extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct net_device; struct file_operations; struct completion; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_16 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_17 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_18 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_15 { struct __anonstruct_futex_16 futex ; struct __anonstruct_nanosleep_17 nanosleep ; struct __anonstruct_poll_18 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_19 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_19 __annonCompField8 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_29 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_30 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_28 { struct __anonstruct____missing_field_name_29 __annonCompField12 ; struct __anonstruct____missing_field_name_30 __annonCompField13 ; }; union __anonunion____missing_field_name_31 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_28 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_31 __annonCompField15 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_35 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_34 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_35 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_34 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_36 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_36 rwlock_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_46 { uid_t val ; }; typedef struct __anonstruct_kuid_t_46 kuid_t; struct __anonstruct_kgid_t_47 { gid_t val ; }; typedef struct __anonstruct_kgid_t_47 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct vm_area_struct; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct notifier_block; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct ctl_table; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_50 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_49 { struct __anonstruct____missing_field_name_50 __annonCompField19 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_49 __annonCompField20 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct cred; struct inode; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_148 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_149 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_147 { struct __anonstruct____missing_field_name_148 __annonCompField33 ; struct __anonstruct____missing_field_name_149 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_147 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_150 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_152 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_156 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_155 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_156 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_153 { unsigned long counters ; struct __anonstruct____missing_field_name_154 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_151 { union __anonunion____missing_field_name_152 __annonCompField37 ; union __anonunion____missing_field_name_153 __annonCompField41 ; }; struct __anonstruct____missing_field_name_158 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_159 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_157 { struct list_head lru ; struct __anonstruct____missing_field_name_158 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_159 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; struct kmem_cache; union __anonunion____missing_field_name_160 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct __anonstruct____missing_field_name_151 __annonCompField42 ; union __anonunion____missing_field_name_157 __annonCompField45 ; union __anonunion____missing_field_name_160 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_161 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_161 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; union __anonunion____missing_field_name_166 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_166 __annonCompField47 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_171 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_171 __annonCompField48 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_172 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_172 __annonCompField49 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_180 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_180 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_183 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_185 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_187 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_186 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_187 _addr_bnd ; }; struct __anonstruct__sigpoll_188 { long _band ; int _fd ; }; struct __anonstruct__sigsys_189 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_181 { int _pad[28U] ; struct __anonstruct__kill_182 _kill ; struct __anonstruct__timer_183 _timer ; struct __anonstruct__rt_184 _rt ; struct __anonstruct__sigchld_185 _sigchld ; struct __anonstruct__sigfault_186 _sigfault ; struct __anonstruct__sigpoll_188 _sigpoll ; struct __anonstruct__sigsys_189 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_181 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_196 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_197 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_199 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_198 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_199 __annonCompField52 ; }; union __anonunion_type_data_200 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_202 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_201 { union __anonunion_payload_202 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_196 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_197 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_198 __annonCompField53 ; union __anonunion_type_data_200 type_data ; union __anonunion____missing_field_name_201 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct ethtool_cmd; struct ethtool_eeprom; struct ethtool_ringparam; struct ethtool_coalesce; struct ethtool_wolinfo; struct ethtool_pauseparam; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_217 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_217 __annonCompField58 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct kiocb; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_219 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_219 sync_serial_settings; struct __anonstruct_te1_settings_220 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_220 te1_settings; struct __anonstruct_raw_hdlc_proto_221 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_221 raw_hdlc_proto; struct __anonstruct_fr_proto_222 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_222 fr_proto; struct __anonstruct_fr_proto_pvc_223 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_223 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_224 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_224 fr_proto_pvc_info; struct __anonstruct_cisco_proto_225 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_225 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_226 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_226 ifs_ifsu ; }; union __anonunion_ifr_ifrn_227 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_228 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_227 ifr_ifrn ; union __anonunion_ifr_ifru_228 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_233 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_232 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_235 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_234 { struct __anonstruct____missing_field_name_235 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_234 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_236 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_236 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_240 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_239 { struct __anonstruct____missing_field_name_240 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_239 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_244 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_244 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_245 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_245 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_248 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_249 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_250 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_248 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_249 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_250 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_251 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_251 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_253 { struct list_head link ; int state ; }; union __anonunion_fl_u_252 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_253 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_252 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; union __anonunion_in6_u_268 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_268 in6_u ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct pipe_buf_operations; struct pipe_buffer { struct page *page ; unsigned int offset ; unsigned int len ; struct pipe_buf_operations const *ops ; unsigned int flags ; unsigned long private ; }; struct pipe_inode_info { struct mutex mutex ; wait_queue_head_t wait ; unsigned int nrbufs ; unsigned int curbuf ; unsigned int buffers ; unsigned int readers ; unsigned int writers ; unsigned int files ; unsigned int waiting_writers ; unsigned int r_counter ; unsigned int w_counter ; struct page *tmp_page ; struct fasync_struct *fasync_readers ; struct fasync_struct *fasync_writers ; struct pipe_buffer *bufs ; }; struct pipe_buf_operations { int can_merge ; int (*confirm)(struct pipe_inode_info * , struct pipe_buffer * ) ; void (*release)(struct pipe_inode_info * , struct pipe_buffer * ) ; int (*steal)(struct pipe_inode_info * , struct pipe_buffer * ) ; void (*get)(struct pipe_inode_info * , struct pipe_buffer * ) ; }; struct napi_struct; struct nf_conntrack { atomic_t use ; }; union __anonunion____missing_field_name_273 { struct net_device *physoutdev ; char neigh_header[8U] ; }; union __anonunion____missing_field_name_274 { __be32 ipv4_daddr ; struct in6_addr ipv6_daddr ; }; struct nf_bridge_info { atomic_t use ; unsigned char orig_proto ; bool pkt_otherhost ; __u16 frag_max_size ; unsigned int mask ; struct net_device *physindev ; union __anonunion____missing_field_name_273 __annonCompField73 ; union __anonunion____missing_field_name_274 __annonCompField74 ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_275 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_275 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_277 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_276 { u64 v64 ; struct __anonstruct____missing_field_name_277 __annonCompField75 ; }; struct skb_mstamp { union __anonunion____missing_field_name_276 __annonCompField76 ; }; union __anonunion____missing_field_name_280 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_279 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_280 __annonCompField77 ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField78 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_282 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_281 { __wsum csum ; struct __anonstruct____missing_field_name_282 __annonCompField80 ; }; union __anonunion____missing_field_name_283 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_284 { __u32 mark ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_285 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_278 __annonCompField79 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_281 __annonCompField81 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_283 __annonCompField82 ; __u32 secmark ; union __anonunion____missing_field_name_284 __annonCompField83 ; union __anonunion____missing_field_name_285 __annonCompField84 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[115U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; bool warned ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; bool fib_offload_disabled ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *mc_autojoin_sk ; struct inet_peer_base *peers ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_tcp_ecn_fallback ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; int sysctl_tcp_probe_threshold ; u32 sysctl_tcp_probe_interval ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; int idgen_retries ; int idgen_delay ; int flowlabel_state_ranges ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct sock *mc_autojoin_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; bool clusterip_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; struct nft_af_info *netdev ; unsigned int base_seq ; u8 gencursor ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct mpls_route; struct netns_mpls { size_t platform_labels ; struct mpls_route **platform_label ; struct ctl_table_header *ctl ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; atomic64_t cookie_gen ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; spinlock_t nsid_lock ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct netns_mpls mpls ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct __anonstruct_possible_net_t_302 { struct net *net ; }; typedef struct __anonstruct_possible_net_t_302 possible_net_t; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct dmi_strmatch { unsigned char slot : 7 ; unsigned char exact_match : 1 ; char substr[79U] ; }; struct dmi_system_id { int (*callback)(struct dmi_system_id const * ) ; char const *ident ; struct dmi_strmatch matches[4U] ; void *driver_data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; enum ldv_27887 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27887 phy_interface_t; enum ldv_27941 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27941 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; u32 phy_ignore_ta_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; struct net_device *of_netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; enum dsa_tag_protocol tag_protocol ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; int (*port_join_bridge)(struct dsa_switch * , int , u32 ) ; int (*port_leave_bridge)(struct dsa_switch * , int , u32 ) ; int (*port_stp_update)(struct dsa_switch * , int , u8 ) ; int (*fdb_add)(struct dsa_switch * , int , unsigned char const * , u16 ) ; int (*fdb_del)(struct dsa_switch * , int , unsigned char const * , u16 ) ; int (*fdb_getnext)(struct dsa_switch * , int , unsigned char * , bool * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_qcn { __u8 rpg_enable[8U] ; __u32 rppp_max_rps[8U] ; __u32 rpg_time_reset[8U] ; __u32 rpg_byte_reset[8U] ; __u32 rpg_threshold[8U] ; __u32 rpg_max_rate[8U] ; __u32 rpg_ai_rate[8U] ; __u32 rpg_hai_rate[8U] ; __u32 rpg_gd[8U] ; __u32 rpg_min_dec_fac[8U] ; __u32 rpg_min_rate[8U] ; __u32 cndd_state_machine[8U] ; }; struct ieee_qcn_stats { __u64 rppp_rp_centiseconds[8U] ; __u32 rppp_created_rps[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getqcn)(struct net_device * , struct ieee_qcn * ) ; int (*ieee_setqcn)(struct net_device * , struct ieee_qcn * ) ; int (*ieee_getqcnstats)(struct net_device * , struct ieee_qcn_stats * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_stats { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 broadcast ; __u64 multicast ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; __u32 rss_query_en ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; struct mpls_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; unsigned long tx_maxrate ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_get_vf_stats)(struct net_device * , int , struct ifla_vf_stats * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_set_vf_rss_query_en)(struct net_device * , int , bool ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 , int ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_get_phys_port_name)(struct net_device * , char * , size_t ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_set_tx_maxrate)(struct net_device * , int , u32 ) ; int (*ndo_get_iflink)(struct net_device const * ) ; }; struct __anonstruct_adj_list_315 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_316 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct switchdev_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct tcf_proto; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_317 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; atomic_t carrier_changes ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_315 adj_list ; struct __anonstruct_all_adj_list_316 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int group ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct switchdev_ops const *switchdev_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; unsigned char name_assign_type ; bool uc_promisc ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; struct mpls_dev *mpls_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct tcf_proto *ingress_cl_list ; struct netdev_queue *ingress_queue ; struct list_head nf_hooks_ingress ; unsigned char broadcast[32U] ; struct cpu_rmap *rx_cpu_rmap ; struct hlist_node index_hlist ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; int watchdog_timeo ; struct xps_dev_maps *xps_maps ; unsigned long trans_start ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; possible_net_t nd_net ; union __anonunion____missing_field_name_317 __annonCompField94 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct netdev_notifier_info { struct net_device *dev ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_326 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_326 __annonCompField95 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct skge_rx_desc { u32 control ; u32 next_offset ; u32 dma_lo ; u32 dma_hi ; u32 status ; u32 timestamp ; u16 csum2 ; u16 csum1 ; u16 csum2_start ; u16 csum1_start ; }; struct skge_tx_desc { u32 control ; u32 next_offset ; u32 dma_lo ; u32 dma_hi ; u32 status ; u32 csum_offs ; u16 csum_write ; u16 csum_start ; u32 rsvd ; }; struct skge_element { struct skge_element *next ; void *desc ; struct sk_buff *skb ; dma_addr_t mapaddr ; __u32 maplen ; }; struct skge_ring { struct skge_element *to_clean ; struct skge_element *to_use ; struct skge_element *start ; unsigned long count ; }; struct skge_hw { void *regs ; struct pci_dev *pdev ; spinlock_t hw_lock ; u32 intr_mask ; struct net_device *dev[2U] ; u8 chip_id ; u8 chip_rev ; u8 copper ; u8 ports ; u8 phy_type ; u32 ram_size ; u32 ram_offset ; u16 phy_addr ; spinlock_t phy_lock ; struct tasklet_struct phy_task ; char irq_name[0U] ; }; enum pause_control { FLOW_MODE_NONE = 1, FLOW_MODE_LOC_SEND = 2, FLOW_MODE_SYMMETRIC = 3, FLOW_MODE_SYM_OR_REM = 4 } ; enum pause_status { FLOW_STAT_INDETERMINATED = 0, FLOW_STAT_NONE = 1, FLOW_STAT_REM_SEND = 2, FLOW_STAT_LOC_SEND = 3, FLOW_STAT_SYMMETRIC = 4 } ; struct skge_port { struct skge_hw *hw ; struct net_device *netdev ; struct napi_struct napi ; int port ; u32 msg_enable ; struct skge_ring tx_ring ; struct skge_ring rx_ring ; unsigned int rx_buf_size ; struct timer_list link_timer ; enum pause_control flow_control ; enum pause_status flow_status ; u8 blink_on ; u8 wol ; u8 autoneg ; u8 duplex ; u16 speed ; u32 advertising ; void *mem ; dma_addr_t dma ; unsigned long mem_size ; struct dentry *debugfs ; }; struct skge_stat { char name[32U] ; u16 xmac_offset ; u16 gma_offset ; }; enum led_mode { LED_MODE_OFF = 0, LED_MODE_ON = 1, LED_MODE_TST = 2 } ; struct __anonstruct_A1hack_335 { u16 reg ; u16 val ; }; struct __anonstruct_C0hack_336 { u16 reg ; u16 val ; }; struct __anonstruct_skge_chips_341 { u8 id ; char const *name ; }; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; void __builtin_prefetch(void const * , ...) ; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern void __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; bool ldv_is_err(void const *ptr ) ; void ldv_spin_lock(void) ; void ldv_spin_unlock(void) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static bool IS_ERR(void const *ptr ) ; extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { __local_bh_disable_ip(0UL, 512U); return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { __local_bh_enable_ip(0UL, 512U); return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void ldv_spin_lock_5(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField18.rlock); return; } } __inline static void spin_lock(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_6(spinlock_t *lock ) { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); return; } } __inline static void spin_lock_bh(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_8(spinlock_t *lock ) { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_9(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_10(spinlock_t *lock ) { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_11(spinlock_t *lock ) { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irqrestore_12(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern int mod_timer(struct timer_list * , unsigned long ) ; int ldv_mod_timer_38(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_39(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_40(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; int ldv_del_timer_sync_42(struct timer_list *ldv_func_arg1 ) ; extern unsigned long round_jiffies(unsigned long ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; extern void iounmap(void volatile * ) ; __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { memcpy(dst, (void const *)src, count); return; } } __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { memcpy((void *)dst, src, count); return; } } extern int cpu_number ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void kfree(void const * ) ; void *ldv_kmem_cache_alloc_20(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; void ldv_check_alloc_flags(gfp_t flags ) ; struct ethtool_cmd *skge_ethtool_ops_group1 ; int ldv_state_variable_8 ; int pci_counter ; struct ethtool_eeprom *skge_ethtool_ops_group2 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_irq_2_0 = 0; struct timer_list *ldv_timer_list_3_1 ; struct file *skge_debug_fops_group2 ; struct net_device *skge_netdev_ops_group1 ; struct timer_list *ldv_timer_list_3_2 ; int ldv_timer_3_3 ; struct timer_list *ldv_timer_list_3_3 ; struct inode *skge_debug_fops_group1 ; void *ldv_irq_data_2_3 ; int ldv_irq_2_2 = 0; int ldv_state_variable_9 ; int ldv_irq_line_2_0 ; int ldv_timer_3_1 ; int ref_cnt ; int ldv_irq_line_1_1 ; void *ldv_irq_data_2_2 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; struct ethtool_ringparam *skge_ethtool_ops_group0 ; int ldv_irq_line_1_2 ; int ldv_irq_line_2_3 ; int ldv_irq_2_1 = 0; void *ldv_irq_data_2_1 ; int ldv_irq_1_3 = 0; void *ldv_irq_data_1_1 ; int ldv_irq_line_2_2 ; int ldv_irq_1_0 = 0; void *ldv_irq_data_1_0 ; int ldv_state_variable_6 ; struct pci_dev *skge_driver_group1 ; int ldv_irq_line_2_1 ; void *ldv_irq_data_1_3 ; int ldv_state_variable_2 ; void *ldv_irq_data_1_2 ; void *ldv_irq_data_2_0 ; struct device *skge_pm_ops_group1 ; int ldv_irq_1_2 = 0; int LDV_IN_INTERRUPT = 1; int ldv_irq_1_1 = 0; int ldv_irq_2_3 = 0; int ldv_irq_line_1_3 ; int ldv_timer_3_2 ; struct ethtool_coalesce *skge_ethtool_ops_group4 ; int ldv_state_variable_3 ; int ldv_irq_line_1_0 ; struct net_device *skge_ethtool_ops_group5 ; int ldv_timer_3_0 ; struct timer_list *ldv_timer_list_3_0 ; struct ethtool_wolinfo *skge_ethtool_ops_group6 ; int ldv_state_variable_4 ; struct ethtool_pauseparam *skge_ethtool_ops_group3 ; void choose_interrupt_2(void) ; void disable_suitable_irq_2(int line , void *data ) ; void choose_timer_3(void) ; void activate_suitable_irq_2(int line , void *data ) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void timer_init_3(void) ; void ldv_pci_driver_4(void) ; void choose_interrupt_1(void) ; int reg_check_2(irqreturn_t (*handler)(int , void * ) ) ; void ldv_initialize_ethtool_ops_9(void) ; void disable_suitable_timer_3(struct timer_list *timer ) ; void activate_suitable_timer_3(struct timer_list *timer , unsigned long data ) ; void ldv_net_device_ops_6(void) ; void ldv_file_operations_8(void) ; void ldv_dev_pm_ops_5(void) ; void disable_suitable_irq_1(int line , void *data ) ; int ldv_irq_1(int state , int line , void *data ) ; void activate_suitable_irq_1(int line , void *data ) ; void activate_pending_timer_3(struct timer_list *timer , unsigned long data , int pending_flag ) ; int reg_timer_3(struct timer_list *timer , void (*function)(unsigned long ) , unsigned long data ) ; int ldv_irq_2(int state , int line , void *data ) ; void ldv_timer_3(int state , struct timer_list *timer ) ; extern void __const_udelay(unsigned long ) ; extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int single_open(struct file * , int (*)(struct seq_file * , void * ) , void * ) ; extern int single_release(struct inode * , struct file * ) ; __inline static bool device_can_wakeup(struct device *dev ) { { return ((int )dev->power.can_wakeup != 0); } } __inline static bool device_may_wakeup(struct device *dev ) { { return ((bool )((unsigned int )*((unsigned char *)dev + 524UL) != 0U && (unsigned long )dev->power.wakeup != (unsigned long )((struct wakeup_source *)0))); } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { tmp = ldv__builtin_expect(count > 268435455U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); ldv_25388: ; goto ldv_25388; } else { } dql->last_obj_cnt = count; __asm__ volatile ("": : : "memory"); dql->num_queued = dql->num_queued + count; return; } } __inline static int dql_avail(struct dql const *dql ) { unsigned int __var ; unsigned int __var___0 ; { __var = 0U; __var___0 = 0U; return ((int )((unsigned int )*((unsigned int const volatile *)(& dql->adj_limit)) - (unsigned int )*((unsigned int const volatile *)(& dql->num_queued)))); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern int net_ratelimit(void) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_31594: ; goto ldv_31594; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_31603: ; goto ldv_31603; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (84), "i" (12UL)); ldv_31638: ; goto ldv_31638; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (96), "i" (12UL)); ldv_31646: ; goto ldv_31646; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 0); return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (108), "i" (12UL)); ldv_31654: ; goto ldv_31654; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (120), "i" (12UL)); ldv_31662: ; goto ldv_31662; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; struct sk_buff *ldv_skb_clone_28(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_36(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_30(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_26(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_34(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_35(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { tmp = skb_headroom(skb); return ((int )((unsigned int )skb->__annonCompField81.__annonCompField80.csum_start - tmp)); } } struct sk_buff *ldv___netdev_alloc_skb_31(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_32(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_33(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_37(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { tmp = ldv___netdev_alloc_skb_33(dev, length, gfp); skb = tmp; return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); return (tmp___0); } } __inline static int skb_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; long tmp ; int tmp___0 ; { size = skb->len; tmp = ldv__builtin_expect(size >= len, 1L); if (tmp != 0L) { return (0); } else { } tmp___0 = skb_pad(skb, (int )(len - size)); return (tmp___0); } } __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { memcpy(to, (void const *)skb->data, (size_t )len); return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_41(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_46(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_43(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_53(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_54(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_schedule(t); } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = napi_disable_pending(n); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { tmp = napi_schedule_prep(n); if ((int )tmp) { __napi_schedule(n); } else { } return; } } extern void __napi_complete(struct napi_struct * ) ; extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (507), "i" (12UL)); ldv_41747: ; goto ldv_41747; } else { } __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3008U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern int register_netdevice_notifier(struct notifier_block * ) ; extern int unregister_netdevice_notifier(struct notifier_block * ) ; __inline static struct net_device *netdev_notifier_info_to_dev(struct netdev_notifier_info const *info ) { { return ((struct net_device *)info->dev); } } extern int dev_close(struct net_device * ) ; extern void free_netdev(struct net_device * ) ; void ldv_free_netdev_48(struct net_device *dev ) ; void ldv_free_netdev_50(struct net_device *dev ) ; void ldv_free_netdev_55(struct net_device *dev ) ; void ldv_free_netdev_56(struct net_device *dev ) ; extern void netif_schedule_queue(struct netdev_queue * ) ; extern void netif_tx_wake_queue(struct netdev_queue * ) ; __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); return (tmp___0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); if (tmp___0 != 0L) { return; } else { } set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); if (tmp___2 != 0L) { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { tmp = ldv__builtin_expect(bytes == 0U, 0L); if (tmp != 0L) { return; } else { } dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); if (tmp___0 < 0) { return; } else { } tmp___1 = test_and_clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); if (tmp___1 != 0) { netif_schedule_queue(dev_queue); } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { __dev_kfree_skb_any(skb, 1); return; } } __inline static void dev_consume_skb_any(struct sk_buff *skb ) { { __dev_kfree_skb_any(skb, 0); return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern void napi_gro_flush(struct napi_struct * , bool ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if (debug_value < 0 || (unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { spin_lock(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { txq->xmit_lock_owner = -1; spin_unlock(& txq->_xmit_lock); return; } } __inline static void netif_tx_lock(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { spin_lock(& dev->tx_global_lock); __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_43340; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_43340; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_43340; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_43340; default: __bad_percpu_size(); } ldv_43340: pscr_ret__ = pfo_ret__; goto ldv_43346; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43350; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43350; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43350; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43350; default: __bad_percpu_size(); } ldv_43350: pscr_ret__ = pfo_ret_____0; goto ldv_43346; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43359; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43359; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43359; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43359; default: __bad_percpu_size(); } ldv_43359: pscr_ret__ = pfo_ret_____1; goto ldv_43346; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43368; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43368; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43368; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43368; default: __bad_percpu_size(); } ldv_43368: pscr_ret__ = pfo_ret_____2; goto ldv_43346; default: __bad_size_call_parameter(); goto ldv_43346; } ldv_43346: cpu = pscr_ret__; i = 0U; goto ldv_43378; ldv_43377: tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); set_bit(2L, (unsigned long volatile *)(& txq->state)); __netif_tx_unlock(txq); i = i + 1U; ldv_43378: ; if (dev->num_tx_queues > i) { goto ldv_43377; } else { } return; } } __inline static void netif_tx_lock_bh(struct net_device *dev ) { { local_bh_disable(); netif_tx_lock(dev); return; } } __inline static void netif_tx_unlock(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43389; ldv_43388: tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; clear_bit(2L, (unsigned long volatile *)(& txq->state)); netif_schedule_queue(txq); i = i + 1U; ldv_43389: ; if (dev->num_tx_queues > i) { goto ldv_43388; } else { } spin_unlock(& dev->tx_global_lock); return; } } __inline static void netif_tx_unlock_bh(struct net_device *dev ) { { netif_tx_unlock(dev); local_bh_enable(); return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { local_bh_disable(); __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_43404; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_43404; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_43404; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_43404; default: __bad_percpu_size(); } ldv_43404: pscr_ret__ = pfo_ret__; goto ldv_43410; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43414; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43414; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43414; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_43414; default: __bad_percpu_size(); } ldv_43414: pscr_ret__ = pfo_ret_____0; goto ldv_43410; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43423; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43423; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43423; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_43423; default: __bad_percpu_size(); } ldv_43423: pscr_ret__ = pfo_ret_____1; goto ldv_43410; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43432; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43432; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43432; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_43432; default: __bad_percpu_size(); } ldv_43432: pscr_ret__ = pfo_ret_____2; goto ldv_43410; default: __bad_size_call_parameter(); goto ldv_43410; } ldv_43410: cpu = pscr_ret__; i = 0U; goto ldv_43442; ldv_43441: tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; ldv_43442: ; if (dev->num_tx_queues > i) { goto ldv_43441; } else { } local_bh_enable(); return; } } extern int register_netdev(struct net_device * ) ; int ldv_register_netdev_44(struct net_device *dev ) ; int ldv_register_netdev_45(struct net_device *dev ) ; extern void unregister_netdev(struct net_device * ) ; void ldv_unregister_netdev_47(struct net_device *dev ) ; void ldv_unregister_netdev_49(struct net_device *dev ) ; void ldv_unregister_netdev_51(struct net_device *dev ) ; void ldv_unregister_netdev_52(struct net_device *dev ) ; extern void netdev_printk(char const * , struct net_device const * , char const * , ...) ; extern void netdev_err(struct net_device const * , char const * , ...) ; extern void netdev_warn(struct net_device const * , char const * , ...) ; extern void netdev_notice(struct net_device const * , char const * , ...) ; extern void netdev_info(struct net_device const * , char const * , ...) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { u32 a ; { a = *((u32 const *)addr); return ((a & 1U) != 0U); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = is_multicast_ether_addr(addr); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = is_zero_ether_addr(addr); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_57(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_58(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { tmp = dma_mapping_error(& pdev->dev, dma_addr); return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_coherent_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { tmp = dev_name(& pdev->dev); return (tmp); } } __inline static struct iphdr *ipip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((struct iphdr *)tmp); } } extern u8 const byte_rev_table[256U] ; __inline static u8 __bitrev8(u8 byte ) { { return ((u8 )byte_rev_table[(int )byte]); } } __inline static u16 __bitrev16(u16 x ) { u8 tmp ; u8 tmp___0 ; { tmp = __bitrev8((int )((u8 )x)); tmp___0 = __bitrev8((int )((u8 )((int )x >> 8))); return ((u16 )((int )((short )((int )tmp << 8)) | (int )((short )tmp___0))); } } __inline static u32 __bitrev32(u32 x ) { u16 tmp ; u16 tmp___0 ; { tmp = __bitrev16((int )((u16 )x)); tmp___0 = __bitrev16((int )((u16 )(x >> 16))); return ((u32 )(((int )tmp << 16) | (int )tmp___0)); } } extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove(struct dentry * ) ; extern struct dentry *debugfs_rename(struct dentry * , struct dentry * , struct dentry * , char const * ) ; extern int dmi_check_system(struct dmi_system_id const * ) ; __inline static u32 skge_read32(struct skge_hw const *hw , int reg ) { unsigned int tmp ; { tmp = readl((void const volatile *)hw->regs + (unsigned long )reg); return (tmp); } } __inline static u16 skge_read16(struct skge_hw const *hw , int reg ) { unsigned short tmp ; { tmp = readw((void const volatile *)hw->regs + (unsigned long )reg); return (tmp); } } __inline static u8 skge_read8(struct skge_hw const *hw , int reg ) { unsigned char tmp ; { tmp = readb((void const volatile *)hw->regs + (unsigned long )reg); return (tmp); } } __inline static void skge_write32(struct skge_hw const *hw , int reg , u32 val ) { { writel(val, (void volatile *)hw->regs + (unsigned long )reg); return; } } __inline static void skge_write16(struct skge_hw const *hw , int reg , u16 val ) { { writew((int )val, (void volatile *)hw->regs + (unsigned long )reg); return; } } __inline static void skge_write8(struct skge_hw const *hw , int reg , u8 val ) { { writeb((int )val, (void volatile *)hw->regs + (unsigned long )reg); return; } } __inline static u32 xm_read32(struct skge_hw const *hw , int port , int reg ) { u32 v ; u16 tmp ; u16 tmp___0 ; { tmp = skge_read16(hw, (port + 2) * 4096 | (reg << 1)); v = (u32 )tmp; tmp___0 = skge_read16(hw, (port + 2) * 4096 | ((reg + 2) << 1)); v = ((unsigned int )tmp___0 << 16) | v; return (v); } } __inline static u16 xm_read16(struct skge_hw const *hw , int port , int reg ) { u16 tmp ; { tmp = skge_read16(hw, (port + 2) * 4096 | (reg << 1)); return (tmp); } } __inline static void xm_write32(struct skge_hw const *hw , int port , int r , u32 v ) { { skge_write16(hw, (port + 2) * 4096 | (r << 1), (int )((u16 )v)); skge_write16(hw, (port + 2) * 4096 | ((r + 2) << 1), (int )((u16 )(v >> 16))); return; } } __inline static void xm_write16(struct skge_hw const *hw , int port , int r , u16 v ) { { skge_write16(hw, (port + 2) * 4096 | (r << 1), (int )v); return; } } __inline static void xm_outhash(struct skge_hw const *hw , int port , int reg , u8 const *hash ) { { xm_write16(hw, port, reg, (int )((u16 )((int )((short )*hash) | (int )((short )((int )*(hash + 1UL) << 8))))); xm_write16(hw, port, reg + 2, (int )((u16 )((int )((short )*(hash + 2UL)) | (int )((short )((int )*(hash + 3UL) << 8))))); xm_write16(hw, port, reg + 4, (int )((u16 )((int )((short )*(hash + 4UL)) | (int )((short )((int )*(hash + 5UL) << 8))))); xm_write16(hw, port, reg + 6, (int )((u16 )((int )((short )*(hash + 6UL)) | (int )((short )((int )*(hash + 7UL) << 8))))); return; } } __inline static void xm_outaddr(struct skge_hw const *hw , int port , int reg , u8 const *addr ) { { xm_write16(hw, port, reg, (int )((u16 )((int )((short )*addr) | (int )((short )((int )*(addr + 1UL) << 8))))); xm_write16(hw, port, reg + 2, (int )((u16 )((int )((short )*(addr + 2UL)) | (int )((short )((int )*(addr + 3UL) << 8))))); xm_write16(hw, port, reg + 4, (int )((u16 )((int )((short )*(addr + 4UL)) | (int )((short )((int )*(addr + 5UL) << 8))))); return; } } __inline static u16 gma_read16(struct skge_hw const *hw , int port , int reg ) { u16 tmp ; { tmp = skge_read16(hw, (port * 4096 + 10240) + reg); return (tmp); } } __inline static u32 gma_read32(struct skge_hw const *hw , int port , int reg ) { u16 tmp ; u16 tmp___0 ; { tmp = skge_read16(hw, (port * 4096 + 10240) + reg); tmp___0 = skge_read16(hw, (port * 4096 + 10240) + (reg + 4)); return ((unsigned int )tmp | ((unsigned int )tmp___0 << 16)); } } __inline static void gma_write16(struct skge_hw const *hw , int port , int r , u16 v ) { { skge_write16(hw, (port * 4096 + 10240) + r, (int )v); return; } } __inline static void gma_set_addr(struct skge_hw *hw , int port , int reg , u8 const *addr ) { { gma_write16((struct skge_hw const *)hw, port, reg, (int )((u16 )((int )((short )*addr) | (int )((short )((int )*(addr + 1UL) << 8))))); gma_write16((struct skge_hw const *)hw, port, reg + 4, (int )((u16 )((int )((short )*(addr + 2UL)) | (int )((short )((int )*(addr + 3UL) << 8))))); gma_write16((struct skge_hw const *)hw, port, reg + 8, (int )((u16 )((int )((short )*(addr + 4UL)) | (int )((short )((int )*(addr + 5UL) << 8))))); return; } } static unsigned int const default_msg = 55U; static int debug = -1; static struct pci_device_id const skge_id_table[13U] = { {4279U, 5888U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4279U, 33003U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4424U, 17152U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4424U, 17184U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 19201U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 19456U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 17154U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4523U, 17184U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4523U, 20485U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4977U, 17230U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5943U, 4196U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5943U, 4146U, 4294967295U, 21U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__skge_id_table_device_table[13U] ; static int skge_up(struct net_device *dev ) ; static int skge_down(struct net_device *dev ) ; static void skge_phy_reset(struct skge_port *skge ) ; static void skge_tx_clean(struct net_device *dev ) ; static int xm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) ; static int gm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) ; static void genesis_get_stats(struct skge_port *skge , u64 *data ) ; static void yukon_get_stats(struct skge_port *skge , u64 *data ) ; static void yukon_init(struct skge_hw *hw , int port ) ; static void genesis_mac_init(struct skge_hw *hw , int port ) ; static void genesis_link_up(struct skge_port *skge ) ; static void skge_set_multicast(struct net_device *dev ) ; static irqreturn_t skge_intr(int irq , void *dev_id ) ; static int const txqaddr[2U] = { 640, 896}; static int const rxqaddr[2U] = { 0, 128}; static u32 const rxirqmask[2U] = { 65536U, 8192U}; static u32 const txirqmask[2U] = { 128U, 2U}; static u32 const napimask[2U] = { 65664U, 8194U}; static u32 const portmask[2U] = { 673251456U, 336076802U}; __inline static bool is_genesis(struct skge_hw const *hw ) { { return ((unsigned int )((unsigned char )hw->chip_id) == 10U); } } static int skge_get_regs_len(struct net_device *dev ) { { return (16384); } } static void skge_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *p ) { struct skge_port const *skge ; void *tmp ; void const *io ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port const *)tmp; io = (void const *)(skge->hw)->regs; regs->version = 1U; memset(p, 0, (size_t )regs->len); memcpy_fromio(p, (void const volatile *)io, 384UL); memcpy_fromio(p + 400UL, (void const volatile *)io + 400U, (size_t )(regs->len - 400U)); return; } } static u32 wol_supported(struct skge_hw const *hw ) { bool tmp ; { tmp = is_genesis(hw); if ((int )tmp) { return (0U); } else { } if ((unsigned int )((unsigned char )hw->chip_id) == 176U && (unsigned int )((unsigned char )hw->chip_rev) == 0U) { return (0U); } else { } return (33U); } } static void skge_wol_init(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 ctrl ; u32 reg ; u32 tmp ; { hw = skge->hw; port = skge->port; skge_write16((struct skge_hw const *)hw, 4, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3856, 2); skge_write8((struct skge_hw const *)hw, 7, 169); if ((unsigned int )hw->chip_id == 177U && (unsigned int )hw->chip_rev > 6U) { tmp = skge_read32((struct skge_hw const *)hw, 348); reg = tmp; reg = reg | 33554432U; reg = reg & 4294966783U; skge_write32((struct skge_hw const *)hw, 348, reg); } else { } skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, 32522241U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, 32522242U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 2U); gm_phy_write(hw, port, 4, 481); gm_phy_write(hw, port, 9, 0); gm_phy_write(hw, port, 0, 45824); gma_write16((struct skge_hw const *)hw, port, 4, 14386); memcpy_toio((void volatile *)hw->regs + (unsigned long )(port * 128 + 3876), (void const *)(skge->netdev)->dev_addr, 6UL); skge_write16((struct skge_hw const *)hw, port * 128 + 3872, 4096); ctrl = 0U; if ((int )skge->wol & 1) { ctrl = (u16 )((unsigned int )ctrl | 2080U); } else { ctrl = (u16 )((unsigned int )ctrl | 1040U); } if (((int )skge->wol & 32) != 0) { ctrl = (u16 )((unsigned int )ctrl | 520U); } else { ctrl = (u16 )((unsigned int )ctrl | 260U); } ctrl = (u16 )((unsigned int )ctrl | 65U); skge_write16((struct skge_hw const *)hw, port * 128 + 3872, (int )ctrl); skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 1); return; } } static void skge_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; wol->supported = wol_supported((struct skge_hw const *)skge->hw); wol->wolopts = (__u32 )skge->wol; return; } } static int skge_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; u32 tmp___0 ; bool tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; tmp___0 = wol_supported((struct skge_hw const *)hw); if ((wol->wolopts & ~ tmp___0) != 0U) { return (-95); } else { tmp___1 = device_can_wakeup(& (hw->pdev)->dev); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-95); } else { } } skge->wol = (u8 )wol->wolopts; device_set_wakeup_enable(& (hw->pdev)->dev, (unsigned int )skge->wol != 0U); return (0); } } static u32 skge_supported_modes(struct skge_hw const *hw ) { u32 supported ; bool tmp ; { if ((unsigned int )((unsigned char )hw->copper) != 0U) { supported = 