ldv_mutex_lock_19(& dm_thin_pool_table.mutex); unbind_control_target(pt->pool, ti); __pool_dec(pt->pool); dm_put_device(ti, pt->metadata_dev); dm_put_device(ti, pt->data_dev); kfree((void const *)pt); ldv_mutex_unlock_20(& dm_thin_pool_table.mutex); return; } } static int parse_pool_features(struct dm_arg_set *as , struct pool_features *pf , struct dm_target *ti ) { int r ; unsigned int argc ; char const *arg_name ; struct dm_arg _args[1U] ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { _args[0].min = 0U; _args[0].max = 4U; _args[0].error = (char *)"Invalid number of pool feature arguments"; if (as->argc == 0U) { return (0); } else { } r = dm_read_arg_group((struct dm_arg *)(& _args), as, & argc, & ti->error); if (r != 0) { return (-22); } else { } goto ldv_36252; ldv_36251: arg_name = dm_shift_arg(as); argc = argc - 1U; tmp___3 = strcasecmp(arg_name, "skip_block_zeroing"); if (tmp___3 == 0) { pf->zero_new_blocks = 0; } else { tmp___2 = strcasecmp(arg_name, "ignore_discard"); if (tmp___2 == 0) { pf->discard_enabled = 0; } else { tmp___1 = strcasecmp(arg_name, "no_discard_passdown"); if (tmp___1 == 0) { pf->discard_passdown = 0; } else { tmp___0 = strcasecmp(arg_name, "read_only"); if (tmp___0 == 0) { pf->mode = 2; } else { tmp = strcasecmp(arg_name, "error_if_no_space"); if (tmp == 0) { pf->error_if_no_space = 1; } else { ti->error = (char *)"Unrecognised pool feature requested"; r = -22; goto ldv_36250; } } } } } ldv_36252: ; if (argc != 0U && r == 0) { goto ldv_36251; } else { } ldv_36250: ; return (r); } } static void metadata_low_callback(void *context ) { struct pool *pool ; char const *tmp ; { pool = (struct pool *)context; tmp = dm_device_name(pool->pool_md); printk("\fdevice-mapper: thin: %s: reached low water mark for metadata device: sending event.\n", tmp); dm_table_event((pool->ti)->table); return; } } static sector_t get_dev_size(struct block_device *bdev ) { loff_t tmp ; { tmp = i_size_read((struct inode const *)bdev->bd_inode); return ((sector_t )(tmp >> 9)); } } static void warn_if_metadata_device_too_big(struct block_device *bdev ) { sector_t metadata_dev_size ; sector_t tmp ; char buffer[32U] ; char const *tmp___0 ; { tmp = get_dev_size(bdev); metadata_dev_size = tmp; if (metadata_dev_size > 33554432UL) { tmp___0 = bdevname(bdev, (char *)(& buffer)); printk("\fdevice-mapper: thin: Metadata device %s is larger than %u sectors: excess space will not be used.\n", tmp___0, 33292800); } else { } return; } } static sector_t get_metadata_dev_size(struct block_device *bdev ) { sector_t metadata_dev_size ; sector_t tmp ; { tmp = get_dev_size(bdev); metadata_dev_size = tmp; if (metadata_dev_size > 33292800UL) { metadata_dev_size = 33292800UL; } else { } return (metadata_dev_size); } } static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev ) { sector_t metadata_dev_size ; sector_t tmp ; int _res ; { tmp = get_metadata_dev_size(bdev); metadata_dev_size = tmp; _res = (int )metadata_dev_size & 7; metadata_dev_size = metadata_dev_size / 8UL; return ((dm_block_t )metadata_dev_size); } } static dm_block_t calc_metadata_threshold(struct pool_c *pt ) { dm_block_t quarter ; dm_block_t tmp ; unsigned long long _min1 ; dm_block_t _min2 ; { tmp = get_metadata_dev_size_in_blocks((pt->metadata_dev)->bdev); quarter = tmp / 4ULL; _min1 = 1024ULL; _min2 = quarter; return (_min1 < _min2 ? _min1 : _min2); } } static int pool_ctr(struct dm_target *ti , unsigned int argc , char **argv ) { int r ; int pool_created ; struct pool_c *pt ; struct pool *pool ; struct pool_features pf ; struct dm_arg_set as ; struct dm_dev *data_dev ; unsigned long block_size___0 ; dm_block_t low_water_blocks ; struct dm_dev *metadata_dev ; fmode_t metadata_mode ; int tmp ; int tmp___0 ; void *tmp___1 ; struct mapped_device *tmp___2 ; long tmp___3 ; bool tmp___4 ; struct pool_features tmp___5 ; dm_block_t tmp___6 ; { pool_created = 0; ldv_mutex_lock_21(& dm_thin_pool_table.mutex); if (argc <= 3U) { ti->error = (char *)"Invalid argument count"; r = -22; goto out_unlock; } else { } as.argc = argc; as.argv = argv; pool_features_init(& pf); dm_consume_args(& as, 4U); r = parse_pool_features(& as, & pf, ti); if (r != 0) { goto out_unlock; } else { } metadata_mode = (unsigned int )pf.mode == 2U ? 1U : 3U; r = dm_get_device(ti, (char const *)*argv, metadata_mode, & metadata_dev); if (r != 0) { ti->error = (char *)"Error opening metadata block device"; goto out_unlock; } else { } warn_if_metadata_device_too_big(metadata_dev->bdev); r = dm_get_device(ti, (char const *)*(argv + 1UL), 3U, & data_dev); if (r != 0) { ti->error = (char *)"Error getting data device"; goto out_metadata; } else { } tmp = kstrtoul((char const *)*(argv + 2UL), 10U, & block_size___0); if ((((tmp != 0 || block_size___0 == 0UL) || block_size___0 <= 127UL) || block_size___0 > 2097152UL) || (block_size___0 & 127UL) != 0UL) { ti->error = (char *)"Invalid block size"; r = -22; goto out; } else { } tmp___0 = kstrtoull((char const *)*(argv + 3UL), 10U, & low_water_blocks); if (tmp___0 != 0) { ti->error = (char *)"Invalid low water mark"; r = -22; goto out; } else { } tmp___1 = kzalloc(80UL, 208U); pt = (struct pool_c *)tmp___1; if ((unsigned long )pt == (unsigned long )((struct pool_c *)0)) { r = -12; goto out; } else { } tmp___2 = dm_table_get_md(ti->table); pool = __pool_find(tmp___2, metadata_dev->bdev, block_size___0, (unsigned int )pf.mode == 2U, & ti->error, & pool_created); tmp___4 = IS_ERR((void const *)pool); if ((int )tmp___4) { tmp___3 = PTR_ERR((void const *)pool); r = (int )tmp___3; goto out_free_pt; } else { } if (pool_created == 0 && (int )pf.discard_enabled != (int )pool->pf.discard_enabled) { ti->error = (char *)"Discard support cannot be disabled once enabled"; r = -22; goto out_flags_changed; } else { } pt->pool = pool; pt->ti = ti; pt->metadata_dev = metadata_dev; pt->data_dev = data_dev; pt->low_water_blocks = low_water_blocks; tmp___5 = pf; pt->requested_pf = tmp___5; pt->adjusted_pf = tmp___5; ti->num_flush_bios = 1U; ti->discard_zeroes_data_unsupported = 1; if ((int )pf.discard_enabled && (int )pf.discard_passdown) { ti->num_discard_bios = 1U; ti->discards_supported = 1; } else { } ti->private = (void *)pt; tmp___6 = calc_metadata_threshold(pt); r = dm_pool_register_metadata_threshold((pt->pool)->pmd, tmp___6, & metadata_low_callback, (void *)pool); if (r != 0) { goto out_free_pt; } else { } pt->callbacks.congested_fn = & pool_is_congested; dm_table_add_target_callbacks(ti->table, & pt->callbacks); ldv_mutex_unlock_22(& dm_thin_pool_table.mutex); return (0); out_flags_changed: __pool_dec(pool); out_free_pt: kfree((void const *)pt); out: dm_put_device(ti, data_dev); out_metadata: dm_put_device(ti, metadata_dev); out_unlock: ldv_mutex_unlock_23(& dm_thin_pool_table.mutex); return (r); } } static int pool_map(struct dm_target *ti , struct bio *bio ) { int r ; struct pool_c *pt ; struct pool *pool ; unsigned long flags ; raw_spinlock_t *tmp ; { pt = (struct pool_c *)ti->private; pool = pt->pool; tmp = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp); bio->bi_bdev = (pt->data_dev)->bdev; r = 1; spin_unlock_irqrestore(& pool->lock, flags); return (r); } } static int maybe_resize_data_dev(struct dm_target *ti , bool *need_commit ) { int r ; struct pool_c *pt ; struct pool *pool ; sector_t data_size ; dm_block_t sb_data_size ; int _res ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; bool tmp___2 ; char const *tmp___3 ; { pt = (struct pool_c *)ti->private; pool = pt->pool; data_size = ti->len; *need_commit = 0; _res = (int )(data_size % (sector_t )pool->sectors_per_block); data_size = data_size / (sector_t )pool->sectors_per_block; r = dm_pool_get_data_dev_size(pool->pmd, & sb_data_size); if (r != 0) { tmp = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: failed to retrieve data device size\n", tmp); return (r); } else { } if ((unsigned long long )data_size < sb_data_size) { tmp___0 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: pool target (%llu blocks) too small: expected %llu\n", tmp___0, (unsigned long long )data_size, sb_data_size); return (-22); } else if ((unsigned long long )data_size > sb_data_size) { tmp___2 = dm_pool_metadata_needs_check(pool->pmd); if ((int )tmp___2) { tmp___1 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: unable to grow the data device until repaired.\n", tmp___1); return (0); } else { } if (sb_data_size != 0ULL) { tmp___3 = dm_device_name(pool->pool_md); printk("\016device-mapper: thin: %s: growing the data device from %llu to %llu blocks\n", tmp___3, sb_data_size, (unsigned long long )data_size); } else { } r = dm_pool_resize_data_dev(pool->pmd, (dm_block_t )data_size); if (r != 0) { metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); return (r); } else { } *need_commit = 1; } else { } return (0); } } static int maybe_resize_metadata_dev(struct dm_target *ti , bool *need_commit ) { int r ; struct pool_c *pt ; struct pool *pool ; dm_block_t metadata_dev_size ; dm_block_t sb_metadata_dev_size ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; bool tmp___2 ; char const *tmp___3 ; { pt = (struct pool_c *)ti->private; pool = pt->pool; *need_commit = 0; metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); r = dm_pool_get_metadata_dev_size(pool->pmd, & sb_metadata_dev_size); if (r != 0) { tmp = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: failed to retrieve metadata device size\n", tmp); return (r); } else { } if (metadata_dev_size < sb_metadata_dev_size) { tmp___0 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: metadata device (%llu blocks) too small: expected %llu\n", tmp___0, metadata_dev_size, sb_metadata_dev_size); return (-22); } else if (metadata_dev_size > sb_metadata_dev_size) { tmp___2 = dm_pool_metadata_needs_check(pool->pmd); if ((int )tmp___2) { tmp___1 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: unable to grow the metadata device until repaired.\n", tmp___1); return (0); } else { } warn_if_metadata_device_too_big(pool->md_dev); tmp___3 = dm_device_name(pool->pool_md); printk("\016device-mapper: thin: %s: growing the metadata device from %llu to %llu blocks\n", tmp___3, sb_metadata_dev_size, metadata_dev_size); r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); if (r != 0) { metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); return (r); } else { } *need_commit = 1; } else { } return (0); } } static int pool_preresume(struct dm_target *ti ) { int r ; bool need_commit1 ; bool need_commit2 ; struct pool_c *pt ; struct pool *pool ; { pt = (struct pool_c *)ti->private; pool = pt->pool; r = bind_control_target(pool, ti); if (r != 0) { return (r); } else { } r = maybe_resize_data_dev(ti, & need_commit1); if (r != 0) { return (r); } else { } r = maybe_resize_metadata_dev(ti, & need_commit2); if (r != 0) { return (r); } else { } if ((int )need_commit1 || (int )need_commit2) { commit(pool); } else { } return (0); } } static void pool_suspend_active_thins(struct pool *pool ) { struct thin_c *tc ; { tc = get_first_thin(pool); goto ldv_36347; ldv_36346: dm_internal_suspend_noflush(tc->thin_md); tc = get_next_thin(pool, tc); ldv_36347: ; if ((unsigned long )tc != (unsigned long )((struct thin_c *)0)) { goto ldv_36346; } else { } return; } } static void pool_resume_active_thins(struct pool *pool ) { struct thin_c *tc ; { tc = get_first_thin(pool); goto ldv_36354; ldv_36353: dm_internal_resume(tc->thin_md); tc = get_next_thin(pool, tc); ldv_36354: ; if ((unsigned long )tc != (unsigned long )((struct thin_c *)0)) { goto ldv_36353; } else { } return; } } static void pool_resume(struct dm_target *ti ) { struct pool_c *pt ; struct pool *pool ; unsigned long flags ; raw_spinlock_t *tmp ; { pt = (struct pool_c *)ti->private; pool = pt->pool; requeue_bios(pool); pool_resume_active_thins(pool); tmp = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp); pool->low_water_triggered = 0; pool->suspended = 0; spin_unlock_irqrestore(& pool->lock, flags); do_waker(& pool->waker.work); return; } } static void pool_presuspend(struct dm_target *ti ) { struct pool_c *pt ; struct pool *pool ; unsigned long flags ; raw_spinlock_t *tmp ; { pt = (struct pool_c *)ti->private; pool = pt->pool; tmp = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp); pool->suspended = 1; spin_unlock_irqrestore(& pool->lock, flags); pool_suspend_active_thins(pool); return; } } static void pool_presuspend_undo(struct dm_target *ti ) { struct pool_c *pt ; struct pool *pool ; unsigned long flags ; raw_spinlock_t *tmp ; { pt = (struct pool_c *)ti->private; pool = pt->pool; pool_resume_active_thins(pool); tmp = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp); pool->suspended = 0; spin_unlock_irqrestore(& pool->lock, flags); return; } } static void pool_postsuspend(struct dm_target *ti ) { struct pool_c *pt ; struct pool *pool ; { pt = (struct pool_c *)ti->private; pool = pt->pool; ldv_cancel_delayed_work_24(& pool->waker); ldv_cancel_delayed_work_25(& pool->no_space_timeout); ldv_flush_workqueue_26(pool->wq); commit(pool); return; } } static int check_arg_count(unsigned int argc , unsigned int args_required ) { { if (argc != args_required) { printk("\fdevice-mapper: thin: Message received with %u arguments instead of %u.\n", argc, args_required); return (-22); } else { } return (0); } } static int read_dev_id(char *arg , dm_thin_id *dev_id , int warning ) { int tmp ; { tmp = kstrtoull((char const *)arg, 10U, dev_id); if (tmp == 0 && *dev_id <= 16777215ULL) { return (0); } else { } if (warning != 0) { printk("\fdevice-mapper: thin: Message received with invalid device id: %s\n", arg); } else { } return (-22); } } static int process_create_thin_mesg(unsigned int argc , char **argv , struct pool *pool ) { dm_thin_id dev_id ; int r ; { r = check_arg_count(argc, 2U); if (r != 0) { return (r); } else { } r = read_dev_id(*(argv + 1UL), & dev_id, 1); if (r != 0) { return (r); } else { } r = dm_pool_create_thin(pool->pmd, dev_id); if (r != 0) { printk("\fdevice-mapper: thin: Creation of new thinly-provisioned device with id %s failed.