extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct device_attribute; struct i2c_client; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct i2c_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; enum power_supply_property { POWER_SUPPLY_PROP_STATUS = 0, POWER_SUPPLY_PROP_CHARGE_TYPE = 1, POWER_SUPPLY_PROP_HEALTH = 2, POWER_SUPPLY_PROP_PRESENT = 3, POWER_SUPPLY_PROP_ONLINE = 4, POWER_SUPPLY_PROP_AUTHENTIC = 5, POWER_SUPPLY_PROP_TECHNOLOGY = 6, POWER_SUPPLY_PROP_CYCLE_COUNT = 7, POWER_SUPPLY_PROP_VOLTAGE_MAX = 8, POWER_SUPPLY_PROP_VOLTAGE_MIN = 9, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN = 10, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN = 11, POWER_SUPPLY_PROP_VOLTAGE_NOW = 12, POWER_SUPPLY_PROP_VOLTAGE_AVG = 13, POWER_SUPPLY_PROP_VOLTAGE_OCV = 14, POWER_SUPPLY_PROP_VOLTAGE_BOOT = 15, POWER_SUPPLY_PROP_CURRENT_MAX = 16, POWER_SUPPLY_PROP_CURRENT_NOW = 17, POWER_SUPPLY_PROP_CURRENT_AVG = 18, POWER_SUPPLY_PROP_CURRENT_BOOT = 19, POWER_SUPPLY_PROP_POWER_NOW = 20, POWER_SUPPLY_PROP_POWER_AVG = 21, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN = 22, POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN = 23, POWER_SUPPLY_PROP_CHARGE_FULL = 24, POWER_SUPPLY_PROP_CHARGE_EMPTY = 25, POWER_SUPPLY_PROP_CHARGE_NOW = 26, POWER_SUPPLY_PROP_CHARGE_AVG = 27, POWER_SUPPLY_PROP_CHARGE_COUNTER = 28, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT = 29, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX = 30, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE = 31, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX = 32, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT = 33, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX = 34, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT = 35, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN = 36, POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN = 37, POWER_SUPPLY_PROP_ENERGY_FULL = 38, POWER_SUPPLY_PROP_ENERGY_EMPTY = 39, POWER_SUPPLY_PROP_ENERGY_NOW = 40, POWER_SUPPLY_PROP_ENERGY_AVG = 41, POWER_SUPPLY_PROP_CAPACITY = 42, POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN = 43, POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX = 44, POWER_SUPPLY_PROP_CAPACITY_LEVEL = 45, POWER_SUPPLY_PROP_TEMP = 46, POWER_SUPPLY_PROP_TEMP_MAX = 47, POWER_SUPPLY_PROP_TEMP_MIN = 48, POWER_SUPPLY_PROP_TEMP_ALERT_MIN = 49, POWER_SUPPLY_PROP_TEMP_ALERT_MAX = 50, POWER_SUPPLY_PROP_TEMP_AMBIENT = 51, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN = 52, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX = 53, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW = 54, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG = 55, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW = 56, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG = 57, POWER_SUPPLY_PROP_TYPE = 58, POWER_SUPPLY_PROP_SCOPE = 59, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT = 60, POWER_SUPPLY_PROP_CALIBRATE = 61, POWER_SUPPLY_PROP_MODEL_NAME = 62, POWER_SUPPLY_PROP_MANUFACTURER = 63, POWER_SUPPLY_PROP_SERIAL_NUMBER = 64 } ; enum power_supply_type { POWER_SUPPLY_TYPE_UNKNOWN = 0, POWER_SUPPLY_TYPE_BATTERY = 1, POWER_SUPPLY_TYPE_UPS = 2, POWER_SUPPLY_TYPE_MAINS = 3, POWER_SUPPLY_TYPE_USB = 4, POWER_SUPPLY_TYPE_USB_DCP = 5, POWER_SUPPLY_TYPE_USB_CDP = 6, POWER_SUPPLY_TYPE_USB_ACA = 7 } ; union power_supply_propval { int intval ; char const *strval ; }; struct power_supply; struct power_supply_config { struct device_node *of_node ; void *drv_data ; char **supplied_to ; size_t num_supplicants ; }; struct power_supply_desc { char const *name ; enum power_supply_type type ; enum power_supply_property *properties ; size_t num_properties ; int (*get_property)(struct power_supply * , enum power_supply_property , union power_supply_propval * ) ; int (*set_property)(struct power_supply * , enum power_supply_property , union power_supply_propval const * ) ; int (*property_is_writeable)(struct power_supply * , enum power_supply_property ) ; void (*external_power_changed)(struct power_supply * ) ; void (*set_charged)(struct power_supply * ) ; bool no_thermal ; int use_for_apm ; }; struct power_supply { struct power_supply_desc const *desc ; char **supplied_to ; size_t num_supplicants ; char **supplied_from ; size_t num_supplies ; struct device_node *of_node ; void *drv_data ; struct device dev ; struct work_struct changed_work ; struct delayed_work deferred_register_work ; spinlock_t changed_lock ; bool changed ; atomic_t use_cnt ; struct led_trigger *charging_full_trig ; char *charging_full_trig_name ; struct led_trigger *charging_trig ; char *charging_trig_name ; struct led_trigger *full_trig ; char *full_trig_name ; struct led_trigger *online_trig ; char *online_trig_name ; struct led_trigger *charging_blink_full_solid_trig ; char *charging_blink_full_solid_trig_name ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_driver; struct i2c_board_info; enum i2c_slave_event; enum i2c_slave_event; struct i2c_driver { unsigned int class ; int (*attach_adapter)(struct i2c_adapter * ) ; int (*probe)(struct i2c_client * , struct i2c_device_id const * ) ; int (*remove)(struct i2c_client * ) ; void (*shutdown)(struct i2c_client * ) ; void (*alert)(struct i2c_client * , unsigned int ) ; int (*command)(struct i2c_client * , unsigned int , void * ) ; struct device_driver driver ; struct i2c_device_id const *id_table ; int (*detect)(struct i2c_client * , struct i2c_board_info * ) ; unsigned short const *address_list ; struct list_head clients ; }; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; int (*slave_cb)(struct i2c_client * , enum i2c_slave_event , u8 * ) ; }; enum i2c_slave_event { I2C_SLAVE_READ_REQUESTED = 0, I2C_SLAVE_WRITE_REQUESTED = 1, I2C_SLAVE_READ_PROCESSED = 2, I2C_SLAVE_WRITE_RECEIVED = 3, I2C_SLAVE_STOP = 4 } ; struct i2c_board_info { char type[20U] ; unsigned short flags ; unsigned short addr ; void *platform_data ; struct dev_archdata *archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; int irq ; }; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; int (*reg_slave)(struct i2c_client * ) ; int (*unreg_slave)(struct i2c_client * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_adapter * ) ; void (*unprepare_recovery)(struct i2c_adapter * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter_quirks { u64 flags ; int max_num_msgs ; u16 max_write_len ; u16 max_read_len ; u16 max_comb_1st_msg_len ; u16 max_comb_2nd_msg_len ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; struct i2c_adapter_quirks const *quirks ; }; typedef u64 acpi_io_address; typedef void *acpi_handle; typedef u32 acpi_object_type; struct __anonstruct_integer_221 { acpi_object_type type ; u64 value ; }; struct __anonstruct_string_222 { acpi_object_type type ; u32 length ; char *pointer ; }; struct __anonstruct_buffer_223 { acpi_object_type type ; u32 length ; u8 *pointer ; }; struct __anonstruct_package_224 { acpi_object_type type ; u32 count ; union acpi_object *elements ; }; struct __anonstruct_reference_225 { acpi_object_type type ; acpi_object_type actual_type ; acpi_handle handle ; }; struct __anonstruct_processor_226 { acpi_object_type type ; u32 proc_id ; acpi_io_address pblk_address ; u32 pblk_length ; }; struct __anonstruct_power_resource_227 { acpi_object_type type ; u32 system_level ; u32 resource_order ; }; union acpi_object { acpi_object_type type ; struct __anonstruct_integer_221 integer ; struct __anonstruct_string_222 string ; struct __anonstruct_buffer_223 buffer ; struct __anonstruct_package_224 package ; struct __anonstruct_reference_225 reference ; struct __anonstruct_processor_226 processor ; struct __anonstruct_power_resource_227 power_resource ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_231 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_230 { struct __anonstruct____missing_field_name_231 __annonCompField58 ; }; struct lockref { union __anonunion____missing_field_name_230 __annonCompField59 ; }; struct vfsmount; struct __anonstruct____missing_field_name_233 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField60 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_232 __annonCompField61 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_234 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_234 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_238 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_237 { struct __anonstruct____missing_field_name_238 __annonCompField62 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_237 __annonCompField63 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct bdi_writeback; struct export_operations; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_242 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_242 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_243 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_243 __annonCompField65 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct writeback_control; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_246 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_247 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_248 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_246 __annonCompField66 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_247 __annonCompField67 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_248 __annonCompField68 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_249 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_249 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_251 { struct list_head link ; int state ; }; union __anonunion_fl_u_250 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_251 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_250 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct proc_dir_entry; struct acpi_driver; struct acpi_device; struct acpi_hotplug_profile { struct kobject kobj ; int (*scan_dependent)(struct acpi_device * ) ; void (*notify_online)(struct acpi_device * ) ; bool enabled ; bool demand_offline ; }; struct acpi_scan_handler { struct acpi_device_id const *ids ; struct list_head list_node ; bool (*match)(char * , struct acpi_device_id const ** ) ; int (*attach)(struct acpi_device * , struct acpi_device_id const * ) ; void (*detach)(struct acpi_device * ) ; void (*bind)(struct device * ) ; void (*unbind)(struct device * ) ; struct acpi_hotplug_profile hotplug ; }; struct acpi_hotplug_context { struct acpi_device *self ; int (*notify)(struct acpi_device * , u32 ) ; void (*uevent)(struct acpi_device * , u32 ) ; void (*fixup)(struct acpi_device * ) ; }; struct acpi_device_ops { int (*add)(struct acpi_device * ) ; int (*remove)(struct acpi_device * ) ; void (*notify)(struct acpi_device * , u32 ) ; }; struct acpi_driver { char name[80U] ; char class[80U] ; struct acpi_device_id const *ids ; unsigned int flags ; struct acpi_device_ops ops ; struct device_driver drv ; struct module *owner ; }; struct acpi_device_status { unsigned char present : 1 ; unsigned char enabled : 1 ; unsigned char show_in_ui : 1 ; unsigned char functional : 1 ; unsigned char battery_present : 1 ; unsigned int reserved : 27 ; }; struct acpi_device_flags { unsigned char dynamic_status : 1 ; unsigned char removable : 1 ; unsigned char ejectable : 1 ; unsigned char power_manageable : 1 ; unsigned char match_driver : 1 ; unsigned char initialized : 1 ; unsigned char visited : 1 ; unsigned char hotplug_notify : 1 ; unsigned char is_dock_station : 1 ; unsigned char of_compatible_ok : 1 ; unsigned char coherent_dma : 1 ; unsigned char cca_seen : 1 ; unsigned int reserved : 20 ; }; struct acpi_device_dir { struct proc_dir_entry *entry ; }; typedef char acpi_bus_id[8U]; typedef unsigned long acpi_bus_address; typedef char acpi_device_name[40U]; typedef char acpi_device_class[20U]; struct acpi_pnp_type { unsigned char hardware_id : 1 ; unsigned char bus_address : 1 ; unsigned char platform_id : 1 ; unsigned int reserved : 29 ; }; struct acpi_device_pnp { acpi_bus_id bus_id ; struct acpi_pnp_type type ; acpi_bus_address bus_address ; char *unique_id ; struct list_head ids ; acpi_device_name device_name ; acpi_device_class device_class ; union acpi_object *str_obj ; }; struct acpi_device_power_flags { unsigned char explicit_get : 1 ; unsigned char power_resources : 1 ; unsigned char inrush_current : 1 ; unsigned char power_removed : 1 ; unsigned char ignore_parent : 1 ; unsigned char dsw_present : 1 ; unsigned