extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef __kernel_long_t __kernel_suseconds_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __le32; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct usb_device; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct v4l2_format; struct i2c_adapter; struct v4l2_event_subscription; struct videobuf_queue; struct usb_interface; struct v4l2_fh; struct v4l2_buffer; struct videobuf_buffer; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef unsigned long kernel_ulong_t; struct usb_device_id { __u16 match_flags ; __u16 idVendor ; __u16 idProduct ; __u16 bcdDevice_lo ; __u16 bcdDevice_hi ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 bInterfaceNumber ; kernel_ulong_t driver_info ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_client; enum i2c_slave_event; enum i2c_slave_event; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; int (*slave_cb)(struct i2c_client * , enum i2c_slave_event , u8 * ) ; }; enum i2c_slave_event { I2C_SLAVE_READ_REQUESTED = 0, I2C_SLAVE_WRITE_REQUESTED = 1, I2C_SLAVE_READ_PROCESSED = 2, I2C_SLAVE_WRITE_RECEIVED = 3, I2C_SLAVE_STOP = 4 } ; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; int (*reg_slave)(struct i2c_client * ) ; int (*unreg_slave)(struct i2c_client * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_adapter * ) ; void (*unprepare_recovery)(struct i2c_adapter * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter_quirks { u64 flags ; int max_num_msgs ; u16 max_write_len ; u16 max_read_len ; u16 max_comb_1st_msg_len ; u16 max_comb_2nd_msg_len ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; struct i2c_adapter_quirks const *quirks ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct exception_table_entry { int insn ; int fixup ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_233 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField66 ; }; struct lockref { union __anonunion____missing_field_name_232 __annonCompField67 ; }; struct vfsmount; struct __anonstruct____missing_field_name_235 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_234 { struct __anonstruct____missing_field_name_235 __annonCompField68 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_234 __annonCompField69 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_236 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_236 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_240 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_239 { struct __anonstruct____missing_field_name_240 __annonCompField70 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_239 __annonCompField71 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_244 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_244 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_245 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_245 __annonCompField73 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_248 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_249 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_250 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_248 __annonCompField74 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_249 __annonCompField75 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_250 __annonCompField76 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_251 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_251 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_253 { struct list_head link ; int state ; }; union __anonunion_fl_u_252 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_253 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_252 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct usb_driver; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_dynids { spinlock_t lock ; struct list_head list ; }; struct usbdrv_wrap { struct device_driver driver ; int for_devices ; }; struct usb_driver { char const *name ; int (*probe)(struct usb_interface * , struct usb_device_id const * ) ; void (*disconnect)(struct usb_interface * ) ; int (*unlocked_ioctl)(struct usb_interface * , unsigned int , void * ) ; int (*suspend)(struct usb_interface * , pm_message_t ) ; int (*resume)(struct usb_interface * ) ; int (*reset_resume)(struct usb_interface * ) ; int (*pre_reset)(struct usb_interface * ) ; int (*post_reset)(struct usb_interface * ) ; struct usb_device_id const *id_table ; struct usb_dynids dynids ; struct usbdrv_wrap drvwrap ; unsigned char no_dynamic_id : 1 ; unsigned char supports_autosuspend : 1 ; unsigned char disable_hub_initiated_lpm : 1 ; unsigned char soft_unbind : 1 ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct v4l2_edid { __u32 pad ; __u32 start_block ; __u32 blocks ; __u32 reserved[5U] ; __u8 *edid ; }; enum v4l2_field { V4L2_FIELD_ANY = 0, V4L2_FIELD_NONE = 1, V4L2_FIELD_TOP = 2, V4L2_FIELD_BOTTOM = 3, V4L2_FIELD_INTERLACED = 4, V4L2_FIELD_SEQ_TB = 5, V4L2_FIELD_SEQ_BT = 6, V4L2_FIELD_ALTERNATE = 7, V4L2_FIELD_INTERLACED_TB = 8, V4L2_FIELD_INTERLACED_BT = 9 } ; enum v4l2_buf_type { V4L2_BUF_TYPE_VIDEO_CAPTURE = 1, V4L2_BUF_TYPE_VIDEO_OUTPUT = 2, V4L2_BUF_TYPE_VIDEO_OVERLAY = 3, V4L2_BUF_TYPE_VBI_CAPTURE = 4, V4L2_BUF_TYPE_VBI_OUTPUT = 5, V4L2_BUF_TYPE_SLICED_VBI_CAPTURE = 6, V4L2_BUF_TYPE_SLICED_VBI_OUTPUT = 7, V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY = 8, V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE = 9, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE = 10, V4L2_BUF_TYPE_SDR_CAPTURE = 11, V4L2_BUF_TYPE_PRIVATE = 128 } ; enum v4l2_memory { V4L2_MEMORY_MMAP = 1, V4L2_MEMORY_USERPTR = 2, V4L2_MEMORY_OVERLAY = 3, V4L2_MEMORY_DMABUF = 4 } ; enum v4l2_priority { V4L2_PRIORITY_UNSET = 0, V4L2_PRIORITY_BACKGROUND = 1, V4L2_PRIORITY_INTERACTIVE = 2, V4L2_PRIORITY_RECORD = 3, V4L2_PRIORITY_DEFAULT = 2 } ; struct v4l2_rect { __s32 left ; __s32 top ; __u32 width ; __u32 height ; }; struct v4l2_fract { __u32 numerator ; __u32 denominator ; }; struct v4l2_pix_format { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 bytesperline ; __u32 sizeimage ; __u32 colorspace ; __u32 priv ; __u32 flags ; __u32 ycbcr_enc ; __u32 quantization ; __u32 xfer_func ; }; struct v4l2_timecode { __u32 type ; __u32 flags ; __u8 frames ; __u8 seconds ; __u8 minutes ; __u8 hours ; __u8 userbits[4U] ; }; union __anonunion_m_257 { __u32 mem_offset ; unsigned long userptr ; __s32 fd ; }; struct v4l2_plane { __u32 bytesused ; __u32 length ; union __anonunion_m_257 m ; __u32 data_offset ; __u32 reserved[11U] ; }; union __anonunion_m_258 { __u32 offset ; unsigned long userptr ; struct v4l2_plane *planes ; __s32 fd ; }; struct v4l2_buffer { __u32 index ; __u32 type ; __u32 bytesused ; __u32 flags ; __u32 field ; struct timeval timestamp ; struct v4l2_timecode timecode ; __u32 sequence ; __u32 memory ; union __anonunion_m_258 m ; __u32 length ; __u32 reserved2 ; __u32 reserved ; }; struct __anonstruct_fmt_259 { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 bytesperline ; __u32 sizeimage ; __u32 colorspace ; __u32 priv ; }; struct v4l2_framebuffer { __u32 capability ; __u32 flags ; void *base ; struct __anonstruct_fmt_259 fmt ; }; struct v4l2_clip { struct v4l2_rect c ; struct v4l2_clip *next ; }; struct v4l2_window { struct v4l2_rect w ; __u32 field ; __u32 chromakey ; struct v4l2_clip *clips ; __u32 clipcount ; void *bitmap ; __u8 global_alpha ; }; struct v4l2_captureparm { __u32 capability ; __u32 capturemode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 readbuffers ; __u32 reserved[4U] ; }; struct v4l2_outputparm { __u32 capability ; __u32 outputmode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 writebuffers ; __u32 reserved[4U] ; }; struct v4l2_cropcap { __u32 type ; struct v4l2_rect bounds ; struct v4l2_rect defrect ; struct v4l2_fract pixelaspect ; }; struct v4l2_crop { __u32 type ; struct v4l2_rect c ; }; typedef __u64 v4l2_std_id; struct v4l2_bt_timings { __u32 width ; __u32 height ; __u32 interlaced ; __u32 polarities ; __u64 pixelclock ; __u32 hfrontporch ; __u32 hsync ; __u32 hbackporch ; __u32 vfrontporch ; __u32 vsync ; __u32 vbackporch ; __u32 il_vfrontporch ; __u32 il_vsync ; __u32 il_vbackporch ; __u32 standards ; __u32 flags ; __u32 reserved[14U] ; }; union __anonunion____missing_field_name_260 { struct v4l2_bt_timings bt ; __u32 reserved[32U] ; }; struct v4l2_dv_timings { __u32 type ; union __anonunion____missing_field_name_260 __annonCompField79 ; }; struct v4l2_enum_dv_timings { __u32 index ; __u32 pad ; __u32 reserved[2U] ; struct v4l2_dv_timings timings ; }; struct v4l2_bt_timings_cap { __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u64 min_pixelclock ; __u64 max_pixelclock ; __u32 standards ; __u32 capabilities ; __u32 reserved[16U] ; }; union __anonunion____missing_field_name_261 { struct v4l2_bt_timings_cap bt ; __u32 raw_data[32U] ; }; struct v4l2_dv_timings_cap { __u32 type ; __u32 pad ; __u32 reserved[2U] ; union __anonunion____missing_field_name_261 __annonCompField80 ; }; struct v4l2_control { __u32 id ; __s32 value ; }; union __anonunion____missing_field_name_262 { __s32 value ; __s64 value64 ; char *string ; __u8 *p_u8 ; __u16 *p_u16 ; __u32 *p_u32 ; void *ptr ; }; struct v4l2_ext_control { __u32 id ; __u32 size ; __u32 reserved2[1U] ; union __anonunion____missing_field_name_262 __annonCompField81 ; }; struct v4l2_ext_controls { __u32 ctrl_class ; __u32 count ; __u32 error_idx ; __u32 reserved[2U] ; struct v4l2_ext_control *controls ; }; enum v4l2_ctrl_type { V4L2_CTRL_TYPE_INTEGER = 1, V4L2_CTRL_TYPE_BOOLEAN = 2, V4L2_CTRL_TYPE_MENU = 3, V4L2_CTRL_TYPE_BUTTON = 4, V4L2_CTRL_TYPE_INTEGER64 = 5, V4L2_CTRL_TYPE_CTRL_CLASS = 6, V4L2_CTRL_TYPE_STRING = 7, V4L2_CTRL_TYPE_BITMASK = 8, V4L2_CTRL_TYPE_INTEGER_MENU = 9, V4L2_CTRL_COMPOUND_TYPES = 256, V4L2_CTRL_TYPE_U8 = 256, V4L2_CTRL_TYPE_U16 = 257, V4L2_CTRL_TYPE_U32 = 258 } ; struct v4l2_queryctrl { __u32 id ; __u32 type ; __u8 name[32U] ; __s32 minimum ; __s32 maximum ; __s32 step ; __s32 default_value ; __u32 flags ; __u32 reserved[2U] ; }; union __anonunion____missing_field_name_263 { __u8 name[32U] ; __s64 value ; }; struct v4l2_querymenu { __u32 id ; __u32 index ; union __anonunion____missing_field_name_263 __annonCompField82 ; __u32 reserved ; }; struct v4l2_tuner { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 rxsubchans ; __u32 audmode ; __s32 signal ; __s32 afc ; __u32 reserved[4U] ; }; struct v4l2_modulator { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 txsubchans ; __u32 reserved[4U] ; }; struct v4l2_frequency { __u32 tuner ; __u32 type ; __u32 frequency ; __u32 reserved[8U] ; }; struct v4l2_frequency_band { __u32 tuner ; __u32 type ; __u32 index ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 modulation ; __u32 reserved[9U] ; }; struct v4l2_vbi_format { __u32 sampling_rate ; __u32 offset ; __u32 samples_per_line ; __u32 sample_format ; __s32 start[2U] ; __u32 count[2U] ; __u32 flags ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_format { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 io_size ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_cap { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 type ; __u32 reserved[3U] ; }; struct v4l2_sliced_vbi_data { __u32 id ; __u32 field ; __u32 line ; __u32 reserved ; __u8 data[48U] ; }; struct v4l2_plane_pix_format { __u32 sizeimage ; __u32 bytesperline ; __u16 reserved[6U] ; }; struct v4l2_pix_format_mplane { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 colorspace ; struct v4l2_plane_pix_format plane_fmt[8U] ; __u8 num_planes ; __u8 flags ; __u8 ycbcr_enc ; __u8 quantization ; __u8 xfer_func ; __u8 reserved[7U] ; }; struct v4l2_sdr_format { __u32 pixelformat ; __u32 buffersize ; __u8 reserved[24U] ; }; union __anonunion_fmt_271 { struct v4l2_pix_format pix ; struct v4l2_pix_format_mplane pix_mp ; struct v4l2_window win ; struct v4l2_vbi_format vbi ; struct v4l2_sliced_vbi_format sliced ; struct v4l2_sdr_format sdr ; __u8 raw_data[200U] ; }; struct v4l2_format { __u32 type ; union __anonunion_fmt_271 fmt ; }; union __anonunion_parm_272 { struct v4l2_captureparm capture ; struct v4l2_outputparm output ; __u8 raw_data[200U] ; }; struct v4l2_streamparm { __u32 type ; union __anonunion_parm_272 parm ; }; struct v4l2_event_subscription { __u32 type ; __u32 id ; __u32 flags ; __u32 reserved[5U] ; }; union __anonunion____missing_field_name_275 { __u32 addr ; char name[32U] ; }; struct v4l2_dbg_match { __u32 type ; union __anonunion____missing_field_name_275 __annonCompField87 ; }; struct v4l2_dbg_register { struct v4l2_dbg_match match ; __u32 size ; __u64 reg ; __u64 val ; }; struct media_pipeline { }; struct media_pad; struct media_link { struct media_pad *source ; struct media_pad *sink ; struct media_link *reverse ; unsigned long flags ; }; struct media_entity; struct media_pad { struct media_entity *entity ; u16 index ; unsigned long flags ; }; struct media_entity_operations { int (*link_setup)(struct media_entity * , struct media_pad const * , struct media_pad const * , u32 ) ; int (*link_validate)(struct media_link * ) ; }; struct media_device; struct __anonstruct_dev_282 { u32 major ; u32 minor ; }; union __anonunion_info_281 { struct __anonstruct_dev_282 dev ; }; struct media_entity { struct list_head list ; struct media_device *parent ; u32 id ; char const *name ; u32 type ; u32 revision ; unsigned long flags ; u32 group_id ; u16 num_pads ; u16 num_links ; u16 num_backlinks ; u16 max_links ; struct media_pad *pads ; struct media_link *links ; struct media_entity_operations const *ops ; int stream_count ; int use_count ; struct media_pipeline *pipe ; union __anonunion_info_281 info ; }; struct video_device; struct v4l2_device; struct v4l2_ctrl_handler; struct v4l2_prio_state { atomic_t prios[4U] ; }; struct v4l2_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl32)(struct file * , unsigned int , unsigned long ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct vb2_queue; struct v4l2_ioctl_ops; struct video_device { struct media_entity entity ; struct v4l2_file_operations const *fops ; struct device dev ; struct cdev *cdev ; struct v4l2_device *v4l2_dev ; struct device *dev_parent ; struct v4l2_ctrl_handler *ctrl_handler ; struct vb2_queue *queue ; struct v4l2_prio_state *prio ; char name[32U] ; int vfl_type ; int vfl_dir ; int minor ; u16 num ; unsigned long flags ; int index ; spinlock_t fh_lock ; struct list_head fh_list ; int dev_debug ; v4l2_std_id tvnorms ; void (*release)(struct video_device * ) ; struct v4l2_ioctl_ops const *ioctl_ops ; unsigned long valid_ioctls[3U] ; unsigned long disable_locking[3U] ; struct mutex *lock ; }; struct v4l2_subdev; struct v4l2_subdev_ops; struct v4l2_priv_tun_config { int tuner ; void *priv ; }; struct tuner_setup { unsigned short addr ; unsigned int type ; unsigned int mode_mask ; void *config ; int (*tuner_callback)(void * , int , int , int ) ; }; struct videobuf_mapping { unsigned int count ; struct videobuf_queue *q ; }; enum videobuf_state { VIDEOBUF_NEEDS_INIT = 0, VIDEOBUF_PREPARED = 1, VIDEOBUF_QUEUED = 2, VIDEOBUF_ACTIVE = 3, VIDEOBUF_DONE = 4, VIDEOBUF_ERROR = 5, VIDEOBUF_IDLE = 6 } ; struct videobuf_buffer { unsigned int i ; u32 magic ; unsigned int width ; unsigned int height ; unsigned int bytesperline ; unsigned long size ; enum v4l2_field field ; enum videobuf_state state ; struct list_head stream ; struct list_head queue ; wait_queue_head_t done ; unsigned int field_count ; struct timeval ts ; enum v4l2_memory memory ; size_t bsize ; size_t boff ; unsigned long baddr ; struct videobuf_mapping *map ; int privsize ; void *priv ; }; struct videobuf_queue_ops { int (*buf_setup)(struct videobuf_queue * , unsigned int * , unsigned int * ) ; int (*buf_prepare)(struct videobuf_queue * , struct videobuf_buffer * , enum v4l2_field ) ; void (*buf_queue)(struct videobuf_queue * , struct videobuf_buffer * ) ; void (*buf_release)(struct videobuf_queue * , struct videobuf_buffer * ) ; }; struct videobuf_qtype_ops { u32 magic ; struct videobuf_buffer *(*alloc_vb)(size_t ) ; void *(*vaddr)(struct videobuf_buffer * ) ; int (*iolock)(struct videobuf_queue * , struct videobuf_buffer * , struct v4l2_framebuffer * ) ; int (*sync)(struct videobuf_queue * , struct videobuf_buffer * ) ; int (*mmap_mapper)(struct videobuf_queue * , struct videobuf_buffer * , struct vm_area_struct * ) ; }; struct videobuf_queue { struct mutex vb_lock ; struct mutex *ext_lock ; spinlock_t *irqlock ; struct device *dev ; wait_queue_head_t wait ; enum v4l2_buf_type type ; unsigned int msize ; enum v4l2_field field ; enum v4l2_field last ; struct videobuf_buffer *bufs[32U] ; struct videobuf_queue_ops const *ops ; struct videobuf_qtype_ops *int_ops ; unsigned char streaming : 1 ; unsigned char reading : 1 ; struct list_head stream ; unsigned int read_off ; struct videobuf_buffer *read_buf ; void *priv_data ; }; struct tm6000_buffer; struct usb_isoc_ctl { int max_pkt_size ; int num_bufs ; struct urb **urb ; char **transfer_buffer ; u8 cmd ; int pos ; int size ; int pktsize ; int vfield ; int field ; u32 tmp_buf ; int tmp_buf_len ; struct tm6000_buffer *buf ; }; struct media_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct media_devnode { struct media_file_operations const *fops ; struct device dev ; struct cdev cdev ; struct device *parent ; int minor ; unsigned long flags ; void (*release)(struct media_devnode * ) ; }; struct media_device { struct device *dev ; struct media_devnode devnode ; char model[32U] ; char serial[40U] ; char bus_info[32U] ; u32 hw_revision ; u32 driver_version ; u32 entity_id ; struct list_head entities ; spinlock_t lock ; struct mutex graph_mutex ; int (*link_notify)(struct media_link * , u32 , unsigned int ) ; }; struct v4l2_mbus_framefmt { __u32 width ; __u32 height ; __u32 code ; __u32 field ; __u32 colorspace ; __u16 ycbcr_enc ; __u16 quantization ; __u16 xfer_func ; __u16 reserved[11U] ; }; struct v4l2_subdev_format { __u32 which ; __u32 pad ; struct v4l2_mbus_framefmt format ; __u32 reserved[8U] ; }; struct v4l2_subdev_mbus_code_enum { __u32 pad ; __u32 index ; __u32 code ; __u32 which ; __u32 reserved[8U] ; }; struct v4l2_subdev_frame_size_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u32 which ; __u32 reserved[8U] ; }; struct v4l2_subdev_frame_interval { __u32 pad ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 width ; __u32 height ; struct v4l2_fract interval ; __u32 which ; __u32 reserved[8U] ; }; struct v4l2_subdev_selection { __u32 which ; __u32 pad ; __u32 target ; __u32 flags ; struct v4l2_rect r ; __u32 reserved[8U] ; }; struct v4l2_async_notifier; enum v4l2_async_match_type { V4L2_ASYNC_MATCH_CUSTOM = 0, V4L2_ASYNC_MATCH_DEVNAME = 1, V4L2_ASYNC_MATCH_I2C = 2, V4L2_ASYNC_MATCH_OF = 3 } ; struct __anonstruct_of_286 { struct device_node const *node ; }; struct __anonstruct_device_name_287 { char const *name ; }; struct __anonstruct_i2c_288 { int adapter_id ; unsigned short address ; }; struct __anonstruct_custom_289 { bool (*match)(struct device * , struct v4l2_async_subdev * ) ; void *priv ; }; union __anonunion_match_285 { struct __anonstruct_of_286 of ; struct __anonstruct_device_name_287 device_name ; struct __anonstruct_i2c_288 i2c ; struct __anonstruct_custom_289 custom ; }; struct v4l2_async_subdev { enum v4l2_async_match_type match_type ; union __anonunion_match_285 match ; struct list_head list ; }; struct v4l2_async_notifier { unsigned int num_subdevs ; struct v4l2_async_subdev **subdevs ; struct v4l2_device *v4l2_dev ; struct list_head waiting ; struct list_head done ; struct list_head list ; int (*bound)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; int (*complete)(struct v4l2_async_notifier * ) ; void (*unbind)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; }; struct v4l2_m2m_ctx; struct v4l2_fh { struct list_head list ; struct video_device *vdev ; struct v4l2_ctrl_handler *ctrl_handler ; enum v4l2_priority prio ; wait_queue_head_t wait ; struct list_head subscribed ; struct list_head available ; unsigned int navailable ; u32 sequence ; struct v4l2_m2m_ctx *m2m_ctx ; }; enum v4l2_mbus_type { V4L2_MBUS_PARALLEL = 0, V4L2_MBUS_BT656 = 1, V4L2_MBUS_CSI2 = 2 } ; struct v4l2_mbus_config { enum v4l2_mbus_type type ; unsigned int flags ; }; struct v4l2_subdev_fh; struct v4l2_mbus_frame_desc; struct v4l2_decode_vbi_line { u32 is_second_field ; u8 *p ; u32 line ; u32 type ; }; struct v4l2_subdev_io_pin_config { u32 flags ; u8 pin ; u8 function ; u8 value ; u8 strength ; }; struct v4l2_subdev_core_ops { int (*log_status)(struct v4l2_subdev * ) ; int (*s_io_pin_config)(struct v4l2_subdev * , size_t , struct v4l2_subdev_io_pin_config * ) ; int (*init)(struct v4l2_subdev * , u32 ) ; int (*load_fw)(struct v4l2_subdev * ) ; int (*reset)(struct v4l2_subdev * , u32 ) ; int (*s_gpio)(struct v4l2_subdev * , u32 ) ; int (*queryctrl)(struct v4l2_subdev * , struct v4l2_queryctrl * ) ; int (*g_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*s_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*g_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*s_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*try_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*querymenu)(struct v4l2_subdev * , struct v4l2_querymenu * ) ; long (*ioctl)(struct v4l2_subdev * , unsigned int , void * ) ; long (*compat_ioctl32)(struct v4l2_subdev * , unsigned int , unsigned long ) ; int (*g_register)(struct v4l2_subdev * , struct v4l2_dbg_register * ) ; int (*s_register)(struct v4l2_subdev * , struct v4l2_dbg_register const * ) ; int (*s_power)(struct v4l2_subdev * , int ) ; int (*interrupt_service_routine)(struct v4l2_subdev * , u32 , bool * ) ; int (*subscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; int (*unsubscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; }; struct v4l2_subdev_tuner_ops { int (*s_radio)(struct v4l2_subdev * ) ; int (*s_frequency)(struct v4l2_subdev * , struct v4l2_frequency const * ) ; int (*g_frequency)(struct v4l2_subdev * , struct v4l2_frequency * ) ; int (*enum_freq_bands)(struct v4l2_subdev * , struct v4l2_frequency_band * ) ; int (*g_tuner)(struct v4l2_subdev * , struct v4l2_tuner * ) ; int (*s_tuner)(struct v4l2_subdev * , struct v4l2_tuner const * ) ; int (*g_modulator)(struct v4l2_subdev * , struct v4l2_modulator * ) ; int (*s_modulator)(struct v4l2_subdev * , struct v4l2_modulator const * ) ; int (*s_type_addr)(struct v4l2_subdev * , struct tuner_setup * ) ; int (*s_config)(struct v4l2_subdev * , struct v4l2_priv_tun_config const * ) ; }; struct v4l2_subdev_audio_ops { int (*s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_i2s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; }; struct v4l2_mbus_frame_desc_entry { u16 flags ; u32 pixelcode ; u32 length ; }; struct v4l2_mbus_frame_desc { struct v4l2_mbus_frame_desc_entry entry[4U] ; unsigned short num_entries ; }; struct v4l2_subdev_video_ops { int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_crystal_freq)(struct v4l2_subdev * , u32 , u32 ) ; int (*g_std)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*s_std)(struct v4l2_subdev * , v4l2_std_id ) ; int (*s_std_output)(struct v4l2_subdev * , v4l2_std_id ) ; int (*g_std_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*querystd)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_tvnorms)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_tvnorms_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_input_status)(struct v4l2_subdev * , u32 * ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; int (*cropcap)(struct v4l2_subdev * , struct v4l2_cropcap * ) ; int (*g_crop)(struct v4l2_subdev * , struct v4l2_crop * ) ; int (*s_crop)(struct v4l2_subdev * , struct v4l2_crop const * ) ; int (*g_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*s_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*g_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*s_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*s_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*g_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*query_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*g_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config * ) ; int (*s_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config const * ) ; int (*s_rx_buffer)(struct v4l2_subdev * , void * , unsigned int * ) ; }; struct v4l2_subdev_vbi_ops { int (*decode_vbi_line)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) ; int (*s_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data const * ) ; int (*g_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data * ) ; int (*g_sliced_vbi_cap)(struct v4l2_subdev * , struct v4l2_sliced_vbi_cap * ) ; int (*s_raw_fmt)(struct v4l2_subdev * , struct v4l2_vbi_format * ) ; int (*g_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; int (*s_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; }; struct v4l2_subdev_sensor_ops { int (*g_skip_top_lines)(struct v4l2_subdev * , u32 * ) ; int (*g_skip_frames)(struct v4l2_subdev * , u32 * ) ; }; enum v4l2_subdev_ir_mode { V4L2_SUBDEV_IR_MODE_PULSE_WIDTH = 0 } ; struct v4l2_subdev_ir_parameters { unsigned int bytes_per_data_element ; enum v4l2_subdev_ir_mode mode ; bool enable ; bool interrupt_enable ; bool shutdown ; bool modulation ; u32 max_pulse_width ; unsigned int carrier_freq ; unsigned int duty_cycle ; bool invert_level ; bool invert_carrier_sense ; u32 noise_filter_min_width ; unsigned int carrier_range_lower ; unsigned int carrier_range_upper ; u32 resolution ; }; struct v4l2_subdev_ir_ops { int (*rx_read)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*rx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*rx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_write)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*tx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; }; struct v4l2_subdev_pad_config { struct v4l2_mbus_framefmt try_fmt ; struct v4l2_rect try_crop ; struct v4l2_rect try_compose ; }; struct v4l2_subdev_pad_ops { int (*enum_mbus_code)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_mbus_code_enum * ) ; int (*enum_frame_size)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_frame_size_enum * ) ; int (*enum_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_frame_interval_enum * ) ; int (*get_fmt)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_format * ) ; int (*set_fmt)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_format * ) ; int (*get_selection)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_selection * ) ; int (*set_selection)(struct v4l2_subdev * , struct v4l2_subdev_pad_config * , struct v4l2_subdev_selection * ) ; int (*get_edid)(struct v4l2_subdev * , struct v4l2_edid * ) ; int (*set_edid)(struct v4l2_subdev * , struct v4l2_edid * ) ; int (*dv_timings_cap)(struct v4l2_subdev * , struct v4l2_dv_timings_cap * ) ; int (*enum_dv_timings)(struct v4l2_subdev * , struct v4l2_enum_dv_timings * ) ; int (*link_validate)(struct v4l2_subdev * , struct media_link * , struct v4l2_subdev_format * , struct v4l2_subdev_format * ) ; int (*get_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; int (*set_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; }; struct v4l2_subdev_ops { struct v4l2_subdev_core_ops const *core ; struct v4l2_subdev_tuner_ops const *tuner ; struct v4l2_subdev_audio_ops const *audio ; struct v4l2_subdev_video_ops const *video ; struct v4l2_subdev_vbi_ops const *vbi ; struct v4l2_subdev_ir_ops const *ir ; struct v4l2_subdev_sensor_ops const *sensor ; struct v4l2_subdev_pad_ops const *pad ; }; struct v4l2_subdev_internal_ops { int (*registered)(struct v4l2_subdev * ) ; void (*unregistered)(struct v4l2_subdev * ) ; int (*open)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; int (*close)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; }; struct regulator_bulk_data; struct v4l2_subdev_platform_data { struct regulator_bulk_data *regulators ; int num_regulators ; void *host_priv ; }; struct v4l2_subdev { struct media_entity entity ; struct list_head list ; struct module *owner ; bool owner_v4l2_dev ; u32 flags ; struct v4l2_device *v4l2_dev ; struct v4l2_subdev_ops const *ops ; struct v4l2_subdev_internal_ops const *internal_ops ; struct v4l2_ctrl_handler *ctrl_handler ; char name[32U] ; u32 grp_id ; void *dev_priv ; void *host_priv ; struct video_device *devnode ; struct device *dev ; struct device_node *of_node ; struct list_head async_list ; struct v4l2_async_subdev *asd ; struct v4l2_async_notifier *notifier ; struct v4l2_subdev_platform_data *pdata ; }; struct v4l2_subdev_fh { struct v4l2_fh vfh ; struct v4l2_subdev_pad_config *pad ; }; struct v4l2_device { struct device *dev ; struct media_device *mdev ; struct list_head subdevs ; spinlock_t lock ; char name[36U] ; void (*notify)(struct v4l2_subdev * , unsigned int , void * ) ; struct v4l2_ctrl_handler *ctrl_handler ; struct v4l2_prio_state prio ; struct kref ref ; void (*release)(struct v4l2_device * ) ; }; struct v4l2_ctrl_helper; struct v4l2_ctrl; union v4l2_ctrl_ptr { s32 *p_s32 ; s64 *p_s64 ; u8 *p_u8 ; u16 *p_u16 ; u32 *p_u32 ; char *p_char ; void *p ; }; struct v4l2_ctrl_ops { int (*g_volatile_ctrl)(struct v4l2_ctrl * ) ; int (*try_ctrl)(struct v4l2_ctrl * ) ; int (*s_ctrl)(struct v4l2_ctrl * ) ; }; struct v4l2_ctrl_type_ops { bool (*equal)(struct v4l2_ctrl const * , u32 , union v4l2_ctrl_ptr , union v4l2_ctrl_ptr ) ; void (*init)(struct v4l2_ctrl const * , u32 , union v4l2_ctrl_ptr ) ; void (*log)(struct v4l2_ctrl const * ) ; int (*validate)(struct v4l2_ctrl const * , u32 , union v4l2_ctrl_ptr ) ; }; union __anonunion____missing_field_name_290 { u64 step ; u64 menu_skip_mask ; }; union __anonunion____missing_field_name_291 { char const * const *qmenu ; s64 const *qmenu_int ; }; struct __anonstruct_cur_292 { s32 val ; }; struct v4l2_ctrl { struct list_head node ; struct list_head ev_subs ; struct v4l2_ctrl_handler *handler ; struct v4l2_ctrl **cluster ; unsigned int ncontrols ; unsigned char done : 1 ; unsigned char is_new : 1 ; unsigned char has_changed : 1 ; unsigned char is_private : 1 ; unsigned char is_auto : 1 ; unsigned char is_int : 1 ; unsigned char is_string : 1 ; unsigned char is_ptr : 1 ; unsigned char is_array : 1 ; unsigned char has_volatiles : 1 ; unsigned char call_notify : 1 ; unsigned char manual_mode_value ; struct v4l2_ctrl_ops const *ops ; struct v4l2_ctrl_type_ops const *type_ops ; u32 id ; char const *name ; enum v4l2_ctrl_type type ; s64 minimum ; s64 maximum ; s64 default_value ; u32 elems ; u32 elem_size ; u32 dims[4U] ; u32 nr_of_dims ; union __anonunion____missing_field_name_290 __annonCompField89 ; union __anonunion____missing_field_name_291 __annonCompField90 ; unsigned long flags ; void *priv ; s32 val ; struct __anonstruct_cur_292 cur ; union v4l2_ctrl_ptr p_new ; union v4l2_ctrl_ptr p_cur ; }; struct v4l2_ctrl_ref { struct list_head node ; struct v4l2_ctrl_ref *next ; struct v4l2_ctrl *ctrl ; struct v4l2_ctrl_helper *helper ; }; struct v4l2_ctrl_handler { struct mutex _lock ; struct mutex *lock ; struct list_head ctrls ; struct list_head ctrl_refs ; struct v4l2_ctrl_ref *cached ; struct v4l2_ctrl_ref **buckets ; void (*notify)(struct v4l2_ctrl * , void * ) ; void *notify_priv ; u16 nr_of_buckets ; int error ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_MULTISTREAM = 67108864, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648U } ; struct dvb_frontend_info { char name[128U] ; enum fe_type type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; enum fe_caps caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11, FEC_2_5 = 12 } ; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12, QAM_4_NR = 13 } ; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6, TRANSMISSION_MODE_C1 = 7, TRANSMISSION_MODE_C3780 = 8 } ; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7, GUARD_INTERVAL_PN420 = 8, GUARD_INTERVAL_PN595 = 9, GUARD_INTERVAL_PN945 = 10 } ; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; enum fe_interleaving { INTERLEAVING_NONE = 0, INTERLEAVING_AUTO = 1, INTERLEAVING_240 = 2, INTERLEAVING_720 = 3 } ; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DTMB = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; union __anonunion____missing_field_name_293 { __u64 uvalue ; __s64 svalue ; }; struct dtv_stats { __u8 scale ; union __anonunion____missing_field_name_293 __annonCompField91 ; }; struct dtv_fe_stats { __u8 len ; struct dtv_stats stat[4U] ; }; struct __anonstruct_buffer_295 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_294 { __u32 data ; struct dtv_fe_stats st ; struct __anonstruct_buffer_295 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_294 u ; int result ; }; enum dmx_output { DMX_OUT_DECODER = 0, DMX_OUT_TAP = 1, DMX_OUT_TS_TAP = 2, DMX_OUT_TSDEMUX_TAP = 3 } ; typedef enum dmx_output dmx_output_t; enum dmx_input { DMX_IN_FRONTEND = 0, DMX_IN_DVR = 1 } ; typedef enum dmx_input dmx_input_t; enum dmx_ts_pes { DMX_PES_AUDIO0 = 0, DMX_PES_VIDEO0 = 1, DMX_PES_TELETEXT0 = 2, DMX_PES_SUBTITLE0 = 3, DMX_PES_PCR0 = 4, DMX_PES_AUDIO1 = 5, DMX_PES_VIDEO1 = 6, DMX_PES_TELETEXT1 = 7, DMX_PES_SUBTITLE1 = 8, DMX_PES_PCR1 = 9, DMX_PES_AUDIO2 = 10, DMX_PES_VIDEO2 = 11, DMX_PES_TELETEXT2 = 12, DMX_PES_SUBTITLE2 = 13, DMX_PES_PCR2 = 14, DMX_PES_AUDIO3 = 15, DMX_PES_VIDEO3 = 16, DMX_PES_TELETEXT3 = 17, DMX_PES_SUBTITLE3 = 18, DMX_PES_PCR3 = 19, DMX_PES_OTHER = 20 } ; typedef enum dmx_ts_pes dmx_pes_type_t; struct dmx_filter { __u8 filter[16U] ; __u8 mask[16U] ; __u8 mode[16U] ; }; typedef struct dmx_filter dmx_filter_t; struct dmx_sct_filter_params { __u16 pid ; dmx_filter_t filter ; __u32 timeout ; __u32 flags ; }; struct dmx_pes_filter_params { __u16 pid ; dmx_input_t input ; dmx_output_t output ; dmx_pes_type_t pes_type ; __u32 flags ; }; struct dmx_caps { __u32 caps ; int num_decoders ; }; enum dmx_source { DMX_SOURCE_FRONT0 = 0, DMX_SOURCE_FRONT1 = 1, DMX_SOURCE_FRONT2 = 2, DMX_SOURCE_FRONT3 = 3, DMX_SOURCE_DVR0 = 16, DMX_SOURCE_DVR1 = 17, DMX_SOURCE_DVR2 = 18, DMX_SOURCE_DVR3 = 19 } ; typedef enum dmx_source