\n", *(argv + 1UL)); return (r); } else { } return (0); } } static int process_create_snap_mesg(unsigned int argc , char **argv , struct pool *pool ) { dm_thin_id dev_id ; dm_thin_id origin_dev_id ; int r ; { r = check_arg_count(argc, 3U); if (r != 0) { return (r); } else { } r = read_dev_id(*(argv + 1UL), & dev_id, 1); if (r != 0) { return (r); } else { } r = read_dev_id(*(argv + 2UL), & origin_dev_id, 1); if (r != 0) { return (r); } else { } r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); if (r != 0) { printk("\fdevice-mapper: thin: Creation of new snapshot %s of device %s failed.\n", *(argv + 1UL), *(argv + 2UL)); return (r); } else { } return (0); } } static int process_delete_mesg(unsigned int argc , char **argv , struct pool *pool ) { dm_thin_id dev_id ; int r ; { r = check_arg_count(argc, 2U); if (r != 0) { return (r); } else { } r = read_dev_id(*(argv + 1UL), & dev_id, 1); if (r != 0) { return (r); } else { } r = dm_pool_delete_thin_device(pool->pmd, dev_id); if (r != 0) { printk("\fdevice-mapper: thin: Deletion of thin device %s failed.\n", *(argv + 1UL)); } else { } return (r); } } static int process_set_transaction_id_mesg(unsigned int argc , char **argv , struct pool *pool ) { dm_thin_id old_id ; dm_thin_id new_id ; int r ; int tmp ; int tmp___0 ; { r = check_arg_count(argc, 3U); if (r != 0) { return (r); } else { } tmp = kstrtoull((char const *)*(argv + 1UL), 10U, & old_id); if (tmp != 0) { printk("\fdevice-mapper: thin: set_transaction_id message: Unrecognised id %s.\n", *(argv + 1UL)); return (-22); } else { } tmp___0 = kstrtoull((char const *)*(argv + 2UL), 10U, & new_id); if (tmp___0 != 0) { printk("\fdevice-mapper: thin: set_transaction_id message: Unrecognised new id %s.\n", *(argv + 2UL)); return (-22); } else { } r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); if (r != 0) { printk("\fdevice-mapper: thin: Failed to change transaction id from %s to %s.\n", *(argv + 1UL), *(argv + 2UL)); return (r); } else { } return (0); } } static int process_reserve_metadata_snap_mesg(unsigned int argc , char **argv , struct pool *pool ) { int r ; { r = check_arg_count(argc, 1U); if (r != 0) { return (r); } else { } commit(pool); r = dm_pool_reserve_metadata_snap(pool->pmd); if (r != 0) { printk("\fdevice-mapper: thin: reserve_metadata_snap message failed.\n"); } else { } return (r); } } static int process_release_metadata_snap_mesg(unsigned int argc , char **argv , struct pool *pool ) { int r ; { r = check_arg_count(argc, 1U); if (r != 0) { return (r); } else { } r = dm_pool_release_metadata_snap(pool->pmd); if (r != 0) { printk("\fdevice-mapper: thin: release_metadata_snap message failed.\n"); } else { } return (r); } } static int pool_message(struct dm_target *ti , unsigned int argc , char **argv ) { int r ; struct pool_c *pt ; struct pool *pool ; char const *tmp ; enum pool_mode tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { r = -22; pt = (struct pool_c *)ti->private; pool = pt->pool; tmp___0 = get_pool_mode(pool); if ((unsigned int )tmp___0 > 1U) { tmp = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: unable to service pool target messages in READ_ONLY or FAIL mode\n", tmp); return (-95); } else { } tmp___6 = strcasecmp((char const *)*argv, "create_thin"); if (tmp___6 == 0) { r = process_create_thin_mesg(argc, argv, pool); } else { tmp___5 = strcasecmp((char const *)*argv, "create_snap"); if (tmp___5 == 0) { r = process_create_snap_mesg(argc, argv, pool); } else { tmp___4 = strcasecmp((char const *)*argv, "delete"); if (tmp___4 == 0) { r = process_delete_mesg(argc, argv, pool); } else { tmp___3 = strcasecmp((char const *)*argv, "set_transaction_id"); if (tmp___3 == 0) { r = process_set_transaction_id_mesg(argc, argv, pool); } else { tmp___2 = strcasecmp((char const *)*argv, "reserve_metadata_snap"); if (tmp___2 == 0) { r = process_reserve_metadata_snap_mesg(argc, argv, pool); } else { tmp___1 = strcasecmp((char const *)*argv, "release_metadata_snap"); if (tmp___1 == 0) { r = process_release_metadata_snap_mesg(argc, argv, pool); } else { printk("\fdevice-mapper: thin: Unrecognised thin pool target message received: %s\n", *argv); } } } } } } if (r == 0) { commit(pool); } else { } return (r); } } static void emit_flags(struct pool_features *pf , char *result , unsigned int sz , unsigned int maxlen ) { unsigned int count ; int tmp ; unsigned int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; int tmp___7 ; unsigned int tmp___8 ; int tmp___9 ; unsigned int tmp___10 ; { count = (unsigned int )((((! pf->zero_new_blocks + ! pf->discard_enabled) + ! pf->discard_passdown) + ((unsigned int )pf->mode == 2U)) + (int )pf->error_if_no_space); if (sz < maxlen) { tmp = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%u ", count); tmp___0 = (unsigned int )tmp; } else { tmp___0 = 0U; } sz = tmp___0 + sz; if (! pf->zero_new_blocks) { if (sz < maxlen) { tmp___1 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "skip_block_zeroing "); tmp___2 = (unsigned int )tmp___1; } else { tmp___2 = 0U; } sz = tmp___2 + sz; } else { } if (! pf->discard_enabled) { if (sz < maxlen) { tmp___3 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "ignore_discard "); tmp___4 = (unsigned int )tmp___3; } else { tmp___4 = 0U; } sz = tmp___4 + sz; } else { } if (! pf->discard_passdown) { if (sz < maxlen) { tmp___5 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "no_discard_passdown "); tmp___6 = (unsigned int )tmp___5; } else { tmp___6 = 0U; } sz = tmp___6 + sz; } else { } if ((unsigned int )pf->mode == 2U) { if (sz < maxlen) { tmp___7 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "read_only "); tmp___8 = (unsigned int )tmp___7; } else { tmp___8 = 0U; } sz = tmp___8 + sz; } else { } if ((int )pf->error_if_no_space) { if (sz < maxlen) { tmp___9 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "error_if_no_space "); tmp___10 = (unsigned int )tmp___9; } else { tmp___10 = 0U; } sz = tmp___10 + sz; } else { } return; } } static void pool_status(struct dm_target *ti , status_type_t type , unsigned int status_flags , char *result , unsigned int maxlen ) { int r ; unsigned int sz ; uint64_t transaction_id ; dm_block_t nr_free_blocks_data ; dm_block_t nr_free_blocks_metadata ; dm_block_t nr_blocks_data ; dm_block_t nr_blocks_metadata ; dm_block_t held_root ; char buf[32U] ; char buf2[32U] ; struct pool_c *pt ; struct pool *pool ; int tmp ; unsigned int tmp___0 ; enum pool_mode tmp___1 ; int tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; char const *tmp___5 ; char const *tmp___6 ; char const *tmp___7 ; char const *tmp___8 ; int tmp___9 ; unsigned int tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; int tmp___13 ; unsigned int tmp___14 ; int tmp___15 ; unsigned int tmp___16 ; int tmp___17 ; unsigned int tmp___18 ; int tmp___19 ; unsigned int tmp___20 ; int tmp___21 ; unsigned int tmp___22 ; int tmp___23 ; unsigned int tmp___24 ; int tmp___25 ; unsigned int tmp___26 ; int tmp___27 ; unsigned int tmp___28 ; int tmp___29 ; unsigned int tmp___30 ; int tmp___31 ; unsigned int tmp___32 ; int tmp___33 ; unsigned int tmp___34 ; { sz = 0U; pt = (struct pool_c *)ti->private; pool = pt->pool; switch ((unsigned int )type) { case 0U: tmp___1 = get_pool_mode(pool); if ((unsigned int )tmp___1 == 3U) { if (sz < maxlen) { tmp = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "Fail"); tmp___0 = (unsigned int )tmp; } else { tmp___0 = 0U; } sz = tmp___0 + sz; goto ldv_36474; } else { } if ((status_flags & 1U) == 0U) { tmp___2 = dm_suspended(ti); if (tmp___2 == 0) { commit(pool); } else { } } else { } r = dm_pool_get_metadata_transaction_id(pool->pmd, & transaction_id); if (r != 0) { tmp___3 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: dm_pool_get_metadata_transaction_id returned %d\n", tmp___3, r); goto err; } else { } r = dm_pool_get_free_metadata_block_count(pool->pmd, & nr_free_blocks_metadata); if (r != 0) { tmp___4 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: dm_pool_get_free_metadata_block_count returned %d\n", tmp___4, r); goto err; } else { } r = dm_pool_get_metadata_dev_size(pool->pmd, & nr_blocks_metadata); if (r != 0) { tmp___5 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: dm_pool_get_metadata_dev_size returned %d\n", tmp___5, r); goto err; } else { } r = dm_pool_get_free_block_count(pool->pmd, & nr_free_blocks_data); if (r != 0) { tmp___6 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: dm_pool_get_free_block_count returned %d\n", tmp___6, r); goto err; } else { } r = dm_pool_get_data_dev_size(pool->pmd, & nr_blocks_data); if (r != 0) { tmp___7 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: dm_pool_get_data_dev_size returned %d\n", tmp___7, r); goto err; } else { } r = dm_pool_get_metadata_snap(pool->pmd, & held_root); if (r != 0) { tmp___8 = dm_device_name(pool->pool_md); printk("\vdevice-mapper: thin: %s: dm_pool_get_metadata_snap returned %d\n", tmp___8, r); goto err; } else { } if (sz < maxlen) { tmp___9 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%llu %llu/%llu %llu/%llu ", transaction_id, nr_blocks_metadata - nr_free_blocks_metadata, nr_blocks_metadata, nr_blocks_data - nr_free_blocks_data, nr_blocks_data); tmp___10 = (unsigned int )tmp___9; } else { tmp___10 = 0U; } sz = tmp___10 + sz; if (held_root != 0ULL) { if (sz < maxlen) { tmp___11 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%llu ", held_root); tmp___12 = (unsigned int )tmp___11; } else { tmp___12 = 0U; } sz = tmp___12 + sz; } else { if (sz < maxlen) { tmp___13 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "- "); tmp___14 = (unsigned int )tmp___13; } else { tmp___14 = 0U; } sz = tmp___14 + sz; } if ((unsigned int )pool->pf.mode == 1U) { if (sz < maxlen) { tmp___15 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "out_of_data_space "); tmp___16 = (unsigned int )tmp___15; } else { tmp___16 = 0U; } sz = tmp___16 + sz; } else if ((unsigned int )pool->pf.mode == 2U) { if (sz < maxlen) { tmp___17 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "ro "); tmp___18 = (unsigned int )tmp___17; } else { tmp___18 = 0U; } sz = tmp___18 + sz; } else { if (sz < maxlen) { tmp___19 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "rw "); tmp___20 = (unsigned int )tmp___19; } else { tmp___20 = 0U; } sz = tmp___20 + sz; } if (! pool->pf.discard_enabled) { if (sz < maxlen) { tmp___21 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "ignore_discard "); tmp___22 = (unsigned int )tmp___21; } else { tmp___22 = 0U; } sz = tmp___22 + sz; } else if ((int )pool->pf.discard_passdown) { if (sz < maxlen) { tmp___23 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "discard_passdown "); tmp___24 = (unsigned int )tmp___23; } else { tmp___24 = 0U; } sz = tmp___24 + sz; } else { if (sz < maxlen) { tmp___25 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "no_discard_passdown "); tmp___26 = (unsigned int )tmp___25; } else { tmp___26 = 0U; } sz = tmp___26 + sz; } if ((int )pool->pf.error_if_no_space) { if (sz < maxlen) { tmp___27 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "error_if_no_space "); tmp___28 = (unsigned int )tmp___27; } else { tmp___28 = 0U; } sz = tmp___28 + sz; } else { if (sz < maxlen) { tmp___29 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "queue_if_no_space "); tmp___30 = (unsigned int )tmp___29; } else { tmp___30 = 0U; } sz = tmp___30 + sz; } goto ldv_36474; case 1U: ; if (sz < maxlen) { sprintf((char *)(& buf2), "%u:%u", ((pt->data_dev)->bdev)->bd_dev >> 20, ((pt->data_dev)->bdev)->bd_dev & 1048575U); sprintf((char *)(& buf), "%u:%u", ((pt->metadata_dev)->bdev)->bd_dev >> 20, ((pt->metadata_dev)->bdev)->bd_dev & 1048575U); tmp___31 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%s %s %lu %llu ", (char *)(& buf), (char *)(& buf2), (unsigned long )pool->sectors_per_block, pt->low_water_blocks); tmp___32 = (unsigned int )tmp___31; } else { tmp___32 = 0U; } sz = tmp___32 + sz; emit_flags(& pt->requested_pf, result, sz, maxlen); goto ldv_36474; } ldv_36474: ; return; err: ; if (sz < maxlen) { tmp___33 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "Error"); tmp___34 = (unsigned int )tmp___33; } else { tmp___34 = 0U; } sz = tmp___34 + sz; return; } } static int pool_iterate_devices(struct dm_target *ti , int (*fn)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void *data ) { struct pool_c *pt ; int tmp ; { pt = (struct pool_c *)ti->private; tmp = (*fn)(ti, pt->data_dev, 0UL, ti->len, data); return (tmp); } } static int pool_merge(struct dm_target *ti , struct bvec_merge_data *bvm , struct bio_vec *biovec , int max_size ) { struct pool_c *pt ; struct request_queue *q ; struct request_queue *tmp ; int _min1 ; int _min2 ; int tmp___0 ; { pt = (struct pool_c *)ti->private; tmp = bdev_get_queue((pt->data_dev)->bdev); q = tmp; if ((unsigned long )q->merge_bvec_fn == (unsigned long )((merge_bvec_fn *)0)) { return (max_size); } else { } bvm->bi_bdev = (pt->data_dev)->bdev; _min1 = max_size; tmp___0 = (*(q->merge_bvec_fn))(q, bvm, biovec); _min2 = tmp___0; return (_min1 < _min2 ? _min1 : _min2); } } static void pool_io_hints(struct dm_target *ti , struct queue_limits *limits ) { struct pool_c *pt ; struct pool *pool ; sector_t io_opt_sectors ; unsigned long tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; { pt = (struct pool_c *)ti->private; pool = pt->pool; io_opt_sectors = (sector_t )(limits->io_opt >> 9); if (limits->max_sectors < pool->sectors_per_block) { goto ldv_36504; ldv_36503: ; if ((limits->max_sectors & (limits->max_sectors - 1U)) == 0U) { limits->max_sectors = limits->max_sectors - 1U; } else { } tmp = __rounddown_pow_of_two((unsigned long )limits->max_sectors); limits->max_sectors = (unsigned int )tmp; ldv_36504: tmp___0 = is_factor((sector_t )pool->sectors_per_block, limits->max_sectors); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { goto ldv_36503; } else { } } else { } if ((sector_t )pool->sectors_per_block > io_opt_sectors) { goto _L; } else { tmp___3 = is_factor(io_opt_sectors, pool->sectors_per_block); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { _L: /* CIL Label */ tmp___2 = is_factor((sector_t )pool->sectors_per_block, limits->max_sectors); if ((int )tmp___2) { blk_limits_io_min(limits, limits->max_sectors << 9); } else { blk_limits_io_min(limits, pool->sectors_per_block << 9); } blk_limits_io_opt(limits, pool->sectors_per_block << 9); } else { } } if (! pt->adjusted_pf.discard_enabled) { limits->discard_granularity = 0U; return; } else { } disable_passdown_if_not_supported(pt); return; } } static struct target_type pool_target = {7ULL, "thin-pool", & __this_module, {1U, 15U, 0U}, & pool_ctr, & pool_dtr, & pool_map, 0, 0, 0, 0, 0, & pool_presuspend, & pool_presuspend_undo, & pool_postsuspend, & pool_preresume, & pool_resume, & pool_status, & pool_message, 0, & pool_merge, 0, & pool_iterate_devices, & pool_io_hints, {0, 0}}; static void thin_get(struct thin_c *tc ) { { atomic_inc(& tc->refcount); return; } } static void thin_put(struct thin_c *tc ) { int tmp ; { tmp = atomic_dec_and_test(& tc->refcount); if (tmp != 0) { complete(& tc->can_destroy); } else { } return; } } static void thin_dtr(struct dm_target *ti ) { struct thin_c *tc ; unsigned long flags ; raw_spinlock_t *tmp ; { tc = (struct thin_c *)ti->private; tmp = spinlock_check(& (tc->pool)->lock); flags = _raw_spin_lock_irqsave(tmp); list_del_rcu(& tc->list); spin_unlock_irqrestore(& (tc->pool)->lock, flags); synchronize_rcu(); thin_put(tc); wait_for_completion(& tc->can_destroy); ldv_mutex_lock_27(& dm_thin_pool_table.mutex); __pool_dec(tc->pool); dm_pool_close_thin_device(tc->td); dm_put_device(ti, tc->pool_dev); if ((unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ti, tc->origin_dev); } else { } kfree((void const *)tc); ldv_mutex_unlock_28(& dm_thin_pool_table.mutex); return; } } static int thin_ctr(struct dm_target *ti , unsigned int argc , char **argv ) { int r ; struct thin_c *tc ; struct dm_dev *pool_dev ; struct dm_dev *origin_dev ; struct mapped_device *pool_md ; unsigned long flags ; void *tmp ; struct lock_class_key __key ; struct rb_root __constr_expr_0 ; fmode_t tmp___0 ; int tmp___1 ; enum pool_mode tmp___2 ; raw_spinlock_t *tmp___3 ; { ldv_mutex_lock_29(& dm_thin_pool_table.mutex); if (argc != 2U && argc != 3U) { ti->error = (char *)"Invalid argument count"; r = -22; goto out_unlock; } else { } tmp = kzalloc(312UL, 208U); ti->private = tmp; tc = (struct thin_c *)tmp; if ((unsigned long )tc == (unsigned long )((struct thin_c *)0)) { ti->error = (char *)"Out of memory"; r = -12; goto out_unlock; } else { } tc->thin_md = dm_table_get_md(ti->table); spinlock_check(& tc->lock); __raw_spin_lock_init(& tc->lock.__annonCompField17.rlock, "&(&tc->lock)->rlock", & __key); INIT_LIST_HEAD(& tc->deferred_cells); bio_list_init(& tc->deferred_bio_list); bio_list_init(& tc->retry_on_resume_list); __constr_expr_0.rb_node = (struct rb_node *)0; tc->sort_bio_list = __constr_expr_0; if (argc == 3U) { r = dm_get_device(ti, (char const *)*(argv + 2UL), 1U, & origin_dev); if (r != 0) { ti->error = (char *)"Error opening origin device"; goto bad_origin_dev; } else { } tc->origin_dev = origin_dev; } else { } tmp___0 = dm_table_get_mode(ti->table); r = dm_get_device(ti, (char const *)*argv, tmp___0, & pool_dev); if (r != 0) { ti->error = (char *)"Error opening pool device"; goto bad_pool_dev; } else { } tc->pool_dev = pool_dev; tmp___1 = read_dev_id(*(argv + 1UL), & tc->dev_id, 0); if (tmp___1 != 0) { ti->error = (char *)"Invalid device id"; r = -22; goto bad_common; } else { } pool_md = dm_get_md(((tc->pool_dev)->bdev)->bd_dev); if ((unsigned long )pool_md == (unsigned long )((struct mapped_device *)0)) { ti->error = (char *)"Couldn\'t get pool mapped device"; r = -22; goto bad_common; } else { } tc->pool = __pool_table_lookup(pool_md); if ((unsigned long )tc->pool == (unsigned long )((struct pool *)0)) { ti->error = (char *)"Couldn\'t find pool object"; r = -22; goto bad_pool_lookup; } else { } __pool_inc(tc->pool); tmp___2 = get_pool_mode(tc->pool); if ((unsigned int )tmp___2 == 3U) { ti->error = (char *)"Couldn\'t open thin device, Pool is in fail mode"; r = -22; goto bad_pool; } else { } r = dm_pool_open_thin_device((tc->pool)->pmd, tc->dev_id, & tc->td); if (r != 0) { ti->error = (char *)"Couldn\'t open thin internal device"; goto bad_pool; } else { } r = dm_set_target_max_io_len(ti, (sector_t )(tc->pool)->sectors_per_block); if (r != 0) { goto bad; } else { } ti->num_flush_bios = 1U; ti->flush_supported = 1; ti->per_bio_data_size = 64U; ti->discard_zeroes_data_unsupported = 1; if ((int )(tc->pool)->pf.discard_enabled) { ti->discards_supported = 1; ti->num_discard_bios = 1U; ti->split_discard_bios = 0; } else { } ldv_mutex_unlock_30(& dm_thin_pool_table.mutex); tmp___3 = spinlock_check(& (tc->pool)->lock); flags = _raw_spin_lock_irqsave(tmp___3); if ((int )(tc->pool)->suspended) { spin_unlock_irqrestore(& (tc->pool)->lock, flags); ldv_mutex_lock_31(& dm_thin_pool_table.mutex); ti->error = (char *)"Unable to activate thin device while pool is suspended"; r = -22; goto bad; } else { } atomic_set(& tc->refcount, 1); init_completion(& tc->can_destroy); list_add_tail_rcu(& tc->list, & (tc->pool)->active_thins); spin_unlock_irqrestore(& (tc->pool)->lock, flags); synchronize_rcu(); dm_put(pool_md); return (0); bad: dm_pool_close_thin_device(tc->td); bad_pool: __pool_dec(tc->pool); bad_pool_lookup: dm_put(pool_md); bad_common: dm_put_device(ti, tc->pool_dev); bad_pool_dev: ; if ((unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { dm_put_device(ti, tc->origin_dev); } else { } bad_origin_dev: kfree((void const *)tc); out_unlock: ldv_mutex_unlock_32(& dm_thin_pool_table.mutex); return (r); } } static int thin_map(struct dm_target *ti , struct bio *bio ) { int tmp ; { bio->bi_iter.bi_sector = bio->bi_iter.bi_sector - ti->begin; tmp = thin_bio_map(ti, bio); return (tmp); } } static int thin_endio(struct dm_target *ti , struct bio *bio , int err ) { unsigned long flags ; struct dm_thin_endio_hook *h ; void *tmp ; struct list_head work ; struct dm_thin_new_mapping *m ; struct dm_thin_new_mapping *tmp___0 ; struct pool *pool ; raw_spinlock_t *tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; raw_spinlock_t *tmp___2 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; int tmp___3 ; { tmp = dm_per_bio_data(bio, 64UL); h = (struct dm_thin_endio_hook *)tmp; pool = (h->tc)->pool; if ((unsigned long )h->shared_read_entry != (unsigned long )((struct dm_deferred_entry *)0)) { INIT_LIST_HEAD(& work); dm_deferred_entry_dec(h->shared_read_entry, & work); tmp___1 = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp___1); __mptr = (struct list_head const *)work.next; m = (struct dm_thin_new_mapping *)__mptr; __mptr___0 = (struct list_head const *)m->list.next; tmp___0 = (struct dm_thin_new_mapping *)__mptr___0; goto ldv_36569; ldv_36568: list_del(& m->list); __complete_mapping_preparation(m); m = tmp___0; __mptr___1 = (struct list_head const *)tmp___0->list.next; tmp___0 = (struct dm_thin_new_mapping *)__mptr___1; ldv_36569: ; if ((unsigned long )(& m->list) != (unsigned long )(& work)) { goto ldv_36568; } else { } spin_unlock_irqrestore(& pool->lock, flags); } else { } if ((unsigned long )h->all_io_entry != (unsigned long )((struct dm_deferred_entry *)0)) { INIT_LIST_HEAD(& work); dm_deferred_entry_dec(h->all_io_entry, & work); tmp___3 = list_empty((struct list_head const *)(& work)); if (tmp___3 == 0) { tmp___2 = spinlock_check(& pool->lock); flags = _raw_spin_lock_irqsave(tmp___2); __mptr___2 = (struct list_head const *)work.next; m = (struct dm_thin_new_mapping *)__mptr___2; __mptr___3 = (struct list_head const *)m->list.next; tmp___0 = (struct dm_thin_new_mapping *)__mptr___3; goto ldv_36581; ldv_36580: list_add_tail(& m->list, & pool->prepared_discards); m = tmp___0; __mptr___4 = (struct list_head const *)tmp___0->list.next; tmp___0 = (struct dm_thin_new_mapping *)__mptr___4; ldv_36581: ; if ((unsigned long )(& m->list) != (unsigned long )(& work)) { goto ldv_36580; } else { } spin_unlock_irqrestore(& pool->lock, flags); wake_worker(pool); } else { } } else { } if ((unsigned long )h->cell != (unsigned long )((struct dm_bio_prison_cell *)0)) { cell_defer_no_holder(h->tc, h->cell); } else { } return (0); } } static void thin_presuspend(struct dm_target *ti ) { struct thin_c *tc ; int tmp ; { tc = (struct thin_c *)ti->private; tmp = dm_noflush_suspending(ti); if (tmp != 0) { noflush_work(tc, & do_noflush_start); } else { } return; } } static void thin_postsuspend(struct dm_target *ti ) { struct thin_c *tc ; { tc = (struct thin_c *)ti->private; noflush_work(tc, & do_noflush_stop); return; } } static int thin_preresume(struct dm_target *ti ) { struct thin_c *tc ; { tc = (struct thin_c *)ti->private; if ((unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { tc->origin_size = get_dev_size((tc->origin_dev)->bdev); } else { } return (0); } } static void thin_status(struct dm_target *ti , status_type_t type , unsigned int status_flags , char *result , unsigned int maxlen ) { int r ; ssize_t sz ; dm_block_t mapped ; dm_block_t highest ; char buf[32U] ; struct thin_c *tc ; int tmp ; ssize_t tmp___0 ; enum pool_mode tmp___1 ; int tmp___2 ; ssize_t tmp___3 ; int tmp___4 ; ssize_t tmp___5 ; int tmp___6 ; ssize_t tmp___7 ; int tmp___8 ; ssize_t tmp___9 ; int tmp___10 ; ssize_t tmp___11 ; int tmp___12 ; ssize_t tmp___13 ; int tmp___14 ; ssize_t tmp___15 ; { sz = 0L; tc = (struct thin_c *)ti->private; tmp___1 = get_pool_mode(tc->pool); if ((unsigned int )tmp___1 == 3U) { if ((ssize_t )maxlen > sz) { tmp = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "Fail"); tmp___0 = (ssize_t )tmp; } else { tmp___0 = 0L; } sz = tmp___0 + sz; return; } else { } if ((unsigned long )tc->td == (unsigned long )((struct dm_thin_device *)0)) { if ((ssize_t )maxlen > sz) { tmp___2 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "-"); tmp___3 = (ssize_t )tmp___2; } else { tmp___3 = 0L; } sz = tmp___3 + sz; } else { switch ((unsigned int )type) { case 0U: r = dm_thin_get_mapped_count(tc->td, & mapped); if (r != 0) { printk("\vdevice-mapper: thin: dm_thin_get_mapped_count returned %d\n", r); goto err; } else { } r = dm_thin_get_highest_mapped_block(tc->td, & highest); if (r < 0) { printk("\vdevice-mapper: thin: dm_thin_get_highest_mapped_block returned %d\n", r); goto err; } else { } if ((ssize_t )maxlen > sz) { tmp___4 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%llu ", (dm_block_t )(tc->pool)->sectors_per_block * mapped); tmp___5 = (ssize_t )tmp___4; } else { tmp___5 = 0L; } sz = tmp___5 + sz; if (r != 0) { if ((ssize_t )maxlen > sz) { tmp___6 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%llu", (highest + 1ULL) * (dm_block_t )(tc->pool)->sectors_per_block - 1ULL); tmp___7 = (ssize_t )tmp___6; } else { tmp___7 = 0L; } sz = tmp___7 + sz; } else { if ((ssize_t )maxlen > sz) { tmp___8 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "-"); tmp___9 = (ssize_t )tmp___8; } else { tmp___9 = 0L; } sz = tmp___9 + sz; } goto ldv_36610; case 1U: ; if ((ssize_t )maxlen > sz) { sprintf((char *)(& buf), "%u:%u", ((tc->pool_dev)->bdev)->bd_dev >> 20, ((tc->pool_dev)->bdev)->bd_dev & 1048575U); tmp___10 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "%s %lu", (char *)(& buf), (unsigned long )tc->dev_id); tmp___11 = (ssize_t )tmp___10; } else { tmp___11 = 0L; } sz = tmp___11 + sz; if ((unsigned long )tc->origin_dev != (unsigned long )((struct dm_dev *)0)) { if ((ssize_t )maxlen > sz) { sprintf((char *)(& buf), "%u:%u", ((tc->origin_dev)->bdev)->bd_dev >> 20, ((tc->origin_dev)->bdev)->bd_dev & 1048575U); tmp___12 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), " %s", (char *)(& buf)); tmp___13 = (ssize_t )tmp___12; } else { tmp___13 = 0L; } sz = tmp___13 + sz; } else { } goto ldv_36610; } ldv_36610: ; } return; err: ; if ((ssize_t )maxlen > sz) { tmp___14 = scnprintf(result + (unsigned long )sz, (size_t )((ssize_t )maxlen - sz), "Error"); tmp___15 = (ssize_t )tmp___14; } else { tmp___15 = 0L; } sz = tmp___15 + sz; return; } } static int thin_merge(struct dm_target *ti , struct bvec_merge_data *bvm , struct bio_vec *biovec , int max_size ) { struct thin_c *tc ; struct request_queue *q ; struct request_queue *tmp ; int _min1 ; int _min2 ; int tmp___0 ; { tc = (struct thin_c *)ti->private; tmp = bdev_get_queue((tc->pool_dev)->bdev); q = tmp; if ((unsigned long )q->merge_bvec_fn == (unsigned long )((merge_bvec_fn *)0)) { return (max_size); } else { } bvm->bi_bdev = (tc->pool_dev)->bdev; bvm->bi_sector = bvm->bi_sector - ti->begin; _min1 = max_size; tmp___0 = (*(q->merge_bvec_fn))(q, bvm, biovec); _min2 = tmp___0; return (_min1 < _min2 ? _min1 : _min2); } } static int thin_iterate_devices(struct dm_target *ti , int (*fn)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void *data ) { sector_t blocks ; struct thin_c *tc ; struct pool *pool ; int _res ; int tmp ; { tc = (struct thin_c *)ti->private; pool = tc->pool; if ((unsigned long )pool->ti == (unsigned long )((struct dm_target *)0)) { return (0); } else { } blocks = (pool->ti)->len; _res = (int )(blocks % (sector_t )pool->sectors_per_block); blocks = blocks / (sector_t )pool->sectors_per_block; if (blocks != 0UL) { tmp = (*fn)(ti, tc->pool_dev, 0UL, (sector_t )pool->sectors_per_block * blocks, data); return (tmp); } else { } return (0); } } static void thin_io_hints(struct dm_target *ti , struct queue_limits *limits ) { struct thin_c *tc ; struct pool *pool ; { tc = (struct thin_c *)ti->private; pool = tc->pool; limits->discard_granularity = pool->sectors_per_block << 9; limits->max_discard_sectors = 33554432U; return; } } static struct target_type thin_target = {0ULL, "thin", & __this_module, {1U, 15U, 0U}, & thin_ctr, & thin_dtr, & thin_map, 0, 0, 0, & thin_endio, 0, & thin_presuspend, 0, & thin_postsuspend, & thin_preresume, 0, & thin_status, 0, 0, & thin_merge, 0, & thin_iterate_devices, & thin_io_hints, {0, 0}}; static int dm_thin_init(void) { int r ; { pool_table_init(); r = dm_register_target(& thin_target); if (r != 0) { return (r); } else { } r = dm_register_target(& pool_target); if (r != 0) { goto bad_pool_target; } else { } r = -12; _new_mapping_cache = kmem_cache_create("dm_thin_new_mapping", 88UL, 8UL, 0UL, (void (*)(void * ))0); if ((unsigned long )_new_mapping_cache == (unsigned long )((struct kmem_cache *)0)) { goto bad_new_mapping_cache; } else { } return (0); bad_new_mapping_cache: dm_unregister_target(& pool_target); bad_pool_target: dm_unregister_target(& thin_target); return (r); } } static void