
Scala Cheat Sheet

1 Scala Class Hierarchy

Figure 1: Scala class hierarchy, source: http://www.

scala-lang.org/old/node/128

2 Scala Collections
2.1 Scala Collections Hierarchy

Figure 2: scala.collection

Figure 3: scala.collection.immutable Figure 4: scala.collection.mutable

http://www.scala-lang.org/old/node/128
http://www.scala-lang.org/old/node/128


2.2 Trait Traversable

Table 1: Methods in Traversable

Category Methods

Abstract xs foreach f

Addition xs ++ ys

Maps xs map f, xs flatMap f, xs collect f

Conversions toArray, toList, toIterable, toSeq,

toIndexedSeq, toStream, toSet, toMap

Size info isEmpty, nonEmpty, size, hasDefiniteSize

Element head, headOption, last, lastOption,
Retrieval xs find p

Sub- xs.tail, xs.init, xs slice (from, to),
collection xs take n, xs drop n, xs takeWhile p, xs

dropWhile p, xs filter p, xs withFilter p,

xs filterNot p

Subdivision xs splitAt n, xs span p, xs partition p, xs

groupBy f

Element xs forall p, xs exists p, xs count p

Condition
Fold (z /: xs)(op), (xs : z)(op),

xs.foldLeft(z)(op), xs.foldRight(z)(op),

xs reduceLeft op, xs reduceRight op

Specific Fold xs.sum, xs.product, xs.min, xs.max

String xs addString (b, start, sep, end), xs

mkString (start, sep, end), xs.stringPrefix

View xs.view, xs view (from, to)

Reference: http://docs.scala-lang.org/overviews/collections/trait-traversable.html

2.3 Trait Iterable

All methods in this trait are defined in terms of an an abstract
method, iterator, which yields the collections elements one by one.

Table 2: Methods in Iterable

Category Methods

Abstract xs.iterator

Iterator xs grouped n, xs sliding n

Subcollection xs takeRight n, xs dropRight n

Zipper xs zip ys, xs zipAll (ys, x, y),

xs.zipWithIndex

Comparison xs sameElements ys

Reference: http://docs.scala-lang.org/overviews/collections/trait-iterable.html

In the inheritance hierarchy below Iterable you find three traits:
Seq, Set, and Map. A common aspect of these three traits is that
they all implement the PartialFunction trait with its apply and
isDefinedAt methods. However, the way each trait implements
PartialFunction differs.

2.4 Seq

Table 3: Methods in Seq

Category Methods

Indexing and xs(i), xs isDefinedAt i, xs.length,

Length xs.lengthCompare ys, xs.indices

Index Search xs indexOf x, xs lastIndexOf x, xs

indexOfSlice ys, xs lastIndexOfSlice ys,

xs indexWhere p, xs segmentLength (p, i),

xs prefixLength p

Addition x +: xs, xs :+ x, xs padTo (len, x)

Update xs patch (i, ys, r), xs updated (i, x),

xs(i) = x(only available for mutable.Seqs)
Sorting xs.sorted, xs sortWith lt, xs sortBy f

Reversal xs.reverse, xs.reverseIterator, xs

reverseMap f

Comparison xs startsWith ys, xs endsWith ys, xs

contains x, xs containsSlice ys, (xs

corresponds ys)(p)

Multiset xs intersect ys, xs union ys, xs diff ys,

xs.distinct

Reference: http://docs.scala-lang.org/overviews/collections/seqs.html

Table 4: Methods in Buffer

Category Methods

Addition buf += x, buf += (x, y, z), buf ++= xs, x

+=: buf, xs ++=: buf, buf insert (i, x),

buf insertAll (i, xs)

Removal buf -= x, buf remove i, buf remove (i, n),

buf trimStart n, buf trimEnd n, buf.clear()

Cloning buf.clone

2.5 Set
Table 5: Methods in Set

Category Methods

Test xs contains x, xs(x), xs subsetOf ys

Addition xs + x, xs + (x, y, z), xs ++ ys

Removal xs - x, xs - (x, y, z), xs -- ys, xs.empty

Set operation xs & ys, xs intersect ys, xs | ys, xs union

ys, xs & ys, xs diff ys

Reference: http://docs.scala-lang.org/overviews/collections/sets.html

Mutable sets offer in addition methods to add, remove, or update
elements, which are summarized in below.

Table 6: Methods in mutable.Set

Category Methods

Addition xs += x, xs += (x, y, z), xs ++= ys, xs add

x

Removal xs -= x, xs -= (x, y, z), xs --= ys, xs

remove x, xs retain p, xs.clear()

Update xs(x) = b

Cloning xs.clone

2.6 Map

Table 7: Methods in Map

Category Methods

Lookup ms get k, ms(k), ms getOrElse (k, d), ms

contains k, ms isDefinedAt k

Addition ms + (k -> v), ms + (k -> v, l -> w), ms

++ kvs

Removal ms - k, ms - (k, 1, m), ms -- ks

Update ms updated (k, v)

Subcollection ms.keys, ms.keySet, ms.keyIterator,

ms.values, ms.valuesIterator

Transformation ms filterKeys p, ms mapValues f

Reference: http://docs.scala-lang.org/overviews/collections/maps.html

Table 8: Methods in mutable.Map

Category Methods

Addition ms += (k -> v), ms += (k -> v, l -> w),

ms ++= kvs,

Removal ms -= k, ms -= (k, l, m), ms --= ks, ms

remove k, ms retain p, ms.clear()