int reserved : 26 ; }; struct __anonstruct_flags_252 { unsigned char valid : 1 ; unsigned char explicit_set : 1 ; unsigned char reserved : 6 ; }; struct acpi_device_power_state { struct __anonstruct_flags_252 flags ; int power ; int latency ; struct list_head resources ; }; struct acpi_device_power { int state ; struct acpi_device_power_flags flags ; struct acpi_device_power_state states[5U] ; }; struct acpi_device_perf_flags { u8 reserved ; }; struct __anonstruct_flags_253 { unsigned char valid : 1 ; unsigned char reserved : 7 ; }; struct acpi_device_perf_state { struct __anonstruct_flags_253 flags ; u8 power ; u8 performance ; int latency ; }; struct acpi_device_perf { int state ; struct acpi_device_perf_flags flags ; int state_count ; struct acpi_device_perf_state *states ; }; struct acpi_device_wakeup_flags { unsigned char valid : 1 ; unsigned char run_wake : 1 ; unsigned char notifier_present : 1 ; unsigned char enabled : 1 ; }; struct acpi_device_wakeup_context { struct work_struct work ; struct device *dev ; }; struct acpi_device_wakeup { acpi_handle gpe_device ; u64 gpe_number ; u64 sleep_state ; struct list_head resources ; struct acpi_device_wakeup_flags flags ; struct acpi_device_wakeup_context context ; struct wakeup_source *ws ; int prepare_count ; }; struct acpi_device_data { union acpi_object const *pointer ; union acpi_object const *properties ; union acpi_object const *of_compatible ; }; struct acpi_gpio_mapping; struct acpi_device { int device_type ; acpi_handle handle ; struct fwnode_handle fwnode ; struct acpi_device *parent ; struct list_head children ; struct list_head node ; struct list_head wakeup_list ; struct list_head del_list ; struct acpi_device_status status ; struct acpi_device_flags flags ; struct acpi_device_pnp pnp ; struct acpi_device_power power ; struct acpi_device_wakeup wakeup ; struct acpi_device_perf performance ; struct acpi_device_dir dir ; struct acpi_device_data data ; struct acpi_scan_handler *handler ; struct acpi_hotplug_context *hp ; struct acpi_driver *driver ; struct acpi_gpio_mapping const *driver_gpios ; void *driver_data ; struct device dev ; unsigned int physical_node_count ; unsigned int dep_unmet ; struct list_head physical_node_list ; struct mutex physical_node_lock ; void (*remove)(struct acpi_device * ) ; }; struct acpi_gpio_params { unsigned int crs_entry_index ; unsigned int line_index ; bool active_low ; }; struct acpi_gpio_mapping { char const *name ; struct acpi_gpio_params const *data ; unsigned int size ; }; enum bq2415x_mode { BQ2415X_MODE_OFF = 0, BQ2415X_MODE_NONE = 1, BQ2415X_MODE_HOST_CHARGER = 2, BQ2415X_MODE_DEDICATED_CHARGER = 3, BQ2415X_MODE_BOOST = 4 } ; struct bq2415x_platform_data { int current_limit ; int weak_battery_voltage ; int battery_regulation_voltage ; int charge_current ; int termination_current ; int resistor_sense ; char const *notify_device ; }; enum bq2415x_command { BQ2415X_TIMER_RESET = 0, BQ2415X_OTG_STATUS = 1, BQ2415X_STAT_PIN_STATUS = 2, BQ2415X_STAT_PIN_ENABLE = 3, BQ2415X_STAT_PIN_DISABLE = 4, BQ2415X_CHARGE_STATUS = 5, BQ2415X_BOOST_STATUS = 6, BQ2415X_FAULT_STATUS = 7, BQ2415X_CHARGE_TERMINATION_STATUS = 8, BQ2415X_CHARGE_TERMINATION_ENABLE = 9, BQ2415X_CHARGE_TERMINATION_DISABLE = 10, BQ2415X_CHARGER_STATUS = 11, BQ2415X_CHARGER_ENABLE = 12, BQ2415X_CHARGER_DISABLE = 13, BQ2415X_HIGH_IMPEDANCE_STATUS = 14, BQ2415X_HIGH_IMPEDANCE_ENABLE = 15, BQ2415X_HIGH_IMPEDANCE_DISABLE = 16, BQ2415X_BOOST_MODE_STATUS = 17, BQ2415X_BOOST_MODE_ENABLE = 18, BQ2415X_BOOST_MODE_DISABLE = 19, BQ2415X_OTG_LEVEL = 20, BQ2415X_OTG_ACTIVATE_HIGH = 21, BQ2415X_OTG_ACTIVATE_LOW = 22, BQ2415X_OTG_PIN_STATUS = 23, BQ2415X_OTG_PIN_ENABLE = 24, BQ2415X_OTG_PIN_DISABLE = 25, BQ2415X_VENDER_CODE = 26, BQ2415X_PART_NUMBER = 27, BQ2415X_REVISION = 28 } ; enum bq2415x_chip { BQUNKNOWN = 0, BQ24150 = 1, BQ24150A = 2, BQ24151 = 3, BQ24151A = 4, BQ24152 = 5, BQ24153 = 6, BQ24153A = 7, BQ24155 = 8, BQ24156 = 9, BQ24156A = 10, BQ24157S = 11, BQ24158 = 12 } ; struct bq2415x_device { struct device *dev ; struct bq2415x_platform_data init_data ; struct power_supply *charger ; struct power_supply_desc charger_desc ; struct delayed_work work ; struct power_supply *notify_psy ; struct notifier_block nb ; enum bq2415x_mode reported_mode ; enum bq2415x_mode mode ; enum bq2415x_chip chip ; char const *timer_error ; char *model ; char *name ; int autotimer ; int automode ; int id ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef bool ldv_func_ret_type___4; typedef bool ldv_func_ret_type___5; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int kstrtoll(char const * , unsigned int , long long * ) ; __inline static int kstrtol(char const *s , unsigned int base , long *res ) { int tmp ; { tmp = kstrtoll(s, base, (long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern char *kasprintf(gfp_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern int strcmp(char const * , char const * ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_31(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_30(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_bq2415x_i2c_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_bq2415x_i2c_mutex(struct mutex *lock ) ; void ldv_mutex_lock_bq2415x_id_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_bq2415x_id_mutex(struct mutex *lock ) ; void ldv_mutex_lock_bq2415x_timer_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_bq2415x_timer_mutex(struct mutex *lock ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; bool ldv_cancel_delayed_work_sync_23(struct delayed_work *ldv_func_arg1 ) ; bool ldv_cancel_delayed_work_sync_25(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_6(8192, wq, dwork, delay); return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work(system_wq, dwork, delay); return (tmp); } } extern int idr_alloc(struct idr * , void * , int , int , gfp_t ) ; extern void idr_remove(struct idr * , int ) ; extern void kfree(void const * ) ; int ldv_state_variable_8 ; struct device *dev_attr_battery_regulation_voltage_group1 ; struct device *dev_attr_mode_group1 ; int ldv_state_variable_15 ; struct device *dev_attr_current_limit_group1 ; struct work_struct *ldv_work_struct_1_3 ; struct device *dev_attr_registers_group1 ; struct device_attribute *dev_attr_mode_group0 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_state_variable_13 ; int ldv_work_1_1 ; int ldv_state_variable_12 ; struct device_attribute *dev_attr_termination_current_group0 ; int ldv_state_variable_14 ; struct device_attribute *dev_attr_current_limit_group0 ; struct device *dev_attr_charge_termination_enable_group1 ; int ldv_state_variable_17 ; struct device *dev_attr_otg_pin_enable_group1 ; struct device *dev_attr_charge_current_group1 ; int ldv_state_variable_19 ; int ldv_state_variable_9 ; struct device *dev_attr_weak_battery_voltage_group1 ; int ref_cnt ; struct device_attribute *dev_attr_otg_pin_enable_group0 ; int ldv_state_variable_1 ; struct device *dev_attr_termination_current_group1 ; struct device_attribute *dev_attr_charge_termination_enable_group0 ; int ldv_state_variable_7 ; struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; struct device_attribute *dev_attr_charge_current_group0 ; int ldv_state_variable_10 ; int ldv_work_1_3 ; int ldv_state_variable_6 ; int ldv_state_variable_16 ; struct device_attribute *dev_attr_battery_regulation_voltage_group0 ; int ldv_state_variable_2 ; struct device_attribute *dev_attr_stat_pin_enable_group0 ; struct device_attribute *dev_attr_weak_battery_voltage_group0 ; struct device *dev_attr_timer_group1 ; int ldv_state_variable_11 ; int ldv_work_1_2 ; int LDV_IN_INTERRUPT = 1; int ldv_state_variable_18 ; struct work_struct *ldv_work_struct_1_2 ; struct i2c_client *bq2415x_driver_group0 ; int ldv_state_variable_3 ; struct device_attribute *dev_attr_high_impedance_enable_group0 ; struct device_attribute *dev_attr_timer_group0 ; int ldv_work_1_0 ; int ldv_state_variable_4 ; struct device *dev_attr_high_impedance_enable_group1 ; struct device *dev_attr_stat_pin_enable_group1 ; struct device_attribute *dev_attr_registers_group0 ; void ldv_initialize_device_attribute_12(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void ldv_initialize_device_attribute_13(void) ; void ldv_initialize_device_attribute_17(void) ; void ldv_initialize_device_attribute_14(void) ; void call_and_disable_all_1(int state ) ; void activate_work_1(struct work_struct *work , int state ) ; void ldv_initialize_device_attribute_16(void) ; void ldv_initialize_device_attribute_11(void) ; void ldv_initialize_device_attribute_19(void) ; void ldv_initialize_device_attribute_9(void) ; void disable_work_1(struct work_struct *work ) ; void ldv_initialize_device_attribute_15(void) ; void ldv_initialize_i2c_driver_2(void) ; void ldv_initialize_device_attribute_8(void) ; void work_init_1(void) ; void invoke_work_1(void) ; void ldv_initialize_device_attribute_7(void) ; void ldv_initialize_device_attribute_18(void) ; extern int sysfs_create_group(struct kobject * , struct attribute_group const * ) ; extern void sysfs_remove_group(struct kobject * , struct attribute_group const * ) ; extern void sysfs_notify(struct kobject * , char const * , char const * ) ; extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { tmp = devm_kmalloc(dev, size, gfp | 32768U); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern int power_supply_reg_notifier(struct notifier_block * ) ; extern void power_supply_unreg_notifier(struct notifier_block * ) ; extern struct power_supply *power_supply_get_by_name(char const * ) ; extern void power_supply_put(struct power_supply * ) ; extern struct power_supply *power_supply_get_by_phandle(struct device_node * , char const * ) ; extern int power_supply_get_property(struct power_supply * , enum power_supply_property , union power_supply_propval * ) ; extern struct power_supply *power_supply_register(struct device * , struct power_supply_desc const * , struct power_supply_config const * ) ; extern void power_supply_unregister(struct power_supply * ) ; extern void *power_supply_get_drvdata(struct power_supply * ) ; extern int device_property_read_u32_array(struct device * , char const * , u32 * , size_t ) ; __inline static int device_property_read_u32(struct device *dev , char const *propname , u32 *val ) { int tmp ; { tmp = device_property_read_u32_array(dev, propname, val, 1UL); return (tmp); } } extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; __inline static void *i2c_get_clientdata(struct i2c_client const *dev ) { void *tmp ; { tmp = dev_get_drvdata(& dev->dev); return (tmp); } } __inline static void i2c_set_clientdata(struct i2c_client *dev , void *data ) { { dev_set_drvdata(& dev->dev, data); return; } } extern int i2c_register_driver(struct module * , struct i2c_driver * ) ; extern void i2c_del_driver(struct i2c_driver * ) ; __inline static bool is_acpi_node(struct fwnode_handle *fwnode ) { { return ((bool )((unsigned long )fwnode != (unsigned long )((struct fwnode_handle *)0) && (unsigned int )fwnode->type == 2U)); } } __inline static struct acpi_device *to_acpi_node(struct fwnode_handle *fwnode ) { struct fwnode_handle const *__mptr ; struct acpi_device *tmp___0 ; bool tmp___1 ; { tmp___1 = is_acpi_node(fwnode); if ((int )tmp___1) { __mptr = (struct fwnode_handle const *)fwnode; tmp___0 = (struct acpi_device *)__mptr + 0xfffffffffffffff0UL; } else { tmp___0 = (struct acpi_device *)0; } return (tmp___0); } } __inline static acpi_handle acpi_device_handle(struct acpi_device *adev ) { { return ((unsigned long )adev != (unsigned long )((struct acpi_device *)0) ? adev->handle : (acpi_handle )0); } } extern struct acpi_device_id const *acpi_match_device(struct acpi_device_id const * , struct device const * ) ; static char *bq2415x_chip_name[13U] = { (char *)"unknown", (char *)"bq24150", (char *)"bq24150a", (char *)"bq24151", (char *)"bq24151a", (char *)"bq24152", (char *)"bq24153", (char *)"bq24153a", (char *)"bq24155", (char *)"bq24156", (char *)"bq24156a", (char *)"bq24157s", (char *)"bq24158"}; static struct idr bq2415x_id = {0, 0, 0, 0, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "bq2415x_id.lock", 0, 0UL}}}}, 0, 0}; static struct mutex bq2415x_id_mutex = {{1}, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "bq2415x_id_mutex.wait_lock", 0, 0UL}}}}, {& bq2415x_id_mutex.wait_list, & bq2415x_id_mutex.wait_list}, 0, (void *)(& bq2415x_id_mutex), {0, {0, 