extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned short umode_t; typedef unsigned int __kernel_mode_t; typedef unsigned long __kernel_nlink_t; typedef long __kernel_off_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef long long __kernel_loff_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_nlink_t nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void *data ; }; typedef void (*ctor_fn_t)(void); struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct device; struct task_struct; struct lockdep_map; struct module; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct completion; struct pt_regs; struct pid; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_9 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_9 __annonCompField4 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct __anonstruct____missing_field_name_16 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_17 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_15 { struct __anonstruct____missing_field_name_16 __annonCompField6 ; struct __anonstruct____missing_field_name_17 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_15 __annonCompField8 ; }; struct thread_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct arch_spinlock; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField11 ; struct __anonstruct____missing_field_name_22 __annonCompField12 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField14 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; mode_t mode ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct vm_area_struct; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct sysfs_dirent; struct timespec; struct arch_spinlock { unsigned int slock ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_arch_rwlock_t_30 { unsigned int lock ; }; typedef struct __anonstruct_arch_rwlock_t_30 arch_rwlock_t; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_32 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_31 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_32 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_31 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_33 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_33 rwlock_t; struct kref { atomic_t refcount ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_seqlock_t_34 { unsigned int sequence ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_34 seqlock_t; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; uid_t uid ; gid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __anonstruct_nodemask_t_35 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_35 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct ctl_table; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char ignore_children : 1 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; void *subsys_data ; }; struct dev_power_domain { struct dev_pm_ops ops ; }; struct pci_bus; struct __anonstruct_mm_context_t_100 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_100 mm_context_t; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head * ) ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_set { struct list_head list ; struct ctl_table_set *parent ; int (*is_seen)(struct ctl_table_set * ) ; }; struct ctl_table_header; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table { char const *procname ; void *data ; int maxlen ; mode_t mode ; struct ctl_table *child ; struct ctl_table *parent ; proc_handler *proc_handler ; void *extra1 ; void *extra2 ; }; struct ctl_table_root { struct list_head root_list ; struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_root * , struct nsproxy * , struct ctl_table * ) ; }; struct __anonstruct____missing_field_name_125 { struct ctl_table *ctl_table ; struct list_head ctl_entry ; int used ; int count ; }; union __anonunion____missing_field_name_124 { struct __anonstruct____missing_field_name_125 __annonCompField29 ; struct rcu_head rcu ; }; struct ctl_table_header { union __anonunion____missing_field_name_124 __annonCompField30 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_table *attached_by ; struct ctl_table *attached_to ; struct ctl_table_header *parent ; }; struct cred; struct linux_binprm; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_130 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; u16 flags ; union __anonunion____missing_field_name_130 __annonCompField31 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct jump_label_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct jump_label_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned int incs ; unsigned int decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct device_type; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_power_domain *pwr_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; dev_t devt ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; }; struct wakeup_source { char *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long hit_count ; unsigned char active : 1 ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_131 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 pcie_type ; u8 rom_base_reg ; u8 pin ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; int pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned int d3_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[18U] ; resource_size_t fw_addr[18U] ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_ucfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char is_pcie : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[18U] ; struct bin_attribute *res_attr_wc[18U] ; struct list_head msi_list ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_131 __annonCompField32 ; struct pci_ats *ats ; }; struct pci_ops; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct pci_ops *ops ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char secondary ; unsigned char subordinate ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; struct pci_error_handlers *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct prio_tree_root { struct prio_tree_node *prio_tree_node ; unsigned short index_bits ; unsigned short raw ; }; struct address_space; struct __anonstruct____missing_field_name_133 { u16 inuse ; u16 objects ; }; union __anonunion____missing_field_name_132 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_133 __annonCompField33 ; }; struct __anonstruct____missing_field_name_135 { unsigned long private ; struct address_space *mapping ; }; union __anonunion____missing_field_name_134 { struct __anonstruct____missing_field_name_135 __annonCompField35 ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion____missing_field_name_136 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion____missing_field_name_132 __annonCompField34 ; union __anonunion____missing_field_name_134 __annonCompField36 ; union __anonunion____missing_field_name_136 __annonCompField37 ; struct list_head lru ; }; struct __anonstruct_vm_set_138 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_137 { struct __anonstruct_vm_set_138 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_137 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; atomic_t oom_disable_count ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; }; struct inode; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; int node ; unsigned int stat[19U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc_coherent)(struct device * , size_t , dma_addr_t * , gfp_t ) ; void (*free_coherent)(struct device * , size_t , void * , dma_addr_t ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct ethtool_pauseparam; struct ethtool_coalesce; struct ethtool_eeprom; struct ethtool_wolinfo; struct ethtool_cmd; struct net_device; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef unsigned short sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_139 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_139 sync_serial_settings; struct __anonstruct_te1_settings_140 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_140 te1_settings; struct __anonstruct_raw_hdlc_proto_141 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_141 raw_hdlc_proto; struct __anonstruct_fr_proto_142 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_142 fr_proto; struct __anonstruct_fr_proto_pvc_143 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_143 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_144 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_144 fr_proto_pvc_info; struct __anonstruct_cisco_proto_145 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_145 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_146 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_146 ifs_ifsu ; }; union __anonunion_ifr_ifrn_147 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_148 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_147 ifr_ifrn ; union __anonunion_ifr_ifru_148 ifr_ifru ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; enum ldv_17447 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_17447 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct rcu_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; }; struct exception_table_entry { unsigned long insn ; unsigned long fixup ; }; struct in6_addr; struct sk_buff; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned long active_bases ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned int mask ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct skb_frag_struct { struct page *page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned short nr_frags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; __be32 ip6_frag_id ; __u8 tx_flags ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[18U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_152 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_151 { __wsum csum ; struct __anonstruct____missing_field_name_152 __annonCompField38 ; }; union __anonunion____missing_field_name_153 { __u32 mark ; __u32 dropcount ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_151 __annonCompField39 ; __u32 priority ; unsigned char local_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct sk_buff *nfct_reasm ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u16 tc_index ; __u16 tc_verd ; __u32 rxhash ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char ooo_okay : 1 ; dma_cookie_t dma_cookie ; __u32 secmark ; union __anonunion____missing_field_name_153 __annonCompField40 ; __u16 vlan_tci ; sk_buff_data_t transport_header ; sk_buff_data_t network_header ; sk_buff_data_t mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct dentry; struct user_namespace; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; }; struct plist_head { struct list_head node_list ; raw_spinlock_t *rawlock ; spinlock_t *spinlock ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct file_operations; struct pm_qos_request_list { struct plist_node list ; int pm_qos_class ; }; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct block_device; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct qstr { unsigned int hash ; unsigned int len ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_155 { struct list_head d_child ; struct rcu_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_155 d_u ; struct list_head d_subdirs ; struct list_head d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , struct nameidata * ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct rcu_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct export_operations; struct kstatfs; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; uid_t ia_uid ; gid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; struct percpu_counter { spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t qid_t; typedef long long qsize_t; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; unsigned int dq_id ; loff_t dq_off ; unsigned long dq_flags ; short dq_type ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_157 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_156 { size_t written ; size_t count ; union __anonunion_arg_157 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_156 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct prio_tree_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; }; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_158 { struct list_head i_dentry ; struct rcu_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_159 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; uid_t i_uid ; gid_t i_gid ; struct inode_operations const *i_op ; struct super_block *i_sb ; spinlock_t i_lock ; unsigned int i_flags ; unsigned long i_state ; void *i_security ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_158 __annonCompField41 ; unsigned long i_ino ; atomic_t i_count ; unsigned int i_nlink ; dev_t i_rdev ; unsigned int i_blkbits ; u64 i_version ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; blkcnt_t i_blocks ; unsigned short i_bytes ; struct rw_semaphore i_alloc_sem ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space *i_mapping ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_159 __annonCompField42 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; atomic_t i_writecount ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; uid_t uid ; uid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_160 { struct list_head fu_list ; struct rcu_head fu_rcuhead ; }; struct file { union __anonunion_f_u_160 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*fl_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*fl_notify)(struct file_lock * ) ; int (*fl_grant)(struct file_lock * , struct file_lock * , int ) ; void (*fl_release_private)(struct file_lock * ) ; void (*fl_break)(struct file_lock * ) ; int (*fl_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_162 { struct list_head link ; int state ; }; union __anonunion_fl_u_161 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_162 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned char fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_161 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct rcu_head fa_rcu ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_dirt ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; struct mutex s_lock ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct list_head s_instances ; struct quota_info s_dquot ; int s_frozen ; wait_queue_head_t s_wait_unfrozen ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int , unsigned int ) ; int (*check_acl)(struct inode * , int , unsigned int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , int , struct nameidata * ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , int ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , int , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; void (*truncate)(struct inode * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; void (*truncate_range)(struct inode * , loff_t , loff_t ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; void (*write_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct vfsmount * ) ; int (*show_devname)(struct seq_file * , struct vfsmount * ) ; int (*show_path)(struct seq_file * , struct vfsmount * ) ; int (*show_stats)(struct seq_file * , struct vfsmount * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct list_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; struct lock_class_key i_alloc_sem_key ; }; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; typedef unsigned long cputime_t; struct siginfo; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_170 { long _band ; int _fd ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_170 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct prop_local_single { unsigned long events ; unsigned long period ; int shift ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_173 { int mode ; }; typedef struct __anonstruct_seccomp_t_173 seccomp_t; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_list; struct key_user; union __anonunion____missing_field_name_174 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_175 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_176 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_174 __annonCompField43 ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_175 type_data ; union __anonunion_payload_176 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; gid_t small_block[32U] ; gid_t *blocks[0U] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct rcu_head rcu ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; uid_t uid ; gid_t gid ; uid_t suid ; gid_t sgid ; uid_t euid ; gid_t egid ; uid_t fsuid ; gid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct rcu_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct kioctx; union __anonunion_ki_obj_177 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_177 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct rcu_head rcu_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore threadgroup_fork_lock ; int oom_adj ; int oom_score_adj ; int oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct user_namespace *user_ns ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct irqaction; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct task_struct *wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int group_stop ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; struct cred *replacement_session_keyring ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; struct irqaction *irqaction ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int mems_allowed_change_disable ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; atomic_t ptrace_bp_refcnt ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 reserved2 ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[60U] ; }; struct ethtool_flow_ext { __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_rxfh_indir { __u32 cmd ; __u32 size ; __u32 ring_index[0U] ; }; union __anonunion_h_u_184 { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[72U] ; }; union __anonunion_m_u_185 { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[72U] ; }; struct ethtool_rx_ntuple_flow_spec { __u32 flow_type ; union __anonunion_h_u_184 h_u ; union __anonunion_m_u_185 m_u ; __u16 vlan_tag ; __u16 vlan_tag_mask ; __u64 data ; __u64 data_mask ; __s32 action ; }; struct ethtool_rx_ntuple { __u32 cmd ; struct ethtool_rx_ntuple_flow_spec fs ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_rx_ntuple_list { struct list_head list ; unsigned int count ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; u32 (*get_rx_csum)(struct net_device * ) ; int (*set_rx_csum)(struct net_device * , u32 ) ; u32 (*get_tx_csum)(struct net_device * ) ; int (*set_tx_csum)(struct net_device * , u32 ) ; u32 (*get_sg)(struct net_device * ) ; int (*set_sg)(struct net_device * , u32 ) ; u32 (*get_tso)(struct net_device * ) ; int (*set_tso)(struct net_device * , u32 ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_ufo)(struct net_device * ) ; int (*set_ufo)(struct net_device * , u32 ) ; u32 (*get_flags)(struct net_device * ) ; int (*set_flags)(struct net_device * , u32 ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , void * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; int (*set_rx_ntuple)(struct net_device * , struct ethtool_rx_ntuple * ) ; int (*get_rx_ntuple)(struct net_device * , u32 , void * ) ; int (*get_rxfh_indir)(struct net_device * , struct ethtool_rxfh_indir * ) ; int (*set_rxfh_indir)(struct net_device * , struct ethtool_rxfh_indir const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[31U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[27U] ; }; struct icmpmsg_mib { unsigned long mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[5U] ; }; struct icmpv6msg_mib { unsigned long mibs[512U] ; }; struct tcp_mib { unsigned long mibs[15U] ; }; struct udp_mib { unsigned long mibs[7U] ; }; struct linux_mib { unsigned long mibs[80U] ; }; struct linux_xfrm_mib { unsigned long mibs[27U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[2U] ; struct ipstats_mib *ip_statistics[2U] ; struct linux_mib *net_statistics[2U] ; struct udp_mib *udp_statistics[2U] ; struct udp_mib *udplite_statistics[2U] ; struct icmp_mib *icmp_statistics[2U] ; struct icmpmsg_mib *icmpmsg_statistics[2U] ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[2U] ; struct udp_mib *udplite_stats_in6[2U] ; struct ipstats_mib *ipv6_statistics[2U] ; struct icmpv6_mib *icmpv6_statistics[2U] ; struct icmpv6msg_mib *icmpv6msg_statistics[2U] ; struct linux_xfrm_mib *xfrm_statistics[2U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { spinlock_t sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; atomic_t mem ; struct list_head lru_list ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *tcp_sock ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; int sysctl_rt_cache_rebuild_count ; int current_rt_cache_rebuild_count ; unsigned int sysctl_ping_group_range[2U] ; atomic_t rt_genid ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; }; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*default_mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , u32 ) ; int (*local_out)(struct sk_buff * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *table ; struct ctl_table_header *frags_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int icmpv6_time ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_186 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_186 in6_u ; }; typedef int read_proc_t(char * , char ** , off_t , int , int * , void * ); typedef int write_proc_t(struct file * , char const * , unsigned long , void * ); struct proc_dir_entry { unsigned int low_ino ; unsigned int namelen ; char const *name ; mode_t mode ; nlink_t nlink ; uid_t uid ; gid_t gid ; loff_t size ; struct inode_operations const *proc_iops ; struct file_operations const *proc_fops ; struct proc_dir_entry *next ; struct proc_dir_entry *parent ; struct proc_dir_entry *subdir ; void *data ; read_proc_t *read_proc ; write_proc_t *write_proc ; atomic_t count ; int pde_users ; spinlock_t pde_unload_lock ; struct completion *pde_unload_completion ; struct list_head pde_openers ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct ip_conntrack_stat; struct netns_ct { atomic_t count ; unsigned int expect_count ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct ip_conntrack_stat *stat ; int sysctl_events ; unsigned int sysctl_events_retry_timeout ; int sysctl_acct ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int sysctl_log_invalid ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; char *slabname ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; wait_queue_head_t km_waitq ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_dccp dccp ; struct netns_xt xt ; struct netns_ct ct ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; u8 (*getnumtcs)(struct net_device * , int , u8 * ) ; u8 (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct vlan_group; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neighbour; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool synced ; bool global_use ; int refcount ; struct rcu_head rcu_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { struct hh_cache *hh_next ; atomic_t hh_refcnt ; __be16 hh_type ; u16 hh_len ; int (*hh_output)(struct sk_buff * ) ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; unsigned int gro_count ; struct net_device *dev ; struct list_head dev_list ; struct sk_buff *gro_list ; struct sk_buff *skb ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; unsigned long state ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; }; struct rps_map { unsigned int len ; struct rcu_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct rcu_head rcu ; struct work_struct free_work ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct rcu_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct rcu_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; void (*ndo_set_multicast_list)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; void (*ndo_vlan_rx_register)(struct net_device * , struct vlan_group * ) ; void (*ndo_vlan_rx_add_vid)(struct net_device * , unsigned short ) ; void (*ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; u32 (*ndo_fix_features)(struct net_device * , u32 ) ; int (*ndo_set_features)(struct net_device * , u32 ) ; }; struct iw_handler_def; struct iw_public_data; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_tstats; struct pcpu_dstats; union __anonunion____missing_field_name_193 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_tstats *tstats ; struct pcpu_dstats *dstats ; }; struct garp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct pm_qos_request_list pm_qos_req ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; unsigned int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; u32 features ; u32 hw_features ; u32 wanted_features ; u32 vlan_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; int uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_group *vlgrp ; void *dsa_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ec_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; struct net_device *master ; unsigned char *dev_addr ; struct netdev_hw_addr_list dev_addrs ; unsigned char broadcast[32U] ; struct kset *queues_kset ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; struct cpu_rmap *rx_cpu_rmap ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_193 __annonCompField45 ; struct garp_port *garp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct ethtool_rx_ntuple_list ethtool_ntuple_list ; struct phy_device *phydev ; int group ; }; struct irqaction { irqreturn_t (*handler)(int , void * ) ; unsigned long flags ; void *dev_id ; struct irqaction *next ; int irq ; irqreturn_t (*thread_fn)(int , void * ) ; struct task_struct *thread ; unsigned long thread_flags ; unsigned long thread_mask ; char const *name ; struct proc_dir_entry *dir ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct mii_if_info { int phy_id ; int advertising ; int phy_id_mask ; int reg_num_mask ; unsigned char full_duplex : 1 ; unsigned char force_media : 1 ; unsigned char supports_gmii : 1 ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int ) ; void (*mdio_write)(struct net_device * , int , int , int ) ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; void *sysctl ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct linux_binprm { char buf[128U] ; struct vm_area_struct *vma ; unsigned long vma_pages ; struct mm_struct *mm ; unsigned long p ; unsigned char cred_prepared : 1 ; unsigned char cap_effective : 1 ; unsigned int recursion_depth ; struct file *file ; struct cred *cred ; int unsafe ; unsigned int per_clear ; int argc ; int envc ; char const *filename ; char const *interp ; unsigned int interp_flags ; unsigned int interp_data ; unsigned long loader ; unsigned long exec ; }; struct coredump_params { long signr ; struct pt_regs *regs ; struct file *file ; unsigned long limit ; unsigned long mm_flags ; }; struct linux_binfmt { struct list_head lh ; struct module *module ; int (*load_binary)(struct linux_binprm * , struct pt_regs * ) ; int (*load_shlib)(struct file * ) ; int (*core_dump)(struct coredump_params * ) ; unsigned long min_coredump ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; struct rcu_head rcu ; struct sock_filter insns[0U] ; }; struct poll_table_struct { void (*qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; int (*get_tx_queues)(struct net * , struct nlattr ** , unsigned int * , unsigned int * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct rcu_head rcu_head ; int base_reachable_time ; int retrans_time ; int gc_staletime ; int reachable_time ; int delay_probe_time ; int queue_len ; int ucast_probes ; int app_probes ; int mcast_probes ; int anycast_delay ; int proxy_delay ; int proxy_qlen ; int locktime ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache *hh ; int (*output)(struct sk_buff * ) ; struct neigh_ops const *ops ; struct rcu_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; int (*connected_output)(struct sk_buff * ) ; int (*hh_output)(struct sk_buff * ) ; int (*queue_xmit)(struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_mask ; __u32 hash_rnd ; struct rcu_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct kmem_cache *kmem_cachep ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_203 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct rcu_head rcu_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct neighbour *neighbour ; struct hh_cache *hh ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[1U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; int flags ; union __anonunion____missing_field_name_203 __annonCompField49 ; }; struct __anonstruct_socket_lock_t_204 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_204 socket_lock_t; struct proto; union __anonunion____missing_field_name_205 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; union __anonunion____missing_field_name_206 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_207 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { __be32 skc_daddr ; __be32 skc_rcv_saddr ; union __anonunion____missing_field_name_205 __annonCompField50 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse ; int skc_bound_dev_if ; union __anonunion____missing_field_name_206 __annonCompField51 ; struct proto *skc_prot ; struct net *skc_net ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_207 __annonCompField52 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct __anonstruct_sk_backlog_208 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_208 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct sk_buff_head sk_async_wait_queue ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check : 2 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; int sk_route_caps ; int sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page *sk_sndmsg_page ; struct sk_buff *sk_send_head ; __u32 sk_sndmsg_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_209 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_209 h ; struct module *owner ; char name[32U] ; struct list_head node ; }; struct request_values { }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * , struct request_values * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct request_sock *dl_next ; u16 mss ; u8 retrans ; u8 cookie_ts ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; void *(*twsk_getpeer)(struct sock * ) ; }; struct udphdr { __be16 source ; __be16 dest ; __be16 len ; __sum16 check ; }; struct vlan_group { struct net_device *real_dev ; unsigned int nr_vlans ; struct hlist_node hlist ; struct net_device **vlan_devices_arrays[8U] ; struct rcu_head rcu ; }; struct dynpcc_info { unsigned long last_bytes ; unsigned long last_pkts ; unsigned long intr_cnt ; unsigned char cur ; unsigned char attempt ; unsigned char cnt ; }; struct __anonstruct_desc1_222 { __le16 vlan ; __u8 rsv1 ; __u8 flags ; __le16 datalen ; __le16 mss ; __le16 pktsize ; __le16 rsv2 ; __le32 bufaddr ; }; struct __anonstruct_desc2_223 { __le16 rsv1 ; __u8 rsv2 ; __u8 flags ; __le16 datalen ; __le16 rsv3 ; __le32 bufaddrh ; __le32 bufaddrl ; }; struct __anonstruct_descwb_224 { __u8 ehdrsz ; __u8 rsv1 ; __u8 rsv2 ; __u8 flags ; __le16 trycnt ; __le16 segcnt ; __le16 pktsz ; __le16 rsv3 ; __le32 bufaddrl ; }; union __anonunion____missing_field_name_221 { __u8 all[16U] ; __le32 dw[4U] ; struct __anonstruct_desc1_222 desc1 ; struct __anonstruct_desc2_223 desc2 ; struct __anonstruct_descwb_224 descwb ; }; struct txdesc { union __anonunion____missing_field_name_221 __annonCompField54 ; }; struct __anonstruct_desc1_226 { __le16 rsv2 ; __u8 rsv1 ; __u8 flags ; __le16 datalen ; __le16 wbcpl ; __le32 bufaddrh ; __le32 bufaddrl ; }; struct __anonstruct_descwb_227 { __le16 vlan ; __le16 flags ; __le16 framesize ; __u8 errstat ; __u8 desccnt ; __le32 rsshash ; __u8 hashfun ; __u8 hashtype ; __le16 resrv ; }; union __anonunion____missing_field_name_225 { __u8 all[16U] ; __le32 dw[4U] ; struct __anonstruct_desc1_226 desc1 ; struct __anonstruct_descwb_227 descwb ; }; struct rxdesc { union __anonunion____missing_field_name_225 __annonCompField55 ; }; struct jme_buffer_info { struct sk_buff *skb ; dma_addr_t mapping ; int len ; int nr_desc ; unsigned long start_xmit ; }; struct jme_ring { void *alloc ; void *desc ; dma_addr_t dmaalloc ; dma_addr_t dma ; struct jme_buffer_info *bufinf ; int next_to_use ; atomic_t next_to_clean ; atomic_t nr_free ; }; struct jme_adapter { struct pci_dev *pdev ; struct net_device *dev ; void *regs ; struct mii_if_info mii_if ; struct jme_ring rxring[4U] ; struct jme_ring txring[8U] ; spinlock_t phy_lock ; spinlock_t macaddr_lock ; spinlock_t rxmcs_lock ; struct tasklet_struct rxempty_task ; struct tasklet_struct rxclean_task ; struct tasklet_struct txclean_task ; struct tasklet_struct linkch_task ; struct tasklet_struct pcc_task ; unsigned long flags ; u32 reg_txcs ; u32 reg_txpfc ; u32 reg_rxcs ; u32 reg_rxmcs ; u32 reg_ghc ; u32 reg_pmcs ; u32 reg_gpreg1 ; u32 phylink ; u32 tx_ring_size ; u32 tx_ring_mask ; u32 tx_wake_threshold ; u32 rx_ring_size ; u32 rx_ring_mask ; u8 mrrs ; unsigned int fpgaver ; u8 chiprev ; u8 chip_main_rev ; u8 chip_sub_rev ; u8 pcirev ; u32 msg_enable ; struct ethtool_cmd old_ecmd ; unsigned int old_mtu ; struct vlan_group *vlgrp ; struct dynpcc_info dpi ; atomic_t intr_sem ; atomic_t link_changing ; atomic_t tx_cleaning ; atomic_t rx_cleaning ; atomic_t rx_empty ; int (*jme_rx)(struct sk_buff * ) ; int (*jme_vlan_rx)(struct sk_buff * , struct vlan_group * , unsigned short ) ; struct napi_struct napi ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int Set; __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static void set_bit(unsigned int nr , unsigned long volatile *addr ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; bts %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int test_and_clear_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; btr %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int constant_test_bit(unsigned int nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr / 64U)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; extern unsigned long __phys_addr(unsigned long ) ; extern struct pv_irq_ops pv_irq_ops ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern char *strcat(char * , char const * ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/andrianov/commit-tester-work/task-064--linux-stable--dir/inst/current/envs/linux-stable-468e4e3-1/linux-stable-468e4e3-1/arch/x86/include/asm/paravirt.h"), "i" (853), "i" (12UL)); ldv_4917: ; goto ldv_4917; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_add(int i , atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; addl %1,%0": "+m" (v->counter): "ir" (i)); return; } } __inline static void atomic_sub(int i , atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; subl %1,%0": "+m" (v->counter): "ir" (i)); return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { unsigned char c ; { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((unsigned int )c != 0U); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock_bh(spinlock_t *lock ) { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); return; } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern unsigned long volatile jiffies ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; extern void kfree(void const * ) ; extern struct module __this_module ; extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } extern void *dev_get_drvdata(struct device const * ) ; extern int dev_set_drvdata(struct device * , void * ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_byte(struct pci_dev *dev , int where , u8 *val ) { int tmp ; { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev *dev , int where , u32 *val ) { int tmp ; { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev *dev , int where , u32 val ) { int tmp ; { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern void pci_pme_active(struct pci_dev * , bool ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_9(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_10(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , unsigned int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (102), "i" (12UL)); ldv_18974: ; goto ldv_18974; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (114), "i" (12UL)); ldv_18982: ; goto ldv_18982; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } tmp___0 = is_device_dma_capable(dev); if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc_coherent == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t ))0)) { return ((void *)0); } else { } tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc_coherent))(dev, size, dma_handle, tmp___1); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); return (memory); } } __inline static void dma_free_coherent(struct device *dev , size_t size , void *vaddr , dma_addr_t bus ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("/home/ldvuser/andrianov/commit-tester-work/task-064--linux-stable--dir/inst/current/envs/linux-stable-468e4e3-1/linux-stable-468e4e3-1/arch/x86/include/asm/dma-mapping.h", 147); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); if ((unsigned long )ops->free_coherent != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t ))0)) { (*(ops->free_coherent))(dev, size, vaddr, bus); } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static dma_addr_t ldv_pci_map_page_1(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) ; __inline static dma_addr_t ldv_pci_map_page_1(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) ; __inline static void ldv_pci_unmap_page_2(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) ; __inline static void ldv_pci_unmap_page_2(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) ; __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_coherent_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { tmp = dev_name(& pdev->dev); return (tmp); } } dma_addr_t ldv_pci_dma_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) ; void ldv_pci_dma_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } int LDV_IN_INTERRUPT = 1; struct ethtool_pauseparam *jme_ethtool_ops_group2 ; int pci_counter ; struct ethtool_coalesce *jme_ethtool_ops_group3 ; struct pci_dev *jme_driver_group1 ; struct ethtool_eeprom *jme_ethtool_ops_group1 ; int ldv_state_variable_0 ; int ldv_state_variable_3 ; int ldv_state_variable_2 ; struct device *jme_pm_ops_group1 ; int ref_cnt ; struct ethtool_wolinfo *jme_ethtool_ops_group5 ; int ldv_state_variable_1 ; struct ethtool_cmd *jme_ethtool_ops_group0 ; int ldv_state_variable_4 ; struct net_device *jme_netdev_ops_group1 ; struct net_device *jme_ethtool_ops_group4 ; void ldv_net_device_ops_3(void) ; void ldv_pci_driver_1(void) ; void ldv_initialize_ethtool_ops_4(void) ; void ldv_dev_pm_ops_2(void) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; extern void consume_skb(struct sk_buff * ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); return (dataref != 1); } } __inline static int skb_is_nonlinear(struct sk_buff const *skb ) { { return ((int )skb->data_len); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static int skb_tailroom(struct sk_buff const *skb ) { int tmp ; { tmp = skb_is_nonlinear(skb); return (tmp == 0 ? (int )((unsigned int )skb->end - (unsigned int )skb->tail) : 0); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static void skb_reset_transport_header(struct sk_buff *skb ) { { skb->transport_header = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_transport_header(struct sk_buff *skb , int const offset ) { { skb_reset_transport_header(skb); skb->transport_header = skb->transport_header + (sk_buff_data_t )offset; return; } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static void skb_reset_network_header(struct sk_buff *skb ) { { skb->network_header = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_network_header(struct sk_buff *skb , int const offset ) { { skb_reset_network_header(skb); skb->network_header = skb->network_header + (sk_buff_data_t )offset; return; } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { tmp = __netdev_alloc_skb(dev, length, 32U); return (tmp); } } __inline static void skb_checksum_none_assert(struct sk_buff *skb ) { { return; } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern void __napi_schedule(struct napi_struct * ) ; __inline static int napi_disable_pending(struct napi_struct *n ) { int tmp ; { tmp = constant_test_bit(1U, (unsigned long const volatile *)(& n->state)); return (tmp); } } __inline static int napi_schedule_prep(struct napi_struct *n ) { int tmp ; int tmp___0 ; int tmp___1 ; { tmp = napi_disable_pending(n); if (tmp == 0) { tmp___0 = test_and_set_bit(0, (unsigned long volatile *)(& n->state)); if (tmp___0 == 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { set_bit(1U, (unsigned long volatile *)(& n->state)); goto ldv_32202; ldv_32201: msleep(1U); ldv_32202: tmp = test_and_set_bit(0, (unsigned long volatile *)(& n->state)); if (tmp != 0) { goto ldv_32201; } else { } clear_bit(1, (unsigned long volatile *)(& n->state)); return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (521), "i" (12UL)); ldv_32207: ; goto ldv_32207; } else { } __asm__ volatile ("": : : "memory"); clear_bit(0, (unsigned long volatile *)(& n->state)); return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 2560U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } extern void free_irq(unsigned int , void * ) ; __inline static void tasklet_unlock_wait(struct tasklet_struct *t ) { int tmp ; { goto ldv_33919; ldv_33918: __asm__ volatile ("": : : "memory"); ldv_33919: tmp = constant_test_bit(1U, (unsigned long const volatile *)(& t->state)); if (tmp != 0) { goto ldv_33918; } else { } return; } } extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_schedule(t); } else { } return; } } extern void __tasklet_hi_schedule(struct tasklet_struct * ) ; __inline static void tasklet_hi_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_hi_schedule(t); } else { } return; } } __inline static void tasklet_disable_nosync(struct tasklet_struct *t ) { { atomic_inc(& t->count); __asm__ volatile ("": : : "memory"); return; } } __inline static void tasklet_disable(struct tasklet_struct *t ) { { tasklet_disable_nosync(t); tasklet_unlock_wait(t); __asm__ volatile ("mfence": : : "memory"); return; } } __inline static void tasklet_enable(struct tasklet_struct *t ) { { __asm__ volatile ("": : : "memory"); atomic_dec(& t->count); return; } } extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern void free_netdev(struct net_device * ) ; void ldv_free_netdev_6(struct net_device *dev ) ; void ldv_free_netdev_8(struct net_device *dev ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { clear_bit(0, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { tmp = netpoll_trap(); if (tmp != 0) { netif_tx_start_queue(dev_queue); return; } else { } tmp___0 = test_and_clear_bit(0, (unsigned long volatile *)(& dev_queue->state)); if (tmp___0 != 0) { __netif_schedule(dev_queue->qdisc); } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/netdevice.h", 1866); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { printk("<6>jme: netif_stop_queue() cannot be called before register_netdev()\n"); return; } else { } set_bit(0U, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); return; } } __inline static int netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& dev_queue->state)); return (tmp); } } __inline static int netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; int tmp___0 ; { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); return (tmp___0); } } __inline static int netif_running(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& dev->state)); return (tmp); } } extern int netif_rx(struct sk_buff * ) ; extern int netif_receive_skb(struct sk_buff * ) ; __inline static int netif_carrier_ok(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(2U, (unsigned long const volatile *)(& dev->state)); return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; int ldv_register_netdev_5(struct net_device *dev ) ; extern void unregister_netdev(struct net_device * ) ; void ldv_unregister_netdev_7(struct net_device *dev ) ; extern void netdev_update_features(struct net_device * ) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; extern int mii_ethtool_gset(struct mii_if_info * , struct ethtool_cmd * ) ; extern int mii_ethtool_sset(struct mii_if_info * , struct ethtool_cmd * ) ; extern int generic_mii_ioctl(struct mii_if_info * , struct mii_ioctl_data * , int , unsigned int * ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern u32 bitrev32(u32 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((struct tcphdr *)tmp); } } __inline static struct udphdr *udp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((struct udphdr *)tmp); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct ipv6hdr *)tmp); } } extern int __vlan_hwaccel_rx(struct sk_buff * , struct vlan_group * , u16 , int ) ; __inline static int vlan_hwaccel_rx(struct sk_buff *skb , struct vlan_group *grp , u16 vlan_tci ) { int tmp ; { tmp = __vlan_hwaccel_rx(skb, grp, (int )vlan_tci, 0); return (tmp); } } __inline static int vlan_hwaccel_receive_skb(struct sk_buff *skb , struct vlan_group *grp , u16 vlan_tci ) { int tmp ; { tmp = __vlan_hwaccel_rx(skb, grp, (int )vlan_tci, 1); return (tmp); } } __inline static struct jme_adapter *jme_napi_priv(struct napi_struct *napi ) { struct jme_adapter *jme ; struct napi_struct const *__mptr ; { __mptr = (struct napi_struct const *)napi; jme = (struct jme_adapter *)__mptr + 0xfffffffffffffaa8UL; return (jme); } } __inline static u32 smi_reg_addr(int x ) { { return ((u32 )(x << 11) & 65535U); } } __inline static u32 smi_phy_addr(int x ) { { return ((u32 )(x << 6) & 1984U); } } static unsigned int const INTR_ENABLE = 3794866176U; __inline static void reg_dbg(struct jme_adapter const *jme , char const *msg , u32 val , u32 reg ) { { return; } } __inline static u32 jread32(struct jme_adapter *jme , u32 reg ) { unsigned int tmp ; { tmp = readl((void const volatile *)jme->regs + (unsigned long )reg); return (tmp); } } __inline static void jwrite32(struct jme_adapter *jme , u32 reg , u32 val ) { unsigned int tmp ; { reg_dbg((struct jme_adapter const *)jme, "REG WRITE", val, reg); writel(val, (void volatile *)jme->regs + (unsigned long )reg); tmp = readl((void const volatile *)jme->regs + (unsigned long )reg); reg_dbg((struct jme_adapter const *)jme, "VAL AFTER WRITE", tmp, reg); return; } } __inline static void jwrite32f(struct jme_adapter *jme , u32 reg , u32 val ) { unsigned int tmp ; { reg_dbg((struct jme_adapter const *)jme, "REG WRITE FLUSH", val, reg); writel(val, (void volatile *)jme->regs + (unsigned long )reg); readl((void const volatile *)jme->regs + (unsigned long )reg); tmp = readl((void const volatile *)jme->regs + (unsigned long )reg); reg_dbg((struct jme_adapter const *)jme, "VAL AFTER WRITE", tmp, reg); return; } } __inline static int is_buggy250(unsigned short device , u8 chiprev ) { { return ((unsigned int )device == 592U && (unsigned int )chiprev == 17U); } } __inline static int new_phy_power_ctrl(u8 chip_main_rev ) { { return ((unsigned int )chip_main_rev > 4U); } } static int jme_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) ; static void jme_set_unicastaddr(struct net_device *netdev ) ; static void jme_set_multi(struct net_device *netdev ) ; static int force_pseudohp = -1; static int no_pseudohp = -1; static int no_extplug = -1; static int jme_mdio_read(struct net_device *netdev , int phy , int reg ) { struct jme_adapter *jme ; void *tmp ; int i ; int val ; int again ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; int tmp___3 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; again = reg == 1; read_again: tmp___0 = smi_phy_addr(phy); tmp___1 = smi_reg_addr(reg); jwrite32(jme, 80U, (tmp___0 | tmp___1) | 16U); __asm__ volatile ("sfence": : : "memory"); i = 5000; goto ldv_42633; ldv_42632: __const_udelay(85900UL); tmp___2 = jread32(jme, 80U); val = (int )tmp___2; if ((val & 16) == 0) { goto ldv_42631; } else { } i = i - 1; ldv_42633: ; if (i > 0) { goto ldv_42632; } else { } ldv_42631: ; if (i == 0) { printk("<3>jme: phy(%d) read timeout : %d\n", phy, reg); return (0); } else { } tmp___3 = again; again = again - 1; if (tmp___3 != 0) { goto read_again; } else { } return ((int )((unsigned int )val >> 16)); } } static void jme_mdio_write(struct net_device *netdev , int phy , int reg , int val ) { struct jme_adapter *jme ; void *tmp ; int i ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; tmp___0 = smi_phy_addr(phy); tmp___1 = smi_reg_addr(reg); jwrite32(jme, 80U, (((unsigned int )(val << 16) | tmp___0) | tmp___1) | 48U); __asm__ volatile ("sfence": : : "memory"); i = 5000; goto ldv_42644; ldv_42643: __const_udelay(85900UL); tmp___2 = jread32(jme, 80U); if ((tmp___2 & 16U) == 0U) { goto ldv_42642; } else { } i = i - 1; ldv_42644: ; if (i > 0) { goto ldv_42643; } else { } ldv_42642: ; if (i == 0) { printk("<3>jme: phy(%d) write timeout : %d\n", phy, reg); } else { } return; } } __inline static void jme_reset_phy_processor(struct jme_adapter *jme ) { u32 val ; int tmp ; { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 4, 3552); if ((unsigned int )(jme->pdev)->device == 592U) { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 9, 768); } else { } tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 0); val = (u32 )tmp; jme_mdio_write(jme->dev, jme->mii_if.phy_id, 0, (int )(val | 32768U)); return; } } static void jme_setup_wakeup_frame(struct jme_adapter *jme , u32 const *mask , u32 crc , int fnr ) { int i ; { jwrite32(jme, 76U, (u32 )((fnr & 7) | 8)); __asm__ volatile ("sfence": : : "memory"); jwrite32(jme, 72U, crc); __asm__ volatile ("sfence": : : "memory"); i = 0; goto ldv_42657; ldv_42656: jwrite32(jme, 76U, (u32 )(((i << 4) & 112) | (fnr & 7))); __asm__ volatile ("sfence": : : "memory"); jwrite32(jme, 72U, *(mask + (unsigned long )i)); __asm__ volatile ("sfence": : : "memory"); i = i + 1; ldv_42657: ; if (i <= 3) { goto ldv_42656; } else { } return; } } __inline static void jme_mac_rxclk_off(struct jme_adapter *jme ) { { jme->reg_gpreg1 = jme->reg_gpreg1 | 67108864U; jwrite32f(jme, 2060U, jme->reg_gpreg1); return; } } __inline static void jme_mac_rxclk_on(struct jme_adapter *jme ) { { jme->reg_gpreg1 = jme->reg_gpreg1 & 4227858431U; jwrite32f(jme, 2060U, jme->reg_gpreg1); return; } } __inline static void jme_mac_txclk_off(struct jme_adapter *jme ) { { jme->reg_ghc = jme->reg_ghc & 4279238655U; jwrite32f(jme, 84U, jme->reg_ghc); return; } } __inline static void jme_mac_txclk_on(struct jme_adapter *jme ) { u32 speed ; { speed = jme->reg_ghc & 48U; if (speed == 48U) { jme->reg_ghc = jme->reg_ghc | 5242880U; } else { jme->reg_ghc = jme->reg_ghc | 10485760U; } jwrite32f(jme, 84U, jme->reg_ghc); return; } } __inline static void jme_reset_ghc_speed(struct jme_adapter *jme ) { { jme->reg_ghc = jme->reg_ghc & 4294967183U; jwrite32f(jme, 84U, jme->reg_ghc); return; } } __inline static void jme_reset_250A2_workaround(struct jme_adapter *jme ) { { jme->reg_gpreg1 = jme->reg_gpreg1 & 4294967199U; jwrite32(jme, 2060U, jme->reg_gpreg1); return; } } __inline static void jme_assert_ghc_reset(struct jme_adapter *jme ) { { jme->reg_ghc = jme->reg_ghc | 1073741824U; jwrite32f(jme, 84U, jme->reg_ghc); return; } } __inline static void jme_clear_ghc_reset(struct jme_adapter *jme ) { { jme->reg_ghc = jme->reg_ghc & 3221225471U; jwrite32f(jme, 84U, jme->reg_ghc); return; } } __inline static void jme_reset_mac_processor(struct jme_adapter *jme ) { u32 mask[4U] ; u32 crc ; u32 gpreg0 ; int i ; { mask[0] = 0U; mask[1] = 0U; mask[2] = 0U; mask[3] = 0U; crc = 3452816845U; jme_reset_ghc_speed(jme); jme_reset_250A2_workaround(jme); jme_mac_rxclk_on(jme); jme_mac_txclk_on(jme); __const_udelay(4295UL); jme_assert_ghc_reset(jme); __const_udelay(4295UL); jme_mac_rxclk_off(jme); jme_mac_txclk_off(jme); __const_udelay(4295UL); jme_clear_ghc_reset(jme); __const_udelay(4295UL); jme_mac_rxclk_on(jme); jme_mac_txclk_on(jme); __const_udelay(4295UL); jme_mac_rxclk_off(jme); jme_mac_txclk_off(jme); jwrite32(jme, 36U, 0U); jwrite32(jme, 40U, 0U); jwrite32(jme, 44U, 0U); jwrite32(jme, 48U, 0U); jwrite32(jme, 4U, 0U); jwrite32(jme, 8U, 0U); jwrite32(jme, 12U, 0U); jwrite32(jme, 16U, 0U); jwrite32(jme, 64U, 0U); jwrite32(jme, 68U, 0U); i = 0; goto ldv_42692; ldv_42691: jme_setup_wakeup_frame(jme, (u32 const *)(& mask), crc, i); i = i + 1; ldv_42692: ; if (i <= 7) { goto ldv_42691; } else { } if (jme->fpgaver != 0U) { gpreg0 = 3150337U; } else { gpreg0 = 3146241U; } jwrite32(jme, 2056U, gpreg0); return; } } __inline static void jme_clear_pm(struct jme_adapter *jme ) { { jwrite32(jme, 96U, jme->reg_pmcs | 4294901760U); pci_set_power_state(jme->pdev, 0); device_set_wakeup_enable(& (jme->pdev)->dev, 0); return; } } static int jme_reload_eeprom(struct jme_adapter *jme ) { u32 val ; int i ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; u32 tmp___1 ; { val = jread32(jme, 1088U); if ((val & 32U) != 0U) { val = val | 131072U; jwrite32(jme, 1088U, val); val = val | 65536U; jwrite32(jme, 1088U, val); __ms = 12UL; goto ldv_42704; ldv_42703: __const_udelay(4295000UL); ldv_42704: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_42703; } else { } i = 2000; goto ldv_42712; ldv_42711: ; if (1) { __const_udelay(4295000UL); } else { __ms___0 = 1UL; goto ldv_42708; ldv_42707: __const_udelay(4295000UL); ldv_42708: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_42707; } else { } } tmp___1 = jread32(jme, 1088U); if ((tmp___1 & 65536U) == 0U) { goto ldv_42710; } else { } i = i - 1; ldv_42712: ; if (i > 0) { goto ldv_42711; } else { } ldv_42710: ; if (i == 0) { printk("<3>jme: eeprom reload timeout\n"); return (-5); } else { } } else { } return (0); } } static void jme_load_macaddr(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; unsigned char macaddr[6U] ; u32 val ; size_t __len ; void *__ret ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; spin_lock_bh(& jme->macaddr_lock); val = jread32(jme, 56U); macaddr[0] = (unsigned char )val; macaddr[1] = (unsigned char )(val >> 8); macaddr[2] = (unsigned char )(val >> 16); macaddr[3] = (unsigned char )(val >> 24); val = jread32(jme, 60U); macaddr[4] = (unsigned char )val; macaddr[5] = (unsigned char )(val >> 8); __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)netdev->dev_addr, (void const *)(& macaddr), __len); } else { __ret = __builtin_memcpy((void *)netdev->dev_addr, (void const *)(& macaddr), __len); } spin_unlock_bh(& jme->macaddr_lock); return; } } __inline static void jme_set_rx_pcc(struct jme_adapter *jme , int p ) { int tmp ; { switch (p) { case 0: jwrite32(jme, 2096U, 0U); goto ldv_42727; case 1: jwrite32(jme, 2096U, 65792U); goto ldv_42727; case 2: jwrite32(jme, 2096U, 4198400U); goto ldv_42727; case 3: jwrite32(jme, 2096U, 8396800U); goto ldv_42727; default: ; goto ldv_42727; } ldv_42727: __asm__ volatile ("sfence": : : "memory"); tmp = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp == 0) { if ((jme->msg_enable & 2048U) != 0U) { netdev_info((struct net_device const *)jme->dev, "Switched to PCC_P%d\n", p); } else { } } else { } return; } } static void jme_start_irq(struct jme_adapter *jme ) { register struct dynpcc_info *dpi ; { dpi = & jme->dpi; jme_set_rx_pcc(jme, 1); dpi->cur = 1U; dpi->attempt = 1U; dpi->cnt = 0U; jwrite32(jme, 2112U, 65538049U); jwrite32(jme, 2088U, INTR_ENABLE); return; } } __inline static void jme_stop_irq(struct jme_adapter *jme ) { { jwrite32f(jme, 2092U, INTR_ENABLE); return; } } static u32 jme_linkstat_from_phy(struct jme_adapter *jme ) { u32 phylink ; u32 bmsr ; int tmp ; int tmp___0 ; { tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 17); phylink = (u32 )tmp; tmp___0 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 1); bmsr = (u32 )tmp___0; if ((bmsr & 32U) != 0U) { phylink = phylink | 512U; } else { } return (phylink); } } __inline static void jme_set_phyfifo_5level(struct jme_adapter *jme ) { { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 4); return; } } __inline static void jme_set_phyfifo_8level(struct jme_adapter *jme ) { { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0); return; } } static int jme_check_link(struct net_device *netdev , int testonly ) { struct jme_adapter *jme ; void *tmp ; u32 phylink ; u32 cnt ; u32 bmcr ; char linkmsg[64U] ; int rc ; int tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; cnt = 500U; rc = 0; linkmsg[0] = 0; if (jme->fpgaver != 0U) { phylink = jme_linkstat_from_phy(jme); } else { phylink = jread32(jme, 1072U); } if ((phylink & 1024U) != 0U) { if ((phylink & 512U) == 0U) { phylink = 1024U; tmp___0 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 0); bmcr = (u32 )tmp___0; phylink = ((bmcr & 64U) == 0U || (bmcr & 8192U) != 0U ? ((bmcr & 8192U) != 0U ? 