255U; tmp = is_genesis(hw); if ((int )tmp) { supported = supported & 4294967280U; } else if ((unsigned int )((unsigned char )hw->chip_id) == 176U) { supported = supported & 4294967279U; } else { } } else { supported = 1136U; } return (supported); } } static int skge_get_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; ecmd->transceiver = 0U; ecmd->supported = skge_supported_modes((struct skge_hw const *)hw); if ((unsigned int )hw->copper != 0U) { ecmd->port = 0U; ecmd->phy_address = (__u8 )hw->phy_addr; } else { ecmd->port = 3U; } ecmd->advertising = skge->advertising; ecmd->autoneg = skge->autoneg; ethtool_cmd_speed_set(ecmd, (__u32 )skge->speed); ecmd->duplex = skge->duplex; return (0); } } static int skge_set_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw const *hw ; u32 supported ; u32 tmp___0 ; int err ; u32 setting ; u32 speed ; __u32 tmp___1 ; bool tmp___2 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = (struct skge_hw const *)skge->hw; tmp___0 = skge_supported_modes(hw); supported = tmp___0; err = 0; if ((unsigned int )ecmd->autoneg == 1U) { ecmd->advertising = supported; skge->duplex = 255U; skge->speed = 65535U; } else { tmp___1 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___1; switch (speed) { case 1000U: ; if ((unsigned int )ecmd->duplex == 1U) { setting = 32U; } else if ((unsigned int )ecmd->duplex == 0U) { setting = 16U; } else { return (-22); } goto ldv_48514; case 100U: ; if ((unsigned int )ecmd->duplex == 1U) { setting = 8U; } else if ((unsigned int )ecmd->duplex == 0U) { setting = 4U; } else { return (-22); } goto ldv_48514; case 10U: ; if ((unsigned int )ecmd->duplex == 1U) { setting = 2U; } else if ((unsigned int )ecmd->duplex == 0U) { setting = 1U; } else { return (-22); } goto ldv_48514; default: ; return (-22); } ldv_48514: ; if ((setting & supported) == 0U) { return (-22); } else { } skge->speed = (u16 )speed; skge->duplex = ecmd->duplex; } skge->autoneg = ecmd->autoneg; skge->advertising = ecmd->advertising; tmp___2 = netif_running((struct net_device const *)dev); if ((int )tmp___2) { skge_down(dev); err = skge_up(dev); if (err != 0) { dev_close(dev); return (err); } else { } } else { } return (0); } } static void skge_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct skge_port *skge ; void *tmp ; char const *tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; strlcpy((char *)(& info->driver), "skge", 32UL); strlcpy((char *)(& info->version), "1.14", 32UL); tmp___0 = pci_name((struct pci_dev const *)(skge->hw)->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); return; } } static struct skge_stat const skge_stats[21U] = { {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 644U, 488U}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 772U, 312U}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 652U, 456U}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 780U, 264U}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 656U, 472U}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 784U, 280U}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, 660U, 448U}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, 788U, 256U}, {{'t', 'x', '_', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '\000'}, 672U, 464U}, {{'r', 'x', '_', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '\000'}, 792U, 272U}, {{'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 680U, 592U}, {{'m', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 684U, 584U}, {{'a', 'b', 'o', 'r', 't', 'e', 'd', '\000'}, 688U, 576U}, {{'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}, 692U, 568U}, {{'f', 'i', 'f', 'o', '_', 'u', 'n', 'd', 'e', 'r', 'r', 'u', 'n', '\000'}, 704U, 600U}, {{'f', 'i', 'f', 'o', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', '\000'}, 820U, 432U}, {{'r', 'x', '_', 't', 'o', 'o', 'l', 'o', 'n', 'g', '\000'}, 848U, 408U}, {{'r', 'x', '_', 'j', 'a', 'b', 'b', 'e', 'r', '\000'}, 824U, 416U}, {{'r', 'x', '_', 'r', 'u', 'n', 't', '\000'}, 844U, 344U}, {{'r', 'x', '_', 't', 'o', 'o', '_', 'l', 'o', 'n', 'g', '\000'}, 848U, 408U}, {{'r', 'x', '_', 'f', 'c', 's', '_', 'e', 'r', 'r', 'o', 'r', '\000'}, 852U, 288U}}; static int skge_get_sset_count(struct net_device *dev , int sset ) { { switch (sset) { case 1: ; return (21); default: ; return (-95); } } } static void skge_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = is_genesis((struct skge_hw const *)skge->hw); if ((int )tmp___0) { genesis_get_stats(skge, data); } else { yukon_get_stats(skge, data); } return; } } static struct net_device_stats *skge_get_stats(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; u64 data[21U] ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = is_genesis((struct skge_hw const *)skge->hw); if ((int )tmp___0) { genesis_get_stats(skge, (u64 *)(& data)); } else { yukon_get_stats(skge, (u64 *)(& data)); } dev->stats.tx_bytes = (unsigned long )data[0]; dev->stats.rx_bytes = (unsigned long )data[1]; dev->stats.tx_packets = (unsigned long )((data[2] + data[4]) + data[6]); dev->stats.rx_packets = (unsigned long )((data[3] + data[5]) + data[7]); dev->stats.multicast = (unsigned long )(data[3] + data[5]); dev->stats.collisions = (unsigned long )data[10]; dev->stats.tx_aborted_errors = (unsigned long )data[12]; return (& dev->stats); } } static void skge_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { int i ; { switch (stringset) { case 1U: i = 0; goto ldv_48559; ldv_48558: memcpy((void *)data + (unsigned long )(i * 32), (void const *)(& skge_stats[i].name), 32UL); i = i + 1; ldv_48559: ; if ((unsigned int )i <= 20U) { goto ldv_48558; } else { } goto ldv_48561; } ldv_48561: ; return; } } static void skge_get_ring_param(struct net_device *dev , struct ethtool_ringparam *p ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; p->rx_max_pending = 4096U; p->tx_max_pending = 1024U; p->rx_pending = (__u32 )skge->rx_ring.count; p->tx_pending = (__u32 )skge->tx_ring.count; return; } } static int skge_set_ring_param(struct net_device *dev , struct ethtool_ringparam *p ) { struct skge_port *skge ; void *tmp ; int err ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; err = 0; if (((p->rx_pending == 0U || p->rx_pending > 4096U) || p->tx_pending <= 17U) || p->tx_pending > 1024U) { return (-22); } else { } skge->rx_ring.count = (unsigned long )p->rx_pending; skge->tx_ring.count = (unsigned long )p->tx_pending; tmp___0 = netif_running((struct net_device const *)dev); if ((int )tmp___0) { skge_down(dev); err = skge_up(dev); if (err != 0) { dev_close(dev); } else { } } else { } return (err); } } static u32 skge_get_msglevel(struct net_device *netdev ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); skge = (struct skge_port *)tmp; return (skge->msg_enable); } } static void skge_set_msglevel(struct net_device *netdev , u32 value ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); skge = (struct skge_port *)tmp; skge->msg_enable = value; return; } } static int skge_nway_reset(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; if ((unsigned int )skge->autoneg != 1U) { return (-22); } else { tmp___0 = netif_running((struct net_device const *)dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } } skge_phy_reset(skge); return (0); } } static void skge_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *ecmd ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ecmd->rx_pause = (__u32 )((unsigned int )skge->flow_control == 3U || (unsigned int )skge->flow_control == 4U); ecmd->tx_pause = (__u32 )(ecmd->rx_pause != 0U || (unsigned int )skge->flow_control == 2U); ecmd->autoneg = (__u32 )(ecmd->rx_pause != 0U || ecmd->tx_pause != 0U); return; } } static int skge_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *ecmd ) { struct skge_port *skge ; void *tmp ; struct ethtool_pauseparam old ; int err ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; err = 0; skge_get_pauseparam(dev, & old); if (ecmd->autoneg != old.autoneg) { skge->flow_control = ecmd->autoneg != 0U ? 1 : 3; } else if (ecmd->rx_pause != 0U && ecmd->tx_pause != 0U) { skge->flow_control = 3; } else if (ecmd->rx_pause != 0U && ecmd->tx_pause == 0U) { skge->flow_control = 4; } else if (ecmd->rx_pause == 0U && ecmd->tx_pause != 0U) { skge->flow_control = 2; } else { skge->flow_control = 1; } tmp___0 = netif_running((struct net_device const *)dev); if ((int )tmp___0) { skge_down(dev); err = skge_up(dev); if (err != 0) { dev_close(dev); return (err); } else { } } else { } return (0); } } __inline static u32 hwkhz(struct skge_hw const *hw ) { bool tmp ; { tmp = is_genesis(hw); return ((int )tmp ? 53125U : 78125U); } } __inline static u32 skge_clk2usec(struct skge_hw const *hw , u32 ticks ) { u32 tmp ; { tmp = hwkhz(hw); return ((ticks * 1000U) / tmp); } } __inline static u32 skge_usecs2clk(struct skge_hw const *hw , u32 usec ) { u32 tmp ; { tmp = hwkhz(hw); return ((tmp * usec) / 1000U); } } static int skge_get_coalesce(struct net_device *dev , struct ethtool_coalesce *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u32 delay ; u32 tmp___0 ; u32 tmp___1 ; u32 msk ; u32 tmp___2 ; u32 tmp___3 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; ecmd->rx_coalesce_usecs = 0U; ecmd->tx_coalesce_usecs = 0U; tmp___3 = skge_read32((struct skge_hw const *)hw, 328); if ((tmp___3 & 4U) != 0U) { tmp___0 = skge_read32((struct skge_hw const *)hw, 320); tmp___1 = skge_clk2usec((struct skge_hw const *)hw, tmp___0); delay = tmp___1; tmp___2 = skge_read32((struct skge_hw const *)hw, 332); msk = tmp___2; if (((u32 )rxirqmask[port] & msk) != 0U) { ecmd->rx_coalesce_usecs = delay; } else { } if (((u32 )txirqmask[port] & msk) != 0U) { ecmd->tx_coalesce_usecs = delay; } else { } } else { } return (0); } } static int skge_set_coalesce(struct net_device *dev , struct ethtool_coalesce *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u32 msk ; u32 tmp___0 ; u32 delay ; u32 _min1 ; __u32 _min2 ; u32 tmp___1 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; tmp___0 = skge_read32((struct skge_hw const *)hw, 332); msk = tmp___0; delay = 25U; if (ecmd->rx_coalesce_usecs == 0U) { msk = (u32 )(~ rxirqmask[port]) & msk; } else if (ecmd->rx_coalesce_usecs <= 24U || ecmd->rx_coalesce_usecs > 33333U) { return (-22); } else { msk = (u32 )rxirqmask[port] | msk; delay = ecmd->rx_coalesce_usecs; } if (ecmd->tx_coalesce_usecs == 0U) { msk = (u32 )(~ txirqmask[port]) & msk; } else if (ecmd->tx_coalesce_usecs <= 24U || ecmd->tx_coalesce_usecs > 33333U) { return (-22); } else { msk = (u32 )txirqmask[port] | msk; _min1 = delay; _min2 = ecmd->rx_coalesce_usecs; delay = _min1 < _min2 ? _min1 : _min2; } skge_write32((struct skge_hw const *)hw, 332, msk); if (msk == 0U) { skge_write32((struct skge_hw const *)hw, 328, 2U); } else { tmp___1 = skge_usecs2clk((struct skge_hw const *)hw, delay); skge_write32((struct skge_hw const *)hw, 320, tmp___1); skge_write32((struct skge_hw const *)hw, 328, 4U); } return (0); } } static void skge_led(struct skge_port *skge , enum led_mode mode ) { struct skge_hw *hw ; int port ; bool tmp ; { hw = skge->hw; port = skge->port; spin_lock_bh(& hw->phy_lock); tmp = is_genesis((struct skge_hw const *)hw); if ((int )tmp) { switch ((unsigned int )mode) { case 0U: ; if ((unsigned int )hw->phy_type == 1U) { xm_phy_write(hw, port, 16, 8); } else { skge_write32((struct skge_hw const *)hw, (port << 7) + 3364, 0U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3368, 2); } skge_write8((struct skge_hw const *)hw, (port << 7) + 3132, 1); skge_write32((struct skge_hw const *)hw, (port << 7) + 3108, 0U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3112, 2); goto ldv_48641; case 1U: skge_write8((struct skge_hw const *)hw, (port << 7) + 3132, 2); skge_write8((struct skge_hw const *)hw, (port << 7) + 3132, 8); skge_write8((struct skge_hw const *)hw, (port << 7) + 3112, 4); skge_write8((struct skge_hw const *)hw, (port << 7) + 3368, 4); goto ldv_48641; case 2U: skge_write8((struct skge_hw const *)hw, (port << 7) + 3113, 4); skge_write32((struct skge_hw const *)hw, (port << 7) + 3108, 100U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3112, 4); if ((unsigned int )hw->phy_type == 1U) { xm_phy_write(hw, port, 16, 16); } else { skge_write8((struct skge_hw const *)hw, (port << 7) + 3369, 4); skge_write32((struct skge_hw const *)hw, (port << 7) + 3364, 100U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3368, 4); } } ldv_48641: ; } else { switch ((unsigned int )mode) { case 0U: gm_phy_write(hw, port, 24, 0); gm_phy_write(hw, port, 25, 2728); goto ldv_48645; case 1U: gm_phy_write(hw, port, 24, 16645); gm_phy_write(hw, port, 25, (unsigned int )skge->speed == 100U ? 200 : 8); goto ldv_48645; case 2U: gm_phy_write(hw, port, 24, 0); gm_phy_write(hw, port, 25, 4092); } ldv_48645: ; } spin_unlock_bh(& hw->phy_lock); return; } } static int skge_set_phys_id(struct net_device *dev , enum ethtool_phys_id_state state ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; switch ((unsigned int )state) { case 1U: ; return (2); case 2U: skge_led(skge, 2); goto ldv_48655; case 3U: skge_led(skge, 0); goto ldv_48655; case 0U: tmp___0 = netif_running((struct net_device const *)dev); skge_led(skge, (enum led_mode )tmp___0); } ldv_48655: ; return (0); } } static int skge_get_eeprom_len(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; u32 reg2 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; pci_read_config_dword((struct pci_dev const *)(skge->hw)->pdev, 68, & reg2); return (1 << (int )((unsigned int )(((long )reg2 & 114688L) >> 14) + 8U)); } } static u32 skge_vpd_read(struct pci_dev *pdev , int cap , u16 offset ) { u32 val ; { pci_write_config_word((struct pci_dev const *)pdev, cap + 2, (int )offset); ldv_48669: pci_read_config_word((struct pci_dev const *)pdev, cap + 2, & offset); if ((int )((short )offset) >= 0) { goto ldv_48669; } else { } pci_read_config_dword((struct pci_dev const *)pdev, cap + 4, & val); return (val); } } static void skge_vpd_write(struct pci_dev *pdev , int cap , u16 offset , u32 val ) { { pci_write_config_dword((struct pci_dev const *)pdev, cap + 4, val); pci_write_config_word((struct pci_dev const *)pdev, cap + 2, (int )((unsigned int )offset | 32768U)); ldv_48677: pci_read_config_word((struct pci_dev const *)pdev, cap + 2, & offset); if ((int )((short )offset) < 0) { goto ldv_48677; } else { } return; } } static int skge_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct skge_port *skge ; void *tmp ; struct pci_dev *pdev ; int cap ; int tmp___0 ; int length ; u16 offset ; u32 val ; u32 tmp___1 ; int n ; int __min1 ; int __min2 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; pdev = (skge->hw)->pdev; tmp___0 = pci_find_capability(pdev, 3); cap = tmp___0; length = (int )eeprom->len; offset = (u16 )eeprom->offset; if (cap == 0) { return (-22); } else { } eeprom->magic = 2570300091U; goto ldv_48695; ldv_48694: tmp___1 = skge_vpd_read(pdev, cap, (int )offset); val = tmp___1; __min1 = length; __min2 = 4; n = __min1 < __min2 ? __min1 : __min2; memcpy((void *)data, (void const *)(& val), (size_t )n); length = length - n; data = data + (unsigned long )n; offset = (int )((u16 )n) + (int )offset; ldv_48695: ; if (length > 0) { goto ldv_48694; } else { } return (0); } } static int skge_set_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct skge_port *skge ; void *tmp ; struct pci_dev *pdev ; int cap ; int tmp___0 ; int length ; u16 offset ; u32 val ; int n ; int __min1 ; int __min2 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; pdev = (skge->hw)->pdev; tmp___0 = pci_find_capability(pdev, 3); cap = tmp___0; length = (int )eeprom->len; offset = (u16 )eeprom->offset; if (cap == 0) { return (-22); } else { } if (eeprom->magic != 2570300091U) { return (-22); } else { } goto ldv_48713; ldv_48712: __min1 = length; __min2 = 4; n = __min1 < __min2 ? __min1 : __min2; if ((unsigned int )n <= 3U) { val = skge_vpd_read(pdev, cap, (int )offset); } else { } memcpy((void *)(& val), (void const *)data, (size_t )n); skge_vpd_write(pdev, cap, (int )offset, val); length = length - n; data = data + (unsigned long )n; offset = (int )((u16 )n) + (int )offset; ldv_48713: ; if (length > 0) { goto ldv_48712; } else { } return (0); } } static struct ethtool_ops const skge_ethtool_ops = {& skge_get_settings, & skge_set_settings, & skge_get_drvinfo, & skge_get_regs_len, & skge_get_regs, & skge_get_wol, & skge_set_wol, & skge_get_msglevel, & skge_set_msglevel, & skge_nway_reset, & ethtool_op_get_link, & skge_get_eeprom_len, & skge_get_eeprom, & skge_set_eeprom, & skge_get_coalesce, & skge_set_coalesce, & skge_get_ring_param, & skge_set_ring_param, & skge_get_pauseparam, & skge_set_pauseparam, 0, & skge_get_strings, & skge_set_phys_id, & skge_get_ethtool_stats, 0, 0, 0, 0, & skge_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int skge_ring_alloc(struct skge_ring *ring , void *vaddr , u32 base ) { struct skge_tx_desc *d ; struct skge_element *e ; int i ; void *tmp ; struct skge_element *tmp___0 ; { tmp = kcalloc(ring->count, 40UL, 208U); ring->start = (struct skge_element *)tmp; if ((unsigned long )ring->start == (unsigned long )((struct skge_element *)0)) { return (-12); } else { } i = 0; e = ring->start; d = (struct skge_tx_desc *)vaddr; goto ldv_48725; ldv_48724: e->desc = (void *)d; if ((unsigned long )i == ring->count - 1UL) { e->next = ring->start; d->next_offset = base; } else { e->next = e + 1UL; d->next_offset = (u32 )((unsigned long )(i + 1)) * 32U + base; } i = i + 1; e = e + 1; d = d + 1; ldv_48725: ; if ((unsigned long )i < ring->count) { goto ldv_48724; } else { } tmp___0 = ring->start; ring->to_clean = tmp___0; ring->to_use = tmp___0; return (0); } } static int skge_rx_setup(struct skge_port *skge , struct skge_element *e , struct sk_buff *skb , unsigned int bufsize ) { struct skge_rx_desc *rd ; dma_addr_t map ; int tmp ; { rd = (struct skge_rx_desc *)e->desc; map = pci_map_single((skge->hw)->pdev, (void *)skb->data, (size_t )bufsize, 2); tmp = pci_dma_mapping_error((skge->hw)->pdev, map); if (tmp != 0) { return (-1); } else { } rd->dma_lo = (unsigned int )map; rd->dma_hi = (unsigned int )(map >> 32ULL); e->skb = skb; rd->csum1_start = 14U; rd->csum2_start = 14U; rd->csum1 = 0U; rd->csum2 = 0U; __asm__ volatile ("sfence": : : "memory"); rd->control = bufsize | 3361079296U; e->mapaddr = map; e->maplen = bufsize; return (0); } } __inline static void skge_rx_reuse(struct skge_element *e , unsigned int size ) { struct skge_rx_desc *rd ; { rd = (struct skge_rx_desc *)e->desc; rd->csum2 = 0U; rd->csum2_start = 14U; __asm__ volatile ("sfence": : : "memory"); rd->control = size | 3361079296U; return; } } static void skge_rx_clean(struct skge_port *skge ) { struct skge_hw *hw ; struct skge_ring *ring ; struct skge_element *e ; struct skge_rx_desc *rd ; { hw = skge->hw; ring = & skge->rx_ring; e = ring->start; ldv_48747: rd = (struct skge_rx_desc *)e->desc; rd->control = 0U; if ((unsigned long )e->skb != (unsigned long )((struct sk_buff *)0)) { pci_unmap_single(hw->pdev, e->mapaddr, (size_t )e->maplen, 2); consume_skb(e->skb); e->skb = (struct sk_buff *)0; } else { } e = e->next; if ((unsigned long )e != (unsigned long )ring->start) { goto ldv_48747; } else { } return; } } static int skge_rx_fill(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_ring *ring ; struct skge_element *e ; struct sk_buff *skb ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ring = & skge->rx_ring; e = ring->start; ldv_48756: skb = ldv___netdev_alloc_skb_37(dev, skge->rx_buf_size, 208U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } skb_reserve(skb, 0); tmp___0 = skge_rx_setup(skge, e, skb, skge->rx_buf_size); if (tmp___0 < 0) { consume_skb(skb); return (-5); } else { } e = e->next; if ((unsigned long )e != (unsigned long )ring->start) { goto ldv_48756; } else { } ring->to_clean = ring->start; return (0); } } static char const *skge_pause(enum pause_status status ) { { switch ((unsigned int )status) { case 1U: ; return ("none"); case 2U: ; return ("rx only"); case 3U: ; return ("tx_only"); case 4U: ; return ("both"); default: ; return ("indeterminated"); } } } static void skge_link_up(struct skge_port *skge ) { char const *tmp ; { skge_write8((struct skge_hw const *)skge->hw, (skge->port << 7) + 3132, 22); netif_carrier_on(skge->netdev); netif_wake_queue(skge->netdev); if ((skge->msg_enable & 4U) != 0U) { tmp = skge_pause(skge->flow_status); netdev_info((struct net_device const *)skge->netdev, "Link is up at %d Mbps, %s duplex, flow control %s\n", (int )skge->speed, (unsigned int )skge->duplex == 1U ? (char *)"full" : (char *)"half", tmp); } else { } return; } } static void skge_link_down(struct skge_port *skge ) { { skge_write8((struct skge_hw const *)skge->hw, (skge->port << 7) + 3132, 1); netif_carrier_off(skge->netdev); netif_stop_queue(skge->netdev); if ((skge->msg_enable & 4U) != 0U) { netdev_info((struct net_device const *)skge->netdev, "Link is down\n"); } else { } return; } } static void xm_link_down(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; bool tmp___0 ; { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; xm_write16((struct skge_hw const *)hw, port, 68, 65535); tmp___0 = netif_carrier_ok((struct net_device const *)dev); if ((int )tmp___0) { skge_link_down(skge); } else { } return; } } static int __xm_phy_read(struct skge_hw *hw , int port , u16 reg , u16 *val ) { int i ; u16 tmp ; { xm_write16((struct skge_hw const *)hw, port, 52, (int )hw->phy_addr | (int )reg); *val = xm_read16((struct skge_hw const *)hw, port, 56); if ((unsigned int )hw->phy_type == 0U) { goto ready; } else { } i = 0; goto ldv_48787; ldv_48786: tmp = xm_read16((struct skge_hw const *)hw, port, 0); if (((int )tmp & 4096) != 0) { goto ready; } else { } __const_udelay(4295UL); i = i + 1; ldv_48787: ; if (i <= 999) { goto ldv_48786; } else { } return (-110); ready: *val = xm_read16((struct skge_hw const *)hw, port, 56); return (0); } } static u16 xm_phy_read(struct skge_hw *hw , int port , u16 reg ) { u16 v ; int tmp ; { v = 0U; tmp = __xm_phy_read(hw, port, (int )reg, & v); if (tmp != 0) { printk("\fskge: %s: phy read timed out\n", (char *)(& (hw->dev[port])->name)); } else { } return (v); } } static int xm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) { int i ; u16 tmp ; u16 tmp___0 ; { xm_write16((struct skge_hw const *)hw, port, 52, (int )hw->phy_addr | (int )reg); i = 0; goto ldv_48804; ldv_48803: tmp = xm_read16((struct skge_hw const *)hw, port, 0); if (((int )tmp & 2048) == 0) { goto ready; } else { } __const_udelay(4295UL); i = i + 1; ldv_48804: ; if (i <= 999) { goto ldv_48803; } else { } return (-5); ready: xm_write16((struct skge_hw const *)hw, port, 56, (int )val); i = 0; goto ldv_48807; ldv_48806: tmp___0 = xm_read16((struct skge_hw const *)hw, port, 0); if (((int )tmp___0 & 2048) == 0) { return (0); } else { } __const_udelay(4295UL); i = i + 1; ldv_48807: ; if (i <= 999) { goto ldv_48806; } else { } return (-110); } } static void genesis_init(struct skge_hw *hw ) { { skge_write32((struct skge_hw const *)hw, 368, 26562500U); skge_write8((struct skge_hw const *)hw, 376, 2); skge_write16((struct skge_hw const *)hw, 440, 2); skge_write8((struct skge_hw const *)hw, 432, 72); skge_write8((struct skge_hw const *)hw, 433, 72); skge_write8((struct skge_hw const *)hw, 434, 72); skge_write8((struct skge_hw const *)hw, 435, 72); skge_write8((struct skge_hw const *)hw, 448, 0); skge_write8((struct skge_hw const *)hw, 449, 0); skge_write8((struct skge_hw const *)hw, 450, 0); skge_write8((struct