0}, "bq2415x_id_mutex", 0, 0UL}}; static struct mutex bq2415x_timer_mutex = {{1}, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "bq2415x_timer_mutex.wait_lock", 0, 0UL}}}}, {& bq2415x_timer_mutex.wait_list, & bq2415x_timer_mutex.wait_list}, 0, (void *)(& bq2415x_timer_mutex), {0, {0, 0}, "bq2415x_timer_mutex", 0, 0UL}}; static struct mutex bq2415x_i2c_mutex = {{1}, {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "bq2415x_i2c_mutex.wait_lock", 0, 0UL}}}}, {& bq2415x_i2c_mutex.wait_list, & bq2415x_i2c_mutex.wait_list}, 0, (void *)(& bq2415x_i2c_mutex), {0, {0, 0}, "bq2415x_i2c_mutex", 0, 0UL}}; static int bq2415x_i2c_read(struct bq2415x_device *bq , u8 reg ) { struct i2c_client *client ; struct device const *__mptr ; struct i2c_msg msg[2U] ; u8 val ; int ret ; { __mptr = (struct device const *)bq->dev; client = (struct i2c_client *)__mptr + 0xffffffffffffffe0UL; if ((unsigned long )client->adapter == (unsigned long )((struct i2c_adapter *)0)) { return (-19); } else { } msg[0].addr = client->addr; msg[0].flags = 0U; msg[0].buf = & reg; msg[0].len = 1U; msg[1].addr = client->addr; msg[1].flags = 1U; msg[1].buf = & val; msg[1].len = 1U; ldv_mutex_lock_17(& bq2415x_i2c_mutex); ret = i2c_transfer(client->adapter, (struct i2c_msg *)(& msg), 2); ldv_mutex_unlock_18(& bq2415x_i2c_mutex); if (ret < 0) { return (ret); } else { } return ((int )val); } } static int bq2415x_i2c_read_mask(struct bq2415x_device *bq , u8 reg , u8 mask , u8 shift ) { int ret ; { if ((unsigned int )shift > 8U) { return (-22); } else { } ret = bq2415x_i2c_read(bq, (int )reg); if (ret < 0) { return (ret); } else { } return (((int )mask & ret) >> (int )shift); } } static int bq2415x_i2c_read_bit(struct bq2415x_device *bq , u8 reg , u8 bit ) { int tmp ; { if ((unsigned int )bit > 8U) { return (-22); } else { } tmp = bq2415x_i2c_read_mask(bq, (int )reg, (int )((u8 )(1UL << (int )bit)), (int )bit); return (tmp); } } static int bq2415x_i2c_write(struct bq2415x_device *bq , u8 reg , u8 val ) { struct i2c_client *client ; struct device const *__mptr ; struct i2c_msg msg[1U] ; u8 data[2U] ; int ret ; { __mptr = (struct device const *)bq->dev; client = (struct i2c_client *)__mptr + 0xffffffffffffffe0UL; data[0] = reg; data[1] = val; msg[0].addr = client->addr; msg[0].flags = 0U; msg[0].buf = (__u8 *)(& data); msg[0].len = 2U; ldv_mutex_lock_19(& bq2415x_i2c_mutex); ret = i2c_transfer(client->adapter, (struct i2c_msg *)(& msg), 1); ldv_mutex_unlock_20(& bq2415x_i2c_mutex); if (ret < 0) { return (ret); } else if (ret != 1) { return (-5); } else { } return (0); } } static int bq2415x_i2c_write_mask(struct bq2415x_device *bq , u8 reg , u8 val , u8 mask , u8 shift ) { int ret ; int tmp ; { if ((unsigned int )shift > 8U) { return (-22); } else { } ret = bq2415x_i2c_read(bq, (int )reg); if (ret < 0) { return (ret); } else { } ret = ~ ((int )mask) & ret; ret = ((int )val << (int )shift) | ret; tmp = bq2415x_i2c_write(bq, (int )reg, (int )((u8 )ret)); return (tmp); } } static int bq2415x_i2c_write_bit(struct bq2415x_device *bq , u8 reg , bool val , u8 bit ) { int tmp ; { if ((unsigned int )bit > 8U) { return (-22); } else { } tmp = bq2415x_i2c_write_mask(bq, (int )reg, (int )val, (int )((u8 )(1UL << (int )bit)), (int )bit); return (tmp); } } static int bq2415x_exec_command(struct bq2415x_device *bq , enum bq2415x_command command ) { int ret ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; { switch ((unsigned int )command) { case 0U: tmp = bq2415x_i2c_write_bit(bq, 0, 1, 7); return (tmp); case 1U: tmp___0 = bq2415x_i2c_read_bit(bq, 0, 7); return (tmp___0); case 2U: tmp___1 = bq2415x_i2c_read_bit(bq, 0, 6); return (tmp___1); case 3U: tmp___2 = bq2415x_i2c_write_bit(bq, 0, 1, 6); return (tmp___2); case 4U: tmp___3 = bq2415x_i2c_write_bit(bq, 0, 0, 6); return (tmp___3); case 5U: tmp___4 = bq2415x_i2c_read_mask(bq, 0, 48, 4); return (tmp___4); case 6U: tmp___5 = bq2415x_i2c_read_bit(bq, 0, 3); return (tmp___5); case 7U: tmp___6 = bq2415x_i2c_read_mask(bq, 0, 7, 0); return (tmp___6); case 8U: tmp___7 = bq2415x_i2c_read_bit(bq, 1, 3); return (tmp___7); case 9U: tmp___8 = bq2415x_i2c_write_bit(bq, 1, 1, 3); return (tmp___8); case 10U: tmp___9 = bq2415x_i2c_write_bit(bq, 1, 0, 3); return (tmp___9); case 11U: ret = bq2415x_i2c_read_bit(bq, 1, 2); if (ret < 0) { return (ret); } else { } return (ret <= 0); case 12U: tmp___10 = bq2415x_i2c_write_bit(bq, 1, 0, 2); return (tmp___10); case 13U: tmp___11 = bq2415x_i2c_write_bit(bq, 1, 1, 2); return (tmp___11); case 14U: tmp___12 = bq2415x_i2c_read_bit(bq, 1, 1); return (tmp___12); case 15U: tmp___13 = bq2415x_i2c_write_bit(bq, 1, 1, 1); return (tmp___13); case 16U: tmp___14 = bq2415x_i2c_write_bit(bq, 1, 0, 1); return (tmp___14); case 17U: tmp___15 = bq2415x_i2c_read_bit(bq, 1, 0); return (tmp___15); case 18U: tmp___16 = bq2415x_i2c_write_bit(bq, 1, 1, 0); return (tmp___16); case 19U: tmp___17 = bq2415x_i2c_write_bit(bq, 1, 0, 0); return (tmp___17); case 20U: tmp___18 = bq2415x_i2c_read_bit(bq, 2, 1); return (tmp___18); case 21U: tmp___19 = bq2415x_i2c_write_bit(bq, 2, 1, 1); return (tmp___19); case 22U: tmp___20 = bq2415x_i2c_write_bit(bq, 2, 0, 1); return (tmp___20); case 23U: tmp___21 = bq2415x_i2c_read_bit(bq, 2, 0); return (tmp___21); case 24U: tmp___22 = bq2415x_i2c_write_bit(bq, 2, 1, 0); return (tmp___22); case 25U: tmp___23 = bq2415x_i2c_write_bit(bq, 2, 0, 0); return (tmp___23); case 26U: tmp___24 = bq2415x_i2c_read_mask(bq, 3, 224, 5); return (tmp___24); case 27U: tmp___25 = bq2415x_i2c_read_mask(bq, 3, 24, 3); return (tmp___25); case 28U: tmp___26 = bq2415x_i2c_read_mask(bq, 3, 7, 0); return (tmp___26); } return (-22); } } static enum bq2415x_chip bq2415x_detect_chip(struct bq2415x_device *bq ) { struct i2c_client *client ; struct device const *__mptr ; int ret ; int tmp ; { __mptr = (struct device const *)bq->dev; client = (struct i2c_client *)__mptr + 0xffffffffffffffe0UL; tmp = bq2415x_exec_command(bq, 27); ret = tmp; if (ret < 0) { return ((enum bq2415x_chip )ret); } else { } switch ((int )client->addr) { case 107: ; switch (ret) { case 0: ; if ((unsigned int )bq->chip == 4U) { return (bq->chip); } else { } return (3); case 1: ; if (((unsigned int )bq->chip == 2U || (unsigned int )bq->chip == 5U) || (unsigned int )bq->chip == 8U) { return (bq->chip); } else { } return (1); case 2: ; if ((unsigned int )bq->chip == 7U) { return (bq->chip); } else { } return (6); default: ; return (0); } goto ldv_30963; case 106: ; switch (ret) { case 0: ; if ((unsigned int )bq->chip == 10U) { return (bq->chip); } else { } return (9); case 2: ; if ((unsigned int )bq->chip == 11U) { return (bq->chip); } else { } return (12); default: ; return (0); } goto ldv_30963; } ldv_30963: ; return (0); } } static int bq2415x_detect_revision(struct bq2415x_device *bq ) { int ret ; int tmp ; int chip ; enum bq2415x_chip tmp___0 ; { tmp = bq2415x_exec_command(bq, 28); ret = tmp; tmp___0 = bq2415x_detect_chip(bq); chip = (int )tmp___0; if (ret < 0 || chip < 0) { return (-1); } else { } switch (chip) { case 1: ; case 2: ; case 3: ; case 4: ; case 5: ; if (ret >= 0 && ret <= 3) { return (ret); } else { } return (-1); case 6: ; case 7: ; case 9: ; case 10: ; case 11: ; case 12: ; if (ret == 3) { return (0); } else if (ret == 1) { return (1); } else { } return (-1); case 8: ; if (ret == 3) { return (3); } else { } return (-1); case 0: ; return (-1); } return (-1); } } static int bq2415x_get_vender_code(struct bq2415x_device *bq ) { int ret ; { ret = bq2415x_exec_command(bq, 26); if (ret < 0) { return (0); } else { } return ((ret & 1) + (((ret >> 2) & 1) * 100 + ((ret >> 1) & 1) * 10)); } } static void bq2415x_reset_chip(struct bq2415x_device *bq ) { { bq2415x_i2c_write(bq, 4, 137); bq2415x_i2c_write(bq, 2, 10); bq2415x_i2c_write(bq, 1, 48); bq2415x_i2c_write(bq, 0, 64); bq->timer_error = (char const *)0; return; } } static int bq2415x_set_current_limit(struct bq2415x_device *bq , int mA ) { int val ; int tmp ; { if (mA <= 100) { val = 0; } else if (mA <= 500) { val = 1; } else if (mA <= 800) { val = 2; } else { val = 3; } tmp = bq2415x_i2c_write_mask(bq, 1, (int )((u8 )val), 192, 6); return (tmp); } } static int bq2415x_get_current_limit(struct bq2415x_device *bq ) { int ret ; { ret = bq2415x_i2c_read_mask(bq, 1, 192, 6); if (ret < 0) { return (ret); } else if (ret == 0) { return (100); } else if (ret == 1) { return (500); } else if (ret == 2) { return (800); } else if (ret == 3) { return (1800); } else { } return (-22); } } static int bq2415x_set_weak_battery_voltage(struct bq2415x_device *bq , int mV ) { int val ; int tmp ; { if (mV <= 3450) { val = 0; } else if (mV <= 3550) { val = 1; } else if (mV <= 3650) { val = 2; } else { val = 3; } tmp = bq2415x_i2c_write_mask(bq, 1, (int )((u8 )val), 48, 4); return (tmp); } } static int bq2415x_get_weak_battery_voltage(struct bq2415x_device *bq ) { int ret ; { ret = bq2415x_i2c_read_mask(bq, 1, 48, 4); if (ret < 0) { return (ret); } else { } return (ret * 100 + 3400); } } static int bq2415x_set_battery_regulation_voltage(struct bq2415x_device *bq , int mV ) { int val ; int tmp ; { val = (mV / 10 + -350) / 2; if (val < 0) { val = 0; } else if (val > 47) { return (-22); } else { } tmp = bq2415x_i2c_write_mask(bq, 2, (int )((u8 )val), 252, 2); return (tmp); } } static int bq2415x_get_battery_regulation_voltage(struct bq2415x_device *bq ) { int ret ; int tmp ; { tmp = bq2415x_i2c_read_mask(bq, 2, 252, 2); ret = tmp; if (ret < 0) { return (ret); } else { } return (ret * 20 + 3500); } } static int bq2415x_set_charge_current(struct bq2415x_device *bq , int mA ) { int val ; int tmp ; { if (bq->init_data.resistor_sense <= 0) { return (-22); } else { } val = (bq->init_data.resistor_sense * mA + -37400) / 6800; if (val < 0) { val = 0; } else if (val > 7) { val = 7; } else { } tmp = bq2415x_i2c_write_mask(bq, 4, (int )((u8 )val), 240, 4); return (tmp); } } static int bq2415x_get_charge_current(struct bq2415x_device *bq ) { int ret ; { if (bq->init_data.resistor_sense <= 0) { return (-22); } else { } ret = bq2415x_i2c_read_mask(bq, 4, 112, 4); if (ret < 0) { return (ret); } else { } return ((ret * 6800 + 37400) / bq->init_data.resistor_sense); } } static int bq2415x_set_termination_current(struct bq2415x_device *bq , int mA ) { int val ; int tmp ; { if (bq->init_data.resistor_sense <= 0) { return (-22); } else { } val = (bq->init_data.resistor_sense * mA + -3400) / 3400; if (val < 0) { val = 0; } else if (val > 7) { val = 7; } else { } tmp = bq2415x_i2c_write_mask(bq, 4, (int )((u8 )val), 135, 0); return (tmp); } } static int bq2415x_get_termination_current(struct bq2415x_device *bq ) { int ret ; { if (bq->init_data.resistor_sense <= 0) { return (-22); } else { } ret = bq2415x_i2c_read_mask(bq, 4, 7, 0); if (ret < 0) { return (ret); } else { } return (((ret + 1) * 3400) / bq->init_data.resistor_sense); } } static int bq2415x_set_defaults(struct bq2415x_device *bq ) { int ret ; int ret___0 ; int ret___1 ; int ret___2 ; int ret___3 ; { bq2415x_exec_command(bq, 19); bq2415x_exec_command(bq, 13); bq2415x_exec_command(bq, 10); ret = 0; if (bq->init_data.current_limit != -1) { ret = bq2415x_set_current_limit(bq, bq->init_data.current_limit); } else { } if (ret < 0) { return (ret); } else { } ret___0 = 0; if (bq->init_data.weak_battery_voltage != -1) { ret___0 = bq2415x_set_weak_battery_voltage(bq, bq->init_data.weak_battery_voltage); } else { } if (ret___0 < 0) { return (ret___0); } else { } ret___1 = 0; if (bq->init_data.battery_regulation_voltage != -1) { ret___1 = bq2415x_set_battery_regulation_voltage(bq, bq->init_data.battery_regulation_voltage); } else { } if (ret___1 < 0) { return (ret___1); } else { } if (bq->init_data.resistor_sense > 0) { ret___2 = 0; if (bq->init_data.charge_current != -1) { ret___2 = bq2415x_set_charge_current(bq, bq->init_data.charge_current); } else { } if (ret___2 < 0) { return (ret___2); } else { } ret___3 = 0; if (bq->init_data.termination_current != -1) { ret___3 = bq2415x_set_termination_current(bq, bq->init_data.termination_current); } else { } if (ret___3 < 0) { return (ret___3); } else { } bq2415x_exec_command(bq, 9); } else { } bq2415x_exec_command(bq, 12); return (0); } } static int bq2415x_set_mode(struct bq2415x_device *bq , enum bq2415x_mode mode ) { int ret ; int charger ; int boost ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; int ret___0 ; int ret___1 ; { ret = 0; charger = 0; boost = 0; if ((unsigned int )mode == 4U) { boost = 1; } else if ((unsigned int )mode != 0U) { charger = 1; } else { } if (charger == 0) { ret = bq2415x_exec_command(bq, 13); } else { } if (boost == 0) { ret = bq2415x_exec_command(bq, 19); } else { } if (ret < 0) { return (ret); } else { } switch ((unsigned int )mode) { case 0U: descriptor.modname = "bq2415x_charger"; descriptor.function = "bq2415x_set_mode"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8348/dscv_tempdir/dscv/ri/32_7a/drivers/power/bq2415x_charger.c"; descriptor.format = "changing mode to: Offline\n"; descriptor.lineno = 753U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)bq->dev, "changing mode to: Offline\n"); } else { } ret = bq2415x_set_current_limit(bq, 100); goto ldv_31056; case 1U: descriptor___0.modname = "bq2415x_charger"; descriptor___0.function = "bq2415x_set_mode"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8348/dscv_tempdir/dscv/ri/32_7a/drivers/power/bq2415x_charger.c"; descriptor___0.format = "changing mode to: N/A\n"; descriptor___0.lineno = 757U; descriptor___0.