dmx_source_t; enum dmx_success { DMX_OK = 0, DMX_LENGTH_ERROR = 1, DMX_OVERRUN_ERROR = 2, DMX_CRC_ERROR = 3, DMX_FRAME_ERROR = 4, DMX_FIFO_ERROR = 5, DMX_MISSED_ERROR = 6 } ; struct dmx_demux; struct dmx_ts_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int (*set)(struct dmx_ts_feed * , u16 , int , enum dmx_ts_pes , size_t , struct timespec ) ; int (*start_filtering)(struct dmx_ts_feed * ) ; int (*stop_filtering)(struct dmx_ts_feed * ) ; }; struct dmx_section_feed; struct dmx_section_filter { u8 filter_value[18U] ; u8 filter_mask[18U] ; u8 filter_mode[18U] ; struct dmx_section_feed *parent ; void *priv ; }; struct dmx_section_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int check_crc ; u32 crc_val ; u8 *secbuf ; u8 secbuf_base[4284U] ; u16 secbufp ; u16 seclen ; u16 tsfeedp ; int (*set)(struct dmx_section_feed * , u16 , size_t , int ) ; int (*allocate_filter)(struct dmx_section_feed * , struct dmx_section_filter ** ) ; int (*release_filter)(struct dmx_section_feed * , struct dmx_section_filter * ) ; int (*start_filtering)(struct dmx_section_feed * ) ; int (*stop_filtering)(struct dmx_section_feed * ) ; }; enum dmx_frontend_source { DMX_MEMORY_FE = 0, DMX_FRONTEND_0 = 1, DMX_FRONTEND_1 = 2, DMX_FRONTEND_2 = 3, DMX_FRONTEND_3 = 4, DMX_STREAM_0 = 5, DMX_STREAM_1 = 6, DMX_STREAM_2 = 7, DMX_STREAM_3 = 8 } ; struct dmx_frontend { struct list_head connectivity_list ; enum dmx_frontend_source source ; }; struct dmx_demux { u32 capabilities ; struct dmx_frontend *frontend ; void *priv ; int (*open)(struct dmx_demux * ) ; int (*close)(struct dmx_demux * ) ; int (*write)(struct dmx_demux * , char const * , size_t ) ; int (*allocate_ts_feed)(struct dmx_demux * , struct dmx_ts_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ) ; int (*release_ts_feed)(struct dmx_demux * , struct dmx_ts_feed * ) ; int (*allocate_section_feed)(struct dmx_demux * , struct dmx_section_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ) ; int (*release_section_feed)(struct dmx_demux * , struct dmx_section_feed * ) ; int (*add_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*remove_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; struct list_head *(*get_frontends)(struct dmx_demux * ) ; int (*connect_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*disconnect_frontend)(struct dmx_demux * ) ; int (*get_pes_pids)(struct dmx_demux * , u16 * ) ; int (*get_caps)(struct dmx_demux * , struct dmx_caps * ) ; int (*set_source)(struct dmx_demux * , dmx_source_t const * ) ; int (*get_stc)(struct dmx_demux * , unsigned int , u64 * , unsigned int * ) ; }; struct dvb_demux_feed; struct dvb_demux_filter { struct dmx_section_filter filter ; u8 maskandmode[18U] ; u8 maskandnotmode[18U] ; int doneq ; struct dvb_demux_filter *next ; struct dvb_demux_feed *feed ; int index ; int state ; int type ; u16 hw_handle ; struct timer_list timer ; }; union __anonunion_feed_296 { struct dmx_ts_feed ts ; struct dmx_section_feed sec ; }; union __anonunion_cb_297 { int (*ts)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ; int (*sec)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ; }; struct dvb_demux; struct dvb_demux_feed { union __anonunion_feed_296 feed ; union __anonunion_cb_297 cb ; struct dvb_demux *demux ; void *priv ; int type ; int state ; u16 pid ; u8 *buffer ; int buffer_size ; struct timespec timeout ; struct dvb_demux_filter *filter ; int ts_type ; enum dmx_ts_pes pes_type ; int cc ; int pusi_seen ; u16 peslen ; struct list_head list_head ; unsigned int index ; }; struct dvb_demux { struct dmx_demux dmx ; void *priv ; int filternum ; int feednum ; int (*start_feed)(struct dvb_demux_feed * ) ; int (*stop_feed)(struct dvb_demux_feed * ) ; int (*write_to_decoder)(struct dvb_demux_feed * , u8 const * , size_t ) ; u32 (*check_crc32)(struct dvb_demux_feed * , u8 const * , size_t ) ; void (*memcopy)(struct dvb_demux_feed * , u8 * , u8 const * , size_t ) ; int users ; struct dvb_demux_filter *filter ; struct dvb_demux_feed *feed ; struct list_head frontend_list ; struct dvb_demux_feed *pesfilter[20U] ; u16 pids[20U] ; int playing ; int recording ; struct list_head feed_list ; u8 tsbuf[204U] ; int tsbufp ; struct mutex mutex ; spinlock_t lock ; uint8_t *cnt_storage ; struct timespec speed_last_time ; uint32_t speed_pkts_cnt ; }; struct dvb_frontend; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*suspend)(struct dvb_frontend * ) ; int (*resume)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , enum fe_status * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , enum fe_status * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , enum fe_sec_mini_cmd ) ; int (*set_tone)(struct dvb_frontend * , enum fe_sec_tone_mode ) ; int (*set_voltage)(struct dvb_frontend * , enum fe_sec_voltage ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; int (*set_lna)(struct dvb_frontend * ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct __anonstruct_layer_298 { u8 segment_count ; enum fe_code_rate fec ; enum fe_modulation modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; enum fe_modulation modulation ; enum fe_sec_voltage voltage ; enum fe_sec_tone_mode sectone ; enum fe_spectral_inversion inversion ; enum fe_code_rate fec_inner ; enum fe_transmit_mode transmission_mode ; u32 bandwidth_hz ; enum fe_guard_interval guard_interval ; enum fe_hierarchy hierarchy ; u32 symbol_rate ; enum fe_code_rate code_rate_HP ; enum fe_code_rate code_rate_LP ; enum fe_pilot pilot ; enum fe_rolloff rolloff ; enum fe_delivery_system delivery_system ; enum fe_interleaving interleaving ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_298 layer[3U] ; u32 stream_id ; u8 atscmh_fic_ver ; u8 atscmh_parade_id ; u8 atscmh_nog ; u8 atscmh_tnog ; u8 atscmh_sgn ; u8 atscmh_prc ; u8 atscmh_rs_frame_mode ; u8 atscmh_rs_frame_ensemble ; u8 atscmh_rs_code_mode_pri ; u8 atscmh_rs_code_mode_sec ; u8 atscmh_sccc_block_mode ; u8 atscmh_sccc_code_mode_a ; u8 atscmh_sccc_code_mode_b ; u8 atscmh_sccc_code_mode_c ; u8 atscmh_sccc_code_mode_d ; u32 lna ; struct dtv_fe_stats strength ; struct dtv_fe_stats cnr ; struct dtv_fe_stats pre_bit_error ; struct dtv_fe_stats pre_bit_count ; struct dtv_fe_stats post_bit_error ; struct dtv_fe_stats post_bit_count ; struct dtv_fe_stats block_error ; struct dtv_fe_stats block_count ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; unsigned int exit ; }; struct dvb_ringbuffer { u8 *data ; ssize_t size ; ssize_t pread ; ssize_t pwrite ; int error ; wait_queue_head_t queue ; spinlock_t lock ; }; enum dmxdev_type { DMXDEV_TYPE_NONE = 0, DMXDEV_TYPE_SEC = 1, DMXDEV_TYPE_PES = 2 } ; enum dmxdev_state { DMXDEV_STATE_FREE = 0, DMXDEV_STATE_ALLOCATED = 1, DMXDEV_STATE_SET = 2, DMXDEV_STATE_GO = 3, DMXDEV_STATE_DONE = 4, DMXDEV_STATE_TIMEDOUT = 5 } ; union __anonunion_filter_299 { struct dmx_section_filter *sec ; }; union __anonunion_feed_300 { struct list_head ts ; struct dmx_section_feed *sec ; }; union __anonunion_params_301 { struct dmx_sct_filter_params sec ; struct dmx_pes_filter_params pes ; }; struct dmxdev; struct dmxdev_filter { union __anonunion_filter_299 filter ; union __anonunion_feed_300 feed ; union __anonunion_params_301 params ; enum dmxdev_type type ; enum dmxdev_state state ; struct dmxdev *dev ; struct dvb_ringbuffer buffer ; struct mutex mutex ; struct timer_list timer ; int todo ; u8 secheader[3U] ; }; struct dmxdev { struct dvb_device *dvbdev ; struct dvb_device *dvr_dvbdev ; struct dmxdev_filter *filter ; struct dmx_demux *demux ; int filternum ; int capabilities ; unsigned char exit : 1 ; struct dmx_frontend *dvr_orig_fe ; struct dvb_ringbuffer dvr_buffer ; struct mutex mutex ; spinlock_t lock ; }; enum tm6000_itype { TM6000_INPUT_TV = 1, TM6000_INPUT_COMPOSITE1 = 2, TM6000_INPUT_COMPOSITE2 = 3, TM6000_INPUT_SVIDEO = 4, TM6000_INPUT_DVB = 5, TM6000_INPUT_RADIO = 6 } ; enum tm6000_mux { TM6000_VMUX_VIDEO_A = 1, TM6000_VMUX_VIDEO_B = 2, TM6000_VMUX_VIDEO_AB = 3, TM6000_AMUX_ADC1 = 4, TM6000_AMUX_ADC2 = 5, TM6000_AMUX_SIF1 = 6, TM6000_AMUX_SIF2 = 7, TM6000_AMUX_I2S = 8 } ; enum tm6000_devtype { TM6000 = 0, TM5600 = 1, TM6010 = 2 } ; struct tm6000_input { enum tm6000_itype type ; enum tm6000_mux vmux ; enum tm6000_mux amux ; unsigned int v_gpio ; unsigned int a_gpio ; }; struct tm6000_fmt { char *name ; u32 fourcc ; int depth ; }; struct tm6000_buffer { struct videobuf_buffer vb ; struct tm6000_fmt *fmt ; }; struct tm6000_dmaqueue { struct list_head active ; struct list_head queued ; struct task_struct *kthread ; wait_queue_head_t wq ; int frame ; int ini_jiffies ; }; enum tm6000_core_state { DEV_INITIALIZED = 1, DEV_DISCONNECTED = 2, DEV_MISCONFIGURED = 4 } ; enum tm6000_mode { TM6000_MODE_UNKNOWN = 0, TM6000_MODE_ANALOG = 1, TM6000_MODE_DIGITAL = 2 } ; struct tm6000_gpio { int tuner_reset ; int tuner_on ; int demod_reset ; int demod_on ; int power_led ; int dvb_led ; int ir ; }; struct tm6000_capabilities { unsigned char has_tuner : 1 ; unsigned char has_tda9874 : 1 ; unsigned char has_dvb : 1 ; unsigned char has_zl10353 : 1 ; unsigned char has_eeprom : 1 ; unsigned char has_remote : 1 ; unsigned char has_radio : 1 ; }; struct tm6000_dvb { struct dvb_adapter adapter ; struct dvb_demux demux ; struct dvb_frontend *frontend ; struct dmxdev dmxdev ; unsigned int streams ; struct urb *bulk_urb ; struct mutex mutex ; }; struct snd_card; struct tm6000_core; struct snd_pcm_substream; struct snd_tm6000_card { struct snd_card *card ; spinlock_t reg_lock ; struct tm6000_core *core ; struct snd_pcm_substream *substream ; unsigned int buf_pos ; unsigned int period_pos ; }; struct tm6000_endpoint { struct usb_host_endpoint *endp ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; unsigned int maxsize ; }; struct tm6000_fh; struct tm6000_IR; struct tm6000_core { char name[30U] ; int model ; int devno ; enum tm6000_devtype dev_type ; unsigned char eedata[256U] ; unsigned int eedata_size ; v4l2_std_id norm ; int width ; int height ; enum tm6000_core_state state ; struct tm6000_capabilities caps ; struct work_struct request_module_wk ; int tuner_type ; int tuner_addr ; struct tm6000_gpio gpio ; char *ir_codes ; __u8 radio ; int demod_addr ; int audio_bitrate ; struct i2c_adapter i2c_adap ; struct i2c_client i2c_client ; struct list_head devlist ; int users ; struct tm6000_fh *resources ; bool is_res_read ; struct video_device vfd ; struct video_device radio_dev ; struct tm6000_dmaqueue vidq ; struct v4l2_device v4l2_dev ; struct v4l2_ctrl_handler ctrl_handler ; struct v4l2_ctrl_handler radio_ctrl_handler ; int input ; struct tm6000_input vinput[3U] ; struct tm6000_input rinput ; int freq ; unsigned int fourcc ; enum tm6000_mode mode ; int ctl_mute ; int ctl_volume ; int amode ; struct tm6000_dvb *dvb ; struct snd_tm6000_card *adev ; struct work_struct wq_trigger ; atomic_t stream_started ; struct tm6000_IR *ir ; struct mutex lock ; struct mutex usb_lock ; struct usb_device *udev ; struct tm6000_endpoint bulk_in ; struct tm6000_endpoint bulk_out ; struct tm6000_endpoint isoc_in ; struct tm6000_endpoint isoc_out ; struct tm6000_endpoint int_in ; struct tm6000_endpoint int_out ; int scaler ; struct usb_isoc_ctl isoc_ctl ; spinlock_t slock ; char **urb_buffer ; dma_addr_t *urb_dma ; unsigned int urb_size ; unsigned long quirks ; }; struct tm6000_fh { struct v4l2_fh fh ; struct tm6000_core *dev ; unsigned int radio ; struct tm6000_fmt *fmt ; unsigned int width ; unsigned int height ; struct videobuf_queue vb_vidq ; enum v4l2_buf_type type ; }; struct xc2028_ctrl { char *fname ; int max_len ; int msleep ; unsigned int scode_table ; unsigned char mts : 1 ; unsigned char input1 : 1 ; unsigned char vhfbw7 : 1 ; unsigned char uhfbw8 : 1 ; unsigned char disable_power_mgmt : 1 ; unsigned char read_not_reliable : 1 ; unsigned int demod ; unsigned char type : 2 ; }; struct xc5000_config { u8 i2c_address ; u32 if_khz ; u8 radio_input ; u16 xtal_khz ; u16 output_amp ; int chip_id ; }; struct tm6000_board { char *name ; char eename[16U] ; unsigned int eename_size ; unsigned int eename_pos ; struct tm6000_capabilities caps ; enum tm6000_devtype type ; int tuner_type ; int tuner_addr ; int demod_addr ; struct tm6000_gpio gpio ; struct tm6000_input vinput[3U] ; struct tm6000_input rinput ; char *ir_codes ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef bool ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; enum hrtimer_restart; enum i2c_slave_event; enum i2c_slave_event; enum tm6000_ops_type { TM6000_AUDIO = 16, TM6000_DVB = 32 } ; struct tm6000_ops { struct list_head next ; char *name ; enum tm6000_ops_type type ; int (*init)(struct tm6000_core * ) ; int (*fini)(struct tm6000_core * ) ; int (*fillbuf)(struct tm6000_core * , char * , int ) ; }; struct reg_init { u8 req ; u8 reg ; u8 val ; }; enum hrtimer_restart; enum i2c_slave_event; enum i2c_slave_event; enum hrtimer_restart; struct v4l2_capability { __u8 driver[16U] ; __u8 card[32U] ; __u8 bus_info[32U] ; __u32 version ; __u32 capabilities ; __u32 device_caps ; __u32 reserved[3U] ; }; struct v4l2_fmtdesc { __u32 index ; __u32 type ; __u32 flags ; __u8 description[32U] ; __u32 pixelformat ; __u32 reserved[4U] ; }; struct v4l2_frmsize_discrete { __u32 width ; __u32 height ; }; struct v4l2_frmsize_stepwise { __u32 min_width ; __u32 max_width ; __u32 step_width ; __u32 min_height ; __u32 max_height ; __u32 step_height ; }; union __anonunion____missing_field_name_252 { struct v4l2_frmsize_discrete discrete ; struct v4l2_frmsize_stepwise stepwise ; }; struct v4l2_frmsizeenum { __u32 index ; __u32 pixel_format ; __u32 type ; union __anonunion____missing_field_name_252 __annonCompField76 ; __u32 reserved[2U] ; }; struct v4l2_frmival_stepwise { struct v4l2_fract min ; struct v4l2_fract max ; struct v4l2_fract step ; }; union __anonunion____missing_field_name_253 { struct v4l2_fract discrete ; struct v4l2_frmival_stepwise stepwise ; }; struct v4l2_frmivalenum { __u32 index ; __u32 pixel_format ; __u32 width ; __u32 height ; __u32 type ; union __anonunion____missing_field_name_253 __annonCompField77 ; __u32 reserved[2U] ; }; struct v4l2_jpegcompression { int quality ; int APPn ; int APP_len ; char APP_data[60U] ; int COM_len ; char COM_data[60U] ; __u32 jpeg_markers ; }; struct v4l2_requestbuffers { __u32 count ; __u32 type ; __u32 memory ; __u32 reserved[2U] ; }; struct v4l2_exportbuffer { __u32 type ; __u32 index ; __u32 plane ; __u32 flags ; __s32 fd ; __u32 reserved[11U] ; }; struct v4l2_selection { __u32 type ; __u32 target ; __u32 flags ; struct v4l2_rect r ; __u32 reserved[9U] ; }; struct v4l2_input { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 audioset ; __u32 tuner ; v4l2_std_id std ; __u32 status ; __u32 capabilities ; __u32 reserved[3U] ; }; struct v4l2_output { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 audioset ; __u32 modulator ; v4l2_std_id std ; __u32 capabilities ; __u32 reserved[3U] ; }; struct v4l2_query_ext_ctrl { __u32 id ; __u32 type ; char name[32U] ; __s64 minimum ; __s64 maximum ; __u64 step ; __s64 default_value ; __u32 flags ; __u32 elem_size ; __u32 elems ; __u32 nr_of_dims ; __u32 dims[4U] ; __u32 reserved[32U] ; }; struct v4l2_hw_freq_seek { __u32 tuner ; __u32 type ; __u32 seek_upward ; __u32 wrap_around ; __u32 spacing ; __u32 rangelow ; __u32 rangehigh ; __u32 reserved[5U] ; }; struct v4l2_audio { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 mode ; __u32 reserved[2U] ; }; struct v4l2_audioout { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 mode ; __u32 reserved[2U] ; }; struct v4l2_enc_idx_entry { __u64 offset ; __u64 pts ; __u32 length ; __u32 flags ; __u32 reserved[2U] ; }; struct v4l2_enc_idx { __u32 entries ; __u32 entries_cap ; __u32 reserved[4U] ; struct v4l2_enc_idx_entry entry[64U] ; }; struct __anonstruct_raw_262 { __u32 data[8U] ; }; union __anonunion____missing_field_name_261___0 { struct __anonstruct_raw_262 raw ; }; struct v4l2_encoder_cmd { __u32 cmd ; __u32 flags ; union __anonunion____missing_field_name_261___0 __annonCompField82 ; }; struct __anonstruct_stop_264 { __u64 pts ; }; struct __anonstruct_start_265 { __s32 speed ; __u32 format ; }; struct __anonstruct_raw_266 { __u32 data[16U] ; }; union __anonunion____missing_field_name_263___0 { struct __anonstruct_stop_264 stop ; struct __anonstruct_start_265 start ; struct __anonstruct_raw_266 raw ; }; struct v4l2_decoder_cmd { __u32 cmd ; __u32 flags ; union __anonunion____missing_field_name_263___0 __annonCompField83 ; }; struct v4l2_dbg_chip_info { struct v4l2_dbg_match match ; char name[32U] ; __u32 flags ; __u32 reserved[32U] ; }; struct v4l2_create_buffers { __u32 index ; __u32 count ; __u32 memory ; struct v4l2_format format ; __u32 reserved[8U] ; }; typedef struct poll_table_struct poll_table; struct v4l2_ioctl_ops { int (*vidioc_querycap)(struct file * , void * , struct v4l2_capability * ) ; int (*vidioc_enum_fmt_vid_cap)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_overlay)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_out)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_sdr_cap)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_g_fmt_vid_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_out_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_sliced_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_sliced_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_sdr_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_out_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_sliced_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_sliced_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_sdr_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_out_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_sliced_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_sliced_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_sdr_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_reqbufs)(struct file * , void * , struct v4l2_requestbuffers * ) ; int (*vidioc_querybuf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_qbuf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_expbuf)(struct file * , void * , struct v4l2_exportbuffer * ) ; int (*vidioc_dqbuf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_create_bufs)(struct file * , void * , struct v4l2_create_buffers * ) ; int (*vidioc_prepare_buf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_overlay)(struct file * , void * , unsigned int ) ; int (*vidioc_g_fbuf)(struct file * , void * , struct v4l2_framebuffer * ) ; int (*vidioc_s_fbuf)(struct file * , void * , struct v4l2_framebuffer const * ) ; int (*vidioc_streamon)(struct file * , void * , enum v4l2_buf_type ) ; int (*vidioc_streamoff)(struct file * , void * , enum v4l2_buf_type ) ; int (*vidioc_g_std)(struct file * , void * , v4l2_std_id * ) ; int (*vidioc_s_std)(struct file * , void * , v4l2_std_id ) ; int (*vidioc_querystd)(struct file * , void * , v4l2_std_id * ) ; int (*vidioc_enum_input)(struct file * , void * , struct v4l2_input * ) ; int (*vidioc_g_input)(struct file * , void * , unsigned int * ) ; int (*vidioc_s_input)(struct file * , void * , unsigned int ) ; int (*vidioc_enum_output)(struct file * , void * , struct v4l2_output * ) ; int (*vidioc_g_output)(struct file * , void * , unsigned int * ) ; int (*vidioc_s_output)(struct file * , void * , unsigned int ) ; int (*vidioc_queryctrl)(struct file * , void * , struct v4l2_queryctrl * ) ; int (*vidioc_query_ext_ctrl)(struct file * , void * , struct v4l2_query_ext_ctrl * ) ; int (*vidioc_g_ctrl)(struct file * , void * , struct v4l2_control * ) ; int (*vidioc_s_ctrl)(struct file * , void * , struct v4l2_control * ) ; int (*vidioc_g_ext_ctrls)(struct file * , void * , struct v4l2_ext_controls * ) ; int (*vidioc_s_ext_ctrls)(struct file * , void * , struct v4l2_ext_controls * ) ; int (*vidioc_try_ext_ctrls)(struct file * , void * , struct v4l2_ext_controls * ) ; int (*vidioc_querymenu)(struct file * , void * , struct v4l2_querymenu * ) ; int (*vidioc_enumaudio)(struct file * , void * , struct v4l2_audio * ) ; int (*vidioc_g_audio)(struct file * , void * , struct v4l2_audio * ) ; int (*vidioc_s_audio)(struct file * , void * , struct v4l2_audio const * ) ; int (*vidioc_enumaudout)(struct file * , void * , struct v4l2_audioout * ) ; int (*vidioc_g_audout)(struct file * , void * , struct v4l2_audioout * ) ; int (*vidioc_s_audout)(struct file * , void * , struct v4l2_audioout const * ) ; int (*vidioc_g_modulator)(struct file * , void * , struct v4l2_modulator * ) ; int (*vidioc_s_modulator)(struct file * , void * , struct v4l2_modulator const * ) ; int (*vidioc_cropcap)(struct file * , void * , struct v4l2_cropcap * ) ; int (*vidioc_g_crop)(struct file * , void * , struct v4l2_crop * ) ; int (*vidioc_s_crop)(struct file * , void * , struct v4l2_crop const * ) ; int (*vidioc_g_selection)(struct file * , void * , struct v4l2_selection * ) ; int (*vidioc_s_selection)(struct file * , void * , struct v4l2_selection * ) ; int (*vidioc_g_jpegcomp)(struct file * , void * , struct v4l2_jpegcompression * ) ; int (*vidioc_s_jpegcomp)(struct file * , void * , struct v4l2_jpegcompression const * ) ; int (*vidioc_g_enc_index)(struct file * , void * , struct v4l2_enc_idx * ) ; int (*vidioc_encoder_cmd)(struct file * , void * , struct v4l2_encoder_cmd * ) ; int (*vidioc_try_encoder_cmd)(struct file * , void * , struct v4l2_encoder_cmd * ) ; int (*vidioc_decoder_cmd)(struct file * , void * , struct v4l2_decoder_cmd * ) ; int (*vidioc_try_decoder_cmd)(struct file * , void * , struct v4l2_decoder_cmd * ) ; int (*vidioc_g_parm)(struct file * , void * , struct v4l2_streamparm * ) ; int (*vidioc_s_parm)(struct file * , void * , struct v4l2_streamparm * ) ; int (*vidioc_g_tuner)(struct file * , void * , struct v4l2_tuner * ) ; int (*vidioc_s_tuner)(struct file * , void * , struct v4l2_tuner const * ) ; int (*vidioc_g_frequency)(struct file * , void * , struct v4l2_frequency * ) ; int (*vidioc_s_frequency)(struct file * , void * , struct v4l2_frequency const * ) ; int (*vidioc_enum_freq_bands)(struct file * , void * , struct v4l2_frequency_band * ) ; int (*vidioc_g_sliced_vbi_cap)(struct file * , void * , struct v4l2_sliced_vbi_cap * ) ; int (*vidioc_log_status)(struct file * , void * ) ; int (*vidioc_s_hw_freq_seek)(struct file * , void * , struct v4l2_hw_freq_seek const * ) ; int (*vidioc_g_register)(struct file * , void * , struct v4l2_dbg_register * ) ; int (*vidioc_s_register)(struct file * , void * , struct v4l2_dbg_register const * ) ; int (*vidioc_g_chip_info)(struct file * , void * , struct v4l2_dbg_chip_info * ) ; int (*vidioc_enum_framesizes)(struct file * , void * , struct v4l2_frmsizeenum * ) ; int (*vidioc_enum_frameintervals)(struct file * , void * , struct v4l2_frmivalenum * ) ; int (*vidioc_s_dv_timings)(struct file * , void * , struct v4l2_dv_timings * ) ; int (*vidioc_g_dv_timings)(struct file * , void * , struct v4l2_dv_timings * ) ; int (*vidioc_query_dv_timings)(struct file * , void * , struct v4l2_dv_timings * ) ; int (*vidioc_enum_dv_timings)(struct file * , void * , struct v4l2_enum_dv_timings * ) ; int (*vidioc_dv_timings_cap)(struct file * , void * , struct v4l2_dv_timings_cap * ) ; int (*vidioc_g_edid)(struct file * , void * , struct v4l2_edid * ) ; int (*vidioc_s_edid)(struct file * , void * , struct v4l2_edid * ) ; int (*vidioc_subscribe_event)(struct v4l2_fh * , struct v4l2_event_subscription const * ) ; int (*vidioc_unsubscribe_event)(struct v4l2_fh * , struct v4l2_event_subscription const * ) ; long (*vidioc_default)(struct file * , void * , bool , unsigned int , void * ) ; }; enum i2c_slave_event; enum i2c_slave_event; typedef int ldv_func_ret_type___6; enum hrtimer_restart; enum i2c_slave_event; enum i2c_slave_event; struct tm6000_reg_settings { unsigned char req ; unsigned char reg ; unsigned char value ; }; struct tm6000_std_settings { v4l2_std_id id ; struct tm6000_reg_settings *common ; }; typedef short __s16; enum hrtimer_restart; struct input_id { __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; }; struct input_absinfo { __s32 value ; __s32 minimum ; __s32 maximum ; __s32 fuzz ; __s32 flat ; __s32 resolution ; }; struct input_keymap_entry { __u8 flags ; __u8 len ; __u16 index ; __u32 keycode ; __u8 scancode[32U] ; }; struct ff_replay { __u16 length ; __u16 delay ; }; struct ff_trigger { __u16 button ; __u16 interval ; }; struct ff_envelope { __u16 attack_length ; __u16 attack_level ; __u16 fade_length ; __u16 fade_level ; }; struct ff_constant_effect { __s16 level ; struct ff_envelope envelope ; }; struct ff_ramp_effect { __s16 start_level ; __s16 end_level ; struct ff_envelope envelope ; }; struct ff_condition_effect { __u16 right_saturation ; __u16 left_saturation ; __s16 right_coeff ; __s16 left_coeff ; __u16 deadband ; __s16 center ; }; struct ff_periodic_effect { __u16 waveform ; __u16 period ; __s16 magnitude ; __s16 offset ; __u16 phase ; struct ff_envelope envelope ; __u32 custom_len ; __s16 *custom_data ; }; struct ff_rumble_effect { __u16 strong_magnitude ; __u16 weak_magnitude ; }; union __anonunion_u_217 { struct ff_constant_effect constant ; struct ff_ramp_effect ramp ; struct ff_periodic_effect periodic ; struct ff_condition_effect condition[2U] ; struct ff_rumble_effect rumble ; }; struct ff_effect { __u16 type ; __s16 id ; __u16 direction ; struct ff_trigger trigger ; struct ff_replay replay ; union __anonunion_u_217 u ; }; struct input_device_id { kernel_ulong_t flags ; __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; kernel_ulong_t evbit[1U] ; kernel_ulong_t keybit[12U] ; kernel_ulong_t relbit[1U] ; kernel_ulong_t absbit[1U] ; kernel_ulong_t mscbit[1U] ; kernel_ulong_t ledbit[1U] ; kernel_ulong_t sndbit[1U] ; kernel_ulong_t ffbit[2U] ; kernel_ulong_t swbit[1U] ; kernel_ulong_t driver_info ; }; struct input_value { __u16 type ; __u16 code ; __s32 value ; }; struct ff_device; struct input_mt; struct input_handle; struct input_dev { char const *name ; char const *phys ; char const *uniq ; struct input_id id ; unsigned long propbit[1U] ; unsigned long evbit[1U] ; unsigned long keybit[12U] ; unsigned long relbit[1U] ; unsigned long absbit[1U] ; unsigned long mscbit[1U] ; unsigned long ledbit[1U] ; unsigned long sndbit[1U] ; unsigned long ffbit[2U] ; unsigned long swbit[1U] ; unsigned int hint_events_per_packet ; unsigned int keycodemax ; unsigned int keycodesize ; void *keycode ; int (*setkeycode)(struct input_dev * , struct input_keymap_entry const * , unsigned int * ) ; int (*getkeycode)(struct input_dev * , struct input_keymap_entry * ) ; struct ff_device *ff ; unsigned int repeat_key ; struct timer_list timer ; int rep[2U] ; struct input_mt *mt ; struct input_absinfo *absinfo ; unsigned long key[12U] ; unsigned long led[1U] ; unsigned long snd[1U] ; unsigned long sw[1U] ; int (*open)(struct input_dev * ) ; void (*close)(struct input_dev * ) ; int (*flush)(struct input_dev * , struct file * ) ; int (*event)(struct input_dev * , unsigned int , unsigned int , int ) ; struct input_handle *grab ; spinlock_t event_lock ; struct mutex mutex ; unsigned int users ; bool going_away ; struct device dev ; struct list_head h_list ; struct list_head node ; unsigned int num_vals ; unsigned int max_vals ; struct input_value *vals ; bool devres_managed ; }; struct input_handler { void *private ; void (*event)(struct input_handle * , unsigned int , unsigned int , int ) ; void (*events)(struct input_handle * , struct input_value const * , unsigned int ) ; bool (*filter)(struct input_handle * , unsigned int , unsigned int , int ) ; bool (*match)(struct input_handler * , struct input_dev * ) ; int (*connect)(struct input_handler * , struct input_dev * , struct input_device_id const * ) ; void (*disconnect)(struct input_handle * ) ; void (*start)(struct input_handle * ) ; bool legacy_minors ; int minor ; char const *name ; struct input_device_id const *id_table ; struct list_head h_list ; struct list_head node ; }; struct input_handle { void *private ; int open ; char const *name ; struct input_dev *dev ; struct input_handler *handler ; struct list_head d_node ; struct list_head h_node ; }; struct ff_device { int (*upload)(struct input_dev * , struct ff_effect * , struct ff_effect * ) ; int (*erase)(struct input_dev * , int ) ; int (*playback)(struct input_dev * , int , int ) ; void (*set_gain)(struct input_dev * , u16 ) ; void (*set_autocenter)(struct input_dev * , u16 ) ; void (*destroy)(struct ff_device * ) ; void *private ; unsigned long ffbit[2U] ; struct mutex mutex ; int max_effects ; struct ff_effect *effects ; struct file *effect_owners[] ; }; enum rc_type { RC_TYPE_UNKNOWN = 0, RC_TYPE_OTHER = 1, RC_TYPE_LIRC = 2, RC_TYPE_RC5 = 3, RC_TYPE_RC5X = 4, RC_TYPE_RC5_SZ = 5, RC_TYPE_JVC = 6, RC_TYPE_SONY12 = 7, RC_TYPE_SONY15 = 8, RC_TYPE_SONY20 = 9, RC_TYPE_NEC = 10, RC_TYPE_SANYO = 11, RC_TYPE_MCE_KBD = 12, RC_TYPE_RC6_0 = 13, RC_TYPE_RC6_6A_20 = 14, RC_TYPE_RC6_6A_24 = 15, RC_TYPE_RC6_6A_32 = 16, RC_TYPE_RC6_MCE = 17, RC_TYPE_SHARP = 18, RC_TYPE_XMP = 19 } ; struct rc_map_table { u32 scancode ; u32 keycode ; }; struct rc_map { struct rc_map_table *scan ; unsigned int size ; unsigned int len ; unsigned int alloc ; enum rc_type rc_type ; char const *name ; spinlock_t lock ; }; enum rc_driver_type { RC_DRIVER_SCANCODE = 0, RC_DRIVER_IR_RAW = 1 } ; struct rc_scancode_filter { u32 data ; u32 mask ; }; struct ir_raw_event_ctrl; struct rc_dev { struct device dev ; struct attribute_group const *sysfs_groups[5U] ; char const *input_name ; char const *input_phys ; struct input_id input_id ; char *driver_name ; char const *map_name ; struct rc_map rc_map ; struct mutex lock ; unsigned long devno ; struct ir_raw_event_ctrl *raw ; struct input_dev *input_dev ; enum rc_driver_type driver_type ; bool idle ; bool encode_wakeup ; u64 allowed_protocols ; u64 enabled_protocols ; u64 allowed_wakeup_protocols ; u64 enabled_wakeup_protocols ; struct rc_scancode_filter scancode_filter ; struct rc_scancode_filter scancode_wakeup_filter ; u32 scancode_mask ; u32 users ; void *priv ; spinlock_t keylock ; bool keypressed ; unsigned long keyup_jiffies ; struct timer_list timer_keyup ; u32 last_keycode ; enum rc_type last_protocol ; u32 last_scancode ; u8 last_toggle ; u32 timeout ; u32 min_timeout ; u32 max_timeout ; u32 rx_resolution ; u32 tx_resolution ; int (*change_protocol)(struct rc_dev * , u64 * ) ; int (*change_wakeup_protocol)(struct rc_dev * , u64 * ) ; int (*open)(struct rc_dev * ) ; void (*close)(struct rc_dev * ) ; int (*s_tx_mask)(struct rc_dev * , u32 ) ; int (*s_tx_carrier)(struct rc_dev * , u32 ) ; int (*s_tx_duty_cycle)(struct rc_dev * , u32 ) ; int (*s_rx_carrier_range)(struct rc_dev * , u32 , u32 ) ; int (*tx_ir)(struct rc_dev * , unsigned int * , unsigned int ) ; void (*s_idle)(struct rc_dev * , bool ) ; int (*s_learning_mode)(struct rc_dev * , int ) ; int (*s_carrier_report)(struct rc_dev * , int ) ; int (*s_filter)(struct rc_dev * , struct rc_scancode_filter * ) ; int (*s_wakeup_filter)(struct rc_dev * , struct rc_scancode_filter * ) ; }; enum i2c_slave_event; enum i2c_slave_event; struct tm6000_IR { struct tm6000_core *dev ; struct rc_dev *rc ; char name[32U] ; char phys[32U] ; int polling ; struct delayed_work work ; unsigned char wait : 1 ; unsigned char pwled : 2 ; unsigned char submit_urb : 1 ; u16 key_addr ; struct urb *int_urb ; u64 rc_type ; }; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } extern unsigned long find_first_zero_bit(unsigned long const * , unsigned long ) ; extern int printk(char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_lock_of_tm6000_core(struct mutex *lock ) ; void ldv_mutex_unlock_lock_of_tm6000_core(struct mutex *lock ) ; void ldv_mutex_lock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) ; void ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_vb_lock_of_videobuf_queue(struct mutex *lock ) ; void ldv_mutex_unlock_vb_lock_of_videobuf_queue(struct mutex *lock ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; extern bool flush_work(struct work_struct * ) ; bool ldv_flush_work_21(struct work_struct *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_5(8192, wq, work); return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { tmp = queue_work(system_wq, work); return (tmp); } } extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } struct v4l2_format *video_ioctl_ops_group0 ; int ldv_state_variable_8 ; struct work_struct *ldv_work_struct_3_1 ; struct work_struct *ldv_work_struct_1_3 ; struct i2c_adapter *tm6000_algo_group0 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_state_variable_13 ; int ldv_work_1_1 ; int ldv_state_variable_12 ; struct file *radio_ioctl_ops_group2 ; int ldv_work_3_2 ; int ldv_work_3_0 ; struct work_struct *ldv_work_struct_2_3 ; struct v4l2_event_subscription const *video_ioctl_ops_group1 ; struct work_struct *ldv_work_struct_2_0 ; int ldv_state_variable_9 ; struct videobuf_queue *tm6000_video_qops_group1 ; struct work_struct *ldv_work_struct_2_2 ; struct usb_interface *tm6000_usb_driver_group1 ; int ref_cnt ; int ldv_work_3_3 ; struct file *radio_fops_group0 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; struct work_struct *ldv_work_struct_3_3 ; struct file *tm6000_fops_group0 ; struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; int ldv_state_variable_10 ; int ldv_work_1_3 ; struct work_struct *ldv_work_struct_2_1 ; struct work_struct *ldv_work_struct_3_2 ; int ldv_state_variable_6 ; struct v4l2_fh *video_ioctl_ops_group2 ; int ldv_work_3_1 ; int ldv_state_variable_2 ; int ldv_work_2_0 ; struct v4l2_buffer *video_ioctl_ops_group4 ; struct videobuf_buffer *tm6000_video_qops_group2 ; int usb_counter ; struct v4l2_event_subscription const *radio_ioctl_ops_group0 ; struct work_struct *ldv_work_struct_3_0 ; int ldv_state_variable_11 ; int ldv_work_1_2 ; int LDV_IN_INTERRUPT = 1; struct work_struct *ldv_work_struct_1_2 ; int ldv_work_2_2 ; int ldv_state_variable_3 ; struct v4l2_fh *radio_ioctl_ops_group1 ; int ldv_work_1_0 ; struct file *video_ioctl_ops_group3 ; int ldv_work_2_3 ; int ldv_state_variable_4 ; int ldv_work_2_1 ; void work_init_3(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void ldv_videobuf_queue_ops_11(void) ; void work_init_2(void) ; void call_and_disable_all_1(int state ) ; void activate_work_3(struct work_struct *work , int state ) ; void ldv_initialize_v4l2_ioctl_ops_7(void) ; void activate_work_1(struct work_struct *work , int state ) ; void ldv_initialize_i2c_algorithm_12(void) ; void call_and_disable_work_3(struct work_struct *work ) ; void ldv_usb_driver_13(void) ; void ldv_initialize_v4l2_ioctl_ops_4(void) ; void disable_work_1(struct work_struct *work ) ; void work_init_1(void) ; void ldv_initialize_v4l2_file_operations_8(void) ; void invoke_work_1(void) ; void ldv_initialize_v4l2_file_operations_5(void) ; void call_and_disable_all_3(int state ) ; extern int __request_module(bool , char const * , ...) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void msleep(unsigned int ) ; __inline static void *usb_get_intfdata(struct usb_interface *intf ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& intf->dev)); return (tmp); } } __inline static void usb_set_intfdata(struct usb_interface *intf , void *data ) { { dev_set_drvdata(& intf->dev, data); return; } } __inline static struct usb_device *interface_to_usbdev(struct usb_interface *intf ) { struct device const *__mptr ; { __mptr = (struct device const *)intf->dev.parent; return ((struct usb_device *)__mptr + 0xffffffffffffff70UL); } } extern struct usb_device *usb_get_dev(struct usb_device * ) ; extern void usb_put_dev(struct usb_device * ) ; extern int usb_register_driver(struct usb_driver * , struct module * , char const * ) ; int ldv_usb_register_driver_25(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void usb_deregister(struct usb_driver * ) ; void ldv_usb_deregister_26(struct usb_driver *arg ) ; extern int usb_set_interface(struct usb_device * , int , int ) ; extern struct v4l2_subdev *v4l2_i2c_new_subdev(struct v4l2_device * , struct i2c_adapter * , char const * , u8 , unsigned short const * ) ; extern int v4l2_device_register(struct device * , struct v4l2_device * ) ; extern void v4l2_device_unregister(struct v4l2_device * ) ; int tm6000_tuner_callback(void *ptr , int component , int command , int arg ) ; int tm6000_xc5000_callback(void *ptr , int component , int command , int arg ) ; int tm6000_cards_setup(struct tm6000_core *dev ) ; void tm6000_flash_led(struct tm6000_core *dev , u8 state ) ; int tm6000_set_reg(struct tm6000_core *dev , u8 req , u16 value , u16 index ) ; int tm6000_i2c_reset(struct tm6000_core *dev , u16 tsleep ) ; int tm6000_init(struct tm6000_core *dev ) ; int tm6000_v4l2_register(struct tm6000_core *dev ) ; int tm6000_v4l2_unregister(struct tm6000_core *dev ) ; void tm6000_remove_from_devlist(struct tm6000_core *dev ) ; void tm6000_add_into_devlist(struct tm6000_core *dev ) ; void tm6000_init_extension(struct tm6000_core *dev ) ; void tm6000_close_extension(struct tm6000_core *dev ) ; int tm6000_i2c_register(struct tm6000_core *dev ) ; int tm6000_i2c_unregister(struct tm6000_core *dev ) ; int tm6000_ir_init(struct tm6000_core *dev ) ; int tm6000_ir_fini(struct tm6000_core *dev ) ; void tm6000_ir_wait(struct tm6000_core *dev , u8 state ) ; static unsigned int card[16U] = { 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U, 4294967295U}; static unsigned long tm6000_devused ; static struct tm6000_board tm6000_boards[17U] = { {(char *)"Unknown tm6000 video grabber", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0}, 0, 0, 0, 0, {258, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"Generic tm5600 board", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0}, 1, 71, 97, 0, {258, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"Generic tm6000 board", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0}, 0, 71, 97, 0, {258, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"Generic tm6010 board", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 1U, 1U, (unsigned char)0}, 2, 71, 97, 15, {260, 261, 259, 262, 769, 263, 258}, {{1, 2, 6, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"10Moons UT 821", {49, 48, 77, 79, 79, 78, 83, 53, 54, 48, 48, -1, 69, 91}, 14U, 20U, {1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0}, 1, 71, 97, 0, {258, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"10Moons UT 330", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 0U, 0U, 1U, (unsigned char)0, (unsigned char)0}, 0, 56, 100, 0, {0, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"ADSTECH Dual TV USB", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, 1U, 1U, 1U, 1U, (unsigned char)0, (unsigned char)0}, 0, 71, 100, 0, {0, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"Freecom Hybrid Stick / Moka DVB-T Receiver Dual", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 0U, 1U, (unsigned char)0}, 0, 71, 97, 15, {768, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"ADSTECH Mini Dual TV USB", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 0U, (unsigned char)0, (unsigned char)0}, 0, 71, 100, 15, {768, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"Hauppauge WinTV HVR-900H / WinTV USB2-Stick", {72, 0, 86, 0, 82, 0, 57, 0, 48, 0, 48, 0, 72, 0}, 14U, 66U, {1U, (unsigned char)0, 1U, 1U, 1U, 1U, (unsigned char)0}, 2, 71, 97, 15, {260, 261, 259, 262, 769, 263, 258}, {{1, 2, 6, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, (char *)"rc-hauppauge"}, {(char *)"Beholder Wander DVB-T/TV/FM USB2.0", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 1U, 1U, 1U}, 2, 76, 97, 15, {258, 0, 259, 0, 768, 0, 0}, {{1, 2, 6, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {6, 0, 4, 0U, 0U}, 0}, {(char *)"Beholder Voyager TV/FM USB2.0", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 0U, 0U, 1U, 1U, 1U}, 2, 76, 97, 0, {258, 0, 0, 0, 768, 0, 0}, {{1, 2, 6, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {6, 0, 4, 0U, 0U}, 0}, {(char *)"Terratec Cinergy Hybrid XE / Cinergy Hybrid-Stick", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 1U, 1U, 1U}, 2, 71, 97, 15, {260, 261, 259, 262, 769, 263, 258}, {{1, 2, 6, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {6, 0, 6, 0U, 0U}, (char *)"rc-nec-terratec-cinergy-xs"}, {(char *)"Twinhan TU501(704D1)", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 1U, 1U, (unsigned char)0}, 2, 71, 97, 15, {260, 261, 259, 262, 769, 263, 258}, {{1, 2, 6, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}, {(char *)"Beholder Wander Lite DVB-T/TV/FM USB2.0", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 1U, 1U, 1U, 0U, 1U}, 2, 76, 97, 15, {258, 0, 259, 0, 768, 0, 0}, {{1, 2, 6, 0U, 0U}}, {6, 0, 4, 0U, 0U}, 0}, {(char *)"Beholder Voyager Lite TV/FM USB2.0", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {1U, (unsigned char)0, 0U, 0U, 1U, 0U, 1U}, 2, 76, 97, 0, {258, 0, 0, 0, 768, 0, 0}, {{1, 2, 6, 0U, 0U}}, {6, 0, 4, 0U, 0U}, 0}, {(char *)"Terratec Grabster AV 150/250 MX", {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 1, 4, 0, 0, {0, 0, 0, 0, 0, 0, 0}, {{1, 2, 4, 0U, 0U}, {2, 1, 5, 0U, 0U}, {4, 3, 5, 0U, 0U}}, {0, 0, 0, 0U, 0U}, 0}}; static struct usb_device_id tm6000_id_table[21U] = { {3U, 24576U, 1U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 24576U, 2U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 1761U, 62258U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 6UL}, {3U, 5290U, 1568U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 7UL}, {3U, 1761U, 45881U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 8UL}, {3U, 8256U, 26112U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 9UL}, {3U, 8256U, 26113U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 9UL}, {3U, 8256U, 26128U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 9UL}, {3U, 8256U, 26129U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 9UL}, {3U, 24576U, 57024U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 10UL}, {3U, 24576U, 57025U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 11UL}, {3U, 3277U, 134U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 12UL}, {3U, 3277U, 165U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 12UL}, {3U, 3277U, 121U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 16UL}, {3U, 5075U, 12864U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 13UL}, {3U, 5075U, 12865U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 13UL}, {3U, 5075U, 12867U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 13UL}, {3U, 5075U, 12900U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 13UL}, {3U, 24576U, 57026U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 14UL}, {3U, 24576U, 57027U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 15UL}}; struct usb_device_id const __mod_usb__tm6000_id_table_device_table[21U] ; void tm6000_flash_led(struct tm6000_core *dev , u8 state ) { { if (dev->gpio.power_led == 0) { return; } else { } if ((unsigned int )state != 0U) { switch (dev->model) { case 9: ; case 12: ; case 13: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 0); goto ldv_39792; case 10: ; case 11: ; case 14: ; case 15: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 1); goto ldv_39792; } ldv_39792: ; } else { switch (dev->model) { case 9: ; case 12: ; case 13: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 1); goto ldv_39800; case 10: ; case 11: ; case 14: ; case 15: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 0); goto ldv_39800; } ldv_39800: ; } return; } } int tm6000_xc5000_callback(void *ptr , int component , int command , int arg ) { int rc ; struct tm6000_core *dev ; { rc = 0; dev = (struct tm6000_core *)ptr; if (dev->tuner_type != 76) { return (0); } else { } switch (command) { case 0: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 0); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); goto ldv_39814; } ldv_39814: ; return (rc); } } static char const __kstrtab_tm6000_xc5000_callback[23U] = { 't', 'm', '6', '0', '0', '0', '_', 'x', 'c', '5', '0', '0', '0', '_', 'c', 'a', 'l', 'l', 'b', 'a', 'c', 'k', '\000'}; struct kernel_symbol const __ksymtab_tm6000_xc5000_callback ; struct kernel_symbol const __ksymtab_tm6000_xc5000_callback = {(unsigned long )(& tm6000_xc5000_callback), (char const *)(& __kstrtab_tm6000_xc5000_callback)}; int tm6000_tuner_callback(void *ptr , int component , int command , int arg ) { int rc ; struct tm6000_core *dev ; { rc = 0; dev = (struct tm6000_core *)ptr; if (dev->tuner_type != 71) { return (0); } else { } switch (command) { case 1: tm6000_ir_wait(dev, 0); tm6000_set_reg(dev, 4, 2, (int )((u16 )arg)); msleep(10U); rc = tm6000_i2c_reset(dev, 10); goto ldv_39834; case 0: ; switch (arg) { case 0: ; switch (dev->model) { case 4: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); tm6000_set_reg(dev, 3, 768, 1); msleep(10U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 0); tm6000_set_reg(dev, 3, 768, 0); msleep(10U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); tm6000_set_reg(dev, 3, 768, 1); goto ldv_39838; case 9: ; case 12: ; case 13: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); msleep(60U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 0); msleep(75U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); msleep(60U); goto ldv_39838; default: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 0); msleep(130U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); msleep(130U); goto ldv_39838; } ldv_39838: tm6000_ir_wait(dev, 1); goto ldv_39843; case 1: tm6000_set_reg(dev, 4, 2, 1); msleep(10U); goto ldv_39843; case 2: rc = tm6000_i2c_reset(dev, 100); goto ldv_39843; } ldv_39843: ; goto ldv_39834; case 2: tm6000_set_reg(dev, 50, 0, 0); tm6000_set_reg(dev, 51, 0, 0); goto ldv_39834; } ldv_39834: ; return (rc); } } static char const __kstrtab_tm6000_tuner_callback[22U] = { 't', 'm', '6', '0', '0', '0', '_', 't', 'u', 'n', 'e', 'r', '_', 'c', 'a', 'l', 'l', 'b', 'a', 'c', 'k', '\000'}; struct kernel_symbol const __ksymtab_tm6000_tuner_callback ; struct kernel_symbol const __ksymtab_tm6000_tuner_callback = {(unsigned long )(& tm6000_tuner_callback), (char const *)(& __kstrtab_tm6000_tuner_callback)}; int tm6000_cards_setup(struct tm6000_core *dev ) { int rc ; int i ; { switch (dev->model) { case 9: ; case 12: ; case 13: ; case 3: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_on), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_on), 0); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_reset), 0); msleep(50U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_reset), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_on), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.ir), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 0); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.dvb_led), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_on), 0); msleep(15U); goto ldv_39864; case 10: ; case 14: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 1); msleep(15U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_reset), 0); msleep(50U); tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.demod_reset), 1); msleep(15U); goto ldv_39864; case 11: ; case 15: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 1); msleep(15U); goto ldv_39864; default: ; goto ldv_39864; } ldv_39864: ; if (dev->gpio.tuner_reset != 0) { i = 0; goto ldv_39873; ldv_39872: rc = tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 0); if (rc < 0) { printk("\vError %i doing tuner reset\n", rc); return (rc); } else { } msleep(10U); rc = tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.tuner_reset), 1); if (rc < 0) { printk("\vError %i doing tuner reset\n", rc); return (rc); } else { } i = i + 1; ldv_39873: ; if (i <= 1) { goto ldv_39872; } else { } } else { printk("\vTuner reset is not configured\n"); return (-1); } msleep(50U); return (0); } } static void tm6000_config_tuner(struct tm6000_core *dev ) { struct tuner_setup tun_setup ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct v4l2_priv_tun_config xc2028_cfg ; struct xc2028_ctrl ctl ; struct v4l2_subdev *__sd___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct v4l2_priv_tun_config xc5000_cfg ; struct xc5000_config ctl___0 ; struct v4l2_subdev *__sd___1 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { v4l2_i2c_new_subdev(& dev->v4l2_dev, & dev->i2c_adap, "tuner", (int )((u8 )dev->tuner_addr), (unsigned short const *)0U); memset((void *)(& tun_setup), 0, 32UL); tun_setup.type = (unsigned int )dev->tuner_type; tun_setup.addr = (unsigned short )dev->tuner_addr; tun_setup.mode_mask = 0U; if ((unsigned int )*((unsigned char *)dev + 324UL) != 0U) { tun_setup.mode_mask = tun_setup.mode_mask | 6U; } else { } switch (dev->tuner_type) { case 71: tun_setup.tuner_callback = & tm6000_tuner_callback; goto ldv_39880; case 76: tun_setup.tuner_callback = & tm6000_xc5000_callback; goto ldv_39880; } ldv_39880: __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_39888; ldv_39887: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->s_type_addr != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct tuner_setup * ))0)) { (*(((__sd->ops)->tuner)->s_type_addr))(__sd, & tun_setup); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_39888: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_39887; } else { } switch (dev->tuner_type) { case 71: memset((void *)(& xc2028_cfg), 0, 16UL); memset((void *)(& ctl), 0, 32UL); ctl.demod = 4560U; xc2028_cfg.tuner = 71; xc2028_cfg.priv = (void *)(& ctl); switch (dev->model) { case 9: ; case 12: ; case 13: ctl.max_len = 80; ctl.fname = (char *)"xc3028L-v36.fw"; goto ldv_39896; default: ; if ((unsigned int )dev->dev_type == 2U) { ctl.fname = (char *)"xc3028-v27.fw"; } else { ctl.fname = (char *)"xc3028-v24.fw"; } } ldv_39896: printk("\016Setting firmware parameters for xc2028\n"); __mptr___1 = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd___0 = (struct v4l2_subdev *)__mptr___1 + 0xffffffffffffff88UL; goto ldv_39904; ldv_39903: ; if ((unsigned long )(__sd___0->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd___0->ops)->tuner)->s_config != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_priv_tun_config const * ))0)) { (*(((__sd___0->ops)->tuner)->s_config))(__sd___0, (struct v4l2_priv_tun_config const *)(& xc2028_cfg)); } else { } __mptr___2 = (struct list_head const *)__sd___0->list.next; __sd___0 = (struct v4l2_subdev *)__mptr___2 + 0xffffffffffffff88UL; ldv_39904: ; if ((unsigned long )(& __sd___0->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_39903; } else { } goto ldv_39906; case 76: ctl___0.i2c_address = (unsigned char )dev->tuner_addr; ctl___0.if_khz = 4570U; ctl___0.radio_input = 3U; ctl___0.xtal_khz = (unsigned short)0; ctl___0.output_amp = (unsigned short)0; ctl___0.chip_id = 0; xc5000_cfg.tuner = 76; xc5000_cfg.priv = (void *)(& ctl___0); __mptr___3 = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd___1 = (struct v4l2_subdev *)__mptr___3 + 0xffffffffffffff88UL; goto ldv_39916; ldv_39915: ; if ((unsigned long )(__sd___1->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd___1->ops)->tuner)->s_config != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_priv_tun_config const * ))0)) { (*(((__sd___1->ops)->tuner)->s_config))(__sd___1, (struct v4l2_priv_tun_config const *)(& xc5000_cfg)); } else { } __mptr___4 = (struct list_head const *)__sd___1->list.next; __sd___1 = (struct v4l2_subdev *)__mptr___4 + 0xffffffffffffff88UL; ldv_39916: ; if ((unsigned long )(& __sd___1->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_39915; } else { } goto ldv_39906; default: printk("\016Unknown tuner type. Tuner is not configured.\n"); goto ldv_39906; } ldv_39906: ; return; } } static int fill_board_specific_data(struct tm6000_core *dev ) { int rc ; int tmp ; { dev->dev_type = tm6000_boards[dev->model].type; dev->tuner_type = tm6000_boards[dev->model].tuner_type; dev->tuner_addr = tm6000_boards[dev->model].tuner_addr; dev->gpio = tm6000_boards[dev->model].gpio; dev->ir_codes = tm6000_boards[dev->model].ir_codes; dev->demod_addr = tm6000_boards[dev->model].demod_addr; dev->caps = tm6000_boards[dev->model].caps; dev->vinput[0] = tm6000_boards[dev->model].vinput[0]; dev->vinput[1] = tm6000_boards[dev->model].vinput[1]; dev->vinput[2] = tm6000_boards[dev->model].vinput[2]; dev->rinput = tm6000_boards[dev->model].rinput; switch (dev->model) { case 12: ; case 9: dev->quirks = dev->quirks | 1UL; goto ldv_39925; default: ; goto ldv_39925; } ldv_39925: rc = tm6000_init(dev); if (rc < 0) { return (rc); } else { } tmp = v4l2_device_register(& (dev->udev)->dev, & dev->v4l2_dev); return (tmp); } } static void use_alternative_detection_method(struct tm6000_core *dev ) { int i ; int model ; int tmp ; { model = -1; if (dev->eedata_size == 0U) { return; } else { } i = 0; goto ldv_39937; ldv_39936: ; if (tm6000_boards[i].eename_size == 0U) { goto ldv_39934; } else { } if (dev->eedata_size < tm6000_boards[i].eename_pos + tm6000_boards[i].eename_size) { goto ldv_39934; } else { } tmp = memcmp((void const *)(& dev->eedata) + (unsigned long )tm6000_boards[i].eename_pos, (void const *)(& tm6000_boards[i].eename), (size_t )tm6000_boards[i].eename_size); if (tmp == 0) { model = i; goto ldv_39935; } else { } ldv_39934: i = i + 1; ldv_39937: ; if ((unsigned int )i <= 16U) { goto ldv_39936; } else { } ldv_39935: ; if (model < 0) { printk("\016Device has eeprom but is currently unknown\n"); return; } else { } dev->model = model; printk("\016Device identified via eeprom as %s (type = %d)\n", tm6000_boards[model].name, model); return; } } static void request_module_async(struct work_struct *work ) { struct tm6000_core *dev ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; dev = (struct tm6000_core *)__mptr + 0xfffffffffffffeb8UL; __request_module(1, "tm6000-alsa"); if ((unsigned int )*((unsigned char *)dev + 324UL) != 0U) { __request_module(1, "tm6000-dvb"); } else { } return; } } static void request_modules(struct tm6000_core *dev ) { struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { __init_work(& dev->request_module_wk, 0); __constr_expr_0.counter = 137438953408L; dev->request_module_wk.data = __constr_expr_0; lockdep_init_map(& dev->request_module_wk.lockdep_map, "(&dev->request_module_wk)", & __key, 0); INIT_LIST_HEAD(& dev->request_module_wk.entry); dev->request_module_wk.func = & request_module_async; schedule_work(& dev->request_module_wk); return; } } static void flush_request_modules(struct tm6000_core *dev ) { { ldv_flush_work_21(& dev->request_module_wk); return; } } static int tm6000_init_dev(struct tm6000_core *dev ) { struct v4l2_frequency f ; int rc ; struct lock_class_key __key ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct v4l2_subdev *__sd___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { rc = 0; __mutex_init(& dev->lock, "&dev->lock", & __key); ldv_mutex_lock_22(& dev->lock); if (((dev->model != 0 && dev->model != 1) && dev->model != 2) && dev->model != 3) { rc = fill_board_specific_data(dev); if (rc < 0) { goto err; } else { } rc = tm6000_i2c_register(dev); if (rc < 0) { goto err; } else { } } else { rc = tm6000_i2c_register(dev); if (rc < 0) { goto err; } else { } use_alternative_detection_method(dev); rc = fill_board_specific_data(dev); if (rc < 0) { goto err; } else { } } dev->width = 720; dev->height = 480; dev->norm = 4096ULL; tm6000_config_tuner(dev); __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_39965; ldv_39964: ; if ((unsigned long )(__sd->ops)->video != (unsigned long )((struct v4l2_subdev_video_ops const */* const */)0) && (unsigned long )((__sd->ops)->video)->s_std != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , v4l2_std_id ))0)) { (*(((__sd->ops)->video)->s_std))(__sd, dev->norm); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_39965: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_39964; } else { } f.tuner = 0U; f.type = 2U; f.frequency = 3092U; dev->freq = (int )f.frequency; __mptr___1 = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd___0 = (struct v4l2_subdev *)__mptr___1 + 0xffffffffffffff88UL; goto ldv_39973; ldv_39972: ; if ((unsigned long )(__sd___0->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd___0->ops)->tuner)->s_frequency != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_frequency const * ))0)) { (*(((__sd___0->ops)->tuner)->s_frequency))(__sd___0, (struct v4l2_frequency const *)(& f)); } else { } __mptr___2 = (struct list_head const *)__sd___0->list.next; __sd___0 = (struct v4l2_subdev *)__mptr___2 + 0xffffffffffffff88UL; ldv_39973: ; if ((unsigned long )(& __sd___0->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_39972; } else { } if ((unsigned int )*((unsigned char *)dev + 324UL) != 0U) { v4l2_i2c_new_subdev(& dev->v4l2_dev, & dev->i2c_adap, "tvaudio", 176, (unsigned short const *)0U); } else { } rc = tm6000_v4l2_register(dev); if (rc < 0) { goto err; } else { } tm6000_add_into_devlist(dev); tm6000_init_extension(dev); tm6000_ir_init(dev); request_modules(dev); ldv_mutex_unlock_23(& dev->lock); return (0); err: ldv_mutex_unlock_24(& dev->lock); return (rc); } } static void get_max_endpoint(struct usb_device *udev , struct usb_host_interface *alt , char *msgtype , struct usb_host_endpoint *curr_e , struct tm6000_endpoint *tm_ep ) { u16 tmp ; unsigned int size ; { tmp = curr_e->desc.wMaxPacketSize; size = (unsigned int )tmp & 2047U; if ((unsigned int )udev->speed == 3U) { size = (unsigned int )((((int )tmp >> 11) & 3) + 1) * size; } else { } if (tm_ep->maxsize < size) { tm_ep->endp = curr_e; tm_ep->maxsize = size; tm_ep->bInterfaceNumber = alt->desc.bInterfaceNumber; tm_ep->bAlternateSetting = alt->desc.bAlternateSetting; printk("\016tm6000: %s endpoint: 0x%02x (max size=%u bytes)\n", msgtype, (int )curr_e->desc.bEndpointAddress, size); } else { } return; } } static int tm6000_usb_probe(struct usb_interface *interface , struct usb_device_id const *id ) { struct usb_device *usbdev ; struct tm6000_core *dev ; int i ; int rc ; int nr ; char *speed ; struct usb_device *tmp ; unsigned long tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int ep ; struct usb_host_endpoint *e ; int dir_out ; { dev = (struct tm6000_core *)0; rc = 0; nr = 0; tmp = interface_to_usbdev(interface); usbdev = usb_get_dev(tmp); rc = usb_set_interface(usbdev, 0, 1); if (rc < 0) { goto err; } else { } tmp___0 = find_first_zero_bit((unsigned long const *)(& tm6000_devused), 16UL); nr = (int )tmp___0; if (nr > 15) { printk("\vtm6000: Supports only %i tm60xx boards.\n", 16); usb_put_dev(usbdev); return (-12); } else { } tmp___1 = kzalloc(9224UL, 208U); dev = (struct tm6000_core *)tmp___1; if ((unsigned long )dev == (unsigned long )((struct tm6000_core *)0)) { printk("\vtm6000: out of memory!\n"); usb_put_dev(usbdev); return (-12); } else { } spinlock_check(& dev->slock); __raw_spin_lock_init(& dev->slock.__annonCompField17.rlock, "&(&dev->slock)->rlock", & __key); __mutex_init(& dev->usb_lock, "&dev->usb_lock", & __key___0); set_bit((long )nr, (unsigned long volatile *)(& tm6000_devused)); snprintf((char *)(& dev->name), 29UL, "tm6000 #%d", nr); dev->model = (int )id->driver_info; if (card[nr] <= 16U) { dev->model = (int )card[nr]; } else { } dev->udev = usbdev; dev->devno = nr; switch ((unsigned int )usbdev->speed) { case 1U: speed = (char *)"1.5"; goto ldv_40000; case 0U: ; case 2U: speed = (char *)"12"; goto ldv_40000; case 3U: speed = (char *)"480"; goto ldv_40000; default: speed = (char *)"unknown"; } ldv_40000: i = 0; goto ldv_40016; ldv_40015: ep = 0; goto ldv_40013; ldv_40012: e = (interface->altsetting + (unsigned long )i)->endpoint + (unsigned long )ep; dir_out = (int )((signed char )e->desc.bEndpointAddress) >= 0; printk("\016tm6000: alt %d, interface %i, class %i\n", i, (int )(interface->altsetting + (unsigned long )i)->desc.bInterfaceNumber, (int )(interface->altsetting + (unsigned long )i)->desc.bInterfaceClass); switch ((int )e->desc.bmAttributes) { case 2: ; if (dir_out == 0) { get_max_endpoint(usbdev, interface->altsetting + (unsigned long )i, (char *)"Bulk IN", e, & dev->bulk_in); } else { get_max_endpoint(usbdev, interface->altsetting + (unsigned long )i, (char *)"Bulk OUT", e, & dev->bulk_out); } goto ldv_40009; case 1: ; if (dir_out == 0) { get_max_endpoint(usbdev, interface->altsetting + (unsigned long )i, (char *)"ISOC IN", e, & dev->isoc_in); } else { get_max_endpoint(usbdev, interface->altsetting + (unsigned long )i, (char *)"ISOC OUT", e, & dev->isoc_out); } goto ldv_40009; case 3: ; if (dir_out == 0) { get_max_endpoint(usbdev, interface->altsetting + (unsigned long )i, (char *)"INT IN", e, & dev->int_in); } else { get_max_endpoint(usbdev, interface->altsetting + (unsigned long )i, (char *)"INT OUT", e, & dev->int_out); } goto ldv_40009; } ldv_40009: ep = ep + 1; ldv_40013: ; if ((int )(interface->altsetting + (unsigned long )i)->desc.bNumEndpoints > ep) { goto ldv_40012; } else { } i = i + 1; ldv_40016: ; if ((unsigned int )i < interface->num_altsetting) { goto ldv_40015; } else { } printk("\016tm6000: New video device @ %s Mbps (%04x:%04x, ifnum %d)\n", speed, (int )(dev->udev)->descriptor.idVendor, (int )(dev->udev)->descriptor.idProduct, (int )(interface->altsetting)->desc.bInterfaceNumber); if ((unsigned long )dev->isoc_in.endp == (unsigned long )((struct usb_host_endpoint *)0)) { printk("\vtm6000: probing error: no IN ISOC endpoint!\n"); rc = -19; goto err; } else { } usb_set_intfdata(interface, (void *)dev); printk("\016tm6000: Found %s\n", tm6000_boards[dev->model].name); rc = tm6000_init_dev(dev); if (rc < 0) { goto err; } else { } return (0); err: printk("\vtm6000: Error %d while registering\n", rc); clear_bit((long )nr, (unsigned long volatile *)(& tm6000_devused)); usb_put_dev(usbdev); kfree((void const *)dev); return (rc); } } static void tm6000_usb_disconnect(struct usb_interface *interface ) { struct tm6000_core *dev ; void *tmp ; { tmp = usb_get_intfdata(interface); dev = (struct tm6000_core *)tmp; usb_set_intfdata(interface, (void *)0); if ((unsigned long )dev == (unsigned long )((struct tm6000_core *)0)) { return; } else { } printk("\016tm6000: disconnecting %s\n", (char *)(& dev->name)); flush_request_modules(dev); tm6000_ir_fini(dev); if (dev->gpio.power_led != 0) { switch (dev->model) { case 9: ; case 12: ; case 13: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 1); msleep(15U); goto ldv_40025; case 10: ; case 11: ; case 14: ; case 15: tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.power_led), 0); msleep(15U); goto ldv_40025; } ldv_40025: ; } else { } tm6000_v4l2_unregister(dev); tm6000_i2c_unregister(dev); v4l2_device_unregister(& dev->v4l2_dev); dev->state = (enum tm6000_core_state )((unsigned int )dev->state | 2U); usb_put_dev(dev->udev); tm6000_close_extension(dev); tm6000_remove_from_devlist(dev); clear_bit((long )dev->devno, (unsigned long volatile *)(& tm6000_devused)); kfree((void const *)dev); return; } } static struct usb_driver tm6000_usb_driver = {"tm6000", & tm6000_usb_probe, & tm6000_usb_disconnect, 0, 0, 0, 0, 0, 0, (struct usb_device_id const *)(& tm6000_id_table), {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {{0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}; static int tm6000_usb_driver_init(void) { int tmp ; { tmp = ldv_usb_register_driver_25(& tm6000_usb_driver, & __this_module, "tm6000"); return (tmp); } } static void tm6000_usb_driver_exit(void) { { ldv_usb_deregister_26(& tm6000_usb_driver); return; } } extern void ldv_initialize(void) ; void ldv_check_final_state(void) ; int ldv_retval_3 ; int ldv_retval_2 ; void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { request_module_async(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { request_module_async(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { request_module_async(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { request_module_async(work); ldv_work_1_3 = 1; return; } else { } return; } } void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void ldv_usb_driver_13(void) { void *tmp ; { tmp = ldv_init_zalloc(1560UL); tm6000_usb_driver_group1 = (struct usb_interface *)tmp; return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; request_module_async(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_40083; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; request_module_async(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_40083; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; request_module_async(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_40083; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; request_module_async(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_40083; default: ldv_stop(); } ldv_40083: ; return; } } void ldv_main_exported_12(void) ; void ldv_main_exported_6(void) ; void ldv_main_exported_11(void) ; void ldv_main_exported_7(void) ; void ldv_main_exported_9(void) ; void ldv_main_exported_8(void) ; void ldv_main_exported_4(void) ; void ldv_main_exported_10(void) ; void ldv_main_exported_5(void) ; int main(void) { struct usb_device_id *ldvarg58 ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = ldv_init_zalloc(32UL); ldvarg58 = (struct usb_device_id *)tmp; ldv_initialize(); ldv_state_variable_6 = 0; ldv_state_variable_11 = 0; work_init_3(); ldv_state_variable_3 = 1; ldv_state_variable_7 = 0; ldv_state_variable_9 = 0; ldv_state_variable_12 = 0; work_init_2(); ldv_state_variable_2 = 1; ldv_state_variable_8 = 0; work_init_1(); ldv_state_variable_1 = 1; ldv_state_variable_4 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_13 = 0; ldv_state_variable_10 = 0; ldv_state_variable_5 = 0; ldv_40141: tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_6 != 0) { ldv_main_exported_6(); } else { } goto ldv_40117; case 1: ; if (ldv_state_variable_11 != 0) { ldv_main_exported_11(); } else { } goto ldv_40117; case 2: ; goto ldv_40117; case 3: ; if (ldv_state_variable_7 != 0) { ldv_main_exported_7(); } else { } goto ldv_40117; case 4: ; if (ldv_state_variable_9 != 0) { ldv_main_exported_9(); } else { } goto ldv_40117; case 5: ; if (ldv_state_variable_12 != 0) { ldv_main_exported_12(); } else { } goto ldv_40117; case 6: ; goto ldv_40117; case 7: ; if (ldv_state_variable_8 != 0) { ldv_main_exported_8(); } else { } goto ldv_40117; case 8: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_40117; case 9: ; if (ldv_state_variable_4 != 0) { ldv_main_exported_4(); } else { } goto ldv_40117; case 10: ; if (ldv_state_variable_0 != 0) { tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { tm6000_usb_driver_exit(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_40130; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_2 = tm6000_usb_driver_init(); if (ldv_retval_2 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_2 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_5 = 1; ldv_initialize_v4l2_file_operations_5(); ldv_state_variable_10 = 1; ldv_state_variable_4 = 1; ldv_initialize_v4l2_ioctl_ops_4(); ldv_state_variable_8 = 1; ldv_initialize_v4l2_file_operations_8(); ldv_state_variable_12 = 1; ldv_initialize_i2c_algorithm_12(); ldv_state_variable_9 = 1; ldv_state_variable_7 = 1; ldv_initialize_v4l2_ioctl_ops_7(); ldv_state_variable_11 = 1; ldv_videobuf_queue_ops_11(); ldv_state_variable_6 = 1; } else { } } else { } goto ldv_40130; default: ldv_stop(); } ldv_40130: ; } else { } goto ldv_40117; case 11: ; if (ldv_state_variable_13 != 0) { tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_13 == 1) { ldv_retval_3 = tm6000_usb_probe(tm6000_usb_driver_group1, (struct usb_device_id const *)ldvarg58); if (ldv_retval_3 == 0) { ldv_state_variable_13 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_40135; case 1: ; if (ldv_state_variable_13 == 2 && usb_counter == 0) { tm6000_usb_disconnect(tm6000_usb_driver_group1); ldv_state_variable_13 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_40135; default: ldv_stop(); } ldv_40135: ; } else { } goto ldv_40117; case 12: ; if (ldv_state_variable_10 != 0) { ldv_main_exported_10(); } else { } goto ldv_40117; case 13: ; if (ldv_state_variable_5 != 