skge_hw const *)hw, 451, 0); skge_write16((struct skge_hw const *)hw, 496, 2); skge_write16((struct skge_hw const *)hw, 464, 65535); skge_write16((struct skge_hw const *)hw, 472, 65535); skge_write16((struct skge_hw const *)hw, 468, 65535); skge_write16((struct skge_hw const *)hw, 476, 65535); return; } } static void genesis_reset(struct skge_hw *hw , int port ) { u8 zero[8U] ; unsigned int tmp ; u32 reg ; { zero[0] = 0U; tmp = 1U; while (1) { if (tmp >= 8U) { break; } else { } zero[tmp] = (unsigned char)0; tmp = tmp + 1U; } skge_write8((struct skge_hw const *)hw, (port << 7) + 3852, 0); xm_write32((struct skge_hw const *)hw, port, 64, 4U); xm_write16((struct skge_hw const *)hw, port, 68, 65535); xm_write32((struct skge_hw const *)hw, port, 292, 0U); xm_write16((struct skge_hw const *)hw, port, 32, 0); xm_write16((struct skge_hw const *)hw, port, 48, 0); if ((unsigned int )hw->phy_type == 1U) { xm_write16((struct skge_hw const *)hw, port, 27, 65535); } else { } xm_outhash((struct skge_hw const *)hw, port, 272, (u8 const *)(& zero)); reg = xm_read32((struct skge_hw const *)hw, port, 292); xm_write32((struct skge_hw const *)hw, port, 292, reg | 2U); xm_write32((struct skge_hw const *)hw, port, 292, reg | 1U); return; } } static u16 const phy_pause_map[5U] = { (unsigned short)0, 0U, 2048U, 1024U, 3072U}; static u16 const fiber_pause_map[5U] = { (unsigned short)0, 0U, 256U, 128U, 384U}; static void bcom_check_link(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; u16 status ; u16 lpa ; u16 aux ; bool tmp___0 ; int tmp___1 ; { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; xm_phy_read(hw, port, 1); status = xm_phy_read(hw, port, 1); if (((int )status & 4) == 0) { xm_link_down(hw, port); return; } else { } if ((unsigned int )skge->autoneg == 1U) { if (((int )status & 32) == 0) { return; } else { } lpa = xm_phy_read(hw, port, 5); if (((int )lpa & 8192) != 0) { netdev_notice((struct net_device const *)dev, "remote fault\n"); return; } else { } aux = xm_phy_read(hw, port, 25); switch ((int )aux & 1792) { case 1792: skge->duplex = 1U; goto ldv_48830; case 1536: skge->duplex = 0U; goto ldv_48830; default: netdev_notice((struct net_device const *)dev, "duplex mismatch\n"); return; } ldv_48830: ; switch ((int )aux & 3) { case 3: skge->flow_status = 4; goto ldv_48834; case 2: skge->flow_status = 2; goto ldv_48834; case 1: skge->flow_status = 3; goto ldv_48834; default: skge->flow_status = 1; } ldv_48834: skge->speed = 1000U; } else { } tmp___0 = netif_carrier_ok((struct net_device const *)dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { genesis_link_up(skge); } else { } return; } } static void bcom_phy_init(struct skge_port *skge ) { struct skge_hw *hw ; int port ; int i ; u16 id1 ; u16 r ; u16 ext ; u16 ctl ; struct __anonstruct_A1hack_335 A1hack[12U] ; struct __anonstruct_C0hack_336 C0hack[6U] ; u16 adv ; { hw = skge->hw; port = skge->port; A1hack[0].reg = 24U; A1hack[0].val = 3104U; A1hack[1].reg = 23U; A1hack[1].val = 18U; A1hack[2].reg = 21U; A1hack[2].val = 4356U; A1hack[3].reg = 23U; A1hack[3].val = 19U; A1hack[4].reg = 21U; A1hack[4].val = 1028U; A1hack[5].reg = 23U; A1hack[5].val = 32774U; A1hack[6].reg = 21U; A1hack[6].val = 306U; A1hack[7].reg = 23U; A1hack[7].val = 32774U; A1hack[8].reg = 21U; A1hack[8].val = 562U; A1hack[9].reg = 23U; A1hack[9].val = 32781U; A1hack[10].reg = 21U; A1hack[10].val = 15U; A1hack[11].reg = 24U; A1hack[11].val = 1056U; C0hack[0].reg = 24U; C0hack[0].val = 3104U; C0hack[1].reg = 23U; C0hack[1].val = 18U; C0hack[2].reg = 21U; C0hack[2].val = 4612U; C0hack[3].reg = 23U; C0hack[3].val = 19U; C0hack[4].reg = 21U; C0hack[4].val = 2564U; C0hack[5].reg = 24U; C0hack[5].val = 1056U; id1 = xm_phy_read(hw, port, 3); r = xm_read16((struct skge_hw const *)hw, port, 0); r = (u16 )((unsigned int )r | 32U); xm_write16((struct skge_hw const *)hw, port, 0, (int )r); switch ((int )id1) { case 24644: i = 0; goto ldv_48857; ldv_48856: xm_phy_write(hw, port, (int )C0hack[i].reg, (int )C0hack[i].val); i = i + 1; ldv_48857: ; if ((unsigned int )i <= 5U) { goto ldv_48856; } else { } goto ldv_48859; case 24641: i = 0; goto ldv_48864; ldv_48863: xm_phy_write(hw, port, (int )A1hack[i].reg, (int )A1hack[i].val); i = i + 1; ldv_48864: ; if ((unsigned int )i <= 11U) { goto ldv_48863; } else { } goto ldv_48859; } ldv_48859: r = xm_phy_read(hw, port, 24); r = (u16 )((unsigned int )r | 32U); xm_phy_write(hw, port, 24, (int )r); xm_read16((struct skge_hw const *)hw, port, 72); ext = 32U; ctl = 64U; if ((unsigned int )skge->autoneg == 1U) { adv = 1024U; if ((skge->advertising & 16U) != 0U) { adv = (u16 )((unsigned int )adv | 256U); } else { } if ((skge->advertising & 32U) != 0U) { adv = (u16 )((unsigned int )adv | 512U); } else { } xm_phy_write(hw, port, 9, (int )adv); ctl = (u16 )((unsigned int )ctl | 4608U); } else { if ((unsigned int )skge->duplex == 1U) { ctl = (u16 )((unsigned int )ctl | 256U); } else { } xm_phy_write(hw, port, 9, 4096); } xm_phy_write(hw, port, 4, (int )((unsigned int )((unsigned short )phy_pause_map[(unsigned int )skge->flow_control]) | 1U)); if ((hw->dev[port])->mtu > 1500U) { xm_phy_write(hw, port, 24, 17408); ext = (u16 )((unsigned int )ext | 1U); } else { } xm_phy_write(hw, port, 16, (int )ext); xm_phy_write(hw, port, 0, (int )ctl); xm_phy_write(hw, port, 27, 48113); return; } } static void xm_phy_init(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 ctrl ; { hw = skge->hw; port = skge->port; ctrl = 0U; if ((unsigned int )skge->autoneg == 1U) { if ((skge->advertising & 16U) != 0U) { ctrl = (u16 )((unsigned int )ctrl | 64U); } else { } if ((skge->advertising & 32U) != 0U) { ctrl = (u16 )((unsigned int )ctrl | 32U); } else { } ctrl = (u16 )((int )((unsigned short )fiber_pause_map[(unsigned int )skge->flow_control]) | (int )ctrl); xm_phy_write(hw, port, 4, (int )ctrl); ctrl = 4608U; } else if ((unsigned int )skge->duplex == 1U) { ctrl = (u16 )((unsigned int )ctrl | 256U); } else { } xm_phy_write(hw, port, 0, (int )ctrl); ldv_mod_timer_38(& skge->link_timer, (unsigned long )jiffies + 250UL); return; } } static int xm_check_link(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u16 status ; u16 lpa ; u16 res ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; xm_phy_read(hw, port, 1); status = xm_phy_read(hw, port, 1); if (((int )status & 4) == 0) { xm_link_down(hw, port); return (0); } else { } if ((unsigned int )skge->autoneg == 1U) { if (((int )status & 32) == 0) { return (0); } else { } lpa = xm_phy_read(hw, port, 5); if (((int )lpa & 8192) != 0) { netdev_notice((struct net_device const *)dev, "remote fault\n"); return (0); } else { } res = xm_phy_read(hw, port, 16); switch ((int )res & 96) { case 32: skge->duplex = 1U; goto ldv_48883; case 64: skge->duplex = 0U; goto ldv_48883; default: netdev_notice((struct net_device const *)dev, "duplex mismatch\n"); return (0); } ldv_48883: ; if (((unsigned int )skge->flow_control == 3U || (unsigned int )skge->flow_control == 4U) && ((int )lpa & 128) != 0) { skge->flow_status = 4; } else if ((unsigned int )skge->flow_control == 4U && ((int )lpa & 384) == 256) { skge->flow_status = 2; } else if ((unsigned int )skge->flow_control == 2U && ((int )lpa & 384) == 384) { skge->flow_status = 3; } else { skge->flow_status = 1; } skge->speed = 1000U; } else { } tmp___0 = netif_carrier_ok((struct net_device const *)dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { genesis_link_up(skge); } else { } return (1); } } static void xm_link_timer(unsigned long arg ) { struct skge_port *skge ; struct net_device *dev ; struct skge_hw *hw ; int port ; int i ; unsigned long flags ; bool tmp ; int tmp___0 ; u16 tmp___1 ; u16 msk ; u16 tmp___2 ; unsigned long tmp___3 ; int tmp___4 ; { skge = (struct skge_port *)arg; dev = skge->netdev; hw = skge->hw; port = skge->port; tmp = netif_running((struct net_device const *)dev); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } ldv_spin_lock(); i = 0; goto ldv_48897; ldv_48896: tmp___1 = xm_read16((struct skge_hw const *)hw, port, 64); if ((int )tmp___1 & 1) { goto link_down; } else { } i = i + 1; ldv_48897: ; if (i <= 2) { goto ldv_48896; } else { } tmp___4 = xm_check_link(dev); if (tmp___4 != 0) { tmp___2 = xm_read16((struct skge_hw const *)hw, port, 68); msk = tmp___2; msk = (unsigned int )msk & 63487U; xm_write16((struct skge_hw const *)hw, port, 68, (int )msk); xm_read16((struct skge_hw const *)hw, port, 72); } else { link_down: tmp___3 = round_jiffies((unsigned long )jiffies + 250UL); ldv_mod_timer_39(& skge->link_timer, tmp___3); } spin_unlock_irqrestore(& hw->phy_lock, flags); return; } } static void genesis_mac_init(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; int jumbo ; int i ; u32 r ; u8 zero[6U] ; unsigned int tmp___0 ; u16 tmp___1 ; { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; jumbo = (hw->dev[port])->mtu > 1500U; zero[0] = 0U; tmp___0 = 1U; while (1) { if (tmp___0 >= 6U) { break; } else { } zero[tmp___0] = (unsigned char)0; tmp___0 = tmp___0 + 1U; } i = 0; goto ldv_48912; ldv_48911: skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 1); tmp___1 = skge_read16((struct skge_hw const *)hw, (port << 7) + 3352); if ((int )tmp___1 & 1) { goto reset_ok; } else { } __const_udelay(4295UL); i = i + 1; ldv_48912: ; if (i <= 9) { goto ldv_48911; } else { } netdev_warn((struct net_device const *)dev, "genesis reset failed\n"); reset_ok: skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 2); if ((unsigned int )hw->phy_type != 0U) { r = skge_read32((struct skge_hw const *)hw, 348); if (port == 0) { r = r | 65537U; } else { r = r | 262148U; } skge_write32((struct skge_hw const *)hw, 348, r); xm_write16((struct skge_hw const *)hw, port, 76, 1); } else { } switch ((int )hw->phy_type) { case 0: xm_phy_init(skge); goto ldv_48915; case 1: bcom_phy_init(skge); bcom_check_link(hw, port); } ldv_48915: xm_outaddr((struct skge_hw const *)hw, port, 264, (u8 const *)dev->dev_addr); i = 1; goto ldv_48918; ldv_48917: xm_outaddr((struct skge_hw const *)hw, port, (i << 3) + 128, (u8 const *)(& zero)); i = i + 1; ldv_48918: ; if (i <= 15) { goto ldv_48917; } else { } xm_write16((struct skge_hw const *)hw, port, 512, 3); xm_write16((struct skge_hw const *)hw, port, 512, 3); xm_write16((struct skge_hw const *)hw, port, 282, 1450); r = 272U; if (jumbo != 0) { r = r | 128U; } else { } if ((unsigned int )skge->duplex == 0U) { r = r | 1U; } else { } xm_write16((struct skge_hw const *)hw, port, 48, (int )((u16 )r)); xm_write16((struct skge_hw const *)hw, port, 32, 1); if ((unsigned int )hw->ports > 1U && jumbo != 0) { xm_write16((struct skge_hw const *)hw, port, 100, 1020); } else { xm_write16((struct skge_hw const *)hw, port, 100, 512); } xm_write32((struct skge_hw const *)hw, port, 292, 20352U); xm_write32((struct skge_hw const *)hw, port, 524, 6U); xm_write32((struct skge_hw const *)hw, port, 528, 6U); skge_write16((struct skge_hw const *)hw, 440, 2); skge_write8((struct skge_hw const *)hw, 432, 72); skge_write8((struct skge_hw const *)hw, 433, 72); skge_write8((struct skge_hw const *)hw, 434, 72); skge_write8((struct skge_hw const *)hw, 435, 72); skge_write8((struct skge_hw const *)hw, 448, 0); skge_write8((struct skge_hw const *)hw, 449, 0); skge_write8((struct skge_hw const *)hw, 450, 0); skge_write8((struct skge_hw const *)hw, 451, 0); skge_write8((struct skge_hw const *)hw, (port << 7) + 3100, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 2048); skge_write8((struct skge_hw const *)hw, (port << 7) + 3100, 8); skge_write8((struct skge_hw const *)hw, (port << 7) + 3356, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 10272); skge_write8((struct skge_hw const *)hw, (port << 7) + 3356, 8); if (jumbo != 0) { skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 32); } else { skge_write16((struct skge_hw const *)hw, 496, port == 0 ? 128 : 512); } return; } } static void genesis_stop(struct skge_port *skge ) { struct skge_hw *hw ; int port ; unsigned int retries ; u16 cmd ; u16 tmp ; u32 reg ; u32 tmp___0 ; u16 tmp___1 ; { hw = skge->hw; port = skge->port; retries = 1000U; cmd = xm_read16((struct skge_hw const *)hw, port, 0); cmd = (unsigned int )cmd & 65532U; xm_write16((struct skge_hw const *)hw, port, 0, (int )cmd); genesis_reset(hw, port); skge_write16((struct skge_hw const *)hw, 496, port == 0 ? 4096 : 8192); skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 2); ldv_48928: skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 1); tmp = skge_read16((struct skge_hw const *)hw, (port << 7) + 3352); if (((int )tmp & 1) == 0) { goto ldv_48927; } else { } retries = retries - 1U; if (retries != 0U) { goto ldv_48928; } else { } ldv_48927: ; if ((unsigned int )hw->phy_type != 0U) { tmp___0 = skge_read32((struct skge_hw const *)hw, 348); reg = tmp___0; if (port == 0) { reg = reg | 65536U; reg = reg & 4294967294U; } else { reg = reg | 262144U; reg = reg & 4294967291U; } skge_write32((struct skge_hw const *)hw, 348, reg); skge_read32((struct skge_hw const *)hw, 348); } else { } tmp___1 = xm_read16((struct skge_hw const *)hw, port, 0); xm_write16((struct skge_hw const *)hw, port, 0, (int )tmp___1 & 65532); xm_read16((struct skge_hw const *)hw, port, 0); return; } } static void genesis_get_stats(struct skge_port *skge , u64 *data ) { struct skge_hw *hw ; int port ; int i ; unsigned long timeout ; u16 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; { hw = skge->hw; port = skge->port; timeout = (unsigned long )jiffies + 250UL; xm_write16((struct skge_hw const *)hw, port, 512, 48); goto ldv_48946; ldv_48945: ; if ((long )(timeout - (unsigned long )jiffies) < 0L) { goto ldv_48944; } else { } __const_udelay(42950UL); ldv_48946: tmp = xm_read16((struct skge_hw const *)hw, port, 512); if (((int )tmp & 48) != 0) { goto ldv_48945; } else { } ldv_48944: tmp___0 = xm_read32((struct skge_hw const *)hw, port, 644); tmp___1 = xm_read32((struct skge_hw const *)hw, port, 648); *data = ((unsigned long long )tmp___0 << 32) | (unsigned long long )tmp___1; tmp___2 = xm_read32((struct skge_hw const *)hw, port, 772); tmp___3 = xm_read32((struct skge_hw const *)hw, port, 776); *(data + 1UL) = ((unsigned long long )tmp___2 << 32) | (unsigned long long )tmp___3; i = 2; goto ldv_48950; ldv_48949: tmp___4 = xm_read32((struct skge_hw const *)hw, port, (int )skge_stats[i].xmac_offset); *(data + (unsigned long )i) = (u64 )tmp___4; i = i + 1; ldv_48950: ; if ((unsigned int )i <= 20U) { goto ldv_48949; } else { } return; } } static void genesis_mac_intr(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; u16 status ; u16 tmp___0 ; { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = xm_read16((struct skge_hw const *)hw, port, 72); status = tmp___0; if ((skge->msg_enable & 512U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "mac interrupt status 0x%x\n", (int )status); } else { } if ((unsigned int )hw->phy_type == 0U && ((int )status & 2048) != 0) { xm_link_down(hw, port); ldv_mod_timer_40(& skge->link_timer, (unsigned long )jiffies + 1UL); } else { } if (((int )status & 4) != 0) { xm_write32((struct skge_hw const *)hw, port, 292, 2U); dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; } else { } return; } } static void genesis_link_up(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 cmd ; u16 msk ; u32 mode ; u16 tmp ; { hw = skge->hw; port = skge->port; cmd = xm_read16((struct skge_hw const *)hw, port, 0); if ((unsigned int )skge->flow_status == 1U || (unsigned int )skge->flow_status == 3U) { cmd = (u16 )((unsigned int )cmd | 1024U); } else { cmd = (unsigned int )cmd & 64511U; } xm_write16((struct skge_hw const *)hw, port, 0, (int )cmd); mode = xm_read32((struct skge_hw const *)hw, port, 292); if ((unsigned int )skge->flow_status == 4U || (unsigned int )skge->flow_status == 3U) { xm_write16((struct skge_hw const *)hw, port, 118, 65535); mode = mode | 33947648U; skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 128); } else { mode = mode & 4261019647U; skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 64); } xm_write32((struct skge_hw const *)hw, port, 292, mode); msk = xm_read16((struct skge_hw const *)hw, port, 68); msk = (unsigned int )msk & 65531U; xm_write16((struct skge_hw const *)hw, port, 68, (int )msk); xm_read16((struct skge_hw const *)hw, port, 72); cmd = xm_read16((struct skge_hw const *)hw, port, 0); if ((unsigned int )hw->phy_type != 0U && (unsigned int )skge->duplex == 1U) { cmd = (u16 )((unsigned int )cmd | 16U); } else { } if ((unsigned int )hw->phy_type == 1U) { tmp = xm_phy_read(hw, port, 24); xm_phy_write(hw, port, 24, (int )tmp & 65503); xm_phy_write(hw, port, 27, 48113); } else { } xm_write16((struct skge_hw const *)hw, port, 0, (int )((unsigned int )cmd | 3U)); skge_link_up(skge); return; } } __inline static void bcom_phy_intr(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 isrc ; u16 ctrl ; u16 tmp ; { hw = skge->hw; port = skge->port; isrc = xm_phy_read(hw, port, 26); if ((skge->msg_enable & 512U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "phy interrupt status 0x%x\n", (int )isrc); } else { } if (((int )isrc & 16384) != 0) { printk("\vskge: %s: uncorrectable pair swap error\n", (char *)(& (hw->dev[port])->name)); } else { } if (((int )isrc & 512) != 0) { tmp = xm_phy_read(hw, port, 0); ctrl = tmp; xm_phy_write(hw, port, 0, (int )((unsigned int )ctrl | 16384U)); xm_phy_write(hw, port, 0, (int )ctrl & 49151); } else { } if (((int )isrc & 1026) != 0) { bcom_check_link(hw, port); } else { } return; } } static int gm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) { int i ; u16 tmp ; { gma_write16((struct skge_hw const *)hw, port, 132, (int )val); gma_write16((struct skge_hw const *)hw, port, 128, (int )((u16 )((int )((short )((int )hw->phy_addr << 11)) | ((int )((short )((int )reg << 6)) & 1984)))); i = 0; goto ldv_48982; ldv_48981: __const_udelay(4295UL); tmp = gma_read16((struct skge_hw const *)hw, port, 128); if (((int )tmp & 8) == 0) { return (0); } else { } i = i + 1; ldv_48982: ; if (i <= 999) { goto ldv_48981; } else { } printk("\fskge: %s: phy write timeout\n", (char *)(& (hw->dev[port])->name)); return (-5); } } static int __gm_phy_read(struct skge_hw *hw , int port , u16 reg , u16 *val ) { int i ; u16 tmp ; { gma_write16((struct skge_hw const *)hw, port, 128, (int )((u16 )(((int )((short )((int )hw->phy_addr << 11)) | ((int )((short )((int )reg << 6)) & 1984)) | 32))); i = 0; goto ldv_48993; ldv_48992: __const_udelay(4295UL); tmp = gma_read16((struct skge_hw const *)hw, port, 128); if (((int )tmp & 16) != 0) { goto ready; } else { } i = i + 1; ldv_48993: ; if (i <= 999) { goto ldv_48992; } else { } return (-110); ready: *val = gma_read16((struct skge_hw const *)hw, port, 132); return (0); } } static u16 gm_phy_read(struct skge_hw *hw , int port , u16 reg ) { u16 v ; int tmp ; { v = 0U; tmp = __gm_phy_read(hw, port, (int )reg, & v); if (tmp != 0) { printk("\fskge: %s: phy read timeout\n", (char *)(& (hw->dev[port])->name)); } else { } return (v); } } static void yukon_init(struct skge_hw *hw , int port ) { struct skge_port *skge ; void *tmp ; u16 ctrl ; u16 ct1000 ; u16 adv ; u16 ectrl ; u16 tmp___0 ; { tmp = netdev_priv((struct net_device const *)hw->dev[port]); skge = (struct skge_port *)tmp; if ((unsigned int )skge->autoneg == 1U) { tmp___0 = gm_phy_read(hw, port, 20); ectrl = tmp___0; ectrl = (unsigned int )ectrl & 61583U; ectrl = (u16 )((unsigned int )ectrl | 112U); ectrl = (u16 )((unsigned int )ectrl | 256U); gm_phy_write(hw, port, 20, (int )ectrl); } else { } ctrl = gm_phy_read(hw, port, 0); if ((unsigned int )skge->autoneg == 0U) { ctrl = (unsigned int )ctrl & 61439U; } else { } ctrl = (u16 )((unsigned int )ctrl | 32768U); gm_phy_write(hw, port, 0, (int )ctrl); ctrl = 0U; ct1000 = 0U; adv = 1U; if ((unsigned int )skge->autoneg == 1U) { if ((unsigned int )hw->copper != 0U) { if ((skge->advertising & 32U) != 0U) { ct1000 = (u16 )((unsigned int )ct1000 | 512U); } else { } if ((skge->advertising & 16U) != 0U) { ct1000 = (u16 )((unsigned int )ct1000 | 256U); } else { } if ((skge->advertising & 8U) != 0U) { adv = (u16 )((unsigned int )adv | 256U); } else { } if ((skge->advertising & 4U) != 0U) { adv = (u16 )((unsigned int )adv | 128U); } else { } if ((skge->advertising & 2U) != 0U) { adv = (u16 )((unsigned int )adv | 64U); } else { } if ((int )skge->advertising & 1) { adv = (u16 )((unsigned int )adv | 32U); } else { } adv = (u16 )((int )((unsigned short )phy_pause_map[(unsigned int )skge->flow_control]) | (int )adv); } else { if ((skge->advertising & 32U) != 0U) { adv = (u16 )((unsigned int )adv | 32U); } else { } if ((skge->advertising & 16U) != 0U) { adv = (u16 )((unsigned int )adv | 64U); } else { } adv = (u16 )((int )((unsigned short )fiber_pause_map[(unsigned int )skge->flow_control]) | (int )adv); } ctrl = (u16 )((unsigned int )ctrl | 4608U); } else { ct1000 = 4096U; if ((unsigned int )skge->duplex == 1U) { ctrl = (u16 )((unsigned int )ctrl | 256U); } else { } switch ((int )skge->speed) { case 1000: ctrl = (u16 )((unsigned int )ctrl | 64U); goto ldv_49011; case 100: ctrl = (u16 )((unsigned int )ctrl | 8192U); goto ldv_49011; } ldv_49011: ctrl = (u16 )((unsigned int )ctrl | 32768U); } gm_phy_write(hw, port, 9, (int )ct1000); gm_phy_write(hw, port, 4, (int )adv); gm_phy_write(hw, port, 0, (int )ctrl); if ((unsigned int )skge->autoneg == 1U) { gm_phy_write(hw, port, 18, 34816); } else { gm_phy_write(hw, port, 18, 50304); } return; } } static void yukon_reset(struct skge_hw *hw , int port ) { u16 tmp ; { gm_phy_write(hw, port, 18, 0); gma_write16((struct skge_hw const *)hw, port, 52, 0); gma_write16((struct skge_hw const *)hw, port, 56, 0); gma_write16((struct skge_hw const *)hw, port, 60, 0); gma_write16((struct skge_hw const *)hw, port, 64, 0); tmp = gma_read16((struct skge_hw const *)hw, port, 12); gma_write16((struct skge_hw const *)hw, port, 12, (int )((unsigned int )tmp | 49152U)); return; } } static int is_yukon_lite_a0(struct skge_hw *hw ) { u32 reg ; int ret ; u8 tmp ; { if ((unsigned int )hw->chip_id != 176U) { return (0); } else { } reg = skge_read32((struct skge_hw const *)hw, 288); skge_write8((struct skge_hw const *)hw, 291, 255); tmp = skge_read8((struct skge_hw const *)hw, 291); ret = (unsigned int )tmp != 0U; skge_write32((struct skge_hw const *)hw, 288, reg); return (ret); } } static void yukon_mac_init(struct skge_hw *hw , int port ) { struct skge_port *skge ; void *tmp ; int i ; u32 reg ; u8 const *addr ; u16 tmp___0 ; u16 tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)hw->dev[port]); skge = (struct skge_port *)tmp; addr = (u8 const *)(hw->dev[port])->dev_addr; if ((unsigned int )hw->chip_id == 177U && (unsigned int )hw->chip_rev > 6U) { reg = skge_read32((struct skge_hw const *)hw, 348); reg = reg | 33554944U; skge_write32((struct skge_hw const *)hw, 348, reg); } else { } skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, 1U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 1U); if ((unsigned int )hw->chip_id == 177U && (unsigned int )hw->chip_rev > 6U) { reg = skge_read32((struct skge_hw const *)hw, 348); reg = reg | 33554432U; reg = reg & 4294966783U; skge_write32((struct skge_hw const *)hw, 348, reg); } else { } reg = 185458688U; reg = ((unsigned int )hw->copper != 0U ? 