16384U : 0U) : 32768U) | phylink; phylink = ((bmcr & 256U) != 0U ? 8192U : 0U) | phylink; strcat((char *)(& linkmsg), "Forced: "); } else { goto ldv_42761; ldv_42760: __const_udelay(4295UL); if (jme->fpgaver != 0U) { phylink = jme_linkstat_from_phy(jme); } else { phylink = jread32(jme, 1072U); } ldv_42761: ; if ((phylink & 2048U) == 0U) { cnt = cnt - 1U; if (cnt != 0U) { goto ldv_42760; } else { goto ldv_42762; } } else { } ldv_42762: ; if (cnt == 0U) { printk("<3>jme: Waiting speed resolve timeout\n"); } else { } strcat((char *)(& linkmsg), "ANed: "); } if (jme->phylink == phylink) { rc = 1; goto out; } else { } if (testonly != 0) { goto out; } else { } jme->phylink = phylink; switch (phylink & 49152U) { case 0U: jme->reg_ghc = jme->reg_ghc | 16U; strcat((char *)(& linkmsg), "10 Mbps, "); goto ldv_42765; case 16384U: jme->reg_ghc = jme->reg_ghc | 32U; strcat((char *)(& linkmsg), "100 Mbps, "); goto ldv_42765; case 32768U: jme->reg_ghc = jme->reg_ghc | 48U; strcat((char *)(& linkmsg), "1000 Mbps, "); goto ldv_42765; default: ; goto ldv_42765; } ldv_42765: ; if ((phylink & 8192U) != 0U) { jwrite32(jme, 20U, 1610613539U); jwrite32(jme, 28U, 0U); jme->reg_ghc = jme->reg_ghc | 64U; } else { jwrite32(jme, 20U, 1610613567U); jwrite32(jme, 28U, 2149580936U); } jwrite32(jme, 84U, jme->reg_ghc); tmp___1 = is_buggy250((int )(jme->pdev)->device, (int )jme->chiprev); if (tmp___1 != 0) { jme->reg_gpreg1 = jme->reg_gpreg1 & 4294967199U; if ((phylink & 8192U) == 0U) { jme->reg_gpreg1 = jme->reg_gpreg1 | 64U; } else { } switch (phylink & 49152U) { case 0U: jme_set_phyfifo_8level(jme); jme->reg_gpreg1 = jme->reg_gpreg1 | 32U; goto ldv_42770; case 16384U: jme_set_phyfifo_5level(jme); jme->reg_gpreg1 = jme->reg_gpreg1 | 32U; goto ldv_42770; case 32768U: jme_set_phyfifo_8level(jme); goto ldv_42770; default: ; goto ldv_42770; } ldv_42770: ; } else { } jwrite32(jme, 2060U, jme->reg_gpreg1); strcat((char *)(& linkmsg), (phylink & 8192U) != 0U ? "Full-Duplex, " : "Half-Duplex, "); strcat((char *)(& linkmsg), (phylink & 64U) != 0U ? "MDI-X" : "MDI"); if ((jme->msg_enable & 4U) != 0U) { netdev_info((struct net_device const *)jme->dev, "Link is up at %s\n", (char *)(& linkmsg)); } else { } netif_carrier_on(netdev); } else { if (testonly != 0) { goto out; } else { } if ((jme->msg_enable & 4U) != 0U) { netdev_info((struct net_device const *)jme->dev, "Link is down\n"); } else { } jme->phylink = 0U; netif_carrier_off(netdev); } out: ; return (rc); } } static int jme_setup_tx_resources(struct jme_adapter *jme ) { struct jme_ring *txring ; void *tmp ; long tmp___0 ; { txring = (struct jme_ring *)(& jme->txring); txring->alloc = dma_alloc_coherent(& (jme->pdev)->dev, (size_t )((jme->tx_ring_size + 1U) * 16U), & txring->dmaalloc, 32U); if ((unsigned long )txring->alloc == (unsigned long )((void *)0)) { goto err_set_null; } else { } txring->desc = (void *)(((unsigned long )txring->alloc + 15UL) & 0xfffffffffffffff0UL); txring->dma = (txring->dmaalloc + 15ULL) & 0xfffffffffffffff0ULL; txring->next_to_use = 0; atomic_set(& txring->next_to_clean, 0); atomic_set(& txring->nr_free, (int )jme->tx_ring_size); tmp = kmalloc((unsigned long )jme->tx_ring_size * 32UL, 32U); txring->bufinf = (struct jme_buffer_info *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )txring->bufinf == (unsigned long )((struct jme_buffer_info *)0), 0L); if (tmp___0 != 0L) { goto err_free_txring; } else { } memset(txring->alloc, 0, (size_t )((jme->tx_ring_size + 1U) * 16U)); memset((void *)txring->bufinf, 0, (unsigned long )jme->tx_ring_size * 32UL); return (0); err_free_txring: dma_free_coherent(& (jme->pdev)->dev, (size_t )((jme->tx_ring_size + 1U) * 16U), txring->alloc, txring->dmaalloc); err_set_null: txring->desc = (void *)0; txring->dmaalloc = 0ULL; txring->dma = 0ULL; txring->bufinf = (struct jme_buffer_info *)0; return (-12); } } static void jme_free_tx_resources(struct jme_adapter *jme ) { int i ; struct jme_ring *txring ; struct jme_buffer_info *txbi ; { txring = (struct jme_ring *)(& jme->txring); if ((unsigned long )txring->alloc != (unsigned long )((void *)0)) { if ((unsigned long )txring->bufinf != (unsigned long )((struct jme_buffer_info *)0)) { i = 0; goto ldv_42787; ldv_42786: txbi = txring->bufinf + (unsigned long )i; if ((unsigned long )txbi->skb != (unsigned long )((struct sk_buff *)0)) { consume_skb(txbi->skb); txbi->skb = (struct sk_buff *)0; } else { } txbi->mapping = 0ULL; txbi->len = 0; txbi->nr_desc = 0; txbi->start_xmit = 0UL; i = i + 1; ldv_42787: ; if ((u32 )i < jme->tx_ring_size) { goto ldv_42786; } else { } kfree((void const *)txring->bufinf); } else { } dma_free_coherent(& (jme->pdev)->dev, (size_t )((jme->tx_ring_size + 1U) * 16U), txring->alloc, txring->dmaalloc); txring->alloc = (void *)0; txring->desc = (void *)0; txring->dmaalloc = 0ULL; txring->dma = 0ULL; txring->bufinf = (struct jme_buffer_info *)0; } else { } txring->next_to_use = 0; atomic_set(& txring->next_to_clean, 0); atomic_set(& txring->nr_free, 0); return; } } __inline static void jme_enable_tx_engine(struct jme_adapter *jme ) { { jwrite32(jme, 0U, 4U); __asm__ volatile ("sfence": : : "memory"); jwrite32(jme, 4U, (u32 )jme->txring[0].dma); jwrite32(jme, 8U, (u32 )(jme->txring[0].dma >> 32)); jwrite32(jme, 16U, (u32 )jme->txring[0].dma); jwrite32(jme, 12U, jme->tx_ring_size); __asm__ volatile ("sfence": : : "memory"); jwrite32f(jme, 0U, jme->reg_txcs | 1U); jme_mac_txclk_on(jme); return; } } __inline static void jme_disable_tx_engine(struct jme_adapter *jme ) { int i ; u32 val ; unsigned long __ms ; unsigned long tmp ; { jwrite32(jme, 0U, jme->reg_txcs); __asm__ volatile ("sfence": : : "memory"); val = jread32(jme, 0U); i = 10; goto ldv_42805; ldv_42804: ; if (1) { __const_udelay(4295000UL); } else { __ms = 1UL; goto ldv_42802; ldv_42801: __const_udelay(4295000UL); ldv_42802: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_42801; } else { } } val = jread32(jme, 0U); __asm__ volatile ("lfence": : : "memory"); i = i - 1; ldv_42805: ; if ((int )val & 1 && i > 0) { goto ldv_42804; } else { } if (i == 0) { printk("<3>jme: Disable TX engine timeout\n"); } else { } jme_mac_txclk_off(jme); return; } } static void jme_set_clean_rxdesc(struct jme_adapter *jme , int i ) { struct jme_ring *rxring ; register struct rxdesc *rxdesc ; struct jme_buffer_info *rxbi ; { rxring = (struct jme_ring *)(& jme->rxring); rxdesc = (struct rxdesc *)rxring->desc; rxbi = rxring->bufinf; rxdesc = rxdesc + (unsigned long )i; rxbi = rxbi + (unsigned long )i; rxdesc->__annonCompField55.dw[0] = 0U; rxdesc->__annonCompField55.dw[1] = 0U; rxdesc->__annonCompField55.desc1.bufaddrh = (unsigned int )(rxbi->mapping >> 32); rxdesc->__annonCompField55.desc1.bufaddrl = (unsigned int )rxbi->mapping; rxdesc->__annonCompField55.desc1.datalen = (unsigned short )rxbi->len; if (((jme->dev)->features & 32U) != 0U) { rxdesc->__annonCompField55.desc1.flags = 32U; } else { } __asm__ volatile ("sfence": : : "memory"); rxdesc->__annonCompField55.desc1.flags = (__u8 )((unsigned int )rxdesc->__annonCompField55.desc1.flags | 192U); return; } } static int jme_make_new_rx_buf(struct jme_adapter *jme , int i ) { struct jme_ring *rxring ; struct jme_buffer_info *rxbi ; struct sk_buff *skb ; long tmp ; unsigned long tmp___0 ; { rxring = (struct jme_ring *)(& jme->rxring); rxbi = rxring->bufinf + (unsigned long )i; skb = netdev_alloc_skb(jme->dev, (jme->dev)->mtu + 36U); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); if (tmp != 0L) { return (-12); } else { } rxbi->skb = skb; rxbi->len = skb_tailroom((struct sk_buff const *)skb); tmp___0 = __phys_addr((unsigned long )skb->data); rxbi->mapping = ldv_pci_map_page_1(jme->pdev, (struct page *)-24189255811072L + (tmp___0 >> 12), (unsigned long )skb->data & 4095UL, (size_t )rxbi->len, 2); return (0); } } static void jme_free_rx_buf(struct jme_adapter *jme , int i ) { struct jme_ring *rxring ; struct jme_buffer_info *rxbi ; { rxring = (struct jme_ring *)(& jme->rxring); rxbi = rxring->bufinf; rxbi = rxbi + (unsigned long )i; if ((unsigned long )rxbi->skb != (unsigned long )((struct sk_buff *)0)) { ldv_pci_unmap_page_2(jme->pdev, rxbi->mapping, (size_t )rxbi->len, 2); consume_skb(rxbi->skb); rxbi->skb = (struct sk_buff *)0; rxbi->mapping = 0ULL; rxbi->len = 0; } else { } return; } } static void jme_free_rx_resources(struct jme_adapter *jme ) { int i ; struct jme_ring *rxring ; { rxring = (struct jme_ring *)(& jme->rxring); if ((unsigned long )rxring->alloc != (unsigned long )((void *)0)) { if ((unsigned long )rxring->bufinf != (unsigned long )((struct jme_buffer_info *)0)) { i = 0; goto ldv_42833; ldv_42832: jme_free_rx_buf(jme, i); i = i + 1; ldv_42833: ; if ((u32 )i < jme->rx_ring_size) { goto ldv_42832; } else { } kfree((void const *)rxring->bufinf); } else { } dma_free_coherent(& (jme->pdev)->dev, (size_t )((jme->rx_ring_size + 1U) * 16U), rxring->alloc, rxring->dmaalloc); rxring->alloc = (void *)0; rxring->desc = (void *)0; rxring->dmaalloc = 0ULL; rxring->dma = 0ULL; rxring->bufinf = (struct jme_buffer_info *)0; } else { } rxring->next_to_use = 0; atomic_set(& rxring->next_to_clean, 0); return; } } static int jme_setup_rx_resources(struct jme_adapter *jme ) { int i ; struct jme_ring *rxring ; void *tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { rxring = (struct jme_ring *)(& jme->rxring); rxring->alloc = dma_alloc_coherent(& (jme->pdev)->dev, (size_t )((jme->rx_ring_size + 1U) * 16U), & rxring->dmaalloc, 32U); if ((unsigned long )rxring->alloc == (unsigned long )((void *)0)) { goto err_set_null; } else { } rxring->desc = (void *)(((unsigned long )rxring->alloc + 15UL) & 0xfffffffffffffff0UL); rxring->dma = (rxring->dmaalloc + 15ULL) & 0xfffffffffffffff0ULL; rxring->next_to_use = 0; atomic_set(& rxring->next_to_clean, 0); tmp = kmalloc((unsigned long )jme->rx_ring_size * 32UL, 32U); rxring->bufinf = (struct jme_buffer_info *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )rxring->bufinf == (unsigned long )((struct jme_buffer_info *)0), 0L); if (tmp___0 != 0L) { goto err_free_rxring; } else { } memset((void *)rxring->bufinf, 0, (unsigned long )jme->rx_ring_size * 32UL); i = 0; goto ldv_42843; ldv_42842: tmp___1 = jme_make_new_rx_buf(jme, i); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); if (tmp___2 != 0L) { jme_free_rx_resources(jme); return (-12); } else { } jme_set_clean_rxdesc(jme, i); i = i + 1; ldv_42843: ; if ((u32 )i < jme->rx_ring_size) { goto ldv_42842; } else { } return (0); err_free_rxring: dma_free_coherent(& (jme->pdev)->dev, (size_t )((jme->rx_ring_size + 1U) * 16U), rxring->alloc, rxring->dmaalloc); err_set_null: rxring->desc = (void *)0; rxring->dmaalloc = 0ULL; rxring->dma = 0ULL; rxring->bufinf = (struct jme_buffer_info *)0; return (-12); } } __inline static void jme_enable_rx_engine(struct jme_adapter *jme ) { { jwrite32(jme, 32U, jme->reg_rxcs); __asm__ volatile ("sfence": : : "memory"); jwrite32(jme, 36U, (u32 )jme->rxring[0].dma); jwrite32(jme, 40U, (u32 )(jme->rxring[0].dma >> 32)); jwrite32(jme, 48U, (u32 )jme->rxring[0].dma); jwrite32(jme, 44U, jme->rx_ring_size); jme_set_unicastaddr(jme->dev); jme_set_multi(jme->dev); __asm__ volatile ("sfence": : : "memory"); jwrite32f(jme, 32U, jme->reg_rxcs | 5U); jme_mac_rxclk_on(jme); return; } } __inline static void jme_restart_rx_engine(struct jme_adapter *jme ) { { jwrite32(jme, 32U, jme->reg_rxcs | 5U); return; } } __inline static void jme_disable_rx_engine(struct jme_adapter *jme ) { int i ; u32 val ; unsigned long __ms ; unsigned long tmp ; { jwrite32(jme, 32U, jme->reg_rxcs); __asm__ volatile ("sfence": : : "memory"); val = jread32(jme, 32U); i = 10; goto ldv_42861; ldv_42860: ; if (1) { __const_udelay(4295000UL); } else { __ms = 1UL; goto ldv_42858; ldv_42857: __const_udelay(4295000UL); ldv_42858: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_42857; } else { } } val = jread32(jme, 32U); __asm__ volatile ("lfence": : : "memory"); i = i - 1; ldv_42861: ; if ((int )val & 1 && i > 0) { goto ldv_42860; } else { } if (i == 0) { printk("<3>jme: Disable RX engine timeout\n"); } else { } jme_mac_rxclk_off(jme); return; } } static u16 jme_udpsum(struct sk_buff *skb ) { u16 csum ; struct iphdr *tmp ; struct iphdr *tmp___0 ; struct iphdr *tmp___1 ; struct udphdr *tmp___2 ; { csum = 65535U; if (skb->len <= 33U) { return (csum); } else { } if ((unsigned int )skb->protocol != 8U) { return (csum); } else { } skb_set_network_header(skb, 14); tmp = ip_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp->protocol != 17U) { skb_reset_network_header(skb); return (csum); } else { tmp___0 = ip_hdr((struct sk_buff const *)skb); if ((unsigned long )skb->len < (unsigned long )(((int )tmp___0->ihl << 2) + 14) + 8UL) { skb_reset_network_header(skb); return (csum); } else { } } tmp___1 = ip_hdr((struct sk_buff const *)skb); skb_set_transport_header(skb, ((int )tmp___1->ihl << 2) + 14); tmp___2 = udp_hdr((struct sk_buff const *)skb); csum = tmp___2->check; skb_reset_transport_header(skb); skb_reset_network_header(skb); return (csum); } } static int jme_rxsum_ok(struct jme_adapter *jme , u16 flags , struct sk_buff *skb ) { long tmp ; long tmp___0 ; u16 tmp___1 ; long tmp___2 ; { if (((int )flags & 6208) == 0) { return (0); } else { } tmp = ldv__builtin_expect(((int )flags & 12800) == 4096, 0L); if (tmp != 0L) { if (((int )flags & 64) != 0) { if ((jme->msg_enable & 64U) != 0U) { netdev_err((struct net_device const *)jme->dev, "TCP Checksum error\n"); } else { } } else { } return (0); } else { } tmp___0 = ldv__builtin_expect(((int )flags & 10496) == 2048, 0L); if (tmp___0 != 0L) { tmp___1 = jme_udpsum(skb); if ((unsigned int )tmp___1 != 0U) { if (((int )flags & 64) != 0) { if ((jme->msg_enable & 64U) != 0U) { netdev_err((struct net_device const *)jme->dev, "UDP Checksum error\n"); } else { } } else { } return (0); } else { } } else { } tmp___2 = ldv__builtin_expect(((int )flags & 1088) == 64, 0L); if (tmp___2 != 0L) { if ((jme->msg_enable & 64U) != 0U) { netdev_err((struct net_device const *)jme->dev, "IPv4 Checksum error\n"); } else { } return (0); } else { } return (1); } } static void jme_alloc_and_feed_skb(struct jme_adapter *jme , int idx ) { struct jme_ring *rxring ; struct rxdesc *rxdesc ; struct jme_buffer_info *rxbi ; struct sk_buff *skb ; int framesize ; int tmp ; int tmp___0 ; long tmp___1 ; { rxring = (struct jme_ring *)(& jme->rxring); rxdesc = (struct rxdesc *)rxring->desc; rxbi = rxring->bufinf; rxdesc = rxdesc + (unsigned long )idx; rxbi = rxbi + (unsigned long )idx; skb = rxbi->skb; pci_dma_sync_single_for_cpu(jme->pdev, rxbi->mapping, (size_t )rxbi->len, 2); tmp___0 = jme_make_new_rx_buf(jme, idx); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { pci_dma_sync_single_for_device(jme->pdev, rxbi->mapping, (size_t )rxbi->len, 2); (jme->dev)->stats.rx_dropped = (jme->dev)->stats.rx_dropped + 1UL; } else { framesize = (int )rxdesc->__annonCompField55.descwb.framesize + -10; skb_reserve(skb, 10); skb_put(skb, (unsigned int )framesize); skb->protocol = eth_type_trans(skb, jme->dev); tmp = jme_rxsum_ok(jme, (int )rxdesc->__annonCompField55.descwb.flags, skb); if (tmp != 0) { skb->ip_summed = 1U; } else { skb_checksum_none_assert(skb); } if (((int )rxdesc->__annonCompField55.descwb.flags & 128) != 0) { if ((unsigned long )jme->vlgrp != (unsigned long )((struct vlan_group *)0)) { (*(jme->jme_vlan_rx))(skb, jme->vlgrp, (int )rxdesc->__annonCompField55.descwb.vlan); (jme->dev)->stats.rx_bytes = (jme->dev)->stats.rx_bytes + 4UL; } else { consume_skb(skb); } } else { (*(jme->jme_rx))(skb); } if (((int )rxdesc->__annonCompField55.descwb.flags & 3) == 2) { (jme->dev)->stats.multicast = (jme->dev)->stats.multicast + 1UL; } else { } (jme->dev)->stats.rx_bytes = (jme->dev)->stats.rx_bytes + (unsigned long )framesize; (jme->dev)->stats.rx_packets = (jme->dev)->stats.rx_packets + 1UL; } jme_set_clean_rxdesc(jme, idx); return; } } static int jme_process_receive(struct jme_adapter *jme , int limit ) { struct jme_ring *rxring ; struct rxdesc *rxdesc ; int i ; int j ; int ccnt ; int desccnt ; int mask ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; { rxring = (struct jme_ring *)(& jme->rxring); rxdesc = (struct rxdesc *)rxring->desc; mask = (int )jme->rx_ring_mask; tmp = atomic_dec_and_test(& jme->rx_cleaning); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { goto out_inc; } else { } tmp___1 = atomic_read((atomic_t const *)(& jme->link_changing)); tmp___2 = ldv__builtin_expect(tmp___1 != 1, 0L); if (tmp___2 != 0L) { goto out_inc; } else { } tmp___3 = netif_carrier_ok((struct net_device const *)jme->dev); tmp___4 = ldv__builtin_expect(tmp___3 == 0, 0L); if (tmp___4 != 0L) { goto out_inc; } else { } i = atomic_read((atomic_t const *)(& rxring->next_to_clean)); goto ldv_42898; ldv_42897: rxdesc = (struct rxdesc *)rxring->desc; rxdesc = rxdesc + (unsigned long )i; if ((int )((short )rxdesc->__annonCompField55.descwb.flags) < 0 || (int )((signed char )rxdesc->__annonCompField55.descwb.desccnt) >= 0) { goto out; } else { } limit = limit - 1; __asm__ volatile ("lfence": : : "memory"); desccnt = (int )rxdesc->__annonCompField55.descwb.desccnt & 127; tmp___6 = ldv__builtin_expect((long )(desccnt > 1 || (unsigned int )rxdesc->__annonCompField55.descwb.errstat != 0U), 0L); if (tmp___6 != 0L) { if ((int )rxdesc->__annonCompField55.descwb.errstat & 1) { (jme->dev)->stats.rx_crc_errors = (jme->dev)->stats.rx_crc_errors + 1UL; } else if (((int )rxdesc->__annonCompField55.descwb.errstat & 2) != 0) { (jme->dev)->stats.rx_fifo_errors = (jme->dev)->stats.rx_fifo_errors + 1UL; } else { (jme->dev)->stats.rx_errors = (jme->dev)->stats.rx_errors + 1UL; } if (desccnt > 1) { limit = (1 - desccnt) + limit; } else { } j = i; ccnt = desccnt; goto ldv_42895; ldv_42894: jme_set_clean_rxdesc(jme, j); j = (j + 1) & mask; ldv_42895: tmp___5 = ccnt; ccnt = ccnt - 1; if (tmp___5 != 0) { goto ldv_42894; } else { } } else { jme_alloc_and_feed_skb(jme, i); } i = (i + desccnt) & mask; ldv_42898: ; if (limit > 0) { goto ldv_42897; } else { } out: atomic_set(& rxring->next_to_clean, i); out_inc: atomic_inc(& jme->rx_cleaning); return (0 > limit ? 