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)bq->dev, "changing mode to: N/A\n"); } else { } ret = bq2415x_set_current_limit(bq, 100); goto ldv_31056; case 2U: descriptor___1.modname = "bq2415x_charger"; descriptor___1.function = "bq2415x_set_mode"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8348/dscv_tempdir/dscv/ri/32_7a/drivers/power/bq2415x_charger.c"; descriptor___1.format = "changing mode to: Host/HUB charger\n"; descriptor___1.lineno = 761U; descriptor___1.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_dev_dbg(& descriptor___1, (struct device const *)bq->dev, "changing mode to: Host/HUB charger\n"); } else { } ret = bq2415x_set_current_limit(bq, 500); goto ldv_31056; case 3U: descriptor___2.modname = "bq2415x_charger"; descriptor___2.function = "bq2415x_set_mode"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8348/dscv_tempdir/dscv/ri/32_7a/drivers/power/bq2415x_charger.c"; descriptor___2.format = "changing mode to: Dedicated charger\n"; descriptor___2.lineno = 765U; descriptor___2.flags = 1U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_dev_dbg(& descriptor___2, (struct device const *)bq->dev, "changing mode to: Dedicated charger\n"); } else { } ret = bq2415x_set_current_limit(bq, 1800); goto ldv_31056; case 4U: descriptor___3.modname = "bq2415x_charger"; descriptor___3.function = "bq2415x_set_mode"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8348/dscv_tempdir/dscv/ri/32_7a/drivers/power/bq2415x_charger.c"; descriptor___3.format = "changing mode to: Boost\n"; descriptor___3.lineno = 769U; descriptor___3.flags = 1U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_dev_dbg(& descriptor___3, (struct device const *)bq->dev, "changing mode to: Boost\n"); } else { } ret = bq2415x_set_current_limit(bq, 100); goto ldv_31056; } ldv_31056: ; if (ret < 0) { return (ret); } else { } if (charger != 0) { ret = bq2415x_exec_command(bq, 12); } else if (boost != 0) { ret = bq2415x_exec_command(bq, 18); } else { } if (ret < 0) { return (ret); } else { } ret___0 = 0; if (bq->init_data.weak_battery_voltage != -1) { ret___0 = bq2415x_set_weak_battery_voltage(bq, bq->init_data.weak_battery_voltage); } else { } if (ret___0 < 0) { return (ret___0); } else { } ret___1 = 0; if (bq->init_data.battery_regulation_voltage != -1) { ret___1 = bq2415x_set_battery_regulation_voltage(bq, bq->init_data.battery_regulation_voltage); } else { } if (ret___1 < 0) { return (ret___1); } else { } bq->mode = mode; sysfs_notify(& (bq->charger)->dev.kobj, (char const *)0, "mode"); return (0); } } static int bq2415x_notifier_call(struct notifier_block *nb , unsigned long val , void *v ) { struct bq2415x_device *bq ; struct notifier_block const *__mptr ; struct power_supply *psy ; enum bq2415x_mode mode ; union power_supply_propval prop ; int ret ; int mA ; struct _ddebug descriptor ; long tmp ; { __mptr = (struct notifier_block const *)nb; bq = (struct bq2415x_device *)__mptr + 0xfffffffffffffe98UL; psy = (struct power_supply *)v; if (val != 0UL) { return (1); } else { } if ((unsigned long )bq->notify_psy != (unsigned long )psy) { return (1); } else { } descriptor.modname = "bq2415x_charger"; descriptor.function = "bq2415x_notifier_call"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/8348/dscv_tempdir/dscv/ri/32_7a/drivers/power/bq2415x_charger.c"; descriptor.format = "notifier call was called\n"; descriptor.lineno = 812U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)bq->dev, "notifier call was called\n"); } else { } ret = power_supply_get_property(psy, 16, & prop); if (ret != 0) { return (1); } else { } mA = prop.intval; if (mA == 0) { mode = 0; } else if (mA <= 499) { mode = 1; } else if (mA <= 1799) { mode = 2; } else { mode = 3; } if ((unsigned int )bq->reported_mode == (unsigned int )mode) { return (1); } else { } bq->reported_mode = mode; if (bq->automode <= 0) { return (1); } else { } schedule_delayed_work(& bq->work, 0UL); return (1); } } static void bq2415x_set_autotimer(struct bq2415x_device *bq , int state ) { { ldv_mutex_lock_21(& bq2415x_timer_mutex); if (bq->autotimer == state) { ldv_mutex_unlock_22(& bq2415x_timer_mutex); return; } else { } bq->autotimer = state; if (state != 0) { schedule_delayed_work(& bq->work, 2500UL); bq2415x_exec_command(bq, 0); bq->timer_error = (char const *)0; } else { ldv_cancel_delayed_work_sync_23(& bq->work); } ldv_mutex_unlock_24(& bq2415x_timer_mutex); return; } } static void bq2415x_timer_error(struct bq2415x_device *bq , char const *msg ) { { bq->timer_error = msg; sysfs_notify(& (bq->charger)->dev.kobj, (char const *)0, "timer"); dev_err((struct device const *)bq->dev, "%s\n", msg); if (bq->automode > 0) { bq->automode = 0; } else { } bq2415x_set_mode(bq, 0); bq2415x_set_autotimer(bq, 0); return; } } static void bq2415x_timer_work(struct work_struct *work ) { struct bq2415x_device *bq ; struct work_struct const *__mptr ; int ret ; int error ; int boost ; { __mptr = (struct work_struct const *)work; bq = (struct bq2415x_device *)__mptr + 0xffffffffffffff80UL; if (bq->automode > 0 && (unsigned int )bq->reported_mode != (unsigned int )bq->mode) { sysfs_notify(& (bq->charger)->dev.kobj, (char const *)0, "reported_mode"); bq2415x_set_mode(bq, bq->reported_mode); } else { } if (bq->autotimer == 0) { return; } else { } ret = bq2415x_exec_command(bq, 0); if (ret < 0) { bq2415x_timer_error(bq, "Resetting timer failed"); return; } else { } boost = bq2415x_exec_command(bq, 17); if (boost < 0) { bq2415x_timer_error(bq, "Unknown error"); return; } else { } error = bq2415x_exec_command(bq, 7); if (error < 0) { bq2415x_timer_error(bq, "Unknown error"); return; } else { } if (boost != 0) { switch (error) { case 0: ; goto ldv_31100; case 6: dev_err((struct device const *)bq->dev, "Timer expired\n"); goto ldv_31100; case 3: dev_err((struct device const *)bq->dev, "Battery voltage to low\n"); goto ldv_31100; case 1: bq2415x_timer_error(bq, "Overvoltage protection (chip fried)"); return; case 2: bq2415x_timer_error(bq, "Overload"); return; case 4: bq2415x_timer_error(bq, "Battery overvoltage protection"); return; case 5: bq2415x_timer_error(bq, "Thermal shutdown (too hot)"); return; case 7: bq2415x_timer_error(bq, "Unknown error"); return; } ldv_31100: ; } else { switch (error) { case 0: ; goto ldv_31109; case 2: dev_err((struct device const *)bq->dev, "Sleep mode\n"); goto ldv_31109; case 3: dev_err((struct device const *)bq->dev, "Poor input source\n"); goto ldv_31109; case 6: dev_err((struct device const *)bq->dev, "Timer expired\n"); goto ldv_31109; case 7: dev_err((struct device const *)bq->dev, "No battery\n"); goto ldv_31109; case 1: bq2415x_timer_error(bq, "Overvoltage protection (chip fried)"); return; case 4: bq2415x_timer_error(bq, "Battery overvoltage protection"); return; case 5: bq2415x_timer_error(bq, "Thermal shutdown (too hot)"); return; } ldv_31109: ; } schedule_delayed_work(& bq->work, 2500UL); return; } } static enum power_supply_property bq2415x_power_supply_props[2U] = { 0, 62}; static int bq2415x_power_supply_get_property(struct power_supply *psy , enum power_supply_property psp , union power_supply_propval *val ) { struct bq2415x_device *bq ; void *tmp ; int ret ; { tmp = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp; switch ((unsigned int )psp) { case 0U: ret = bq2415x_exec_command(bq, 5); if (ret < 0) { return (ret); } else if (ret == 0) { val->intval = 3; } else if (ret == 1) { val->intval = 1; } else if (ret == 2) { val->intval = 4; } else { val->intval = 0; } goto ldv_31126; case 62U: val->strval = (char const *)bq->model; goto ldv_31126; default: ; return (-22); } ldv_31126: ; return (0); } } static int bq2415x_power_supply_init(struct bq2415x_device *bq ) { int ret ; int chip ; char revstr[8U] ; struct power_supply_config psy_cfg ; enum bq2415x_chip tmp ; int tmp___0 ; long tmp___1 ; bool tmp___2 ; { psy_cfg.of_node = 0; psy_cfg.drv_data = (void *)bq; psy_cfg.supplied_to = 0; psy_cfg.num_supplicants = 0UL; bq->charger_desc.name = (char const *)bq->name; bq->charger_desc.type = 4; bq->charger_desc.properties = (enum power_supply_property *)(& bq2415x_power_supply_props); bq->charger_desc.num_properties = 2UL; bq->charger_desc.get_property = & bq2415x_power_supply_get_property; tmp = bq2415x_detect_chip(bq); ret = (int )tmp; if (ret < 0) { chip = 0; } else { chip = ret; } ret = bq2415x_detect_revision(bq); if (ret < 0) { strcpy((char *)(& revstr), "unknown"); } else { sprintf((char *)(& revstr), "1.%d", ret); } tmp___0 = bq2415x_get_vender_code(bq); bq->model = kasprintf(208U, "chip %s, revision %s, vender code %.3d", bq2415x_chip_name[chip], (char *)(& revstr), tmp___0); if ((unsigned long )bq->model == (unsigned long )((char *)0)) { dev_err((struct device const *)bq->dev, "failed to allocate model name\n"); return (-12); } else { } bq->charger = power_supply_register(bq->dev, (struct power_supply_desc const *)(& bq->charger_desc), (struct power_supply_config const *)(& psy_cfg)); tmp___2 = IS_ERR((void const *)bq->charger); if ((int )tmp___2) { kfree((void const *)bq->model); tmp___1 = PTR_ERR((void const *)bq->charger); return ((int )tmp___1); } else { } return (0); } } static void bq2415x_power_supply_exit(struct bq2415x_device *bq ) { { bq->autotimer = 0; if (bq->automode > 0) { bq->automode = 0; } else { } ldv_cancel_delayed_work_sync_25(& bq->work); power_supply_unregister(bq->charger); kfree((void const *)bq->model); return; } } static ssize_t bq2415x_sysfs_show_status(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; enum bq2415x_command command ; int ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; tmp___4 = strcmp(attr->attr.name, "otg_status"); if (tmp___4 == 0) { command = 1; } else { tmp___3 = strcmp(attr->attr.name, "charge_status"); if (tmp___3 == 0) { command = 5; } else { tmp___2 = strcmp(attr->attr.name, "boost_status"); if (tmp___2 == 0) { command = 6; } else { tmp___1 = strcmp(attr->attr.name, "fault_status"); if (tmp___1 == 0) { command = 7; } else { return (-22L); } } } } ret = bq2415x_exec_command(bq, command); if (ret < 0) { return ((ssize_t )ret); } else { } tmp___5 = sprintf(buf, "%d\n", ret); return ((ssize_t )tmp___5); } } static ssize_t bq2415x_sysfs_set_timer(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; int ret ; int tmp___1 ; int tmp___2 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; ret = 0; tmp___2 = strncmp(buf, "auto", 4UL); if (tmp___2 == 0) { bq2415x_set_autotimer(bq, 1); } else { tmp___1 = strncmp(buf, "off", 3UL); if (tmp___1 == 0) { bq2415x_set_autotimer(bq, 0); } else { ret = bq2415x_exec_command(bq, 0); } } if (ret < 0) { return ((ssize_t )ret); } else { } return ((ssize_t )count); } } static ssize_t bq2415x_sysfs_show_timer(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; if ((unsigned long )bq->timer_error != (unsigned long )((char const *)0)) { tmp___1 = sprintf(buf, "%s\n", bq->timer_error); return ((ssize_t )tmp___1); } else { } if (bq->autotimer != 0) { tmp___2 = sprintf(buf, "auto\n"); return ((ssize_t )tmp___2); } else { } tmp___3 = sprintf(buf, "off\n"); return ((ssize_t )tmp___3); } } static ssize_t bq2415x_sysfs_set_mode(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; enum bq2415x_mode mode ; int ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; ret = 0; tmp___7 = strncmp(buf, "auto", 4UL); if (tmp___7 == 0) { if (bq->automode < 0) { return (-22L); } else { } bq->automode = 1; mode = bq->reported_mode; } else { tmp___6 = strncmp(buf, "off", 3UL); if (tmp___6 == 0) { if (bq->automode > 0) { bq->automode = 0; } else { } mode = 0; } else { tmp___5 = strncmp(buf, "none", 4UL); if (tmp___5 == 0) { if (bq->automode > 0) { bq->automode = 0; } else { } mode = 1; } else { tmp___4 = strncmp(buf, "host", 4UL); if (tmp___4 == 0) { if (bq->automode > 0) { bq->automode = 0; } else { } mode = 2; } else { tmp___3 = strncmp(buf, "dedicated", 9UL); if (tmp___3 == 0) { if (bq->automode > 0) { bq->automode = 0; } else { } mode = 3; } else { tmp___2 = strncmp(buf, "boost", 5UL); if (tmp___2 == 0) { if (bq->automode > 0) { bq->automode = 0; } else { } mode = 4; } else { tmp___1 = strncmp(buf, "reset", 5UL); if (tmp___1 == 0) { bq2415x_reset_chip(bq); bq2415x_set_defaults(bq); if (bq->automode <= 0) { return ((ssize_t )count); } else { } bq->automode = 1; mode = bq->reported_mode; } else { return (-22L); } } } } } } } ret = bq2415x_set_mode(bq, mode); if (ret < 0) { return ((ssize_t )ret); } else { } return ((ssize_t )count); } } static ssize_t bq2415x_sysfs_show_mode(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; ssize_t ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; ret = 0L; if (bq->automode > 0) { tmp___1 = sprintf(buf + (unsigned long )ret, "auto ("); ret = (ssize_t )tmp___1 + ret; } else { } switch ((unsigned int )bq->mode) { case 0U: tmp___2 = sprintf(buf + (unsigned long )ret, "off"); ret = (ssize_t )tmp___2 + ret; goto ldv_31185; case 1U: tmp___3 = sprintf(buf + (unsigned long )ret, "none"); ret = (ssize_t )tmp___3 + ret; goto ldv_31185; case 2U: tmp___4 = sprintf(buf + (unsigned long )ret, "host"); ret = (ssize_t )tmp___4 + ret; goto ldv_31185; case 3U: tmp___5 = sprintf(buf + (unsigned long )ret, "dedicated"); ret = (ssize_t )tmp___5 + ret; goto ldv_31185; case 4U: tmp___6 = sprintf(buf + (unsigned long )ret, "boost"); ret = (ssize_t )tmp___6 + ret; goto ldv_31185; } ldv_31185: ; if (bq->automode > 0) { tmp___7 = sprintf(buf + (unsigned long )ret, ")"); ret = (ssize_t )tmp___7 + ret; } else { } tmp___8 = sprintf(buf + (unsigned long )ret, "\n"); ret = (ssize_t )tmp___8 + ret; return (ret); } } static ssize_t bq2415x_sysfs_show_reported_mode(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; if (bq->automode < 0) { return (-22L); } else { } switch ((unsigned int )bq->reported_mode) { case 0U: tmp___1 = sprintf(buf, "off\n"); return ((ssize_t )tmp___1); case 1U: tmp___2 = sprintf(buf, "none\n"); return ((ssize_t )tmp___2); case 2U: tmp___3 = sprintf(buf, "host\n"); return ((ssize_t )tmp___3); case 3U: tmp___4 = sprintf(buf, "dedicated\n"); return ((ssize_t )tmp___4); case 4U: tmp___5 = sprintf(buf, "boost\n"); return ((ssize_t )tmp___5); } return (-22L); } } static ssize_t bq2415x_sysfs_set_registers(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; ssize_t ret ; unsigned int reg ; unsigned int val ; int tmp___1 ; int tmp___2 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; ret = 0L; tmp___1 = sscanf(buf, "%x %x", & reg, & val); if (tmp___1 != 2) { return (-22L); } else { } if (reg > 4U || val > 255U) { return (-22L); } else { } tmp___2 = bq2415x_i2c_write(bq, (int )((u8 )reg), (int )((u8 )val)); ret = (ssize_t )tmp___2; if (ret < 0L) { return (ret); } else { } return ((ssize_t )count); } } static ssize_t bq2415x_sysfs_print_reg(struct bq2415x_device *bq , u8 reg , char *buf ) { int ret ; int tmp ; int tmp___0 ; int tmp___1 ; { tmp = bq2415x_i2c_read(bq, (int )reg); ret = tmp; if (ret < 0) { tmp___0 = sprintf(buf, "%#.2x=error %d\n", (int )reg, ret); return ((ssize_t )tmp___0); } else { } tmp___1 = sprintf(buf, "%#.2x=%#.2x\n", (int )reg, ret); return ((ssize_t )tmp___1); } } static ssize_t bq2415x_sysfs_show_registers(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; ssize_t ret ; ssize_t tmp___1 ; ssize_t tmp___2 ; ssize_t tmp___3 ; ssize_t tmp___4 ; ssize_t tmp___5 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; ret = 0L; tmp___1 = bq2415x_sysfs_print_reg(bq, 0, buf + (unsigned long )ret); ret = tmp___1 + ret; tmp___2 = bq2415x_sysfs_print_reg(bq, 1, buf + (unsigned long )ret); ret = tmp___2 + ret; tmp___3 = bq2415x_sysfs_print_reg(bq, 2, buf + (unsigned long )ret); ret = tmp___3 + ret; tmp___4 = bq2415x_sysfs_print_reg(bq, 3, buf + (unsigned long )ret); ret = tmp___4 + ret; tmp___5 = bq2415x_sysfs_print_reg(bq, 4, buf + (unsigned long )ret); ret = tmp___5 + ret; return (ret); } } static ssize_t bq2415x_sysfs_set_limit(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; long val ; int ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; tmp___1 = kstrtol(buf, 10U, & val); if (tmp___1 < 0) { return (-22L); } else { } tmp___6 = strcmp(attr->attr.name, "current_limit"); if (tmp___6 == 0) { ret = bq2415x_set_current_limit(bq, (int )val); } else { tmp___5 = strcmp(attr->attr.name, "weak_battery_voltage"); if (tmp___5 == 0) { ret = bq2415x_set_weak_battery_voltage(bq, (int )val); } else { tmp___4 = strcmp(attr->attr.name, "battery_regulation_voltage"); if (tmp___4 == 0) { ret = bq2415x_set_battery_regulation_voltage(bq, (int )val); } else { tmp___3 = strcmp(attr->attr.name, "charge_current"); if (tmp___3 == 0) { ret = bq2415x_set_charge_current(bq, (int )val); } else { tmp___2 = strcmp(attr->attr.name, "termination_current"); if (tmp___2 == 0) { ret = bq2415x_set_termination_current(bq, (int )val); } else { return (-22L); } } } } } if (ret < 0) { return ((ssize_t )ret); } else { } return ((ssize_t )count); } } static ssize_t bq2415x_sysfs_show_limit(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; int ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; tmp___5 = strcmp(attr->attr.name, "current_limit"); if (tmp___5 == 0) { ret = bq2415x_get_current_limit(bq); } else { tmp___4 = strcmp(attr->attr.name, "weak_battery_voltage"); if (tmp___4 == 0) { ret = bq2415x_get_weak_battery_voltage(bq); } else { tmp___3 = strcmp(attr->attr.name, "battery_regulation_voltage"); if (tmp___3 == 0) { ret = bq2415x_get_battery_regulation_voltage(bq); } else { tmp___2 = strcmp(attr->attr.name, "charge_current"); if (tmp___2 == 0) { ret = bq2415x_get_charge_current(bq); } else { tmp___1 = strcmp(attr->attr.name, "termination_current"); if (tmp___1 == 0) { ret = bq2415x_get_termination_current(bq); } else { return (-22L); } } } } } if (ret < 0) { return ((ssize_t )ret); } else { } tmp___6 = sprintf(buf, "%d\n", ret); return ((ssize_t )tmp___6); } } static ssize_t bq2415x_sysfs_set_enable(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; enum bq2415x_command command ; long val ; int ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; tmp___1 = kstrtol(buf, 10U, & val); if (tmp___1 < 0) { return (-22L); } else { } tmp___5 = strcmp(attr->attr.name, "charge_termination_enable"); if (tmp___5 == 0) { command = val != 0L ? 9 : 10; } else { tmp___4 = strcmp(attr->attr.name, "high_impedance_enable"); if (tmp___4 == 0) { command = val != 0L ? 15 : 16; } else { tmp___3 = strcmp(attr->attr.name, "otg_pin_enable"); if (tmp___3 == 0) { command = val != 0L ? 24 : 25; } else { tmp___2 = strcmp(attr->attr.name, "stat_pin_enable"); if (tmp___2 == 0) { command = val != 0L ? 3 : 4; } else { return (-22L); } } } } ret = bq2415x_exec_command(bq, command); if (ret < 0) { return ((ssize_t )ret); } else { } return ((ssize_t )count); } } static ssize_t bq2415x_sysfs_show_enable(struct device *dev , struct device_attribute *attr , char *buf ) { struct power_supply *psy ; void *tmp ; struct bq2415x_device *bq ; void *tmp___0 ; enum bq2415x_command command ; int ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { tmp = dev_get_drvdata((struct device const *)dev); psy = (struct power_supply *)tmp; tmp___0 = power_supply_get_drvdata(psy); bq = (struct bq2415x_device *)tmp___0; tmp___4 = strcmp(attr->attr.name, "charge_termination_enable"); if (tmp___4 == 0) { command = 8; } else { tmp___3 = strcmp(attr->attr.name, "high_impedance_enable"); if (tmp___3 == 0) { command = 14; } else { tmp___2 = strcmp(attr->attr.name, "otg_pin_enable"); if (tmp___2 == 0) { command = 23; } else { tmp___1 = strcmp(attr->attr.name, "stat_pin_enable"); if (tmp___1 == 0) { command = 2; } else { return (-22L); } } } } ret = bq2415x_exec_command(bq, command); if (ret < 0) { return ((ssize_t )ret); } else { } tmp___5 = sprintf(buf, "%d\n", ret); return ((ssize_t )tmp___5); } } static struct device_attribute dev_attr_current_limit = {{"current_limit", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_limit, & bq2415x_sysfs_set_limit}; static struct device_attribute dev_attr_weak_battery_voltage = {{"weak_battery_voltage", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_limit, & bq2415x_sysfs_set_limit}; static struct device_attribute dev_attr_battery_regulation_voltage = {{"battery_regulation_voltage", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_limit, & bq2415x_sysfs_set_limit}; static struct device_attribute dev_attr_charge_current = {{"charge_current", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_limit, & bq2415x_sysfs_set_limit}; static struct device_attribute dev_attr_termination_current = {{"termination_current", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_limit, & bq2415x_sysfs_set_limit}; static struct device_attribute dev_attr_charge_termination_enable = {{"charge_termination_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_enable, & bq2415x_sysfs_set_enable}; static struct device_attribute dev_attr_high_impedance_enable = {{"high_impedance_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_enable, & bq2415x_sysfs_set_enable}; static struct device_attribute dev_attr_otg_pin_enable = {{"otg_pin_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_enable, & bq2415x_sysfs_set_enable}; static struct device_attribute dev_attr_stat_pin_enable = {{"stat_pin_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_enable, & bq2415x_sysfs_set_enable}; static struct device_attribute dev_attr_reported_mode = {{"reported_mode", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_reported_mode, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_mode = {{"mode", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_mode, & bq2415x_sysfs_set_mode}; static struct device_attribute dev_attr_timer = {{"timer", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_timer, & bq2415x_sysfs_set_timer}; static struct device_attribute dev_attr_registers = {{"registers", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_registers, & bq2415x_sysfs_set_registers}; static struct device_attribute dev_attr_otg_status = {{"otg_status", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_status, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_charge_status = {{"charge_status", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_status, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_boost_status = {{"boost_status", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_status, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_fault_status = {{"fault_status", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bq2415x_sysfs_show_status, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct attribute *bq2415x_sysfs_attributes[18U] = { & dev_attr_current_limit.attr, & dev_attr_weak_battery_voltage.attr, & dev_attr_battery_regulation_voltage.attr, & dev_attr_charge_current.attr, & dev_attr_termination_current.attr, & dev_attr_charge_termination_enable.attr, & dev_attr_high_impedance_enable.attr, & dev_attr_otg_pin_enable.attr, & dev_attr_stat_pin_enable.attr, & dev_attr_reported_mode.attr, & dev_attr_mode.attr, & dev_attr_timer.attr, & dev_attr_registers.attr, & dev_attr_otg_status.attr, & dev_attr_charge_status.attr, & dev_attr_boost_status.attr, & dev_attr_fault_status.attr, (struct attribute *)0}; static struct attribute_group const bq2415x_sysfs_attr_group = {0, 0, (struct attribute **)(& bq2415x_sysfs_attributes), 0}; static int bq2415x_sysfs_init(struct bq2415x_device *bq ) { int tmp ; { tmp = sysfs_create_group(& (bq->charger)->dev.kobj, & bq2415x_sysfs_attr_group); return (tmp); } } static void bq2415x_sysfs_exit(struct bq2415x_device *bq ) { { sysfs_remove_group(& (bq->charger)->dev.kobj, & bq2415x_sysfs_attr_group); return; } } static int bq2415x_probe(struct i2c_client *client , struct i2c_device_id const *id ) { int ret ; int num ; char *name ; struct bq2415x_device *bq ; struct device_node *np ; struct bq2415x_platform_data *pdata ; struct acpi_device_id const *acpi_id ; struct acpi_device *tmp ; acpi_handle tmp___0 ; struct acpi_device *tmp___1 ; acpi_handle tmp___2 ; void *tmp___3 ; long tmp___4 ; bool tmp___5 ; struct acpi_device *tmp___6 ; acpi_handle tmp___7 ; struct acpi_device *tmp___8 ; acpi_handle tmp___9 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { name = (char *)0; np = client->dev.of_node; pdata = (struct bq2415x_platform_data *)client->dev.platform_data; acpi_id = (struct acpi_device_id const *)0; if ((unsigned long )np == (unsigned long )((struct device_node *)0) && (unsigned long )pdata == (unsigned long )((struct bq2415x_platform_data *)0)) { tmp = to_acpi_node(client->dev.fwnode); tmp___0 = acpi_device_handle(tmp); if ((unsigned long )tmp___0 == (unsigned long )((acpi_handle )0)) { dev_err((struct device const *)(& client->dev), "Neither devicetree, nor platform data, nor ACPI support\n"); return (-19); } else { } } else { } ldv_mutex_lock_26(& bq2415x_id_mutex); num = idr_alloc(& bq2415x_id, (void *)client, 0, 0, 208U); ldv_mutex_unlock_27(& bq2415x_id_mutex); if (num < 0) { return (num); } else { } if ((unsigned long )id != (unsigned long )((struct i2c_device_id const *)0)) { name = kasprintf(208U, "%s-%d", (char const *)(& id->name), num); } else { tmp___1 = to_acpi_node(client->dev.fwnode); tmp___2 = acpi_device_handle(tmp___1); if ((unsigned long )tmp___2 != (unsigned long )((acpi_handle )0)) { acpi_id = acpi_match_device((client->dev.driver)->acpi_match_table, (struct device const *)(& client->dev)); name = kasprintf(208U, "%s-%d", (__u8 const *)(& acpi_id->id), num); } else { } } if ((unsigned long )name == (unsigned long )((char *)0)) { dev_err((struct device const *)(& client->dev), "failed to allocate device name\n"); ret = -12; goto error_1; } else { } tmp___3 = devm_kzalloc(& client->dev, 440UL, 208U); bq = (struct bq2415x_device *)tmp___3; if ((unsigned long )bq == (unsigned long )((struct bq2415x_device *)0)) { ret = -12; goto error_2; } else { } if ((unsigned long )np != (unsigned long )((struct device_node *)0)) { bq->notify_psy = power_supply_get_by_phandle(np, "ti,usb-charger-detection"); tmp___5 = IS_ERR((void const *)bq->notify_psy); if ((int )tmp___5) { tmp___4 = PTR_ERR((void const *)bq->notify_psy); _dev_info((struct device const *)(& client->dev), "no \'ti,usb-charger-detection\' property (err=%ld)\n", tmp___4); bq->notify_psy = (struct power_supply *)0; } else if ((unsigned long )bq->notify_psy == (unsigned long )((struct power_supply *)0)) { ret = -517; goto error_2; } else { } } else if ((unsigned long )pdata != (unsigned long )((struct bq2415x_platform_data *)0) && (unsigned long )pdata->notify_device != (unsigned long )((char const *)0)) { bq->notify_psy = power_supply_get_by_name(pdata->notify_device); } else { bq->notify_psy = (struct power_supply *)0; } i2c_set_clientdata(client, (void *)bq); bq->id = num; bq->dev = & client->dev; if ((unsigned long )id != (unsigned long )((struct i2c_device_id const *)0)) { bq->chip = (enum bq2415x_chip )id->driver_data; } else { tmp___6 = to_acpi_node((bq->dev)->fwnode); tmp___7 = acpi_device_handle(tmp___6); if ((unsigned long )tmp___7 != (unsigned long )((acpi_handle )0)) { bq->chip = (enum bq2415x_chip )acpi_id->driver_data; } else { } } bq->name = name; bq->mode = 0; bq->reported_mode = 0; bq->autotimer = 0; bq->automode = 0; if ((unsigned long )np != (unsigned long )((struct device_node *)0)) { goto _L; } else { tmp___8 = to_acpi_node((bq->dev)->fwnode); tmp___9 = acpi_device_handle(tmp___8); if ((unsigned long )tmp___9 != (unsigned long )((acpi_handle )0)) { _L: /* CIL Label */ ret = device_property_read_u32(bq->dev, "ti,current-limit", (u32 *)(& bq->init_data.current_limit)); if (ret != 0) { goto error_3; } else { } ret = device_property_read_u32(bq->dev, "ti,weak-battery-voltage", (u32 *)(& bq->init_data.weak_battery_voltage)); if (ret != 0) { goto error_3; } else { } ret = device_property_read_u32(bq->dev, "ti,battery-regulation-voltage", (u32 *)(& bq->init_data.battery_regulation_voltage)); if (ret != 0) { goto error_3; } else { } ret = device_property_read_u32(bq->dev, "ti,charge-current", (u32 *)(& bq->init_data.charge_current)); if (ret != 0) { goto error_3; } else { } ret = device_property_read_u32(bq->dev, "ti,termination-current", (u32 *)(& bq->init_data.termination_current)); if (ret != 0) { goto error_3; } else { } ret = device_property_read_u32(bq->dev, "ti,resistor-sense", (u32 *)(& bq->init_data.resistor_sense)); if (ret != 0) { goto error_3; } else { } } else { memcpy((void *)(& bq->init_data), (void const *)pdata, 32UL); } } bq2415x_reset_chip(bq); ret = bq2415x_power_supply_init(bq); if (ret != 0) { dev_err((struct device const *)bq->dev, "failed to register power supply: %d\n", ret); goto error_3; } else { } ret = bq2415x_sysfs_init(bq); if (ret != 0) { dev_err((struct device const *)bq->dev, "failed to create sysfs entries: %d\n", ret); goto error_4; } else { } ret = bq2415x_set_defaults(bq); if (ret != 0) { dev_err((struct device const *)bq->dev, "failed to set default values: %d\n", ret); goto error_5; } else { } if ((unsigned long )bq->notify_psy != (unsigned long )((struct power_supply *)0)) { bq->nb.notifier_call = & bq2415x_notifier_call; ret = power_supply_reg_notifier(& bq->nb); if (ret != 0) { dev_err((struct device const *)bq->dev, "failed to reg notifier: %d\n", ret); goto error_6; } else { } bq2415x_notifier_call(& bq->nb, 0UL, (void *)bq->notify_psy); bq2415x_set_mode(bq, bq->reported_mode); bq->automode = 1; _dev_info((struct device const *)bq->dev, "automode enabled\n"); } else { bq->automode = -1; _dev_info((struct device const *)bq->dev, "automode not supported\n"); } __init_work(& bq->work.work, 0); __constr_expr_0.counter = 137438953408L; bq->work.work.data = __constr_expr_0; lockdep_init_map(& bq->work.work.lockdep_map, "(&(&bq->work)->work)", & __key, 0); INIT_LIST_HEAD(& bq->work.work.entry); bq->work.work.func = & bq2415x_timer_work; init_timer_key(& bq->work.timer, 2097152U, "(&(&bq->work)->timer)", & __key___0); bq->work.timer.function = & delayed_work_timer_fn; bq->work.timer.data = (unsigned long )(& bq->work); bq2415x_set_autotimer(bq, 1); _dev_info((struct device const *)bq->dev, "driver registered\n"); return (0); error_6: ; error_5: bq2415x_sysfs_exit(bq); error_4: bq2415x_power_supply_exit(bq); error_3: ; if ((unsigned long )bq->notify_psy != (unsigned long )((struct power_supply *)0)) { power_supply_put(bq->notify_psy); } else { } error_2: kfree((void const *)name); error_1: ldv_mutex_lock_28(& bq2415x_id_mutex); idr_remove(& bq2415x_id, num); ldv_mutex_unlock_29(& bq2415x_id_mutex); return (ret); } } static int bq2415x_remove(struct i2c_client *client ) { struct bq2415x_device *bq ; void *tmp ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); bq = (struct bq2415x_device *)tmp; if ((unsigned long )bq->notify_psy != (unsigned long )((struct power_supply *)0)) { power_supply_unreg_notifier(& bq->nb); power_supply_put(bq->notify_psy); } else { } bq2415x_sysfs_exit(bq); bq2415x_power_supply_exit(bq); bq2415x_reset_chip(bq); ldv_mutex_lock_30(& bq2415x_id_mutex); idr_remove(& bq2415x_id, bq->id); ldv_mutex_unlock_31(& bq2415x_id_mutex); _dev_info((struct device const *)bq->dev, "driver unregistered\n"); kfree((void const *)bq->name); return (0); } } static struct i2c_device_id const bq2415x_i2c_id_table[14U] = { {{'b', 'q', '2', '4', '1', '5', 'x', '\000'}, 0UL}, {{'b', 'q', '2', '4', '1', '5', '0', '\000'}, 1UL}, {{'b', 'q', '2', '4', '1', '5', '0', 'a', '\000'}, 2UL}, {{'b', 'q', '2', '4', '1', '5', '1', '\000'}, 3UL}, {{'b', 'q', '2', '4', '1', '5', '1', 'a', '\000'}, 4UL}, {{'b', 'q', '2', '4', '1', '5', '2', '\000'}, 5UL}, {{'b', 'q', '2', '4', '1', '5', '3', '\000'}, 6UL}, {{'b', 'q', '2', '4', '1', '5', '3', 'a', '\000'}, 7UL}, {{'b', 'q', '2', '4', '1', '5', '5', '\000'}, 8UL}, {{'b', 'q', '2', '4', '1', '5', '6', '\000'}, 9UL}, {{'b', 'q', '2', '4', '1', '5', '6', 'a', '\000'}, 10UL}, {{'b', 'q', '2', '4', '1', '5', '7', 's', '\000'}, 11UL}, {{'b', 'q', '2', '4', '1', '5', '8', '\000'}, 12UL}}; struct i2c_device_id const __mod_i2c__bq2415x_i2c_id_table_device_table[14U] ; static struct acpi_device_id const bq2415x_i2c_acpi_match[14U] = { {{'B', 'Q', '2', '4', '1', '5', 'X', '\000'}, 0UL}, {{'B', 'Q', '2', '4', '1', '5', '0', '0', '\000'}, 1UL}, {{'B', 'Q', 'A', '2', '4', '1', '5', '0', '\000'}, 2UL}, {{'B', 'Q', '2', '4', '1', '5', '1', '0', '\000'}, 3UL}, {{'B', 'Q', 'A', '2', '4', '1', '5', '1', '\000'}, 4UL}, {{'B', 'Q', '2', '4', '1', '5', '2', '0', '\000'}, 5UL}, {{'B', 'Q', '2', '4', '1', '5', '3', '0', '\000'}, 6UL}, {{'B', 'Q', 'A', '2', '4', '1', '5', '3', '\000'}, 7UL}, {{'B', 'Q', '2', '4', '1', '5', '5', '0', '\000'}, 8UL}, {{'B', 'Q', '2', '4', '1', '5', '6', '0', '\000'}, 9UL}, {{'B', 'Q', 'A', '2', '4', '1', '5', '6', '\000'}, 10UL}, {{'B', 'Q', 'S', '2', '4', '1', '5', '7', '\000'}, 11UL}, {{'B', 'Q', '2', '4', '1', '5', '8', '0', '\000'}, 12UL}}; struct acpi_device_id const __mod_acpi__bq2415x_i2c_acpi_match_device_table[14U] ; static struct i2c_driver bq2415x_driver = {0U, 0, & bq2415x_probe, & bq2415x_remove, 0, 0, 0, {"bq2415x-charger", 0, 0, 0, (_Bool)0, 0, 0, (struct acpi_device_id const *)(& bq2415x_i2c_acpi_match), 0, 0, 0, 0, 0, 0, 0, 0}, (struct i2c_device_id const *)(& bq2415x_i2c_id_table), 0, 0, {0, 0}}; static int bq2415x_driver_init(void) { int tmp ; { tmp = i2c_register_driver(& __this_module, & bq2415x_driver); return (tmp); } } static void bq2415x_driver_exit(void) { { i2c_del_driver(& bq2415x_driver); return; } } int ldv_retval_0 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; void ldv_check_final_state(void) ; void ldv_initialize_device_attribute_12(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_otg_pin_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_otg_pin_enable_group1 = (struct device *)tmp___0; return; } } void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { bq2415x_timer_work(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { bq2415x_timer_work(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { bq2415x_timer_work(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { bq2415x_timer_work(work); ldv_work_1_3 = 1; return; } else { } return; } } void ldv_initialize_device_attribute_13(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_high_impedance_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_high_impedance_enable_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_17(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_battery_regulation_voltage_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_battery_regulation_voltage_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_14(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_charge_termination_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_charge_termination_enable_group1 = (struct device *)tmp___0; return; } } void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void ldv_initialize_device_attribute_16(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_charge_current_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_charge_current_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_11(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_stat_pin_enable_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_stat_pin_enable_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_19(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_current_limit_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_current_limit_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_9(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_mode_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_mode_group1 = (struct device *)tmp___0; return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void ldv_initialize_device_attribute_15(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_termination_current_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_termination_current_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_i2c_driver_2(void) { void *tmp ; { tmp = ldv_init_zalloc(1480UL); bq2415x_driver_group0 = (struct i2c_client *)tmp; return; } } void ldv_initialize_device_attribute_8(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_timer_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_timer_group1 = (struct device *)tmp___0; return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; bq2415x_timer_work(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_31605; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; bq2415x_timer_work(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_31605; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; bq2415x_timer_work(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_31605; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; bq2415x_timer_work(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_31605; default: ldv_stop(); } ldv_31605: ; return; } } void ldv_initialize_device_attribute_7(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_registers_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_registers_group1 = (struct device *)tmp___0; return; } } void ldv_initialize_device_attribute_18(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_weak_battery_voltage_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_weak_battery_voltage_group1 = (struct device *)tmp___0; return; } } int main(void) { size_t ldvarg1 ; char *ldvarg0 ; void *tmp ; char *ldvarg2 ; void *tmp___0 ; size_t ldvarg4 ; char *ldvarg3 ; void *tmp___1 ; char *ldvarg5 ; void *tmp___2 ; char *ldvarg8 ; void *tmp___3 ; size_t ldvarg7 ; char *ldvarg6 ; void *tmp___4 ; struct i2c_device_id *ldvarg9 ; void *tmp___5 ; size_t ldvarg11 ; char *ldvarg10 ; void *tmp___6 ; char *ldvarg12 ; void *tmp___7 ; size_t ldvarg14 ; char *ldvarg13 ; void *tmp___8 ; char *ldvarg15 ; void *tmp___9 ; char *ldvarg18 ; void *tmp___10 ; size_t ldvarg17 ; char *ldvarg16 ; void *tmp___11 ; struct device_attribute *ldvarg21 ; void *tmp___12 ; char *ldvarg20 ; void *tmp___13 ; struct device *ldvarg19 ; void *tmp___14 ; struct device_attribute *ldvarg24 ; void *tmp___15 ; char *ldvarg23 ; void *tmp___16 ; struct device *ldvarg22 ; void *tmp___17 ; char *ldvarg27 ; void *tmp___18 ; size_t ldvarg26 ; char *ldvarg25 ; void *tmp___19 ; size_t ldvarg29 ; char *ldvarg28 ; void *tmp___20 ; char *ldvarg30 ; void *tmp___21 ; size_t ldvarg32 ; char *ldvarg31 ; void *tmp___22 ; char *ldvarg33 ; void *tmp___23 ; size_t ldvarg35 ; char *ldvarg36 ; void *tmp___24 ; char *ldvarg34 ; void *tmp___25 ; char *ldvarg39 ; void *tmp___26 ; char *ldvarg37 ; void *tmp___27 ; size_t ldvarg38 ; char *ldvarg41 ; void *tmp___28 ; struct device_attribute *ldvarg42 ; void *tmp___29 ; struct device *ldvarg40 ; void *tmp___30 ; char *ldvarg45 ; void *tmp___31 ; char *ldvarg43 ; void *tmp___32 ; size_t ldvarg44 ; struct device_attribute *ldvarg48 ; void *tmp___33 ; char *ldvarg47 ; void *tmp___34 ; struct device *ldvarg46 ; void *tmp___35 ; struct device_attribute *ldvarg51 ; void *tmp___36 ; struct device *ldvarg49 ; void *tmp___37 ; char *ldvarg50 ; void *tmp___38 ; int tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; int tmp___58 ; { tmp = ldv_init_zalloc(1UL); ldvarg0 = (char *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg2 = (char *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg3 = (char *)tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg5 = (char *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg8 = (char *)tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg6 = (char *)tmp___4; tmp___5 = ldv_init_zalloc(32UL); ldvarg9 = (struct i2c_device_id *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg10 = (char *)tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg12 = (char *)tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg13 = (char *)tmp___8; tmp___9 = ldv_init_zalloc(1UL); ldvarg15 = (char *)tmp___9; tmp___10 = ldv_init_zalloc(1UL); ldvarg18 = (char *)tmp___10; tmp___11 = ldv_init_zalloc(1UL); ldvarg16 = (char *)tmp___11; tmp___12 = ldv_init_zalloc(48UL); ldvarg21 = (struct device_attribute *)tmp___12; tmp___13 = ldv_init_zalloc(1UL); ldvarg20 = (char *)tmp___13; tmp___14 = ldv_init_zalloc(1416UL); ldvarg19 = (struct device *)tmp___14; tmp___15 = ldv_init_zalloc(48UL); ldvarg24 = (struct device_attribute *)tmp___15; tmp___16 = ldv_init_zalloc(1UL); ldvarg23 = (char *)tmp___16; tmp___17 = ldv_init_zalloc(1416UL); ldvarg22 = (struct device *)tmp___17; tmp___18 = ldv_init_zalloc(1UL); ldvarg27 = (char *)tmp___18; tmp___19 = ldv_init_zalloc(1UL); ldvarg25 = (char *)tmp___19; tmp___20 = ldv_init_zalloc(1UL); ldvarg28 = (char *)tmp___20; tmp___21 = ldv_init_zalloc(1UL); ldvarg30 = (char *)tmp___21; tmp___22 = ldv_init_zalloc(1UL); ldvarg31 = (char *)tmp___22; tmp___23 = ldv_init_zalloc(1UL); ldvarg33 = (char *)tmp___23; tmp___24 = ldv_init_zalloc(1UL); ldvarg36 = (char *)tmp___24; tmp___25 = ldv_init_zalloc(1UL); ldvarg34 = (char *)tmp___25; tmp___26 = ldv_init_zalloc(1UL); ldvarg39 = (char *)tmp___26; tmp___27 = ldv_init_zalloc(1UL); ldvarg37 = (char *)tmp___27; tmp___28 = ldv_init_zalloc(1UL); ldvarg41 = (char *)tmp___28; tmp___29 = ldv_init_zalloc(48UL); ldvarg42 = (struct device_attribute *)tmp___29; tmp___30 = ldv_init_zalloc(1416UL); ldvarg40 = (struct device *)tmp___30; tmp___31 = ldv_init_zalloc(1UL); ldvarg45 = (char *)tmp___31; tmp___32 = ldv_init_zalloc(1UL); ldvarg43 = (char *)tmp___32; tmp___33 = ldv_init_zalloc(48UL); ldvarg48 = (struct device_attribute *)tmp___33; tmp___34 = ldv_init_zalloc(1UL); ldvarg47 = (char *)tmp___34; tmp___35 = ldv_init_zalloc(1416UL); ldvarg46 = (struct device *)tmp___35; tmp___36 = ldv_init_zalloc(48UL); ldvarg51 = (struct device_attribute *)tmp___36; tmp___37 = ldv_init_zalloc(1416UL); ldvarg49 = (struct device *)tmp___37; tmp___38 = ldv_init_zalloc(1UL); ldvarg50 = (char *)tmp___38; ldv_initialize(); ldv_memset((void *)(& ldvarg1), 0, 8UL); ldv_memset((void *)(& ldvarg4), 0, 8UL); ldv_memset((void *)(& ldvarg7), 0, 8UL); ldv_memset((void *)(& ldvarg11), 0, 8UL); ldv_memset((void *)(& ldvarg14), 0, 8UL); ldv_memset((void *)(& ldvarg17), 0, 8UL); ldv_memset((void *)(& ldvarg26), 0, 8UL); ldv_memset((void *)(& ldvarg29), 0, 8UL); ldv_memset((void *)(& ldvarg32), 0, 8UL); ldv_memset((void *)(& ldvarg35), 0, 8UL); ldv_memset((void *)(& ldvarg38), 0, 8UL); ldv_memset((void *)(& ldvarg44), 0, 8UL); ldv_state_variable_11 = 0; ldv_state_variable_7 = 0; ldv_state_variable_17 = 0; ldv_state_variable_2 = 0; work_init_1(); ldv_state_variable_1 = 1; ldv_state_variable_18 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_16 = 0; ldv_state_variable_13 = 0; ldv_state_variable_6 = 0; ldv_state_variable_3 = 0; ldv_state_variable_9 = 0; ldv_state_variable_12 = 0; ldv_state_variable_14 = 0; ldv_state_variable_15 = 0; ldv_state_variable_8 = 0; ldv_state_variable_4 = 0; ldv_state_variable_19 = 0; ldv_state_variable_10 = 0; ldv_state_variable_5 = 0; ldv_31805: tmp___39 = __VERIFIER_nondet_int(); switch (tmp___39) { case 0: ; if (ldv_state_variable_11 != 0) { tmp___40 = __VERIFIER_nondet_int(); switch (tmp___40) { case 0: ; if (ldv_state_variable_11 == 1) { bq2415x_sysfs_set_enable(dev_attr_stat_pin_enable_group1, dev_attr_stat_pin_enable_group0, (char const *)ldvarg2, ldvarg1); ldv_state_variable_11 = 1; } else { } goto ldv_31713; case 1: ; if (ldv_state_variable_11 == 1) { bq2415x_sysfs_show_enable(dev_attr_stat_pin_enable_group1, dev_attr_stat_pin_enable_group0, ldvarg0); ldv_state_variable_11 = 1; } else { } goto ldv_31713; default: ldv_stop(); } ldv_31713: ; } else { } goto ldv_31716; case 1: ; if (ldv_state_variable_7 != 0) { tmp___41 = __VERIFIER_nondet_int(); switch (tmp___41) { case 0: ; if (ldv_state_variable_7 == 1) { bq2415x_sysfs_set_registers(dev_attr_registers_group1, dev_attr_registers_group0, (char const *)ldvarg5, ldvarg4); ldv_state_variable_7 = 1; } else { } goto ldv_31719; case 1: ; if (ldv_state_variable_7 == 1) { bq2415x_sysfs_show_registers(dev_attr_registers_group1, dev_attr_registers_group0, ldvarg3); ldv_state_variable_7 = 1; } else { } goto ldv_31719; default: ldv_stop(); } ldv_31719: ; } else { } goto ldv_31716; case 2: ; if (ldv_state_variable_17 != 0) { tmp___42 = __VERIFIER_nondet_int(); switch (tmp___42) { case 0: ; if (ldv_state_variable_17 == 1) { bq2415x_sysfs_set_limit(dev_attr_battery_regulation_voltage_group1, dev_attr_battery_regulation_voltage_group0, (char const *)ldvarg8, ldvarg7); ldv_state_variable_17 = 1; } else { } goto ldv_31724; case 1: ; if (ldv_state_variable_17 == 1) { bq2415x_sysfs_show_limit(dev_attr_battery_regulation_voltage_group1, dev_attr_battery_regulation_voltage_group0, ldvarg6); ldv_state_variable_17 = 1; } else { } goto ldv_31724; default: ldv_stop(); } ldv_31724: ; } else { } goto ldv_31716; case 3: ; if (ldv_state_variable_2 != 0) { tmp___43 = __VERIFIER_nondet_int(); switch (tmp___43) { case 0: ; if (ldv_state_variable_2 == 1) { ldv_retval_0 = bq2415x_probe(bq2415x_driver_group0, (struct i2c_device_id const *)ldvarg9); if (ldv_retval_0 == 0) { ldv_state_variable_2 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_31729; case 1: ; if (ldv_state_variable_2 == 2) { bq2415x_remove(bq2415x_driver_group0); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_31729; default: ldv_stop(); } ldv_31729: ; } else { } goto ldv_31716; case 4: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_31716; case 5: ; if (ldv_state_variable_18 != 0) { tmp___44 = __VERIFIER_nondet_int(); switch (tmp___44) { case 0: ; if (ldv_state_variable_18 == 1) { bq2415x_sysfs_set_limit(dev_attr_weak_battery_voltage_group1, dev_attr_weak_battery_voltage_group0, (char const *)ldvarg12, ldvarg11); ldv_state_variable_18 = 1; } else { } goto ldv_31735; case 1: ; if (ldv_state_variable_18 == 1) { bq2415x_sysfs_show_limit(dev_attr_weak_battery_voltage_group1, dev_attr_weak_battery_voltage_group0, ldvarg10); ldv_state_variable_18 = 1; } else { } goto ldv_31735; default: ldv_stop(); } ldv_31735: ; } else { } goto ldv_31716; case 6: ; if (ldv_state_variable_0 != 0) { tmp___45 = __VERIFIER_nondet_int(); switch (tmp___45) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { bq2415x_driver_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_31741; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_1 = bq2415x_driver_init(); if (ldv_retval_1 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_5 = 1; ldv_state_variable_10 = 1; ldv_state_variable_19 = 1; ldv_initialize_device_attribute_19(); ldv_state_variable_4 = 1; ldv_state_variable_8 = 1; ldv_initialize_device_attribute_8(); ldv_state_variable_15 = 1; ldv_initialize_device_attribute_15(); ldv_state_variable_14 = 1; ldv_initialize_device_attribute_14(); ldv_state_variable_12 = 1; ldv_initialize_device_attribute_12(); ldv_state_variable_9 = 1; ldv_initialize_device_attribute_9(); ldv_state_variable_3 = 1; ldv_state_variable_6 = 1; ldv_state_variable_13 = 1; ldv_initialize_device_attribute_13(); ldv_state_variable_16 = 1; ldv_initialize_device_attribute_16(); ldv_state_variable_18 = 1; ldv_initialize_device_attribute_18(); ldv_state_variable_2 = 1; ldv_initialize_i2c_driver_2(); ldv_state_variable_17 = 1; ldv_initialize_device_attribute_17(); ldv_state_variable_7 = 1; ldv_initialize_device_attribute_7(); ldv_state_variable_11 = 1; ldv_initialize_device_attribute_11(); } else { } if (ldv_retval_1 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_31741; default: ldv_stop(); } ldv_31741: ; } else { } goto ldv_31716; case 7: ; if (ldv_state_variable_16 != 0) { tmp___46 = __VERIFIER_nondet_int(); switch (tmp___46) { case 0: ; if (ldv_state_variable_16 == 1) { bq2415x_sysfs_set_limit(dev_attr_charge_current_group1, dev_attr_charge_current_group0, (char const *)ldvarg15, ldvarg14); ldv_state_variable_16 = 1; } else { } goto ldv_31746; case 1: ; if (ldv_state_variable_16 == 1) { bq2415x_sysfs_show_limit(dev_attr_charge_current_group1, dev_attr_charge_current_group0, ldvarg13); ldv_state_variable_16 = 1; } else { } goto ldv_31746; default: ldv_stop(); } ldv_31746: ; } else { } goto ldv_31716; case 8: ; if (ldv_state_variable_13 != 0) { tmp___47 = __VERIFIER_nondet_int(); switch (tmp___47) { case 0: ; if (ldv_state_variable_13 == 1) { bq2415x_sysfs_set_enable(dev_attr_high_impedance_enable_group1, dev_attr_high_impedance_enable_group0, (char const *)ldvarg18, ldvarg17); ldv_state_variable_13 = 1; } else { } goto ldv_31751; case 1: ; if (ldv_state_variable_13 == 1) { bq2415x_sysfs_show_enable(dev_attr_high_impedance_enable_group1, dev_attr_high_impedance_enable_group0, ldvarg16); ldv_state_variable_13 = 1; } else { } goto ldv_31751; default: ldv_stop(); } ldv_31751: ; } else { } goto ldv_31716; case 9: ; if (ldv_state_variable_6 != 0) { tmp___48 = __VERIFIER_nondet_int(); switch (tmp___48) { case 0: ; if (ldv_state_variable_6 == 1) { bq2415x_sysfs_show_status(ldvarg19, ldvarg21, ldvarg20); ldv_state_variable_6 = 1; } else { } goto