dm_thin_exit(void) { { dm_unregister_target(& thin_target); dm_unregister_target(& pool_target); kmem_cache_destroy(_new_mapping_cache); return; } } int ldv_retval_2 ; extern int ldv_resume_5(void) ; int ldv_retval_0 ; int ldv_retval_4 ; extern void ldv_initialize(void) ; int ldv_retval_1 ; void ldv_check_final_state(void) ; int ldv_retval_3 ; void call_and_disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 2 || ldv_work_3_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_0) { do_no_space_timeout(work); ldv_work_3_0 = 1; return; } else { } if ((ldv_work_3_1 == 2 || ldv_work_3_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_1) { do_no_space_timeout(work); ldv_work_3_1 = 1; return; } else { } if ((ldv_work_3_2 == 2 || ldv_work_3_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_2) { do_no_space_timeout(work); ldv_work_3_2 = 1; return; } else { } if ((ldv_work_3_3 == 2 || ldv_work_3_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_3) { do_no_space_timeout(work); ldv_work_3_3 = 1; return; } else { } return; } } void work_init_3(void) { { ldv_work_3_0 = 0; ldv_work_3_1 = 0; ldv_work_3_2 = 0; ldv_work_3_3 = 0; return; } } void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { do_worker(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { do_worker(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { do_worker(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { do_worker(work); ldv_work_1_3 = 1; return; } else { } return; } } void disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 3 || ldv_work_3_0 == 2) && (unsigned long )ldv_work_struct_3_0 == (unsigned long )work) { ldv_work_3_0 = 1; } else { } if ((ldv_work_3_1 == 3 || ldv_work_3_1 == 2) && (unsigned long )ldv_work_struct_3_1 == (unsigned long )work) { ldv_work_3_1 = 1; } else { } if ((ldv_work_3_2 == 3 || ldv_work_3_2 == 2) && (unsigned long )ldv_work_struct_3_2 == (unsigned long )work) { ldv_work_3_2 = 1; } else { } if ((ldv_work_3_3 == 3 || ldv_work_3_3 == 2) && (unsigned long )ldv_work_struct_3_3 == (unsigned long )work) { ldv_work_3_3 = 1; } else { } return; } } void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void invoke_work_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_3_0 == 2 || ldv_work_3_0 == 3) { ldv_work_3_0 = 4; do_no_space_timeout(ldv_work_struct_3_0); ldv_work_3_0 = 1; } else { } goto ldv_36722; case 1: ; if (ldv_work_3_1 == 2 || ldv_work_3_1 == 3) { ldv_work_3_1 = 4; do_no_space_timeout(ldv_work_struct_3_0); ldv_work_3_1 = 1; } else { } goto ldv_36722; case 2: ; if (ldv_work_3_2 == 2 || ldv_work_3_2 == 3) { ldv_work_3_2 = 4; do_no_space_timeout(ldv_work_struct_3_0); ldv_work_3_2 = 1; } else { } goto ldv_36722; case 3: ; if (ldv_work_3_3 == 2 || ldv_work_3_3 == 3) { ldv_work_3_3 = 4; do_no_space_timeout(ldv_work_struct_3_0); ldv_work_3_3 = 1; } else { } goto ldv_36722; default: ldv_stop(); } ldv_36722: ; return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_36745; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_36745; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_36745; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; do_worker(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_36745; default: ldv_stop(); } ldv_36745: ; return; } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void activate_work_3(struct work_struct *work , int state ) { { if (ldv_work_3_0 == 0) { ldv_work_struct_3_0 = work; ldv_work_3_0 = state; return; } else { } if (ldv_work_3_1 == 0) { ldv_work_struct_3_1 = work; ldv_work_3_1 = state; return; } else { } if (ldv_work_3_2 == 0) { ldv_work_struct_3_2 = work; ldv_work_3_2 = state; return; } else { } if (ldv_work_3_3 == 0) { ldv_work_struct_3_3 = work; ldv_work_3_3 = state; return; } else { } return; } } void ldv_target_type_5(void) { void *tmp ; { tmp = ldv_init_zalloc(88UL); thin_target_group1 = (struct dm_target *)tmp; return; } } void call_and_disable_all_3(int state ) { { if (ldv_work_3_0 == state) { call_and_disable_work_3(ldv_work_struct_3_0); } else { } if (ldv_work_3_1 == state) { call_and_disable_work_3(ldv_work_struct_3_1); } else { } if (ldv_work_3_2 == state) { call_and_disable_work_3(ldv_work_struct_3_2); } else { } if (ldv_work_3_3 == state) { call_and_disable_work_3(ldv_work_struct_3_3); } else { } return; } } void ldv_target_type_6(void) { void *tmp ; { tmp = ldv_init_zalloc(88UL); pool_target_group1 = (struct dm_target *)tmp; return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { do_waker(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { do_waker(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { do_waker(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { do_waker(work); ldv_work_2_3 = 1; return; } else { } return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_36784; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_36784; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_36784; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; do_waker(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_36784; default: ldv_stop(); } ldv_36784: ; return; } } void ldv_main_exported_4(void) ; int main(void) { void *ldvarg11 ; void *tmp ; struct queue_limits *ldvarg7 ; void *tmp___0 ; unsigned int ldvarg3 ; char *ldvarg0 ; void *tmp___1 ; int (*ldvarg12)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; unsigned int ldvarg5 ; struct bio *ldvarg6 ; void *tmp___2 ; int ldvarg8 ; unsigned int ldvarg1 ; unsigned int ldvarg14 ; char **ldvarg4 ; void *tmp___3 ; char **ldvarg13 ; void *tmp___4 ; struct bvec_merge_data *ldvarg10 ; void *tmp___5 ; struct bio_vec *ldvarg9 ; void *tmp___6 ; status_type_t ldvarg2 ; struct bio_vec *ldvarg24 ; void *tmp___7 ; unsigned int ldvarg18 ; int (*ldvarg27)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; void *ldvarg26 ; void *tmp___8 ; unsigned int ldvarg31 ; unsigned int ldvarg20 ; int ldvarg23 ; char **ldvarg30 ; void *tmp___9 ; struct bio *ldvarg21 ; void *tmp___10 ; struct bvec_merge_data *ldvarg25 ; void *tmp___11 ; char *ldvarg17 ; void *tmp___12 ; struct bio *ldvarg29 ; void *tmp___13 ; struct queue_limits *ldvarg22 ; void *tmp___14 ; status_type_t ldvarg19 ; int ldvarg28 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { tmp = ldv_init_zalloc(1UL); ldvarg11 = tmp; tmp___0 = ldv_init_zalloc(80UL); ldvarg7 = (struct queue_limits *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg0 = (char *)tmp___1; tmp___2 = ldv_init_zalloc(136UL); ldvarg6 = (struct bio *)tmp___2; tmp___3 = ldv_init_zalloc(8UL); ldvarg4 = (char **)tmp___3; tmp___4 = ldv_init_zalloc(8UL); ldvarg13 = (char **)tmp___4; tmp___5 = ldv_init_zalloc(32UL); ldvarg10 = (struct bvec_merge_data *)tmp___5; tmp___6 = ldv_init_zalloc(16UL); ldvarg9 = (struct bio_vec *)tmp___6; tmp___7 = ldv_init_zalloc(16UL); ldvarg24 = (struct bio_vec *)tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg26 = tmp___8; tmp___9 = ldv_init_zalloc(8UL); ldvarg30 = (char **)tmp___9; tmp___10 = ldv_init_zalloc(136UL); ldvarg21 = (struct bio *)tmp___10; tmp___11 = ldv_init_zalloc(32UL); ldvarg25 = (struct bvec_merge_data *)tmp___11; tmp___12 = ldv_init_zalloc(1UL); ldvarg17 = (char *)tmp___12; tmp___13 = ldv_init_zalloc(136UL); ldvarg29 = (struct bio *)tmp___13; tmp___14 = ldv_init_zalloc(80UL); ldvarg22 = (struct queue_limits *)tmp___14; ldv_initialize(); ldv_memset((void *)(& ldvarg3), 0, 4UL); ldv_memset((void *)(& ldvarg12), 0, 8UL); ldv_memset((void *)(& ldvarg5), 0, 4UL); ldv_memset((void *)(& ldvarg8), 0, 4UL); ldv_memset((void *)(& ldvarg1), 0, 4UL); ldv_memset((void *)(& ldvarg14), 0, 4UL); ldv_memset((void *)(& ldvarg2), 0, 4UL); ldv_memset((void *)(& ldvarg18), 0, 4UL); ldv_memset((void *)(& ldvarg27), 0, 8UL); ldv_memset((void *)(& ldvarg31), 0, 4UL); ldv_memset((void *)(& ldvarg20), 0, 4UL); ldv_memset((void *)(& ldvarg23), 0, 4UL); ldv_memset((void *)(& ldvarg19), 0, 4UL); ldv_memset((void *)(& ldvarg28), 0, 4UL); ldv_state_variable_6 = 0; ldv_state_variable_4 = 0; work_init_1(); ldv_state_variable_1 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; work_init_3(); ldv_state_variable_3 = 1; work_init_2(); ldv_state_variable_2 = 1; ldv_state_variable_5 = 0; ldv_36893: tmp___15 = __VERIFIER_nondet_int(); switch (tmp___15) { case 0: ; if (ldv_state_variable_6 != 0) { tmp___16 = __VERIFIER_nondet_int(); switch (tmp___16) { case 0: ; if (ldv_state_variable_6 == 1) { ldv_retval_1 = pool_ctr(pool_target_group1, ldvarg14, ldvarg13); if (ldv_retval_1 == 0) { ldv_state_variable_6 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_36852; case 1: ; if (ldv_state_variable_6 == 4) { pool_dtr(pool_target_group1); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_6 == 3) { pool_dtr(pool_target_group1); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_6 == 2) { pool_dtr(pool_target_group1); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_6 == 5) { pool_dtr(pool_target_group1); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_36852; case 2: ; if (ldv_state_variable_6 == 4) { pool_iterate_devices(pool_target_group1, ldvarg12, ldvarg11); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 1) { pool_iterate_devices(pool_target_group1, ldvarg12, ldvarg11); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { pool_iterate_devices(pool_target_group1, ldvarg12, ldvarg11); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_iterate_devices(pool_target_group1, ldvarg12, ldvarg11); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_iterate_devices(pool_target_group1, ldvarg12, ldvarg11); ldv_state_variable_6 = 5; } else { } goto ldv_36852; case 3: ; if (ldv_state_variable_6 == 4) { pool_merge(pool_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 1) { pool_merge(pool_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { pool_merge(pool_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_merge(pool_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_merge(pool_target_group1, ldvarg10, ldvarg9, ldvarg8); ldv_state_variable_6 = 5; } else { } goto ldv_36852; case 4: ; if (ldv_state_variable_6 == 4) { ldv_retval_0 = pool_preresume(pool_target_group1); if (ldv_retval_0 == 0) { ldv_state_variable_6 = 5; } else { } } else { } goto ldv_36852; case 5: ; if (ldv_state_variable_6 == 4) { pool_io_hints(pool_target_group1, ldvarg7); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 1) { pool_io_hints(pool_target_group1, ldvarg7); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { pool_io_hints(pool_target_group1, ldvarg7); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_io_hints(pool_target_group1, ldvarg7); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_io_hints(pool_target_group1, ldvarg7); ldv_state_variable_6 = 5; } else { } goto ldv_36852; case 6: ; if (ldv_state_variable_6 == 4) { pool_map(pool_target_group1, ldvarg6); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 3) { pool_map(pool_target_group1, ldvarg6); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_map(pool_target_group1, ldvarg6); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_map(pool_target_group1, ldvarg6); ldv_state_variable_6 = 5; } else { } goto ldv_36852; case 7: ; if (ldv_state_variable_6 == 4) { pool_message(pool_target_group1, ldvarg5, ldvarg4); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 1) { pool_message(pool_target_group1, ldvarg5, ldvarg4); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { pool_message(pool_target_group1, ldvarg5, ldvarg4); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_message(pool_target_group1, ldvarg5, ldvarg4); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_message(pool_target_group1, ldvarg5, ldvarg4); ldv_state_variable_6 = 5; } else { } goto ldv_36852; case 8: ; if (ldv_state_variable_6 == 3) { pool_postsuspend(pool_target_group1); ldv_state_variable_6 = 4; } else { } goto ldv_36852; case 9: ; if (ldv_state_variable_6 == 4) { pool_status(pool_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 1) { pool_status(pool_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { pool_status(pool_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_status(pool_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_status(pool_target_group1, ldvarg2, ldvarg1, ldvarg0, ldvarg3); ldv_state_variable_6 = 5; } else { } goto ldv_36852; case 10: ; if (ldv_state_variable_6 == 2) { pool_presuspend(pool_target_group1); ldv_state_variable_6 = 3; } else { } goto ldv_36852; case 11: ; if (ldv_state_variable_6 == 5) { pool_resume(pool_target_group1); ldv_state_variable_6 = 2; } else { } goto ldv_36852; case 12: ; if (ldv_state_variable_6 == 4) { pool_presuspend_undo(pool_target_group1); ldv_state_variable_6 = 4; } else { } if (ldv_state_variable_6 == 1) { pool_presuspend_undo(pool_target_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { pool_presuspend_undo(pool_target_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { pool_presuspend_undo(pool_target_group1); ldv_state_variable_6 = 2; } else { } if (ldv_state_variable_6 == 5) { pool_presuspend_undo(pool_target_group1); ldv_state_variable_6 = 5; } else { } goto ldv_36852; default: ldv_stop(); } ldv_36852: ; } else { } goto ldv_36866; case 1: ; if (ldv_state_variable_4 != 0) { ldv_main_exported_4(); } else { } goto ldv_36866; case 2: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_36866; case 3: ; if (ldv_state_variable_0 != 0) { tmp___17 = __VERIFIER_nondet_int(); switch (tmp___17) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { dm_thin_exit(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_36872; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_2 = dm_thin_init(); if (ldv_retval_2 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_2 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_5 = 1; ldv_target_type_5(); ldv_state_variable_4 = 1; ldv_initialize_dm_block_validator_4(); ldv_state_variable_6 = 1; ldv_target_type_6(); } else { } } else { } goto ldv_36872; default: ldv_stop(); } ldv_36872: ; } else { } goto ldv_36866; case 4: ; if (ldv_state_variable_3 != 0) { invoke_work_3(); } else { } goto ldv_36866; case 5: ; if (ldv_state_variable_2 != 0) { invoke_work_2(); } else { } goto ldv_36866; case 6: ; if (ldv_state_variable_5 != 0) { tmp___18 = __VERIFIER_nondet_int(); switch (tmp___18) { case 0: ; if (ldv_state_variable_5 == 1) { ldv_retval_4 = thin_ctr(thin_target_group1, ldvarg31, ldvarg30); if (ldv_retval_4 == 0) { ldv_state_variable_5 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_36879; case 1: ; if (ldv_state_variable_5 == 4) { thin_endio(thin_target_group1, ldvarg29, ldvarg28); ldv_state_variable_5 = 4; } else { } if (ldv_state_variable_5 == 1) { thin_endio(thin_target_group1, ldvarg29, ldvarg28); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 3) { thin_endio(thin_target_group1, ldvarg29, ldvarg28); ldv_state_variable_5 = 3; } else { } if (ldv_state_variable_5 == 2) { thin_endio(thin_target_group1, ldvarg29, ldvarg28); ldv_state_variable_5 = 2; } else { } if (ldv_state_variable_5 == 5) { thin_endio(thin_target_group1, ldvarg29, ldvarg28); ldv_state_variable_5 = 5; } else { } goto ldv_36879; case 2: ; if (ldv_state_variable_5 == 4) { thin_dtr(thin_target_group1); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_5 == 3) { thin_dtr(thin_target_group1); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_5 == 2) { thin_dtr(thin_target_group1); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_5 == 5) { thin_dtr(thin_target_group1); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_36879; case 3: ; if (ldv_state_variable_5 == 4) { thin_iterate_devices(thin_target_group1, ldvarg27, ldvarg26); ldv_state_variable_5 = 4; } else { } if (ldv_state_variable_5 == 1) { thin_iterate_devices(thin_target_group1, ldvarg27, ldvarg26); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 3) { thin_iterate_devices(thin_target_group1, ldvarg27, ldvarg26); ldv_state_variable_5 = 3; } else { } if (ldv_state_variable_5 == 2) { thin_iterate_devices(thin_target_group1, ldvarg27, ldvarg26); ldv_state_variable_5 = 2; } else { } if (ldv_state_variable_5 == 5) { thin_iterate_devices(thin_target_group1, ldvarg27, ldvarg26); ldv_state_variable_5 = 5; } else { } goto ldv_36879; case 4: ; if (ldv_state_variable_5 == 4) { thin_merge(thin_target_group1, ldvarg25, ldvarg24, ldvarg23); ldv_state_variable_5 = 4; } else { } if (ldv_state_variable_5 == 1) { thin_merge(thin_target_group1, ldvarg25, ldvarg24, ldvarg23); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 3) { thin_merge(thin_target_group1, ldvarg25, ldvarg24, ldvarg23); ldv_state_variable_5 = 3; } else { } if (ldv_state_variable_5 == 2) { thin_merge(thin_target_group1, ldvarg25, ldvarg24, ldvarg23); ldv_state_variable_5 = 2; } else { } if (ldv_state_variable_5 == 5) { thin_merge(thin_target_group1, ldvarg25, ldvarg24, ldvarg23); ldv_state_variable_5 = 5; } else { } goto ldv_36879; case 5: ; if (ldv_state_variable_5 == 4) { ldv_retval_3 = thin_preresume(thin_target_group1); if (ldv_retval_3 == 0) { ldv_state_variable_5 = 5; } else { } } else { } goto ldv_36879; case 6: ; if (ldv_state_variable_5 == 4) { thin_io_hints(thin_target_group1, ldvarg22); ldv_state_variable_5 = 4; } else { } if (ldv_state_variable_5 == 1) { thin_io_hints(thin_target_group1, ldvarg22); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 3) { thin_io_hints(thin_target_group1, ldvarg22); ldv_state_variable_5 = 3; } else { } if (ldv_state_variable_5 == 2) { thin_io_hints(thin_target_group1, ldvarg22); ldv_state_variable_5 = 2; } else { } if (ldv_state_variable_5 == 5) { thin_io_hints(thin_target_group1, ldvarg22); ldv_state_variable_5 = 5; } else { } goto ldv_36879; case 7: ; if (ldv_state_variable_5 == 4) { thin_map(thin_target_group1, ldvarg21); ldv_state_variable_5 = 4; } else { } if (ldv_state_variable_5 == 3) { thin_map(thin_target_group1, ldvarg21); ldv_state_variable_5 = 3; } else { } if (ldv_state_variable_5 == 2) { thin_map(thin_target_group1, ldvarg21); ldv_state_variable_5 = 2; } else { } if (ldv_state_variable_5 == 5) { thin_map(thin_target_group1, ldvarg21); ldv_state_variable_5 = 5; } else { } goto ldv_36879; case 8: ; if (ldv_state_variable_5 == 3) { thin_postsuspend(thin_target_group1); ldv_state_variable_5 = 4; } else { } goto ldv_36879; case 9: ; if (ldv_state_variable_5 == 4) { thin_status(thin_target_group1, ldvarg19, ldvarg18, ldvarg17, ldvarg20); ldv_state_variable_5 = 4; } else { } if (ldv_state_variable_5 == 1) { thin_status(thin_target_group1, ldvarg19, ldvarg18, ldvarg17, ldvarg20); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 3) { thin_status(thin_target_group1, ldvarg19, ldvarg18, ldvarg17, ldvarg20); ldv_state_variable_5 = 3; } else { } if (ldv_state_variable_5 == 2) { thin_status(thin_target_group1, ldvarg19, ldvarg18, ldvarg17, ldvarg20); ldv_state_variable_5 = 2; } else { } if (ldv_state_variable_5 == 5) { thin_status(thin_target_group1, ldvarg19, ldvarg18, ldvarg17, ldvarg20); ldv_state_variable_5 = 5; } else { } goto ldv_36879; case 10: ; if (ldv_state_variable_5 == 2) { thin_presuspend(thin_target_group1); ldv_state_variable_5 = 3; } else { } goto ldv_36879; case 11: ; if (ldv_state_variable_5 == 5) { ldv_resume_5(); ldv_state_variable_5 = 2; } else { } goto ldv_36879; default: ldv_stop(); } ldv_36879: ; } else { } goto ldv_36866; default: ldv_stop(); } ldv_36866: ; goto ldv_36893; ldv_final: ldv_check_final_state(); return 0; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { tmp = ldv_err_ptr(error); return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_destroy_workqueue_17(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } void ldv_destroy_workqueue_18(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } bool ldv_cancel_delayed_work_24(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work(ldv_func_arg1); ldv_func_res = tmp; disable_work_1(& ldv_func_arg1->work); return (ldv_func_res); } } bool ldv_cancel_delayed_work_25(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work(ldv_func_arg1); ldv_func_res = tmp; disable_work_1(& ldv_func_arg1->work); return (ldv_func_res); } } void ldv_flush_workqueue_26(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } void ldv_mutex_lock_27(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_28(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_29(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern void *memcpy(void * , void const * , size_t ) ; __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; int ldv_mutex_trylock_73(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_71(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_74(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_75(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_70(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_72(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_76(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_65(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_67(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_66(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_69(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_68(struct workqueue_struct *ldv_func_arg1 ) ; __inline static int get_disk_ro(struct gendisk *disk ) { { return (disk->part0.policy); } } extern dm_block_t dm_block_location(struct dm_block * ) ; extern void *dm_block_data(struct dm_block * ) ; extern struct dm_block_manager *dm_block_manager_create(struct block_device * , unsigned int , unsigned int , unsigned int ) ; extern void dm_block_manager_destroy(struct dm_block_manager * ) ; extern unsigned int dm_bm_block_size(struct dm_block_manager * ) ; extern int dm_bm_read_lock(struct dm_block_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_bm_write_lock(struct dm_block_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_bm_write_lock_zero(struct dm_block_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_bm_unlock(struct dm_block * ) ; extern bool dm_bm_is_read_only(struct dm_block_manager * ) ; extern void dm_bm_set_read_only(struct dm_block_manager * ) ; extern void dm_bm_set_read_write(struct dm_block_manager * ) ; extern u32 dm_bm_checksum(void const * , size_t , u32 ) ; __inline static void dm_sm_destroy(struct dm_space_map *sm ) { { (*(sm->destroy))(sm); return; } } __inline static int dm_sm_extend(struct dm_space_map *sm , dm_block_t extra_blocks ) { int tmp ; { tmp = (*(sm->extend))(sm, extra_blocks); return (tmp); } } __inline static int dm_sm_get_nr_blocks(struct dm_space_map *sm , dm_block_t *count ) { int tmp ; { tmp = (*(sm->get_nr_blocks))(sm, count); return (tmp); } } __inline static int dm_sm_get_nr_free(struct dm_space_map *sm , dm_block_t *count ) { int tmp ; { tmp = (*(sm->get_nr_free))(sm, count); return (tmp); } } __inline static int dm_sm_get_count(struct dm_space_map *sm , dm_block_t b , uint32_t *result ) { int tmp ; { tmp = (*(sm->get_count))(sm, b, result); return (tmp); } } __inline static int dm_sm_commit(struct dm_space_map *sm ) { int tmp ; { tmp = (*(sm->commit))(sm); return (tmp); } } __inline static int dm_sm_inc_block(struct dm_space_map *sm , dm_block_t b ) { int tmp ; { tmp = (*(sm->inc_block))(sm, b); return (tmp); } } __inline static int dm_sm_dec_block(struct dm_space_map *sm , dm_block_t b ) { int tmp ; { tmp = (*(sm->dec_block))(sm, b); return (tmp); } } __inline static int dm_sm_new_block(struct dm_space_map *sm , dm_block_t *b ) { int tmp ; { tmp = (*(sm->new_block))(sm, b); return (tmp); } } __inline static int dm_sm_root_size(struct dm_space_map *sm , size_t *result ) { int tmp ; { tmp = (*(sm->root_size))(sm, result); return (tmp); } } __inline static int dm_sm_copy_root(struct dm_space_map *sm , void *copy_to_here_le , size_t len ) { int tmp ; { tmp = (*(sm->copy_root))(sm, copy_to_here_le, len); return (tmp); } } __inline static int dm_sm_register_threshold_callback(struct dm_space_map *sm , dm_block_t threshold , void (*fn)(void * ) , void *context ) { int tmp ; { if ((unsigned long )sm->register_threshold_callback != (unsigned long )((int (*)(struct dm_space_map * , dm_block_t , void (*)(void * ) , void * ))0)) { tmp = (*(sm->register_threshold_callback))(sm, threshold, fn, context); return (tmp); } else { } return (-22); } } extern void dm_tm_destroy(struct dm_transaction_manager * ) ; extern struct dm_transaction_manager *dm_tm_create_non_blocking_clone(struct dm_transaction_manager * ) ; extern int dm_tm_pre_commit(struct dm_transaction_manager * ) ; extern int dm_tm_commit(struct dm_transaction_manager * , struct dm_block * ) ; extern int dm_tm_shadow_block(struct dm_transaction_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** , int * ) ; extern int dm_tm_read_lock(struct dm_transaction_manager * , dm_block_t , struct dm_block_validator * , struct dm_block ** ) ; extern int dm_tm_unlock(struct dm_transaction_manager * , struct dm_block * ) ; extern void dm_tm_inc(struct dm_transaction_manager * , dm_block_t ) ; extern void dm_tm_dec(struct dm_transaction_manager * , dm_block_t ) ; extern void dm_tm_issue_prefetches(struct dm_transaction_manager * ) ; extern int dm_tm_create_with_sm(struct dm_block_manager * , dm_block_t , struct dm_transaction_manager ** , struct dm_space_map ** ) ; extern int dm_tm_open_with_sm(struct dm_block_manager * , dm_block_t , void * , size_t , struct dm_transaction_manager ** , struct dm_space_map ** ) ; int dm_thin_remove_block(struct dm_thin_device *td , dm_block_t block ) ; extern int dm_btree_empty(struct dm_btree_info * , dm_block_t * ) ; extern int dm_btree_del(struct dm_btree_info * , dm_block_t ) ; extern int dm_btree_lookup(struct dm_btree_info * , dm_block_t , uint64_t * , void * ) ; extern int dm_btree_insert(struct dm_btree_info * , dm_block_t , uint64_t * , void * , dm_block_t * ) ; extern int dm_btree_insert_notify(struct dm_btree_info * , dm_block_t , uint64_t * , void * , dm_block_t * , int * ) ; extern int dm_btree_remove(struct dm_btree_info * , dm_block_t , uint64_t * , dm_block_t * ) ; extern int dm_btree_remove_leaves(struct dm_btree_info * , dm_block_t , uint64_t * , uint64_t , dm_block_t * , unsigned int * ) ; extern int dm_btree_find_highest_key(struct dm_btree_info * , dm_block_t , uint64_t * ) ; extern struct dm_space_map *dm_sm_disk_create(struct dm_transaction_manager * , dm_block_t ) ; extern struct dm_space_map *dm_sm_disk_open(struct dm_transaction_manager * , void * , size_t ) ; static void sb_prepare_for_write(struct dm_block_validator *v , struct dm_block *b , size_t block_size___0 ) { struct thin_disk_superblock *disk_super ; void *tmp ; { tmp = dm_block_data(b); disk_super = (struct thin_disk_superblock *)tmp; disk_super->blocknr = dm_block_location(b); disk_super->csum = dm_bm_checksum((void const *)(& disk_super->flags), block_size___0 - 4UL, 160774U); return; } } static int sb_check(struct dm_block_validator *v , struct dm_block *b , size_t block_size___0 ) { struct thin_disk_superblock *disk_super ; void *tmp ; __le32 csum_le ; dm_block_t tmp___0 ; dm_block_t tmp___1 ; { tmp = dm_block_data(b); disk_super = (struct thin_disk_superblock *)tmp; tmp___1 = dm_block_location(b); if (tmp___1 != disk_super->blocknr) { tmp___0 = dm_block_location(b); printk("\vdevice-mapper: thin metadata: sb_check failed: blocknr %llu: wanted %llu\n", disk_super->blocknr, tmp___0); return (-15); } else { } if (disk_super->magic != 27022010ULL) { printk("\vdevice-mapper: thin metadata: sb_check failed: magic %llu: wanted %llu\n", disk_super->magic, 27022010ULL); return (-84); } else { } csum_le = dm_bm_checksum((void const *)(& disk_super->flags), block_size___0 - 4UL, 160774U); if (disk_super->csum != csum_le) { printk("\vdevice-mapper: thin metadata: sb_check failed: csum %u: wanted %u\n", csum_le, disk_super->csum); return (-84); } else { } return (0); } } static struct dm_block_validator sb_validator = {"superblock", & sb_prepare_for_write, & sb_check}; static uint64_t pack_block_time(dm_block_t b , uint32_t t ) { { return ((b << 24) | (dm_block_t )t); } } static void unpack_block_time(uint64_t v , dm_block_t *b , uint32_t *t ) { { *b = v >> 24; *t = (uint32_t )v & 16777215U; return; } } static void data_block_inc(void *context , void const *value_le ) { struct dm_space_map *sm ; __le64 v_le ; uint64_t b ; uint32_t t ; { sm = (struct dm_space_map *)context; memcpy((void *)(& v_le), value_le, 8UL); unpack_block_time(v_le, & b, & t); dm_sm_inc_block(sm, b); return; } } static void data_block_dec(void *context , void const *value_le ) { struct dm_space_map *sm ; __le64 v_le ; uint64_t b ; uint32_t t ; { sm = (struct dm_space_map *)context; memcpy((void *)(& v_le), value_le, 8UL); unpack_block_time(v_le, & b, & t); dm_sm_dec_block(sm, b); return; } } static int data_block_equal(void *context , void const *value1_le , void const *value2_le ) { __le64 v1_le ; __le64 v2_le ; uint64_t b1 ; uint64_t b2 ; uint32_t t ; { memcpy((void *)(& v1_le), value1_le, 8UL); memcpy((void *)(& v2_le), value2_le, 8UL); unpack_block_time(v1_le, & b1, & t); unpack_block_time(v2_le, & b2, & t); return (b1 == b2); } } static void subtree_inc(void *context , void const *value ) { struct dm_btree_info *info ; __le64 root_le ; uint64_t root ; { info = (struct dm_btree_info *)context; memcpy((void *)(& root_le), value, 8UL); root = root_le; dm_tm_inc(info->tm, root); return; } } static void subtree_dec(void *context , void const *value ) { struct dm_btree_info *info ; __le64 root_le ; uint64_t root ; int tmp ; { info = (struct dm_btree_info *)context; memcpy((void *)(& root_le), value, 8UL); root = root_le; tmp = dm_btree_del(info, root); if (tmp != 0) { printk("\vdevice-mapper: thin metadata: btree delete failed\n\n"); } else { } return; } } static int subtree_equal(void *context , void const *value1_le , void const *value2_le ) { __le64 v1_le ; __le64 v2_le ; { memcpy((void *)(& v1_le), value1_le, 8UL); memcpy((void *)(& v2_le), value2_le, 8UL); return (v1_le == v2_le); } } static int superblock_lock_zero(struct dm_pool_metadata *pmd , struct dm_block **sblock ) { int tmp ; { tmp = dm_bm_write_lock_zero(pmd->bm, 0ULL, & sb_validator, sblock); return (tmp); } } static int superblock_lock(struct dm_pool_metadata *pmd , struct dm_block **sblock ) { int tmp ; { tmp = dm_bm_write_lock(pmd->bm, 0ULL, & sb_validator, sblock); return (tmp); } } static int __superblock_all_zeroes(struct dm_block_manager *bm , int *result ) { int r ; unsigned int i ; struct dm_block *b ; __le64 *data_le ; __le64 zero ; unsigned int block_size___0 ; unsigned int tmp ; void *tmp___0 ; int tmp___1 ; { zero = 0ULL; tmp = dm_bm_block_size(bm); block_size___0 = tmp / 8U; r = dm_bm_read_lock(bm, 0ULL, (struct dm_block_validator *)0, & b); if (r != 0) { return (r); } else { } tmp___0 = dm_block_data(b); data_le = (__le64 *)tmp___0; *result = 1; i = 0U; goto ldv_32648; ldv_32647: ; if (*(data_le + (unsigned long )i) != zero) { *result = 0; goto ldv_32646; } else { } i = i + 1U; ldv_32648: ; if (i < block_size___0) { goto ldv_32647; } else { } ldv_32646: tmp___1 = dm_bm_unlock(b); return (tmp___1); } } static void __setup_btree_details(struct dm_pool_metadata *pmd ) { { pmd->info.tm = pmd->tm; pmd->info.levels = 2U; pmd->info.value_type.context = (void *)pmd->data_sm; pmd->info.value_type.size = 8U; pmd->info.value_type.inc = & data_block_inc; pmd->info.value_type.dec = & data_block_dec; pmd->info.value_type.equal = & data_block_equal; memcpy((void *)(& pmd->nb_info), (void const *)(& pmd->info), 56UL); pmd->nb_info.tm = pmd->nb_tm; pmd->tl_info.tm = pmd->tm; pmd->tl_info.levels = 1U; pmd->tl_info.value_type.context = (void *)(& pmd->bl_info); pmd->tl_info.value_type.size = 8U; pmd->tl_info.value_type.inc = & subtree_inc; pmd->tl_info.value_type.dec = & subtree_dec; pmd->tl_info.value_type.equal = & subtree_equal; pmd->bl_info.tm = pmd->tm; pmd->bl_info.levels = 1U; pmd->bl_info.value_type.context = (void *)pmd->data_sm; pmd->bl_info.value_type.size = 8U; pmd->bl_info.value_type.inc = & data_block_inc; pmd->bl_info.value_type.dec = & data_block_dec; pmd->bl_info.value_type.equal = & data_block_equal; pmd->details_info.tm = pmd->tm; pmd->details_info.levels = 1U; pmd->details_info.value_type.context = (void *)0; pmd->details_info.value_type.size = 24U; pmd->details_info.value_type.inc = (void (*)(void * , void const * ))0; pmd->details_info.value_type.dec = (void (*)(void * , void const * ))0; pmd->details_info.value_type.equal = (int (*)(void * , void const * , void const * ))0; return; } } static int save_sm_roots(struct dm_pool_metadata *pmd ) { int r ; size_t len ; int tmp ; { r = dm_sm_root_size(pmd->metadata_sm, & len); if (r < 0) { return (r); } else { } r = dm_sm_copy_root(pmd->metadata_sm, (void *)(& pmd->metadata_space_map_root), len); if (r < 0) { return (r); } else { } r = dm_sm_root_size(pmd->data_sm, & len); if (r < 0) { return (r); } else { } tmp = dm_sm_copy_root(pmd->data_sm, (void *)(& pmd->data_space_map_root), len); return (tmp); } } static void copy_sm_roots(struct dm_pool_metadata *pmd , struct thin_disk_superblock *disk ) { { memcpy((void *)(& disk->metadata_space_map_root), (void const *)(& pmd->metadata_space_map_root), 128UL); memcpy((void *)(& disk->data_space_map_root), (void const *)(& pmd->data_space_map_root), 128UL); return; } } static int __write_initial_superblock(struct dm_pool_metadata *pmd ) { int r ; struct dm_block *sblock ; struct thin_disk_superblock *disk_super ; sector_t bdev_size ; loff_t tmp ; void *tmp___0 ; int tmp___1 ; { tmp = i_size_read((struct inode const *)(pmd->bdev)->bd_inode); bdev_size = (sector_t )(tmp >> 9); if (bdev_size > 33292800UL) { bdev_size = 33292800UL; } else { } r = dm_sm_commit(pmd->data_sm); if (r < 0) { return (r); } else { } r = save_sm_roots(pmd); if (r < 0) { return (r); } else { } r = dm_tm_pre_commit(pmd->tm); if (r < 0) { return (r); } else { } r = superblock_lock_zero(pmd, & sblock); if (r != 0) { return (r); } else { } tmp___0 = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp___0; disk_super->flags = 0U; memset((void *)(& disk_super->uuid), 0, 16UL); disk_super->magic = 27022010ULL; disk_super->version = 2U; disk_super->time = 0U; disk_super->trans_id = 0ULL; disk_super->held_root = 0ULL; copy_sm_roots(pmd, disk_super); disk_super->data_mapping_root = pmd->root; disk_super->device_details_root = pmd->details_root; disk_super->metadata_block_size = 8U; disk_super->metadata_nr_blocks = (unsigned long long )(bdev_size >> 3); disk_super->data_block_size = (unsigned int )pmd->data_block_size; tmp___1 = dm_tm_commit(pmd->tm, sblock); return (tmp___1); } } static int __format_metadata(struct dm_pool_metadata *pmd ) { int r ; long tmp ; bool tmp___0 ; { r = dm_tm_create_with_sm(pmd->bm, 0ULL, & pmd->tm, & pmd->metadata_sm); if (r < 0) { printk("\vdevice-mapper: thin metadata: tm_create_with_sm failed\n"); return (r); } else { } pmd->data_sm = dm_sm_disk_create(pmd->tm, 0ULL); tmp___0 = IS_ERR((void const *)pmd->data_sm); if ((int )tmp___0) { printk("\vdevice-mapper: thin metadata: sm_disk_create failed\n"); tmp = PTR_ERR((void const *)pmd->data_sm); r = (int )tmp; goto bad_cleanup_tm; } else { } pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); if ((unsigned long )pmd->nb_tm == (unsigned long )((struct dm_transaction_manager *)0)) { printk("\vdevice-mapper: thin metadata: could not create non-blocking clone tm\n"); r = -12; goto bad_cleanup_data_sm; } else { } __setup_btree_details(pmd); r = dm_btree_empty(& pmd->info, & pmd->root); if (r < 0) { goto bad_cleanup_nb_tm; } else { } r = dm_btree_empty(& pmd->details_info, & pmd->details_root); if (r < 0) { printk("\vdevice-mapper: thin metadata: couldn\'t create devices root\n"); goto bad_cleanup_nb_tm; } else { } r = __write_initial_superblock(pmd); if (r != 0) { goto bad_cleanup_nb_tm; } else { } return (0); bad_cleanup_nb_tm: dm_tm_destroy(pmd->nb_tm); bad_cleanup_data_sm: dm_sm_destroy(pmd->data_sm); bad_cleanup_tm: dm_tm_destroy(pmd->tm); dm_sm_destroy(pmd->metadata_sm); return (r); } } static int __check_incompat_features(struct thin_disk_superblock *disk_super , struct dm_pool_metadata *pmd ) { uint32_t features ; int tmp ; { features = disk_super->incompat_flags; if (features != 0U) { printk("\vdevice-mapper: thin metadata: could not access metadata due to unsupported optional features (%lx).\n", (unsigned long )features); return (-22); } else { } tmp = get_disk_ro((pmd->bdev)->bd_disk); if (tmp != 0) { return (0); } else { } features = disk_super->compat_ro_flags; if (features != 0U) { printk("\vdevice-mapper: thin metadata: could not access metadata RDWR due to unsupported optional features (%lx).\n", (unsigned long )features); return (-22); } else { } return (0); } } static int __open_metadata(struct dm_pool_metadata *pmd ) { int r ; struct dm_block *sblock ; struct thin_disk_superblock *disk_super ; void *tmp ; long tmp___0 ; bool tmp___1 ; int tmp___2 ; { r = dm_bm_read_lock(pmd->bm, 0ULL, & sb_validator, & sblock); if (r < 0) { printk("\vdevice-mapper: thin metadata: couldn\'t read superblock\n"); return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp; if ((sector_t )disk_super->data_block_size != pmd->data_block_size) { printk("\vdevice-mapper: thin metadata: changing the data block size (from %u to %llu) is not supported\n", disk_super->data_block_size, (unsigned long long )pmd->data_block_size); r = -22; goto bad_unlock_sblock; } else { } r = __check_incompat_features(disk_super, pmd); if (r < 0) { goto bad_unlock_sblock; } else { } r = dm_tm_open_with_sm(pmd->bm, 0ULL, (void *)(& disk_super->metadata_space_map_root), 128UL, & pmd->tm, & pmd->metadata_sm); if (r < 0) { printk("\vdevice-mapper: thin metadata: tm_open_with_sm failed\n"); goto bad_unlock_sblock; } else { } pmd->data_sm = dm_sm_disk_open(pmd->tm, (void *)(& disk_super->data_space_map_root), 128UL); tmp___1 = IS_ERR((void const *)pmd->data_sm); if ((int )tmp___1) { printk("\vdevice-mapper: thin metadata: sm_disk_open failed\n"); tmp___0 = PTR_ERR((void const *)pmd->data_sm); r = (int )tmp___0; goto bad_cleanup_tm; } else { } pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); if ((unsigned long )pmd->nb_tm == (unsigned long )((struct dm_transaction_manager *)0)) { printk("\vdevice-mapper: thin metadata: could not create non-blocking clone tm\n"); r = -12; goto bad_cleanup_data_sm; } else { } __setup_btree_details(pmd); tmp___2 = dm_bm_unlock(sblock); return (tmp___2); bad_cleanup_data_sm: dm_sm_destroy(pmd->data_sm); bad_cleanup_tm: dm_tm_destroy(pmd->tm); dm_sm_destroy(pmd->metadata_sm); bad_unlock_sblock: dm_bm_unlock(sblock); return (r); } } static int __open_or_format_metadata(struct dm_pool_metadata *pmd , bool format_device ) { int r ; int unformatted ; int tmp ; int tmp___0 ; int tmp___1 ; { r = __superblock_all_zeroes(pmd->bm, & unformatted); if (r != 0) { return (r); } else { } if (unformatted != 0) { if ((int )format_device) { tmp = __format_metadata(pmd); tmp___0 = tmp; } else { tmp___0 = -1; } return (tmp___0); } else { } tmp___1 = __open_metadata(pmd); return (tmp___1); } } static int __create_persistent_data_objects(struct dm_pool_metadata *pmd , bool format_device ) { int r ; long tmp ; bool tmp___0 ; { pmd->bm = dm_block_manager_create(pmd->bdev, 4096U, 64U, 5U); tmp___0 = IS_ERR((void const *)pmd->bm); if ((int )tmp___0) { printk("\vdevice-mapper: thin metadata: could not create block manager\n"); tmp = PTR_ERR((void const *)pmd->bm); return ((int )tmp); } else { } r = __open_or_format_metadata(pmd, (int )format_device); if (r != 0) { dm_block_manager_destroy(pmd->bm); } else { } return (r); } } static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd ) { { dm_sm_destroy(pmd->data_sm); dm_sm_destroy(pmd->metadata_sm); dm_tm_destroy(pmd->nb_tm); dm_tm_destroy(pmd->tm); dm_block_manager_destroy(pmd->bm); return; } } static int __begin_transaction(struct dm_pool_metadata *pmd ) { int r ; struct thin_disk_superblock *disk_super ; struct dm_block *sblock ; void *tmp ; { r = dm_bm_read_lock(pmd->bm, 0ULL, & sb_validator, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp; pmd->time = disk_super->time; pmd->root = disk_super->data_mapping_root; pmd->details_root = disk_super->device_details_root; pmd->trans_id = disk_super->trans_id; pmd->flags = (unsigned long )disk_super->flags; pmd->data_block_size = (sector_t )disk_super->data_block_size; dm_bm_unlock(sblock); return (0); } } static int __write_changed_details(struct dm_pool_metadata *pmd ) { int r ; struct dm_thin_device *td ; struct dm_thin_device *tmp ; struct disk_device_details details ; uint64_t key ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { __mptr = (struct list_head const *)pmd->thin_devices.next; td = (struct dm_thin_device *)__mptr; __mptr___0 = (struct list_head const *)td->list.next; tmp = (struct dm_thin_device *)__mptr___0; goto ldv_32725; ldv_32724: ; if (! td->changed) { goto ldv_32723; } else { } key = td->id; details.mapped_blocks = td->mapped_blocks; details.transaction_id = td->transaction_id; details.creation_time = td->creation_time; details.snapshotted_time = td->snapshotted_time; r = dm_btree_insert(& pmd->details_info, pmd->details_root, & key, (void *)(& details), & pmd->details_root); if (r != 0) { return (r); } else { } if (td->open_count != 0) { td->changed = 0; } else { list_del(& td->list); kfree((void const *)td); } ldv_32723: td = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct dm_thin_device *)__mptr___1; ldv_32725: ; if ((unsigned long )(& td->list) != (unsigned long )(& pmd->thin_devices)) { goto ldv_32724; } else { } return (0); } } static int __commit_transaction(struct dm_pool_metadata *pmd ) { int r ; size_t metadata_len ; size_t data_len ; struct thin_disk_superblock *disk_super ; struct dm_block *sblock ; void *tmp ; int tmp___0 ; { r = __write_changed_details(pmd); if (r < 0) { return (r); } else { } r = dm_sm_commit(pmd->data_sm); if (r < 0) { return (r); } else { } r = dm_tm_pre_commit(pmd->tm); if (r < 0) { return (r); } else { } r = dm_sm_root_size(pmd->metadata_sm, & metadata_len); if (r < 0) { return (r); } else { } r = dm_sm_root_size(pmd->data_sm, & data_len); if (r < 0) { return (r); } else { } r = save_sm_roots(pmd); if (r < 0) { return (r); } else { } r = superblock_lock(pmd, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp; disk_super->time = pmd->time; disk_super->data_mapping_root = pmd->root; disk_super->device_details_root = pmd->details_root; disk_super->trans_id = pmd->trans_id; disk_super->flags = (unsigned int )pmd->flags; copy_sm_roots(pmd, disk_super); tmp___0 = dm_tm_commit(pmd->tm, sblock); return (tmp___0); } } struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev , sector_t data_block_size , bool format_device ) { int r ; struct dm_pool_metadata *pmd ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { tmp = kmalloc(832UL, 208U); pmd = (struct dm_pool_metadata *)tmp; if ((unsigned long )pmd == (unsigned long )((struct dm_pool_metadata *)0)) { printk("\vdevice-mapper: thin metadata: could not allocate metadata struct\n"); tmp___0 = ERR_PTR(-12L); return ((struct dm_pool_metadata *)tmp___0); } else { } __init_rwsem(& pmd->root_lock, "&pmd->root_lock", & __key); pmd->time = 0U; INIT_LIST_HEAD(& pmd->thin_devices); pmd->fail_io = 0; pmd->bdev = bdev; pmd->data_block_size = data_block_size; r = __create_persistent_data_objects(pmd, (int )format_device); if (r != 0) { kfree((void const *)pmd); tmp___1 = ERR_PTR((long )r); return ((struct dm_pool_metadata *)tmp___1); } else { } r = __begin_transaction(pmd); if (r < 0) { tmp___2 = dm_pool_metadata_close(pmd); if (tmp___2 < 0) { printk("\fdevice-mapper: thin metadata: %s: dm_pool_metadata_close() failed.