0) { ldv_main_exported_5(); } else { } goto ldv_40117; default: ldv_stop(); } ldv_40117: ; goto ldv_40141; ldv_final: ldv_check_final_state(); return 0; } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } bool ldv_flush_work_21(struct work_struct *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = flush_work(ldv_func_arg1); ldv_func_res = tmp; call_and_disable_work_3(ldv_func_arg1); return (ldv_func_res); } } void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_tm6000_core(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_usb_register_driver_25(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; { tmp = usb_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_13 = 1; usb_counter = 0; ldv_usb_driver_13(); return (ldv_func_res); } } void ldv_usb_deregister_26(struct usb_driver *arg ) { { usb_deregister(arg); ldv_state_variable_13 = 0; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void *memcpy(void * , void const * , size_t ) ; int ldv_mutex_trylock_61(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_59(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_62(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_63(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_66(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_68(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_70(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_72(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_74(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_76(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_78(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_80(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_82(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_58(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_60(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_64(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_65(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_67(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_69(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_71(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_73(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_75(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_77(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_79(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_81(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_tm6000_devlist_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_tm6000_devlist_mutex(struct mutex *lock ) ; void ldv_mutex_lock_usb_lock_of_tm6000_core(struct mutex *lock ) ; void ldv_mutex_unlock_usb_lock_of_tm6000_core(struct mutex *lock ) ; bool ldv_queue_work_on_53(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_55(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_54(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_57(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_56(struct workqueue_struct *ldv_func_arg1 ) ; extern void usleep_range(unsigned long , unsigned long ) ; extern int usb_control_msg(struct usb_device * , unsigned int , __u8 , __u8 , __u16 , __u16 , void * , __u16 , int ) ; __inline static unsigned int __create_pipe(struct usb_device *dev , unsigned int endpoint ) { { return ((unsigned int )(dev->devnum << 8) | (endpoint << 15)); } } int tm6000_read_write_usb(struct tm6000_core *dev , u8 req_type , u8 req , u16 value , u16 index , u8 *buf , u16 len ) ; int tm6000_get_reg(struct tm6000_core *dev , u8 req , u16 value , u16 index ) ; int tm6000_get_reg16(struct tm6000_core *dev , u8 req , u16 value , u16 index ) ; int tm6000_get_reg32(struct tm6000_core *dev , u8 req , u16 value , u16 index ) ; int tm6000_set_reg_mask(struct tm6000_core *dev , u8 req , u16 value , u16 index , u16 mask ) ; int tm6000_init_analog_mode(struct tm6000_core *dev ) ; int tm6000_init_digital_mode(struct tm6000_core *dev ) ; int tm6000_set_audio_bitrate(struct tm6000_core *dev , int bitrate ) ; int tm6000_set_audio_rinput(struct tm6000_core *dev ) ; int tm6000_tvaudio_set_mute(struct tm6000_core *dev , u8 mute ) ; void tm6000_set_volume(struct tm6000_core *dev , int vol ) ; void tm6000_set_fourcc_format(struct tm6000_core *dev ) ; int tm6000_register_extension(struct tm6000_ops *ops ) ; void tm6000_unregister_extension(struct tm6000_ops *ops ) ; int tm6000_call_fillbuf(struct tm6000_core *dev , enum tm6000_ops_type type , char *buf , int size ) ; int tm6000_set_standard(struct tm6000_core *dev ) ; int tm6000_debug ; int tm6000_read_write_usb(struct tm6000_core *dev , u8 req_type , u8 req , u16 value , u16 index , u8 *buf , u16 len ) { int ret ; int i ; unsigned int pipe ; u8 *data ; int delay ; void *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tsleep ; { data = (u8 *)0U; delay = 5000; if ((unsigned int )len != 0U) { tmp = kzalloc((size_t )len, 208U); data = (u8 *)tmp; if ((unsigned long )data == (unsigned long )((u8 *)0U)) { return (-12); } else { } } else { } ldv_mutex_lock_69(& dev->usb_lock); if ((int )((signed char )req_type) < 0) { tmp___0 = __create_pipe(dev->udev, 0U); pipe = tmp___0 | 2147483776U; } else { tmp___1 = __create_pipe(dev->udev, 0U); pipe = tmp___1 | 2147483648U; memcpy((void *)data, (void const *)buf, (size_t )len); } if ((tm6000_debug & 8) != 0) { printk("\017(dev %p, pipe %08x): ", dev->udev, pipe); printk("%s: %02x %02x %02x %02x %02x %02x %02x %02x ", (int )((signed char )req_type) < 0 ? (char *)" IN" : (char *)"OUT", (int )req_type, (int )req, (int )value & 255, (int )value >> 8, (int )index & 255, (int )index >> 8, (int )len & 255, (int )len >> 8); if ((int )((signed char )req_type) >= 0) { printk(">>> "); i = 0; goto ldv_36866; ldv_36865: printk(" %02x", (int )*(buf + (unsigned long )i)); i = i + 1; ldv_36866: ; if ((int )len > i) { goto ldv_36865; } else { } printk("\n"); } else { } } else { } ret = usb_control_msg(dev->udev, pipe, (int )req, (int )req_type, (int )value, (int )index, (void *)data, (int )len, 1250); if ((int )((signed char )req_type) < 0) { memcpy((void *)buf, (void const *)data, (size_t )len); } else { } if ((tm6000_debug & 8) != 0) { if (ret < 0) { if ((int )((signed char )req_type) < 0) { printk("\017<<< (len=%d)\n", (int )len); } else { } printk("%s: Error #%d\n", "tm6000_read_write_usb", ret); } else if ((int )((signed char )req_type) < 0) { printk("<<< "); i = 0; goto ldv_36870; ldv_36869: printk(" %02x", (int )*(buf + (unsigned long )i)); i = i + 1; ldv_36870: ; if ((int )len > i) { goto ldv_36869; } else { } printk("\n"); } else { } } else { } kfree((void const *)data); if ((int )dev->quirks & 1) { delay = 0; } else { } if ((unsigned int )req == 16U && (int )((signed char )req_type) >= 0) { tsleep = (unsigned int )(((int )len + 1) * 200); if ((unsigned int )delay > tsleep) { tsleep = (unsigned int )delay; } else { } usleep_range((unsigned long )tsleep, (unsigned long )(tsleep + 1000U)); } else if (delay != 0) { usleep_range((unsigned long )delay, (unsigned long )(delay + 1000)); } else { } ldv_mutex_unlock_70(& dev->usb_lock); return (ret); } } int tm6000_set_reg(struct tm6000_core *dev , u8 req , u16 value , u16 index ) { int tmp ; { tmp = tm6000_read_write_usb(dev, 64, (int )req, (int )value, (int )index, (u8 *)0U, 0); return (tmp); } } static char const __kstrtab_tm6000_set_reg[15U] = { 't', 'm', '6', '0', '0', '0', '_', 's', 'e', 't', '_', 'r', 'e', 'g', '\000'}; struct kernel_symbol const __ksymtab_tm6000_set_reg ; struct kernel_symbol const __ksymtab_tm6000_set_reg = {(unsigned long )(& tm6000_set_reg), (char const *)(& __kstrtab_tm6000_set_reg)}; int tm6000_get_reg(struct tm6000_core *dev , u8 req , u16 value , u16 index ) { int rc ; u8 buf[1U] ; { rc = tm6000_read_write_usb(dev, 192, (int )req, (int )value, (int )index, (u8 *)(& buf), 1); if (rc < 0) { return (rc); } else { } return ((int )*((u8 *)(& buf))); } } static char const __kstrtab_tm6000_get_reg[15U] = { 't', 'm', '6', '0', '0', '0', '_', 'g', 'e', 't', '_', 'r', 'e', 'g', '\000'}; struct kernel_symbol const __ksymtab_tm6000_get_reg ; struct kernel_symbol const __ksymtab_tm6000_get_reg = {(unsigned long )(& tm6000_get_reg), (char const *)(& __kstrtab_tm6000_get_reg)}; int tm6000_set_reg_mask(struct tm6000_core *dev , u8 req , u16 value , u16 index , u16 mask ) { int rc ; u8 buf[1U] ; u8 new_index ; int tmp ; { rc = tm6000_read_write_usb(dev, 192, (int )req, (int )value, 0, (u8 *)(& buf), 1); if (rc < 0) { return (rc); } else { } new_index = (u8 )(((int )((signed char )buf[0]) & ~ ((int )((signed char )mask))) | (int )((signed char )((int )((unsigned char )index) & (int )((unsigned char )mask)))); if ((int )buf[0] == (int )new_index) { return (0); } else { } tmp = tm6000_read_write_usb(dev, 64, (int )req, (int )value, (int )new_index, (u8 *)0U, 0); return (tmp); } } static char const __kstrtab_tm6000_set_reg_mask[20U] = { 't', 'm', '6', '0', '0', '0', '_', 's', 'e', 't', '_', 'r', 'e', 'g', '_', 'm', 'a', 's', 'k', '\000'}; struct kernel_symbol const __ksymtab_tm6000_set_reg_mask ; struct kernel_symbol const __ksymtab_tm6000_set_reg_mask = {(unsigned long )(& tm6000_set_reg_mask), (char const *)(& __kstrtab_tm6000_set_reg_mask)}; int tm6000_get_reg16(struct tm6000_core *dev , u8 req , u16 value , u16 index ) { int rc ; u8 buf[2U] ; { rc = tm6000_read_write_usb(dev, 192, (int )req, (int )value, (int )index, (u8 *)(& buf), 2); if (rc < 0) { return (rc); } else { } return ((int )buf[1] | ((int )buf[0] << 8)); } } int tm6000_get_reg32(struct tm6000_core *dev , u8 req , u16 value , u16 index ) { int rc ; u8 buf[4U] ; { rc = tm6000_read_write_usb(dev, 192, (int )req, (int )value, (int )index, (u8 *)(& buf), 4); if (rc < 0) { return (rc); } else { } return ((((int )buf[3] | ((int )buf[2] << 8)) | ((int )buf[1] << 16)) | ((int )buf[0] << 24)); } } int tm6000_i2c_reset(struct tm6000_core *dev , u16 tsleep ) { int rc ; { rc = tm6000_set_reg(dev, 3, 257, 0); if (rc < 0) { return (rc); } else { } msleep((unsigned int )tsleep); rc = tm6000_set_reg(dev, 3, 257, 1); msleep((unsigned int )tsleep); return (rc); } } void tm6000_set_fourcc_format(struct tm6000_core *dev ) { int val ; int tmp ; { if ((unsigned int )dev->dev_type == 2U) { tmp = tm6000_get_reg(dev, 7, 204, 0); val = tmp & 252; if (dev->fourcc == 1498831189U) { tm6000_set_reg(dev, 7, 204, (int )((u16 )val)); } else { tm6000_set_reg(dev, 7, 204, (int )((u16 )((int )((short )val) | 1))); } } else if (dev->fourcc == 1498831189U) { tm6000_set_reg(dev, 7, 193, 208); } else { tm6000_set_reg(dev, 7, 193, 144); } return; } } static void tm6000_set_vbi(struct tm6000_core *dev ) { { if ((unsigned int )dev->dev_type == 2U) { tm6000_set_reg(dev, 7, 63, 1); tm6000_set_reg(dev, 7, 65, 39); tm6000_set_reg(dev, 7, 66, 85); tm6000_set_reg(dev, 7, 67, 102); tm6000_set_reg(dev, 7, 68, 102); tm6000_set_reg(dev, 7, 69, 102); tm6000_set_reg(dev, 7, 70, 102); tm6000_set_reg(dev, 7, 71, 102); tm6000_set_reg(dev, 7, 72, 102); tm6000_set_reg(dev, 7, 73, 102); tm6000_set_reg(dev, 7, 74, 102); tm6000_set_reg(dev, 7, 75, 102); tm6000_set_reg(dev, 7, 76, 102); tm6000_set_reg(dev, 7, 77, 102); tm6000_set_reg(dev, 7, 78, 102); tm6000_set_reg(dev, 7, 79, 102); tm6000_set_reg(dev, 7, 80, 102); tm6000_set_reg(dev, 7, 81, 102); tm6000_set_reg(dev, 7, 82, 102); tm6000_set_reg(dev, 7, 83, 0); tm6000_set_reg(dev, 7, 84, 0); tm6000_set_reg(dev, 7, 85, 1); tm6000_set_reg(dev, 7, 86, 0); tm6000_set_reg(dev, 7, 87, 2); tm6000_set_reg(dev, 7, 88, 53); tm6000_set_reg(dev, 7, 89, 160); tm6000_set_reg(dev, 7, 90, 17); tm6000_set_reg(dev, 7, 91, 76); tm6000_set_reg(dev, 7, 64, 1); tm6000_set_reg(dev, 7, 63, 0); } else { } return; } } int tm6000_init_analog_mode(struct tm6000_core *dev ) { struct v4l2_frequency f ; u8 active ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { if ((unsigned int )dev->dev_type == 2U) { active = 64U; if ((unsigned int )dev->radio == 0U) { active = (u8 )((unsigned int )active | 32U); } else { } tm6000_set_reg_mask(dev, 7, 204, (int )active, 96); tm6000_set_reg_mask(dev, 7, 192, 0, 64); } else { tm6000_set_reg(dev, 7, 63, 1); if (dev->scaler != 0) { tm6000_set_reg(dev, 7, 192, 32); } else { tm6000_set_reg(dev, 7, 192, 128); } tm6000_set_reg(dev, 7, 195, 136); tm6000_set_reg(dev, 7, 218, 35); tm6000_set_reg(dev, 7, 209, 192); tm6000_set_reg(dev, 7, 210, 216); tm6000_set_reg(dev, 7, 214, 6); tm6000_set_reg(dev, 7, 223, 31); tm6000_set_reg(dev, 7, 255, 8); tm6000_set_reg(dev, 7, 255, 0); tm6000_set_fourcc_format(dev); tm6000_set_reg(dev, 7, 63, 0); } msleep(20U); f.frequency = (__u32 )dev->freq; __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_36967; ldv_36966: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->s_frequency != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_frequency const * ))0)) { (*(((__sd->ops)->tuner)->s_frequency))(__sd, (struct v4l2_frequency const *)(& f)); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_36967: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_36966; } else { } msleep(100U); tm6000_set_standard(dev); tm6000_set_vbi(dev); tm6000_set_audio_bitrate(dev, 48000); if (dev->gpio.dvb_led != 0) { tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.dvb_led), 1); } else { } return (0); } } int tm6000_init_digital_mode(struct tm6000_core *dev ) { { if ((unsigned int )dev->dev_type == 2U) { tm6000_set_reg_mask(dev, 7, 204, 0, 96); tm6000_set_reg_mask(dev, 7, 192, 64, 64); tm6000_set_reg(dev, 7, 254, 40); tm6000_set_reg(dev, 8, 226, 252); tm6000_set_reg(dev, 8, 230, 255); } else { tm6000_set_reg(dev, 7, 255, 8); tm6000_set_reg(dev, 7, 255, 0); tm6000_set_reg(dev, 7, 63, 1); tm6000_set_reg(dev, 7, 223, 8); tm6000_set_reg(dev, 7, 226, 12); tm6000_set_reg(dev, 7, 232, 255); tm6000_set_reg(dev, 7, 235, 216); tm6000_set_reg(dev, 7, 192, 64); tm6000_set_reg(dev, 7, 193, 208); tm6000_set_reg(dev, 7, 195, 9); tm6000_set_reg(dev, 7, 218, 55); tm6000_set_reg(dev, 7, 209, 216); tm6000_set_reg(dev, 7, 210, 192); tm6000_set_reg(dev, 7, 214, 96); tm6000_set_reg(dev, 7, 226, 12); tm6000_set_reg(dev, 7, 232, 255); tm6000_set_reg(dev, 7, 235, 8); msleep(50U); tm6000_set_reg(dev, 4, 32, 0); msleep(50U); tm6000_set_reg(dev, 4, 32, 1); msleep(50U); tm6000_set_reg(dev, 4, 32, 0); msleep(100U); } if (dev->gpio.dvb_led != 0) { tm6000_set_reg(dev, 3, (int )((u16 )dev->gpio.dvb_led), 0); } else { } return (0); } } static char const __kstrtab_tm6000_init_digital_mode[25U] = { 't', 'm', '6', '0', '0', '0', '_', 'i', 'n', 'i', 't', '_', 'd', 'i', 'g', 'i', 't', 'a', 'l', '_', 'm', 'o', 'd', 'e', '\000'}; struct kernel_symbol const __ksymtab_tm6000_init_digital_mode ; struct kernel_symbol const __ksymtab_tm6000_init_digital_mode = {(unsigned long )(& tm6000_init_digital_mode), (char const *)(& __kstrtab_tm6000_init_digital_mode)}; static struct reg_init tm6000_init_tab[63U] = { {7U, 223U, 31U}, {7U, 255U, 8U}, {7U, 255U, 0U}, {7U, 213U, 79U}, {7U, 218U, 35U}, {7U, 219U, 8U}, {7U, 226U, 0U}, {7U, 227U, 16U}, {7U, 229U, 0U}, {7U, 232U, 0U}, {7U, 235U, 100U}, {7U, 238U, 194U}, {7U, 63U, 1U}, {7U, 0U, 0U}, {7U, 1U, 7U}, {7U, 2U, 95U}, {7U, 3U, 0U}, {7U, 5U, 100U}, {7U, 7U, 1U}, {7U, 8U, 130U}, {7U, 9U, 54U}, {7U, 10U, 80U}, {7U, 12U, 106U}, {7U, 17U, 201U}, {7U, 18U, 7U}, {7U, 19U, 59U}, {7U, 20U, 71U}, {7U, 21U, 111U}, {7U, 23U, 205U}, {7U, 24U, 30U}, {7U, 25U, 139U}, {7U, 26U, 162U}, {7U, 27U, 233U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 32U, 60U}, {7U, 33U, 60U}, {7U, 45U, 72U}, {7U, 46U, 136U}, {7U, 48U, 34U}, {7U, 49U, 97U}, {7U, 50U, 116U}, {7U, 51U, 28U}, {7U, 52U, 116U}, {7U, 53U, 28U}, {7U, 54U, 122U}, {7U, 55U, 38U}, {7U, 56U, 64U}, {7U, 57U, 10U}, {7U, 66U, 85U}, {7U, 81U, 17U}, {7U, 85U, 1U}, {7U, 87U, 2U}, {7U, 88U, 53U}, {7U, 89U, 160U}, {7U, 128U, 21U}, {7U, 130U, 66U}, {7U, 193U, 208U}, {7U, 195U, 136U}, {7U, 63U, 0U}, {5U, 24U, 0U}}; static struct reg_init tm6010_init_tab[75U] = { {7U, 192U, 0U}, {7U, 196U, 160U}, {7U, 198U, 64U}, {7U, 202U, 49U}, {7U, 204U, 225U}, {7U, 224U, 3U}, {7U, 254U, 127U}, {8U, 226U, 240U}, {8U, 227U, 244U}, {8U, 228U, 248U}, {8U, 230U, 0U}, {8U, 234U, 242U}, {8U, 235U, 240U}, {8U, 236U, 194U}, {8U, 240U, 96U}, {8U, 241U, 252U}, {7U, 63U, 1U}, {7U, 0U, 0U}, {7U, 1U, 7U}, {7U, 2U, 95U}, {7U, 3U, 0U}, {7U, 5U, 100U}, {7U, 7U, 1U}, {7U, 8U, 130U}, {7U, 9U, 54U}, {7U, 10U, 80U}, {7U, 12U, 106U}, {7U, 17U, 201U}, {7U, 18U, 7U}, {7U, 19U, 59U}, {7U, 20U, 71U}, {7U, 21U, 111U}, {7U, 23U, 205U}, {7U, 24U, 30U}, {7U, 25U, 139U}, {7U, 26U, 162U}, {7U, 27U, 233U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 32U, 60U}, {7U, 33U, 60U}, {7U, 45U, 72U}, {7U, 46U, 136U}, {7U, 48U, 34U}, {7U, 49U, 97U}, {7U, 50U, 116U}, {7U, 51U, 28U}, {7U, 52U, 116U}, {7U, 53U, 28U}, {7U, 54U, 122U}, {7U, 55U, 38U}, {7U, 56U, 64U}, {7U, 57U, 10U}, {7U, 66U, 85U}, {7U, 81U, 17U}, {7U, 85U, 1U}, {7U, 87U, 2U}, {7U, 88U, 53U}, {7U, 89U, 160U}, {7U, 128U, 21U}, {7U, 130U, 66U}, {7U, 193U, 208U}, {7U, 195U, 136U}, {7U, 63U, 0U}, {5U, 24U, 0U}, {7U, 220U, 170U}, {7U, 221U, 48U}, {7U, 222U, 32U}, {7U, 223U, 208U}, {4U, 2U, 0U}, {7U, 216U, 15U}, {7U, 229U, 254U}, {7U, 218U, 255U}}; int tm6000_init(struct tm6000_core *dev ) { int board ; int rc ; int i ; int size ; struct reg_init *tab ; { rc = 0; board = tm6000_get_reg32(dev, 40, 0, 0); if (board >= 0) { switch (board & 255) { case 243: printk("\016Found tm6000\n"); if ((unsigned int )dev->dev_type != 0U) { dev->dev_type = 0; } else { } goto ldv_36994; case 244: printk("\016Found tm6010\n"); if ((unsigned int )dev->dev_type != 2U) { dev->dev_type = 2; } else { } goto ldv_36994; default: printk("\016Unknown board version = 0x%08x\n", board); } ldv_36994: ; } else { printk("\vError %i while retrieving board version\n", board); } if ((unsigned int )dev->dev_type == 2U) { tab = (struct reg_init *)(& tm6010_init_tab); size = 75; } else { tab = (struct reg_init *)(& tm6000_init_tab); size = 63; } i = 0; goto ldv_37002; ldv_37001: rc = tm6000_set_reg(dev, (int )(tab + (unsigned long )i)->req, (int )(tab + (unsigned long )i)->reg, (int )(tab + (unsigned long )i)->val); if (rc < 0) { printk("\vError %i while setting req %d, reg %d to value %d\n", rc, (int )(tab + (unsigned long )i)->req, (int )(tab + (unsigned long )i)->reg, (int )(tab + (unsigned long )i)->val); return (rc); } else { } i = i + 1; ldv_37002: ; if (i < size) { goto ldv_37001; } else { } msleep(5U); rc = tm6000_cards_setup(dev); return (rc); } } int tm6000_set_audio_bitrate(struct tm6000_core *dev , int bitrate ) { int val ; u8 areg_f0 ; u8 areg_0a ; { val = 0; areg_f0 = 96U; areg_0a = 145U; switch (bitrate) { case 48000: areg_f0 = 96U; areg_0a = 145U; dev->audio_bitrate = bitrate; goto ldv_37012; case 32000: areg_f0 = 0U; areg_0a = 144U; dev->audio_bitrate = bitrate; goto ldv_37012; default: ; return (-22); } ldv_37012: ; if ((unsigned int )dev->dev_type == 2U) { val = tm6000_set_reg(dev, 8, 10, (int )areg_0a); if (val < 0) { return (val); } else { } val = tm6000_set_reg_mask(dev, 8, 240, (int )areg_f0, 240); if (val < 0) { return (val); } else { } } else { val = tm6000_set_reg_mask(dev, 7, 235, (int )areg_f0, 240); if (val < 0) { return (val); } else { } } return (0); } } static char const __kstrtab_tm6000_set_audio_bitrate[25U] = { 't', 'm', '6', '0', '0', '0', '_', 's', 'e', 't', '_', 'a', 'u', 'd', 'i', 'o', '_', 'b', 'i', 't', 'r', 'a', 't', 'e', '\000'}; struct kernel_symbol const __ksymtab_tm6000_set_audio_bitrate ; struct kernel_symbol const __ksymtab_tm6000_set_audio_bitrate = {(unsigned long )(& tm6000_set_audio_bitrate), (char const *)(& __kstrtab_tm6000_set_audio_bitrate)}; int tm6000_set_audio_rinput(struct tm6000_core *dev ) { u8 areg_f0 ; u8 areg_07 ; u8 areg_eb ; { if ((unsigned int )dev->dev_type == 2U) { areg_07 = 16U; switch ((unsigned int )dev->rinput.amux) { case 6U: ; case 7U: areg_f0 = 3U; areg_07 = 48U; goto ldv_37030; case 4U: areg_f0 = 0U; goto ldv_37030; case 5U: areg_f0 = 8U; goto ldv_37030; case 8U: areg_f0 = 4U; goto ldv_37030; default: printk("\016%s: audio input dosn\'t support\n", (char *)(& dev->name)); return (0); } ldv_37030: tm6000_set_reg_mask(dev, 8, 240, (int )areg_f0, 15); tm6000_set_reg_mask(dev, 7, 7, (int )areg_07, 240); } else { switch ((unsigned int )dev->rinput.amux) { case 4U: areg_eb = 0U; goto ldv_37037; case 5U: areg_eb = 4U; goto ldv_37037; default: printk("\016%s: audio input dosn\'t support\n", (char *)(& dev->name)); return (0); } ldv_37037: tm6000_set_reg_mask(dev, 7, 235, (int )areg_eb, 15); } return (0); } } static void tm6010_set_mute_sif(struct tm6000_core *dev , u8 mute ) { u8 mute_reg ; { mute_reg = 0U; if ((unsigned int )mute != 0U) { mute_reg = 8U; } else { } tm6000_set_reg_mask(dev, 8, 10, (int )mute_reg, 8); return; } } static void tm6010_set_mute_adc(struct tm6000_core *dev , u8 mute ) { u8 mute_reg ; { mute_reg = 0U; if ((unsigned int )mute != 0U) { mute_reg = 32U; } else { } if ((unsigned int )dev->dev_type == 2U) { tm6000_set_reg_mask(dev, 8, 242, (int )mute_reg, 32); tm6000_set_reg_mask(dev, 8, 243, (int )mute_reg, 32); } else { tm6000_set_reg_mask(dev, 7, 236, (int )mute_reg, 32); tm6000_set_reg_mask(dev, 7, 237, (int )mute_reg, 32); } return; } } int tm6000_tvaudio_set_mute(struct tm6000_core *dev , u8 mute ) { enum tm6000_mux mux ; { if ((unsigned int )dev->radio != 0U) { mux = dev->rinput.amux; } else { mux = dev->vinput[dev->input].amux; } switch ((unsigned int )mux) { case 6U: ; case 7U: ; if ((unsigned int )dev->dev_type == 2U) { tm6010_set_mute_sif(dev, (int )mute); } else { printk("\016ERROR: TM5600 and TM6000 don\'t has SIF audio inputs. Please check the %s configuration.\n", (char *)(& dev->name)); return (-22); } goto ldv_37057; case 4U: ; case 5U: tm6010_set_mute_adc(dev, (int )mute); goto ldv_37057; default: ; return (-22); } ldv_37057: ; return (0); } } static void tm6010_set_volume_sif(struct tm6000_core *dev , int vol ) { u8 vol_reg ; { vol_reg = (unsigned int )((u8 )vol) & 15U; if (vol < 0) { vol_reg = (u8 )((unsigned int )vol_reg | 64U); } else { } tm6000_set_reg(dev, 8, 7, (int )vol_reg); tm6000_set_reg(dev, 8, 8, (int )vol_reg); return; } } static void tm6010_set_volume_adc(struct tm6000_core *dev , int vol ) { u8 vol_reg ; { vol_reg = (unsigned int )((u8 )((unsigned int )((unsigned char )vol) + 16U)) & 31U; if ((unsigned int )dev->dev_type == 2U) { tm6000_set_reg(dev, 8, 242, (int )vol_reg); tm6000_set_reg(dev, 8, 243, (int )vol_reg); } else { tm6000_set_reg(dev, 7, 236, (int )vol_reg); tm6000_set_reg(dev, 7, 237, (int )vol_reg); } return; } } void tm6000_set_volume(struct tm6000_core *dev , int vol ) { enum tm6000_mux mux ; { if ((unsigned int )dev->radio != 0U) { mux = dev->rinput.amux; vol = vol + 8; } else { mux = dev->vinput[dev->input].amux; } switch ((unsigned int )mux) { case 6U: ; case 7U: ; if ((unsigned int )dev->dev_type == 2U) { tm6010_set_volume_sif(dev, vol); } else { printk("\016ERROR: TM5600 and TM6000 don\'t has SIF audio inputs. Please check the %s configuration.\n", (char *)(& dev->name)); } goto ldv_37078; case 4U: ; case 5U: tm6010_set_volume_adc(dev, vol); goto ldv_37078; default: ; goto ldv_37078; } ldv_37078: ; return; } } static struct list_head tm6000_devlist = {& tm6000_devlist, & tm6000_devlist}; static struct mutex tm6000_devlist_mutex = {{1}, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "tm6000_devlist_mutex.wait_lock", 0, 0UL}}}}, {& tm6000_devlist_mutex.wait_list, & tm6000_devlist_mutex.wait_list}, 0, (void *)(& tm6000_devlist_mutex), {0, {0, 0}, "tm6000_devlist_mutex", 0, 0UL}}; void tm6000_remove_from_devlist(struct tm6000_core *dev ) { { ldv_mutex_lock_71(& tm6000_devlist_mutex); list_del(& dev->devlist); ldv_mutex_unlock_72(& tm6000_devlist_mutex); return; } } void tm6000_add_into_devlist(struct tm6000_core *dev ) { { ldv_mutex_lock_73(& tm6000_devlist_mutex); list_add_tail(& dev->devlist, & tm6000_devlist); ldv_mutex_unlock_74(& tm6000_devlist_mutex); return; } } static struct list_head tm6000_extension_devlist = {& tm6000_extension_devlist, & tm6000_extension_devlist}; int tm6000_call_fillbuf(struct tm6000_core *dev , enum tm6000_ops_type type , char *buf , int size ) { struct tm6000_ops *ops ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { ops = (struct tm6000_ops *)0; tmp = list_empty((struct list_head const *)(& tm6000_extension_devlist)); if (tmp == 0) { __mptr = (struct list_head const *)tm6000_extension_devlist.next; ops = (struct tm6000_ops *)__mptr; goto ldv_37104; ldv_37103: ; if ((unsigned long )ops->fillbuf != (unsigned long )((int (*)(struct tm6000_core * , char * , int ))0) && (unsigned int )ops->type == (unsigned int )type) { (*(ops->fillbuf))(dev, buf, size); } else { } __mptr___0 = (struct list_head const *)ops->next.next; ops = (struct tm6000_ops *)__mptr___0; ldv_37104: ; if ((unsigned long )(& ops->next) != (unsigned long )(& tm6000_extension_devlist)) { goto ldv_37103; } else { } } else { } return (0); } } int tm6000_register_extension(struct tm6000_ops *ops ) { struct tm6000_core *dev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { dev = (struct tm6000_core *)0; ldv_mutex_lock_75(& tm6000_devlist_mutex); list_add_tail(& ops->next, & tm6000_extension_devlist); __mptr = (struct list_head const *)tm6000_devlist.next; dev = (struct tm6000_core *)__mptr + 0xfffffffffffff0d0UL; goto ldv_37115; ldv_37114: (*(ops->init))(dev); printk("\016%s: Initialized (%s) extension\n", (char *)(& dev->name), ops->name); __mptr___0 = (struct list_head const *)dev->devlist.next; dev = (struct tm6000_core *)__mptr___0 + 0xfffffffffffff0d0UL; ldv_37115: ; if ((unsigned long )(& dev->devlist) != (unsigned long )(& tm6000_devlist)) { goto ldv_37114; } else { } ldv_mutex_unlock_76(& tm6000_devlist_mutex); return (0); } } static char const __kstrtab_tm6000_register_extension[26U] = { 't', 'm', '6', '0', '0', '0', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'e', 'x', 't', 'e', 'n', 's', 'i', 'o', 'n', '\000'}; struct kernel_symbol const __ksymtab_tm6000_register_extension ; struct kernel_symbol const __ksymtab_tm6000_register_extension = {(unsigned long )(& tm6000_register_extension), (char const *)(& __kstrtab_tm6000_register_extension)}; void tm6000_unregister_extension(struct tm6000_ops *ops ) { struct tm6000_core *dev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { dev = (struct tm6000_core *)0; ldv_mutex_lock_77(& tm6000_devlist_mutex); __mptr = (struct list_head const *)tm6000_devlist.next; dev = (struct tm6000_core *)__mptr + 0xfffffffffffff0d0UL; goto ldv_37133; ldv_37132: (*(ops->fini))(dev); __mptr___0 = (struct list_head const *)dev->devlist.next; dev = (struct tm6000_core *)__mptr___0 + 0xfffffffffffff0d0UL; ldv_37133: ; if ((unsigned long )(& dev->devlist) != (unsigned long )(& tm6000_devlist)) { goto ldv_37132; } else { } printk("\016tm6000: Remove (%s) extension\n", ops->name); list_del(& ops->next); ldv_mutex_unlock_78(& tm6000_devlist_mutex); return; } } static char const __kstrtab_tm6000_unregister_extension[28U] = { 't', 'm', '6', '0', '0', '0', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'e', 'x', 't', 'e', 'n', 's', 'i', 'o', 'n', '\000'}; struct kernel_symbol const __ksymtab_tm6000_unregister_extension ; struct kernel_symbol const __ksymtab_tm6000_unregister_extension = {(unsigned long )(& tm6000_unregister_extension), (char const *)(& __kstrtab_tm6000_unregister_extension)}; void tm6000_init_extension(struct tm6000_core *dev ) { struct tm6000_ops *ops ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { ops = (struct tm6000_ops *)0; ldv_mutex_lock_79(& tm6000_devlist_mutex); tmp = list_empty((struct list_head const *)(& tm6000_extension_devlist)); if (tmp == 0) { __mptr = (struct list_head const *)tm6000_extension_devlist.next; ops = (struct tm6000_ops *)__mptr; goto ldv_37151; ldv_37150: ; if ((unsigned long )ops->init != (unsigned long )((int (*)(struct tm6000_core * ))0)) { (*(ops->init))(dev); } else { } __mptr___0 = (struct list_head const *)ops->next.next; ops = (struct tm6000_ops *)__mptr___0; ldv_37151: ; if ((unsigned long )(& ops->next) != (unsigned long )(& tm6000_extension_devlist)) { goto ldv_37150; } else { } } else { } ldv_mutex_unlock_80(& tm6000_devlist_mutex); return; } } void tm6000_close_extension(struct tm6000_core *dev ) { struct tm6000_ops *ops ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { ops = (struct tm6000_ops *)0; ldv_mutex_lock_81(& tm6000_devlist_mutex); tmp = list_empty((struct list_head const *)(& tm6000_extension_devlist)); if (tmp == 0) { __mptr = (struct list_head const *)tm6000_extension_devlist.next; ops = (struct tm6000_ops *)__mptr; goto ldv_37162; ldv_37161: ; if ((unsigned long )ops->fini != (unsigned long )((int (*)(struct tm6000_core * ))0)) { (*(ops->fini))(dev); } else { } __mptr___0 = (struct list_head const *)ops->next.next; ops = (struct tm6000_ops *)__mptr___0; ldv_37162: ; if ((unsigned long )(& ops->next) != (unsigned long )(& tm6000_extension_devlist)) { goto ldv_37161; } else { } } else { } ldv_mutex_unlock_82(& tm6000_devlist_mutex); return; } } bool ldv_queue_work_on_53(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_54(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_55(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_56(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_57(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_58(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_59(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_60(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_61(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_62(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_63(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_64(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_65(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_66(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_67(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_68(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_69(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_usb_lock_of_tm6000_core(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_70(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_usb_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_71(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_tm6000_devlist_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_72(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_tm6000_devlist_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_73(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_tm6000_devlist_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_74(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_tm6000_devlist_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_75(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_tm6000_devlist_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_76(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_tm6000_devlist_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_77(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_tm6000_devlist_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_78(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_tm6000_devlist_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_79(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_tm6000_devlist_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_80(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_tm6000_devlist_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_81(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_tm6000_devlist_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_82(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_tm6000_devlist_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } extern size_t strlcpy(char * , char const * , size_t ) ; int ldv_mutex_trylock_125(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_126(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_130(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_122(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_129(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_131(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_117(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_119(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_118(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_121(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_120(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void i2c_set_adapdata(struct i2c_adapter *dev , void *data ) { { dev_set_drvdata(& dev->dev, data); return; } } extern int i2c_add_adapter(struct i2c_adapter * ) ; extern void i2c_del_adapter(struct i2c_adapter * ) ; static unsigned int i2c_debug ; static int tm6000_i2c_send_regs(struct tm6000_core *dev , unsigned char addr , __u8 reg , char *buf , int len ) { int rc ; unsigned int i2c_packet_limit ; { i2c_packet_limit = 16U; if ((unsigned int )dev->dev_type == 2U) { i2c_packet_limit = 80U; } else { } if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-1); } else { } if (len <= 0 || (unsigned int )len > i2c_packet_limit) { printk("\vIncorrect length of i2c packet = %d, limit set to %d\n", len, i2c_packet_limit); return (-1); } else { } rc = tm6000_read_write_usb(dev, 64, 16, (int )((u16 )((int )((short )addr) | (int )((short )((int )reg << 8)))), 0, (u8 *)buf, (int )((u16 )len)); if (rc < 0) { return (rc); } else { } return (rc); } } static int tm6000_i2c_recv_regs(struct tm6000_core *dev , unsigned char addr , __u8 reg , char *buf , int len ) { int rc ; u8 b[2U] ; unsigned int i2c_packet_limit ; { i2c_packet_limit = 16U; if ((unsigned int )dev->dev_type == 2U) { i2c_packet_limit = 64U; } else { } if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-1); } else { } if (len <= 0 || (unsigned int )len > i2c_packet_limit) { printk("\vIncorrect length of i2c packet = %d, limit set to %d\n", len, i2c_packet_limit); return (-1); } else { } if (((unsigned int )*((unsigned char *)dev + 324UL) != 0U && dev->demod_addr << 1 == (int )addr) && ((unsigned int )reg & 1U) == 0U) { reg = (unsigned int )reg + 255U; len = len + 1; rc = tm6000_read_write_usb(dev, 192, 16, (int )((u16 )((int )((short )addr) | (int )((short )((int )reg << 8)))), 0, (u8 *)(& b), (int )((u16 )len)); *buf = (char )b[1]; } else { rc = tm6000_read_write_usb(dev, 192, 16, (int )((u16 )((int )((short )addr) | (int )((short )((int )reg << 8)))), 0, (u8 *)buf, (int )((u16 )len)); } return (rc); } } static int tm6000_i2c_recv_regs16(struct tm6000_core *dev , unsigned char addr , __u16 reg , char *buf , int len ) { int rc ; unsigned char ureg ; { if ((unsigned long )buf == (unsigned long )((char *)0) || len != 2) { return (-1); } else { } if ((unsigned int )dev->dev_type == 2U) { ureg = (unsigned char )reg; rc = tm6000_read_write_usb(dev, 64, 16, (int )((u16 )((int )((short )addr) | ((int )((short )reg) & -256))), 0, & ureg, 1); if (rc < 0) { return (rc); } else { } rc = tm6000_read_write_usb(dev, 192, 35, (int )reg, 0, (u8 *)buf, (int )((u16 )len)); } else { rc = tm6000_read_write_usb(dev, 192, 14, (int )addr, (int )reg, (u8 *)buf, (int )((u16 )len)); } return (rc); } } static int tm6000_i2c_xfer(struct i2c_adapter *i2c_adap , struct i2c_msg *msgs , int num ) { struct tm6000_core *dev ; int addr ; int rc ; int i ; int byte ; { dev = (struct tm6000_core *)i2c_adap->algo_data; if (num <= 0) { return (0); } else { } i = 0; goto ldv_36889; ldv_36888: addr = ((int )(msgs + (unsigned long )i)->addr << 1) & 255; if (i2c_debug > 1U) { printk("\017%s at %s: %s %s addr=0x%x len=%d:", (char *)(& dev->name), "tm6000_i2c_xfer", (int )(msgs + (unsigned long )i)->flags & 1 ? (char *)"read" : (char *)"write", num + -1 == i ? (char *)"stop" : (char *)"nonstop", addr, (int )(msgs + (unsigned long )i)->len); } else { } if ((int )(msgs + (unsigned long )i)->flags & 1) { if (i2c_debug > 1U) { printk("\017%s at %s: read without preceding write not supported", (char *)(& dev->name), "tm6000_i2c_xfer"); } else { } rc = -95; goto err; } else if (((i + 1 < num && (unsigned int )(msgs + (unsigned long )i)->len <= 2U) && (int )(msgs + ((unsigned long )i + 1UL))->flags & 1) && (int )(msgs + (unsigned long )i)->addr == (int )(msgs + ((unsigned long )i + 1UL))->addr) { if (i2c_debug > 1U) { byte = 0; goto ldv_36880; ldv_36879: printk(" %02x", (int )*((msgs + (unsigned long )i)->buf + (unsigned long )byte)); byte = byte + 1; ldv_36880: ; if ((int )(msgs + (unsigned long )i)->len > byte) { goto ldv_36879; } else { } } else { } if (i2c_debug > 1U) { printk("\017%s at %s: ; joined to read %s len=%d:", (char *)(& dev->name), "tm6000_i2c_xfer", num + -2 == i ? (char *)"stop" : (char *)"nonstop", (int )(msgs + ((unsigned long )i + 1UL))->len); } else { } if ((unsigned int )(msgs + (unsigned long )i)->len == 2U) { rc = tm6000_i2c_recv_regs16(dev, (int )((unsigned char )addr), (int )((__u16 )((int )((short )((int )*((msgs + (unsigned long )i)->buf) << 8)) | (int )((short )*((msgs + (unsigned long )i)->buf + 1UL)))), (char *)(msgs + ((unsigned long )i + 1UL))->buf, (int )(msgs + ((unsigned long )i + 1UL))->len); } else { rc = tm6000_i2c_recv_regs(dev, (int )((unsigned char )addr), (int )*((msgs + (unsigned long )i)->buf), (char *)(msgs + ((unsigned long )i + 1UL))->buf, (int )(msgs + ((unsigned long )i + 1UL))->len); } i = i + 1; if (dev->tuner_addr << 1 == addr) { tm6000_set_reg(dev, 50, 0, 0); tm6000_set_reg(dev, 51, 0, 0); } else { } if (i2c_debug > 1U) { byte = 0; goto ldv_36883; ldv_36882: printk(" %02x", (int )*((msgs + (unsigned long )i)->buf + (unsigned long )byte)); byte = byte + 1; ldv_36883: ; if ((int )(msgs + (unsigned long )i)->len > byte) { goto ldv_36882; } else { } } else { } } else { if (i2c_debug > 1U) { byte = 0; goto ldv_36886; ldv_36885: printk(" %02x", (int )*((msgs + (unsigned long )i)->buf + (unsigned long )byte)); byte = byte + 1; ldv_36886: ; if ((int )(msgs + (unsigned long )i)->len > byte) { goto ldv_36885; } else { } } else { } rc = tm6000_i2c_send_regs(dev, (int )((unsigned char )addr), (int )*((msgs + (unsigned long )i)->buf), (char *)(msgs + (unsigned long )i)->buf + 1U, (int )(msgs + (unsigned long )i)->len + -1); } if (i2c_debug > 1U) { printk("\n"); } else { } if (rc < 0) { goto err; } else { } i = i + 1; ldv_36889: ; if (i < num) { goto ldv_36888; } else { } return (num); err: ; if (i2c_debug > 1U) { printk("\017%s at %s: OLD_ERROR: %i\n", (char *)(& dev->name), "tm6000_i2c_xfer", rc); } else { } return (rc); } } static int tm6000_i2c_eeprom(struct tm6000_core *dev ) { int i ; int rc ; unsigned char *p ; unsigned char bytes[17U] ; { p = (unsigned char *)(& dev->eedata); dev->i2c_client.addr = 80U; dev->eedata_size = 0U; bytes[16] = 0U; i = 0; goto ldv_36900; ldv_36899: *p = (unsigned char )i; rc = tm6000_i2c_recv_regs(dev, 160, (int )((__u8 )i), (char *)p, 1); if (rc <= 0) { if ((unsigned long )((unsigned char *)(& dev->eedata)) == (unsigned long )p) { goto noeeprom; } else { printk("\f%s: i2c eeprom read error (err=%d)\n", (char *)(& dev->name), rc); } return (-22); } else { } dev->eedata_size = dev->eedata_size + 1U; p = p + 1; if (((unsigned int )i & 15U) == 0U) { printk("\016%s: i2c eeprom %02x:", (char *)(& dev->name), i); } else { } printk(" %02x", (int )dev->eedata[i]); if ((unsigned int )dev->eedata[i] > 31U && (unsigned int )dev->eedata[i] <= 122U) { bytes[i % 16] = dev->eedata[i]; } else { bytes[i % 16] = 46U; } i = i + 1; if (((unsigned int )i & 15U) == 0U) { bytes[16] = 0U; printk(" %s\n", (unsigned char *)(& bytes)); } else { } ldv_36900: ; if ((unsigned int )i <= 255U) { goto ldv_36899; } else { } if (((unsigned int )i & 15U) != 0U) { bytes[i % 16] = 0U; i = i % 16; goto ldv_36903; ldv_36902: printk(" "); i = i + 1; ldv_36903: ; if (i <= 15) { goto ldv_36902; } else { } printk(" %s\n", (unsigned char *)(& bytes)); } else { } return (0); noeeprom: printk("\016%s: Huh, no eeprom present (err=%d)?\n", (char *)(& dev->name), rc); return (-22); } } static u32 functionality(struct i2c_adapter *adap ) { { return (251592712U); } } static struct i2c_algorithm const tm6000_algo = {& tm6000_i2c_xfer, 0, & functionality, 0, 0}; int tm6000_i2c_register(struct tm6000_core *dev ) { int rc ; { dev->i2c_adap.owner = & __this_module; dev->i2c_adap.algo = & tm6000_algo; dev->i2c_adap.dev.parent = & (dev->udev)->dev; strlcpy((char *)(& dev->i2c_adap.name), (char const *)(& dev->name), 48UL); dev->i2c_adap.algo_data = (void *)dev; i2c_set_adapdata(& dev->i2c_adap, (void *)(& dev->v4l2_dev)); rc = i2c_add_adapter(& dev->i2c_adap); if (rc != 0) { return (rc); } else { } dev->i2c_client.adapter = & dev->i2c_adap; strlcpy((char *)(& dev->i2c_client.name), "tm6000 internal", 20UL); tm6000_i2c_eeprom(dev); return (0); } } int tm6000_i2c_unregister(struct tm6000_core *dev ) { { i2c_del_adapter(& dev->i2c_adap); return (0); } } void ldv_initialize_i2c_algorithm_12(void) { void *tmp ; { tmp = ldv_init_zalloc(1936UL); tm6000_algo_group0 = (struct i2c_adapter *)tmp; return; } } void ldv_main_exported_12(void) { struct i2c_msg *ldvarg40 ; void *tmp ; int ldvarg39 ; int tmp___0 ; { tmp = ldv_init_zalloc(16UL); ldvarg40 = (struct i2c_msg *)tmp; ldv_memset((void *)(& ldvarg39), 0, 4UL); tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_12 == 1) { tm6000_i2c_xfer(tm6000_algo_group0, ldvarg40, ldvarg39); ldv_state_variable_12 = 1; } else { } goto ldv_36925; case 1: ; if (ldv_state_variable_12 == 1) { functionality(tm6000_algo_group0); ldv_state_variable_12 = 1; } else { } goto ldv_36925; default: ldv_stop(); } ldv_36925: ; return; } } bool ldv_queue_work_on_117(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_118(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_119(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_120(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_121(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_122(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_125(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_126(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_129(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_130(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_131(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u16 __swab16p(__u16 const *p ) { __u16 tmp ; { tmp = __fswab16((int )*p); return (tmp); } } __inline static void __swab16s(__u16 *p ) { { *p = __swab16p((__u16 const *)p); return; } } extern void __bad_percpu_size(void) ; extern char *strcpy(char * , char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; int ldv_mutex_trylock_163(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_159(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_160(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_164(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_166(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_170(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_172(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_174(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_176(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_178(struct mutex *ldv_func_arg1 ) ; __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern int mutex_lock_interruptible(struct mutex * ) ; int ldv_mutex_lock_interruptible_171(struct mutex *ldv_func_arg1 ) ; int ldv_mutex_lock_interruptible_177(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_158(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_161(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_162(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_165(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_167(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_169(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_173(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_175(struct mutex *ldv_func_arg1 ) ; int ldv_mutex_lock_interruptible_lock_of_tm6000_core(struct mutex *lock ) ; void ldv_mutex_lock_lock_of_video_device(struct mutex *lock ) ; void ldv_mutex_unlock_lock_of_video_device(struct mutex *lock ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6686; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6686; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6686; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6686; default: __bad_percpu_size(); } ldv_6686: ; return (pfo_ret__ & 2147483647); } } extern void _raw_spin_lock(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long volatile jiffies ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; bool ldv_queue_work_on_153(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_155(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_154(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_157(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_156(struct workqueue_struct *ldv_func_arg1 ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static int usb_endpoint_maxp(struct usb_endpoint_descriptor const *epd ) { { return ((int )epd->wMaxPacketSize); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } __inline static int usb_make_path(struct usb_device *dev , char *buf , size_t size ) { int actual ; { actual = snprintf(buf, size, "usb-%s-%s", (dev->bus)->bus_name, (char *)(& dev->devpath)); return ((int )size > actual ? actual : -1); } } __inline static void usb_fill_bulk_urb(struct urb *urb , struct usb_device *dev , unsigned int pipe , void *transfer_buffer , int buffer_length , void (*complete_fn)(struct urb * ) , void *context ) { { urb->dev = dev; urb->pipe = pipe; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = (u32 )buffer_length; urb->complete = complete_fn; urb->context = context; return; } } extern struct urb *usb_alloc_urb(int , gfp_t ) ; extern void usb_free_urb(struct urb * ) ; extern int usb_submit_urb(struct urb * , gfp_t ) ; extern int usb_unlink_urb(struct urb * ) ; extern void usb_kill_urb(struct urb * ) ; extern void *usb_alloc_coherent(struct usb_device * , size_t , gfp_t , dma_addr_t * ) ; extern void usb_free_coherent(struct usb_device * , size_t , void * , dma_addr_t ) ; extern int usb_reset_configuration(struct usb_device * ) ; __inline static __u16 usb_maxpacket(struct usb_device *udev , int pipe , int is_out ) { struct usb_host_endpoint *ep ; unsigned int epnum ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; int tmp___1 ; { epnum = (unsigned int )(pipe >> 15) & 15U; if (is_out != 0) { __ret_warn_on = (pipe & 128) != 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/usb.h", 1846); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); ep = udev->ep_out[epnum]; } else { __ret_warn_on___0 = (pipe & 128) == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_null("include/linux/usb.h", 1849); } else { } ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); ep = udev->ep_in[epnum]; } if ((unsigned long )ep == (unsigned long )((struct usb_host_endpoint *)0)) { return (0U); } else { } tmp___1 = usb_endpoint_maxp((struct usb_endpoint_descriptor const *)(& ep->desc)); return ((__u16 )tmp___1); } } __inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address , poll_table *p ) { { if (((unsigned long )p != (unsigned long )((poll_table *)0) && (unsigned long )p->_qproc != (unsigned long )((void (*)(struct file * , wait_queue_head_t * , struct poll_table_struct * ))0)) && (unsigned long )wait_address != (unsigned long )((wait_queue_head_t *)0)) { (*(p->_qproc))(filp, wait_address, p); } else { } return; } } __inline static unsigned long poll_requested_events(poll_table const *p ) { { return ((unsigned long )p != (unsigned long )((poll_table const *)0) ? (unsigned long )p->_key : 0xffffffffffffffffUL); } } extern char const *v4l2_type_names[] ; extern long video_ioctl2(struct file * , unsigned int , unsigned long ) ; extern int v4l2_event_pending(struct v4l2_fh * ) ; extern int v4l2_event_unsubscribe(struct v4l2_fh * , struct v4l2_event_subscription const * ) ; extern int __video_register_device(struct video_device * , int , int , int , struct module * ) ; __inline static int video_register_device(struct video_device *vdev , int type , int nr ) { int tmp ; { tmp = __video_register_device(vdev, type, nr, 1, (vdev->fops)->owner); return (tmp); } } extern void video_unregister_device(struct video_device * ) ; extern void video_device_release_empty(struct video_device * ) ; __inline static void *video_get_drvdata(struct video_device *vdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& vdev->dev)); return (tmp); } } __inline static void video_set_drvdata(struct video_device *vdev , void *data ) { { dev_set_drvdata(& vdev->dev, data); return; } } extern struct video_device *video_devdata(struct file * ) ; __inline static void *video_drvdata(struct file *file ) { struct video_device *tmp ; void *tmp___0 ; { tmp = video_devdata(file); tmp___0 = video_get_drvdata(tmp); return (tmp___0); } } __inline static char const *video_device_node_name(struct video_device *vdev ) { char const *tmp ; { tmp = dev_name((struct device const *)(& vdev->dev)); return (tmp); } } extern void v4l2_get_timestamp(struct timeval * ) ; extern int videobuf_iolock(struct videobuf_queue * , struct videobuf_buffer * , struct v4l2_framebuffer * ) ; extern int videobuf_reqbufs(struct videobuf_queue * , struct v4l2_requestbuffers * ) ; extern int videobuf_querybuf(struct videobuf_queue * , struct v4l2_buffer * ) ; extern int videobuf_qbuf(struct videobuf_queue * , struct v4l2_buffer * ) ; extern int videobuf_dqbuf(struct videobuf_queue * , struct v4l2_buffer * , int ) ; extern int videobuf_streamon(struct videobuf_queue * ) ; extern int videobuf_streamoff(struct videobuf_queue * ) ; extern ssize_t videobuf_read_stream(struct videobuf_queue * , char * , size_t , loff_t * , int , int ) ; extern unsigned int videobuf_poll_stream(struct file * , struct videobuf_queue * , poll_table * ) ; extern int videobuf_mmap_free(struct videobuf_queue * ) ; extern int videobuf_mmap_mapper(struct videobuf_queue * , struct vm_area_struct * ) ; extern void videobuf_queue_vmalloc_init(struct videobuf_queue * , struct videobuf_queue_ops const * , struct device * , spinlock_t * , enum v4l2_buf_type , enum v4l2_field , unsigned int , void * , struct mutex * ) ; extern void *videobuf_to_vmalloc(struct videobuf_buffer * ) ; extern void videobuf_vmalloc_free(struct videobuf_buffer * ) ; extern void v4l2_fh_init(struct v4l2_fh * , struct video_device * ) ; extern void v4l2_fh_add(struct v4l2_fh * ) ; extern void v4l2_fh_del(struct v4l2_fh * ) ; extern void v4l2_fh_exit(struct v4l2_fh * ) ; extern int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler * , unsigned int , struct lock_class_key * , char const * ) ; extern void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler * ) ; extern struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler * , struct v4l2_ctrl_ops const * , u32 , s64 , s64 , u64 , s64 ) ; extern int v4l2_ctrl_add_handler(struct v4l2_ctrl_handler * , struct v4l2_ctrl_handler * , bool (*)(struct v4l2_ctrl const * ) ) ; extern int v4l2_ctrl_subscribe_event(struct v4l2_fh * , struct v4l2_event_subscription const * ) ; extern unsigned int v4l2_ctrl_poll(struct file * , struct poll_table_struct * ) ; int tm6000_v4l2_exit(void) ; void tm6000_get_std_res(struct tm6000_core *dev ) ; int tm6000_ir_int_start(struct tm6000_core *dev ) ; void tm6000_ir_int_stop(struct tm6000_core *dev ) ; int tm6000_debug ; static unsigned int vid_limit = 16U; static int video_nr = -1; static int radio_nr = -1; static bool keep_urb ; static char const __kstrtab_tm6000_debug[13U] = { 't', 'm', '6', '0', '0', '0', '_', 'd', 'e', 'b', 'u', 'g', '\000'}; struct kernel_symbol const __ksymtab_tm6000_debug ; struct kernel_symbol const __ksymtab_tm6000_debug = {(unsigned long )(& tm6000_debug), (char const *)(& __kstrtab_tm6000_debug)}; static struct tm6000_fmt format[3U] = { {(char *)"4:2:2, packed, YVY2", 1448695129U, 16}, {(char *)"4:2:2, packed, UYVY", 1498831189U, 16}, {(char *)"A/V + VBI mux packet", 808865108U, 16}}; __inline static void get_next_buf(struct tm6000_dmaqueue *dma_q , struct tm6000_buffer **buf ) { struct tm6000_core *dev ; struct tm6000_dmaqueue const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; { __mptr = (struct tm6000_dmaqueue const *)dma_q; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe258UL; tmp = list_empty((struct list_head const *)(& dma_q->active)); if (tmp != 0) { if ((tm6000_debug & 16) != 0) { printk("\016(%lu) %s %s :No active queue to serve\n", jiffies, (char *)(& dev->name), "get_next_buf"); } else { } *buf = (struct tm6000_buffer *)0; return; } else { } __mptr___0 = (struct list_head const *)dma_q->active.next; *buf = (struct tm6000_buffer *)__mptr___0 + 0xffffffffffffffc8UL; return; } } __inline static void buffer_filled(struct tm6000_core *dev , struct tm6000_dmaqueue *dma_q , struct tm6000_buffer *buf ) { { if ((tm6000_debug & 32) != 0) { printk("\016(%lu) %s %s :[%p/%d] wakeup\n", jiffies, (char *)(& dev->name), "buffer_filled", buf, buf->vb.i); } else { } buf->vb.state = 4; buf->vb.field_count = buf->vb.field_count + 1U; v4l2_get_timestamp(& buf->vb.ts); list_del(& buf->vb.queue); __wake_up(& buf->vb.done, 3U, 1, (void *)0); return; } } static int copy_streams(u8 *data , unsigned long len , struct urb *urb ) { struct tm6000_dmaqueue *dma_q ; struct tm6000_core *dev ; struct tm6000_dmaqueue const *__mptr ; u8 *ptr ; u8 *endp ; unsigned long header ; int rc ; unsigned int cmd ; unsigned int cpysize ; unsigned int pktsize ; unsigned int size ; unsigned int field ; unsigned int block ; unsigned int line ; unsigned int pos ; struct tm6000_buffer *vbuf ; char *voutp ; unsigned int linewidth ; void *tmp ; void *tmp___0 ; int i ; u32 pts ; { dma_q = (struct tm6000_dmaqueue *)urb->context; __mptr = (struct tm6000_dmaqueue const *)dma_q; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe258UL; ptr = data; endp = data + len; header = 0UL; rc = 0; pos = 0U; vbuf = (struct tm6000_buffer *)0; voutp = (char *)0; if ((unsigned int )dev->radio == 0U) { get_next_buf(dma_q, & vbuf); if ((unsigned long )vbuf == (unsigned long )((struct tm6000_buffer *)0)) { return (rc); } else { } tmp = videobuf_to_vmalloc(& vbuf->vb); voutp = (char *)tmp; if ((unsigned long )voutp == (unsigned long )((char *)0)) { return (0); } else { } } else { } ptr = data; goto ldv_37854; ldv_37853: ; if ((unsigned int )dev->isoc_ctl.cmd == 0U) { if (dev->isoc_ctl.tmp_buf_len > 0) { header = (unsigned long )dev->isoc_ctl.tmp_buf; if (4 - dev->isoc_ctl.tmp_buf_len > 0) { memcpy((void *)(& header) + (unsigned long )dev->isoc_ctl.tmp_buf_len, (void const *)ptr, (size_t )(4 - dev->isoc_ctl.tmp_buf_len)); ptr = ptr + (unsigned long )(4 - dev->isoc_ctl.tmp_buf_len); } else { } dev->isoc_ctl.tmp_buf_len = 0; } else { if ((unsigned long )(ptr + 3UL) >= (unsigned long )endp) { dev->isoc_ctl.tmp_buf_len = (int )((unsigned int )((long )endp) - (unsigned int )((long )ptr)); memcpy((void *)(& dev->isoc_ctl.tmp_buf), (void const *)ptr, (size_t )dev->isoc_ctl.tmp_buf_len); return (rc); } else { } goto ldv_37836; ldv_37835: ; if ((unsigned int )*(ptr + 3UL) == 71U) { goto ldv_37834; } else { } ptr = ptr + 1; ldv_37836: ; if ((unsigned long )(endp + 0xfffffffffffffffdUL) > (unsigned long )ptr) { goto ldv_37835; } else { } ldv_37834: header = *((unsigned long *)ptr); ptr = ptr + 4UL; } size = ((unsigned int )header & 126U) << 1U; if (size != 0U) { size = size - 4U; } else { } block = (unsigned int )(header >> 7) & 15U; field = (unsigned int )(header >> 11) & 1U; line = (unsigned int )(header >> 12) & 511U; cmd = (unsigned int )(header >> 21) & 7U; if (size > 180U) { size = 180U; } else { } pktsize = 180U; switch (cmd) { case 1U: ; if ((unsigned int )dev->radio == 0U) { if ((unsigned int )dev->isoc_ctl.vfield != field && field == 1U) { buffer_filled(dev, dma_q, vbuf); if ((tm6000_debug & 32) != 0) { printk("\016(%lu) %s %s :new buffer filled\n", jiffies, (char *)(& dev->name), "copy_streams"); } else { } get_next_buf(dma_q, & vbuf); if ((unsigned long )vbuf == (unsigned long )((struct tm6000_buffer *)0)) { return (rc); } else { } tmp___0 = videobuf_to_vmalloc(& vbuf->vb); voutp = (char *)tmp___0; if ((unsigned long )voutp == (unsigned long )((char *)0)) { return (rc); } else { } memset((void *)voutp, 0, vbuf->vb.size); } else { } linewidth = vbuf->vb.width << 1; pos = (((line << 1) - field) - 1U) * linewidth + block * 180U; if ((unsigned long )(pos + size) > vbuf->vb.size) { cmd = 5U; } else { } dev->isoc_ctl.vfield = (int )field; } else { } goto ldv_37839; case 3U: ; goto ldv_37839; case 2U: ; case 4U: size = pktsize; goto ldv_37839; } ldv_37839: ; } else { cmd = (unsigned int )dev->isoc_ctl.cmd; size = (unsigned int )dev->isoc_ctl.size; pos = (unsigned int )dev->isoc_ctl.pos; pktsize = (unsigned int )dev->isoc_ctl.pktsize; field = (unsigned int )dev->isoc_ctl.field; } cpysize = (unsigned int )((long )size < (long )endp - (long )ptr ? (long )size : (long )endp - (long )ptr); if (cpysize != 0U) { switch (cmd) { case 1U: ; if ((unsigned long )vbuf != (unsigned long )((struct tm6000_buffer *)0)) { memcpy((void *)voutp + (unsigned long )pos, (void const *)ptr, (size_t )cpysize); } else { } goto ldv_37844; case 2U: i = 0; goto ldv_37848; ldv_37847: __swab16s((__u16 *)ptr + (unsigned long )i); i = i + 2; ldv_37848: ; if ((unsigned int )i < cpysize) { goto ldv_37847; } else { } tm6000_call_fillbuf(dev, 16, (char *)ptr, (int )cpysize); goto ldv_37844; case 3U: ; goto ldv_37844; case 4U: pts = *((u32 *)ptr); if ((tm6000_debug & 32) != 0) { printk("\016(%lu) %s %s :field %d, PTS %x", jiffies, (char *)(& dev->name), "copy_streams", field, pts); } else { } goto ldv_37844; } ldv_37844: ; } else { } if ((unsigned long )(ptr + (unsigned long )pktsize) > (unsigned long )endp) { dev->isoc_ctl.pos = (int )(pos + cpysize); dev->isoc_ctl.size = (int )(size - cpysize); dev->isoc_ctl.cmd = (u8 )cmd; dev->isoc_ctl.field = (int )field; dev->isoc_ctl.pktsize = (int )(((unsigned int )((long )ptr) - (unsigned int )((long )endp)) + pktsize); ptr = ptr + (unsigned long )((long )endp - (long )ptr); } else { dev->isoc_ctl.cmd = 0U; ptr = ptr + (unsigned long )pktsize; } ldv_37854: ; if ((unsigned long )ptr < (unsigned long )endp) { goto ldv_37853; } else { } return (0); } } static int copy_multiplexed(u8 *ptr , unsigned long len , struct urb *urb ) { struct tm6000_dmaqueue *dma_q ; struct tm6000_core *dev ; struct tm6000_dmaqueue const *__mptr ; unsigned int pos ; unsigned int cpysize ; int rc ; struct tm6000_buffer *buf ; char *outp ; void *tmp ; unsigned long _min1 ; unsigned long _min2 ; void *tmp___0 ; { dma_q = (struct tm6000_dmaqueue *)urb->context; __mptr = (struct tm6000_dmaqueue const *)dma_q; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe258UL; pos = (unsigned int )dev->isoc_ctl.pos; rc = 1; outp = (char *)0; get_next_buf(dma_q, & buf); if ((unsigned long )buf != (unsigned long )((struct tm6000_buffer *)0)) { tmp = videobuf_to_vmalloc(& buf->vb); outp = (char *)tmp; } else { } if ((unsigned long )outp == (unsigned long )((char *)0)) { return (0); } else { } goto ldv_37876; ldv_37875: _min1 = len; _min2 = buf->vb.size - (unsigned long )pos; cpysize = (unsigned int )(_min1 < _min2 ? _min1 : _min2); memcpy((void *)outp + (unsigned long )pos, (void const *)ptr, (size_t )cpysize); pos = pos + cpysize; ptr = ptr + (unsigned long )cpysize; len = len - (unsigned long )cpysize; if ((unsigned long )pos >= buf->vb.size) { pos = 0U; buffer_filled(dev, dma_q, buf); if ((tm6000_debug & 32) != 0) { printk("\016(%lu) %s %s :new buffer filled\n", jiffies, (char *)(& dev->name), "copy_multiplexed"); } else { } get_next_buf(dma_q, & buf); if ((unsigned long )buf == (unsigned long )((struct tm6000_buffer *)0)) { goto ldv_37874; } else { } tmp___0 = videobuf_to_vmalloc(& buf->vb); outp = (char *)tmp___0; if ((unsigned long )outp == (unsigned long )((char *)0)) { return (rc); } else { } pos = 0U; } else { } ldv_37876: ; if (len != 0UL) { goto ldv_37875; } else { } ldv_37874: dev->isoc_ctl.pos = (int )pos; return (rc); } } __inline static void print_err_status(struct tm6000_core *dev , int packet , int status ) { char *errmsg ; { errmsg = (char *)"Unknown"; switch (status) { case -2: errmsg = (char *)"unlinked synchronuously"; goto ldv_37884; case -104: errmsg = (char *)"unlinked asynchronuously"; goto ldv_37884; case -63: errmsg = (char *)"Buffer error (overrun)"; goto ldv_37884; case -32: errmsg = (char *)"Stalled (device not responding)"; goto ldv_37884; case -75: errmsg = (char *)"Babble (bad cable?)"; goto ldv_37884; case -71: errmsg = (char *)"Bit-stuff error (bad cable?)"; goto ldv_37884; case -84: errmsg = (char *)"CRC/Timeout (could be anything)"; goto ldv_37884; case -62: errmsg = (char *)"Device does not respond"; goto ldv_37884; } ldv_37884: ; if (packet < 0) { if ((tm6000_debug & 16) != 0) { printk("\016(%lu) %s %s :URB status %d [%s].\n", jiffies, (char *)(& dev->name), "print_err_status", status, errmsg); } else { } } else if ((tm6000_debug & 16) != 0) { printk("\016(%lu) %s %s :URB packet %d, status %d [%s].\n", jiffies, (char *)(& dev->name), "print_err_status", packet, status, errmsg); } else { } return; } } __inline static int tm6000_isoc_copy(struct urb *urb ) { struct tm6000_dmaqueue *dma_q ; struct tm6000_core *dev ; struct tm6000_dmaqueue const *__mptr ; int i ; int len ; int rc ; int status ; char *p ; { dma_q = (struct tm6000_dmaqueue *)urb->context; __mptr = (struct tm6000_dmaqueue const *)dma_q; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe258UL; len = 0; rc = 1; if (urb->status < 0) { print_err_status(dev, -1, urb->status); return (0); } else { } i = 0; goto ldv_37907; ldv_37906: status = urb->iso_frame_desc[i].status; if (status < 0) { print_err_status(dev, i, status); goto ldv_37905; } else { } len = (int )urb->iso_frame_desc[i].actual_length; if (len > 0) { p = (char *)urb->transfer_buffer + (unsigned long )urb->iso_frame_desc[i].offset; if (urb->iso_frame_desc[i].status == 0) { if (dev->fourcc == 808865108U) { rc = copy_multiplexed((u8 *)p, (unsigned long )len, urb); if (rc <= 0) { return (rc); } else { } } else { copy_streams((u8 *)p, (unsigned long )len, urb); } } else { } } else { } ldv_37905: i = i + 1; ldv_37907: ; if (urb->number_of_packets > i) { goto ldv_37906; } else { } return (rc); } } static void tm6000_irq_callback(struct urb *urb ) { struct tm6000_dmaqueue *dma_q ; struct tm6000_core *dev ; struct tm6000_dmaqueue const *__mptr ; int i ; { dma_q = (struct tm6000_dmaqueue *)urb->context; __mptr = (struct tm6000_dmaqueue const *)dma_q; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe258UL; switch (urb->status) { case 0: ; case -110: ; goto ldv_37919; case -104: ; case -2: ; case -108: ; return; default: printk("\vtm6000 %s :urb completion error %d.\n", "tm6000_irq_callback", urb->status); goto ldv_37919; } ldv_37919: spin_lock(& dev->slock); tm6000_isoc_copy(urb); spin_unlock(& dev->slock); i = 0; goto ldv_37926; ldv_37925: urb->iso_frame_desc[i].status = 0; urb->iso_frame_desc[i].actual_length = 0U; i = i + 1; ldv_37926: ; if (urb->number_of_packets > i) { goto ldv_37925; } else { } urb->status = usb_submit_urb(urb, 32U); if (urb->status != 0) { printk("\vtm6000 %s :urb resubmit failed (error=%i)\n", "tm6000_irq_callback", urb->status); } else { } return; } } static int tm6000_alloc_urb_buffers(struct tm6000_core *dev ) { int num_bufs ; int i ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { num_bufs = 8; if ((unsigned long )dev->urb_buffer != (unsigned long )((char **)0)) { return (0); } else { } tmp = kmalloc((unsigned long )num_bufs * 8UL, 208U); dev->urb_buffer = (char **)tmp; if ((unsigned long )dev->urb_buffer == (unsigned long )((char **)0)) { printk("\vtm6000 %s :cannot allocate memory for urb buffers\n", "tm6000_alloc_urb_buffers"); return (-12); } else { } tmp___0 = kmalloc((unsigned long )num_bufs * 8UL, 208U); dev->urb_dma = (dma_addr_t *)tmp___0; if ((unsigned long )dev->urb_dma == (unsigned long )((dma_addr_t *)0ULL)) { printk("\vtm6000 %s :cannot allocate memory for urb dma pointers\n", "tm6000_alloc_urb_buffers"); return (-12); } else { } i = 0; goto ldv_37935; ldv_37934: tmp___1 = usb_alloc_coherent(dev->udev, (size_t )dev->urb_size, 208U, dev->urb_dma + (unsigned long )i); *(dev->urb_buffer + (unsigned long )i) = (char *)tmp___1; if ((unsigned long )*(dev->urb_buffer + (unsigned long )i) == (unsigned long )((char *)0)) { printk("\vtm6000 %s :unable to allocate %i bytes for transfer buffer %i\n", "tm6000_alloc_urb_buffers", dev->urb_size, i); return (-12); } else { } memset((void *)*(dev->urb_buffer + (unsigned long )i), 0, (size_t )dev->urb_size); i = i + 1; ldv_37935: ; if (i < num_bufs) { goto ldv_37934; } else { } return (0); } } static int tm6000_free_urb_buffers(struct tm6000_core *dev ) { int i ; { if ((unsigned long )dev->urb_buffer == (unsigned long )((char **)0)) { return (0); } else { } i = 0; goto ldv_37942; ldv_37941: ; if ((unsigned long )*(dev->urb_buffer + (unsigned long )i) != (unsigned long )((char *)0)) { usb_free_coherent(dev->udev, (size_t )dev->urb_size, (void *)*(dev->urb_buffer + (unsigned long )i), *(dev->urb_dma + (unsigned long )i)); *(dev->urb_buffer + (unsigned long )i) = (char *)0; } else { } i = i + 1; ldv_37942: ; if (i <= 7) { goto ldv_37941; } else { } kfree((void const *)dev->urb_buffer); kfree((void const *)dev->urb_dma); dev->urb_buffer = (char **)0; dev->urb_dma = (dma_addr_t *)0ULL; return (0); } } static void tm6000_uninit_isoc(struct tm6000_core *dev ) { struct urb *urb ; int i ; { dev->isoc_ctl.buf = (struct tm6000_buffer *)0; i = 0; goto ldv_37950; ldv_37949: urb = *(dev->isoc_ctl.urb + (unsigned long )i); if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { usb_kill_urb(urb); usb_unlink_urb(urb); usb_free_urb(urb); *(dev->isoc_ctl.urb + (unsigned long )i) = (struct urb *)0; } else { } *(dev->isoc_ctl.transfer_buffer + (unsigned long )i) = (char *)0; i = i + 1; ldv_37950: ; if (dev->isoc_ctl.num_bufs > i) { goto ldv_37949; } else { } if (! keep_urb) { tm6000_free_urb_buffers(dev); } else { } kfree((void const *)dev->isoc_ctl.urb); kfree((void const *)dev->isoc_ctl.transfer_buffer); dev->isoc_ctl.urb = (struct urb **)0; dev->isoc_ctl.transfer_buffer = (char **)0; dev->isoc_ctl.num_bufs = 0; return; } } static int tm6000_prepare_isoc(struct tm6000_core *dev ) { struct tm6000_dmaqueue *dma_q ; int i ; int j ; int sb_size ; int pipe ; int size ; int max_packets ; int num_bufs ; struct urb *urb ; unsigned int tmp ; __u16 tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; { dma_q = & dev->vidq; num_bufs = 8; tm6000_uninit_isoc(dev); tm6000_ir_int_stop(dev); usb_set_interface(dev->udev, (int )dev->isoc_in.bInterfaceNumber, (int )dev->isoc_in.bAlternateSetting); tm6000_ir_int_start(dev); tmp = __create_pipe(dev->udev, (unsigned int )(dev->isoc_in.endp)->desc.bEndpointAddress & 15U); pipe = (int )(tmp | 128U); tmp___0 = usb_maxpacket(dev->udev, pipe, (pipe & 128) == 0); size = (int )tmp___0; if ((unsigned int )size > dev->isoc_in.maxsize) { size = (int )dev->isoc_in.maxsize; } else { } dev->isoc_ctl.max_pkt_size = size; max_packets = 46; sb_size = max_packets * size; dev->urb_size = (unsigned int )sb_size; dev->isoc_ctl.num_bufs = num_bufs; tmp___1 = kmalloc((unsigned long )num_bufs * 8UL, 208U); dev->isoc_ctl.urb = (struct urb **)tmp___1; if ((unsigned long )dev->isoc_ctl.urb == (unsigned long )((struct urb **)0)) { printk("\vtm6000 %s :cannot alloc memory for usb buffers\n", "tm6000_prepare_isoc"); return (-12); } else { } tmp___2 = kmalloc((unsigned long )num_bufs * 8UL, 208U); dev->isoc_ctl.transfer_buffer = (char **)tmp___2; if ((unsigned long )dev->isoc_ctl.transfer_buffer == (unsigned long )((char **)0)) { printk("\vtm6000 %s :cannot allocate memory for usbtransfer\n", "tm6000_prepare_isoc"); kfree((void const *)dev->isoc_ctl.urb); return (-12); } else { } if ((tm6000_debug & 16) != 0) { printk("\016(%lu) %s %s :Allocating %d x %d packets (%d bytes) of %d bytes each to handle %u size\n", jiffies, (char *)(& dev->name), "tm6000_prepare_isoc", max_packets, num_bufs, sb_size, dev->isoc_in.maxsize, size); } else { } tmp___3 = tm6000_alloc_urb_buffers(dev); if (tmp___3 < 0) { printk("\vtm6000 %s :cannot allocate memory for urb buffers\n", "tm6000_prepare_isoc"); tm6000_free_urb_buffers(dev); kfree((void const *)dev->isoc_ctl.urb); kfree((void const *)dev->isoc_ctl.transfer_buffer); return (-12); } else { } i = 0; goto ldv_37969; ldv_37968: urb = usb_alloc_urb(max_packets, 208U); if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { printk("\vtm6000 %s :cannot alloc isoc_ctl.urb %i\n", "tm6000_prepare_isoc", i); tm6000_uninit_isoc(dev); usb_free_urb(urb); return (-12); } else { } *(dev->isoc_ctl.urb + (unsigned long )i) = urb; urb->transfer_dma = *(dev->urb_dma + (unsigned long )i); *(dev->isoc_ctl.transfer_buffer + (unsigned long )i) = *(dev->urb_buffer + (unsigned long )i); usb_fill_bulk_urb(urb, dev->udev, (unsigned int )pipe, (void *)*(dev->isoc_ctl.transfer_buffer + (unsigned long )i), sb_size, & tm6000_irq_callback, (void *)dma_q); urb->interval = (int )(dev->isoc_in.endp)->desc.bInterval; urb->number_of_packets = max_packets; urb->transfer_flags = 6U; j = 0; goto ldv_37966; ldv_37965: urb->iso_frame_desc[j].offset = (unsigned int )(size * j); urb->iso_frame_desc[j].length = (unsigned int )size; j = j + 1; ldv_37966: ; if (j < max_packets) { goto ldv_37965; } else { } i = i + 1; ldv_37969: ; if (dev->isoc_ctl.num_bufs > i) { goto ldv_37968; } else { } return (0); } } static int tm6000_start_thread(struct tm6000_core *dev ) { struct tm6000_dmaqueue *dma_q ; int i ; struct lock_class_key __key ; int rc ; int tmp ; { dma_q = & dev->vidq; dma_q->frame = 0; dma_q->ini_jiffies = (int )jiffies; __init_waitqueue_head(& dma_q->wq, "&dma_q->wq", & __key); i = 0; goto ldv_37980; ldv_37979: tmp = usb_submit_urb(*(dev->isoc_ctl.urb + (unsigned long )i), 32U); rc = tmp; if (rc != 0) { printk("\vtm6000 %s :submit of urb %i failed (error=%i)\n", "tm6000_start_thread", i, rc); tm6000_uninit_isoc(dev); return (rc); } else { } i = i + 1; ldv_37980: ; if (dev->isoc_ctl.num_bufs > i) { goto ldv_37979; } else { } return (0); } } static int buffer_setup(struct videobuf_queue *vq , unsigned int *count , unsigned int *size ) { struct tm6000_fh *fh ; { fh = (struct tm6000_fh *)vq->priv_data; *size = ((unsigned int )(fh->fmt)->depth * fh->width) * fh->height >> 3; if (*count == 0U) { *count = 8U; } else { } if (*count <= 3U) { *count = 4U; } else { } goto ldv_37989; ldv_37988: *count = *count - 1U; ldv_37989: ; if (*size * *count > vid_limit * 1048576U) { goto ldv_37988; } else { } return (0); } } static void free_buffer(struct videobuf_queue *vq , struct tm6000_buffer *buf ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; unsigned long flags ; int tmp ; long tmp___0 ; raw_spinlock_t *tmp___1 ; { fh = (struct tm6000_fh *)vq->priv_data; dev = fh->dev; tmp = preempt_count(); tmp___0 = ldv__builtin_expect(((unsigned long )tmp & 2096896UL) != 0UL, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/3697/dscv_tempdir/dscv/ri/32_7a/drivers/media/usb/tm6000/tm6000-video.c"), "i" (717), "i" (12UL)); ldv_37998: ; goto ldv_37998; } else { } tmp___1 = spinlock_check(& dev->slock); flags = _raw_spin_lock_irqsave(tmp___1); if ((unsigned long )dev->isoc_ctl.buf == (unsigned long )buf) { dev->isoc_ctl.buf = (struct tm6000_buffer *)0; } else { } spin_unlock_irqrestore(& dev->slock, flags); videobuf_vmalloc_free(& buf->vb); buf->vb.state = 0; return; } } static int buffer_prepare(struct videobuf_queue *vq , struct videobuf_buffer *vb , enum v4l2_field field ) { struct tm6000_fh *fh ; struct tm6000_buffer *buf ; struct videobuf_buffer const *__mptr ; struct tm6000_core *dev ; int rc ; long tmp ; { fh = (struct tm6000_fh *)vq->priv_data; __mptr = (struct videobuf_buffer const *)vb; buf = (struct tm6000_buffer *)__mptr; dev = fh->dev; rc = 0; tmp = ldv__builtin_expect((unsigned long )fh->fmt == (unsigned long )((struct tm6000_fmt *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/3697/dscv_tempdir/dscv/ri/32_7a/drivers/media/usb/tm6000/tm6000-video.c"), "i" (746), "i" (12UL)); ldv_38013: ; goto ldv_38013; } else { } buf->vb.size = (unsigned long )(((unsigned int )(fh->fmt)->depth * fh->width) * fh->height >> 3); if (buf->vb.baddr != 0UL && buf->vb.bsize < buf->vb.size) { return (-22); } else { } if ((((unsigned long )buf->fmt != (unsigned long )fh->fmt || buf->vb.width != fh->width) || buf->vb.height != fh->height) || (unsigned int )buf->vb.field != (unsigned int )field) { buf->fmt = fh->fmt; buf->vb.width = fh->width; buf->vb.height = fh->height; buf->vb.field = field; buf->vb.state = 0; } else { } if ((unsigned int )buf->vb.state == 0U) { rc = videobuf_iolock(vq, & buf->vb, (struct v4l2_framebuffer *)0); if (rc != 0) { goto fail; } else { } } else { } if (dev->isoc_ctl.num_bufs == 0) { rc = tm6000_prepare_isoc(dev); if (rc < 0) { goto fail; } else { } rc = tm6000_start_thread(dev); if (rc < 0) { goto fail; } else { } } else { } buf->vb.state = 1; return (0); fail: free_buffer(vq, buf); return (rc); } } static void buffer_queue(struct videobuf_queue *vq , struct videobuf_buffer *vb ) { struct tm6000_buffer *buf ; struct videobuf_buffer const *__mptr ; struct tm6000_fh *fh ; struct tm6000_core *dev ; struct tm6000_dmaqueue *vidq ; { __mptr = (struct videobuf_buffer const *)vb; buf = (struct tm6000_buffer *)__mptr; fh = (struct tm6000_fh *)vq->priv_data; dev = fh->dev; vidq = & dev->vidq; buf->vb.state = 2; list_add_tail(& buf->vb.queue, & vidq->active); return; } } static void buffer_release(struct videobuf_queue *vq , struct videobuf_buffer *vb ) { struct tm6000_buffer *buf ; struct videobuf_buffer const *__mptr ; { __mptr = (struct videobuf_buffer const *)vb; buf = (struct tm6000_buffer *)__mptr; free_buffer(vq, buf); return; } } static struct videobuf_queue_ops tm6000_video_qops = {& buffer_setup, & buffer_prepare, & buffer_queue, & buffer_release}; static bool is_res_read(struct tm6000_core *dev , struct tm6000_fh *fh ) { { if ((unsigned long )dev->resources == (unsigned long )fh && (int )dev->is_res_read) { return (1); } else { } return (0); } } static bool is_res_streaming(struct tm6000_core *dev , struct tm6000_fh *fh ) { { if ((unsigned long )dev->resources == (unsigned long )fh) { return (1); } else { } return (0); } } static bool res_get(struct tm6000_core *dev , struct tm6000_fh *fh , bool is_res_read___0 ) { { if ((unsigned long )dev->resources == (unsigned long )fh && (int )dev->is_res_read == (int )is_res_read___0) { return (1); } else { } if ((unsigned long )dev->resources != (unsigned long )((struct tm6000_fh *)0)) { return (0); } else { } dev->resources = fh; dev->is_res_read = is_res_read___0; if ((tm6000_debug & 64) != 0) { printk("\016(%lu) %s %s :res: get\n", jiffies, (char *)(& dev->name), "res_get"); } else { } return (1); } } static void res_free(struct tm6000_core *dev , struct tm6000_fh *fh ) { { if ((unsigned long )dev->resources != (unsigned long )fh) { return; } else { } dev->resources = (struct tm6000_fh *)0; if ((tm6000_debug & 64) != 0) { printk("\016(%lu) %s %s :res: put\n", jiffies, (char *)(& dev->name), "res_free"); } else { } return; } } static int vidioc_querycap(struct file *file , void *priv , struct v4l2_capability *cap ) { struct tm6000_core *dev ; struct video_device *vdev ; struct video_device *tmp ; { dev = ((struct tm6000_fh *)priv)->dev; tmp = video_devdata(file); vdev = tmp; strlcpy((char *)(& cap->driver), "tm6000", 16UL); strlcpy((char *)(& cap->card), "Trident TVMaster TM5600/6000/6010", 32UL); usb_make_path(dev->udev, (char *)(& cap->bus_info), 32UL); if (dev->tuner_type != 4) { cap->device_caps = cap->device_caps | 65536U; } else { } if (vdev->vfl_type == 0) { cap->device_caps = cap->device_caps | 83886081U; } else { cap->device_caps = cap->device_caps | 262144U; } cap->capabilities = cap->device_caps | 2164523009U; return (0); } } static int vidioc_enum_fmt_vid_cap(struct file *file , void *priv , struct v4l2_fmtdesc *f ) { { if (f->index > 2U) { return (-22); } else { } strlcpy((char *)(& f->description), (char const *)format[f->index].name, 32UL); f->pixelformat = format[f->index].fourcc; return (0); } } static int vidioc_g_fmt_vid_cap(struct file *file , void *priv , struct v4l2_format *f ) { struct tm6000_fh *fh ; { fh = (struct tm6000_fh *)priv; f->fmt.pix.width = fh->width; f->fmt.pix.height = fh->height; f->fmt.pix.field = (__u32 )fh->vb_vidq.field; f->fmt.pix.pixelformat = (fh->fmt)->fourcc; f->fmt.pix.colorspace = 1U; f->fmt.pix.bytesperline = f->fmt.pix.width * (__u32 )(fh->fmt)->depth >> 3; f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline; return (0); } } static struct tm6000_fmt *format_by_fourcc(unsigned int fourcc ) { unsigned int i ; { i = 0U; goto ldv_38079; ldv_38078: ; if (format[i].fourcc == fourcc) { return ((struct tm6000_fmt *)(& format) + (unsigned long )i); } else { } i = i + 1U; ldv_38079: ; if (i <= 2U) { goto ldv_38078; } else { } return ((struct tm6000_fmt *)0); } } static int vidioc_try_fmt_vid_cap(struct file *file , void *priv , struct v4l2_format *f ) { struct tm6000_core *dev ; struct tm6000_fmt *fmt ; enum v4l2_field field ; { dev = ((struct tm6000_fh *)priv)->dev; fmt = format_by_fourcc(f->fmt.pix.pixelformat); if ((unsigned long )fmt == (unsigned long )((struct tm6000_fmt *)0)) { if ((tm6000_debug & 2) != 0) { printk("\016(%lu) %s %s :Fourcc format (0x%08x) invalid.\n", jiffies, (char *)(& dev->name), "vidioc_try_fmt_vid_cap", f->fmt.pix.pixelformat); } else { } return (-22); } else { } field = (enum v4l2_field )f->fmt.pix.field; field = 4; tm6000_get_std_res(dev); f->fmt.pix.width = (__u32 )dev->width; f->fmt.pix.height = (__u32 )dev->height; f->fmt.pix.width = f->fmt.pix.width & 4294967294U; f->fmt.pix.field = (__u32 )field; f->fmt.pix.bytesperline = f->fmt.pix.width * (__u32 )fmt->depth >> 3; f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline; f->fmt.pix.colorspace = 1U; return (0); } } static int vidioc_s_fmt_vid_cap(struct file *file , void *priv , struct v4l2_format *f ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; int ret ; int tmp ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; tmp = vidioc_try_fmt_vid_cap(file, (void *)fh, f); ret = tmp; if (ret < 0) { return (ret); } else { } fh->fmt = format_by_fourcc(f->fmt.pix.pixelformat); fh->width = f->fmt.pix.width; fh->height = f->fmt.pix.height; fh->vb_vidq.field = (enum v4l2_field )f->fmt.pix.field; fh->type = (enum v4l2_buf_type )f->type; dev->fourcc = f->fmt.pix.pixelformat; tm6000_set_fourcc_format(dev); return (0); } } static int vidioc_reqbufs(struct file *file , void *priv , struct v4l2_requestbuffers *p ) { struct tm6000_fh *fh ; int tmp ; { fh = (struct tm6000_fh *)priv; tmp = videobuf_reqbufs(& fh->vb_vidq, p); return (tmp); } } static int vidioc_querybuf(struct file *file , void *priv , struct v4l2_buffer *p ) { struct tm6000_fh *fh ; int tmp ; { fh = (struct tm6000_fh *)priv; tmp = videobuf_querybuf(& fh->vb_vidq, p); return (tmp); } } static int vidioc_qbuf(struct file *file , void *priv , struct v4l2_buffer *p ) { struct tm6000_fh *fh ; int tmp ; { fh = (struct tm6000_fh *)priv; tmp = videobuf_qbuf(& fh->vb_vidq, p); return (tmp); } } static int vidioc_dqbuf(struct file *file , void *priv , struct v4l2_buffer *p ) { struct tm6000_fh *fh ; int tmp ; { fh = (struct tm6000_fh *)priv; tmp = videobuf_dqbuf(& fh->vb_vidq, p, (int )file->f_flags & 2048); return (tmp); } } static int vidioc_streamon(struct file *file , void *priv , enum v4l2_buf_type i ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; bool tmp ; int tmp___0 ; int tmp___1 ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; if ((unsigned int )fh->type != 1U) { return (-22); } else { } if ((unsigned int )fh->type != (unsigned int )i) { return (-22); } else { } tmp = res_get(dev, fh, 0); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-16); } else { } tmp___1 = videobuf_streamon(& fh->vb_vidq); return (tmp___1); } } static int vidioc_streamoff(struct file *file , void *priv , enum v4l2_buf_type i ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; if ((unsigned int )fh->type != 1U) { return (-22); } else { } if ((unsigned int )fh->type != (unsigned int )i) { return (-22); } else { } videobuf_streamoff(& fh->vb_vidq); res_free(dev, fh); return (0); } } static int vidioc_s_std(struct file *file , void *priv , v4l2_std_id norm ) { int rc ; struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { rc = 0; fh = (struct tm6000_fh *)priv; dev = fh->dev; dev->norm = norm; rc = tm6000_init_analog_mode(dev); fh->width = (unsigned int )dev->width; fh->height = (unsigned int )dev->height; if (rc < 0) { return (rc); } else { } __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38150; ldv_38149: ; if ((unsigned long )(__sd->ops)->video != (unsigned long )((struct v4l2_subdev_video_ops const */* const */)0) && (unsigned long )((__sd->ops)->video)->s_std != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , v4l2_std_id ))0)) { (*(((__sd->ops)->video)->s_std))(__sd, dev->norm); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38150: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38149; } else { } return (0); } } static int vidioc_g_std(struct file *file , void *priv , v4l2_std_id *norm ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; *norm = dev->norm; return (0); } } static char const *iname[5U] = { 0, "Television", "Composite 1", "Composite 2", "S-Video"}; static int vidioc_enum_input(struct file *file , void *priv , struct v4l2_input *i ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; unsigned int n ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; n = i->index; if (n > 2U) { return (-22); } else { } if ((unsigned int )dev->vinput[n].type == 0U) { return (-22); } else { } i->index = n; if ((unsigned int )dev->vinput[n].type == 1U) { i->type = 1U; } else { i->type = 2U; } strcpy((char *)(& i->name), iname[(unsigned int )dev->vinput[n].type]); i->std = 16728063ULL; return (0); } } static int vidioc_g_input(struct file *file , void *priv , unsigned int *i ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; *i = (unsigned int )dev->input; return (0); } } static int vidioc_s_input(struct file *file , void *priv , unsigned int i ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; int rc ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; rc = 0; if (i > 2U) { return (-22); } else { } if ((unsigned int )dev->vinput[i].type == 0U) { return (-22); } else { } dev->input = (int )i; rc = vidioc_s_std(file, priv, dev->norm); return (rc); } } static int tm6000_s_ctrl(struct v4l2_ctrl *ctrl ) { struct tm6000_core *dev ; struct v4l2_ctrl_handler const *__mptr ; u8 val ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe110UL; val = (u8 )ctrl->val; switch (ctrl->id) { case 9963777U: tm6000_set_reg(dev, 7, 8, (int )val); return (0); case 9963776U: tm6000_set_reg(dev, 7, 9, (int )val); return (0); case 9963778U: tm6000_set_reg(dev, 7, 10, (int )val); return (0); case 9963779U: tm6000_set_reg(dev, 7, 11, (int )val); return (0); } return (-22); } } static struct v4l2_ctrl_ops const tm6000_ctrl_ops = {0, 0, & tm6000_s_ctrl}; static int tm6000_radio_s_ctrl(struct v4l2_ctrl *ctrl ) { struct tm6000_core *dev ; struct v4l2_ctrl_handler const *__mptr ; u8 val ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; dev = (struct tm6000_core *)__mptr + 0xffffffffffffe020UL; val = (u8 )ctrl->val; switch (ctrl->id) { case 9963785U: dev->ctl_mute = (int )val; tm6000_tvaudio_set_mute(dev, (int )val); return (0); case 9963781U: dev->ctl_volume = (int )val; tm6000_set_volume(dev, (int )val); return (0); } return (-22); } } static struct v4l2_ctrl_ops const tm6000_radio_ctrl_ops = {0, 0, & tm6000_radio_s_ctrl}; static int vidioc_g_tuner(struct file *file , void *priv , struct v4l2_tuner *t ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; if (dev->tuner_type == -1) { return (-25); } else { } if (t->index != 0U) { return (-22); } else { } strcpy((char *)(& t->name), "Television"); t->type = 2U; t->capability = 18U; t->rangehigh = 4294967295U; t->rxsubchans = 2U; __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38218; ldv_38217: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->g_tuner != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_tuner * ))0)) { (*(((__sd->ops)->tuner)->g_tuner))(__sd, t); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38218: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38217; } else { } t->audmode = (__u32 )dev->amode; return (0); } } static int vidioc_s_tuner(struct file *file , void *priv , struct v4l2_tuner const *t ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; if (dev->tuner_type == -1) { return (-25); } else { } if ((unsigned int )t->index != 0U) { return (-22); } else { } if ((unsigned int )t->audmode > 1U) { dev->amode = 1; } else { dev->amode = (int )t->audmode; } if ((tm6000_debug & 3) != 0) { printk("\016(%lu) %s %s :audio mode: %x\n", jiffies, (char *)(& dev->name), "vidioc_s_tuner", t->audmode); } else { } __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38234; ldv_38233: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->s_tuner != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_tuner const * ))0)) { (*(((__sd->ops)->tuner)->s_tuner))(__sd, t); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38234: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38233; } else { } return (0); } } static int vidioc_g_frequency(struct file *file , void *priv , struct v4l2_frequency *f ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; if (dev->tuner_type == -1) { return (-25); } else { } if (f->tuner != 0U) { return (-22); } else { } f->frequency = (__u32 )dev->freq; __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38249; ldv_38248: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->g_frequency != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_frequency * ))0)) { (*(((__sd->ops)->tuner)->g_frequency))(__sd, f); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38249: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38248; } else { } return (0); } } static int vidioc_s_frequency(struct file *file , void *priv , struct v4l2_frequency const *f ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { fh = (struct tm6000_fh *)priv; dev = fh->dev; if (dev->tuner_type == -1) { return (-25); } else { } if ((unsigned int )f->tuner != 0U) { return (-22); } else { } dev->freq = (int )f->frequency; __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38264; ldv_38263: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->s_frequency != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_frequency const * ))0)) { (*(((__sd->ops)->tuner)->s_frequency))(__sd, f); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38264: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38263; } else { } return (0); } } static int radio_g_tuner(struct file *file , void *priv , struct v4l2_tuner *t ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { fh = (struct tm6000_fh *)file->private_data; dev = fh->dev; if (t->index != 0U) { return (-22); } else { } memset((void *)t, 0, 84UL); strcpy((char *)(& t->name), "Radio"); t->type = 1U; t->capability = 17U; t->rxsubchans = 2U; t->audmode = 1U; __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38279; ldv_38278: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->g_tuner != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_tuner * ))0)) { (*(((__sd->ops)->tuner)->g_tuner))(__sd, t); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38279: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38278; } else { } return (0); } } static int radio_s_tuner(struct file *file , void *priv , struct v4l2_tuner const *t ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { fh = (struct tm6000_fh *)file->private_data; dev = fh->dev; if ((unsigned int )t->index != 0U) { return (-22); } else { } __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38294; ldv_38293: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->s_tuner != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_tuner const * ))0)) { (*(((__sd->ops)->tuner)->s_tuner))(__sd, t); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38294: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38293; } else { } return (0); } } static int __tm6000_open(struct file *file ) { struct video_device *vdev ; struct video_device *tmp ; struct tm6000_core *dev ; void *tmp___0 ; struct tm6000_fh *fh ; enum v4l2_buf_type type ; int rc ; int radio ; char const *tmp___1 ; char const *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; struct v4l2_subdev *__sd ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { tmp = video_devdata(file); vdev = tmp; tmp___0 = video_drvdata(file); dev = (struct tm6000_core *)tmp___0; type = 1; radio = 0; if ((tm6000_debug & 128) != 0) { tmp___1 = video_device_node_name(vdev); printk("\016(%lu) %s %s :tm6000: open called (dev=%s)\n", jiffies, (char *)(& dev->name), "__tm6000_open", tmp___1); } else { } switch (vdev->vfl_type) { case 0: type = 1; goto ldv_38307; case 1: type = 4; goto ldv_38307; case 2: radio = 1; goto ldv_38307; } ldv_38307: dev->users = dev->users + 1; if ((tm6000_debug & 128) != 0) { tmp___2 = video_device_node_name(vdev); printk("\016(%lu) %s %s :open dev=%s type=%s users=%d\n", jiffies, (char *)(& dev->name), "__tm6000_open", tmp___2, v4l2_type_names[(unsigned int )type], dev->users); } else { } tmp___3 = kzalloc(824UL, 208U); fh = (struct tm6000_fh *)tmp___3; if ((unsigned long )fh == (unsigned long )((struct tm6000_fh *)0)) { dev->users = dev->users - 1; return (-12); } else { } v4l2_fh_init(& fh->fh, vdev); file->private_data = (void *)fh; fh->dev = dev; fh->radio = (unsigned int )radio; dev->radio = (__u8 )radio; fh->type = type; dev->fourcc = format[0].fourcc; fh->fmt = format_by_fourcc(dev->fourcc); tm6000_get_std_res(dev); fh->width = (unsigned int )dev->width; fh->height = (unsigned int )dev->height; if ((tm6000_debug & 128) != 0) { printk("\016(%lu) %s %s :Open: fh=0x%08lx, dev=0x%08lx, dev->vidq=0x%08lx\n", jiffies, (char *)(& dev->name), "__tm6000_open", (unsigned long )fh, (unsigned long )dev, (unsigned long )(& dev->vidq)); } else { } if ((tm6000_debug & 128) != 0) { tmp___4 = list_empty((struct list_head const *)(& dev->vidq.queued)); printk("\016(%lu) %s %s :Open: list_empty queued=%d\n", jiffies, (char *)(& dev->name), "__tm6000_open", tmp___4); } else { } if ((tm6000_debug & 128) != 0) { tmp___5 = list_empty((struct list_head const *)(& dev->vidq.active)); printk("\016(%lu) %s %s :Open: list_empty active=%d\n", jiffies, (char *)(& dev->name), "__tm6000_open", tmp___5); } else { } rc = tm6000_init_analog_mode(dev); if (rc < 0) { return (rc); } else { } dev->mode = 1; if (fh->radio == 0U) { videobuf_queue_vmalloc_init(& fh->vb_vidq, (struct videobuf_queue_ops const *)(& tm6000_video_qops), (struct device *)0, & dev->slock, fh->type, 4, 248U, (void *)fh, & dev->lock); } else { if ((tm6000_debug & 128) != 0) { printk("\016(%lu) %s %s :video_open: setting radio device\n", jiffies, (char *)(& dev->name), "__tm6000_open"); } else { } tm6000_set_audio_rinput(dev); __mptr = (struct list_head const *)dev->v4l2_dev.subdevs.next; __sd = (struct v4l2_subdev *)__mptr + 0xffffffffffffff88UL; goto ldv_38316; ldv_38315: ; if ((unsigned long )(__sd->ops)->tuner != (unsigned long )((struct v4l2_subdev_tuner_ops const */* const */)0) && (unsigned long )((__sd->ops)->tuner)->s_radio != (unsigned long )((int (*/* const */)(struct v4l2_subdev * ))0)) { (*(((__sd->ops)->tuner)->s_radio))(__sd); } else { } __mptr___0 = (struct list_head const *)__sd->list.next; __sd = (struct v4l2_subdev *)__mptr___0 + 0xffffffffffffff88UL; ldv_38316: ; if ((unsigned long )(& __sd->list) != (unsigned long )(& dev->v4l2_dev.subdevs)) { goto ldv_38315; } else { } tm6000_prepare_isoc(dev); tm6000_start_thread(dev); } v4l2_fh_add(& fh->fh); return (0); } } static int tm6000_open(struct file *file ) { struct video_device *vdev ; struct video_device *tmp ; int res ; { tmp = video_devdata(file); vdev = tmp; ldv_mutex_lock_169(vdev->lock); res = __tm6000_open(file); ldv_mutex_unlock_170(vdev->lock); return (res); } } static ssize_t tm6000_read(struct file *file , char *data , size_t count , loff_t *pos ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; int res ; bool tmp ; int tmp___0 ; int tmp___1 ; ssize_t tmp___2 ; { fh = (struct tm6000_fh *)file->private_data; dev = fh->dev; if ((unsigned int )fh->type == 1U) { tmp = res_get(fh->dev, fh, 1); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-16L); } else { } tmp___1 = ldv_mutex_lock_interruptible_171(& dev->lock); if (tmp___1 != 0) { return (-512L); } else { } tmp___2 = videobuf_read_stream(& fh->vb_vidq, data, count, pos, 0, (int )file->f_flags & 2048); res = (int )tmp___2; ldv_mutex_unlock_172(& dev->lock); return ((ssize_t )res); } else { } return (0L); } } static unsigned int __tm6000_poll(struct file *file , struct poll_table_struct *wait ) { unsigned long req_events ; unsigned long tmp ; struct tm6000_fh *fh ; struct tm6000_buffer *buf ; int res ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; struct list_head const *__mptr ; unsigned int tmp___3 ; bool tmp___4 ; int tmp___5 ; { tmp = poll_requested_events((poll_table const *)wait); req_events = tmp; fh = (struct tm6000_fh *)file->private_data; res = 0; tmp___0 = v4l2_event_pending(& fh->fh); if (tmp___0 != 0) { res = 2; } else if ((req_events & 2UL) != 0UL) { poll_wait(file, & fh->fh.wait, wait); } else { } if ((unsigned int )fh->type != 1U) { return ((unsigned int )(res | 8)); } else { } tmp___1 = is_res_streaming(fh->dev, fh); if ((int )tmp___1) { return ((unsigned int )(res | 8)); } else { } tmp___4 = is_res_read(fh->dev, fh); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { tmp___2 = list_empty((struct list_head const *)(& fh->vb_vidq.stream)); if (tmp___2 != 0) { return ((unsigned int )(res | 8)); } else { } __mptr = (struct list_head const *)fh->vb_vidq.stream.next; buf = (struct tm6000_buffer *)__mptr + 0xffffffffffffffd8UL; poll_wait(file, & buf->vb.done, wait); if ((unsigned int )buf->vb.state == 4U || (unsigned int )buf->vb.state == 5U) { return ((unsigned int )(res | 65)); } else { } } else if ((req_events & 65UL) != 0UL) { tmp___3 = videobuf_poll_stream(file, & fh->vb_vidq, wait); return (tmp___3 | (unsigned int )res); } else { } return ((unsigned int )res); } } static unsigned int tm6000_poll(struct file *file , struct poll_table_struct *wait ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; unsigned int res ; { fh = (struct tm6000_fh *)file->private_data; dev = fh->dev; ldv_mutex_lock_173(& dev->lock); res = __tm6000_poll(file, wait); ldv_mutex_unlock_174(& dev->lock); return (res); } } static int tm6000_release(struct file *file ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; struct video_device *vdev ; struct video_device *tmp ; char const *tmp___0 ; { fh = (struct tm6000_fh *)file->private_data; dev = fh->dev; tmp = video_devdata(file); vdev = tmp; if ((tm6000_debug & 128) != 0) { tmp___0 = video_device_node_name(vdev); printk("\016(%lu) %s %s :tm6000: close called (dev=%s, users=%d)\n", jiffies, (char *)(& dev->name), "tm6000_release", tmp___0, dev->users); } else { } ldv_mutex_lock_175(& dev->lock); dev->users = dev->users - 1; res_free(dev, fh); if (dev->users == 0) { tm6000_uninit_isoc(dev); tm6000_ir_int_stop(dev); usb_reset_configuration(dev->udev); if ((unsigned long )dev->int_in.endp != (unsigned long )((struct usb_host_endpoint *)0)) { usb_set_interface(dev->udev, (int )dev->isoc_in.bInterfaceNumber, 2); } else { usb_set_interface(dev->udev, (int )dev->isoc_in.bInterfaceNumber, 0); } tm6000_ir_int_start(dev); if (fh->radio == 0U) { videobuf_mmap_free(& fh->vb_vidq); } else { } } else { } v4l2_fh_del(& fh->fh); v4l2_fh_exit(& fh->fh); kfree((void const *)fh); ldv_mutex_unlock_176(& dev->lock); return (0); } } static int tm6000_mmap(struct file *file , struct vm_area_struct *vma ) { struct tm6000_fh *fh ; struct tm6000_core *dev ; int res ; int tmp ; { fh = (struct tm6000_fh *)file->private_data; dev = fh->dev; tmp = ldv_mutex_lock_interruptible_177(& dev->lock); if (tmp != 0) { return (-512); } else { } res = videobuf_mmap_mapper(& fh->vb_vidq, vma); ldv_mutex_unlock_178(& dev->lock); return (res); } } static struct v4l2_file_operations tm6000_fops = {& __this_module, & tm6000_read, 0, & tm6000_poll, & video_ioctl2, 0, 0, & tm6000_mmap, & tm6000_open, & tm6000_release}; static struct v4l2_ioctl_ops const video_ioctl_ops = {& vidioc_querycap, & vidioc_enum_fmt_vid_cap, 0, 0, 0, 0, 0, & vidioc_g_fmt_vid_cap, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & vidioc_s_fmt_vid_cap, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & vidioc_try_fmt_vid_cap, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & vidioc_reqbufs, & vidioc_querybuf, & vidioc_qbuf, 0, & vidioc_dqbuf, 0, 0, 0, 0, 0, & vidioc_streamon, & vidioc_streamoff, & vidioc_g_std, & vidioc_s_std, 0, & vidioc_enum_input, & vidioc_g_input, & vidioc_s_input, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & vidioc_g_tuner, & vidioc_s_tuner, & vidioc_g_frequency, & vidioc_s_frequency, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & v4l2_ctrl_subscribe_event, & v4l2_event_unsubscribe, 0}; static struct video_device tm6000_template = {{{0, 0}, 0, 0U, 0, 0U, 0U, 0UL, 0U, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0, 0, 0, 0, 0, 0, 0, {{0U, 0U}}}, (struct v4l2_file_operations const *)(& tm6000_fops), {0, 0, {0, {0, 0}, 0, 0, 0, 0, {{0}}, {{{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{0, 0}, 0UL, 0, 0UL, 0U, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0, 0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0, {{0}, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, 0, 0, {0, {0, 0}, 0, 0, 0UL}}, 0, 0, 0, 0, {{0}, (unsigned char)0, (unsigned char)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, {0U, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}, 0, (_Bool)0, (_Bool)0, {{0, 0}, 0UL, 0, 0UL, 0U, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0UL, {{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, {0}, {0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0, 0, 0, 0, 0UL, 0UL, 0UL, 0UL, 0, 0, 0}, 0, 0, 0, 0, 0ULL, 0UL, 0, {0, 0}, 0, 0, {0, 0}, 0, 0, 0U, 0U, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, {0, {0, 0}, {{0}}}, 0, 0, 0, 0, (_Bool)0, (_Bool)0}, 0, 0, 0, 0, 0, 0, {'t', 'm', '6', '0', '0', '0', '\000'}, 0, 0, 0, (unsigned short)0, 0UL, 0, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, 0, 16728063ULL, & video_device_release_empty, & video_ioctl_ops, {0UL, 0UL, 0UL}, {0UL, 0UL, 0UL}, 0}; static struct v4l2_file_operations const radio_fops = {& __this_module, 0, 0, & v4l2_ctrl_poll, & video_ioctl2, 0, 0, 0, & tm6000_open, & tm6000_release}; static struct v4l2_ioctl_ops const radio_ioctl_ops = {& vidioc_querycap, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & radio_g_tuner, & radio_s_tuner, & vidioc_g_frequency, & vidioc_s_frequency, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & v4l2_ctrl_subscribe_event, & v4l2_event_unsubscribe, 0}; static struct video_device tm6000_radio_template = {{{0, 0}, 0, 0U, 0, 0U, 0U, 0UL, 0U, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0, 0, 0, 0, 0, 0, 0, {{0U, 0U}}}, & radio_fops, {0, 0, {0, {0, 0}, 0, 0, 0, 0, {{0}}, {{{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{0, 0}, 0UL, 0, 0UL, 0U, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0, 0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0, {{0}, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, 0, 0, {0, {0, 0}, 0, 0, 0UL}}, 0, 0, 0, 0, {{0}, (unsigned char)0, (unsigned char)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, {0U, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}, 0, (_Bool)0, (_Bool)0, {{0, 0}, 0UL, 0, 0UL, 0U, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0UL, {{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, {0}, {0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0, 0, 0, 0, 0UL, 0UL, 0UL, 0UL, 0, 0, 0}, 0, 0, 0, 0, 0ULL, 0UL, 0, {0, 0}, 0, 0, {0, 0}, 0, 0, 0U, 0U, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, {0, {0, 0}, {{0}}}, 0, 0, 0, 0, (_Bool)0, (_Bool)0}, 0, 0, 0, 0, 0, 0, {'t', 'm', '6', '0', '0', '0', '\000'}, 0, 0, 0, (unsigned short)0, 0UL, 0, {{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, 0, 0ULL, 0, & radio_ioctl_ops, {0UL, 0UL, 0UL}, {0UL, 0UL, 0UL}, 0}; static void vdev_init(struct tm6000_core *dev , struct video_device *vfd , struct video_device const *template , char const *type_name ) { { *vfd = *template; vfd->v4l2_dev = & dev->v4l2_dev; vfd->release = & video_device_release_empty; vfd->lock = & dev->lock; snprintf((char *)(& vfd->name), 32UL, "%s %s", (char *)(& dev->name), type_name); video_set_drvdata(vfd, (void *)dev); return; } } int tm6000_v4l2_register(struct tm6000_core *dev ) { int ret ; struct lock_class_key _key ; struct lock_class_key _key___0 ; char const *tmp ; char const *tmp___0 ; { ret = 0; v4l2_ctrl_handler_init_class(& dev->ctrl_handler, 6U, & _key, "tm6000_video:1630:(&dev->ctrl_handler)->_lock"); v4l2_ctrl_handler_init_class(& dev->radio_ctrl_handler, 2U, & _key___0, "tm6000_video:1631:(&dev->radio_ctrl_handler)->_lock"); v4l2_ctrl_new_std(& dev->radio_ctrl_handler, & tm6000_radio_ctrl_ops, 9963785U, 0LL, 1LL, 1ULL, 0LL); v4l2_ctrl_new_std(& dev->radio_ctrl_handler, & tm6000_radio_ctrl_ops, 9963781U, -15LL, 15LL, 1ULL, 0LL); v4l2_ctrl_new_std(& dev->ctrl_handler, & tm6000_ctrl_ops, 9963776U, 0LL, 255LL, 1ULL, 54LL); v4l2_ctrl_new_std(& dev->ctrl_handler, & tm6000_ctrl_ops, 9963777U, 0LL, 255LL, 1ULL, 119LL); v4l2_ctrl_new_std(& dev->ctrl_handler, & tm6000_ctrl_ops, 9963778U, 0LL, 255LL, 1ULL, 112LL); v4l2_ctrl_new_std(& dev->ctrl_handler, & tm6000_ctrl_ops, 9963779U, -128LL, 127LL, 1ULL, 0LL); v4l2_ctrl_add_handler(& dev->ctrl_handler, & dev->radio_ctrl_handler, (bool (*)(struct v4l2_ctrl const * ))0); if (dev->radio_ctrl_handler.error != 0) { ret = dev->radio_ctrl_handler.error; } else { } if (ret == 0 && dev->ctrl_handler.error != 0) { ret = dev->ctrl_handler.error; } else { } if (ret != 0) { goto free_ctrl; } else { } vdev_init(dev, & dev->vfd, (struct video_device const *)(& tm6000_template), "video"); dev->vfd.ctrl_handler = & dev->ctrl_handler; INIT_LIST_HEAD(& dev->vidq.active); INIT_LIST_HEAD(& dev->vidq.queued); ret = video_register_device(& dev->vfd, 0, video_nr); if (ret < 0) { printk("\016%s: can\'t register video device\n", (char *)(& dev->name)); goto free_ctrl; } else { } tmp = video_device_node_name(& dev->vfd); printk("\016%s: registered device %s\n", (char *)(& dev->name), tmp); if ((unsigned int )*((unsigned char *)dev + 324UL) != 0U) { vdev_init(dev, & dev->radio_dev, (struct video_device const *)(& tm6000_radio_template), "radio"); dev->radio_dev.ctrl_handler = & dev->radio_ctrl_handler; ret = video_register_device(& dev->radio_dev, 2, radio_nr); if (ret < 0) { printk("\016%s: can\'t register radio device\n", (char *)(& dev->name)); goto unreg_video; } else { } tmp___0 = video_device_node_name(& dev->radio_dev); printk("\016%s: registered device %s\n", (char *)(& dev->name), tmp___0); } else { } printk("\016Trident TVMaster TM5600/TM6000/TM6010 USB2 board (Load status: %d)\n", ret); return (ret); unreg_video: video_unregister_device(& dev->vfd); free_ctrl: v4l2_ctrl_handler_free(& dev->ctrl_handler); v4l2_ctrl_handler_free(& dev->radio_ctrl_handler); return (ret); } } int tm6000_v4l2_unregister(struct tm6000_core *dev ) { { video_unregister_device(& dev->vfd); tm6000_free_urb_buffers(dev); video_unregister_device(& dev->radio_dev); return (0); } } int tm6000_v4l2_exit(void) { { return (0); } } int ldv_retval_0 ; int ldv_retval_4 ; int ldv_retval_1 ; extern int ldv_probe_6(void) ; void ldv_videobuf_queue_ops_11(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(608UL); tm6000_video_qops_group1 = (struct videobuf_queue *)tmp; tmp___0 = ldv_init_zalloc(240UL); tm6000_video_qops_group2 = (struct videobuf_buffer *)tmp___0; return; } } void ldv_initialize_v4l2_ioctl_ops_7(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { tmp = ldv_init_zalloc(32UL); video_ioctl_ops_group1 = (struct v4l2_event_subscription const *)tmp; tmp___0 = ldv_init_zalloc(208UL); video_ioctl_ops_group0 = (struct v4l2_format *)tmp___0; tmp___1 = __VERIFIER_nondet_pointer(); video_ioctl_ops_group3 = (struct file *)tmp___1; tmp___2 = ldv_init_zalloc(176UL); video_ioctl_ops_group2 = (struct v4l2_fh *)tmp___2; tmp___3 = ldv_init_zalloc(88UL); video_ioctl_ops_group4 = (struct v4l2_buffer *)tmp___3; return; } } void ldv_initialize_v4l2_ioctl_ops_4(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_init_zalloc(32UL); radio_ioctl_ops_group0 = (struct v4l2_event_subscription const *)tmp; tmp___0 = __VERIFIER_nondet_pointer(); radio_ioctl_ops_group2 = (struct file *)tmp___0; tmp___1 = ldv_init_zalloc(176UL); radio_ioctl_ops_group1 = (struct v4l2_fh *)tmp___1; return; } } void ldv_initialize_v4l2_file_operations_8(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); tm6000_fops_group0 = (struct file *)tmp; return; } } void ldv_initialize_v4l2_file_operations_5(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); radio_fops_group0 = (struct file *)tmp; return; } } void ldv_main_exported_6(void) { struct video_device *ldvarg0 ; void *tmp ; int tmp___0 ; { tmp = ldv_init_zalloc(1832UL); ldvarg0 = (struct video_device *)tmp; tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_6 == 2) { video_device_release_empty(ldvarg0); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_38492; case 1: ; if (ldv_state_variable_6 == 1) { ldv_probe_6(); ldv_state_variable_6 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_38492; default: ldv_stop(); } ldv_38492: ; return; } } void ldv_main_exported_11(void) { unsigned int *ldvarg2 ; void *tmp ; unsigned int *ldvarg3 ; void *tmp___0 ; enum v4l2_field ldvarg1 ; int tmp___1 ; { tmp = ldv_init_zalloc(4UL); ldvarg2 = (unsigned int *)tmp; tmp___0 = ldv_init_zalloc(4UL); ldvarg3 = (unsigned int *)tmp___0; ldv_memset((void *)(& ldvarg1), 0, 4UL); tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_11 == 1) { buffer_setup(tm6000_video_qops_group1, ldvarg3, ldvarg2); ldv_state_variable_11 = 1; } else { } if (ldv_state_variable_11 == 2) { buffer_setup(tm6000_video_qops_group1, ldvarg3, ldvarg2); ldv_state_variable_11 = 2; } else { } goto ldv_38502; case 1: ; if (ldv_state_variable_11 == 2) { buffer_release(tm6000_video_qops_group1, tm6000_video_qops_group2); ldv_state_variable_11 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_38502; case 2: ; if (ldv_state_variable_11 == 1) { buffer_queue(tm6000_video_qops_group1, tm6000_video_qops_group2); ldv_state_variable_11 = 1; } else { } if (ldv_state_variable_11 == 2) { buffer_queue(tm6000_video_qops_group1, tm6000_video_qops_group2); ldv_state_variable_11 = 2; } else { } goto ldv_38502; case 3: ; if (ldv_state_variable_11 == 1) { ldv_retval_0 = buffer_prepare(tm6000_video_qops_group1, tm6000_video_qops_group2, ldvarg1); if (ldv_retval_0 == 0) { ldv_state_variable_11 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_38502; default: ldv_stop(); } ldv_38502: ; return; } } void ldv_main_exported_7(void) { struct v4l2_frequency *ldvarg19 ; void *tmp ; void *ldvarg22 ; void *tmp___0 ; void *ldvarg25 ; void *tmp___1 ; unsigned int *ldvarg17 ; void *tmp___2 ; void *ldvarg21 ; void *tmp___3 ; void *ldvarg30 ; void *tmp___4 ; void *ldvarg15 ; void *tmp___5 ; enum v4l2_buf_type ldvarg27 ; void *ldvarg26 ; void *tmp___6 ; void *ldvarg9 ; void *tmp___7 ; v4l2_std_id *ldvarg10 ; void *tmp___8 ; struct v4l2_requestbuffers *ldvarg36 ; void *tmp___9 ; void *ldvarg13 ; void *tmp___10 ; struct v4l2_input *ldvarg8 ; void *tmp___11 ; v4l2_std_id ldvarg31 ; void *ldvarg20 ; void *tmp___12 ; void *ldvarg28 ; void *tmp___13 ; struct v4l2_tuner *ldvarg34 ; void *tmp___14 ; struct v4l2_capability *ldvarg14 ; void *tmp___15 ; enum v4l2_buf_type ldvarg4 ; void *ldvarg16 ; void *tmp___16 ; unsigned int ldvarg6 ; void *ldvarg33 ; void *tmp___17 ; void *ldvarg5 ; void *tmp___18 ; void *ldvarg35 ; void *tmp___19 ; void *ldvarg24 ; void *tmp___20 ; struct v4l2_tuner *ldvarg29 ; void *tmp___21 ; void *ldvarg37 ; void *tmp___22 ; struct v4l2_frequency *ldvarg12 ; void *tmp___23 ; struct v4l2_fmtdesc *ldvarg23 ; void *tmp___24 ; void *ldvarg7 ; void *tmp___25 ; void *ldvarg32 ; void *tmp___26 ; void *ldvarg11 ; void *tmp___27 ; void *ldvarg18 ; void *tmp___28 ; int tmp___29 ; { tmp = ldv_init_zalloc(44UL); ldvarg19 = (struct v4l2_frequency *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg22 = tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg25 = tmp___1; tmp___2 = ldv_init_zalloc(4UL); ldvarg17 = (unsigned int *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg21 = tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg30 = tmp___4; tmp___5 = ldv_init_zalloc(1UL); ldvarg15 = tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg26 = tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg9 = tmp___7; tmp___8 = ldv_init_zalloc(8UL); ldvarg10 = (v4l2_std_id *)tmp___8; tmp___9 = ldv_init_zalloc(20UL); ldvarg36 = (struct v4l2_requestbuffers *)tmp___9; tmp___10 = ldv_init_zalloc(1UL); ldvarg13 = tmp___10; tmp___11 = ldv_init_zalloc(80UL); ldvarg8 = (struct v4l2_input *)tmp___11; tmp___12 = ldv_init_zalloc(1UL); ldvarg20 = tmp___12; tmp___13 = ldv_init_zalloc(1UL); ldvarg28 = tmp___13; tmp___14 = ldv_init_zalloc(84UL); ldvarg34 = (struct v4l2_tuner *)tmp___14; tmp___15 = ldv_init_zalloc(104UL); ldvarg14 = (struct v4l2_capability *)tmp___15; tmp___16 = ldv_init_zalloc(1UL); ldvarg16 = tmp___16; tmp___17 = ldv_init_zalloc(1UL); ldvarg33 = tmp___17; tmp___18 = ldv_init_zalloc(1UL); ldvarg5 = tmp___18; tmp___19 = ldv_init_zalloc(1UL); ldvarg35 = tmp___19; tmp___20 = ldv_init_zalloc(1UL); ldvarg24 = tmp___20; tmp___21 = ldv_init_zalloc(84UL); ldvarg29 = (struct v4l2_tuner *)tmp___21; tmp___22 = ldv_init_zalloc(1UL); ldvarg37 = tmp___22; tmp___23 = ldv_init_zalloc(44UL); ldvarg12 = (struct v4l2_frequency *)tmp___23; tmp___24 = ldv_init_zalloc(64UL); ldvarg23 = (struct v4l2_fmtdesc *)tmp___24; tmp___25 = ldv_init_zalloc(1UL); ldvarg7 = tmp___25; tmp___26 = ldv_init_zalloc(1UL); ldvarg32 = tmp___26; tmp___27 = ldv_init_zalloc(1UL); ldvarg11 = tmp___27; tmp___28 = ldv_init_zalloc(1UL); ldvarg18 = tmp___28; ldv_memset((void *)(& ldvarg27), 0, 4UL); ldv_memset((void *)(& ldvarg31), 0, 8UL); ldv_memset((void *)(& ldvarg4), 0, 4UL); ldv_memset((void *)(& ldvarg6), 0, 4UL); tmp___29 = __VERIFIER_nondet_int(); switch (tmp___29) { case 0: ; if (ldv_state_variable_7 == 1) { vidioc_reqbufs(video_ioctl_ops_group3, ldvarg37, ldvarg36); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 1: ; if (ldv_state_variable_7 == 1) { v4l2_event_unsubscribe(video_ioctl_ops_group2, video_ioctl_ops_group1); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 2: ; if (ldv_state_variable_7 == 1) { vidioc_g_tuner(video_ioctl_ops_group3, ldvarg35, ldvarg34); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 3: ; if (ldv_state_variable_7 == 1) { vidioc_try_fmt_vid_cap(video_ioctl_ops_group3, ldvarg33, video_ioctl_ops_group0); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 4: ; if (ldv_state_variable_7 == 1) { vidioc_s_std(video_ioctl_ops_group3, ldvarg32, ldvarg31); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 5: ; if (ldv_state_variable_7 == 1) { vidioc_s_tuner(video_ioctl_ops_group3, ldvarg30, (struct v4l2_tuner const *)ldvarg29); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 6: ; if (ldv_state_variable_7 == 1) { vidioc_streamoff(video_ioctl_ops_group3, ldvarg28, ldvarg27); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 7: ; if (ldv_state_variable_7 == 1) { vidioc_dqbuf(video_ioctl_ops_group3, ldvarg26, video_ioctl_ops_group4); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 8: ; if (ldv_state_variable_7 == 1) { vidioc_querybuf(video_ioctl_ops_group3, ldvarg25, video_ioctl_ops_group4); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 9: ; if (ldv_state_variable_7 == 1) { vidioc_enum_fmt_vid_cap(video_ioctl_ops_group3, ldvarg24, ldvarg23); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 10: ; if (ldv_state_variable_7 == 1) { vidioc_s_fmt_vid_cap(video_ioctl_ops_group3, ldvarg22, video_ioctl_ops_group0); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 11: ; if (ldv_state_variable_7 == 1) { vidioc_g_fmt_vid_cap(video_ioctl_ops_group3, ldvarg21, video_ioctl_ops_group0); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 12: ; if (ldv_state_variable_7 == 1) { vidioc_g_frequency(video_ioctl_ops_group3, ldvarg20, ldvarg19); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 13: ; if (ldv_state_variable_7 == 1) { vidioc_g_input(video_ioctl_ops_group3, ldvarg18, ldvarg17); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 14: ; if (ldv_state_variable_7 == 1) { vidioc_qbuf(video_ioctl_ops_group3, ldvarg16, video_ioctl_ops_group4); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 15: ; if (ldv_state_variable_7 == 1) { vidioc_querycap(video_ioctl_ops_group3, ldvarg15, ldvarg14); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 16: ; if (ldv_state_variable_7 == 1) { vidioc_s_frequency(video_ioctl_ops_group3, ldvarg13, (struct v4l2_frequency const *)ldvarg12); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 17: ; if (ldv_state_variable_7 == 1) { vidioc_g_std(video_ioctl_ops_group3, ldvarg11, ldvarg10); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 18: ; if (ldv_state_variable_7 == 1) { vidioc_enum_input(video_ioctl_ops_group3, ldvarg9, ldvarg8); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 19: ; if (ldv_state_variable_7 == 1) { v4l2_ctrl_subscribe_event(video_ioctl_ops_group2, video_ioctl_ops_group1); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 20: ; if (ldv_state_variable_7 == 1) { vidioc_s_input(video_ioctl_ops_group3, ldvarg7, ldvarg6); ldv_state_variable_7 = 1; } else { } goto ldv_38545; case 21: ; if (ldv_state_variable_7 == 1) { vidioc_streamon(video_ioctl_ops_group3, ldvarg5, ldvarg4); ldv_state_variable_7 = 1; } else { } goto ldv_38545; default: ldv_stop(); } ldv_38545: ; return; } } void ldv_main_exported_9(void) { struct v4l2_ctrl *ldvarg38 ; void *tmp ; int tmp___0 ; { tmp = ldv_init_zalloc(208UL); ldvarg38 = (struct v4l2_ctrl *)tmp; tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_9 == 1) { tm6000_radio_s_ctrl(ldvarg38); ldv_state_variable_9 = 1; } else { } goto ldv_38573; default: ldv_stop(); } ldv_38573: ; return; } } void ldv_main_exported_8(void) { char *ldvarg46 ; void *tmp ; struct vm_area_struct *ldvarg47 ; void *tmp___0 ; loff_t *ldvarg44 ; void *tmp___1 ; unsigned int ldvarg42 ; struct poll_table_struct *ldvarg43 ; void *tmp___2 ; unsigned long ldvarg41 ; size_t ldvarg45 ; int tmp___3 ; { tmp = ldv_init_zalloc(1UL); ldvarg46 = (char *)tmp; tmp___0 = ldv_init_zalloc(184UL); ldvarg47 = (struct vm_area_struct *)tmp___0; tmp___1 = ldv_init_zalloc(8UL); ldvarg44 = (loff_t *)tmp___1; tmp___2 = ldv_init_zalloc(16UL); ldvarg43 = (struct poll_table_struct *)tmp___2; ldv_memset((void *)(& ldvarg42), 0, 4UL); ldv_memset((void *)(& ldvarg41), 0, 8UL); ldv_memset((void *)(& ldvarg45), 0, 8UL); tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_8 == 1) { tm6000_mmap(tm6000_fops_group0, ldvarg47); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 2) { tm6000_mmap(tm6000_fops_group0, ldvarg47); ldv_state_variable_8 = 2; } else { } goto ldv_38586; case 1: ; if (ldv_state_variable_8 == 2) { tm6000_release(tm6000_fops_group0); ldv_state_variable_8 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_38586; case 2: ; if (ldv_state_variable_8 == 2) { tm6000_read(tm6000_fops_group0, ldvarg46, ldvarg45, ldvarg44); ldv_state_variable_8 = 2; } else { } goto ldv_38586; case 3: ; if (ldv_state_variable_8 == 1) { tm6000_poll(tm6000_fops_group0, ldvarg43); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 2) { tm6000_poll(tm6000_fops_group0, ldvarg43); ldv_state_variable_8 = 2; } else { } goto ldv_38586; case 4: ; if (ldv_state_variable_8 == 1) { ldv_retval_1 = tm6000_open(tm6000_fops_group0); if (ldv_retval_1 == 0) { ldv_state_variable_8 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_38586; case 5: ; if (ldv_state_variable_8 == 1) { video_ioctl2(tm6000_fops_group0, ldvarg42, ldvarg41); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 2) { video_ioctl2(tm6000_fops_group0, ldvarg42, ldvarg41); ldv_state_variable_8 = 2; } else { } goto ldv_38586; default: ldv_stop(); } ldv_38586: ; return; } } void ldv_main_exported_4(void) { struct v4l2_frequency *ldvarg52 ; void *tmp ; void *ldvarg55 ; void *tmp___0 ; void *ldvarg53 ; void *tmp___1 ; struct v4l2_tuner *ldvarg54 ; void *tmp___2 ; struct v4l2_frequency *ldvarg48 ; void *tmp___3 ; void *ldvarg57 ; void *tmp___4 ; struct v4l2_capability *ldvarg50 ; void *tmp___5 ; void *ldvarg49 ; void *tmp___6 ; struct v4l2_tuner *ldvarg56 ; void *tmp___7 ; void *ldvarg51 ; void *tmp___8 ; int tmp___9 ; { tmp = ldv_init_zalloc(44UL); ldvarg52 = (struct v4l2_frequency *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg55 = tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg53 = tmp___1; tmp___2 = ldv_init_zalloc(84UL); ldvarg54 = (struct v4l2_tuner *)tmp___2; tmp___3 = ldv_init_zalloc(44UL); ldvarg48 = (struct v4l2_frequency *)tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg57 = tmp___4; tmp___5 = ldv_init_zalloc(104UL); ldvarg50 = (struct v4l2_capability *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg49 = tmp___6; tmp___7 = ldv_init_zalloc(84UL); ldvarg56 = (struct v4l2_tuner *)tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg51 = tmp___8; tmp___9 = __VERIFIER_nondet_int(); switch (tmp___9) { case 0: ; if (ldv_state_variable_4 == 1) { v4l2_event_unsubscribe(radio_ioctl_ops_group1, radio_ioctl_ops_group0); ldv_state_variable_4 = 1; } else { } goto ldv_38607; case 1: ; if (ldv_state_variable_4 == 1) { radio_g_tuner(radio_ioctl_ops_group2, ldvarg57, ldvarg56); ldv_state_variable_4 = 1; } else { } goto ldv_38607; case 2: ; if (ldv_state_variable_4 == 1) { radio_s_tuner(radio_ioctl_ops_group2, ldvarg55, (struct v4l2_tuner const *)ldvarg54); ldv_state_variable_4 = 1; } else { } goto ldv_38607; case 3: ; if (ldv_state_variable_4 == 1) { vidioc_g_frequency(radio_ioctl_ops_group2, ldvarg53, ldvarg52); ldv_state_variable_4 = 1; } else { } goto ldv_38607; case 4: ; if (ldv_state_variable_4 == 1) { vidioc_querycap(radio_ioctl_ops_group2, ldvarg51, ldvarg50); ldv_state_variable_4 = 1; } else { } goto ldv_38607; case 5: ; if (ldv_state_variable_4 == 1) { vidioc_s_frequency(radio_ioctl_ops_group2, ldvarg49, (struct v4l2_frequency const *)ldvarg48); ldv_state_variable_4 = 1; } else { } goto ldv_38607; case 6: ; if (ldv_state_variable_4 == 1) { v4l2_ctrl_subscribe_event(radio_ioctl_ops_group1, radio_ioctl_ops_group0); ldv_state_variable_4 = 1; } else { } goto ldv_38607; default: ldv_stop(); } ldv_38607: ; return; } } void ldv_main_exported_10(void) { struct v4l2_ctrl *ldvarg59 ; void *tmp ; int tmp___0 ; { tmp = ldv_init_zalloc(208UL); ldvarg59 = (struct v4l2_ctrl *)tmp; tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_10 == 1) { tm6000_s_ctrl(ldvarg59); ldv_state_variable_10 = 1; } else { } goto ldv_38620; default: ldv_stop(); } ldv_38620: ; return; } } void ldv_main_exported_5(void) { struct poll_table_struct *ldvarg62 ; void *tmp ; unsigned long ldvarg60 ; unsigned int ldvarg61 ; int tmp___0 ; { tmp = ldv_init_zalloc(16UL); ldvarg62 = (struct poll_table_struct *)tmp; ldv_memset((void *)(& ldvarg60), 0, 8UL); ldv_memset((void *)(& ldvarg61), 0, 4UL); tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_5 == 1) { ldv_retval_4 = tm6000_open(radio_fops_group0); if (ldv_retval_4 == 0) { ldv_state_variable_5 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_38629; case 1: ; if (ldv_state_variable_5 == 2) { tm6000_release(radio_fops_group0); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_38629; case 2: ; if (ldv_state_variable_5 == 1) { v4l2_ctrl_poll(radio_fops_group0, ldvarg62); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { v4l2_ctrl_poll(radio_fops_group0, ldvarg62); ldv_state_variable_5 = 2; } else { } goto ldv_38629; case 3: ; if (ldv_state_variable_5 == 1) { video_ioctl2(radio_fops_group0, ldvarg61, ldvarg60); ldv_state_variable_5 = 1; } else { } if (ldv_state_variable_5 == 2) { video_ioctl2(radio_fops_group0, ldvarg61, ldvarg60); ldv_state_variable_5 = 2; } else { } goto ldv_38629; default: ldv_stop(); } ldv_38629: ; return; } } bool ldv_queue_work_on_153(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_154(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_155(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_156(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_157(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_158(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_159(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_160(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_161(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_162(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_163(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_164(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_165(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_166(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_167(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_169(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_video_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_170(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_video_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_lock_interruptible_171(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_lock_interruptible(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_lock_interruptible_lock_of_tm6000_core(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_172(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_173(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_tm6000_core(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_174(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_175(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_tm6000_core(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_176(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_lock_interruptible_177(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_lock_interruptible(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_lock_interruptible_lock_of_tm6000_core(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_178(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_tm6000_core(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_219(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_215(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_216(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_220(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_222(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_224(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_214(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_217(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_218(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_221(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_223(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_209(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_211(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_210(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_213(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_212(struct workqueue_struct *ldv_func_arg1 ) ; static unsigned int tm6010_a_mode ; static struct tm6000_reg_settings composite_pal_m[25U] = { {7U, 63U, 1U}, {7U, 0U, 4U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 0U}, {7U, 7U, 49U}, {7U, 24U, 30U}, {7U, 25U, 131U}, {7U, 26U, 10U}, {7U, 27U, 224U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 136U}, {7U, 48U, 32U}, {7U, 49U, 97U}, {7U, 51U, 12U}, {7U, 53U, 28U}, {7U, 130U, 82U}, {7U, 131U, 111U}, {7U, 4U, 220U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings composite_pal_nc[25U] = { {7U, 63U, 1U}, {7U, 0U, 54U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 2U}, {7U, 7U, 49U}, {7U, 24U, 30U}, {7U, 25U, 145U}, {7U, 26U, 31U}, {7U, 27U, 12U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 140U}, {7U, 48U, 44U}, {7U, 49U, 193U}, {7U, 51U, 12U}, {7U, 53U, 28U}, {7U, 130U, 82U}, {7U, 131U, 111U}, {7U, 4U, 220U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings composite_pal[25U] = { {7U, 63U, 1U}, {7U, 0U, 50U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 2U}, {7U, 7U, 49U}, {7U, 24U, 37U}, {7U, 25U, 213U}, {7U, 26U, 99U}, {7U, 27U, 80U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 140U}, {7U, 48U, 44U}, {7U, 49U, 193U}, {7U, 51U, 12U}, {7U, 53U, 28U}, {7U, 130U, 82U}, {7U, 131U, 111U}, {7U, 4U, 220U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings composite_secam[24U] = { {7U, 63U, 1U}, {7U, 0U, 56U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 2U}, {7U, 7U, 49U}, {7U, 24U, 36U}, {7U, 25U, 146U}, {7U, 26U, 232U}, {7U, 27U, 237U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 140U}, {7U, 48U, 44U}, {7U, 49U, 193U}, {7U, 51U, 44U}, {7U, 53U, 24U}, {7U, 130U, 66U}, {7U, 131U, 255U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings composite_ntsc[25U] = { {7U, 63U, 1U}, {7U, 0U, 0U}, {7U, 1U, 15U}, {7U, 2U, 95U}, {7U, 3U, 0U}, {7U, 7U, 49U}, {7U, 24U, 30U}, {7U, 25U, 139U}, {7U, 26U, 162U}, {7U, 27U, 233U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 136U}, {7U, 48U, 34U}, {7U, 49U, 97U}, {7U, 51U, 28U}, {7U, 53U, 28U}, {7U, 130U, 66U}, {7U, 131U, 111U}, {7U, 4U, 221U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_std_settings composite_stds[5U] = { {256ULL, (struct tm6000_reg_settings *)(& composite_pal_m)}, {1024ULL, (struct tm6000_reg_settings *)(& composite_pal_nc)}, {255ULL, (struct tm6000_reg_settings *)(& composite_pal)}, {16711680ULL, (struct tm6000_reg_settings *)(& composite_secam)}, {45056ULL, (struct tm6000_reg_settings *)(& composite_ntsc)}}; static struct tm6000_reg_settings svideo_pal_m[25U] = { {7U, 63U, 1U}, {7U, 0U, 5U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 4U}, {7U, 7U, 49U}, {7U, 24U, 30U}, {7U, 25U, 131U}, {7U, 26U, 10U}, {7U, 27U, 224U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 136U}, {7U, 48U, 34U}, {7U, 49U, 97U}, {7U, 51U, 12U}, {7U, 53U, 28U}, {7U, 130U, 82U}, {7U, 131U, 111U}, {7U, 4U, 220U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings svideo_pal_nc[25U] = { {7U, 63U, 1U}, {7U, 0U, 55U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 4U}, {7U, 7U, 49U}, {7U, 24U, 30U}, {7U, 25U, 145U}, {7U, 26U, 31U}, {7U, 27U, 12U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 136U}, {7U, 48U, 34U}, {7U, 49U, 193U}, {7U, 51U, 12U}, {7U, 53U, 28U}, {7U, 130U, 82U}, {7U, 131U, 111U}, {7U, 4U, 220U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings svideo_pal[25U] = { {7U, 63U, 1U}, {7U, 0U, 51U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 4U}, {7U, 7U, 48U}, {7U, 24U, 37U}, {7U, 25U, 213U}, {7U, 26U, 99U}, {7U, 27U, 80U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 140U}, {7U, 48U, 42U}, {7U, 49U, 193U}, {7U, 51U, 12U}, {7U, 53U, 28U}, {7U, 130U, 82U}, {7U, 131U, 111U}, {7U, 4U, 220U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings svideo_secam[24U] = { {7U, 63U, 1U}, {7U, 0U, 57U}, {7U, 1U, 14U}, {7U, 2U, 95U}, {7U, 3U, 3U}, {7U, 7U, 49U}, {7U, 24U, 36U}, {7U, 25U, 146U}, {7U, 26U, 232U}, {7U, 27U, 237U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 140U}, {7U, 48U, 42U}, {7U, 49U, 193U}, {7U, 51U, 44U}, {7U, 53U, 24U}, {7U, 130U, 66U}, {7U, 131U, 255U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_reg_settings svideo_ntsc[26U] = { {7U, 63U, 1U}, {7U, 0U, 1U}, {7U, 1U, 15U}, {7U, 2U, 95U}, {7U, 3U, 3U}, {7U, 7U, 48U}, {7U, 23U, 139U}, {7U, 24U, 30U}, {7U, 25U, 139U}, {7U, 26U, 162U}, {7U, 27U, 233U}, {7U, 28U, 28U}, {7U, 29U, 204U}, {7U, 30U, 204U}, {7U, 31U, 205U}, {7U, 46U, 136U}, {7U, 48U, 34U}, {7U, 49U, 97U}, {7U, 51U, 28U}, {7U, 53U, 28U}, {7U, 130U, 66U}, {7U, 131U, 111U}, {7U, 4U, 221U}, {7U, 13U, 7U}, {7U, 63U, 0U}, {0U, 0U, 0U}}; static struct tm6000_std_settings svideo_stds[5U] = { {256ULL, (struct tm6000_reg_settings *)(& svideo_pal_m)}, {1024ULL, (struct tm6000_reg_settings *)(& svideo_pal_nc)}, {255ULL, (struct tm6000_reg_settings *)(& svideo_pal)}, {16711680ULL, (struct tm6000_reg_settings *)(& svideo_secam)}, {45056ULL, (struct tm6000_reg_settings *)(& svideo_ntsc)}}; static int tm6000_set_audio_std(struct tm6000_core *dev ) { uint8_t areg_02 ; uint8_t areg_05 ; uint8_t areg_06 ; { areg_02 = 4U; areg_05 = 1U; areg_06 = 2U; if ((unsigned int )dev->radio != 0U) { tm6000_set_reg(dev, 8, 1, 0); tm6000_set_reg(dev, 8, 2, 4); tm6000_set_reg(dev, 8, 3, 0); tm6000_set_reg(dev, 8, 4, 128); tm6000_set_reg(dev, 8, 5, 12); if (dev->amode == 0) { tm6000_set_reg(dev, 8, 6, 0); } else if (dev->amode == 1) { tm6000_set_reg(dev, 8, 6, 2); } else { } tm6000_set_reg(dev, 8, 9, 24); tm6000_set_reg(dev, 8, 12, 10); tm6000_set_reg(dev, 8, 13, 64); tm6000_set_reg(dev, 8, 241, 254); tm6000_set_reg(dev, 8, 30, 19); tm6000_set_reg(dev, 8, 1, 128); tm6000_set_reg(dev, 7, 254, 255); return (0); } else { } if ((dev->norm & 45056ULL) == 32768ULL) { areg_05 = (uint8_t )((unsigned int )areg_05 | 4U); } else if ((dev->norm & 45056ULL) == 8192ULL) { areg_05 = (uint8_t )((unsigned int )areg_05 | 67U); } else if ((dev->norm & 46848ULL) != 0ULL) { areg_05 = (uint8_t )((unsigned int )areg_05 | 34U); } else { switch (tm6010_a_mode) { case 0U: ; if ((dev->norm & 16711680ULL) == 4194304ULL) { areg_05 = areg_05; } else { areg_05 = (uint8_t )((unsigned int )areg_05 | 16U); } goto ldv_34244; case 1U: ; if ((dev->norm & 3277024ULL) != 0ULL) { areg_05 = 9U; } else { areg_05 = 5U; } goto ldv_34244; case 2U: ; if ((dev->norm & 3277024ULL) != 0ULL) { areg_05 = 6U; } else if ((dev->norm & 16ULL) != 0ULL) { areg_05 = 8U; } else if ((dev->norm & 4194304ULL) != 0ULL) { areg_05 = 10U; areg_02 = 2U; } else { areg_05 = 7U; } goto ldv_34244; case 3U: ; if ((dev->norm & 3277024ULL) != 0ULL) { areg_05 = 11U; } else { areg_05 = 2U; } goto ldv_34244; } ldv_34244: ; } tm6000_set_reg(dev, 8, 1, 0); tm6000_set_reg(dev, 8, 2, (int )areg_02); tm6000_set_reg(dev, 8, 3, 0); tm6000_set_reg(dev, 8, 4, 160); tm6000_set_reg(dev, 8, 5, (int )areg_05); tm6000_set_reg(dev, 8, 6, (int )areg_06); tm6000_set_reg(dev, 8, 7, 0); tm6000_set_reg(dev, 8, 8, 0); tm6000_set_reg(dev, 8, 9, 8); tm6000_set_reg(dev, 8, 10, 145); tm6000_set_reg(dev, 8, 11, 32); tm6000_set_reg(dev, 8, 12, 18); tm6000_set_reg(dev, 8, 13, 32); tm6000_set_reg(dev, 8, 14, 240); tm6000_set_reg(dev, 8, 15, 128); tm6000_set_reg(dev, 8, 16, 192); tm6000_set_reg(dev, 8, 17, 128); tm6000_set_reg(dev, 8, 18, 18); tm6000_set_reg(dev, 8, 19, 254); tm6000_set_reg(dev, 8, 20, 32); tm6000_set_reg(dev, 8, 21, 20); tm6000_set_reg(dev, 8, 22, 254); tm6000_set_reg(dev, 8, 23, 1); tm6000_set_reg(dev, 8, 24, 160); tm6000_set_reg(dev, 8, 25, 50); tm6000_set_reg(dev, 8, 26, 100); tm6000_set_reg(dev, 8, 27, 32); tm6000_set_reg(dev, 8, 28, 0); tm6000_set_reg(dev, 8, 29, 0); tm6000_set_reg(dev, 8, 30, 19); tm6000_set_reg(dev, 8, 31, 0); tm6000_set_reg(dev, 8, 32, 0); tm6000_set_reg(dev, 8, 1, 128); return (0); } } void tm6000_get_std_res(struct tm6000_core *dev ) { { if ((dev->norm & 63744ULL) != 0ULL) { dev->height = 480; } else { dev->height = 576; } dev->width = 720; return; } } static int tm6000_load_std(struct tm6000_core *dev , struct tm6000_reg_settings *set ) { int i ; int rc ; { i = 0; goto ldv_34258; ldv_34257: rc = tm6000_set_reg(dev, (int )(set + (unsigned long )i)->req, (int )(set + (unsigned long )i)->reg, (int )(set + (unsigned long )i)->value); if (rc < 0) { printk("\vError %i while setting req %d, reg %d to value %d\n", rc, (int )(set + (unsigned long )i)->req, (int )(set + (unsigned long )i)->reg, (int )(set + (unsigned long )i)->value); return (rc); } else { } i = i + 1; ldv_34258: ; if ((unsigned int )(set + (unsigned long )i)->req != 0U) { goto ldv_34257; } else { } return (0); } } int tm6000_set_standard(struct tm6000_core *dev ) { struct tm6000_input *input ; int i ; int rc ; u8 reg_07_fe ; u8 reg_08_f1 ; u8 reg_08_e2 ; u8 reg_08_e6 ; { rc = 0; reg_07_fe = 138U; reg_08_f1 = 252U; reg_08_e2 = 240U; reg_08_e6 = 15U; tm6000_get_std_res(dev); if ((unsigned int )dev->radio == 0U) { input = (struct tm6000_input *)(& dev->vinput) + (unsigned long )dev->input; } else { input = & dev->rinput; } if ((unsigned int )dev->dev_type == 2U) { switch ((unsigned int )input->vmux) { case 1U: tm6000_set_reg(dev, 8, 227, 244); tm6000_set_reg(dev, 8, 234, 241); tm6000_set_reg(dev, 8, 235, 224); tm6000_set_reg(dev, 8, 236, 194); tm6000_set_reg(dev, 8, 237, 232); reg_07_fe = (u8 )((unsigned int )reg_07_fe | 1U); goto ldv_34271; case 2U: tm6000_set_reg(dev, 8, 227, 248); tm6000_set_reg(dev, 8, 234, 241); tm6000_set_reg(dev, 8, 235, 224); tm6000_set_reg(dev, 8, 236, 194); tm6000_set_reg(dev, 8, 237, 232); reg_07_fe = (u8 )((unsigned int )reg_07_fe | 1U); goto ldv_34271; case 3U: tm6000_set_reg(dev, 8, 227, 252); tm6000_set_reg(dev, 8, 228, 248); reg_08_e6 = 0U; tm6000_set_reg(dev, 8, 234, 242); tm6000_set_reg(dev, 8, 235, 240); tm6000_set_reg(dev, 8, 236, 194); tm6000_set_reg(dev, 8, 237, 224); goto ldv_34271; default: ; goto ldv_34271; } ldv_34271: ; switch ((unsigned int )input->amux) { case 4U: tm6000_set_reg_mask(dev, 8, 240, 0, 15); tm6000_set_reg_mask(dev, 7, 7, 16, 240); goto ldv_34276; case 5U: tm6000_set_reg_mask(dev, 8, 240, 8, 15); tm6000_set_reg_mask(dev, 7, 7, 16, 240); goto ldv_34276; case 6U: reg_08_e2 = (u8 )((unsigned int )reg_08_e2 | 2U); reg_08_e6 = 8U; reg_07_fe = (u8 )((unsigned int )reg_07_fe | 64U); reg_08_f1 = (u8 )((unsigned int )reg_08_f1 | 2U); tm6000_set_reg(dev, 8, 228, 243); tm6000_set_reg_mask(dev, 8, 240, 2, 15); tm6000_set_reg_mask(dev, 7, 7, 48, 240); goto ldv_34276; case 7U: reg_08_e2 = (u8 )((unsigned int )reg_08_e2 | 2U); reg_08_e6 = 8U; reg_07_fe = (u8 )((unsigned int )reg_07_fe | 64U); reg_08_f1 = (u8 )((unsigned int )reg_08_f1 | 2U); tm6000_set_reg(dev, 8, 228, 247); tm6000_set_reg_mask(dev, 8, 240, 2, 15); tm6000_set_reg_mask(dev, 7, 7, 48, 240); goto ldv_34276; default: ; goto ldv_34276; } ldv_34276: tm6000_set_reg(dev, 8, 226, (int )reg_08_e2); tm6000_set_reg(dev, 8, 230, (int )reg_08_e6); tm6000_set_reg(dev, 8, 241, (int )reg_08_f1); tm6000_set_reg(dev, 7, 254, (int )reg_07_fe); } else { switch ((unsigned int )input->vmux) { case 1U: tm6000_set_reg(dev, 7, 227, 16); tm6000_set_reg(dev, 7, 229, 0); tm6000_set_reg(dev, 7, 232, 15); tm6000_set_reg(dev, 3, (int )((u16 )input->v_gpio), 0); goto ldv_34282; case 2U: tm6000_set_reg(dev, 7, 227, 0); tm6000_set_reg(dev, 7, 229, 0); tm6000_set_reg(dev, 7, 232, 15); tm6000_set_reg(dev, 3, (int )((u16 )input->v_gpio), 0); goto ldv_34282; case 3U: tm6000_set_reg(dev, 7, 227, 16); tm6000_set_reg(dev, 7, 229, 16); tm6000_set_reg(dev, 7, 232, 0); tm6000_set_reg(dev, 3, (int )((u16 )input->v_gpio), 1); goto ldv_34282; default: ; goto ldv_34282; } ldv_34282: ; switch ((unsigned int )input->amux) { case 4U: tm6000_set_reg_mask(dev, 7, 235, 0, 15); goto ldv_34287; case 5U: tm6000_set_reg_mask(dev, 7, 235, 4, 15); goto ldv_34287; default: ; goto ldv_34287; } ldv_34287: ; } if ((unsigned int )input->type == 4U) { i = 0; goto ldv_34294; ldv_34293: ; if ((dev->norm & svideo_stds[i].id) != 0ULL) { rc = tm6000_load_std(dev, svideo_stds[i].common); goto ret; } else { } i = i + 1; ldv_34294: ; if ((unsigned int )i <= 4U) { goto ldv_34293; } else { } return (-22); } else { i = 0; goto ldv_34299; ldv_34298: ; if ((dev->norm & composite_stds[i].id) != 0ULL) { rc = tm6000_load_std(dev, composite_stds[i].common); goto ret; } else { } i = i + 1; ldv_34299: ; if ((unsigned int )i <= 4U) { goto ldv_34298; } else { } return (-22); } ret: ; if (rc < 0) { return (rc); } else { } if ((unsigned int )dev->dev_type == 2U && ((unsigned int )input->amux == 6U || (unsigned int )input->amux == 7U)) { tm6000_set_audio_std(dev); } else { } msleep(40U); return (0); } } bool