0 : limit); } } static void jme_attempt_pcc(struct dynpcc_info *dpi , int atmp ) { long tmp ; { tmp = ldv__builtin_expect((int )dpi->cur == atmp, 1L); if (tmp != 0L) { dpi->cnt = 0U; return; } else { } if ((int )dpi->attempt == atmp) { dpi->cnt = (unsigned char )((int )dpi->cnt + 1); } else { dpi->attempt = (unsigned char )atmp; dpi->cnt = 0U; } return; } } static void jme_dynamic_pcc(struct jme_adapter *jme ) { register struct dynpcc_info *dpi ; long tmp ; { dpi = & jme->dpi; if ((jme->dev)->stats.rx_bytes - dpi->last_bytes > 2097152UL) { jme_attempt_pcc(dpi, 3); } else if ((jme->dev)->stats.rx_packets - dpi->last_pkts > 800UL || dpi->intr_cnt > 800UL) { jme_attempt_pcc(dpi, 2); } else { jme_attempt_pcc(dpi, 1); } tmp = ldv__builtin_expect((long )((int )dpi->attempt != (int )dpi->cur && (unsigned int )dpi->cnt > 5U), 0L); if (tmp != 0L) { if ((int )dpi->attempt < (int )dpi->cur) { tasklet_schedule(& jme->rxclean_task); } else { } jme_set_rx_pcc(jme, (int )dpi->attempt); dpi->cur = dpi->attempt; dpi->cnt = 0U; } else { } return; } } static void jme_start_pcc_timer(struct jme_adapter *jme ) { struct dynpcc_info *dpi ; { dpi = & jme->dpi; dpi->last_bytes = (jme->dev)->stats.rx_bytes; dpi->last_pkts = (jme->dev)->stats.rx_packets; dpi->intr_cnt = 0UL; jwrite32(jme, 2048U, 33454431U); return; } } __inline static void jme_stop_pcc_timer(struct jme_adapter *jme ) { { jwrite32(jme, 2048U, 0U); return; } } static void jme_shutdown_nic(struct jme_adapter *jme ) { u32 phylink ; { phylink = jme_linkstat_from_phy(jme); if ((phylink & 1024U) == 0U) { jme_stop_irq(jme); jwrite32(jme, 2164U, 33554430U); } else { } return; } } static void jme_pcc_tasklet(unsigned long arg ) { struct jme_adapter *jme ; struct net_device *netdev ; int tmp ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; { jme = (struct jme_adapter *)arg; netdev = jme->dev; tmp = constant_test_bit(6U, (unsigned long const volatile *)(& jme->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { jme_shutdown_nic(jme); return; } else { } tmp___1 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___1 == 0) { tmp___3 = 1; } else { tmp___2 = atomic_read((atomic_t const *)(& jme->link_changing)); if (tmp___2 != 1) { tmp___3 = 1; } else { tmp___3 = 0; } } tmp___4 = ldv__builtin_expect((long )tmp___3, 0L); if (tmp___4 != 0L) { jme_stop_pcc_timer(jme); return; } else { } tmp___5 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___5 == 0) { jme_dynamic_pcc(jme); } else { } jme_start_pcc_timer(jme); return; } } __inline static void jme_polling_mode(struct jme_adapter *jme ) { { jme_set_rx_pcc(jme, 0); return; } } __inline static void jme_interrupt_mode(struct jme_adapter *jme ) { { jme_set_rx_pcc(jme, 1); return; } } __inline static int jme_pseudo_hotplug_enabled(struct jme_adapter *jme ) { u32 apmc ; { apmc = jread32(jme, 2172U); return ((int )apmc & 536870912); } } static void jme_start_shutdown_timer(struct jme_adapter *jme ) { u32 apmc ; u32 tmp ; { tmp = jread32(jme, 2172U); apmc = tmp | 1073741824U; apmc = apmc & 4244635647U; if (no_extplug == 0) { jwrite32f(jme, 2172U, apmc | 33554432U); __asm__ volatile ("sfence": : : "memory"); } else { } jwrite32f(jme, 2172U, apmc); jwrite32f(jme, 2164U, 0U); set_bit(6U, (unsigned long volatile *)(& jme->flags)); jwrite32(jme, 2048U, 23554431U); return; } } static void jme_stop_shutdown_timer(struct jme_adapter *jme ) { u32 apmc ; { jwrite32f(jme, 2048U, 0U); jwrite32f(jme, 2164U, 0U); clear_bit(6, (unsigned long volatile *)(& jme->flags)); apmc = jread32(jme, 2172U); apmc = apmc & 3170893823U; jwrite32f(jme, 2172U, apmc | 16777216U); __asm__ volatile ("sfence": : : "memory"); jwrite32f(jme, 2172U, apmc); return; } } static void jme_link_change_tasklet(unsigned long arg ) { struct jme_adapter *jme ; struct net_device *netdev ; int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { jme = (struct jme_adapter *)arg; netdev = jme->dev; goto ldv_42952; ldv_42951: atomic_inc(& jme->link_changing); if ((jme->msg_enable & 512U) != 0U) { netdev_info((struct net_device const *)jme->dev, "Get link change lock failed\n"); } else { } goto ldv_42949; ldv_42948: ; if ((jme->msg_enable & 512U) != 0U) { netdev_info((struct net_device const *)jme->dev, "Waiting link change lock\n"); } else { } ldv_42949: tmp = atomic_read((atomic_t const *)(& jme->link_changing)); if (tmp != 1) { goto ldv_42948; } else { } ldv_42952: tmp___0 = atomic_dec_and_test(& jme->link_changing); if (tmp___0 == 0) { goto ldv_42951; } else { } tmp___1 = jme_check_link(netdev, 1); if (tmp___1 != 0 && jme->old_mtu == netdev->mtu) { goto out; } else { } jme->old_mtu = netdev->mtu; netif_stop_queue(netdev); tmp___2 = jme_pseudo_hotplug_enabled(jme); if (tmp___2 != 0) { jme_stop_shutdown_timer(jme); } else { } jme_stop_pcc_timer(jme); tasklet_disable(& jme->txclean_task); tasklet_disable(& jme->rxclean_task); tasklet_disable(& jme->rxempty_task); tmp___4 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___4 != 0) { jme_disable_rx_engine(jme); jme_disable_tx_engine(jme); jme_reset_mac_processor(jme); jme_free_rx_resources(jme); jme_free_tx_resources(jme); tmp___3 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___3 != 0) { jme_polling_mode(jme); } else { } netif_carrier_off(netdev); } else { } jme_check_link(netdev, 0); tmp___7 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___7 != 0) { rc = jme_setup_rx_resources(jme); if (rc != 0) { printk("<3>jme: Allocating resources for RX error, Device STOPPED!\n"); goto out_enable_tasklet; } else { } rc = jme_setup_tx_resources(jme); if (rc != 0) { printk("<3>jme: Allocating resources for TX error, Device STOPPED!\n"); goto err_out_free_rx_resources; } else { } jme_enable_rx_engine(jme); jme_enable_tx_engine(jme); netif_start_queue(netdev); tmp___5 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___5 != 0) { jme_interrupt_mode(jme); } else { } jme_start_pcc_timer(jme); } else { tmp___6 = jme_pseudo_hotplug_enabled(jme); if (tmp___6 != 0) { jme_start_shutdown_timer(jme); } else { } } goto out_enable_tasklet; err_out_free_rx_resources: jme_free_rx_resources(jme); out_enable_tasklet: tasklet_enable(& jme->txclean_task); tasklet_enable(& jme->rxclean_task); tasklet_enable(& jme->rxempty_task); out: atomic_inc(& jme->link_changing); return; } } static void jme_rx_clean_tasklet(unsigned long arg ) { struct jme_adapter *jme ; struct dynpcc_info *dpi ; { jme = (struct jme_adapter *)arg; dpi = & jme->dpi; jme_process_receive(jme, (int )jme->rx_ring_size); dpi->intr_cnt = dpi->intr_cnt + 1UL; return; } } static int jme_poll(struct napi_struct *holder , int budget ) { struct jme_adapter *jme ; struct jme_adapter *tmp ; int rest ; int tmp___0 ; { tmp = jme_napi_priv(holder); jme = tmp; rest = jme_process_receive(jme, budget); goto ldv_42969; ldv_42968: atomic_dec(& jme->rx_empty); (jme->dev)->stats.rx_dropped = (jme->dev)->stats.rx_dropped + 1UL; jme_restart_rx_engine(jme); ldv_42969: tmp___0 = atomic_read((atomic_t const *)(& jme->rx_empty)); if (tmp___0 > 0) { goto ldv_42968; } else { } atomic_inc(& jme->rx_empty); if (rest != 0) { napi_complete(holder); jme_interrupt_mode(jme); } else { } return (budget - rest); } } static void jme_rx_empty_tasklet(unsigned long arg ) { struct jme_adapter *jme ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; { jme = (struct jme_adapter *)arg; tmp = atomic_read((atomic_t const *)(& jme->link_changing)); tmp___0 = ldv__builtin_expect(tmp != 1, 0L); if (tmp___0 != 0L) { return; } else { } tmp___1 = netif_carrier_ok((struct net_device const *)jme->dev); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { return; } else { } if ((jme->msg_enable & 2048U) != 0U) { netdev_info((struct net_device const *)jme->dev, "RX Queue Full!\n"); } else { } jme_rx_clean_tasklet(arg); goto ldv_42976; ldv_42975: atomic_dec(& jme->rx_empty); (jme->dev)->stats.rx_dropped = (jme->dev)->stats.rx_dropped + 1UL; jme_restart_rx_engine(jme); ldv_42976: tmp___3 = atomic_read((atomic_t const *)(& jme->rx_empty)); if (tmp___3 > 0) { goto ldv_42975; } else { } atomic_inc(& jme->rx_empty); return; } } static void jme_wake_queue_if_stopped(struct jme_adapter *jme ) { struct jme_ring *txring ; int tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; { txring = (struct jme_ring *)(& jme->txring); __asm__ volatile ("": : : "memory"); tmp = netif_queue_stopped((struct net_device const *)jme->dev); if (tmp != 0) { tmp___0 = atomic_read((atomic_t const *)(& txring->nr_free)); if ((u32 )tmp___0 >= jme->tx_wake_threshold) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } tmp___2 = ldv__builtin_expect((long )tmp___1, 0L); if (tmp___2 != 0L) { if ((jme->msg_enable & 1024U) != 0U) { netdev_info((struct net_device const *)jme->dev, "TX Queue Waked\n"); } else { } netif_wake_queue(jme->dev); } else { } return; } } static void jme_tx_clean_tasklet(unsigned long arg ) { struct jme_adapter *jme ; struct jme_ring *txring ; struct txdesc *txdesc ; struct jme_buffer_info *txbi ; struct jme_buffer_info *ctxbi ; struct jme_buffer_info *ttxbi ; int i ; int j ; int cnt ; int max ; int err ; int mask ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { jme = (struct jme_adapter *)arg; txring = (struct jme_ring *)(& jme->txring); txdesc = (struct txdesc *)txring->desc; txbi = txring->bufinf; cnt = 0; tmp = atomic_dec_and_test(& jme->tx_cleaning); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { goto out; } else { } tmp___1 = atomic_read((atomic_t const *)(& jme->link_changing)); tmp___2 = ldv__builtin_expect(tmp___1 != 1, 0L); if (tmp___2 != 0L) { goto out; } else { } tmp___3 = netif_carrier_ok((struct net_device const *)jme->dev); tmp___4 = ldv__builtin_expect(tmp___3 == 0, 0L); if (tmp___4 != 0L) { goto out; } else { } tmp___5 = atomic_read((atomic_t const *)(& txring->nr_free)); max = (int )(jme->tx_ring_size - (u32 )tmp___5); mask = (int )jme->tx_ring_mask; i = atomic_read((atomic_t const *)(& txring->next_to_clean)); goto ldv_43003; ldv_43002: ctxbi = txbi + (unsigned long )i; tmp___7 = ldv__builtin_expect((long )((unsigned long )ctxbi->skb != (unsigned long )((struct sk_buff *)0) && (int )((signed char )(txdesc + (unsigned long )i)->__annonCompField54.descwb.flags) >= 0), 1L); if (tmp___7 != 0L) { err = (int )(txdesc + (unsigned long )i)->__annonCompField54.descwb.flags & 56; j = 1; goto ldv_42999; ldv_42998: ttxbi = txbi + (unsigned long )((i + j) & mask); (txdesc + (unsigned long )((i + j) & mask))->__annonCompField54.dw[0] = 0U; ldv_pci_unmap_page_2(jme->pdev, ttxbi->mapping, (size_t )ttxbi->len, 1); ttxbi->mapping = 0ULL; ttxbi->len = 0; j = j + 1; ldv_42999: ; if (ctxbi->nr_desc > j) { goto ldv_42998; } else { } consume_skb(ctxbi->skb); cnt = ctxbi->nr_desc + cnt; tmp___6 = ldv__builtin_expect(err != 0, 0L); if (tmp___6 != 0L) { (jme->dev)->stats.tx_carrier_errors = (jme->dev)->stats.tx_carrier_errors + 1UL; } else { (jme->dev)->stats.tx_packets = (jme->dev)->stats.tx_packets + 1UL; (jme->dev)->stats.tx_bytes = (jme->dev)->stats.tx_bytes + (unsigned long )ctxbi->len; } ctxbi->skb = (struct sk_buff *)0; ctxbi->len = 0; ctxbi->start_xmit = 0UL; } else { goto ldv_43001; } i = (ctxbi->nr_desc + i) & mask; ctxbi->nr_desc = 0; ldv_43003: ; if (cnt < max) { goto ldv_43002; } else { } ldv_43001: atomic_set(& txring->next_to_clean, i); atomic_add(cnt, & txring->nr_free); jme_wake_queue_if_stopped(jme); out: atomic_inc(& jme->tx_cleaning); return; } } static void jme_intr_msi(struct jme_adapter *jme , u32 intrstat ) { int tmp ; long tmp___0 ; int tmp___1 ; { jwrite32f(jme, 2092U, INTR_ENABLE); if ((intrstat & 2684354560U) != 0U) { jwrite32(jme, 2080U, intrstat); tasklet_schedule(& jme->linkch_task); goto out_reenable; } else { } if ((intrstat & 1073741824U) != 0U) { jwrite32(jme, 2080U, 1073741824U); tasklet_schedule(& jme->pcc_task); } else { } if ((intrstat & 2162688U) != 0U) { jwrite32(jme, 2080U, 2162689U); tasklet_schedule(& jme->txclean_task); } else { } if ((intrstat & 34607104U) != 0U) { jwrite32(jme, 2080U, (intrstat & 34607104U) | 256U); } else { } tmp___1 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___1 != 0) { if ((intrstat & 4096U) != 0U) { atomic_inc(& jme->rx_empty); } else { } if ((intrstat & 34607104U) != 0U) { tmp = napi_schedule_prep(& jme->napi); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); if (tmp___0 != 0L) { jme_polling_mode(jme); __napi_schedule(& jme->napi); } else { } } else { } } else if ((intrstat & 4096U) != 0U) { atomic_inc(& jme->rx_empty); tasklet_hi_schedule(& jme->rxempty_task); } else if ((intrstat & 34603008U) != 0U) { tasklet_hi_schedule(& jme->rxclean_task); } else { } out_reenable: jwrite32f(jme, 2088U, INTR_ENABLE); return; } } static irqreturn_t jme_intr(int irq , void *dev_id ) { struct net_device *netdev ; struct jme_adapter *jme ; void *tmp ; u32 intrstat ; long tmp___0 ; long tmp___1 ; { netdev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; intrstat = jread32(jme, 2080U); tmp___0 = ldv__builtin_expect((intrstat & (u32 )INTR_ENABLE) == 0U, 0L); if (tmp___0 != 0L) { return (0); } else { } tmp___1 = ldv__builtin_expect(intrstat == 4294967295U, 0L); if (tmp___1 != 0L) { return (0); } else { } jme_intr_msi(jme, intrstat); return (1); } } static irqreturn_t jme_msi(int irq , void *dev_id ) { struct net_device *netdev ; struct jme_adapter *jme ; void *tmp ; u32 intrstat ; { netdev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; intrstat = jread32(jme, 2080U); jme_intr_msi(jme, intrstat); return (1); } } static void jme_reset_link(struct jme_adapter *jme ) { { jwrite32(jme, 2048U, 2147483648U); return; } } static void jme_restart_an(struct jme_adapter *jme ) { u32 bmcr ; int tmp ; { spin_lock_bh(& jme->phy_lock); tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 0); bmcr = (u32 )tmp; bmcr = bmcr | 4608U; jme_mdio_write(jme->dev, jme->mii_if.phy_id, 0, (int )bmcr); spin_unlock_bh(& jme->phy_lock); return; } } static int jme_request_irq(struct jme_adapter *jme ) { int rc ; struct net_device *netdev ; irqreturn_t (*handler)(int , void * ) ; int irq_flags ; int tmp ; int tmp___0 ; int tmp___1 ; { netdev = jme->dev; handler = & jme_intr; irq_flags = 128; tmp = pci_enable_msi_block(jme->pdev, 1U); if (tmp == 0) { set_bit(1U, (unsigned long volatile *)(& jme->flags)); handler = & jme_msi; irq_flags = 0; } else { } rc = request_irq((jme->pdev)->irq, handler, (unsigned long )irq_flags, (char const *)(& netdev->name), (void *)netdev); if (rc != 0) { tmp___0 = constant_test_bit(1U, (unsigned long const volatile *)(& jme->flags)); netdev_err((struct net_device const *)netdev, "Unable to request %s interrupt (return: %d)\n", tmp___0 != 0 ? (char *)"MSI" : (char *)"INTx", rc); tmp___1 = constant_test_bit(1U, (unsigned long const volatile *)(& jme->flags)); if (tmp___1 != 0) { pci_disable_msi(jme->pdev); clear_bit(1, (unsigned long volatile *)(& jme->flags)); } else { } } else { netdev->irq = (jme->pdev)->irq; } return (rc); } } static void jme_free_irq(struct jme_adapter *jme ) { int tmp ; { free_irq((jme->pdev)->irq, (void *)jme->dev); tmp = constant_test_bit(1U, (unsigned long const volatile *)(& jme->flags)); if (tmp != 0) { pci_disable_msi(jme->pdev); clear_bit(1, (unsigned long volatile *)(& jme->flags)); (jme->dev)->irq = (jme->pdev)->irq; } else { } return; } } __inline static void jme_new_phy_on(struct jme_adapter *jme ) { u32 reg ; { reg = jread32(jme, 1060U); reg = reg & 4043309055U; jwrite32(jme, 1060U, reg); pci_read_config_dword(jme->pdev, 228, & reg); reg = reg & 4294918143U; reg = reg; pci_write_config_dword(jme->pdev, 228, reg); return; } } __inline static void jme_new_phy_off(struct jme_adapter *jme ) { u32 reg ; { reg = jread32(jme, 1060U); reg = reg | 251658240U; jwrite32(jme, 1060U, reg); pci_read_config_dword(jme->pdev, 228, & reg); reg = reg & 4294918143U; reg = reg | 16384U; pci_write_config_dword(jme->pdev, 228, reg); return; } } __inline static void jme_phy_on(struct jme_adapter *jme ) { u32 bmcr ; int tmp ; int tmp___0 ; { tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 0); bmcr = (u32 )tmp; bmcr = bmcr & 4294965247U; jme_mdio_write(jme->dev, jme->mii_if.phy_id, 0, (int )bmcr); tmp___0 = new_phy_power_ctrl((int )jme->chip_main_rev); if (tmp___0 != 0) { jme_new_phy_on(jme); } else { } return; } } __inline static void jme_phy_off(struct jme_adapter *jme ) { u32 bmcr ; int tmp ; int tmp___0 ; { tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 0); bmcr = (u32 )tmp; bmcr = bmcr | 2048U; jme_mdio_write(jme->dev, jme->mii_if.phy_id, 0, (int )bmcr); tmp___0 = new_phy_power_ctrl((int )jme->chip_main_rev); if (tmp___0 != 0) { jme_new_phy_off(jme); } else { } return; } } static int jme_open(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; int rc ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; jme_clear_pm(jme); napi_enable(& jme->napi); tasklet_enable(& jme->linkch_task); tasklet_enable(& jme->txclean_task); tasklet_enable(& jme->rxclean_task); tasklet_enable(& jme->rxempty_task); rc = jme_request_irq(jme); if (rc != 0) { goto err_out; } else { } jme_start_irq(jme); jme_phy_on(jme); tmp___0 = constant_test_bit(2U, (unsigned long const volatile *)(& jme->flags)); if (tmp___0 != 0) { jme_set_settings(netdev, & jme->old_ecmd); } else { jme_reset_phy_processor(jme); } jme_reset_link(jme); return (0); err_out: netif_stop_queue(netdev); netif_carrier_off(netdev); return (rc); } } static void jme_set_100m_half(struct jme_adapter *jme ) { u32 bmcr ; u32 tmp ; int tmp___0 ; { jme_phy_on(jme); tmp___0 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 0); bmcr = (u32 )tmp___0; tmp = bmcr & 4294954687U; tmp = tmp | 8192U; if (bmcr != tmp) { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 0, (int )tmp); } else { } if (jme->fpgaver != 0U) { jwrite32(jme, 84U, 33U); } else { jwrite32(jme, 84U, 32U); } return; } } static void jme_wait_link(struct jme_adapter *jme ) { u32 phylink ; u32 to ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; { to = 2000U; __ms = 1000UL; goto ldv_43074; ldv_43073: __const_udelay(4295000UL); ldv_43074: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_43073; } else { } phylink = jme_linkstat_from_phy(jme); goto ldv_43081; ldv_43080: __ms___0 = 10UL; goto ldv_43078; ldv_43077: __const_udelay(4295000UL); ldv_43078: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_43077; } else { } phylink = jme_linkstat_from_phy(jme); ldv_43081: ; if ((phylink & 1024U) == 0U) { to = to - 10U; if (to != 0U) { goto ldv_43080; } else { goto ldv_43082; } } else { } ldv_43082: ; return; } } static void jme_powersave_phy(struct jme_adapter *jme ) { { if (jme->reg_pmcs != 0U) { jme_set_100m_half(jme); if ((jme->reg_pmcs & 6U) != 0U) { jme_wait_link(jme); } else { } jwrite32(jme, 96U, jme->reg_pmcs); } else { jme_phy_off(jme); } return; } } static int jme_close(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; netif_stop_queue(netdev); netif_carrier_off(netdev); jme_stop_irq(jme); jme_free_irq(jme); tmp___0 = napi_disable_pending(& jme->napi); if (tmp___0 == 0) { napi_disable(& jme->napi); } else { } tasklet_disable(& jme->linkch_task); tasklet_disable(& jme->txclean_task); tasklet_disable(& jme->rxclean_task); tasklet_disable(& jme->rxempty_task); jme_disable_rx_engine(jme); jme_disable_tx_engine(jme); jme_reset_mac_processor(jme); jme_free_rx_resources(jme); jme_free_tx_resources(jme); jme->phylink = 0U; jme_phy_off(jme); return (0); } } static int jme_alloc_txdesc(struct jme_adapter *jme , struct sk_buff *skb ) { struct jme_ring *txring ; int idx ; int nr_alloc ; int mask ; unsigned char *tmp ; int tmp___0 ; long tmp___1 ; { txring = (struct jme_ring *)(& jme->txring); mask = (int )jme->tx_ring_mask; idx = txring->next_to_use; tmp = skb_end_pointer((struct sk_buff const *)skb); nr_alloc = (int )((struct skb_shared_info *)tmp)->nr_frags + 2; tmp___0 = atomic_read((atomic_t const *)(& txring->nr_free)); tmp___1 = ldv__builtin_expect(tmp___0 < nr_alloc, 0L); if (tmp___1 != 0L) { return (-1); } else { } atomic_sub(nr_alloc, & txring->nr_free); txring->next_to_use = (txring->next_to_use + nr_alloc) & mask; return (idx); } } static void jme_fill_tx_map(struct pci_dev *pdev , struct txdesc *txdesc , struct jme_buffer_info *txbi , struct page *page , u32 page_offset , u32 len , u8 hidma ) { dma_addr_t dmaaddr ; { dmaaddr = ldv_pci_map_page_1(pdev, page, (unsigned long )page_offset, (size_t )len, 1); pci_dma_sync_single_for_device(pdev, dmaaddr, (size_t )len, 1); txdesc->__annonCompField54.dw[0] = 0U; txdesc->__annonCompField54.dw[1] = 0U; txdesc->__annonCompField54.desc2.flags = 128U; txdesc->__annonCompField54.desc2.flags = (__u8 )((int )((signed char )txdesc->__annonCompField54.desc2.flags) | ((unsigned int )hidma != 0U ? 