\n", "dm_pool_metadata_open"); } else { } tmp___3 = ERR_PTR((long )r); return ((struct dm_pool_metadata *)tmp___3); } else { } return (pmd); } } int dm_pool_metadata_close(struct dm_pool_metadata *pmd ) { int r ; unsigned int open_devices ; struct dm_thin_device *td ; struct dm_thin_device *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; bool tmp___0 ; int tmp___1 ; { open_devices = 0U; down_read(& pmd->root_lock); __mptr = (struct list_head const *)pmd->thin_devices.next; td = (struct dm_thin_device *)__mptr; __mptr___0 = (struct list_head const *)td->list.next; tmp = (struct dm_thin_device *)__mptr___0; goto ldv_32758; ldv_32757: ; if (td->open_count != 0) { open_devices = open_devices + 1U; } else { list_del(& td->list); kfree((void const *)td); } td = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct dm_thin_device *)__mptr___1; ldv_32758: ; if ((unsigned long )(& td->list) != (unsigned long )(& pmd->thin_devices)) { goto ldv_32757; } else { } up_read(& pmd->root_lock); if (open_devices != 0U) { printk("\vdevice-mapper: thin metadata: attempt to close pmd when %u device(s) are still open\n", open_devices); return (-16); } else { } tmp___0 = dm_bm_is_read_only(pmd->bm); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1 && ! pmd->fail_io) { r = __commit_transaction(pmd); if (r < 0) { printk("\fdevice-mapper: thin metadata: %s: __commit_transaction() failed, error = %d\n", "dm_pool_metadata_close", r); } else { } } else { } if (! pmd->fail_io) { __destroy_persistent_data_objects(pmd); } else { } kfree((void const *)pmd); return (0); } } static int __open_device(struct dm_pool_metadata *pmd , dm_thin_id dev , int create , struct dm_thin_device **td ) { int r ; int changed ; struct dm_thin_device *td2 ; uint64_t key ; struct disk_device_details details_le ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; void *tmp ; { changed = 0; key = dev; __mptr = (struct list_head const *)pmd->thin_devices.next; td2 = (struct dm_thin_device *)__mptr; goto ldv_32777; ldv_32776: ; if (td2->id == dev) { if (create != 0) { return (-17); } else { } td2->open_count = td2->open_count + 1; *td = td2; return (0); } else { } __mptr___0 = (struct list_head const *)td2->list.next; td2 = (struct dm_thin_device *)__mptr___0; ldv_32777: ; if ((unsigned long )(& td2->list) != (unsigned long )(& pmd->thin_devices)) { goto ldv_32776; } else { } r = dm_btree_lookup(& pmd->details_info, pmd->details_root, & key, (void *)(& details_le)); if (r != 0) { if (r != -61 || create == 0) { return (r); } else { } changed = 1; details_le.mapped_blocks = 0ULL; details_le.transaction_id = pmd->trans_id; details_le.creation_time = pmd->time; details_le.snapshotted_time = pmd->time; } else { } tmp = kmalloc(64UL, 16U); *td = (struct dm_thin_device *)tmp; if ((unsigned long )*td == (unsigned long )((struct dm_thin_device *)0)) { return (-12); } else { } (*td)->pmd = pmd; (*td)->id = dev; (*td)->open_count = 1; (*td)->changed = changed != 0; (*td)->aborted_with_changes = 0; (*td)->mapped_blocks = details_le.mapped_blocks; (*td)->transaction_id = details_le.transaction_id; (*td)->creation_time = details_le.creation_time; (*td)->snapshotted_time = details_le.snapshotted_time; list_add(& (*td)->list, & pmd->thin_devices); return (0); } } static void __close_device(struct dm_thin_device *td ) { { td->open_count = td->open_count - 1; return; } } static int __create_thin(struct dm_pool_metadata *pmd , dm_thin_id dev ) { int r ; dm_block_t dev_root ; uint64_t key ; struct disk_device_details details_le ; struct dm_thin_device *td ; __le64 value ; { key = dev; r = dm_btree_lookup(& pmd->details_info, pmd->details_root, & key, (void *)(& details_le)); if (r == 0) { return (-17); } else { } r = dm_btree_empty(& pmd->bl_info, & dev_root); if (r != 0) { return (r); } else { } value = dev_root; r = dm_btree_insert(& pmd->tl_info, pmd->root, & key, (void *)(& value), & pmd->root); if (r != 0) { dm_btree_del(& pmd->bl_info, dev_root); return (r); } else { } r = __open_device(pmd, dev, 1, & td); if (r != 0) { dm_btree_remove(& pmd->tl_info, pmd->root, & key, & pmd->root); dm_btree_del(& pmd->bl_info, dev_root); return (r); } else { } __close_device(td); return (r); } } int dm_pool_create_thin(struct dm_pool_metadata *pmd , dm_thin_id dev ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __create_thin(pmd, dev); } else { } up_write(& pmd->root_lock); return (r); } } static int __set_snapshot_details(struct dm_pool_metadata *pmd , struct dm_thin_device *snap , dm_thin_id origin , uint32_t time ) { int r ; struct dm_thin_device *td ; { r = __open_device(pmd, origin, 0, & td); if (r != 0) { return (r); } else { } td->changed = 1; td->snapshotted_time = time; snap->mapped_blocks = td->mapped_blocks; snap->snapshotted_time = time; __close_device(td); return (0); } } static int __create_snap(struct dm_pool_metadata *pmd , dm_thin_id dev , dm_thin_id origin ) { int r ; dm_block_t origin_root ; uint64_t key ; uint64_t dev_key ; struct dm_thin_device *td ; struct disk_device_details details_le ; __le64 value ; { key = origin; dev_key = dev; r = dm_btree_lookup(& pmd->details_info, pmd->details_root, & dev_key, (void *)(& details_le)); if (r == 0) { return (-17); } else { } r = dm_btree_lookup(& pmd->tl_info, pmd->root, & key, (void *)(& value)); if (r != 0) { return (r); } else { } origin_root = value; dm_tm_inc(pmd->tm, origin_root); value = origin_root; key = dev; r = dm_btree_insert(& pmd->tl_info, pmd->root, & key, (void *)(& value), & pmd->root); if (r != 0) { dm_tm_dec(pmd->tm, origin_root); return (r); } else { } pmd->time = pmd->time + 1U; r = __open_device(pmd, dev, 1, & td); if (r != 0) { goto bad; } else { } r = __set_snapshot_details(pmd, td, origin, pmd->time); __close_device(td); if (r != 0) { goto bad; } else { } return (0); bad: dm_btree_remove(& pmd->tl_info, pmd->root, & key, & pmd->root); dm_btree_remove(& pmd->details_info, pmd->details_root, & key, & pmd->details_root); return (r); } } int dm_pool_create_snap(struct dm_pool_metadata *pmd , dm_thin_id dev , dm_thin_id origin ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __create_snap(pmd, dev, origin); } else { } up_write(& pmd->root_lock); return (r); } } static int __delete_device(struct dm_pool_metadata *pmd , dm_thin_id dev ) { int r ; uint64_t key ; struct dm_thin_device *td ; { key = dev; r = __open_device(pmd, dev, 0, & td); if (r != 0) { return (r); } else { } if (td->open_count > 1) { __close_device(td); return (-16); } else { } list_del(& td->list); kfree((void const *)td); r = dm_btree_remove(& pmd->details_info, pmd->details_root, & key, & pmd->details_root); if (r != 0) { return (r); } else { } r = dm_btree_remove(& pmd->tl_info, pmd->root, & key, & pmd->root); if (r != 0) { return (r); } else { } return (0); } } int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd , dm_thin_id dev ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __delete_device(pmd, dev); } else { } up_write(& pmd->root_lock); return (r); } } int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd , uint64_t current_id , uint64_t new_id ) { int r ; { r = -22; down_write(& pmd->root_lock); if ((int )pmd->fail_io) { goto out; } else { } if (pmd->trans_id != current_id) { printk("\vdevice-mapper: thin metadata: mismatched transaction id\n"); goto out; } else { } pmd->trans_id = new_id; r = 0; out: up_write(& pmd->root_lock); return (r); } } int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd , uint64_t *result ) { int r ; { r = -22; down_read(& pmd->root_lock); if (! pmd->fail_io) { *result = pmd->trans_id; r = 0; } else { } up_read(& pmd->root_lock); return (r); } } static int __reserve_metadata_snap(struct dm_pool_metadata *pmd ) { int r ; int inc ; struct thin_disk_superblock *disk_super ; struct dm_block *copy ; struct dm_block *sblock ; dm_block_t held_root ; long tmp ; void *tmp___0 ; void *tmp___1 ; { dm_sm_inc_block(pmd->metadata_sm, 0ULL); r = dm_tm_shadow_block(pmd->tm, 0ULL, & sb_validator, & copy, & inc); if (r != 0) { return (r); } else { } tmp = ldv__builtin_expect(inc == 0, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/965/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-thin-metadata.c"), "i" (1214), "i" (12UL)); ldv_32857: ; goto ldv_32857; } else { } held_root = dm_block_location(copy); tmp___0 = dm_block_data(copy); disk_super = (struct thin_disk_superblock *)tmp___0; if (disk_super->held_root != 0ULL) { printk("\fdevice-mapper: thin metadata: Pool metadata snapshot already exists: release this before taking another.\n"); dm_tm_dec(pmd->tm, held_root); dm_tm_unlock(pmd->tm, copy); return (-16); } else { } memset((void *)(& disk_super->data_space_map_root), 0, 128UL); memset((void *)(& disk_super->metadata_space_map_root), 0, 128UL); dm_tm_inc(pmd->tm, disk_super->data_mapping_root); dm_tm_inc(pmd->tm, disk_super->device_details_root); dm_tm_unlock(pmd->tm, copy); r = superblock_lock(pmd, & sblock); if (r != 0) { dm_tm_dec(pmd->tm, held_root); return (r); } else { } tmp___1 = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp___1; disk_super->held_root = held_root; dm_bm_unlock(sblock); return (0); } } int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __reserve_metadata_snap(pmd); } else { } up_write(& pmd->root_lock); return (r); } } static int __release_metadata_snap(struct dm_pool_metadata *pmd ) { int r ; struct thin_disk_superblock *disk_super ; struct dm_block *sblock ; struct dm_block *copy ; dm_block_t held_root ; void *tmp ; void *tmp___0 ; int tmp___1 ; { r = superblock_lock(pmd, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp; held_root = disk_super->held_root; disk_super->held_root = 0ULL; dm_bm_unlock(sblock); if (held_root == 0ULL) { printk("\fdevice-mapper: thin metadata: No pool metadata snapshot found: nothing to release.\n"); return (-22); } else { } r = dm_tm_read_lock(pmd->tm, held_root, & sb_validator, & copy); if (r != 0) { return (r); } else { } tmp___0 = dm_block_data(copy); disk_super = (struct thin_disk_superblock *)tmp___0; dm_sm_dec_block(pmd->metadata_sm, disk_super->data_mapping_root); dm_sm_dec_block(pmd->metadata_sm, disk_super->device_details_root); dm_sm_dec_block(pmd->metadata_sm, held_root); tmp___1 = dm_tm_unlock(pmd->tm, copy); return (tmp___1); } } int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __release_metadata_snap(pmd); } else { } up_write(& pmd->root_lock); return (r); } } static int __get_metadata_snap(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; struct thin_disk_superblock *disk_super ; struct dm_block *sblock ; void *tmp ; int tmp___0 ; { r = dm_bm_read_lock(pmd->bm, 0ULL, & sb_validator, & sblock); if (r != 0) { return (r); } else { } tmp = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp; *result = disk_super->held_root; tmp___0 = dm_bm_unlock(sblock); return (tmp___0); } } int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; { r = -22; down_read(& pmd->root_lock); if (! pmd->fail_io) { r = __get_metadata_snap(pmd, result); } else { } up_read(& pmd->root_lock); return (r); } } int dm_pool_open_thin_device(struct dm_pool_metadata *pmd , dm_thin_id dev , struct dm_thin_device **td ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __open_device(pmd, dev, 0, td); } else { } up_write(& pmd->root_lock); return (r); } } int dm_pool_close_thin_device(struct dm_thin_device *td ) { { down_write(& (td->pmd)->root_lock); __close_device(td); up_write(& (td->pmd)->root_lock); return (0); } } dm_thin_id dm_thin_dev_id(struct dm_thin_device *td ) { { return (td->id); } } static bool __snapshotted_since(struct dm_thin_device *td , uint32_t time ) { { return (td->snapshotted_time > time); } } int dm_thin_find_block(struct dm_thin_device *td , dm_block_t block , int can_issue_io , struct dm_thin_lookup_result *result ) { int r ; __le64 value ; struct dm_pool_metadata *pmd ; dm_block_t keys[2U] ; struct dm_btree_info *info ; uint64_t block_time ; dm_block_t exception_block ; uint32_t exception_time ; { pmd = td->pmd; keys[0] = td->id; keys[1] = block; down_read(& pmd->root_lock); if ((int )pmd->fail_io) { up_read(& pmd->root_lock); return (-22); } else { } if (can_issue_io != 0) { info = & pmd->info; } else { info = & pmd->nb_info; } r = dm_btree_lookup(info, pmd->root, (uint64_t *)(& keys), (void *)(& value)); if (r == 0) { block_time = 0ULL; block_time = value; unpack_block_time(block_time, & exception_block, & exception_time); result->block = exception_block; result->shared = __snapshotted_since(td, exception_time); } else { } up_read(& pmd->root_lock); return (r); } } int dm_thin_find_mapped_range(struct dm_thin_device *td , dm_block_t begin , dm_block_t end , dm_block_t *thin_begin , dm_block_t *thin_end , dm_block_t *pool_begin , bool *maybe_shared ) { int r ; dm_block_t pool_end ; struct dm_thin_lookup_result lookup ; { if (end < begin) { return (-61); } else { } goto ldv_32930; ldv_32929: r = dm_thin_find_block(td, begin, 1, & lookup); if (r != 0) { if (r != -61) { return (r); } else { } } else { goto ldv_32928; } begin = begin + 1ULL; ldv_32930: ; if (begin < end) { goto ldv_32929; } else { } ldv_32928: ; if (begin == end) { return (-61); } else { } *thin_begin = begin; *pool_begin = lookup.block; *maybe_shared = lookup.shared; begin = begin + 1ULL; pool_end = *pool_begin + 1ULL; goto ldv_32933; ldv_32932: r = dm_thin_find_block(td, begin, 1, & lookup); if (r != 0) { if (r == -61) { goto ldv_32931; } else { return (r); } } else { } if (lookup.block != pool_end || (int )lookup.shared != (int )*maybe_shared) { goto ldv_32931; } else { } pool_end = pool_end + 1ULL; begin = begin + 1ULL; ldv_32933: ; if (begin != end) { goto ldv_32932; } else { } ldv_32931: *thin_end = begin; return (0); } } static int __insert(struct dm_thin_device *td , dm_block_t block , dm_block_t data_block ) { int r ; int inserted ; __le64 value ; struct dm_pool_metadata *pmd ; dm_block_t keys[2U] ; { pmd = td->pmd; keys[0] = td->id; keys[1] = block; value = pack_block_time(data_block, pmd->time); r = dm_btree_insert_notify(& pmd->info, pmd->root, (uint64_t *)(& keys), (void *)(& value), & pmd->root, & inserted); if (r != 0) { return (r); } else { } td->changed = 1; if (inserted != 0) { td->mapped_blocks = td->mapped_blocks + 1ULL; } else { } return (0); } } int dm_thin_insert_block(struct dm_thin_device *td , dm_block_t block , dm_block_t data_block ) { int r ; { r = -22; down_write(& (td->pmd)->root_lock); if (! (td->pmd)->fail_io) { r = __insert(td, block, data_block); } else { } up_write(& (td->pmd)->root_lock); return (r); } } static int __remove(struct dm_thin_device *td , dm_block_t block ) { int r ; struct dm_pool_metadata *pmd ; dm_block_t keys[2U] ; { pmd = td->pmd; keys[0] = td->id; keys[1] = block; r = dm_btree_remove(& pmd->info, pmd->root, (uint64_t *)(& keys), & pmd->root); if (r != 0) { return (r); } else { } td->mapped_blocks = td->mapped_blocks - 1ULL; td->changed = 1; return (0); } } static int __remove_range(struct dm_thin_device *td , dm_block_t begin , dm_block_t end ) { int r ; unsigned int count ; struct dm_pool_metadata *pmd ; dm_block_t keys[1U] ; __le64 value ; dm_block_t mapping_root ; int tmp ; { pmd = td->pmd; keys[0] = td->id; r = dm_btree_lookup(& pmd->tl_info, pmd->root, (uint64_t *)(& keys), (void *)(& value)); if (r != 0) { return (r); } else { } mapping_root = value; dm_tm_inc(pmd->tm, mapping_root); r = dm_btree_remove(& pmd->tl_info, pmd->root, (uint64_t *)(& keys), & pmd->root); if (r != 0) { return (r); } else { } r = dm_btree_remove_leaves(& pmd->bl_info, mapping_root, & begin, end, & mapping_root, & count); if (r != 0) { return (r); } else { } td->mapped_blocks = td->mapped_blocks - (uint64_t )count; td->changed = 1; value = mapping_root; tmp = dm_btree_insert(& pmd->tl_info, pmd->root, (uint64_t *)(& keys), (void *)(& value), & pmd->root); return (tmp); } } int dm_thin_remove_block(struct dm_thin_device *td , dm_block_t block ) { int r ; { r = -22; down_write(& (td->pmd)->root_lock); if (! (td->pmd)->fail_io) { r = __remove(td, block); } else { } up_write(& (td->pmd)->root_lock); return (r); } } int dm_thin_remove_range(struct dm_thin_device *td , dm_block_t begin , dm_block_t end ) { int r ; { r = -22; down_write(& (td->pmd)->root_lock); if (! (td->pmd)->fail_io) { r = __remove_range(td, begin, end); } else { } up_write(& (td->pmd)->root_lock); return (r); } } int dm_pool_block_is_used(struct dm_pool_metadata *pmd , dm_block_t b , bool *result ) { int r ; uint32_t ref_count ; { down_read(& pmd->root_lock); r = dm_sm_get_count(pmd->data_sm, b, & ref_count); if (r == 0) { *result = ref_count != 0U; } else { } up_read(& pmd->root_lock); return (r); } } bool dm_thin_changed_this_transaction(struct dm_thin_device *td ) { int r ; { down_read(& (td->pmd)->root_lock); r = (int )td->changed; up_read(& (td->pmd)->root_lock); return (r != 0); } } bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd ) { bool r ; struct dm_thin_device *td ; struct dm_thin_device *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { r = 0; down_read(& pmd->root_lock); __mptr = (struct list_head const *)pmd->thin_devices.next; td = (struct dm_thin_device *)__mptr; __mptr___0 = (struct list_head const *)td->list.next; tmp = (struct dm_thin_device *)__mptr___0; goto ldv_33004; ldv_33003: ; if ((int )td->changed) { r = td->changed; goto ldv_33002; } else { } td = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct dm_thin_device *)__mptr___1; ldv_33004: ; if ((unsigned long )(& td->list) != (unsigned long )(& pmd->thin_devices)) { goto ldv_33003; } else { } ldv_33002: up_read(& pmd->root_lock); return (r); } } bool dm_thin_aborted_changes(struct dm_thin_device *td ) { bool r ; { down_read(& (td->pmd)->root_lock); r = td->aborted_with_changes; up_read(& (td->pmd)->root_lock); return (r); } } int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = dm_sm_new_block(pmd->data_sm, result); } else { } up_write(& pmd->root_lock); return (r); } } int dm_pool_commit_metadata(struct dm_pool_metadata *pmd ) { int r ; { r = -22; down_write(& pmd->root_lock); if ((int )pmd->fail_io) { goto out; } else { } r = __commit_transaction(pmd); if (r <= 0) { goto out; } else { } r = __begin_transaction(pmd); out: up_write(& pmd->root_lock); return (r); } } static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd ) { struct dm_thin_device *td ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)pmd->thin_devices.next; td = (struct dm_thin_device *)__mptr; goto ldv_33028; ldv_33027: td->aborted_with_changes = td->changed; __mptr___0 = (struct list_head const *)td->list.next; td = (struct dm_thin_device *)__mptr___0; ldv_33028: ; if ((unsigned long )(& td->list) != (unsigned long )(& pmd->thin_devices)) { goto ldv_33027; } else { } return; } } int dm_pool_abort_metadata(struct dm_pool_metadata *pmd ) { int r ; { r = -22; down_write(& pmd->root_lock); if ((int )pmd->fail_io) { goto out; } else { } __set_abort_with_changes_flags(pmd); __destroy_persistent_data_objects(pmd); r = __create_persistent_data_objects(pmd, 0); if (r != 0) { pmd->fail_io = 1; } else { } out: up_write(& pmd->root_lock); return (r); } } int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; { r = -22; down_read(& pmd->root_lock); if (! pmd->fail_io) { r = dm_sm_get_nr_free(pmd->data_sm, result); } else { } up_read(& pmd->root_lock); return (r); } } int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; { r = -22; down_read(& pmd->root_lock); if (! pmd->fail_io) { r = dm_sm_get_nr_free(pmd->metadata_sm, result); } else { } up_read(& pmd->root_lock); return (r); } } int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; { r = -22; down_read(& pmd->root_lock); if (! pmd->fail_io) { r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); } else { } up_read(& pmd->root_lock); return (r); } } int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd , dm_block_t *result ) { int r ; { r = -22; down_read(& pmd->root_lock); if (! pmd->fail_io) { r = dm_sm_get_nr_blocks(pmd->data_sm, result); } else { } up_read(& pmd->root_lock); return (r); } } int dm_thin_get_mapped_count(struct dm_thin_device *td , dm_block_t *result ) { int r ; struct dm_pool_metadata *pmd ; { r = -22; pmd = td->pmd; down_read(& pmd->root_lock); if (! pmd->fail_io) { *result = td->mapped_blocks; r = 0; } else { } up_read(& pmd->root_lock); return (r); } } static int __highest_block(struct dm_thin_device *td , dm_block_t *result ) { int r ; __le64 value_le ; dm_block_t thin_root ; struct dm_pool_metadata *pmd ; int tmp ; { pmd = td->pmd; r = dm_btree_lookup(& pmd->tl_info, pmd->root, & td->id, (void *)(& value_le)); if (r != 0) { return (r); } else { } thin_root = value_le; tmp = dm_btree_find_highest_key(& pmd->bl_info, thin_root, result); return (tmp); } } int dm_thin_get_highest_mapped_block(struct dm_thin_device *td , dm_block_t *result ) { int r ; struct dm_pool_metadata *pmd ; { r = -22; pmd = td->pmd; down_read(& pmd->root_lock); if (! pmd->fail_io) { r = __highest_block(td, result); } else { } up_read(& pmd->root_lock); return (r); } } static int __resize_space_map(struct dm_space_map *sm , dm_block_t new_count ) { int r ; dm_block_t old_count ; int tmp ; { r = dm_sm_get_nr_blocks(sm, & old_count); if (r != 0) { return (r); } else { } if (new_count == old_count) { return (0); } else { } if (new_count < old_count) { printk("\vdevice-mapper: thin metadata: cannot reduce size of space map\n"); return (-22); } else { } tmp = dm_sm_extend(sm, new_count - old_count); return (tmp); } } int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd , dm_block_t new_count ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __resize_space_map(pmd->data_sm, new_count); } else { } up_write(& pmd->root_lock); return (r); } } int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd , dm_block_t new_count ) { int r ; { r = -22; down_write(& pmd->root_lock); if (! pmd->fail_io) { r = __resize_space_map(pmd->metadata_sm, new_count); } else { } up_write(& pmd->root_lock); return (r); } } void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd ) { { down_write(& pmd->root_lock); dm_bm_set_read_only(pmd->bm); up_write(& pmd->root_lock); return; } } void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd ) { { down_write(& pmd->root_lock); dm_bm_set_read_write(pmd->bm); up_write(& pmd->root_lock); return; } } int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd , dm_block_t threshold , void (*fn)(void * ) , void *context ) { int r ; { down_write(& pmd->root_lock); r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); up_write(& pmd->root_lock); return (r); } } int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd ) { int r ; struct dm_block *sblock ; struct thin_disk_superblock *disk_super ; void *tmp ; { down_write(& pmd->root_lock); pmd->flags = pmd->flags | 1UL; r = superblock_lock(pmd, & sblock); if (r != 0) { printk("\vdevice-mapper: thin metadata: couldn\'t read superblock\n"); goto out; } else { } tmp = dm_block_data(sblock); disk_super = (struct thin_disk_superblock *)tmp; disk_super->flags = (unsigned int )pmd->flags; dm_bm_unlock(sblock); out: up_write(& pmd->root_lock); return (r); } } bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd ) { bool needs_check ; { down_read(& pmd->root_lock); needs_check = (pmd->flags & 1UL) != 0UL; up_read(& pmd->root_lock); return (needs_check); } } void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd ) { { dm_tm_issue_prefetches(pmd->tm); return; } } extern int ldv_release_4(void) ; extern int ldv_probe_4(void) ; void ldv_initialize_dm_block_validator_4(void) { void *tmp ; void *tmp___0 ; { tmp = __VERIFIER_nondet_pointer(); sb_validator_group0 = (struct dm_block *)tmp; tmp___0 = ldv_init_zalloc(24UL); sb_validator_group1 = (struct dm_block_validator *)tmp___0; return; } } void ldv_main_exported_4(void) { size_t ldvarg15 ; size_t ldvarg16 ; int tmp ; { ldv_memset((void *)(& ldvarg15), 0, 8UL); ldv_memset((void *)(& ldvarg16), 0, 8UL); tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_4 == 1) { sb_check(sb_validator_group1, sb_validator_group0, ldvarg16); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 2) { sb_check(sb_validator_group1, sb_validator_group0, ldvarg16); ldv_state_variable_4 = 2; } else { } goto ldv_33131; case 1: ; if (ldv_state_variable_4 == 2) { sb_prepare_for_write(sb_validator_group1, sb_validator_group0, ldvarg15); ldv_state_variable_4 = 2; } else { } goto ldv_33131; case 2: ; if (ldv_state_variable_4 == 2) { ldv_release_4(); ldv_state_variable_4 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_33131; case 3: ; if (ldv_state_variable_4 == 1) { ldv_probe_4(); ldv_state_variable_4 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_33131; default: ldv_stop(); } ldv_33131: ; return; } } bool ldv_queue_work_on_65(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_66(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_67(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_68(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_69(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_70(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_71(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_72(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_73(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_74(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_75(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_76(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_dm_thin_pool_table = 1; int ldv_mutex_lock_interruptible_mutex_of_dm_thin_pool_table(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_dm_thin_pool_table != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_dm_thin_pool_table = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_dm_thin_pool_table(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_dm_thin_pool_table != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_dm_thin_pool_table = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_dm_thin_pool_table(struct mutex *lock ) { { if (ldv_mutex_mutex_of_dm_thin_pool_table != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_dm_thin_pool_table = 2; return; } } int ldv_mutex_trylock_mutex_of_dm_thin_pool_table(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_dm_thin_pool_table != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_dm_thin_pool_table = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_dm_thin_pool_table(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_dm_thin_pool_table != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_dm_thin_pool_table = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_dm_thin_pool_table(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_dm_thin_pool_table == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_dm_thin_pool_table(struct mutex *lock ) { { if (ldv_mutex_mutex_of_dm_thin_pool_table != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_dm_thin_pool_table = 1; return; } } void ldv_usb_lock_device_mutex_of_dm_thin_pool_table(void) { { ldv_mutex_lock_mutex_of_dm_thin_pool_table((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_dm_thin_pool_table(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_dm_thin_pool_table((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_dm_thin_pool_table(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_dm_thin_pool_table((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_dm_thin_pool_table(void) { { ldv_mutex_unlock_mutex_of_dm_thin_pool_table((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_dm_thin_pool_table != 1) { ldv_error(); } else { } return; } }