ldv_queue_work_on_209(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_210(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_211(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_212(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_213(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_214(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_215(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_216(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_217(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_218(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_219(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_220(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_221(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_222(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_223(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_224(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern size_t strlcat(char * , char const * , __kernel_size_t ) ; int ldv_mutex_trylock_253(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_251(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_254(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_255(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_258(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_260(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_250(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_252(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_256(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_257(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_259(struct mutex *ldv_func_arg1 ) ; extern unsigned long __msecs_to_jiffies(unsigned int const ) ; __inline static unsigned long msecs_to_jiffies(unsigned int const m ) { unsigned long tmp___0 ; { tmp___0 = __msecs_to_jiffies(m); return (tmp___0); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; bool ldv_queue_work_on_245(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_247(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_246(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_249(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_248(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; bool ldv_cancel_delayed_work_sync_261(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_246(8192, wq, dwork, delay); return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work(system_wq, dwork, delay); return (tmp); } } void call_and_disable_all_2(int state ) ; void activate_work_2(struct work_struct *work , int state ) ; void disable_work_3(struct work_struct *work ) ; void disable_work_2(struct work_struct *work ) ; void invoke_work_3(void) ; void call_and_disable_work_2(struct work_struct *work ) ; void invoke_work_2(void) ; __inline static void usb_fill_int_urb(struct urb *urb , struct usb_device *dev , unsigned int pipe , void *transfer_buffer , int buffer_length , void (*complete_fn)(struct urb * ) , void *context , int interval ) { int _min1 ; int _max1 ; int _max2 ; int _min2 ; { urb->dev = dev; urb->pipe = pipe; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = (u32 )buffer_length; urb->complete = complete_fn; urb->context = context; if ((unsigned int )dev->speed == 3U || (unsigned int )dev->speed == 5U) { _max1 = interval; _max2 = 1; _min1 = _max1 > _max2 ? _max1 : _max2; _min2 = 16; interval = _min1 < _min2 ? _min1 : _min2; urb->interval = 1 << (interval + -1); } else { urb->interval = interval; } urb->start_frame = -1; return; } } extern struct rc_dev *rc_allocate_device(void) ; extern void rc_free_device(struct rc_dev * ) ; extern int rc_register_device(struct rc_dev * ) ; extern void rc_unregister_device(struct rc_dev * ) ; extern void rc_keydown(struct rc_dev * , enum rc_type , u32 , u8 ) ; static unsigned int ir_debug ; static unsigned int enable_ir = 1U; static unsigned int ir_clock_mhz = 12U; void tm6000_ir_wait(struct tm6000_core *dev , u8 state ) { struct tm6000_IR *ir ; { ir = dev->ir; if ((unsigned long )dev->ir == (unsigned long )((struct tm6000_IR *)0)) { return; } else { } if (ir_debug > 1U) { printk("\017%s/ir: %s: %i\n", (char *)(& ir->name), "tm6000_ir_wait", (int )ir->wait); } else { } if ((unsigned int )state != 0U) { ir->wait = 1U; } else { ir->wait = 0U; } return; } } static int tm6000_ir_config(struct tm6000_IR *ir ) { struct tm6000_core *dev ; u32 pulse ; u32 leader ; { dev = ir->dev; pulse = 0U; leader = 0U; if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_config"); } else { } switch (ir->rc_type) { case 1024ULL: leader = 900U; pulse = 700U; goto ldv_37641; default: ; case 8ULL: leader = 900U; pulse = 1780U; goto ldv_37641; } ldv_37641: pulse = ir_clock_mhz * pulse; leader = ir_clock_mhz * leader; if (ir->rc_type == 1024ULL) { leader = leader | 32768U; } else { } if (ir_debug > 1U) { printk("\017%s/ir: %s: %s, %d MHz, leader = 0x%04x, pulse = 0x%06x \n", (char *)(& ir->name), "tm6000_ir_config", ir->rc_type == 1024ULL ? (char *)"NEC" : (char *)"RC-5", ir_clock_mhz, leader, pulse); } else { } tm6000_set_reg(dev, 7, 229, 254); tm6000_set_reg(dev, 7, 216, 47); tm6000_set_reg(dev, 7, 218, 255); tm6000_set_reg(dev, 7, 219, 255); tm6000_set_reg(dev, 7, 220, (int )((u16 )(leader >> 8))); tm6000_set_reg(dev, 7, 221, (int )((u16 )leader)); tm6000_set_reg(dev, 7, 222, (int )((u16 )(pulse >> 8))); tm6000_set_reg(dev, 7, 223, (int )((u16 )pulse)); if (ir->polling == 0) { tm6000_set_reg(dev, 4, 2, 0); } else { tm6000_set_reg(dev, 4, 2, 1); } msleep(10U); tm6000_flash_led(dev, 0); msleep(100U); tm6000_flash_led(dev, 1); ir->pwled = 1U; return (0); } } static void tm6000_ir_keydown(struct tm6000_IR *ir , char const *buf , unsigned int len ) { u8 device ; u8 command ; u32 scancode ; enum rc_type protocol ; { if (len == 0U) { return; } else { } command = (u8 )*buf; device = len > 1U ? (u8 )*(buf + 1UL) : 0U; switch (ir->rc_type) { case 8ULL: protocol = 3; scancode = (u32 )(((int )device << 8) | (int )command); goto ldv_37654; case 1024ULL: protocol = 10; scancode = (u32 )(((int )device << 8) | (int )command); goto ldv_37654; default: protocol = 1; scancode = (u32 )(((int )device << 8) | (int )command); goto ldv_37654; } ldv_37654: ; if (ir_debug != 0U) { printk("\017%s/ir: %s, protocol: 0x%04x, scancode: 0x%08x\n", (char *)(& ir->name), "tm6000_ir_keydown", (unsigned int )protocol, scancode); } else { } rc_keydown(ir->rc, protocol, scancode, 0); return; } } static void tm6000_ir_urb_received(struct urb *urb ) { struct tm6000_core *dev ; struct tm6000_IR *ir ; char *buf ; unsigned long tmp ; unsigned long tmp___0 ; { dev = (struct tm6000_core *)urb->context; ir = dev->ir; if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_urb_received"); } else { } if (urb->status < 0 || urb->actual_length == 0U) { printk("\016tm6000: IR URB failure: status: %i, length %i\n", urb->status, urb->actual_length); ir->submit_urb = 1U; tmp = msecs_to_jiffies(100U); schedule_delayed_work(& ir->work, tmp); return; } else { } buf = (char *)urb->transfer_buffer; if (ir_debug != 0U) { print_hex_dump("\017", "tm6000: IR data: ", 2, 16, 1, (void const *)buf, (size_t )urb->actual_length, 0); } else { } tm6000_ir_keydown(ir, (char const *)urb->transfer_buffer, urb->actual_length); usb_submit_urb(urb, 32U); ir->pwled = 2U; tmp___0 = msecs_to_jiffies(10U); schedule_delayed_work(& ir->work, tmp___0); return; } } static void tm6000_ir_handle_key(struct work_struct *work ) { struct tm6000_IR *ir ; struct work_struct const *__mptr ; struct tm6000_core *dev ; int rc ; u8 buf[2U] ; unsigned long tmp ; { __mptr = (struct work_struct const *)work; ir = (struct tm6000_IR *)__mptr + 0xffffffffffffffa8UL; dev = ir->dev; if ((unsigned int )*((unsigned char *)ir + 312UL) != 0U) { return; } else { } if (ir_debug > 2U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_handle_key"); } else { } rc = tm6000_read_write_usb(dev, 192, 2, 0, 0, (u8 *)(& buf), 2); if (rc < 0) { return; } else { } if ((unsigned int )buf[0] == 255U) { if ((unsigned int )*((unsigned char *)ir + 312UL) == 0U) { tm6000_flash_led(dev, 1); ir->pwled = 1U; } else { } return; } else { } tm6000_ir_keydown(ir, (char const *)(& buf), (unsigned int )rc); tm6000_flash_led(dev, 0); ir->pwled = 0U; tmp = msecs_to_jiffies((unsigned int const )ir->polling); schedule_delayed_work(& ir->work, tmp); return; } } static void tm6000_ir_int_work(struct work_struct *work ) { struct tm6000_IR *ir ; struct work_struct const *__mptr ; struct tm6000_core *dev ; int rc ; unsigned long tmp ; unsigned long tmp___0 ; { __mptr = (struct work_struct const *)work; ir = (struct tm6000_IR *)__mptr + 0xffffffffffffffa8UL; dev = ir->dev; if (ir_debug > 2U) { printk("\017%s/ir: %s, submit_urb = %d, pwled = %d\n", (char *)(& ir->name), "tm6000_ir_int_work", (int )ir->submit_urb, (int )ir->pwled); } else { } if ((unsigned int )*((unsigned char *)ir + 312UL) != 0U) { if (ir_debug > 2U) { printk("\017%s/ir: Resubmit urb\n", (char *)(& ir->name)); } else { } tm6000_set_reg(dev, 4, 2, 0); rc = usb_submit_urb(ir->int_urb, 32U); if (rc < 0) { printk("\vtm6000: Can\'t submit an IR interrupt. Error %i\n", rc); tmp = msecs_to_jiffies(100U); schedule_delayed_work(& ir->work, tmp); return; } else { } ir->submit_urb = 0U; } else { } if ((unsigned int )*((unsigned char *)ir + 312UL) == 4U) { tm6000_flash_led(dev, 0); ir->pwled = 0U; tmp___0 = msecs_to_jiffies(100U); schedule_delayed_work(& ir->work, tmp___0); } else if ((unsigned int )*((unsigned char *)ir + 312UL) == 0U) { tm6000_flash_led(dev, 1); ir->pwled = 1U; } else { } return; } } static int tm6000_ir_start(struct rc_dev *rc ) { struct tm6000_IR *ir ; { ir = (struct tm6000_IR *)rc->priv; if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_start"); } else { } schedule_delayed_work(& ir->work, 0UL); return (0); } } static void tm6000_ir_stop(struct rc_dev *rc ) { struct tm6000_IR *ir ; { ir = (struct tm6000_IR *)rc->priv; if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_stop"); } else { } ldv_cancel_delayed_work_sync_261(& ir->work); return; } } static int tm6000_ir_change_protocol(struct rc_dev *rc , u64 *rc_type ) { struct tm6000_IR *ir ; { ir = (struct tm6000_IR *)rc->priv; if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0)) { return (0); } else { } if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_change_protocol"); } else { } if ((unsigned long )rc->rc_map.scan != (unsigned long )((struct rc_map_table *)0) && *rc_type == 1024ULL) { ir->key_addr = (u16 )((rc->rc_map.scan)->scancode >> 8); } else { } ir->rc_type = *rc_type; tm6000_ir_config(ir); return (0); } } static int __tm6000_ir_int_start(struct rc_dev *rc ) { struct tm6000_IR *ir ; struct tm6000_core *dev ; int pipe ; int size ; int err ; unsigned int tmp ; __u16 tmp___0 ; unsigned long tmp___1 ; { ir = (struct tm6000_IR *)rc->priv; err = -12; if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0)) { return (-19); } else { } dev = ir->dev; if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "__tm6000_ir_int_start"); } else { } ir->int_urb = usb_alloc_urb(0, 32U); if ((unsigned long )ir->int_urb == (unsigned long )((struct urb *)0)) { return (-12); } else { } tmp = __create_pipe(dev->udev, (unsigned int )(dev->int_in.endp)->desc.bEndpointAddress & 15U); pipe = (int )(tmp | 1073741952U); tmp___0 = usb_maxpacket(dev->udev, pipe, (pipe & 128) == 0); size = (int )tmp___0; if (ir_debug != 0U) { printk("\017%s/ir: IR max size: %d\n", (char *)(& ir->name), size); } else { } (ir->int_urb)->transfer_buffer = kzalloc((size_t )size, 32U); if ((unsigned long )(ir->int_urb)->transfer_buffer == (unsigned long )((void *)0)) { usb_free_urb(ir->int_urb); return (err); } else { } if (ir_debug != 0U) { printk("\017%s/ir: int interval: %d\n", (char *)(& ir->name), (int )(dev->int_in.endp)->desc.bInterval); } else { } usb_fill_int_urb(ir->int_urb, dev->udev, (unsigned int )pipe, (ir->int_urb)->transfer_buffer, size, & tm6000_ir_urb_received, (void *)dev, (int )(dev->int_in.endp)->desc.bInterval); ir->submit_urb = 1U; tmp___1 = msecs_to_jiffies(100U); schedule_delayed_work(& ir->work, tmp___1); return (0); } } static void __tm6000_ir_int_stop(struct rc_dev *rc ) { struct tm6000_IR *ir ; { ir = (struct tm6000_IR *)rc->priv; if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0) || (unsigned long )ir->int_urb == (unsigned long )((struct urb *)0)) { return; } else { } if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "__tm6000_ir_int_stop"); } else { } usb_kill_urb(ir->int_urb); kfree((void const *)(ir->int_urb)->transfer_buffer); usb_free_urb(ir->int_urb); ir->int_urb = (struct urb *)0; return; } } int tm6000_ir_int_start(struct tm6000_core *dev ) { struct tm6000_IR *ir ; int tmp ; { ir = dev->ir; if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0)) { return (0); } else { } tmp = __tm6000_ir_int_start(ir->rc); return (tmp); } } void tm6000_ir_int_stop(struct tm6000_core *dev ) { struct tm6000_IR *ir ; { ir = dev->ir; if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0) || (unsigned long )ir->rc == (unsigned long )((struct rc_dev *)0)) { return; } else { } __tm6000_ir_int_stop(ir->rc); return; } } int tm6000_ir_init(struct tm6000_core *dev ) { struct tm6000_IR *ir ; struct rc_dev *rc ; int err ; u64 rc_type ; void *tmp ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___2 ; { err = -12; if (enable_ir == 0U) { return (-19); } else { } if ((unsigned int )*((unsigned char *)dev + 324UL) == 0U) { return (0); } else { } if ((unsigned long )dev->ir_codes == (unsigned long )((char *)0)) { return (0); } else { } tmp = kzalloc(336UL, 32U); ir = (struct tm6000_IR *)tmp; rc = rc_allocate_device(); if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0) || (unsigned long )rc == (unsigned long )((struct rc_dev *)0)) { goto out; } else { } if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_init"); } else { } ir->dev = dev; dev->ir = ir; ir->rc = rc; rc->allowed_protocols = 1032ULL; rc->scancode_mask = 65535U; rc->priv = (void *)ir; rc->change_protocol = & tm6000_ir_change_protocol; if ((unsigned long )dev->int_in.endp != (unsigned long )((struct usb_host_endpoint *)0)) { rc->open = & __tm6000_ir_int_start; rc->close = & __tm6000_ir_int_stop; __init_work(& ir->work.work, 0); __constr_expr_0.counter = 137438953408L; ir->work.work.data = __constr_expr_0; lockdep_init_map(& ir->work.work.lockdep_map, "(&(&ir->work)->work)", & __key, 0); INIT_LIST_HEAD(& ir->work.work.entry); ir->work.work.func = & tm6000_ir_int_work; init_timer_key(& ir->work.timer, 2097152U, "(&(&ir->work)->timer)", & __key___0); ir->work.timer.function = & delayed_work_timer_fn; ir->work.timer.data = (unsigned long )(& ir->work); } else { rc->open = & tm6000_ir_start; rc->close = & tm6000_ir_stop; ir->polling = 50; __init_work(& ir->work.work, 0); __constr_expr_1.counter = 137438953408L; ir->work.work.data = __constr_expr_1; lockdep_init_map(& ir->work.work.lockdep_map, "(&(&ir->work)->work)", & __key___1, 0); INIT_LIST_HEAD(& ir->work.work.entry); ir->work.work.func = & tm6000_ir_handle_key; init_timer_key(& ir->work.timer, 2097152U, "(&(&ir->work)->timer)", & __key___2); ir->work.timer.function = & delayed_work_timer_fn; ir->work.timer.data = (unsigned long )(& ir->work); } rc->driver_type = 0; snprintf((char *)(& ir->name), 32UL, "tm5600/60x0 IR (%s)", (char *)(& dev->name)); usb_make_path(dev->udev, (char *)(& ir->phys), 32UL); strlcat((char *)(& ir->phys), "/input0", 32UL); rc_type = 1ULL; tm6000_ir_change_protocol(rc, & rc_type); rc->input_name = (char const *)(& ir->name); rc->input_phys = (char const *)(& ir->phys); rc->input_id.bustype = 3U; rc->input_id.version = 1U; rc->input_id.vendor = (dev->udev)->descriptor.idVendor; rc->input_id.product = (dev->udev)->descriptor.idProduct; rc->map_name = (char const *)dev->ir_codes; rc->driver_name = (char *)"tm6000"; rc->dev.parent = & (dev->udev)->dev; err = rc_register_device(rc); if (err != 0) { goto out; } else { } return (0); out: dev->ir = (struct tm6000_IR *)0; rc_free_device(rc); kfree((void const *)ir); return (err); } } int tm6000_ir_fini(struct tm6000_core *dev ) { struct tm6000_IR *ir ; { ir = dev->ir; if ((unsigned long )ir == (unsigned long )((struct tm6000_IR *)0)) { return (0); } else { } if (ir_debug > 1U) { printk("\017%s/ir: %s\n", (char *)(& ir->name), "tm6000_ir_fini"); } else { } if (ir->polling == 0) { __tm6000_ir_int_stop(ir->rc); } else { } tm6000_ir_stop(ir->rc); tm6000_flash_led(dev, 0); ir->pwled = 0U; rc_unregister_device(ir->rc); kfree((void const *)ir); dev->ir = (struct tm6000_IR *)0; return (0); } } void work_init_3(void) { { ldv_work_3_0 = 0; ldv_work_3_1 = 0; ldv_work_3_2 = 0; ldv_work_3_3 = 0; return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void activate_work_3(struct work_struct *work , int state ) { { if (ldv_work_3_0 == 0) { ldv_work_struct_3_0 = work; ldv_work_3_0 = state; return; } else { } if (ldv_work_3_1 == 0) { ldv_work_struct_3_1 = work; ldv_work_3_1 = state; return; } else { } if (ldv_work_3_2 == 0) { ldv_work_struct_3_2 = work; ldv_work_3_2 = state; return; } else { } if (ldv_work_3_3 == 0) { ldv_work_struct_3_3 = work; ldv_work_3_3 = state; return; } else { } return; } } void call_and_disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 2 || ldv_work_3_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_0) { tm6000_ir_handle_key(work); ldv_work_3_0 = 1; return; } else { } if ((ldv_work_3_1 == 2 || ldv_work_3_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_1) { tm6000_ir_handle_key(work); ldv_work_3_1 = 1; return; } else { } if ((ldv_work_3_2 == 2 || ldv_work_3_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_2) { tm6000_ir_handle_key(work); ldv_work_3_2 = 1; return; } else { } if ((ldv_work_3_3 == 2 || ldv_work_3_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_3) { tm6000_ir_handle_key(work); ldv_work_3_3 = 1; return; } else { } return; } } void disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 3 || ldv_work_3_0 == 2) && (unsigned long )ldv_work_struct_3_0 == (unsigned long )work) { ldv_work_3_0 = 1; } else { } if ((ldv_work_3_1 == 3 || ldv_work_3_1 == 2) && (unsigned long )ldv_work_struct_3_1 == (unsigned long )work) { ldv_work_3_1 = 1; } else { } if ((ldv_work_3_2 == 3 || ldv_work_3_2 == 2) && (unsigned long )ldv_work_struct_3_2 == (unsigned long )work) { ldv_work_3_2 = 1; } else { } if ((ldv_work_3_3 == 3 || ldv_work_3_3 == 2) && (unsigned long )ldv_work_struct_3_3 == (unsigned long )work) { ldv_work_3_3 = 1; } else { } return; } } void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void invoke_work_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_3_0 == 2 || ldv_work_3_0 == 3) { ldv_work_3_0 = 4; tm6000_ir_handle_key(ldv_work_struct_3_0); ldv_work_3_0 = 1; } else { } goto ldv_37776; case 1: ; if (ldv_work_3_1 == 2 || ldv_work_3_1 == 3) { ldv_work_3_1 = 4; tm6000_ir_handle_key(ldv_work_struct_3_0); ldv_work_3_1 = 1; } else { } goto ldv_37776; case 2: ; if (ldv_work_3_2 == 2 || ldv_work_3_2 == 3) { ldv_work_3_2 = 4; tm6000_ir_handle_key(ldv_work_struct_3_0); ldv_work_3_2 = 1; } else { } goto ldv_37776; case 3: ; if (ldv_work_3_3 == 2 || ldv_work_3_3 == 3) { ldv_work_3_3 = 4; tm6000_ir_handle_key(ldv_work_struct_3_0); ldv_work_3_3 = 1; } else { } goto ldv_37776; default: ldv_stop(); } ldv_37776: ; return; } } void call_and_disable_all_3(int state ) { { if (ldv_work_3_0 == state) { call_and_disable_work_3(ldv_work_struct_3_0); } else { } if (ldv_work_3_1 == state) { call_and_disable_work_3(ldv_work_struct_3_1); } else { } if (ldv_work_3_2 == state) { call_and_disable_work_3(ldv_work_struct_3_2); } else { } if (ldv_work_3_3 == state) { call_and_disable_work_3(ldv_work_struct_3_3); } else { } return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { tm6000_ir_int_work(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { tm6000_ir_int_work(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { tm6000_ir_int_work(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { tm6000_ir_int_work(work); ldv_work_2_3 = 1; return; } else { } return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; tm6000_ir_int_work(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_37795; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; tm6000_ir_int_work(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_37795; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; tm6000_ir_int_work(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_37795; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; tm6000_ir_int_work(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_37795; default: ldv_stop(); } ldv_37795: ; return; } } bool ldv_queue_work_on_245(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_246(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_247(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_3(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_248(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_3(2); return; } } bool ldv_queue_delayed_work_on_249(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_3(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_250(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_251(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_252(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_253(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_254(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_255(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_256(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_257(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_258(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_259(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_260(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } bool ldv_cancel_delayed_work_sync_261(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_3(& ldv_func_arg1->work); return (ldv_func_res); } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_lock_of_tm6000_core = 1; int ldv_mutex_lock_interruptible_lock_of_tm6000_core(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_tm6000_core != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_tm6000_core = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock_of_tm6000_core(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_tm6000_core != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_tm6000_core = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock_of_tm6000_core(struct mutex *lock ) { { if (ldv_mutex_lock_of_tm6000_core != 1) { ldv_error(); } else { } ldv_mutex_lock_of_tm6000_core = 2; return; } } int ldv_mutex_trylock_lock_of_tm6000_core(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock_of_tm6000_core != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock_of_tm6000_core = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_tm6000_core(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock_of_tm6000_core != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock_of_tm6000_core = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock_of_tm6000_core(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_tm6000_core == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock_of_tm6000_core(struct mutex *lock ) { { if (ldv_mutex_lock_of_tm6000_core != 2) { ldv_error(); } else { } ldv_mutex_lock_of_tm6000_core = 1; return; } } void ldv_usb_lock_device_lock_of_tm6000_core(void) { { ldv_mutex_lock_lock_of_tm6000_core((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock_of_tm6000_core(void) { int tmp ; { tmp = ldv_mutex_trylock_lock_of_tm6000_core((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock_of_tm6000_core(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock_of_tm6000_core((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock_of_tm6000_core(void) { { ldv_mutex_unlock_lock_of_tm6000_core((struct mutex *)0); return; } } static int ldv_mutex_lock_of_v4l2_ctrl_handler = 1; int ldv_mutex_lock_interruptible_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_v4l2_ctrl_handler != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_v4l2_ctrl_handler = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_v4l2_ctrl_handler != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_v4l2_ctrl_handler = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { { if (ldv_mutex_lock_of_v4l2_ctrl_handler != 1) { ldv_error(); } else { } ldv_mutex_lock_of_v4l2_ctrl_handler = 2; return; } } int ldv_mutex_trylock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock_of_v4l2_ctrl_handler != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock_of_v4l2_ctrl_handler = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_v4l2_ctrl_handler(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock_of_v4l2_ctrl_handler != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock_of_v4l2_ctrl_handler = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_v4l2_ctrl_handler == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { { if (ldv_mutex_lock_of_v4l2_ctrl_handler != 2) { ldv_error(); } else { } ldv_mutex_lock_of_v4l2_ctrl_handler = 1; return; } } void ldv_usb_lock_device_lock_of_v4l2_ctrl_handler(void) { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock_of_v4l2_ctrl_handler(void) { int tmp ; { tmp = ldv_mutex_trylock_lock_of_v4l2_ctrl_handler((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock_of_v4l2_ctrl_handler(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock_of_v4l2_ctrl_handler((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock_of_v4l2_ctrl_handler(void) { { ldv_mutex_unlock_lock_of_v4l2_ctrl_handler((struct mutex *)0); return; } } static int ldv_mutex_lock_of_video_device = 1; int ldv_mutex_lock_interruptible_lock_of_video_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_video_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_video_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock_of_video_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_video_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock_of_video_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock_of_video_device(struct mutex *lock ) { { if (ldv_mutex_lock_of_video_device != 1) { ldv_error(); } else { } ldv_mutex_lock_of_video_device = 2; return; } } int ldv_mutex_trylock_lock_of_video_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock_of_video_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock_of_video_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_video_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock_of_video_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock_of_video_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock_of_video_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_video_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock_of_video_device(struct mutex *lock ) { { if (ldv_mutex_lock_of_video_device != 2) { ldv_error(); } else { } ldv_mutex_lock_of_video_device = 1; return; } } void ldv_usb_lock_device_lock_of_video_device(void) { { ldv_mutex_lock_lock_of_video_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock_of_video_device(void) { int tmp ; { tmp = ldv_mutex_trylock_lock_of_video_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock_of_video_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock_of_video_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock_of_video_device(void) { { ldv_mutex_unlock_lock_of_video_device((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_tm6000_devlist_mutex = 1; int ldv_mutex_lock_interruptible_tm6000_devlist_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_tm6000_devlist_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_tm6000_devlist_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_tm6000_devlist_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_tm6000_devlist_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_tm6000_devlist_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_tm6000_devlist_mutex(struct mutex *lock ) { { if (ldv_mutex_tm6000_devlist_mutex != 1) { ldv_error(); } else { } ldv_mutex_tm6000_devlist_mutex = 2; return; } } int ldv_mutex_trylock_tm6000_devlist_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_tm6000_devlist_mutex != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_tm6000_devlist_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_tm6000_devlist_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_tm6000_devlist_mutex != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_tm6000_devlist_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_tm6000_devlist_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_tm6000_devlist_mutex == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_tm6000_devlist_mutex(struct mutex *lock ) { { if (ldv_mutex_tm6000_devlist_mutex != 2) { ldv_error(); } else { } ldv_mutex_tm6000_devlist_mutex = 1; return; } } void ldv_usb_lock_device_tm6000_devlist_mutex(void) { { ldv_mutex_lock_tm6000_devlist_mutex((struct mutex *)0); return; } } int ldv_usb_trylock_device_tm6000_devlist_mutex(void) { int tmp ; { tmp = ldv_mutex_trylock_tm6000_devlist_mutex((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_tm6000_devlist_mutex(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_tm6000_devlist_mutex((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_tm6000_devlist_mutex(void) { { ldv_mutex_unlock_tm6000_devlist_mutex((struct mutex *)0); return; } } static int ldv_mutex_usb_lock_of_tm6000_core = 1; int ldv_mutex_lock_interruptible_usb_lock_of_tm6000_core(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_usb_lock_of_tm6000_core != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_usb_lock_of_tm6000_core = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_usb_lock_of_tm6000_core(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_usb_lock_of_tm6000_core != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_usb_lock_of_tm6000_core = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_usb_lock_of_tm6000_core(struct mutex *lock ) { { if (ldv_mutex_usb_lock_of_tm6000_core != 1) { ldv_error(); } else { } ldv_mutex_usb_lock_of_tm6000_core = 2; return; } } int ldv_mutex_trylock_usb_lock_of_tm6000_core(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_usb_lock_of_tm6000_core != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_usb_lock_of_tm6000_core = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_usb_lock_of_tm6000_core(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_usb_lock_of_tm6000_core != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_usb_lock_of_tm6000_core = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_usb_lock_of_tm6000_core(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_usb_lock_of_tm6000_core == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_usb_lock_of_tm6000_core(struct mutex *lock ) { { if (ldv_mutex_usb_lock_of_tm6000_core != 2) { ldv_error(); } else { } ldv_mutex_usb_lock_of_tm6000_core = 1; return; } } void ldv_usb_lock_device_usb_lock_of_tm6000_core(void) { { ldv_mutex_lock_usb_lock_of_tm6000_core((struct mutex *)0); return; } } int ldv_usb_trylock_device_usb_lock_of_tm6000_core(void) { int tmp ; { tmp = ldv_mutex_trylock_usb_lock_of_tm6000_core((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_usb_lock_of_tm6000_core(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_usb_lock_of_tm6000_core((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_usb_lock_of_tm6000_core(void) { { ldv_mutex_unlock_usb_lock_of_tm6000_core((struct mutex *)0); return; } } static int ldv_mutex_vb_lock_of_videobuf_queue = 1; int ldv_mutex_lock_interruptible_vb_lock_of_videobuf_queue(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_vb_lock_of_videobuf_queue != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_vb_lock_of_videobuf_queue = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_vb_lock_of_videobuf_queue(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_vb_lock_of_videobuf_queue != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_vb_lock_of_videobuf_queue = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_vb_lock_of_videobuf_queue(struct mutex *lock ) { { if (ldv_mutex_vb_lock_of_videobuf_queue != 1) { ldv_error(); } else { } ldv_mutex_vb_lock_of_videobuf_queue = 2; return; } } int ldv_mutex_trylock_vb_lock_of_videobuf_queue(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_vb_lock_of_videobuf_queue != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_vb_lock_of_videobuf_queue = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_vb_lock_of_videobuf_queue(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_vb_lock_of_videobuf_queue != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_vb_lock_of_videobuf_queue = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_vb_lock_of_videobuf_queue(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_vb_lock_of_videobuf_queue == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_vb_lock_of_videobuf_queue(struct mutex *lock ) { { if (ldv_mutex_vb_lock_of_videobuf_queue != 2) { ldv_error(); } else { } ldv_mutex_vb_lock_of_videobuf_queue = 1; return; } } void ldv_usb_lock_device_vb_lock_of_videobuf_queue(void) { { ldv_mutex_lock_vb_lock_of_videobuf_queue((struct mutex *)0); return; } } int ldv_usb_trylock_device_vb_lock_of_videobuf_queue(void) { int tmp ; { tmp = ldv_mutex_trylock_vb_lock_of_videobuf_queue((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_vb_lock_of_videobuf_queue(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_vb_lock_of_videobuf_queue((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_vb_lock_of_videobuf_queue(void) { { ldv_mutex_unlock_vb_lock_of_videobuf_queue((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_lock_of_tm6000_core != 1) { ldv_error(); } else { } if (ldv_mutex_lock_of_v4l2_ctrl_handler != 1) { ldv_error(); } else { } if (ldv_mutex_lock_of_video_device != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_tm6000_devlist_mutex != 1) { ldv_error(); } else { } if (ldv_mutex_usb_lock_of_tm6000_core != 1) { ldv_error(); } else { } if (ldv_mutex_vb_lock_of_videobuf_queue != 1) { ldv_error(); } else { } return; } }