32 : 0)); txdesc->__annonCompField54.desc2.datalen = (unsigned short )len; txdesc->__annonCompField54.desc2.bufaddrh = (unsigned int )(dmaaddr >> 32); txdesc->__annonCompField54.desc2.bufaddrl = (unsigned int )dmaaddr; txbi->mapping = dmaaddr; txbi->len = (int )len; return; } } static void jme_map_tx_skb(struct jme_adapter *jme , struct sk_buff *skb , int idx ) { struct jme_ring *txring ; struct txdesc *txdesc ; struct txdesc *ctxdesc ; struct jme_buffer_info *txbi ; struct jme_buffer_info *ctxbi ; u8 hidma ; int i ; int nr_frags ; unsigned char *tmp ; int mask ; struct skb_frag_struct *frag ; u32 len ; unsigned char *tmp___0 ; unsigned int tmp___2 ; int tmp___3 ; unsigned long tmp___4 ; { txring = (struct jme_ring *)(& jme->txring); txdesc = (struct txdesc *)txring->desc; txbi = txring->bufinf; hidma = (unsigned int )((u8 )(jme->dev)->features) & 32U; tmp = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (int )((struct skb_shared_info *)tmp)->nr_frags; mask = (int )jme->tx_ring_mask; i = 0; goto ldv_43125; ldv_43124: tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___0)->frags) + (unsigned long )i; ctxdesc = txdesc + (unsigned long )(((idx + i) + 2) & mask); ctxbi = txbi + (unsigned long )(((idx + i) + 2) & mask); jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, frag->page, frag->page_offset, frag->size, (int )hidma); i = i + 1; ldv_43125: ; if (i < nr_frags) { goto ldv_43124; } else { } tmp___3 = skb_is_nonlinear((struct sk_buff const *)skb); if (tmp___3 != 0) { tmp___2 = skb_headlen((struct sk_buff const *)skb); len = tmp___2; } else { len = skb->len; } ctxdesc = txdesc + (unsigned long )((idx + 1) & mask); ctxbi = txbi + (unsigned long )((idx + 1) & mask); tmp___4 = __phys_addr((unsigned long )skb->data); jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, (struct page *)-24189255811072L + (tmp___4 >> 12), (u32 )((long )skb->data) & 4095U, len, (int )hidma); return; } } static int jme_expand_header(struct jme_adapter *jme , struct sk_buff *skb ) { unsigned char *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; { tmp = skb_end_pointer((struct sk_buff const *)skb); if ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U) { tmp___0 = skb_header_cloned((struct sk_buff const *)skb); if (tmp___0 != 0) { tmp___1 = pskb_expand_head(skb, 0, 0, 32U); if (tmp___1 != 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } } else { tmp___2 = 0; } tmp___3 = ldv__builtin_expect((long )tmp___2, 0L); if (tmp___3 != 0L) { consume_skb(skb); return (-1); } else { } return (0); } } static int jme_tx_tso(struct sk_buff *skb , __le16 *mss , u8 *flags ) { unsigned char *tmp ; struct iphdr *iph ; struct iphdr *tmp___0 ; struct tcphdr *tmp___1 ; __sum16 tmp___2 ; struct ipv6hdr *ip6h ; struct ipv6hdr *tmp___3 ; struct tcphdr *tmp___4 ; __sum16 tmp___5 ; { tmp = skb_end_pointer((struct sk_buff const *)skb); *mss = (int )((struct skb_shared_info *)tmp)->gso_size << 2U; if ((unsigned int )*mss != 0U) { *flags = (u8 )((unsigned int )*flags | 2U); if ((unsigned int )skb->protocol == 8U) { tmp___0 = ip_hdr((struct sk_buff const *)skb); iph = tmp___0; iph->check = 0U; tmp___1 = tcp_hdr((struct sk_buff const *)skb); tmp___2 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tmp___1->check = ~ ((int )tmp___2); } else { tmp___3 = ipv6_hdr((struct sk_buff const *)skb); ip6h = tmp___3; tmp___4 = tcp_hdr((struct sk_buff const *)skb); tmp___5 = csum_ipv6_magic((struct in6_addr const *)(& ip6h->saddr), (struct in6_addr const *)(& ip6h->daddr), 0U, 6, 0U); tmp___4->check = ~ ((int )tmp___5); } return (0); } else { } return (1); } } static void jme_tx_csum(struct jme_adapter *jme , struct sk_buff *skb , u8 *flags ) { u8 ip_proto ; struct iphdr *tmp ; struct ipv6hdr *tmp___0 ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { switch ((int )skb->protocol) { case 8: tmp = ip_hdr((struct sk_buff const *)skb); ip_proto = tmp->protocol; goto ldv_43145; case 56710: tmp___0 = ipv6_hdr((struct sk_buff const *)skb); ip_proto = tmp___0->nexthdr; goto ldv_43145; default: ip_proto = 0U; goto ldv_43145; } ldv_43145: ; switch ((int )ip_proto) { case 6: *flags = (u8 )((unsigned int )*flags | 16U); goto ldv_43149; case 17: *flags = (u8 )((unsigned int )*flags | 8U); goto ldv_43149; default: ; if ((jme->msg_enable & 128U) != 0U) { netdev_err((struct net_device const *)jme->dev, "Error upper layer protocol\n"); } else { } goto ldv_43149; } ldv_43149: ; } else { } return; } } __inline static void jme_tx_vlan(struct sk_buff *skb , __le16 *vlan , u8 *flags ) { { if (((int )skb->vlan_tci & 4096) != 0) { *flags = (u8 )((unsigned int )*flags | 1U); *vlan = (unsigned int )skb->vlan_tci & 61439U; } else { } return; } } static int jme_fill_tx_desc(struct jme_adapter *jme , struct sk_buff *skb , int idx ) { struct jme_ring *txring ; struct txdesc *txdesc ; struct jme_buffer_info *txbi ; u8 flags ; int tmp ; unsigned char *tmp___0 ; { txring = (struct jme_ring *)(& jme->txring); txdesc = (struct txdesc *)txring->desc + (unsigned long )idx; txbi = txring->bufinf + (unsigned long )idx; txdesc->__annonCompField54.dw[0] = 0U; txdesc->__annonCompField54.dw[1] = 0U; txdesc->__annonCompField54.dw[2] = 0U; txdesc->__annonCompField54.dw[3] = 0U; txdesc->__annonCompField54.desc1.pktsize = (unsigned short )skb->len; __asm__ volatile ("sfence": : : "memory"); flags = 192U; tmp = jme_tx_tso(skb, & txdesc->__annonCompField54.desc1.mss, & flags); if (tmp != 0) { jme_tx_csum(jme, skb, & flags); } else { } jme_tx_vlan(skb, & txdesc->__annonCompField54.desc1.vlan, & flags); jme_map_tx_skb(jme, skb, idx); txdesc->__annonCompField54.desc1.flags = flags; __asm__ volatile ("sfence": : : "memory"); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); txbi->nr_desc = (int )((struct skb_shared_info *)tmp___0)->nr_frags + 2; txbi->skb = skb; txbi->len = (int )skb->len; txbi->start_xmit = jiffies; if (txbi->start_xmit == 0UL) { txbi->start_xmit = 0xffffffffffffffffUL; } else { } return (0); } } static void jme_stop_queue_if_full(struct jme_adapter *jme ) { struct jme_ring *txring ; struct jme_buffer_info *txbi ; int idx ; int tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { txring = (struct jme_ring *)(& jme->txring); txbi = txring->bufinf; tmp = atomic_read((atomic_t const *)(& txring->next_to_clean)); idx = tmp; txbi = txbi + (unsigned long )idx; __asm__ volatile ("": : : "memory"); tmp___1 = atomic_read((atomic_t const *)(& txring->nr_free)); tmp___2 = ldv__builtin_expect((unsigned int )tmp___1 <= 19U, 0L); if (tmp___2 != 0L) { netif_stop_queue(jme->dev); if ((jme->msg_enable & 256U) != 0U) { netdev_info((struct net_device const *)jme->dev, "TX Queue Paused\n"); } else { } __asm__ volatile ("": : : "memory"); tmp___0 = atomic_read((atomic_t const *)(& txring->nr_free)); if ((u32 )tmp___0 >= jme->tx_wake_threshold) { netif_wake_queue(jme->dev); if ((jme->msg_enable & 256U) != 0U) { netdev_info((struct net_device const *)jme->dev, "TX Queue Fast Waked\n"); } else { } } else { } } else { } tmp___3 = ldv__builtin_expect((long )((txbi->start_xmit != 0UL && (unsigned long )jiffies - txbi->start_xmit > 1249UL) && (unsigned long )txbi->skb != (unsigned long )((struct sk_buff *)0)), 0L); if (tmp___3 != 0L) { netif_stop_queue(jme->dev); if ((jme->msg_enable & 256U) != 0U) { netdev_info((struct net_device const *)jme->dev, "TX Queue Stopped %d@%lu\n", idx, jiffies); } else { } } else { } return; } } static netdev_tx_t jme_start_xmit(struct sk_buff *skb , struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; int idx ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; tmp___0 = jme_expand_header(jme, skb); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { (jme->dev)->stats.tx_dropped = (jme->dev)->stats.tx_dropped + 1UL; return (0); } else { } idx = jme_alloc_txdesc(jme, skb); tmp___2 = ldv__builtin_expect(idx < 0, 0L); if (tmp___2 != 0L) { netif_stop_queue(netdev); if ((jme->msg_enable & 128U) != 0U) { netdev_err((struct net_device const *)jme->dev, "BUG! Tx ring full when queue awake!\n"); } else { } return (16); } else { } jme_fill_tx_desc(jme, skb, idx); jwrite32(jme, 0U, jme->reg_txcs | 257U); jme_stop_queue_if_full(jme); return (0); } } static void jme_set_unicastaddr(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; u32 val ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; val = (u32 )(((((int )*(netdev->dev_addr + 3UL) << 24) | ((int )*(netdev->dev_addr + 2UL) << 16)) | ((int )*(netdev->dev_addr + 1UL) << 8)) | (int )*(netdev->dev_addr)); jwrite32(jme, 56U, val); val = (u32 )(((int )*(netdev->dev_addr + 5UL) << 8) | (int )*(netdev->dev_addr + 4UL)); jwrite32(jme, 60U, val); return; } } static int jme_set_macaddr(struct net_device *netdev , void *p ) { struct jme_adapter *jme ; void *tmp ; struct sockaddr *addr ; int tmp___0 ; size_t __len ; void *__ret ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; addr = (struct sockaddr *)p; tmp___0 = netif_running((struct net_device const *)netdev); if (tmp___0 != 0) { return (-16); } else { } spin_lock_bh(& jme->macaddr_lock); __len = (size_t )netdev->addr_len; __ret = __builtin_memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), __len); jme_set_unicastaddr(netdev); spin_unlock_bh(& jme->macaddr_lock); return (0); } } static void jme_set_multi(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; u32 mc_hash[2U] ; struct netdev_hw_addr *ha ; int bit_nr ; struct list_head const *__mptr ; u32 tmp___0 ; u32 tmp___1 ; struct list_head const *__mptr___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; mc_hash[0] = 0U; mc_hash[1] = 0U; spin_lock_bh(& jme->rxmcs_lock); jme->reg_rxmcs = jme->reg_rxmcs | 1280U; if ((netdev->flags & 256U) != 0U) { jme->reg_rxmcs = jme->reg_rxmcs | 2048U; } else if ((netdev->flags & 512U) != 0U) { jme->reg_rxmcs = jme->reg_rxmcs | 128U; } else if ((netdev->flags & 4096U) != 0U) { jme->reg_rxmcs = jme->reg_rxmcs | 576U; __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_43204; ldv_43203: tmp___0 = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); tmp___1 = bitrev32(tmp___0); bit_nr = (int )tmp___1 & 63; mc_hash[bit_nr >> 5] = mc_hash[bit_nr >> 5] | (u32 )(1 << (bit_nr & 31)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_43204: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_43203; } else { } jwrite32(jme, 64U, mc_hash[0]); jwrite32(jme, 68U, mc_hash[1]); } else { } __asm__ volatile ("sfence": : : "memory"); jwrite32(jme, 52U, jme->reg_rxmcs); spin_unlock_bh(& jme->rxmcs_lock); return; } } static int jme_change_mtu(struct net_device *netdev , int new_mtu ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; if ((unsigned int )new_mtu == jme->old_mtu) { return (0); } else { } if (new_mtu + 14 > 9216 || new_mtu <= 1279) { return (-22); } else { } if (new_mtu > 4000) { jme->reg_rxcs = jme->reg_rxcs & 4093640703U; jme->reg_rxcs = jme->reg_rxcs | 134217728U; jme_restart_rx_engine(jme); } else { jme->reg_rxcs = jme->reg_rxcs & 4093640703U; jme->reg_rxcs = jme->reg_rxcs | 201326592U; jme_restart_rx_engine(jme); } netdev->mtu = (unsigned int )new_mtu; netdev_update_features(netdev); jme_reset_link(jme); return (0); } } static void jme_tx_timeout(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; jme->phylink = 0U; jme_reset_phy_processor(jme); tmp___0 = constant_test_bit(2U, (unsigned long const volatile *)(& jme->flags)); if (tmp___0 != 0) { jme_set_settings(netdev, & jme->old_ecmd); } else { } jme_reset_link(jme); return; } } __inline static void jme_pause_rx(struct jme_adapter *jme ) { int tmp ; int tmp___0 ; { atomic_dec(& jme->link_changing); jme_set_rx_pcc(jme, 0); tmp___0 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___0 != 0) { tmp = napi_disable_pending(& jme->napi); if (tmp == 0) { napi_disable(& jme->napi); } else { } } else { tasklet_disable(& jme->rxclean_task); tasklet_disable(& jme->rxempty_task); } return; } } __inline static void jme_resume_rx(struct jme_adapter *jme ) { struct dynpcc_info *dpi ; int tmp ; { dpi = & jme->dpi; tmp = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp != 0) { napi_enable(& jme->napi); } else { tasklet_enable(& jme->rxclean_task); tasklet_enable(& jme->rxempty_task); } dpi->cur = 1U; dpi->attempt = 1U; dpi->cnt = 0U; jme_set_rx_pcc(jme, 1); atomic_inc(& jme->link_changing); return; } } static void jme_vlan_rx_register(struct net_device *netdev , struct vlan_group *grp ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; jme_pause_rx(jme); jme->vlgrp = grp; jme_resume_rx(jme); return; } } static void jme_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *info ) { struct jme_adapter *jme ; void *tmp ; char const *tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; strcpy((char *)(& info->driver), "jme"); strcpy((char *)(& info->version), "1.0.8"); tmp___0 = pci_name((struct pci_dev const *)jme->pdev); strcpy((char *)(& info->bus_info), tmp___0); return; } } static int jme_get_regs_len(struct net_device *netdev ) { { return (1280); } } static void mmapio_memcpy(struct jme_adapter *jme , u32 *p , u32 reg , int len ) { int i ; { i = 0; goto ldv_43243; ldv_43242: *(p + (unsigned long )(i >> 2)) = jread32(jme, reg + (u32 )i); i = i + 4; ldv_43243: ; if (i < len) { goto ldv_43242; } else { } return; } } static void mdio_memcpy(struct jme_adapter *jme , u32 *p , int reg_nr ) { int i ; u16 *p16 ; int tmp ; { p16 = (u16 *)p; i = 0; goto ldv_43253; ldv_43252: tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, i); *(p16 + (unsigned long )i) = (u16 )tmp; i = i + 1; ldv_43253: ; if (i < reg_nr) { goto ldv_43252; } else { } return; } } static void jme_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct jme_adapter *jme ; void *tmp ; u32 *p32 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; p32 = (u32 *)p; memset(p, 255, 1280UL); regs->version = 1U; mmapio_memcpy(jme, p32, 0U, 128); p32 = p32 + 64UL; mmapio_memcpy(jme, p32, 1024U, 88); p32 = p32 + 64UL; mmapio_memcpy(jme, p32, 2048U, 152); p32 = p32 + 64UL; mmapio_memcpy(jme, p32, 3072U, 255); p32 = p32 + 64UL; mdio_memcpy(jme, p32, 32); return; } } static int jme_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ecmd ) { struct jme_adapter *jme ; void *tmp ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; ecmd->tx_coalesce_usecs = 1000U; ecmd->tx_max_coalesced_frames = 8U; tmp___0 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___0 != 0) { ecmd->use_adaptive_rx_coalesce = 0U; ecmd->rx_coalesce_usecs = 0U; ecmd->rx_max_coalesced_frames = 0U; return (0); } else { } ecmd->use_adaptive_rx_coalesce = 1U; switch ((int )jme->dpi.cur) { case 1: ecmd->rx_coalesce_usecs = 1U; ecmd->rx_max_coalesced_frames = 1U; goto ldv_43268; case 2: ecmd->rx_coalesce_usecs = 64U; ecmd->rx_max_coalesced_frames = 16U; goto ldv_43268; case 3: ecmd->rx_coalesce_usecs = 128U; ecmd->rx_max_coalesced_frames = 32U; goto ldv_43268; default: ; goto ldv_43268; } ldv_43268: ; return (0); } } static int jme_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ecmd ) { struct jme_adapter *jme ; void *tmp ; struct dynpcc_info *dpi ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; dpi = & jme->dpi; tmp___0 = netif_running((struct net_device const *)netdev); if (tmp___0 != 0) { return (-16); } else { } if (ecmd->use_adaptive_rx_coalesce != 0U) { tmp___2 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___2 != 0) { clear_bit(5, (unsigned long volatile *)(& jme->flags)); jme->jme_rx = & netif_rx; jme->jme_vlan_rx = & vlan_hwaccel_rx; dpi->cur = 1U; dpi->attempt = 1U; dpi->cnt = 0U; jme_set_rx_pcc(jme, 1); jme_interrupt_mode(jme); } else { goto _L; } } else _L: /* CIL Label */ if (ecmd->use_adaptive_rx_coalesce == 0U) { tmp___1 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___1 == 0) { set_bit(5U, (unsigned long volatile *)(& jme->flags)); jme->jme_rx = & netif_receive_skb; jme->jme_vlan_rx = & vlan_hwaccel_receive_skb; jme_interrupt_mode(jme); } else { } } else { } return (0); } } static void jme_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *ecmd ) { struct jme_adapter *jme ; void *tmp ; u32 val ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; ecmd->tx_pause = jme->reg_txpfc & 1U; ecmd->rx_pause = (jme->reg_rxmcs & 8U) != 0U; spin_lock_bh(& jme->phy_lock); tmp___0 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 4); val = (u32 )tmp___0; spin_unlock_bh(& jme->phy_lock); ecmd->autoneg = (val & 3072U) != 0U; return; } } static int jme_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *ecmd ) { struct jme_adapter *jme ; void *tmp ; u32 val ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; if ((int )((_Bool )((int )jme->reg_txpfc & 1)) ^ (ecmd->tx_pause != 0U)) { if (ecmd->tx_pause != 0U) { jme->reg_txpfc = jme->reg_txpfc | 1U; } else { jme->reg_txpfc = jme->reg_txpfc & 4294967294U; } jwrite32(jme, 24U, jme->reg_txpfc); } else { } spin_lock_bh(& jme->rxmcs_lock); if (((jme->reg_rxmcs & 8U) != 0U) ^ (ecmd->rx_pause != 0U)) { if (ecmd->rx_pause != 0U) { jme->reg_rxmcs = jme->reg_rxmcs | 8U; } else { jme->reg_rxmcs = jme->reg_rxmcs & 4294967287U; } jwrite32(jme, 52U, jme->reg_rxmcs); } else { } spin_unlock_bh(& jme->rxmcs_lock); spin_lock_bh(& jme->phy_lock); tmp___0 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 4); val = (u32 )tmp___0; if (((val & 3072U) != 0U) ^ (ecmd->autoneg != 0U)) { if (ecmd->autoneg != 0U) { val = val | 3072U; } else { val = val & 4294964223U; } jme_mdio_write(jme->dev, jme->mii_if.phy_id, 4, (int )val); } else { } spin_unlock_bh(& jme->phy_lock); return (0); } } static void jme_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; wol->supported = 33U; wol->wolopts = 0U; if ((jme->reg_pmcs & 6U) != 0U) { wol->wolopts = wol->wolopts | 1U; } else { } if ((int )jme->reg_pmcs & 1) { wol->wolopts = wol->wolopts | 32U; } else { } return; } } static int jme_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; if ((wol->wolopts & 94U) != 0U) { return (-95); } else { } jme->reg_pmcs = 0U; if ((int )wol->wolopts & 1) { jme->reg_pmcs = jme->reg_pmcs | 6U; } else { } if ((wol->wolopts & 32U) != 0U) { jme->reg_pmcs = jme->reg_pmcs | 1U; } else { } jwrite32(jme, 96U, jme->reg_pmcs); device_set_wakeup_enable(& (jme->pdev)->dev, jme->reg_pmcs != 0U); return (0); } } static int jme_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct jme_adapter *jme ; void *tmp ; int rc ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; spin_lock_bh(& jme->phy_lock); rc = mii_ethtool_gset(& jme->mii_if, ecmd); spin_unlock_bh(& jme->phy_lock); return (rc); } } static int jme_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct jme_adapter *jme ; void *tmp ; int rc ; int fdc ; __u32 tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; fdc = 0; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); if (tmp___0 == 1000U && (unsigned int )ecmd->autoneg != 1U) { return (-22); } else { } if (((unsigned int )*((unsigned char *)jme + 40UL) != 0U && (unsigned int )ecmd->autoneg != 1U) && (int )jme->mii_if.full_duplex != (int )ecmd->duplex) { fdc = 1; } else { } spin_lock_bh(& jme->phy_lock); rc = mii_ethtool_sset(& jme->mii_if, ecmd); spin_unlock_bh(& jme->phy_lock); if (rc == 0) { if (fdc != 0) { jme_reset_link(jme); } else { } jme->old_ecmd = *ecmd; set_bit(2U, (unsigned long volatile *)(& jme->flags)); } else { } return (rc); } } static int jme_ioctl(struct net_device *netdev , struct ifreq *rq , int cmd ) { int rc ; struct jme_adapter *jme ; void *tmp ; struct mii_ioctl_data *mii_data ; struct mii_ioctl_data *tmp___0 ; unsigned int duplex_chg ; u16 val ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; tmp___0 = if_mii(rq); mii_data = tmp___0; if (cmd == 35145) { val = mii_data->val_in; if (((int )val & 36864) == 0 && ((int )val & 64) != 0) { return (-22); } else { } } else { } spin_lock_bh(& jme->phy_lock); rc = generic_mii_ioctl(& jme->mii_if, mii_data, cmd, & duplex_chg); spin_unlock_bh(& jme->phy_lock); if (rc == 0 && cmd == 35145) { if (duplex_chg != 0U) { jme_reset_link(jme); } else { } jme_get_settings(netdev, & jme->old_ecmd); set_bit(2U, (unsigned long volatile *)(& jme->flags)); } else { } return (rc); } } static u32 jme_get_link(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; u32 tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; tmp___0 = jread32(jme, 1072U); return (tmp___0 & 1024U); } } static u32 jme_get_msglevel(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; return (jme->msg_enable); } } static void jme_set_msglevel(struct net_device *netdev , u32 value ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; jme->msg_enable = value; return; } } static u32 jme_fix_features(struct net_device *netdev , u32 features ) { { if (netdev->mtu > 1900U) { features = features & 4293328865U; } else { } return (features); } } static int jme_set_features(struct net_device *netdev , u32 features ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; spin_lock_bh(& jme->rxmcs_lock); if ((features & 536870912U) != 0U) { jme->reg_rxmcs = jme->reg_rxmcs | 1U; } else { jme->reg_rxmcs = jme->reg_rxmcs & 4294967294U; } jwrite32(jme, 52U, jme->reg_rxmcs); spin_unlock_bh(& jme->rxmcs_lock); return (0); } } static int jme_nway_reset(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; jme_restart_an(jme); return (0); } } static u8 jme_smb_read(struct jme_adapter *jme , unsigned int addr ) { u32 val ; int to ; { val = jread32(jme, 1088U); to = 20; goto ldv_43356; ldv_43355: msleep(1U); val = jread32(jme, 1088U); ldv_43356: ; if ((val & 15U) != 0U) { to = to - 1; if (to != 0) { goto ldv_43355; } else { goto ldv_43357; } } else { } ldv_43357: ; if (to == 0) { if ((jme->msg_enable & 8192U) != 0U) { netdev_err((struct net_device const *)jme->dev, "SMB Bus Busy\n"); } else { } return (255U); } else { } jwrite32(jme, 1092U, ((addr << 8) & 65535U) | 48U); val = jread32(jme, 1092U); to = 20; goto ldv_43359; ldv_43358: msleep(1U); val = jread32(jme, 1092U); ldv_43359: ; if ((val & 16U) != 0U) { to = to - 1; if (to != 0) { goto ldv_43358; } else { goto ldv_43360; } } else { } ldv_43360: ; if (to == 0) { if ((jme->msg_enable & 8192U) != 0U) { netdev_err((struct net_device const *)jme->dev, "SMB Bus Busy\n"); } else { } return (255U); } else { } return ((u8 )(val >> 24)); } } static void jme_smb_write(struct jme_adapter *jme , unsigned int addr , u8 data ) { u32 val ; int to ; unsigned long __ms ; unsigned long tmp ; { val = jread32(jme, 1088U); to = 20; goto ldv_43369; ldv_43368: msleep(1U); val = jread32(jme, 1088U); ldv_43369: ; if ((val & 15U) != 0U) { to = to - 1; if (to != 0) { goto ldv_43368; } else { goto ldv_43370; } } else { } ldv_43370: ; if (to == 0) { if ((jme->msg_enable & 8192U) != 0U) { netdev_err((struct net_device const *)jme->dev, "SMB Bus Busy\n"); } else { } return; } else { } jwrite32(jme, 1092U, (((unsigned int )((int )data << 16) & 16711680U) | ((addr << 8) & 65535U)) | 16U); val = jread32(jme, 1092U); to = 20; goto ldv_43372; ldv_43371: msleep(1U); val = jread32(jme, 1092U); ldv_43372: ; if ((val & 16U) != 0U) { to = to - 1; if (to != 0) { goto ldv_43371; } else { goto ldv_43373; } } else { } ldv_43373: ; if (to == 0) { if ((jme->msg_enable & 8192U) != 0U) { netdev_err((struct net_device const *)jme->dev, "SMB Bus Busy\n"); } else { } return; } else { } if (1) { __const_udelay(8590000UL); } else { __ms = 2UL; goto ldv_43376; ldv_43375: __const_udelay(4295000UL); ldv_43376: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_43375; } else { } } return; } } static int jme_get_eeprom_len(struct net_device *netdev ) { struct jme_adapter *jme ; void *tmp ; u32 val ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; val = jread32(jme, 1088U); return ((val & 32U) != 0U ? 256 : 0); } } static int jme_get_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *data ) { struct jme_adapter *jme ; void *tmp ; int i ; int offset ; int len ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; offset = (int )eeprom->offset; len = (int )eeprom->len; eeprom->magic = 592U; i = 0; goto ldv_43393; ldv_43392: *(data + (unsigned long )i) = jme_smb_read(jme, (unsigned int )(i + offset)); i = i + 1; ldv_43393: ; if (i < len) { goto ldv_43392; } else { } return (0); } } static int jme_set_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *data ) { struct jme_adapter *jme ; void *tmp ; int i ; int offset ; int len ; { tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; offset = (int )eeprom->offset; len = (int )eeprom->len; if (eeprom->magic != 592U) { return (-22); } else { } i = 0; goto ldv_43405; ldv_43404: jme_smb_write(jme, (unsigned int )(i + offset), (int )*(data + (unsigned long )i)); i = i + 1; ldv_43405: ; if (i < len) { goto ldv_43404; } else { } return (0); } } static struct ethtool_ops const jme_ethtool_ops = {& jme_get_settings, & jme_set_settings, & jme_get_drvinfo, & jme_get_regs_len, & jme_get_regs, & jme_get_wol, & jme_set_wol, & jme_get_msglevel, & jme_set_msglevel, & jme_nway_reset, & jme_get_link, & jme_get_eeprom_len, & jme_get_eeprom, & jme_set_eeprom, & jme_get_coalesce, & jme_set_coalesce, 0, 0, & jme_get_pauseparam, & jme_set_pauseparam, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int jme_pci_dma64(struct pci_dev *pdev ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { if ((unsigned int )pdev->device == 592U) { tmp___0 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); if (tmp___0 == 0) { tmp = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); if (tmp == 0) { return (1); } else { } } else { } } else { } if ((unsigned int )pdev->device == 592U) { tmp___2 = pci_set_dma_mask(pdev, 1099511627775ULL); if (tmp___2 == 0) { tmp___1 = pci_set_consistent_dma_mask(pdev, 1099511627775ULL); if (tmp___1 == 0) { return (1); } else { } } else { } } else { } tmp___4 = pci_set_dma_mask(pdev, 4294967295ULL); if (tmp___4 == 0) { tmp___3 = pci_set_consistent_dma_mask(pdev, 4294967295ULL); if (tmp___3 == 0) { return (0); } else { } } else { } return (-1); } } __inline static void jme_phy_init(struct jme_adapter *jme ) { u16 reg26 ; int tmp ; { tmp = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 26); reg26 = (u16 )tmp; jme_mdio_write(jme->dev, jme->mii_if.phy_id, 26, (int )((unsigned int )reg26 | 4096U)); return; } } __inline static void jme_check_hw_ver(struct jme_adapter *jme ) { u32 chipmode ; { chipmode = jread32(jme, 2116U); jme->fpgaver = chipmode >> 16; jme->chiprev = (u8 )((chipmode & 65280U) >> 8); jme->chip_main_rev = (unsigned int )jme->chiprev & 15U; jme->chip_sub_rev = (u8 )((int )jme->chiprev >> 4); return; } } static struct net_device_ops const jme_netdev_ops = {0, 0, & jme_open, & jme_close, & jme_start_xmit, 0, 0, 0, & jme_set_multi, & jme_set_macaddr, & eth_validate_addr, & jme_ioctl, 0, & jme_change_mtu, 0, & jme_tx_timeout, 0, 0, & jme_vlan_rx_register, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & jme_fix_features, & jme_set_features}; static int jme_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { int rc ; int using_dac ; int i ; struct net_device *netdev ; struct jme_adapter *jme ; u16 bmcr ; u16 bmsr ; u32 apmc ; void *tmp ; unsigned int tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; int tmp___3 ; int tmp___4 ; { rc = 0; rc = pci_enable_device(pdev); if (rc != 0) { printk("<3>jme: Cannot enable PCI device\n"); goto err_out; } else { } using_dac = jme_pci_dma64(pdev); if (using_dac < 0) { printk("<3>jme: Cannot set PCI DMA Mask\n"); rc = -5; goto err_out_disable_pdev; } else { } if ((pdev->resource[0].flags & 512UL) == 0UL) { printk("<3>jme: No PCI resource region found\n"); rc = -12; goto err_out_disable_pdev; } else { } rc = pci_request_regions(pdev, "jme"); if (rc != 0) { printk("<3>jme: Cannot obtain PCI resource region\n"); goto err_out_disable_pdev; } else { } pci_set_master(pdev); netdev = alloc_etherdev_mqs(1528, 1U, 1U); if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { printk("<3>jme: Cannot allocate netdev structure\n"); rc = -12; goto err_out_release_regions; } else { } netdev->netdev_ops = & jme_netdev_ops; netdev->ethtool_ops = & jme_ethtool_ops; netdev->watchdog_timeo = 1250; netdev->hw_features = 537985043U; netdev->features = 1114515U; if (using_dac != 0) { netdev->features = netdev->features | 32U; } else { } netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); tmp = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp; jme->pdev = pdev; jme->dev = netdev; jme->jme_rx = & netif_rx; jme->jme_vlan_rx = & vlan_hwaccel_rx; tmp___0 = 1500U; netdev->mtu = tmp___0; jme->old_mtu = tmp___0; jme->phylink = 0U; jme->tx_ring_size = 1024U; jme->tx_ring_mask = jme->tx_ring_size - 1U; jme->tx_wake_threshold = 512U; jme->rx_ring_size = 512U; jme->rx_ring_mask = jme->rx_ring_size - 1U; jme->msg_enable = 8390U; jme->regs = ioremap(pdev->resource[0].start, pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL); if ((unsigned long )jme->regs == (unsigned long )((void *)0)) { printk("<3>jme: Mapping PCI resource region error\n"); rc = -12; goto err_out_free_netdev; } else { } if (no_pseudohp != 0) { tmp___1 = jread32(jme, 2172U); apmc = tmp___1 & 3758096383U; jwrite32(jme, 2172U, apmc); } else if (force_pseudohp != 0) { tmp___2 = jread32(jme, 2172U); apmc = tmp___2 | 536870912U; jwrite32(jme, 2172U, apmc); } else { } netif_napi_add(netdev, & jme->napi, & jme_poll, (int )(jme->rx_ring_size >> 2)); spinlock_check(& jme->phy_lock); __raw_spin_lock_init(& jme->phy_lock.__annonCompField18.rlock, "&(&jme->phy_lock)->rlock", & __key); spinlock_check(& jme->macaddr_lock); __raw_spin_lock_init(& jme->macaddr_lock.__annonCompField18.rlock, "&(&jme->macaddr_lock)->rlock", & __key___0); spinlock_check(& jme->rxmcs_lock); __raw_spin_lock_init(& jme->rxmcs_lock.__annonCompField18.rlock, "&(&jme->rxmcs_lock)->rlock", & __key___1); atomic_set(& jme->link_changing, 1); atomic_set(& jme->rx_cleaning, 1); atomic_set(& jme->tx_cleaning, 1); atomic_set(& jme->rx_empty, 1); tasklet_init(& jme->pcc_task, & jme_pcc_tasklet, (unsigned long )jme); tasklet_init(& jme->linkch_task, & jme_link_change_tasklet, (unsigned long )jme); tasklet_init(& jme->txclean_task, & jme_tx_clean_tasklet, (unsigned long )jme); tasklet_init(& jme->rxclean_task, & jme_rx_clean_tasklet, (unsigned long )jme); tasklet_init(& jme->rxempty_task, & jme_rx_empty_tasklet, (unsigned long )jme); tasklet_disable_nosync(& jme->linkch_task); tasklet_disable_nosync(& jme->txclean_task); tasklet_disable_nosync(& jme->rxclean_task); tasklet_disable_nosync(& jme->rxempty_task); jme->dpi.cur = 1U; jme->reg_ghc = 0U; jme->reg_rxcs = 1056966656U; jme->reg_rxmcs = 15U; jme->reg_txpfc = 0U; jme->reg_pmcs = 1U; jme->reg_gpreg1 = 131072U; if ((int )jme->reg_rxmcs & 1) { netdev->features = netdev->features | 536870912U; } else { } pci_read_config_byte(pdev, 89, & jme->mrrs); jme->mrrs = (unsigned int )jme->mrrs & 112U; switch ((int )jme->mrrs) { case 0: jme->reg_txcs = 20U; goto ldv_43440; case 16: jme->reg_txcs = 36U; goto ldv_43440; default: jme->reg_txcs = 52U; goto ldv_43440; } ldv_43440: jme_check_hw_ver(jme); jme->mii_if.dev = netdev; if (jme->fpgaver != 0U) { jme->mii_if.phy_id = 0; i = 1; goto ldv_43445; ldv_43444: tmp___3 = jme_mdio_read(netdev, i, 0); bmcr = (u16 )tmp___3; tmp___4 = jme_mdio_read(netdev, i, 1); bmsr = (u16 )tmp___4; if ((unsigned int )bmcr != 65535U && ((unsigned int )bmcr != 0U || (unsigned int )bmsr != 0U)) { jme->mii_if.phy_id = i; goto ldv_43443; } else { } i = i + 1; ldv_43445: ; if (i <= 31) { goto ldv_43444; } else { } ldv_43443: ; if (jme->mii_if.phy_id == 0) { rc = -5; printk("<3>jme: Can not find phy_id\n"); goto err_out_unmap; } else { } jme->reg_ghc = jme->reg_ghc | 1U; } else { jme->mii_if.phy_id = 1; } if ((unsigned int )pdev->device == 592U) { jme->mii_if.supports_gmii = 1U; } else { jme->mii_if.supports_gmii = 0U; } jme->mii_if.phy_id_mask = 31; jme->mii_if.reg_num_mask = 31; jme->mii_if.mdio_read = & jme_mdio_read; jme->mii_if.mdio_write = & jme_mdio_write; jme_clear_pm(jme); jme_set_phyfifo_5level(jme); jme->pcirev = pdev->revision; if (jme->fpgaver == 0U) { jme_phy_init(jme); } else { } jme_phy_off(jme); jme_reset_mac_processor(jme); rc = jme_reload_eeprom(jme); if (rc != 0) { printk("<3>jme: Reload eeprom for reading MAC Address error\n"); goto err_out_unmap; } else { } jme_load_macaddr(netdev); netif_carrier_off(netdev); rc = ldv_register_netdev_5(netdev); if (rc != 0) { printk("<3>jme: Cannot register net device\n"); goto err_out_unmap; } else { } if ((jme->msg_enable & 2U) != 0U) { netdev_info((struct net_device const *)jme->dev, "%s%s chiprev:%x pcirev:%x macaddr:%pM\n", (unsigned int )(jme->pdev)->device != 592U ? ((unsigned int )(jme->pdev)->device == 608U ? (char *)"JMC260 Fast Ethernet" : (char *)"Unknown") : (char *)"JMC250 Gigabit Ethernet", jme->fpgaver != 0U ? (char *)" (FPGA)" : (char *)"", jme->fpgaver != 0U ? jme->fpgaver : (unsigned int )jme->chiprev, (int )jme->pcirev, netdev->dev_addr); } else { } return (0); err_out_unmap: iounmap((void volatile *)jme->regs); err_out_free_netdev: pci_set_drvdata(pdev, (void *)0); ldv_free_netdev_6(netdev); err_out_release_regions: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out: ; return (rc); } } static void jme_remove_one(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct jme_adapter *jme ; void *tmp___0 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp___0; ldv_unregister_netdev_7(netdev); iounmap((void volatile *)jme->regs); pci_set_drvdata(pdev, (void *)0); ldv_free_netdev_8(netdev); pci_release_regions(pdev); pci_disable_device(pdev); return; } } static void jme_shutdown(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct jme_adapter *jme ; void *tmp___0 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp___0; jme_powersave_phy(jme); pci_pme_active(pdev, 1); return; } } static int jme_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct jme_adapter *jme ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff70UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp___0; atomic_dec(& jme->link_changing); netif_device_detach(netdev); netif_stop_queue(netdev); jme_stop_irq(jme); tasklet_disable(& jme->txclean_task); tasklet_disable(& jme->rxclean_task); tasklet_disable(& jme->rxempty_task); tmp___2 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___2 != 0) { tmp___1 = constant_test_bit(5U, (unsigned long const volatile *)(& jme->flags)); if (tmp___1 != 0) { jme_polling_mode(jme); } else { } jme_stop_pcc_timer(jme); jme_disable_rx_engine(jme); jme_disable_tx_engine(jme); jme_reset_mac_processor(jme); jme_free_rx_resources(jme); jme_free_tx_resources(jme); netif_carrier_off(netdev); jme->phylink = 0U; } else { } tasklet_enable(& jme->txclean_task); tasklet_enable(& jme->rxclean_task); tasklet_enable(& jme->rxempty_task); jme_powersave_phy(jme); return (0); } } static int jme_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct jme_adapter *jme ; void *tmp___0 ; int tmp___1 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff70UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); jme = (struct jme_adapter *)tmp___0; jwrite32(jme, 96U, jme->reg_pmcs | 4294901760U); jme_phy_on(jme); tmp___1 = constant_test_bit(2U, (unsigned long const volatile *)(& jme->flags)); if (tmp___1 != 0) { jme_set_settings(netdev, & jme->old_ecmd); } else { jme_reset_phy_processor(jme); } jme_start_irq(jme); netif_device_attach(netdev); atomic_inc(& jme->link_changing); jme_reset_link(jme); return (0); } } static struct dev_pm_ops const jme_pm_ops = {0, 0, & jme_suspend, & jme_resume, & jme_suspend, & jme_resume, & jme_suspend, & jme_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_device_id