ldv_31756; default: ldv_stop(); } ldv_31756: ; } else { } goto ldv_31716; case 10: ; if (ldv_state_variable_3 != 0) { tmp___49 = __VERIFIER_nondet_int(); switch (tmp___49) { case 0: ; if (ldv_state_variable_3 == 1) { bq2415x_sysfs_show_status(ldvarg22, ldvarg24, ldvarg23); ldv_state_variable_3 = 1; } else { } goto ldv_31760; default: ldv_stop(); } ldv_31760: ; } else { } goto ldv_31716; case 11: ; if (ldv_state_variable_9 != 0) { tmp___50 = __VERIFIER_nondet_int(); switch (tmp___50) { case 0: ; if (ldv_state_variable_9 == 1) { bq2415x_sysfs_set_mode(dev_attr_mode_group1, dev_attr_mode_group0, (char const *)ldvarg27, ldvarg26); ldv_state_variable_9 = 1; } else { } goto ldv_31764; case 1: ; if (ldv_state_variable_9 == 1) { bq2415x_sysfs_show_mode(dev_attr_mode_group1, dev_attr_mode_group0, ldvarg25); ldv_state_variable_9 = 1; } else { } goto ldv_31764; default: ldv_stop(); } ldv_31764: ; } else { } goto ldv_31716; case 12: ; if (ldv_state_variable_12 != 0) { tmp___51 = __VERIFIER_nondet_int(); switch (tmp___51) { case 0: ; if (ldv_state_variable_12 == 1) { bq2415x_sysfs_set_enable(dev_attr_otg_pin_enable_group1, dev_attr_otg_pin_enable_group0, (char const *)ldvarg30, ldvarg29); ldv_state_variable_12 = 1; } else { } goto ldv_31769; case 1: ; if (ldv_state_variable_12 == 1) { bq2415x_sysfs_show_enable(dev_attr_otg_pin_enable_group1, dev_attr_otg_pin_enable_group0, ldvarg28); ldv_state_variable_12 = 1; } else { } goto ldv_31769; default: ldv_stop(); } ldv_31769: ; } else { } goto ldv_31716; case 13: ; if (ldv_state_variable_14 != 0) { tmp___52 = __VERIFIER_nondet_int(); switch (tmp___52) { case 0: ; if (ldv_state_variable_14 == 1) { bq2415x_sysfs_set_enable(dev_attr_charge_termination_enable_group1, dev_attr_charge_termination_enable_group0, (char const *)ldvarg33, ldvarg32); ldv_state_variable_14 = 1; } else { } goto ldv_31774; case 1: ; if (ldv_state_variable_14 == 1) { bq2415x_sysfs_show_enable(dev_attr_charge_termination_enable_group1, dev_attr_charge_termination_enable_group0, ldvarg31); ldv_state_variable_14 = 1; } else { } goto ldv_31774; default: ldv_stop(); } ldv_31774: ; } else { } goto ldv_31716; case 14: ; if (ldv_state_variable_15 != 0) { tmp___53 = __VERIFIER_nondet_int(); switch (tmp___53) { case 0: ; if (ldv_state_variable_15 == 1) { bq2415x_sysfs_set_limit(dev_attr_termination_current_group1, dev_attr_termination_current_group0, (char const *)ldvarg36, ldvarg35); ldv_state_variable_15 = 1; } else { } goto ldv_31779; case 1: ; if (ldv_state_variable_15 == 1) { bq2415x_sysfs_show_limit(dev_attr_termination_current_group1, dev_attr_termination_current_group0, ldvarg34); ldv_state_variable_15 = 1; } else { } goto ldv_31779; default: ldv_stop(); } ldv_31779: ; } else { } goto ldv_31716; case 15: ; if (ldv_state_variable_8 != 0) { tmp___54 = __VERIFIER_nondet_int(); switch (tmp___54) { case 0: ; if (ldv_state_variable_8 == 1) { bq2415x_sysfs_set_timer(dev_attr_timer_group1, dev_attr_timer_group0, (char const *)ldvarg39, ldvarg38); ldv_state_variable_8 = 1; } else { } goto ldv_31784; case 1: ; if (ldv_state_variable_8 == 1) { bq2415x_sysfs_show_timer(dev_attr_timer_group1, dev_attr_timer_group0, ldvarg37); ldv_state_variable_8 = 1; } else { } goto ldv_31784; default: ldv_stop(); } ldv_31784: ; } else { } goto ldv_31716; case 16: ; if (ldv_state_variable_4 != 0) { tmp___55 = __VERIFIER_nondet_int(); switch (tmp___55) { case 0: ; if (ldv_state_variable_4 == 1) { bq2415x_sysfs_show_status(ldvarg40, ldvarg42, ldvarg41); ldv_state_variable_4 = 1; } else { } goto ldv_31789; default: ldv_stop(); } ldv_31789: ; } else { } goto ldv_31716; case 17: ; if (ldv_state_variable_19 != 0) { tmp___56 = __VERIFIER_nondet_int(); switch (tmp___56) { case 0: ; if (ldv_state_variable_19 == 1) { bq2415x_sysfs_set_limit(dev_attr_current_limit_group1, dev_attr_current_limit_group0, (char const *)ldvarg45, ldvarg44); ldv_state_variable_19 = 1; } else { } goto ldv_31793; case 1: ; if (ldv_state_variable_19 == 1) { bq2415x_sysfs_show_limit(dev_attr_current_limit_group1, dev_attr_current_limit_group0, ldvarg43); ldv_state_variable_19 = 1; } else { } goto ldv_31793; default: ldv_stop(); } ldv_31793: ; } else { } goto ldv_31716; case 18: ; if (ldv_state_variable_10 != 0) { tmp___57 = __VERIFIER_nondet_int(); switch (tmp___57) { case 0: ; if (ldv_state_variable_10 == 1) { bq2415x_sysfs_show_reported_mode(ldvarg46, ldvarg48, ldvarg47); ldv_state_variable_10 = 1; } else { } goto ldv_31798; default: ldv_stop(); } ldv_31798: ; } else { } goto ldv_31716; case 19: ; if (ldv_state_variable_5 != 0) { tmp___58 = __VERIFIER_nondet_int(); switch (tmp___58) { case 0: ; if (ldv_state_variable_5 == 1) { bq2415x_sysfs_show_status(ldvarg49, ldvarg51, ldvarg50); ldv_state_variable_5 = 1; } else { } goto ldv_31802; default: ldv_stop(); } ldv_31802: ; } else { } goto ldv_31716; default: ldv_stop(); } ldv_31716: ; goto ldv_31805; ldv_final: ldv_check_final_state(); return 0; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { tmp = ldv_ptr_err(ptr); return (tmp); } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_1(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_1(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_1(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_bq2415x_i2c_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_i2c_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_bq2415x_i2c_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_i2c_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_bq2415x_timer_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_timer_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } bool ldv_cancel_delayed_work_sync_23(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_1(& ldv_func_arg1->work); return (ldv_func_res); } } void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_timer_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } bool ldv_cancel_delayed_work_sync_25(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_1(& ldv_func_arg1->work); return (ldv_func_res); } } void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_bq2415x_id_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_id_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_bq2415x_id_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_id_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_30(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_bq2415x_id_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_31(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_bq2415x_id_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_bq2415x_i2c_mutex = 1; int ldv_mutex_lock_interruptible_bq2415x_i2c_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_i2c_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_bq2415x_i2c_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_bq2415x_i2c_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_i2c_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_bq2415x_i2c_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_bq2415x_i2c_mutex(struct mutex *lock ) { { if (ldv_mutex_bq2415x_i2c_mutex != 1) { ldv_error(); } else { } ldv_mutex_bq2415x_i2c_mutex = 2; return; } } int ldv_mutex_trylock_bq2415x_i2c_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_bq2415x_i2c_mutex != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_bq2415x_i2c_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_bq2415x_i2c_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_bq2415x_i2c_mutex != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_bq2415x_i2c_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_bq2415x_i2c_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_i2c_mutex == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_bq2415x_i2c_mutex(struct mutex *lock ) { { if (ldv_mutex_bq2415x_i2c_mutex != 2) { ldv_error(); } else { } ldv_mutex_bq2415x_i2c_mutex = 1; return; } } void ldv_usb_lock_device_bq2415x_i2c_mutex(void) { { ldv_mutex_lock_bq2415x_i2c_mutex((struct mutex *)0); return; } } int ldv_usb_trylock_device_bq2415x_i2c_mutex(void) { int tmp ; { tmp = ldv_mutex_trylock_bq2415x_i2c_mutex((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_bq2415x_i2c_mutex(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_bq2415x_i2c_mutex((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_bq2415x_i2c_mutex(void) { { ldv_mutex_unlock_bq2415x_i2c_mutex((struct mutex *)0); return; } } static int ldv_mutex_bq2415x_id_mutex = 1; int ldv_mutex_lock_interruptible_bq2415x_id_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_id_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_bq2415x_id_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_bq2415x_id_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_id_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_bq2415x_id_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_bq2415x_id_mutex(struct mutex *lock ) { { if (ldv_mutex_bq2415x_id_mutex != 1) { ldv_error(); } else { } ldv_mutex_bq2415x_id_mutex = 2; return; } } int ldv_mutex_trylock_bq2415x_id_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_bq2415x_id_mutex != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_bq2415x_id_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_bq2415x_id_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_bq2415x_id_mutex != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_bq2415x_id_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_bq2415x_id_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_id_mutex == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_bq2415x_id_mutex(struct mutex *lock ) { { if (ldv_mutex_bq2415x_id_mutex != 2) { ldv_error(); } else { } ldv_mutex_bq2415x_id_mutex = 1; return; } } void ldv_usb_lock_device_bq2415x_id_mutex(void) { { ldv_mutex_lock_bq2415x_id_mutex((struct mutex *)0); return; } } int ldv_usb_trylock_device_bq2415x_id_mutex(void) { int tmp ; { tmp = ldv_mutex_trylock_bq2415x_id_mutex((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_bq2415x_id_mutex(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_bq2415x_id_mutex((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_bq2415x_id_mutex(void) { { ldv_mutex_unlock_bq2415x_id_mutex((struct mutex *)0); return; } } static int ldv_mutex_bq2415x_timer_mutex = 1; int ldv_mutex_lock_interruptible_bq2415x_timer_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_timer_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_bq2415x_timer_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_bq2415x_timer_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_timer_mutex != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_bq2415x_timer_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_bq2415x_timer_mutex(struct mutex *lock ) { { if (ldv_mutex_bq2415x_timer_mutex != 1) { ldv_error(); } else { } ldv_mutex_bq2415x_timer_mutex = 2; return; } } int ldv_mutex_trylock_bq2415x_timer_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_bq2415x_timer_mutex != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_bq2415x_timer_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_bq2415x_timer_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_bq2415x_timer_mutex != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_bq2415x_timer_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_bq2415x_timer_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_bq2415x_timer_mutex == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_bq2415x_timer_mutex(struct mutex *lock ) { { if (ldv_mutex_bq2415x_timer_mutex != 2) { ldv_error(); } else { } ldv_mutex_bq2415x_timer_mutex = 1; return; } } void ldv_usb_lock_device_bq2415x_timer_mutex(void) { { ldv_mutex_lock_bq2415x_timer_mutex((struct mutex *)0); return; } } int ldv_usb_trylock_device_bq2415x_timer_mutex(void) { int tmp ; { tmp = ldv_mutex_trylock_bq2415x_timer_mutex((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_bq2415x_timer_mutex(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_bq2415x_timer_mutex((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_bq2415x_timer_mutex(void) { { ldv_mutex_unlock_bq2415x_timer_mutex((struct mutex *)0); return; } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_bq2415x_i2c_mutex != 1) { ldv_error(); } else { } if (ldv_mutex_bq2415x_id_mutex != 1) { ldv_error(); } else { } if (ldv_mutex_bq2415x_timer_mutex != 1) { ldv_error(); } else { } if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } return; } }