15728640U : 7340032U) | reg; skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, reg | 1U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, reg | 2U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 10U); if ((unsigned int )skge->autoneg == 0U) { reg = 7U; tmp___0 = gma_read16((struct skge_hw const *)hw, port, 4); gma_write16((struct skge_hw const *)hw, port, 4, (int )tmp___0 | (int )((u16 )reg)); switch ((int )skge->speed) { case 1000: reg = reg & 4294967287U; reg = reg | 136U; goto ldv_49031; case 100: reg = reg & 4294967159U; reg = reg | 8U; goto ldv_49031; case 10: reg = reg & 4294967159U; goto ldv_49031; } ldv_49031: ; if ((unsigned int )skge->duplex == 1U) { reg = reg | 32U; } else { } } else { reg = 168U; } switch ((unsigned int )skge->flow_control) { case 1U: skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 4U); reg = reg | 8210U; goto ldv_49035; case 2U: reg = reg | 18U; goto ldv_49035; case 3U: ; case 4U: ; goto ldv_49035; } ldv_49035: gma_write16((struct skge_hw const *)hw, port, 4, (int )((u16 )reg)); skge_read16((struct skge_hw const *)hw, (port << 7) + 3848); yukon_init(hw, port); tmp___1 = gma_read16((struct skge_hw const *)hw, port, 136); reg = (u32 )tmp___1; gma_write16((struct skge_hw const *)hw, port, 136, (int )((unsigned int )((u16 )reg) | 32U)); i = 0; goto ldv_49040; ldv_49039: gma_read16((struct skge_hw const *)hw, port, (i + 32) * 8); i = i + 1; ldv_49040: ; if (i <= 43) { goto ldv_49039; } else { } gma_write16((struct skge_hw const *)hw, port, 136, (int )((u16 )reg)); gma_write16((struct skge_hw const *)hw, port, 8, 4096); gma_write16((struct skge_hw const *)hw, port, 12, 57344); gma_write16((struct skge_hw const *)hw, port, 16, 65535); gma_write16((struct skge_hw const *)hw, port, 20, 55232); reg = 8734U; if ((hw->dev[port])->mtu > 1500U) { reg = reg | 256U; } else { } gma_write16((struct skge_hw const *)hw, port, 24, (int )((u16 )reg)); gma_set_addr(hw, port, 28, addr); gma_set_addr(hw, port, 40, addr); gma_write16((struct skge_hw const *)hw, port, 80, 0); gma_write16((struct skge_hw const *)hw, port, 84, 0); gma_write16((struct skge_hw const *)hw, port, 88, 0); skge_write16((struct skge_hw const *)hw, (port << 7) + 3148, 6243); reg = 136U; tmp___2 = is_yukon_lite_a0(hw); if (tmp___2 != 0) { reg = reg & 4294967167U; } else { } skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3144, (int )((u16 )reg)); skge_write16((struct skge_hw const *)hw, (port << 7) + 3152, 11); skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3400, 8); return; } } static void yukon_suspend(struct skge_hw *hw , int port ) { u16 ctrl ; { ctrl = gm_phy_read(hw, port, 16); ctrl = (u16 )((unsigned int )ctrl | 2U); gm_phy_write(hw, port, 16, (int )ctrl); ctrl = gm_phy_read(hw, port, 0); ctrl = (u16 )((unsigned int )ctrl | 32768U); gm_phy_write(hw, port, 0, (int )ctrl); ctrl = gm_phy_read(hw, port, 0); ctrl = (u16 )((unsigned int )ctrl | 2048U); gm_phy_write(hw, port, 0, (int )ctrl); return; } } static void yukon_stop(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 tmp ; { hw = skge->hw; port = skge->port; skge_write8((struct skge_hw const *)hw, (port << 7) + 3852, 0); yukon_reset(hw, port); tmp = gma_read16((struct skge_hw const *)hw, port, 4); gma_write16((struct skge_hw const *)hw, port, 4, (int )tmp & 59391); gma_read16((struct skge_hw const *)hw, port, 4); yukon_suspend(hw, port); skge_write8((struct skge_hw const *)hw, (port << 7) + 3844, 1); skge_write8((struct skge_hw const *)hw, (port << 7) + 3840, 1); return; } } static void yukon_get_stats(struct skge_port *skge , u64 *data ) { struct skge_hw *hw ; int port ; int i ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; { hw = skge->hw; port = skge->port; tmp = gma_read32((struct skge_hw const *)hw, port, 488); tmp___0 = gma_read32((struct skge_hw const *)hw, port, 480); *data = ((unsigned long long )tmp << 32) | (unsigned long long )tmp___0; tmp___1 = gma_read32((struct skge_hw const *)hw, port, 312); tmp___2 = gma_read32((struct skge_hw const *)hw, port, 304); *(data + 1UL) = ((unsigned long long )tmp___1 << 32) | (unsigned long long )tmp___2; i = 2; goto ldv_49062; ldv_49061: tmp___3 = gma_read32((struct skge_hw const *)hw, port, (int )skge_stats[i].gma_offset); *(data + (unsigned long )i) = (u64 )tmp___3; i = i + 1; ldv_49062: ; if ((unsigned int )i <= 20U) { goto ldv_49061; } else { } return; } } static void yukon_mac_intr(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; u8 status ; u8 tmp___0 ; { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = skge_read8((struct skge_hw const *)hw, (port << 7) + 3848); status = tmp___0; if ((skge->msg_enable & 512U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "mac interrupt status 0x%x\n", (int )status); } else { } if (((int )status & 2) != 0) { dev->stats.rx_fifo_errors = dev->stats.rx_fifo_errors + 1UL; skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 32); } else { } if (((int )status & 8) != 0) { dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, 64); } else { } return; } } static u16 yukon_speed(struct skge_hw const *hw , u16 aux ) { { switch ((int )aux & 49152) { case 32768: ; return (1000U); case 16384: ; return (100U); default: ; return (10U); } } } static void yukon_link_up(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 reg ; { hw = skge->hw; port = skge->port; skge_write8((struct skge_hw const *)hw, (port << 7) + 3852, 10); reg = gma_read16((struct skge_hw const *)hw, port, 4); if ((unsigned int )skge->duplex == 1U || (unsigned int )skge->autoneg == 1U) { reg = (u16 )((unsigned int )reg | 32U); } else { } reg = (u16 )((unsigned int )reg | 6144U); gma_write16((struct skge_hw const *)hw, port, 4, (int )reg); gm_phy_write(hw, port, 18, 50304); skge_link_up(skge); return; } } static void yukon_link_down(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 ctrl ; { hw = skge->hw; port = skge->port; ctrl = gma_read16((struct skge_hw const *)hw, port, 4); ctrl = (unsigned int )ctrl & 59391U; gma_write16((struct skge_hw const *)hw, port, 4, (int )ctrl); if ((unsigned int )skge->flow_status == 2U) { ctrl = gm_phy_read(hw, port, 4); ctrl = (u16 )((unsigned int )ctrl | 2048U); gm_phy_write(hw, port, 4, (int )ctrl); } else { } skge_link_down(skge); yukon_init(hw, port); return; } } static void yukon_phy_intr(struct skge_port *skge ) { struct skge_hw *hw ; int port ; char const *reason ; u16 istatus ; u16 phystat ; u16 tmp ; u16 tmp___0 ; { hw = skge->hw; port = skge->port; reason = (char const *)0; istatus = gm_phy_read(hw, port, 19); phystat = gm_phy_read(hw, port, 17); if ((skge->msg_enable & 512U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "phy interrupt status 0x%x 0x%x\n", (int )istatus, (int )phystat); } else { } if (((int )istatus & 2048) != 0) { tmp = gm_phy_read(hw, port, 5); if (((int )tmp & 8192) != 0) { reason = "remote fault"; goto failed; } else { } tmp___0 = gm_phy_read(hw, port, 10); if ((int )((short )tmp___0) < 0) { reason = "master/slave fault"; goto failed; } else { } if (((int )phystat & 2048) == 0) { reason = "speed/duplex"; goto failed; } else { } skge->duplex = ((int )phystat & 8192) != 0; skge->speed = yukon_speed((struct skge_hw const *)hw, (int )phystat); switch ((int )phystat & 12) { case 12: skge->flow_status = 4; goto ldv_49100; case 4: skge->flow_status = 2; goto ldv_49100; case 8: skge->flow_status = 3; goto ldv_49100; default: skge->flow_status = 1; } ldv_49100: ; if ((unsigned int )skge->flow_status == 1U || ((unsigned int )skge->speed <= 999U && (unsigned int )skge->duplex == 0U)) { skge_write8((struct skge_hw const *)hw, (port << 7) + 3840, 4); } else { skge_write8((struct skge_hw const *)hw, (port << 7) + 3840, 8); } yukon_link_up(skge); return; } else { } if (((int )istatus & 16384) != 0) { skge->speed = yukon_speed((struct skge_hw const *)hw, (int )phystat); } else { } if (((int )istatus & 8192) != 0) { skge->duplex = ((int )phystat & 8192) != 0; } else { } if (((int )istatus & 1024) != 0) { if (((int )phystat & 1024) != 0) { yukon_link_up(skge); } else { yukon_link_down(skge); } } else { } return; failed: printk("\vskge: %s: autonegotiation failed (%s)\n", (char *)(& (skge->netdev)->name), reason); return; } } static void skge_phy_reset(struct skge_port *skge ) { struct skge_hw *hw ; int port ; struct net_device *dev ; bool tmp ; { hw = skge->hw; port = skge->port; dev = hw->dev[port]; netif_stop_queue(skge->netdev); netif_carrier_off(skge->netdev); spin_lock_bh(& hw->phy_lock); tmp = is_genesis((struct skge_hw const *)hw); if ((int )tmp) { genesis_reset(hw, port); genesis_mac_init(hw, port); } else { yukon_reset(hw, port); yukon_init(hw, port); } spin_unlock_bh(& hw->phy_lock); skge_set_multicast(dev); return; } } static int skge_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp ; struct skge_port *skge ; void *tmp___0 ; struct skge_hw *hw ; int err ; bool tmp___1 ; int tmp___2 ; u16 val ; bool tmp___3 ; bool tmp___4 ; { tmp = if_mii(ifr); data = tmp; tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; hw = skge->hw; err = -95; tmp___1 = netif_running((struct net_device const *)dev); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-19); } else { } switch (cmd) { case 35143: data->phy_id = hw->phy_addr; case 35144: val = 0U; spin_lock_bh(& hw->phy_lock); tmp___3 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___3) { err = __xm_phy_read(hw, skge->port, (int )data->reg_num & 31, & val); } else { err = __gm_phy_read(hw, skge->port, (int )data->reg_num & 31, & val); } spin_unlock_bh(& hw->phy_lock); data->val_out = val; goto ldv_49122; case 35145: spin_lock_bh(& hw->phy_lock); tmp___4 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___4) { err = xm_phy_write(hw, skge->port, (int )data->reg_num & 31, (int )data->val_in); } else { err = gm_phy_write(hw, skge->port, (int )data->reg_num & 31, (int )data->val_in); } spin_unlock_bh(& hw->phy_lock); goto ldv_49122; } ldv_49122: ; return (err); } } static void skge_ramset(struct skge_hw *hw , u16 q , u32 start , size_t len ) { u32 end ; { start = start / 8U; len = len / 8UL; end = ((u32 )len + start) - 1U; skge_write8((struct skge_hw const *)hw, (int )q + 2088, 2); skge_write32((struct skge_hw const *)hw, (int )q + 2048, start); skge_write32((struct skge_hw const *)hw, (int )q + 2056, start); skge_write32((struct skge_hw const *)hw, (int )q + 2060, start); skge_write32((struct skge_hw const *)hw, (int )q + 2052, end); if ((unsigned int )q == 0U || (unsigned int )q == 128U) { skge_write32((struct skge_hw const *)hw, (int )q + 2064, (u32 )((len * 2UL) / 3UL) + start); skge_write32((struct skge_hw const *)hw, (int )q + 2068, (u32 )(len / 3UL) + start); } else { skge_write8((struct skge_hw const *)hw, (int )q + 2088, 32); } skge_write8((struct skge_hw const *)hw, (int )q + 2088, 8); return; } } static void skge_qset(struct skge_port *skge , u16 q , struct skge_element const *e ) { struct skge_hw *hw ; u32 watermark ; u64 base ; u16 tmp ; { hw = skge->hw; watermark = 1536U; base = skge->dma + (unsigned long long )((long )e->desc - (long )skge->mem); tmp = skge_read16((struct skge_hw const *)hw, 4); if (((int )tmp & 768) == 0) { watermark = watermark / 2U; } else { } skge_write32((struct skge_hw const *)hw, (int )q + 1076, 2796032U); skge_write32((struct skge_hw const *)hw, (int )q + 1080, watermark); skge_write32((struct skge_hw const *)hw, (int )q + 1060, (unsigned int )(base >> 32)); skge_write32((struct skge_hw const *)hw, (int )q + 1056, (unsigned int )base); return; } } static int skge_up(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u32 chunk ; u32 ram_addr ; size_t rx_size ; size_t tx_size ; int err ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; long tmp___4 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; tmp___0 = is_valid_ether_addr((u8 const *)dev->dev_addr); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } if ((skge->msg_enable & 32U) != 0U) { netdev_info((struct net_device const *)skge->netdev, "enabling interface\n"); } else { } if (dev->mtu > 1536U) { skge->rx_buf_size = dev->mtu + 14U; } else { skge->rx_buf_size = 1536U; } rx_size = skge->rx_ring.count * 32UL; tx_size = skge->tx_ring.count * 32UL; skge->mem_size = tx_size + rx_size; skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, & skge->dma); if ((unsigned long )skge->mem == (unsigned long )((void *)0)) { return (-12); } else { } tmp___2 = ldv__builtin_expect((skge->dma & 7ULL) != 0ULL, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10526/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/marvell/skge.c"), "i" (2552), "i" (12UL)); ldv_49150: ; goto ldv_49150; } else { } if ((unsigned int )(skge->dma >> 32ULL) != (unsigned int )((skge->dma + (unsigned long long )skge->mem_size) >> 32ULL)) { dev_err((struct device const *)(& (hw->pdev)->dev), "pci_alloc_consistent region crosses 4G boundary\n"); err = -22; goto free_pci_mem; } else { } memset(skge->mem, 0, skge->mem_size); err = skge_ring_alloc(& skge->rx_ring, skge->mem, (u32 )skge->dma); if (err != 0) { goto free_pci_mem; } else { } err = skge_rx_fill(dev); if (err != 0) { goto free_rx_ring; } else { } err = skge_ring_alloc(& skge->tx_ring, skge->mem + rx_size, (u32 )skge->dma + (u32 )rx_size); if (err != 0) { goto free_rx_ring; } else { } if ((unsigned int )hw->ports == 1U) { err = ldv_request_irq_41((hw->pdev)->irq, & skge_intr, 128UL, (char const *)(& dev->name), (void *)hw); if (err != 0) { netdev_err((struct net_device const *)dev, "Unable to allocate interrupt %d error: %d\n", (hw->pdev)->irq, err); goto free_tx_ring; } else { } } else { } netif_carrier_off(dev); spin_lock_bh(& hw->phy_lock); tmp___3 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___3) { genesis_mac_init(hw, port); } else { yukon_mac_init(hw, port); } spin_unlock_bh(& hw->phy_lock); chunk = (hw->ram_size - hw->ram_offset) / (u32 )((int )hw->ports * 2); ram_addr = hw->ram_offset + (chunk * (u32 )port) * 2U; skge_ramset(hw, (int )((u16 )rxqaddr[port]), ram_addr, (size_t )chunk); skge_qset(skge, (int )((u16 )rxqaddr[port]), (struct skge_element const *)skge->rx_ring.to_clean); tmp___4 = ldv__builtin_expect((unsigned long )skge->tx_ring.to_use != (unsigned long )skge->tx_ring.to_clean, 0L); if (tmp___4 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10526/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/marvell/skge.c"), "i" (2601), "i" (12UL)); ldv_49154: ; goto ldv_49154; } else { } skge_ramset(hw, (int )((u16 )txqaddr[port]), ram_addr + chunk, (size_t )chunk); skge_qset(skge, (int )((u16 )txqaddr[port]), (struct skge_element const *)skge->tx_ring.to_use); __asm__ volatile ("sfence": : : "memory"); skge_write8((struct skge_hw const *)hw, (int )rxqaddr[port] + 1076, 18); skge_led(skge, 1); spin_lock_irq(& hw->hw_lock); hw->intr_mask = hw->intr_mask | (u32 )portmask[port]; skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); spin_unlock_irq(& hw->hw_lock); napi_enable(& skge->napi); skge_set_multicast(dev); return (0); free_tx_ring: kfree((void const *)skge->tx_ring.start); free_rx_ring: skge_rx_clean(skge); kfree((void const *)skge->rx_ring.start); free_pci_mem: pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); skge->mem = (void *)0; return (err); } } static void skge_rx_stop(struct skge_hw *hw , int port ) { { skge_write8((struct skge_hw const *)hw, (int )rxqaddr[port] + 1076, 32); skge_write32((struct skge_hw const *)hw, port != 0 ? 2216 : 2088, 5U); skge_write32((struct skge_hw const *)hw, (int )rxqaddr[port] + 1076, 1398016U); return; } } static int skge_down(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; if ((unsigned long )skge->mem == (unsigned long )((void *)0)) { return (0); } else { } if ((skge->msg_enable & 16U) != 0U) { netdev_info((struct net_device const *)skge->netdev, "disabling interface\n"); } else { } netif_tx_disable(dev); tmp___0 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___0 && (unsigned int )hw->phy_type == 0U) { ldv_del_timer_sync_42(& skge->link_timer); } else { } napi_disable(& skge->napi); netif_carrier_off(dev); spin_lock_irq(& hw->hw_lock); hw->intr_mask = hw->intr_mask & (u32 )(~ portmask[port]); skge_write32((struct skge_hw const *)hw, 12, (unsigned int )hw->ports != 1U ? hw->intr_mask : 0U); skge_read32((struct skge_hw const *)hw, 12); spin_unlock_irq(& hw->hw_lock); if ((unsigned int )hw->ports == 1U) { ldv_free_irq_43((hw->pdev)->irq, (void *)hw); } else { } skge_write8((struct skge_hw const *)skge->hw, (skge->port << 7) + 3132, 1); tmp___1 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___1) { genesis_stop(skge); } else { yukon_stop(skge); } skge_write8((struct skge_hw const *)hw, (int )txqaddr[port] + 1076, 32); skge_write32((struct skge_hw const *)hw, (int )txqaddr[port] + 2088, 5U); skge_write8((struct skge_hw const *)hw, (port << 7) + 528, 84); skge_write32((struct skge_hw const *)hw, (port << 7) + 512, 0U); skge_write32((struct skge_hw const *)hw, (port << 7) + 520, 0U); skge_write32((struct skge_hw const *)hw, (int )txqaddr[port] + 1076, 1398016U); skge_write32((struct skge_hw const *)hw, (int )txqaddr[port] + 2088, 1U); skge_write8((struct skge_hw const *)hw, port == 0 ? 2728 : 2984, 1); skge_rx_stop(hw, port); tmp___2 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___2) { skge_write8((struct skge_hw const *)hw, (port << 7) + 3356, 1); skge_write8((struct skge_hw const *)hw, (port << 7) + 3100, 1); } else { skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 1); skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, 1); } skge_led(skge, 0); netif_tx_lock_bh(dev); skge_tx_clean(dev); netif_tx_unlock_bh(dev); skge_rx_clean(skge); kfree((void const *)skge->rx_ring.start); kfree((void const *)skge->tx_ring.start); pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); skge->mem = (void *)0; return (0); } } __inline static int skge_avail(struct skge_ring const *ring ) { { __asm__ volatile ("mfence": : : "memory"); return ((int )((((unsigned long )ring->to_clean <= (unsigned long )ring->to_use ? (unsigned int )ring->count : 0U) + (unsigned int )(((long )ring->to_clean - (long )ring->to_use) / 40L)) - 1U)); } } static netdev_tx_t skge_xmit_frame(struct sk_buff *skb , struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; struct skge_element *e ; struct skge_tx_desc *td ; int i ; u32 control ; u32 len ; dma_addr_t map ; int tmp___0 ; int tmp___1 ; unsigned char *tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int offset ; int tmp___6 ; struct iphdr *tmp___7 ; struct skge_tx_desc *tf ; skb_frag_t const *frag ; unsigned char *tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; long tmp___11 ; unsigned int tmp___12 ; unsigned char *tmp___13 ; unsigned char *tmp___14 ; struct _ddebug descriptor ; long tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; tmp___0 = skb_padto(skb, 60U); if (tmp___0 != 0) { return (0); } else { } tmp___1 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); tmp___2 = skb_end_pointer((struct sk_buff const *)skb); tmp___3 = ldv__builtin_expect(tmp___1 < (int )((struct skb_shared_info *)tmp___2)->nr_frags + 1, 0L); if (tmp___3 != 0L) { return (16); } else { } e = skge->tx_ring.to_use; td = (struct skge_tx_desc *)e->desc; tmp___4 = ldv__builtin_expect((int )td->control < 0, 0L); if (tmp___4 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10526/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/marvell/skge.c"), "i" (2749), "i" (12UL)); ldv_49180: ; goto ldv_49180; } else { } e->skb = skb; len = skb_headlen((struct sk_buff const *)skb); map = pci_map_single(hw->pdev, (void *)skb->data, (size_t )len, 1); tmp___5 = pci_dma_mapping_error(hw->pdev, map); if (tmp___5 != 0) { goto mapping_error; } else { } e->mapaddr = map; e->maplen = len; td->dma_lo = (unsigned int )map; td->dma_hi = (unsigned int )(map >> 32ULL); if ((unsigned int )*((unsigned char *)skb + 145UL) == 6U) { tmp___6 = skb_checksum_start_offset((struct sk_buff const *)skb); offset = tmp___6; tmp___7 = ipip_hdr((struct sk_buff const *)skb); if (((unsigned int )tmp___7->protocol == 17U && (unsigned int )hw->chip_rev == 0U) && (unsigned int )hw->chip_id == 176U) { control = 5636096U; } else { control = 5701632U; } td->csum_offs = 0U; td->csum_start = (u16 )offset; td->csum_write = (int )skb->__annonCompField81.__annonCompField80.csum_offset + (int )((u16 )offset); } else { control = 5570560U; } tmp___14 = skb_end_pointer((struct sk_buff const *)skb); if ((unsigned int )((struct skb_shared_info *)tmp___14)->nr_frags == 0U) { control = control | 671088640U; } else { tf = td; control = control | 67108864U; i = 0; goto ldv_49188; ldv_49187: tmp___8 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___8)->frags) + (unsigned long )i; tmp___9 = skb_frag_size(frag); map = skb_frag_dma_map(& (hw->pdev)->dev, frag, 0UL, (size_t )tmp___9, 1); tmp___10 = dma_mapping_error(& (hw->pdev)->dev, map); if (tmp___10 != 0) { goto mapping_unwind; } else { } e = e->next; e->skb = skb; tf = (struct skge_tx_desc *)e->desc; tmp___11 = ldv__builtin_expect((int )tf->control < 0, 0L); if (tmp___11 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10526/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/marvell/skge.c"), "i" (2797), "i" (12UL)); ldv_49186: ; goto ldv_49186; } else { } tf->dma_lo = (unsigned int )map; tf->dma_hi = (unsigned int )(map >> 32ULL); e->mapaddr = map; e->maplen = skb_frag_size(frag); tmp___12 = skb_frag_size(frag); tf->control = (tmp___12 | control) | 2164260864U; i = i + 1; ldv_49188: tmp___13 = skb_end_pointer((struct sk_buff const *)skb); if ((int )((struct skb_shared_info *)tmp___13)->nr_frags > i) { goto ldv_49187; } else { } tf->control = tf->control | 671088640U; } __asm__ volatile ("sfence": : : "memory"); td->control = (control | len) | 3238002688U; __asm__ volatile ("sfence": : : "memory"); netdev_sent_queue(dev, skb->len); skge_write8((struct skge_hw const *)hw, (int )txqaddr[skge->port] + 1076, 16); if ((skge->msg_enable & 256U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "tx queued, slot %td, len %d\n", ((long )e - (long )skge->tx_ring.start) / 40L, skb->len); } else { } skge->tx_ring.to_use = e->next; __asm__ volatile ("": : : "memory"); tmp___16 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); if ((unsigned int )tmp___16 <= 18U) { descriptor.modname = "skge"; descriptor.function = "skge_xmit_frame"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10526/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/marvell/skge.c"; descriptor.format = "transmit queue full\n"; descriptor.lineno = 2825U; descriptor.flags = 0U; tmp___15 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___15 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "transmit queue full\n"); } else { } netif_stop_queue(dev); } else { } return (0); mapping_unwind: e = skge->tx_ring.to_use; pci_unmap_single(hw->pdev, e->mapaddr, (size_t )e->maplen, 1); goto ldv_49193; ldv_49192: e = e->next; pci_unmap_page(hw->pdev, e->mapaddr, (size_t )e->maplen, 1); ldv_49193: tmp___17 = i; i = i - 1; if (tmp___17 > 0) { goto ldv_49192; } else { } mapping_error: tmp___18 = net_ratelimit(); if (tmp___18 != 0) { dev_warn((struct device const *)(& (hw->pdev)->dev), "%s: tx mapping error\n", (char *)(& dev->name)); } else { } dev_kfree_skb_any(skb); return (0); } } __inline static void skge_tx_unmap(struct pci_dev *pdev , struct skge_element *e , u32 control ) { { if ((control & 1073741824U) != 0U) { pci_unmap_single(pdev, e->mapaddr, (size_t )e->maplen, 1); } else { pci_unmap_page(pdev, e->mapaddr, (size_t )e->maplen, 1); } return; } } static void skge_tx_clean(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_element *e ; struct skge_tx_desc *td ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; e = skge->tx_ring.to_clean; goto ldv_49207; ldv_49206: td = (struct skge_tx_desc *)e->desc; skge_tx_unmap((skge->hw)->pdev, e, td->control); if ((td->control & 536870912U) != 0U) { consume_skb(e->skb); } else { } td->control = 0U; e = e->next; ldv_49207: ; if ((unsigned long )skge->tx_ring.to_use != (unsigned long )e) { goto ldv_49206; } else { } netdev_reset_queue(dev); skge->tx_ring.to_clean = e; return; } } static void skge_tx_timeout(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; if ((skge->msg_enable & 8U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "tx timeout\n"); } else { } skge_write8((struct skge_hw const *)skge->hw, (int )txqaddr[skge->port] + 1076, 32); skge_tx_clean(dev); netif_wake_queue(dev); return; } } static int skge_change_mtu(struct net_device *dev , int new_mtu ) { int err ; bool tmp ; int tmp___0 ; { if (new_mtu <= 59 || new_mtu > 9000) { return (-22); } else { } tmp = netif_running((struct net_device const *)dev); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { dev->mtu = (unsigned int )new_mtu; return (0); } else { } skge_down(dev); dev->mtu = (unsigned int )new_mtu; err = skge_up(dev); if (err != 0) { dev_close(dev); } else { } return (err); } } static u8 const pause_mc_addr[6U] = { 1U, 128U, 194U, 0U, 0U, 1U}; static void genesis_add_filter(u8 *filter , u8 const *addr ) { u32 crc ; u32 bit ; { crc = crc32_le(4294967295U, addr, 6UL); bit = ~ crc & 63U; *(filter + (unsigned long )(bit / 8U)) = (u8 )((int )((signed char )*(filter + (unsigned long )(bit / 8U))) | (int )((signed char )(1 << ((int )bit & 7)))); return; } } static void genesis_set_multicast(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; struct netdev_hw_addr *ha ; u32 mode ; u8 filter[8U] ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; mode = xm_read32((struct skge_hw const *)hw, port, 292); mode = mode | 32768U; if ((dev->flags & 256U) != 0U) { mode = mode | 8U; } else { mode = mode & 4294967287U; } if ((dev->flags & 512U) != 0U) { memset((void *)(& filter), 255, 8UL); } else { memset((void *)(& filter), 0, 8UL); if ((unsigned int )skge->flow_status == 2U || (unsigned int )skge->flow_status == 4U) { genesis_add_filter((u8 *)(& filter), (u8 const *)(& pause_mc_addr)); } else { } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_49239; ldv_49238: genesis_add_filter((u8 *)(& filter), (u8 const *)(& ha->addr)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_49239: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_49238; } else { } } xm_write32((struct skge_hw const *)hw, port, 292, mode); xm_outhash((struct skge_hw const *)hw, port, 272, (u8 const *)(& filter)); return; } } static void yukon_add_filter(u8 *filter , u8 const *addr ) { u32 bit ; u32 __x ; u32 tmp ; u32 tmp___0 ; { tmp = crc32_le(4294967295U, addr, 6UL); __x = tmp; tmp___0 = __bitrev32(__x); bit = tmp___0 & 63U; *(filter + (unsigned long )(bit / 8U)) = (u8 )((int )((signed char )*(filter + (unsigned long )(bit / 8U))) | (int )((signed char )(1 << ((int )bit & 7)))); return; } } static void yukon_set_multicast(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; struct netdev_hw_addr *ha ; int rx_pause ; u16 reg ; u8 filter[8U] ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; rx_pause = (unsigned int )skge->flow_status == 2U || (unsigned int )skge->flow_status == 4U; memset((void *)(& filter), 0, 8UL); reg = gma_read16((struct skge_hw const *)hw, port, 12); reg = (u16 )((unsigned int )reg | 32768U); if ((dev->flags & 256U) != 0U) { reg = (unsigned int )reg & 16383U; } else if ((dev->flags & 512U) != 0U) { memset((void *)(& filter), 255, 8UL); } else if (dev->mc.count == 0 && rx_pause == 0) { reg = (unsigned int )reg & 49151U; } else { reg = (u16 )((unsigned int )reg | 16384U); if (rx_pause != 0) { yukon_add_filter((u8 *)(& filter), (u8 const *)(& pause_mc_addr)); } else { } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_49265; ldv_49264: yukon_add_filter((u8 *)(& filter), (u8 const *)(& ha->addr)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_49265: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_49264; } else { } } gma_write16((struct skge_hw const *)hw, port, 52, (int )((u16 )((int )((short )filter[0]) | (int )((short )((int )filter[1] << 8))))); gma_write16((struct skge_hw const *)hw, port, 56, (int )((u16 )((int )((short )filter[2]) | (int )((short )((int )filter[3] << 8))))); gma_write16((struct skge_hw const *)hw, port, 60, (int )((u16 )((int )((short )filter[4]) | (int )((short )((int )filter[5] << 8))))); gma_write16((struct skge_hw const *)hw, port, 64, (int )((u16 )((int )((short )filter[6]) | (int )((short )((int )filter[7] << 8))))); gma_write16((struct skge_hw const *)hw, port, 12, (int )reg); return; } } __inline static u16 phy_length(struct skge_hw const *hw , u32 status ) { bool tmp ; { tmp = is_genesis(hw); if ((int )tmp) { return ((u16 )(status >> 18)); } else { return ((u16 )(status >> 16)); } } } __inline static int bad_phy_status(struct skge_hw const *hw , u32 status ) { bool tmp ; { tmp = is_genesis(hw); if ((int )tmp) { return ((status & 131074U) != 0U); } else { return ((status & 4338U) != 0U || (status & 256U) == 0U); } } } static void skge_set_multicast(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = is_genesis((struct skge_hw const *)skge->hw); if ((int )tmp___0) { genesis_set_multicast(dev); } else { yukon_set_multicast(dev); } return; } } static struct sk_buff *skge_rx_get(struct net_device *dev , struct skge_element *e , u32 control , u32 status , u16 csum ) { struct skge_port *skge ; void *tmp ; struct sk_buff *skb ; u16 len ; int tmp___0 ; u16 tmp___1 ; struct skge_element ee ; struct sk_buff *nskb ; int tmp___2 ; bool tmp___3 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; len = (u16 )control; if ((skge->msg_enable & 2048U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "rx slot %td status 0x%x len %d\n", ((long )e - (long )skge->rx_ring.start) / 40L, status, (int )len); } else { } if ((unsigned int )len > skge->rx_buf_size) { goto error; } else { } if ((control & 1610612736U) != 1610612736U) { goto error; } else { } tmp___0 = bad_phy_status((struct skge_hw const *)skge->hw, status); if (tmp___0 != 0) { goto error; } else { } tmp___1 = phy_length((struct skge_hw const *)skge->hw, status); if ((int )tmp___1 != (int )len) { goto error; } else { } if ((unsigned int )len <= 127U) { skb = netdev_alloc_skb_ip_align(dev, (unsigned int )len); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto resubmit; } else { } pci_dma_sync_single_for_cpu((skge->hw)->pdev, e->mapaddr, (size_t )e->maplen, 2); skb_copy_from_linear_data((struct sk_buff const *)e->skb, (void *)skb->data, (unsigned int const )len); pci_dma_sync_single_for_device((skge->hw)->pdev, e->mapaddr, (size_t )e->maplen, 2); skge_rx_reuse(e, skge->rx_buf_size); } else { nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); if ((unsigned long )nskb == (unsigned long )((struct sk_buff *)0)) { goto resubmit; } else { } ee = *e; skb = ee.skb; __builtin_prefetch((void const *)skb->data); tmp___2 = skge_rx_setup(skge, e, nskb, skge->rx_buf_size); if (tmp___2 < 0) { consume_skb(nskb); goto resubmit; } else { } pci_unmap_single((skge->hw)->pdev, ee.mapaddr, (size_t )ee.maplen, 2); } skb_put(skb, (unsigned int )len); if ((dev->features & 17179869184ULL) != 0ULL) { skb->__annonCompField81.csum = (__wsum )csum; skb->ip_summed = 2U; } else { } skb->protocol = eth_type_trans(skb, dev); return (skb); error: ; if ((skge->msg_enable & 64U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "rx err, slot %td control 0x%x status 0x%x\n", ((long )e - (long )skge->rx_ring.start) / 40L, control, status); } else { } tmp___3 = is_genesis((struct skge_hw const *)skge->hw); if ((int )tmp___3) { if ((status & 24U) != 0U) { dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; } else { } if ((status & 32U) != 0U) { dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; } else { } if ((status & 4U) != 0U) { dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; } else { } } else { if ((status & 2064U) != 0U) { dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; } else { } if ((status & 8U) != 0U) { dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; } else { } if ((status & 2U) != 0U) { dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; } else { } } resubmit: skge_rx_reuse(e, skge->rx_buf_size); return ((struct sk_buff *)0); } } static void skge_tx_done(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_ring *ring ; struct skge_element *e ; unsigned int bytes_compl ; unsigned int pkts_compl ; u32 control ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ring = & skge->tx_ring; bytes_compl = 0U; pkts_compl = 0U; skge_write8((struct skge_hw const *)skge->hw, (int )txqaddr[skge->port] + 1076, 2); e = ring->to_clean; goto ldv_49304; ldv_49303: control = ((struct skge_tx_desc const *)e->desc)->control; if ((int )control < 0) { goto ldv_49302; } else { } skge_tx_unmap((skge->hw)->pdev, e, control); if ((control & 536870912U) != 0U) { if ((skge->msg_enable & 1024U) != 0U) { netdev_printk("\017", (struct net_device const *)skge->netdev, "tx done slot %td\n", ((long )e - (long )skge->tx_ring.start) / 40L); } else { } pkts_compl = pkts_compl + 1U; bytes_compl = (e->skb)->len + bytes_compl; dev_consume_skb_any(e->skb); } else { } e = e->next; ldv_49304: ; if ((unsigned long )ring->to_use != (unsigned long )e) { goto ldv_49303; } else { } ldv_49302: netdev_completed_queue(dev, pkts_compl, bytes_compl); skge->tx_ring.to_clean = e; __asm__ volatile ("mfence": : : "memory"); tmp___4 = netif_queue_stopped((struct net_device const *)dev); if ((int )tmp___4) { tmp___5 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); if ((unsigned int )tmp___5 > 18U) { tmp___6 = 1; } else { tmp___6 = 0; } } else { tmp___6 = 0; } tmp___7 = ldv__builtin_expect((long )tmp___6, 0L); if (tmp___7 != 0L) { netif_tx_lock(dev); tmp___0 = netif_queue_stopped((struct net_device const *)dev); if ((int )tmp___0) { tmp___1 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); if ((unsigned int )tmp___1 > 18U) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } tmp___3 = ldv__builtin_expect((long )tmp___2, 0L); if (tmp___3 != 0L) { netif_wake_queue(dev); } else { } netif_tx_unlock(dev); } else { } return; } } static int skge_poll(struct napi_struct *napi , int to_do ) { struct skge_port *skge ; struct napi_struct const *__mptr ; struct net_device *dev ; struct skge_hw *hw ; struct skge_ring *ring ; struct skge_element *e ; int work_done ; struct skge_rx_desc *rd ; struct sk_buff *skb ; u32 control ; long tmp ; unsigned long flags ; { __mptr = (struct napi_struct const *)napi; skge = (struct skge_port *)__mptr + 0xfffffffffffffff0UL; dev = skge->netdev; hw = skge->hw; ring = & skge->rx_ring; work_done = 0; skge_tx_done(dev); skge_write8((struct skge_hw const *)hw, (int )rxqaddr[skge->port] + 1076, 2); e = ring->to_clean; goto ldv_49322; ldv_49321: rd = (struct skge_rx_desc *)e->desc; __asm__ volatile ("lfence": : : "memory"); control = rd->control; if ((int )control < 0) { goto ldv_49320; } else { } skb = skge_rx_get(dev, e, control, rd->status, (int )rd->csum2); tmp = ldv__builtin_expect((unsigned long )skb != (unsigned long )((struct sk_buff *)0), 1L); if (tmp != 0L) { napi_gro_receive(napi, skb); work_done = work_done + 1; } else { } e = e->next; ldv_49322: __builtin_prefetch((void const *)e->next); if (work_done < to_do) { goto ldv_49321; } else { } ldv_49320: ring->to_clean = e; __asm__ volatile ("sfence": : : "memory"); skge_write8((struct skge_hw const *)hw, (int )rxqaddr[skge->port] + 1076, 16); if (work_done < to_do) { napi_gro_flush(napi, 0); ldv_spin_lock(); __napi_complete(napi); hw->intr_mask = hw->intr_mask | (u32 )napimask[skge->port]; skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); spin_unlock_irqrestore(& hw->hw_lock, flags); } else { } return (work_done); } } static void skge_mac_parity(struct skge_hw *hw , int port ) { struct net_device *dev ; bool tmp ; { dev = hw->dev[port]; dev->stats.tx_heartbeat_errors = dev->stats.tx_heartbeat_errors + 1UL; tmp = is_genesis((struct skge_hw const *)hw); if ((int )tmp) { skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 32768); } else { skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, (unsigned int )hw->chip_id == 176U && (unsigned int )hw->chip_rev == 0U ? 32 : 16); } return; } } static void skge_mac_intr(struct skge_hw *hw , int port ) { bool tmp ; { tmp = is_genesis((struct skge_hw const *)hw); if ((int )tmp) { genesis_mac_intr(hw, port); } else { yukon_mac_intr(hw, port); } return; } } static void skge_error_irq(struct skge_hw *hw ) { struct pci_dev *pdev ; u32 hwstatus ; u32 tmp ; bool tmp___0 ; u16 pci_status ; u16 pci_cmd ; { pdev = hw->pdev; tmp = skge_read32((struct skge_hw const *)hw, 16); hwstatus = tmp; tmp___0 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___0) { if ((hwstatus & 640U) != 0U) { skge_write16((struct skge_hw const *)hw, 3096, 1); } else { } if ((hwstatus & 320U) != 0U) { skge_write16((struct skge_hw const *)hw, 3100, 1); } else { } } else if ((hwstatus & 8192U) != 0U) { skge_write8((struct skge_hw const *)hw, 3608, 1); } else { } if ((hwstatus & 32U) != 0U) { dev_err((struct device const *)(& pdev->dev), "Ram read data parity error\n"); skge_write16((struct skge_hw const *)hw, 416, 512); } else { } if ((hwstatus & 16U) != 0U) { dev_err((struct device const *)(& pdev->dev), "Ram write data parity error\n"); skge_write16((struct skge_hw const *)hw, 416, 256); } else { } if ((hwstatus & 8U) != 0U) { skge_mac_parity(hw, 0); } else { } if ((hwstatus & 4U) != 0U) { skge_mac_parity(hw, 1); } else { } if ((hwstatus & 2U) != 0U) { dev_err((struct device const *)(& pdev->dev), "%s: receive queue parity error\n", (char *)(& (hw->dev[0])->name)); skge_write32((struct skge_hw const *)hw, 96, 8U); } else { } if ((int )hwstatus & 1) { dev_err((struct device const *)(& pdev->dev), "%s: receive queue parity error\n", (char *)(& (hw->dev[1])->name)); skge_write32((struct skge_hw const *)hw, 100, 8U); } else { } if ((hwstatus & 3072U) != 0U) { pci_read_config_word((struct pci_dev const *)pdev, 4, & pci_cmd); pci_read_config_word((struct pci_dev const *)pdev, 6, & pci_status); dev_err((struct device const *)(& pdev->dev), "PCI error cmd=%#x status=%#x\n", (int )pci_cmd, (int )pci_status); pci_status = (unsigned int )pci_status & 61696U; skge_write8((struct skge_hw const *)hw, 344, 2); pci_write_config_word((struct pci_dev const *)pdev, 4, (int )((unsigned int )pci_cmd | 320U)); pci_write_config_word((struct pci_dev const *)pdev, 6, (int )pci_status); skge_write8((struct skge_hw const *)hw, 344, 1); hwstatus = skge_read32((struct skge_hw const *)hw, 16); if ((hwstatus & 1024U) != 0U) { dev_warn((struct device const *)(& (hw->pdev)->dev), "unable to clear error (so ignoring them)\n"); hw->intr_mask = hw->intr_mask & 2147483647U; } else { } } else { } return; } } static void skge_extirq(unsigned long arg ) { struct skge_hw *hw ; int port ; struct net_device *dev ; struct skge_port *skge ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { hw = (struct skge_hw *)arg; port = 0; goto ldv_49348; ldv_49347: dev = hw->dev[port]; tmp___2 = netif_running((struct net_device const *)dev); if ((int )tmp___2) { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; spin_lock(& hw->phy_lock); tmp___0 = is_genesis((struct skge_hw const *)hw); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { yukon_phy_intr(skge); } else if ((unsigned int )hw->phy_type == 1U) { bcom_phy_intr(skge); } else { } spin_unlock(& hw->phy_lock); } else { } port = port + 1; ldv_49348: ; if ((int )hw->ports > port) { goto ldv_49347; } else { } spin_lock_irq(& hw->hw_lock); hw->intr_mask = hw->intr_mask | 8388608U; skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); spin_unlock_irq(& hw->hw_lock); return; } } static irqreturn_t skge_intr(int irq , void *dev_id ) { struct skge_hw *hw ; u32 status ; int handled ; struct skge_port *skge ; void *tmp ; struct skge_port *skge___0 ; void *tmp___0 ; { hw = (struct skge_hw *)dev_id; handled = 0; spin_lock(& hw->hw_lock); status = skge_read32((struct skge_hw const *)hw, 24); if (status == 0U || status == 4294967295U) { goto out; } else { } handled = 1; status = hw->intr_mask & status; if ((status & 8388608U) != 0U) { hw->intr_mask = hw->intr_mask & 4286578687U; tasklet_schedule(& hw->phy_task); } else { } if ((status & 65664U) != 0U) { tmp = netdev_priv((struct net_device const *)hw->dev[0]); skge = (struct skge_port *)tmp; hw->intr_mask = hw->intr_mask & 4294901631U; napi_schedule(& skge->napi); } else { } if ((status & 134217728U) != 0U) { skge_write16((struct skge_hw const *)hw, 496, 4096); } else { } if ((status & 536870912U) != 0U) { (hw->dev[0])->stats.rx_over_errors = (hw->dev[0])->stats.rx_over_errors + 1UL; skge_write16((struct skge_hw const *)hw, 496, 1024); } else { } if ((status & 2097152U) != 0U) { skge_mac_intr(hw, 0); } else { } if ((unsigned long )hw->dev[1] != (unsigned long )((struct net_device *)0)) { tmp___0 = netdev_priv((struct net_device const *)hw->dev[1]); skge___0 = (struct skge_port *)tmp___0; if ((status & 8194U) != 0U) { hw->intr_mask = hw->intr_mask & 4294959101U; napi_schedule(& skge___0->napi); } else { } if ((status & 268435456U) != 0U) { (hw->dev[1])->stats.rx_over_errors = (hw->dev[1])->stats.rx_over_errors + 1UL; skge_write16((struct skge_hw const *)hw, 496, 2048); } else { } if ((status & 67108864U) != 0U) { skge_write16((struct skge_hw const *)hw, 496, 8192); } else { } if ((status & 524288U) != 0U) { skge_mac_intr(hw, 1); } else { } } else { } if ((int )status < 0) { skge_error_irq(hw); } else { } out: skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); spin_unlock(& hw->hw_lock); return (handled != 0); } } static void skge_netpoll(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; disable_irq((unsigned int )dev->irq); skge_intr(dev->irq, (void *)skge->hw); enable_irq((unsigned int )dev->irq); return; } } static int skge_set_mac_address(struct net_device *dev , void *p ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; unsigned int port ; struct sockaddr const *addr ; u16 ctrl ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = (unsigned int )skge->port; addr = (struct sockaddr const *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), 6UL); tmp___3 = netif_running((struct net_device const *)dev); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 256UL)), (void const *)dev->dev_addr, 6UL); memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 264UL)), (void const *)dev->dev_addr, 6UL); } else { spin_lock_bh(& hw->phy_lock); ctrl = gma_read16((struct skge_hw const *)hw, (int )port, 4); gma_write16((struct skge_hw const *)hw, (int )port, 4, (int )ctrl & 63487); memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 256UL)), (void const *)dev->dev_addr, 6UL); memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 264UL)), (void const *)dev->dev_addr, 6UL); tmp___2 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___2) { xm_outaddr((struct skge_hw const *)hw, (int )port, 264, (u8 const *)dev->dev_addr); } else { gma_set_addr(hw, (int )port, 28, (u8 const *)dev->dev_addr); gma_set_addr(hw, (int )port, 40, (u8 const *)dev->dev_addr); } gma_write16((struct skge_hw const *)hw, (int )port, 4, (int )ctrl); spin_unlock_bh(& hw->phy_lock); } return (0); } } static struct __anonstruct_skge_chips_341 const skge_chips[4U] = { {10U, "Genesis"}, {176U, "Yukon"}, {177U, "Yukon-Lite"}, {178U, "Yukon-LP"}}; static char const *skge_board_name(struct skge_hw const *hw ) { int i ; char buf[16U] ; { i = 0; goto ldv_49385; ldv_49384: ; if ((int )((unsigned char )skge_chips[i].id) == (int )((unsigned char )hw->chip_id)) { return ((char const *)skge_chips[i].name); } else { } i = i + 1; ldv_49385: ; if ((unsigned int )i <= 3U) { goto ldv_49384; } else { } snprintf((char *)(& buf), 16UL, "chipid 0x%x", (int )hw->chip_id); return ((char const *)(& buf)); } } static int skge_reset(struct skge_hw *hw ) { u32 reg ; u16 ctst ; u16 pci_status ; u8 t8 ; u8 mac_cfg ; u8 pmd_type ; int i ; u8 tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; bool tmp___5 ; u32 tmp___6 ; bool tmp___7 ; { ctst = skge_read16((struct skge_hw const *)hw, 4); skge_write8((struct skge_hw const *)hw, 4, 1); skge_write8((struct skge_hw const *)hw, 4, 2); skge_write8((struct skge_hw const *)hw, 344, 2); skge_write8((struct skge_hw const *)hw, 345, 0); pci_read_config_word((struct pci_dev const *)hw->pdev, 6, & pci_status); pci_write_config_word((struct pci_dev const *)hw->pdev, 6, (int )((unsigned int )pci_status | 61696U)); skge_write8((struct skge_hw const *)hw, 344, 1); skge_write8((struct skge_hw const *)hw, 4, 8); skge_write16((struct skge_hw const *)hw, 4, (int )ctst & 14336); hw->chip_id = skge_read8((struct skge_hw const *)hw, 283); tmp = skge_read8((struct skge_hw const *)hw, 285); hw->phy_type = (unsigned int )tmp & 15U; pmd_type = skge_read8((struct skge_hw const *)hw, 281); hw->copper = (u8 )((unsigned int )pmd_type == 84U || (unsigned int )pmd_type == 49U); switch ((int )hw->chip_id) { case 10: ; switch ((int )hw->phy_type) { case 0: hw->phy_addr = 0U; goto ldv_49399; case 1: hw->phy_addr = 256U; goto ldv_49399; default: dev_err((struct device const *)(& (hw->pdev)->dev), "unsupported phy type 0x%x\n", (int )hw->phy_type); return (-95); } ldv_49399: ; goto ldv_49402; case 176: ; case 177: ; case 178: ; if ((unsigned int )hw->phy_type <= 3U && (unsigned int )pmd_type != 83U) { hw->copper = 1U; } else { } hw->phy_addr = 0U; goto ldv_49402; default: dev_err((struct device const *)(& (hw->pdev)->dev), "unsupported chip type 0x%x\n", (int )hw->chip_id); return (-95); } ldv_49402: mac_cfg = skge_read8((struct skge_hw const *)hw, 282); hw->ports = (int )mac_cfg & 1 ? 