const jme_pci_tbl[3U] = { {6523U, 592U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6523U, 608U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; static struct pci_driver jme_driver = {{0, 0}, "jme", (struct pci_device_id const *)(& jme_pci_tbl), & jme_init_one, & jme_remove_one, 0, 0, 0, 0, & jme_shutdown, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, & jme_pm_ops, 0}, {{{{{0U}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int jme_init_module(void) { int tmp ; { printk("<6>jme: JMicron JMC2XX ethernet driver version %s\n", (char *)"1.0.8"); tmp = ldv___pci_register_driver_9(& jme_driver, & __this_module, "jme"); return (tmp); } } static void jme_cleanup_module(void) { { ldv_pci_unregister_driver_10(& jme_driver); return; } } struct pci_device_id const __mod_pci_device_table ; int ldv_retval_20 ; extern int ldv_suspend_late_2(void) ; extern int ldv_restore_noirq_2(void) ; int ldv_retval_18 ; int ldv_retval_2 ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_11 ; int ldv_retval_1 ; int ldv_retval_22 ; int ldv_retval_15 ; int ldv_retval_16 ; extern int ldv_freeze_late_2(void) ; extern int ldv_complete_2(void) ; void ldv_check_final_state(void) ; int ldv_retval_8 ; extern int ldv_ndo_init_3(void) ; int ldv_retval_7 ; extern int ldv_thaw_early_2(void) ; extern int ldv_ndo_uninit_3(void) ; int ldv_retval_19 ; extern int ldv_poweroff_noirq_2(void) ; extern int ldv_resume_noirq_2(void) ; int ldv_retval_14 ; extern int ldv_resume_early_2(void) ; int ldv_retval_17 ; extern int ldv_prepare_2(void) ; int ldv_retval_12 ; void ldv_initialize(void) ; int ldv_retval_6 ; extern int ldv_restore_early_2(void) ; extern int ldv_suspend_noirq_2(void) ; int ldv_retval_21 ; extern int ldv_poweroff_late_2(void) ; int ldv_retval_13 ; extern int ldv_thaw_noirq_2(void) ; int ldv_retval_9 ; int ldv_retval_10 ; extern int ldv_freeze_noirq_2(void) ; int ldv_retval_4 ; int ldv_retval_3 ; void ldv_net_device_ops_3(void) { void *tmp ; { tmp = ldv_init_zalloc(2560UL); jme_netdev_ops_group1 = (struct net_device *)tmp; return; } } void ldv_pci_driver_1(void) { void *tmp ; { tmp = ldv_init_zalloc(2848UL); jme_driver_group1 = (struct pci_dev *)tmp; return; } } void ldv_initialize_ethtool_ops_4(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { tmp = ldv_init_zalloc(92UL); jme_ethtool_ops_group3 = (struct ethtool_coalesce *)tmp; tmp___0 = ldv_init_zalloc(2560UL); jme_ethtool_ops_group4 = (struct net_device *)tmp___0; tmp___1 = ldv_init_zalloc(16UL); jme_ethtool_ops_group1 = (struct ethtool_eeprom *)tmp___1; tmp___2 = ldv_init_zalloc(44UL); jme_ethtool_ops_group0 = (struct ethtool_cmd *)tmp___2; tmp___3 = ldv_init_zalloc(20UL); jme_ethtool_ops_group5 = (struct ethtool_wolinfo *)tmp___3; tmp___4 = ldv_init_zalloc(16UL); jme_ethtool_ops_group2 = (struct ethtool_pauseparam *)tmp___4; return; } } void ldv_dev_pm_ops_2(void) { void *tmp ; { tmp = ldv_init_zalloc(1112UL); jme_pm_ops_group1 = (struct device *)tmp; return; } } int main(void) { u8 *ldvarg1 ; void *tmp ; struct ethtool_regs *ldvarg4 ; void *tmp___0 ; void *ldvarg3 ; void *tmp___1 ; u8 *ldvarg0 ; void *tmp___2 ; struct ethtool_drvinfo *ldvarg5 ; void *tmp___3 ; u32 ldvarg2 ; struct pci_device_id *ldvarg6 ; void *tmp___4 ; struct sk_buff *ldvarg11 ; void *tmp___5 ; void *ldvarg7 ; void *tmp___6 ; struct vlan_group *ldvarg12 ; void *tmp___7 ; int ldvarg8 ; struct ifreq *ldvarg14 ; void *tmp___8 ; int ldvarg13 ; u32 ldvarg10 ; u32 ldvarg9 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; { tmp = ldv_init_zalloc(1UL); ldvarg1 = (u8 *)tmp; tmp___0 = ldv_init_zalloc(12UL); ldvarg4 = (struct ethtool_regs *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg3 = tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg0 = (u8 *)tmp___2; tmp___3 = ldv_init_zalloc(196UL); ldvarg5 = (struct ethtool_drvinfo *)tmp___3; tmp___4 = ldv_init_zalloc(32UL); ldvarg6 = (struct pci_device_id *)tmp___4; tmp___5 = ldv_init_zalloc(240UL); ldvarg11 = (struct sk_buff *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg7 = tmp___6; tmp___7 = ldv_init_zalloc(112UL); ldvarg12 = (struct vlan_group *)tmp___7; tmp___8 = ldv_init_zalloc(40UL); ldvarg14 = (struct ifreq *)tmp___8; ldv_initialize(); ldv_memset((void *)(& ldvarg2), 0, 4UL); ldv_memset((void *)(& ldvarg8), 0, 4UL); ldv_memset((void *)(& ldvarg13), 0, 4UL); ldv_memset((void *)(& ldvarg10), 0, 4UL); ldv_memset((void *)(& ldvarg9), 0, 4UL); ldv_state_variable_4 = 0; ldv_state_variable_1 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_3 = 0; ldv_state_variable_2 = 0; ldv_43673: tmp___9 = __VERIFIER_nondet_int(); switch (tmp___9) { case 0: ; if (ldv_state_variable_4 != 0) { tmp___10 = __VERIFIER_nondet_int(); switch (tmp___10) { case 0: ; if (ldv_state_variable_4 == 1) { jme_get_drvinfo(jme_ethtool_ops_group4, ldvarg5); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 1: ; if (ldv_state_variable_4 == 1) { jme_set_pauseparam(jme_ethtool_ops_group4, jme_ethtool_ops_group2); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 2: ; if (ldv_state_variable_4 == 1) { jme_get_coalesce(jme_ethtool_ops_group4, jme_ethtool_ops_group3); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 3: ; if (ldv_state_variable_4 == 1) { jme_get_regs(jme_ethtool_ops_group4, ldvarg4, ldvarg3); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 4: ; if (ldv_state_variable_4 == 1) { jme_get_pauseparam(jme_ethtool_ops_group4, jme_ethtool_ops_group2); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 5: ; if (ldv_state_variable_4 == 1) { jme_get_settings(jme_ethtool_ops_group4, jme_ethtool_ops_group0); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 6: ; if (ldv_state_variable_4 == 1) { jme_set_coalesce(jme_ethtool_ops_group4, jme_ethtool_ops_group3); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 7: ; if (ldv_state_variable_4 == 1) { jme_set_wol(jme_ethtool_ops_group4, jme_ethtool_ops_group5); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 8: ; if (ldv_state_variable_4 == 1) { jme_set_msglevel(jme_ethtool_ops_group4, ldvarg2); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 9: ; if (ldv_state_variable_4 == 1) { jme_get_eeprom_len(jme_ethtool_ops_group4); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 10: ; if (ldv_state_variable_4 == 1) { jme_set_settings(jme_ethtool_ops_group4, jme_ethtool_ops_group0); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 11: ; if (ldv_state_variable_4 == 1) { jme_get_eeprom(jme_ethtool_ops_group4, jme_ethtool_ops_group1, ldvarg1); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 12: ; if (ldv_state_variable_4 == 1) { jme_nway_reset(jme_ethtool_ops_group4); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 13: ; if (ldv_state_variable_4 == 1) { jme_get_wol(jme_ethtool_ops_group4, jme_ethtool_ops_group5); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 14: ; if (ldv_state_variable_4 == 1) { jme_set_eeprom(jme_ethtool_ops_group4, jme_ethtool_ops_group1, ldvarg0); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 15: ; if (ldv_state_variable_4 == 1) { jme_get_msglevel(jme_ethtool_ops_group4); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 16: ; if (ldv_state_variable_4 == 1) { jme_get_regs_len(jme_ethtool_ops_group4); ldv_state_variable_4 = 1; } else { } goto ldv_43600; case 17: ; if (ldv_state_variable_4 == 1) { jme_get_link(jme_ethtool_ops_group4); ldv_state_variable_4 = 1; } else { } goto ldv_43600; default: ldv_stop(); } ldv_43600: ; } else { } goto ldv_43619; case 1: ; if (ldv_state_variable_1 != 0) { tmp___11 = __VERIFIER_nondet_int(); switch (tmp___11) { case 0: ; if (ldv_state_variable_1 == 1) { ldv_retval_0 = jme_init_one(jme_driver_group1, (struct pci_device_id const *)ldvarg6); if (ldv_retval_0 == 0) { ldv_state_variable_1 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_43622; case 1: ; if (ldv_state_variable_1 == 2) { jme_shutdown(jme_driver_group1); ldv_state_variable_1 = 2; } else { } goto ldv_43622; case 2: ; if (ldv_state_variable_1 == 2) { jme_remove_one(jme_driver_group1); ldv_state_variable_1 = 1; } else { } goto ldv_43622; default: ldv_stop(); } ldv_43622: ; } else { } goto ldv_43619; case 2: ; if (ldv_state_variable_0 != 0) { tmp___12 = __VERIFIER_nondet_int(); switch (tmp___12) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { jme_cleanup_module(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_43629; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_1 = jme_init_module(); if (ldv_retval_1 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_2 = 1; ldv_dev_pm_ops_2(); ldv_state_variable_4 = 1; ldv_initialize_ethtool_ops_4(); } else { } if (ldv_retval_1 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_43629; default: ldv_stop(); } ldv_43629: ; } else { } goto ldv_43619; case 3: ; if (ldv_state_variable_3 != 0) { tmp___13 = __VERIFIER_nondet_int(); switch (tmp___13) { case 0: ; if (ldv_state_variable_3 == 1) { jme_ioctl(jme_netdev_ops_group1, ldvarg14, ldvarg13); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_ioctl(jme_netdev_ops_group1, ldvarg14, ldvarg13); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_ioctl(jme_netdev_ops_group1, ldvarg14, ldvarg13); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 1: ; if (ldv_state_variable_3 == 1) { jme_set_multi(jme_netdev_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_set_multi(jme_netdev_ops_group1); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_set_multi(jme_netdev_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 2: ; if (ldv_state_variable_3 == 2) { ldv_retval_3 = jme_open(jme_netdev_ops_group1); if (ldv_retval_3 == 0) { ldv_state_variable_3 = 3; } else { } } else { } goto ldv_43634; case 3: ; if (ldv_state_variable_3 == 1) { jme_vlan_rx_register(jme_netdev_ops_group1, ldvarg12); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_vlan_rx_register(jme_netdev_ops_group1, ldvarg12); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_vlan_rx_register(jme_netdev_ops_group1, ldvarg12); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 4: ; if (ldv_state_variable_3 == 3) { jme_start_xmit(ldvarg11, jme_netdev_ops_group1); ldv_state_variable_3 = 3; } else { } goto ldv_43634; case 5: ; if (ldv_state_variable_3 == 1) { jme_fix_features(jme_netdev_ops_group1, ldvarg10); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_fix_features(jme_netdev_ops_group1, ldvarg10); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_fix_features(jme_netdev_ops_group1, ldvarg10); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 6: ; if (ldv_state_variable_3 == 3) { jme_close(jme_netdev_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 7: ; if (ldv_state_variable_3 == 1) { eth_validate_addr(jme_netdev_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { eth_validate_addr(jme_netdev_ops_group1); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { eth_validate_addr(jme_netdev_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 8: ; if (ldv_state_variable_3 == 1) { jme_set_features(jme_netdev_ops_group1, ldvarg9); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_set_features(jme_netdev_ops_group1, ldvarg9); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_set_features(jme_netdev_ops_group1, ldvarg9); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 9: ; if (ldv_state_variable_3 == 3) { jme_change_mtu(jme_netdev_ops_group1, ldvarg8); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_change_mtu(jme_netdev_ops_group1, ldvarg8); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 10: ; if (ldv_state_variable_3 == 1) { jme_set_macaddr(jme_netdev_ops_group1, ldvarg7); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_set_macaddr(jme_netdev_ops_group1, ldvarg7); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_set_macaddr(jme_netdev_ops_group1, ldvarg7); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 11: ; if (ldv_state_variable_3 == 1) { jme_tx_timeout(jme_netdev_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { jme_tx_timeout(jme_netdev_ops_group1); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { jme_tx_timeout(jme_netdev_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_43634; case 12: ; if (ldv_state_variable_3 == 2) { ldv_ndo_uninit_3(); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_43634; case 13: ; if (ldv_state_variable_3 == 1) { ldv_retval_2 = ldv_ndo_init_3(); if (ldv_retval_2 == 0) { ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_43634; default: ldv_stop(); } ldv_43634: ; } else { } goto ldv_43619; case 4: ; if (ldv_state_variable_2 != 0) { tmp___14 = __VERIFIER_nondet_int(); switch (tmp___14) { case 0: ; if (ldv_state_variable_2 == 14) { ldv_retval_22 = jme_resume(jme_pm_ops_group1); if (ldv_retval_22 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_43651; case 1: ; if (ldv_state_variable_2 == 2) { ldv_retval_21 = jme_suspend(jme_pm_ops_group1); if (ldv_retval_21 == 0) { ldv_state_variable_2 = 3; } else { } } else { } goto ldv_43651; case 2: ; if (ldv_state_variable_2 == 2) { ldv_retval_20 = jme_suspend(jme_pm_ops_group1); if (ldv_retval_20 == 0) { ldv_state_variable_2 = 4; } else { } } else { } goto ldv_43651; case 3: ; if (ldv_state_variable_2 == 2) { ldv_retval_19 = jme_suspend(jme_pm_ops_group1); if (ldv_retval_19 == 0) { ldv_state_variable_2 = 5; } else { } } else { } goto ldv_43651; case 4: ; if (ldv_state_variable_2 == 12) { ldv_retval_18 = jme_resume(jme_pm_ops_group1); if (ldv_retval_18 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_43651; case 5: ; if (ldv_state_variable_2 == 13) { ldv_retval_17 = jme_resume(jme_pm_ops_group1); if (ldv_retval_17 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_43651; case 6: ; if (ldv_state_variable_2 == 3) { ldv_retval_16 = ldv_suspend_late_2(); if (ldv_retval_16 == 0) { ldv_state_variable_2 = 6; } else { } } else { } goto ldv_43651; case 7: ; if (ldv_state_variable_2 == 9) { ldv_retval_15 = ldv_restore_early_2(); if (ldv_retval_15 == 0) { ldv_state_variable_2 = 13; } else { } } else { } goto ldv_43651; case 8: ; if (ldv_state_variable_2 == 6) { ldv_retval_14 = ldv_resume_early_2(); if (ldv_retval_14 == 0) { ldv_state_variable_2 = 12; } else { } } else { } goto ldv_43651; case 9: ; if (ldv_state_variable_2 == 11) { ldv_retval_13 = ldv_thaw_early_2(); if (ldv_retval_13 == 0) { ldv_state_variable_2 = 14; } else { } } else { } goto ldv_43651; case 10: ; if (ldv_state_variable_2 == 7) { ldv_retval_12 = ldv_resume_noirq_2(); if (ldv_retval_12 == 0) { ldv_state_variable_2 = 12; } else { } } else { } goto ldv_43651; case 11: ; if (ldv_state_variable_2 == 5) { ldv_retval_11 = ldv_freeze_noirq_2(); if (ldv_retval_11 == 0) { ldv_state_variable_2 = 10; } else { } } else { } goto ldv_43651; case 12: ; if (ldv_state_variable_2 == 1) { ldv_retval_10 = ldv_prepare_2(); if (ldv_retval_10 == 0) { ldv_state_variable_2 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_43651; case 13: ; if (ldv_state_variable_2 == 5) { ldv_retval_9 = ldv_freeze_late_2(); if (ldv_retval_9 == 0) { ldv_state_variable_2 = 11; } else { } } else { } goto ldv_43651; case 14: ; if (ldv_state_variable_2 == 10) { ldv_retval_8 = ldv_thaw_noirq_2(); if (ldv_retval_8 == 0) { ldv_state_variable_2 = 14; } else { } } else { } goto ldv_43651; case 15: ; if (ldv_state_variable_2 == 4) { ldv_retval_7 = ldv_poweroff_noirq_2(); if (ldv_retval_7 == 0) { ldv_state_variable_2 = 8; } else { } } else { } goto ldv_43651; case 16: ; if (ldv_state_variable_2 == 4) { ldv_retval_6 = ldv_poweroff_late_2(); if (ldv_retval_6 == 0) { ldv_state_variable_2 = 9; } else { } } else { } goto ldv_43651; case 17: ; if (ldv_state_variable_2 == 8) { ldv_retval_5 = ldv_restore_noirq_2(); if (ldv_retval_5 == 0) { ldv_state_variable_2 = 13; } else { } } else { } goto ldv_43651; case 18: ; if (ldv_state_variable_2 == 3) { ldv_retval_4 = ldv_suspend_noirq_2(); if (ldv_retval_4 == 0) { ldv_state_variable_2 = 7; } else { } } else { } goto ldv_43651; case 19: ; if (ldv_state_variable_2 == 15) { ldv_complete_2(); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_43651; default: ldv_stop(); } ldv_43651: ; } else { } goto ldv_43619; default: ldv_stop(); } ldv_43619: ; goto ldv_43673; ldv_final: ldv_check_final_state(); return 0; } } __inline static dma_addr_t ldv_pci_map_page_1(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { tmp = ldv_pci_dma_map_page(hwdev, page, offset, size, direction); return (tmp); } } __inline static void ldv_pci_unmap_page_2(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { ldv_pci_dma_unmap_page(hwdev, dma_address, size, direction); return; } } int ldv_register_netdev_5(struct net_device *dev ) { ldv_func_ret_type ldv_func_res ; int tmp ; { tmp = register_netdev(dev); ldv_func_res = tmp; ldv_state_variable_3 = 1; ldv_net_device_ops_3(); return (ldv_func_res); } } void ldv_free_netdev_6(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_3 = 0; return; } } void ldv_unregister_netdev_7(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_3 = 0; return; } } void ldv_free_netdev_8(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_3 = 0; return; } } int ldv___pci_register_driver_9(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_1 = 1; ldv_pci_driver_1(); return (ldv_func_res); } } void ldv_pci_unregister_driver_10(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_1 = 0; return; } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } Set LDV_PCI_DMA_BUFS ; Set LDV_PCI_DMA_PAGE_BUFS ; dma_addr_t ldv_pci_dma_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { int nonedetermined ; void *tmp ; { tmp = ldv_undef_ptr(); nonedetermined = (int )((long )tmp); if (nonedetermined == 0) { return (0ULL); } else { } LDV_PCI_DMA_PAGE_BUFS = LDV_PCI_DMA_PAGE_BUFS + 1; return ((dma_addr_t )nonedetermined); } } void ldv_pci_dma_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { if (LDV_PCI_DMA_PAGE_BUFS == 0) { ldv_error(); } else { } LDV_PCI_DMA_PAGE_BUFS = LDV_PCI_DMA_PAGE_BUFS - 1; return; } } dma_addr_t ldv_pci_dma_map(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t dma_buf ; int nonedetermined ; void *tmp ; { dma_buf = (dma_addr_t )ptr; tmp = ldv_undef_ptr(); nonedetermined = (int )((long )tmp); if (nonedetermined == 0) { return (0ULL); } else { } LDV_PCI_DMA_BUFS = LDV_PCI_DMA_BUFS + 1; return ((dma_addr_t )nonedetermined); } } void ldv_pci_dma_unmap(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { if (LDV_PCI_DMA_BUFS == 0) { ldv_error(); } else { } LDV_PCI_DMA_BUFS = LDV_PCI_DMA_BUFS - 1; return; } } void ldv_initialize(void) { { LDV_PCI_DMA_BUFS = 0; LDV_PCI_DMA_PAGE_BUFS = 0; return; } } void ldv_check_final_state(void) { { if (LDV_PCI_DMA_BUFS != 0) { ldv_error(); } else { } if (LDV_PCI_DMA_PAGE_BUFS != 0) { ldv_error(); } else { } return; } }