1U : 2U; hw->chip_rev = (int )mac_cfg >> 4; t8 = skge_read8((struct skge_hw const *)hw, 284); tmp___0 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___0) { if ((unsigned int )t8 == 3U) { hw->ram_size = 1048576U; hw->ram_offset = 524288U; } else { hw->ram_size = (u32 )((int )t8 * 512); } } else if ((unsigned int )t8 == 0U) { hw->ram_size = 131072U; } else { hw->ram_size = (u32 )((int )t8 * 4096); } hw->intr_mask = 2147483648U; tmp___1 = is_genesis((struct skge_hw const *)hw); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2 || (unsigned int )hw->phy_type != 0U) { hw->intr_mask = hw->intr_mask | 8388608U; } else { } tmp___5 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___5) { genesis_init(hw); } else { skge_write8((struct skge_hw const *)hw, 7, 166); tmp___3 = skge_read32((struct skge_hw const *)hw, 8); if ((int )tmp___3 < 0) { tmp___4 = skge_read32((struct skge_hw const *)hw, 16); if ((tmp___4 & 4096U) != 0U) { dev_warn((struct device const *)(& (hw->pdev)->dev), "stuck hardware sensor bit\n"); hw->intr_mask = hw->intr_mask & 2147483647U; } else { } } else { } skge_write8((struct skge_hw const *)hw, 344, 2); pci_read_config_dword((struct pci_dev const *)hw->pdev, 64, & reg); reg = reg & 4160749567U; pci_write_config_dword((struct pci_dev const *)hw->pdev, 64, reg); skge_write8((struct skge_hw const *)hw, 344, 1); i = 0; goto ldv_49408; ldv_49407: skge_write16((struct skge_hw const *)hw, (i << 7) + 3856, 1); skge_write16((struct skge_hw const *)hw, (i << 7) + 3856, 2); i = i + 1; ldv_49408: ; if ((int )hw->ports > i) { goto ldv_49407; } else { } } skge_write8((struct skge_hw const *)hw, 312, 2); skge_write8((struct skge_hw const *)hw, 312, 1); skge_write8((struct skge_hw const *)hw, 6, 2); i = 0; goto ldv_49411; ldv_49410: skge_write8((struct skge_hw const *)hw, (i << 7) + 528, 2); i = i + 1; ldv_49411: ; if ((int )hw->ports > i) { goto ldv_49410; } else { } skge_write16((struct skge_hw const *)hw, 416, 2); skge_write8((struct skge_hw const *)hw, 400, 36); skge_write8((struct skge_hw const *)hw, 401, 36); skge_write8((struct skge_hw const *)hw, 402, 36); skge_write8((struct skge_hw const *)hw, 403, 36); skge_write8((struct skge_hw const *)hw, 404, 36); skge_write8((struct skge_hw const *)hw, 405, 36); skge_write8((struct skge_hw const *)hw, 406, 36); skge_write8((struct skge_hw const *)hw, 407, 36); skge_write8((struct skge_hw const *)hw, 408, 36); skge_write8((struct skge_hw const *)hw, 409, 36); skge_write8((struct skge_hw const *)hw, 410, 36); skge_write8((struct skge_hw const *)hw, 411, 36); skge_write32((struct skge_hw const *)hw, 20, 3135U); skge_write32((struct skge_hw const *)hw, 332, 130U); tmp___6 = skge_usecs2clk((struct skge_hw const *)hw, 100U); skge_write32((struct skge_hw const *)hw, 320, tmp___6); skge_write32((struct skge_hw const *)hw, 328, 4U); skge_write32((struct skge_hw const *)hw, 12, 0U); i = 0; goto ldv_49414; ldv_49413: tmp___7 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___7) { genesis_reset(hw, i); } else { yukon_reset(hw, i); } i = i + 1; ldv_49414: ; if ((int )hw->ports > i) { goto ldv_49413; } else { } return (0); } } static struct dentry *skge_debug ; static int skge_debug_show(struct seq_file *seq , void *v ) { struct net_device *dev ; struct skge_port const *skge ; void *tmp ; struct skge_hw const *hw ; struct skge_element const *e ; bool tmp___0 ; int tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; struct skge_tx_desc const *t ; struct skge_rx_desc const *r ; { dev = (struct net_device *)seq->private; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port const *)tmp; hw = (struct skge_hw const *)skge->hw; tmp___0 = netif_running((struct net_device const *)dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-100); } else { } tmp___2 = skge_read32(hw, 12); tmp___3 = skge_read32(hw, 8); seq_printf(seq, "IRQ src=%x mask=%x\n", tmp___3, tmp___2); tmp___4 = skge_avail(& skge->tx_ring); seq_printf(seq, "Tx Ring: (%d)\n", tmp___4); e = (struct skge_element const *)skge->tx_ring.to_clean; goto ldv_49427; ldv_49426: t = (struct skge_tx_desc const *)e->desc; seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", t->control, t->dma_hi, t->dma_lo, t->status, t->csum_offs, (int )t->csum_write, (int )t->csum_start); e = (struct skge_element const *)e->next; ldv_49427: ; if ((unsigned long )((struct skge_element const *)skge->tx_ring.to_use) != (unsigned long )e) { goto ldv_49426; } else { } seq_printf(seq, "\nRx Ring:\n"); e = (struct skge_element const *)skge->rx_ring.to_clean; ldv_49431: r = (struct skge_rx_desc const *)e->desc; if ((int )r->control < 0) { goto ldv_49430; } else { } seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", r->control, r->dma_hi, r->dma_lo, r->status, r->timestamp, (int )r->csum1, (int )r->csum1_start); e = (struct skge_element const *)e->next; goto ldv_49431; ldv_49430: ; return (0); } } static int skge_debug_open(struct inode *inode , struct file *file ) { int tmp ; { tmp = single_open(file, & skge_debug_show, inode->i_private); return (tmp); } } static struct file_operations const skge_debug_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, & skge_debug_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int skge_device_event(struct notifier_block *unused , unsigned long event , void *ptr ) { struct net_device *dev ; struct net_device *tmp ; struct skge_port *skge ; struct dentry *d ; void *tmp___0 ; bool tmp___1 ; { tmp = netdev_notifier_info_to_dev((struct netdev_notifier_info const *)ptr); dev = tmp; if ((unsigned long )((int (*)(struct net_device * ))(dev->netdev_ops)->ndo_open) != (unsigned long )(& skge_up) || (unsigned long )skge_debug == (unsigned long )((struct dentry *)0)) { goto done; } else { } tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; switch (event) { case 10UL: ; if ((unsigned long )skge->debugfs != (unsigned long )((struct dentry *)0)) { d = debugfs_rename(skge_debug, skge->debugfs, skge_debug, (char const *)(& dev->name)); if ((unsigned long )d != (unsigned long )((struct dentry *)0)) { skge->debugfs = d; } else { netdev_info((struct net_device const *)dev, "rename failed\n"); debugfs_remove(skge->debugfs); } } else { } goto ldv_49447; case 9UL: ; if ((unsigned long )skge->debugfs != (unsigned long )((struct dentry *)0)) { debugfs_remove(skge->debugfs); skge->debugfs = (struct dentry *)0; } else { } goto ldv_49447; case 1UL: d = debugfs_create_file((char const *)(& dev->name), 292, skge_debug, (void *)dev, & skge_debug_fops); if ((unsigned long )d == (unsigned long )((struct dentry *)0)) { netdev_info((struct net_device const *)dev, "debugfs create failed\n"); } else { tmp___1 = IS_ERR((void const *)d); if ((int )tmp___1) { netdev_info((struct net_device const *)dev, "debugfs create failed\n"); } else { skge->debugfs = d; } } goto ldv_49447; } ldv_49447: ; done: ; return (0); } } static struct notifier_block skge_notifier = {& skge_device_event, 0, 0}; static void skge_debug_init(void) { struct dentry *ent ; bool tmp ; { ent = debugfs_create_dir("skge", (struct dentry *)0); if ((unsigned long )ent == (unsigned long )((struct dentry *)0)) { printk("\016skge: debugfs create directory failed\n"); return; } else { tmp = IS_ERR((void const *)ent); if ((int )tmp) { printk("\016skge: debugfs create directory failed\n"); return; } else { } } skge_debug = ent; register_netdevice_notifier(& skge_notifier); return; } } static void skge_debug_cleanup(void) { { if ((unsigned long )skge_debug != (unsigned long )((struct dentry *)0)) { unregister_netdevice_notifier(& skge_notifier); debugfs_remove(skge_debug); skge_debug = (struct dentry *)0; } else { } return; } } static struct net_device_ops const skge_netdev_ops = {0, 0, & skge_up, & skge_down, & skge_xmit_frame, 0, 0, & skge_set_multicast, & skge_set_mac_address, & eth_validate_addr, & skge_ioctl, 0, & skge_change_mtu, 0, & skge_tx_timeout, 0, & skge_get_stats, 0, 0, & skge_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device *skge_devinit(struct skge_hw *hw , int port , int highmem ) { struct skge_port *skge ; struct net_device *dev ; struct net_device *tmp ; void *tmp___0 ; u32 tmp___1 ; bool tmp___2 ; bool tmp___3 ; { tmp = alloc_etherdev_mqs(640, 1U, 1U); dev = tmp; if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return ((struct net_device *)0); } else { } dev->dev.parent = & (hw->pdev)->dev; dev->netdev_ops = & skge_netdev_ops; dev->ethtool_ops = & skge_ethtool_ops; dev->watchdog_timeo = 1250; dev->irq = (int )(hw->pdev)->irq; if (highmem != 0) { dev->features = dev->features | 32ULL; } else { } tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; netif_napi_add(dev, & skge->napi, & skge_poll, 64); skge->netdev = dev; skge->hw = hw; skge->msg_enable = netif_msg_init(debug, (int )default_msg); skge->tx_ring.count = 128UL; skge->rx_ring.count = 512UL; skge->autoneg = 1U; skge->flow_control = 4; skge->duplex = 255U; skge->speed = 65535U; skge->advertising = skge_supported_modes((struct skge_hw const *)hw); tmp___2 = device_can_wakeup(& (hw->pdev)->dev); if ((int )tmp___2) { tmp___1 = wol_supported((struct skge_hw const *)hw); skge->wol = (unsigned int )((u8 )tmp___1) & 32U; device_set_wakeup_enable(& (hw->pdev)->dev, (unsigned int )skge->wol != 0U); } else { } hw->dev[port] = dev; skge->port = port; tmp___3 = is_genesis((struct skge_hw const *)hw); if ((int )tmp___3) { reg_timer_3(& skge->link_timer, & xm_link_timer, (unsigned long )skge); } else { dev->hw_features = 17179869187ULL; dev->features = dev->features | dev->hw_features; } memcpy_fromio((void *)dev->dev_addr, (void const volatile *)(hw->regs + ((unsigned long )(port * 8) + 256UL)), 6UL); return (dev); } } static void skge_show_addr(struct net_device *dev ) { struct skge_port const *skge ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port const *)tmp; if (((unsigned int )skge->msg_enable & 2U) != 0U) { netdev_info((struct net_device const *)skge->netdev, "addr %pM\n", dev->dev_addr); } else { } return; } } static int only_32bit_dma ; static int skge_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *dev ; struct net_device *dev1 ; struct skge_hw *hw ; int err ; int using_dac ; int tmp ; size_t tmp___0 ; char const *tmp___1 ; size_t tmp___2 ; void *tmp___3 ; char const *tmp___4 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; char const *tmp___5 ; bool tmp___6 ; int tmp___7 ; { using_dac = 0; err = pci_enable_device(pdev); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "cannot enable PCI device\n"); goto err_out; } else { } err = pci_request_regions(pdev, "skge"); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "cannot obtain PCI resources\n"); goto err_out_disable_pdev; } else { } pci_set_master(pdev); if (only_32bit_dma == 0) { tmp = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); if (tmp == 0) { using_dac = 1; err = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } else { goto _L; } } else { _L: /* CIL Label */ err = pci_set_dma_mask(pdev, 4294967295ULL); if (err == 0) { using_dac = 0; err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } else { } } if (err != 0) { dev_err((struct device const *)(& pdev->dev), "no usable DMA configuration\n"); goto err_out_free_regions; } else { } err = -12; tmp___0 = strlen("skge@pci:"); tmp___1 = pci_name((struct pci_dev const *)pdev); tmp___2 = strlen(tmp___1); tmp___3 = kzalloc((tmp___0 + tmp___2) + 249UL, 208U); hw = (struct skge_hw *)tmp___3; if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { goto err_out_free_regions; } else { } tmp___4 = pci_name((struct pci_dev const *)pdev); sprintf((char *)(& hw->irq_name), "skge@pci:%s", tmp___4); hw->pdev = pdev; spinlock_check(& hw->hw_lock); __raw_spin_lock_init(& hw->hw_lock.__annonCompField18.rlock, "&(&hw->hw_lock)->rlock", & __key); spinlock_check(& hw->phy_lock); __raw_spin_lock_init(& hw->phy_lock.__annonCompField18.rlock, "&(&hw->phy_lock)->rlock", & __key___0); tasklet_init(& hw->phy_task, & skge_extirq, (unsigned long )hw); hw->regs = ioremap_nocache(pdev->resource[0].start, 16384UL); if ((unsigned long )hw->regs == (unsigned long )((void *)0)) { dev_err((struct device const *)(& pdev->dev), "cannot map device registers\n"); goto err_out_free_hw; } else { } err = skge_reset(hw); if (err != 0) { goto err_out_iounmap; } else { } tmp___5 = skge_board_name((struct skge_hw const *)hw); printk("\016skge: %s addr 0x%llx irq %d chip %s rev %d\n", (char *)"1.14", pdev->resource[0].start, pdev->irq, tmp___5, (int )hw->chip_rev); dev = skge_devinit(hw, 0, using_dac); if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_led_off; } else { } tmp___6 = is_valid_ether_addr((u8 const *)dev->dev_addr); if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { dev_warn((struct device const *)(& pdev->dev), "bad (zero?) ethernet address in rom\n"); } else { } err = ldv_register_netdev_44(dev); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "cannot register net device\n"); goto err_out_free_netdev; } else { } skge_show_addr(dev); if ((unsigned int )hw->ports > 1U) { dev1 = skge_devinit(hw, 1, using_dac); if ((unsigned long )dev1 == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_unregister; } else { } err = ldv_register_netdev_45(dev1); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "cannot register second net device\n"); goto err_out_free_dev1; } else { } err = ldv_request_irq_46(pdev->irq, & skge_intr, 128UL, (char const *)(& hw->irq_name), (void *)hw); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "cannot assign irq %d\n", pdev->irq); goto err_out_unregister_dev1; } else { } skge_show_addr(dev1); } else { } pci_set_drvdata(pdev, (void *)hw); return (0); err_out_unregister_dev1: ldv_unregister_netdev_47(dev1); err_out_free_dev1: ldv_free_netdev_48(dev1); err_out_unregister: ldv_unregister_netdev_49(dev); err_out_free_netdev: ldv_free_netdev_50(dev); err_out_led_off: skge_write16((struct skge_hw const *)hw, 6, 1); err_out_iounmap: iounmap((void volatile *)hw->regs); err_out_free_hw: kfree((void const *)hw); err_out_free_regions: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out: ; return (err); } } static void skge_remove(struct pci_dev *pdev ) { struct skge_hw *hw ; void *tmp ; struct net_device *dev0 ; struct net_device *dev1 ; { tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return; } else { } dev1 = hw->dev[1]; if ((unsigned long )dev1 != (unsigned long )((struct net_device *)0)) { ldv_unregister_netdev_51(dev1); } else { } dev0 = hw->dev[0]; ldv_unregister_netdev_52(dev0); tasklet_kill(& hw->phy_task); spin_lock_irq(& hw->hw_lock); hw->intr_mask = 0U; if ((unsigned int )hw->ports > 1U) { skge_write32((struct skge_hw const *)hw, 12, 0U); skge_read32((struct skge_hw const *)hw, 12); ldv_free_irq_53(pdev->irq, (void *)hw); } else { } spin_unlock_irq(& hw->hw_lock); skge_write16((struct skge_hw const *)hw, 6, 1); skge_write8((struct skge_hw const *)hw, 4, 1); if ((unsigned int )hw->ports > 1U) { ldv_free_irq_54(pdev->irq, (void *)hw); } else { } pci_release_regions(pdev); pci_disable_device(pdev); if ((unsigned long )dev1 != (unsigned long )((struct net_device *)0)) { ldv_free_netdev_55(dev1); } else { } ldv_free_netdev_56(dev0); iounmap((void volatile *)hw->regs); kfree((void const *)hw); return; } } static int skge_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct skge_hw *hw ; void *tmp ; int i ; struct net_device *dev___0 ; struct skge_port *skge ; void *tmp___0 ; bool tmp___1 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return (0); } else { } i = 0; goto ldv_49509; ldv_49508: dev___0 = hw->dev[i]; tmp___0 = netdev_priv((struct net_device const *)dev___0); skge = (struct skge_port *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev___0); if ((int )tmp___1) { skge_down(dev___0); } else { } if ((unsigned int )skge->wol != 0U) { skge_wol_init(skge); } else { } i = i + 1; ldv_49509: ; if ((int )hw->ports > i) { goto ldv_49508; } else { } skge_write32((struct skge_hw const *)hw, 12, 0U); return (0); } } static int skge_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct skge_hw *hw ; void *tmp ; int i ; int err ; struct net_device *dev___0 ; bool tmp___0 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return (0); } else { } err = skge_reset(hw); if (err != 0) { goto out; } else { } i = 0; goto ldv_49523; ldv_49522: dev___0 = hw->dev[i]; tmp___0 = netif_running((struct net_device const *)dev___0); if ((int )tmp___0) { err = skge_up(dev___0); if (err != 0) { netdev_err((struct net_device const *)dev___0, "could not up: %d\n", err); dev_close(dev___0); goto out; } else { } } else { } i = i + 1; ldv_49523: ; if ((int )hw->ports > i) { goto ldv_49522; } else { } out: ; return (err); } } static struct dev_pm_ops const skge_pm_ops = {0, 0, & skge_suspend, & skge_resume, & skge_suspend, & skge_resume, & skge_suspend, & skge_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void skge_shutdown(struct pci_dev *pdev ) { struct skge_hw *hw ; void *tmp ; int i ; struct net_device *dev ; struct skge_port *skge ; void *tmp___0 ; bool tmp___1 ; { tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return; } else { } i = 0; goto ldv_49534; ldv_49533: dev = hw->dev[i]; tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; if ((unsigned int )skge->wol != 0U) { skge_wol_init(skge); } else { } i = i + 1; ldv_49534: ; if ((int )hw->ports > i) { goto ldv_49533; } else { } tmp___1 = device_may_wakeup(& pdev->dev); pci_wake_from_d3(pdev, (int )tmp___1); pci_set_power_state(pdev, 3); return; } } static struct pci_driver skge_driver = {{0, 0}, "skge", (struct pci_device_id const *)(& skge_id_table), & skge_probe, & skge_remove, 0, 0, 0, 0, & skge_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & skge_pm_ops, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static struct dmi_system_id skge_32bit_dma_boards[4U] = { {0, "Gigabyte nForce boards", {{9U, (unsigned char)0, {'G', 'i', 'g', 'a', 'b', 'y', 't', 'e', ' ', 'T', 'e', 'c', 'h', 'n', 'o', 'l', 'o', 'g', 'y', ' ', 'C', 'o', '\000'}}, {10U, (unsigned char)0, {'n', 'F', 'o', 'r', 'c', 'e', '\000'}}}, 0}, {0, "ASUS P5NSLI", {{9U, (unsigned char)0, {'A', 'S', 'U', 'S', 'T', 'e', 'K', ' ', 'C', 'o', 'm', 'p', 'u', 't', 'e', 'r', ' ', 'I', 'N', 'C', '.', '\000'}}, {10U, (unsigned char)0, {'P', '5', 'N', 'S', 'L', 'I', '\000'}}}, 0}, {0, "FUJITSU SIEMENS A8NE-FM", {{9U, (unsigned char)0, {'A', 'S', 'U', 'S', 'T', 'e', 'k', ' ', 'C', 'o', 'm', 'p', 'u', 't', 'e', 'r', ' ', 'I', 'N', 'C', '.', '\000'}}, {10U, (unsigned char)0, {'A', '8', 'N', 'E', '-', 'F', 'M', '\000'}}}, 0}}; static int skge_init_module(void) { int tmp ; int tmp___0 ; { tmp = dmi_check_system((struct dmi_system_id const *)(& skge_32bit_dma_boards)); if (tmp != 0) { only_32bit_dma = 1; } else { } skge_debug_init(); tmp___0 = ldv___pci_register_driver_57(& skge_driver, & __this_module, "skge"); return (tmp___0); } } static void skge_cleanup_module(void) { { ldv_pci_unregister_driver_58(& skge_driver); skge_debug_cleanup(); return; } } extern int ldv_thaw_noirq_5(void) ; int ldv_retval_20 ; int ldv_retval_18 ; int ldv_retval_2 ; extern int ldv_ndo_init_6(void) ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_23 ; extern int ldv_restore_early_5(void) ; int ldv_retval_11 ; int ldv_retval_1 ; extern int ldv_suspend_noirq_5(void) ; int ldv_retval_22 ; int ldv_retval_15 ; int ldv_retval_16 ; extern int ldv_poweroff_noirq_5(void) ; extern int ldv_complete_5(void) ; extern void ldv_check_final_state(void) ; extern int ldv_suspend_late_5(void) ; int ldv_retval_8 ; extern int ldv_freeze_noirq_5(void) ; int ldv_retval_7 ; int ldv_retval_19 ; extern int ldv_ndo_uninit_6(void) ; extern int ldv_poweroff_late_5(void) ; extern int ldv_thaw_early_5(void) ; int ldv_retval_14 ; int ldv_retval_17 ; extern int ldv_resume_noirq_5(void) ; int ldv_retval_12 ; extern int ldv_restore_noirq_5(void) ; extern void ldv_initialize(void) ; int ldv_retval_6 ; extern int ldv_prepare_5(void) ; extern int ldv_freeze_late_5(void) ; int ldv_retval_21 ; extern int ldv_resume_early_5(void) ; int ldv_retval_13 ; int ldv_retval_9 ; int ldv_retval_10 ; int ldv_retval_4 ; int ldv_retval_3 ; void choose_interrupt_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_0, ldv_irq_line_2_0, ldv_irq_data_2_0); goto ldv_49618; case 1: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_1, ldv_irq_line_2_1, ldv_irq_data_2_1); goto ldv_49618; case 2: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_2, ldv_irq_line_2_2, ldv_irq_data_2_2); goto ldv_49618; case 3: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_3, ldv_irq_line_2_3, ldv_irq_data_2_3); goto ldv_49618; default: ldv_stop(); } ldv_49618: ; return; } } void disable_suitable_irq_2(int line , void *data ) { { if (ldv_irq_2_0 != 0 && line == ldv_irq_line_2_0) { ldv_irq_2_0 = 0; return; } else { } if (ldv_irq_2_1 != 0 && line == ldv_irq_line_2_1) { ldv_irq_2_1 = 0; return; } else { } if (ldv_irq_2_2 != 0 && line == ldv_irq_line_2_2) { ldv_irq_2_2 = 0; return; } else { } if (ldv_irq_2_3 != 0 && line == ldv_irq_line_2_3) { ldv_irq_2_3 = 0; return; } else { } return; } } void choose_timer_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_timer_3_0 == 1) { ldv_timer_3_0 = 2; ldv_timer_3(ldv_timer_3_0, ldv_timer_list_3_0); } else { } goto ldv_49631; case 1: ; if (ldv_timer_3_1 == 1) { ldv_timer_3_1 = 2; ldv_timer_3(ldv_timer_3_1, ldv_timer_list_3_1); } else { } goto ldv_49631; case 2: ; if (ldv_timer_3_2 == 1) { ldv_timer_3_2 = 2; ldv_timer_3(ldv_timer_3_2, ldv_timer_list_3_2); } else { } goto ldv_49631; case 3: ; if (ldv_timer_3_3 == 1) { ldv_timer_3_3 = 2; ldv_timer_3(ldv_timer_3_3, ldv_timer_list_3_3); } else { } goto ldv_49631; default: ldv_stop(); } ldv_49631: ; return; } } void activate_suitable_irq_2(int line , void *data ) { { if (ldv_irq_2_0 == 0) { ldv_irq_line_2_0 = line; ldv_irq_data_2_0 = data; ldv_irq_2_0 = 1; return; } else { } if (ldv_irq_2_1 == 0) { ldv_irq_line_2_1 = line; ldv_irq_data_2_1 = data; ldv_irq_2_1 = 1; return; } else { } if (ldv_irq_2_2 == 0) { ldv_irq_line_2_2 = line; ldv_irq_data_2_2 = data; ldv_irq_2_2 = 1; return; } else { } if (ldv_irq_2_3 == 0) { ldv_irq_line_2_3 = line; ldv_irq_data_2_3 = data; ldv_irq_2_3 = 1; return; } else { } return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& skge_intr)) { return (1); } else { } return (0); } } void timer_init_3(void) { { ldv_timer_3_0 = 0; ldv_timer_3_1 = 0; ldv_timer_3_2 = 0; ldv_timer_3_3 = 0; return; } } void ldv_pci_driver_4(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); skge_driver_group1 = (struct pci_dev *)tmp; return; } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_49655; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_49655; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_49655; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_49655; default: ldv_stop(); } ldv_49655: ; return; } } int reg_check_2(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& skge_intr)) { return (1); } else { } return (0); } } void ldv_initialize_ethtool_ops_9(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; { tmp = ldv_init_zalloc(92UL); skge_ethtool_ops_group4 = (struct ethtool_coalesce *)tmp; tmp___0 = ldv_init_zalloc(36UL); skge_ethtool_ops_group0 = (struct ethtool_ringparam *)tmp___0; tmp___1 = ldv_init_zalloc(3008UL); skge_ethtool_ops_group5 = (struct net_device *)tmp___1; tmp___2 = ldv_init_zalloc(16UL); skge_ethtool_ops_group2 = (struct ethtool_eeprom *)tmp___2; tmp___3 = ldv_init_zalloc(44UL); skge_ethtool_ops_group1 = (struct ethtool_cmd *)tmp___3; tmp___4 = ldv_init_zalloc(20UL); skge_ethtool_ops_group6 = (struct ethtool_wolinfo *)tmp___4; tmp___5 = ldv_init_zalloc(16UL); skge_ethtool_ops_group3 = (struct ethtool_pauseparam *)tmp___5; return; } } void disable_suitable_timer_3(struct timer_list *timer ) { { if (ldv_timer_3_0 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_3_0) { ldv_timer_3_0 = 0; return; } else { } if (ldv_timer_3_1 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_3_1) { ldv_timer_3_1 = 0; return; } else { } if (ldv_timer_3_2 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_3_2) { ldv_timer_3_2 = 0; return; } else { } if (ldv_timer_3_3 != 0 && (unsigned long )timer == (unsigned long )ldv_timer_list_3_3) { ldv_timer_3_3 = 0; return; } else { } return; } } void activate_suitable_timer_3(struct timer_list *timer , unsigned long data ) { { if (ldv_timer_3_0 == 0 || ldv_timer_3_0 == 2) { ldv_timer_list_3_0 = timer; ldv_timer_list_3_0->data = data; ldv_timer_3_0 = 1; return; } else { } if (ldv_timer_3_1 == 0 || ldv_timer_3_1 == 2) { ldv_timer_list_3_1 = timer; ldv_timer_list_3_1->data = data; ldv_timer_3_1 = 1; return; } else { } if (ldv_timer_3_2 == 0 || ldv_timer_3_2 == 2) { ldv_timer_list_3_2 = timer; ldv_timer_list_3_2->data = data; ldv_timer_3_2 = 1; return; } else { } if (ldv_timer_3_3 == 0 || ldv_timer_3_3 == 2) { ldv_timer_list_3_3 = timer; ldv_timer_list_3_3->data = data; ldv_timer_3_3 = 1; return; } else { } return; } } void ldv_net_device_ops_6(void) { void *tmp ; { tmp = ldv_init_zalloc(3008UL); skge_netdev_ops_group1 = (struct net_device *)tmp; return; } } void ldv_file_operations_8(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(1000UL); skge_debug_fops_group1 = (struct inode *)tmp; tmp___0 = ldv_init_zalloc(504UL); skge_debug_fops_group2 = (struct file *)tmp___0; return; } } void ldv_dev_pm_ops_5(void) { void *tmp ; { tmp = ldv_init_zalloc(1416UL); skge_pm_ops_group1 = (struct device *)tmp; return; } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = skge_intr(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_49695; default: ldv_stop(); } ldv_49695: ; } else { } return (state); } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } void activate_pending_timer_3(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_3_0 == (unsigned long )timer) { if (ldv_timer_3_0 == 2 || pending_flag != 0) { ldv_timer_list_3_0 = timer; ldv_timer_list_3_0->data = data; ldv_timer_3_0 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_3_1 == (unsigned long )timer) { if (ldv_timer_3_1 == 2 || pending_flag != 0) { ldv_timer_list_3_1 = timer; ldv_timer_list_3_1->data = data; ldv_timer_3_1 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_3_2 == (unsigned long )timer) { if (ldv_timer_3_2 == 2 || pending_flag != 0) { ldv_timer_list_3_2 = timer; ldv_timer_list_3_2->data = data; ldv_timer_3_2 = 1; } else { } return; } else { } if ((unsigned long )ldv_timer_list_3_3 == (unsigned long )timer) { if (ldv_timer_3_3 == 2 || pending_flag != 0) { ldv_timer_list_3_3 = timer; ldv_timer_list_3_3->data = data; ldv_timer_3_3 = 1; } else { } return; } else { } activate_suitable_timer_3(timer, data); return; } } int reg_timer_3(struct timer_list *timer , void (*function)(unsigned long ) , unsigned long data ) { { if ((unsigned long )function == (unsigned long )(& xm_link_timer)) { activate_suitable_timer_3(timer, data); } else { } return (0); } } int ldv_irq_2(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = skge_intr(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_49721; default: ldv_stop(); } ldv_49721: ; } else { } return (state); } } void ldv_timer_3(int state , struct timer_list *timer ) { { LDV_IN_INTERRUPT = 2; xm_link_timer(timer->data); LDV_IN_INTERRUPT = 1; return; } } int main(void) { int ldvarg1 ; struct ifreq *ldvarg4 ; void *tmp ; int ldvarg3 ; void *ldvarg0 ; void *tmp___0 ; struct sk_buff *ldvarg2 ; void *tmp___1 ; unsigned long ldvarg7 ; struct notifier_block *ldvarg5 ; void *tmp___2 ; void *ldvarg6 ; void *tmp___3 ; struct ethtool_stats *ldvarg18 ; void *tmp___4 ; u8 *ldvarg11 ; void *tmp___5 ; u32 ldvarg12 ; struct ethtool_regs *ldvarg16 ; void *tmp___6 ; void *ldvarg15 ; void *tmp___7 ; u8 *ldvarg8 ; void *tmp___8 ; u64 *ldvarg17 ; void *tmp___9 ; enum ethtool_phys_id_state ldvarg14 ; int ldvarg13 ; u32 ldvarg10 ; struct ethtool_drvinfo *ldvarg19 ; void *tmp___10 ; u8 *ldvarg9 ; void *tmp___11 ; char *ldvarg24 ; void *tmp___12 ; loff_t ldvarg21 ; int ldvarg20 ; size_t ldvarg23 ; loff_t *ldvarg22 ; void *tmp___13 ; struct pci_device_id *ldvarg25 ; void *tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; { tmp = ldv_init_zalloc(40UL); ldvarg4 = (struct ifreq *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg0 = tmp___0; tmp___1 = ldv_init_zalloc(232UL); ldvarg2 = (struct sk_buff *)tmp___1; tmp___2 = ldv_init_zalloc(24UL); ldvarg5 = (struct notifier_block *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg6 = tmp___3; tmp___4 = ldv_init_zalloc(8UL); ldvarg18 = (struct ethtool_stats *)tmp___4; tmp___5 = ldv_init_zalloc(1UL); ldvarg11 = (u8 *)tmp___5; tmp___6 = ldv_init_zalloc(12UL); ldvarg16 = (struct ethtool_regs *)tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg15 = tmp___7; tmp___8 = ldv_init_zalloc(1UL); ldvarg8 = (u8 *)tmp___8; tmp___9 = ldv_init_zalloc(8UL); ldvarg17 = (u64 *)tmp___9; tmp___10 = ldv_init_zalloc(196UL); ldvarg19 = (struct ethtool_drvinfo *)tmp___10; tmp___11 = ldv_init_zalloc(1UL); ldvarg9 = (u8 *)tmp___11; tmp___12 = ldv_init_zalloc(1UL); ldvarg24 = (char *)tmp___12; tmp___13 = ldv_init_zalloc(8UL); ldvarg22 = (loff_t *)tmp___13; tmp___14 = ldv_init_zalloc(32UL); ldvarg25 = (struct pci_device_id *)tmp___14; ldv_initialize(); ldv_memset((void *)(& ldvarg1), 0, 4UL); ldv_memset((void *)(& ldvarg3), 0, 4UL); ldv_memset((void *)(& ldvarg7), 0, 8UL); ldv_memset((void *)(& ldvarg12), 0, 4UL); ldv_memset((void *)(& ldvarg14), 0, 4UL); ldv_memset((void *)(& ldvarg13), 0, 4UL); ldv_memset((void *)(& ldvarg10), 0, 4UL); ldv_memset((void *)(& ldvarg21), 0, 8UL); ldv_memset((void *)(& ldvarg20), 0, 4UL); ldv_memset((void *)(& ldvarg23), 0, 8UL); ldv_state_variable_6 = 0; timer_init_3(); ldv_state_variable_3 = 1; ldv_state_variable_7 = 0; ldv_state_variable_9 = 0; ldv_state_variable_2 = 1; ldv_state_variable_8 = 0; ldv_state_variable_1 = 1; ldv_state_variable_4 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_5 = 0; ldv_49864: tmp___15 = __VERIFIER_nondet_int(); switch (tmp___15) { case 0: ; if (ldv_state_variable_6 != 0) { tmp___16 = __VERIFIER_nondet_int(); switch (tmp___16) { case 0: ; if (ldv_state_variable_6 == 1) { skge_ioctl(skge_netdev_ops_group1, ldvarg4, ldvarg3); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { skge_ioctl(skge_netdev_ops_group1, ldvarg4, ldvarg3); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_ioctl(skge_netdev_ops_group1, ldvarg4, ldvarg3); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 1: ; if (ldv_state_variable_6 == 1) { skge_get_stats(skge_netdev_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { skge_get_stats(skge_netdev_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_get_stats(skge_netdev_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 2: ; if (ldv_state_variable_6 == 2) { ldv_retval_1 = skge_up(skge_netdev_ops_group1); if (ldv_retval_1 == 0) { ldv_state_variable_6 = 3; } else { } } else { } goto ldv_49772; case 3: ; if (ldv_state_variable_6 == 3) { skge_xmit_frame(ldvarg2, skge_netdev_ops_group1); ldv_state_variable_6 = 3; } else { } goto ldv_49772; case 4: ; if (ldv_state_variable_6 == 3) { skge_down(skge_netdev_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 5: ; if (ldv_state_variable_6 == 1) { skge_set_multicast(skge_netdev_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { skge_set_multicast(skge_netdev_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_set_multicast(skge_netdev_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 6: ; if (ldv_state_variable_6 == 1) { eth_validate_addr(skge_netdev_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { eth_validate_addr(skge_netdev_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { eth_validate_addr(skge_netdev_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 7: ; if (ldv_state_variable_6 == 1) { skge_netpoll(skge_netdev_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { skge_netpoll(skge_netdev_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_netpoll(skge_netdev_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 8: ; if (ldv_state_variable_6 == 3) { skge_change_mtu(skge_netdev_ops_group1, ldvarg1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_change_mtu(skge_netdev_ops_group1, ldvarg1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 9: ; if (ldv_state_variable_6 == 1) { skge_set_mac_address(skge_netdev_ops_group1, ldvarg0); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { skge_set_mac_address(skge_netdev_ops_group1, ldvarg0); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_set_mac_address(skge_netdev_ops_group1, ldvarg0); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 10: ; if (ldv_state_variable_6 == 1) { skge_tx_timeout(skge_netdev_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { skge_tx_timeout(skge_netdev_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { skge_tx_timeout(skge_netdev_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49772; case 11: ; if (ldv_state_variable_6 == 2) { ldv_ndo_uninit_6(); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_49772; case 12: ; if (ldv_state_variable_6 == 1) { ldv_retval_0 = ldv_ndo_init_6(); if (ldv_retval_0 == 0) { ldv_state_variable_6 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_49772; default: ldv_stop(); } ldv_49772: ; } else { } goto ldv_49786; case 1: ; if (ldv_state_variable_3 != 0) { choose_timer_3(); } else { } goto ldv_49786; case 2: ; if (ldv_state_variable_7 != 0) { tmp___17 = __VERIFIER_nondet_int(); switch (tmp___17) { case 0: ; if (ldv_state_variable_7 == 1) { skge_device_event(ldvarg5, ldvarg7, ldvarg6); ldv_state_variable_7 = 1; } else { } goto ldv_49790; default: ldv_stop(); } ldv_49790: ; } else { } goto ldv_49786; case 3: ; if (ldv_state_variable_9 != 0) { tmp___18 = __VERIFIER_nondet_int(); switch (tmp___18) { case 0: ; if (ldv_state_variable_9 == 1) { skge_get_drvinfo(skge_ethtool_ops_group5, ldvarg19); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 1: ; if (ldv_state_variable_9 == 1) { skge_set_pauseparam(skge_ethtool_ops_group5, skge_ethtool_ops_group3); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 2: ; if (ldv_state_variable_9 == 1) { skge_get_ethtool_stats(skge_ethtool_ops_group5, ldvarg18, ldvarg17); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 3: ; if (ldv_state_variable_9 == 1) { skge_get_coalesce(skge_ethtool_ops_group5, skge_ethtool_ops_group4); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 4: ; if (ldv_state_variable_9 == 1) { skge_get_ring_param(skge_ethtool_ops_group5, skge_ethtool_ops_group0); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 5: ; if (ldv_state_variable_9 == 1) { skge_get_regs(skge_ethtool_ops_group5, ldvarg16, ldvarg15); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 6: ; if (ldv_state_variable_9 == 1) { skge_set_phys_id(skge_ethtool_ops_group5, ldvarg14); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 7: ; if (ldv_state_variable_9 == 1) { skge_get_pauseparam(skge_ethtool_ops_group5, skge_ethtool_ops_group3); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 8: ; if (ldv_state_variable_9 == 1) { skge_get_sset_count(skge_ethtool_ops_group5, ldvarg13); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 9: ; if (ldv_state_variable_9 == 1) { skge_get_settings(skge_ethtool_ops_group5, skge_ethtool_ops_group1); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 10: ; if (ldv_state_variable_9 == 1) { skge_set_coalesce(skge_ethtool_ops_group5, skge_ethtool_ops_group4); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 11: ; if (ldv_state_variable_9 == 1) { skge_set_wol(skge_ethtool_ops_group5, skge_ethtool_ops_group6); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 12: ; if (ldv_state_variable_9 == 1) { skge_set_msglevel(skge_ethtool_ops_group5, ldvarg12); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 13: ; if (ldv_state_variable_9 == 1) { skge_get_eeprom_len(skge_ethtool_ops_group5); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 14: ; if (ldv_state_variable_9 == 1) { skge_set_settings(skge_ethtool_ops_group5, skge_ethtool_ops_group1); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 15: ; if (ldv_state_variable_9 == 1) { skge_get_eeprom(skge_ethtool_ops_group5, skge_ethtool_ops_group2, ldvarg11); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 16: ; if (ldv_state_variable_9 == 1) { skge_get_strings(skge_ethtool_ops_group5, ldvarg10, ldvarg9); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 17: ; if (ldv_state_variable_9 == 1) { skge_nway_reset(skge_ethtool_ops_group5); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 18: ; if (ldv_state_variable_9 == 1) { skge_get_wol(skge_ethtool_ops_group5, skge_ethtool_ops_group6); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 19: ; if (ldv_state_variable_9 == 1) { skge_set_eeprom(skge_ethtool_ops_group5, skge_ethtool_ops_group2, ldvarg8); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 20: ; if (ldv_state_variable_9 == 1) { skge_get_msglevel(skge_ethtool_ops_group5); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 21: ; if (ldv_state_variable_9 == 1) { skge_get_regs_len(skge_ethtool_ops_group5); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 22: ; if (ldv_state_variable_9 == 1) { skge_set_ring_param(skge_ethtool_ops_group5, skge_ethtool_ops_group0); ldv_state_variable_9 = 1; } else { } goto ldv_49794; case 23: ; if (ldv_state_variable_9 == 1) { ethtool_op_get_link(skge_ethtool_ops_group5); ldv_state_variable_9 = 1; } else { } goto ldv_49794; default: ldv_stop(); } ldv_49794: ; } else { } goto ldv_49786; case 4: ; if (ldv_state_variable_2 != 0) { choose_interrupt_2(); } else { } goto ldv_49786; case 5: ; if (ldv_state_variable_8 != 0) { tmp___19 = __VERIFIER_nondet_int(); switch (tmp___19) { case 0: ; if (ldv_state_variable_8 == 1) { ldv_retval_2 = skge_debug_open(skge_debug_fops_group1, skge_debug_fops_group2); if (ldv_retval_2 == 0) { ldv_state_variable_8 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_49822; case 1: ; if (ldv_state_variable_8 == 2) { single_release(skge_debug_fops_group1, skge_debug_fops_group2); ldv_state_variable_8 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_49822; case 2: ; if (ldv_state_variable_8 == 2) { seq_read(skge_debug_fops_group2, ldvarg24, ldvarg23, ldvarg22); ldv_state_variable_8 = 2; } else { } goto ldv_49822; case 3: ; if (ldv_state_variable_8 == 2) { seq_lseek(skge_debug_fops_group2, ldvarg21, ldvarg20); ldv_state_variable_8 = 2; } else { } goto ldv_49822; default: ldv_stop(); } ldv_49822: ; } else { } goto ldv_49786; case 6: ; if (ldv_state_variable_1 != 0) { choose_interrupt_1(); } else { } goto ldv_49786; case 7: ; if (ldv_state_variable_4 != 0) { tmp___20 = __VERIFIER_nondet_int(); switch (tmp___20) { case 0: ; if (ldv_state_variable_4 == 1) { ldv_retval_3 = skge_probe(skge_driver_group1, (struct pci_device_id const *)ldvarg25); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_49830; case 1: ; if (ldv_state_variable_4 == 2) { skge_shutdown(skge_driver_group1); ldv_state_variable_4 = 2; } else { } goto ldv_49830; case 2: ; if (ldv_state_variable_4 == 2) { skge_remove(skge_driver_group1); ldv_state_variable_4 = 1; } else { } goto ldv_49830; default: ldv_stop(); } ldv_49830: ; } else { } goto ldv_49786; case 8: ; if (ldv_state_variable_0 != 0) { tmp___21 = __VERIFIER_nondet_int(); switch (tmp___21) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { skge_cleanup_module(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_49837; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_4 = skge_init_module(); if (ldv_retval_4 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_5 = 1; ldv_dev_pm_ops_5(); ldv_state_variable_9 = 1; ldv_initialize_ethtool_ops_9(); ldv_state_variable_7 = 1; ldv_state_variable_8 = 1; ldv_file_operations_8(); } else { } if (ldv_retval_4 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_49837; default: ldv_stop(); } ldv_49837: ; } else { } goto ldv_49786; case 9: ; if (ldv_state_variable_5 != 0) { tmp___22 = __VERIFIER_nondet_int(); switch (tmp___22) { case 0: ; if (ldv_state_variable_5 == 14) { ldv_retval_23 = skge_resume(skge_pm_ops_group1); if (ldv_retval_23 == 0) { ldv_state_variable_5 = 15; } else { } } else { } goto ldv_49842; case 1: ; if (ldv_state_variable_5 == 2) { ldv_retval_22 = skge_suspend(skge_pm_ops_group1); if (ldv_retval_22 == 0) { ldv_state_variable_5 = 3; } else { } } else { } goto ldv_49842; case 2: ; if (ldv_state_variable_5 == 2) { ldv_retval_21 = skge_suspend(skge_pm_ops_group1); if (ldv_retval_21 == 0) { ldv_state_variable_5 = 4; } else { } } else { } goto ldv_49842; case 3: ; if (ldv_state_variable_5 == 2) { ldv_retval_20 = skge_suspend(skge_pm_ops_group1); if (ldv_retval_20 == 0) { ldv_state_variable_5 = 5; } else { } } else { } goto ldv_49842; case 4: ; if (ldv_state_variable_5 == 12) { ldv_retval_19 = skge_resume(skge_pm_ops_group1); if (ldv_retval_19 == 0) { ldv_state_variable_5 = 15; } else { } } else { } goto ldv_49842; case 5: ; if (ldv_state_variable_5 == 13) { ldv_retval_18 = skge_resume(skge_pm_ops_group1); if (ldv_retval_18 == 0) { ldv_state_variable_5 = 15; } else { } } else { } goto ldv_49842; case 6: ; if (ldv_state_variable_5 == 3) { ldv_retval_17 = ldv_suspend_late_5(); if (ldv_retval_17 == 0) { ldv_state_variable_5 = 6; } else { } } else { } goto ldv_49842; case 7: ; if (ldv_state_variable_5 == 9) { ldv_retval_16 = ldv_restore_early_5(); if (ldv_retval_16 == 0) { ldv_state_variable_5 = 13; } else { } } else { } goto ldv_49842; case 8: ; if (ldv_state_variable_5 == 6) { ldv_retval_15 = ldv_resume_early_5(); if (ldv_retval_15 == 0) { ldv_state_variable_5 = 12; } else { } } else { } goto ldv_49842; case 9: ; if (ldv_state_variable_5 == 11) { ldv_retval_14 = ldv_thaw_early_5(); if (ldv_retval_14 == 0) { ldv_state_variable_5 = 14; } else { } } else { } goto ldv_49842; case 10: ; if (ldv_state_variable_5 == 7) { ldv_retval_13 = ldv_resume_noirq_5(); if (ldv_retval_13 == 0) { ldv_state_variable_5 = 12; } else { } } else { } goto ldv_49842; case 11: ; if (ldv_state_variable_5 == 5) { ldv_retval_12 = ldv_freeze_noirq_5(); if (ldv_retval_12 == 0) { ldv_state_variable_5 = 10; } else { } } else { } goto ldv_49842; case 12: ; if (ldv_state_variable_5 == 1) { ldv_retval_11 = ldv_prepare_5(); if (ldv_retval_11 == 0) { ldv_state_variable_5 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_49842; case 13: ; if (ldv_state_variable_5 == 5) { ldv_retval_10 = ldv_freeze_late_5(); if (ldv_retval_10 == 0) { ldv_state_variable_5 = 11; } else { } } else { } goto ldv_49842; case 14: ; if (ldv_state_variable_5 == 10) { ldv_retval_9 = ldv_thaw_noirq_5(); if (ldv_retval_9 == 0) { ldv_state_variable_5 = 14; } else { } } else { } goto ldv_49842; case 15: ; if (ldv_state_variable_5 == 4) { ldv_retval_8 = ldv_poweroff_noirq_5(); if (ldv_retval_8 == 0) { ldv_state_variable_5 = 8; } else { } } else { } goto ldv_49842; case 16: ; if (ldv_state_variable_5 == 4) { ldv_retval_7 = ldv_poweroff_late_5(); if (ldv_retval_7 == 0) { ldv_state_variable_5 = 9; } else { } } else { } goto ldv_49842; case 17: ; if (ldv_state_variable_5 == 8) { ldv_retval_6 = ldv_restore_noirq_5(); if (ldv_retval_6 == 0) { ldv_state_variable_5 = 13; } else { } } else { } goto ldv_49842; case 18: ; if (ldv_state_variable_5 == 3) { ldv_retval_5 = ldv_suspend_noirq_5(); if (ldv_retval_5 == 0) { ldv_state_variable_5 = 7; } else { } } else { } goto ldv_49842; case 19: ; if (ldv_state_variable_5 == 15) { ldv_complete_5(); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_49842; default: ldv_stop(); } ldv_49842: ; } else { } goto ldv_49786; default: ldv_stop(); } ldv_49786: ; goto ldv_49864; ldv_final: ldv_check_final_state(); return 0; } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } __inline static void spin_lock(spinlock_t *lock ) { { ldv_spin_lock(); ldv_spin_lock_5(lock); return; } } __inline static void spin_lock_bh(spinlock_t *lock ) { { ldv_spin_lock(); ldv_spin_lock_bh_6(lock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) { { ldv_spin_lock(); ldv_spin_lock_irq_8(lock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { ldv_spin_unlock(); ldv_spin_unlock_9(lock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { ldv_spin_unlock(); ldv_spin_unlock_bh_10(lock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) { { ldv_spin_unlock(); ldv_spin_unlock_irq_11(lock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { ldv_spin_unlock(); ldv_spin_unlock_irqrestore_12(lock, flags); return; } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return (tmp); } } void *ldv_kmem_cache_alloc_20(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return (tmp); } } int ldv_pskb_expand_head_26(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((int )((long )tmp)); } } struct sk_buff *ldv_skb_clone_28(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_30(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_31(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_32(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_33(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_34(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((int )((long )tmp)); } } int ldv_pskb_expand_head_35(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((int )((long )tmp)); } } struct sk_buff *ldv_skb_clone_36(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_37(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_undef_ptr(); return ((struct sk_buff *)tmp); } } int ldv_mod_timer_38(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_3(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_mod_timer_39(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_3(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_mod_timer_40(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_3(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } __inline static int ldv_request_irq_41(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_2(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_2((int )irq, dev); } else { } return (ldv_func_res); } } int ldv_del_timer_sync_42(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_3(ldv_func_arg1); return (ldv_func_res); } } void ldv_free_irq_43(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_2((int )ldv_func_arg1, ldv_func_arg2); return; } } int ldv_register_netdev_44(struct net_device *dev ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; { tmp = register_netdev(dev); ldv_func_res = tmp; ldv_state_variable_6 = 1; ldv_net_device_ops_6(); return (ldv_func_res); } } int ldv_register_netdev_45(struct net_device *dev ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; { tmp = register_netdev(dev); ldv_func_res = tmp; ldv_state_variable_6 = 1; ldv_net_device_ops_6(); return (ldv_func_res); } } __inline static int ldv_request_irq_46(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_2(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_2((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_unregister_netdev_47(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_free_netdev_48(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_unregister_netdev_49(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_free_netdev_50(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_unregister_netdev_51(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_unregister_netdev_52(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_free_irq_53(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_2((int )ldv_func_arg1, ldv_func_arg2); return; } } void ldv_free_irq_54(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_2((int )ldv_func_arg1, ldv_func_arg2); return; } } void ldv_free_netdev_55(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_6 = 0; return; } } void ldv_free_netdev_56(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_6 = 0; return; } } int ldv___pci_register_driver_57(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_4 = 1; ldv_pci_driver_4(); return (ldv_func_res); } } void ldv_pci_unregister_driver_58(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_4 = 0; return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } int ldv_spin = 0; void ldv_check_alloc_flags(gfp_t flags ) { { if (ldv_spin != 0 && (flags & 16U) != 0U) { ldv_error(); } else { } return; } } extern struct page *ldv_some_page(void) ; struct page *ldv_check_alloc_flags_and_return_some_page(gfp_t flags ) { struct page *tmp ; { if (ldv_spin != 0 && (flags & 16U) != 0U) { ldv_error(); } else { } tmp = ldv_some_page(); return (tmp); } } void ldv_check_alloc_nonatomic(void) { { if (ldv_spin != 0) { ldv_error(); } else { } return; } } void ldv_spin_lock(void) { { ldv_spin = 1; return; } } void ldv_spin_unlock(void) { { ldv_spin = 0; return; } } int ldv_spin_trylock(void) { int is_lock ; { is_lock = ldv_undef_int(); if (is_lock != 0) { return (0); } else { ldv_spin = 1; return (1); } } }