Update ms(k) = v, ms put (k, v), ms

getOrElseUpdate (k, d)

Transformation ms transform f

Cloning xs.clone

2.7 Performance Characteristics

Table 9: Performance characteristics of sequence types

head tail apply update prepend append insert

immutable
List C C L L C L -
Stream C C L L C L -
Vector eC eC eC eC eC eC -
Stack C C L L C C L
Queue aC aC L L L C -
Range C C C - - - -
String C L C L L L -
mutable
ArrayBuffer C L C C L aC L
ListBuffer C L L L C C L
StringBuilder C L C C L aC L
MutableList C L L L C C L
Queue C L L L C C L
ArraySeq C L C C - - -
Stack C L L L C L L
ArrayStack C L C C aC L L
Array C L C C - - -

Reference: http://docs.scala-lang.org/overviews/collections/performance-characteristics.html

Table 10: Performance characteristics of set and map types

http://docs.scala-lang.org/overviews/collections/trait-traversable.html
http://docs.scala-lang.org/overviews/collections/trait-iterable.html
http://docs.scala-lang.org/overviews/collections/seqs.html
http://docs.scala-lang.org/overviews/collections/sets.html
http://docs.scala-lang.org/overviews/collections/maps.html
http://docs.scala-lang.org/overviews/collections/performance-characteristics.html


lookup add remove min

immutable
HashSet/HashMap eC eC eC L
TreeSet/TreeMap Log Log Log Log
BitSet C L L eC1

ListMap L L L L
mutable
HashSet/HashMap eC eC eC L
WeakHashMap eC eC eC L
BitSet C aC C eC1

TreeSet Log Log Log Log

Footnote 1: Assuming bits are densely packed.

The entries in these two tables are explained as follows:

C The operation takes (fast) constant time.
eC The operation takes effectively constant time, but this

might depend on some assumptions such as maximum
length of a vector or distribution of hash keys.

aC The operation takes amortized constant time. Some
invocations of the operation might take longer, but if
many operations are performed on average only con-
stant time per operation is taken.

Log The operation takes time proportional to the loga-
rithm of the collection size.

L The operation is linear, that is it takes time propor-
tional to the collection size.

- The operation is not supported.

3 Scala Parallel Collections

3.1 Creating a Parallel Collection

Two ways to create a parallel collection: new and par.

3.2 Semantics

Conceptually, Scalas parallel collections framework parallelizes an
operation on a parallel collection by recursively splitting a given
collection, applying an operation on each partition of the collection
in parallel, and re-combining all of the results that were completed
in parallel.

These concurrent, and out-of-order semantics of parallel collections
lead to the following two implications:

1. Side-effecting operations can lead to non-determinism

2. Non-associative operations lead to non-determinism

3.3 Concrete Parallel Collection Classes

mutable.ParArray, immutable.ParVector, immutable.ParRange,

mutable.ParHashSet, mutable.ParHashMap, immutable.ParHashSet,
immutable.ParHashMap,

mutable.ParTrieMap

3.4 Performance characteristics

Table 11: Performance characteristics of sequence types

head tail apply update prepend append insert

ParArray C L C C L L L
ParVector eC eC eC eC eC eC -
ParRange C C C - - - -

http://docs.scala-lang.org/overviews/parallel-collections/concrete-parallel-collections.html

Table 12: Performance characteristics of set and map types

lookup add remove

immutable
ParHashSet/ParHashMap eC eC eC
mutable
ParHashSet/ParHashMap C C C
ParTrieMap eC eC eC

3.5 Parallel Collection Conversions

Every sequential collection can be converted to its parallel variant
using the par method. Certain sequential collections have a direct
parallel counterpart. For these collections the conversion is efficient
it occurs in constant time, since both the sequential and the parallel
collection have the same data-structural representation (one
exception is mutable hash maps and hash sets which are slightly
more expensive to convert the first time par is called, but subsequent
invocations of par take constant time). It should be noted that for
mutable collections, changes in the sequential collection are visible in
its parallel counterpart if they share the underlying data-structure.

Table 13: Sequential collections and their direct parallel coun-
terparts

Sequential Parallel

mutable
Array ParArray

HashMap ParHashMap

HashSet ParHashSet

TrieMap ParTrieMap

immutable
Vector ParVector

Range ParRange

HashMap ParHashMap

HashSet ParHashSet

Source: http://docs.scala-lang.org/overviews/parallel-collections/conversions.html

Other collections, such as lists, queues or streams, are inherently
sequential in the sense that the elements must be accessed one after
the other. These collections are converted to their parallel variants
by copying the elements into a similar parallel collection. For
example, a functional list is converted into a standard immutable
parallel sequence, which is a parallel vector.
Every parallel collection can be converted to its sequential variant
using the seq method. Converting a parallel collection to a
sequential collection is always efficient it takes constant time.
Calling seq on a mutable parallel collection yields a sequential
collection which is backed by the same store updates to one
collection will be visible in the other one.

3.6 Architecture of the Parallel Collections
Library

Two core abstractions: Splitters and Combiners.
Splitter

trait Splitter[T] extends Iterator[T] {

def split: Seq[Splitter[T]]

}

Combiner

trait Combiner[Elem, To] extends Builder[Elem, To] {

def combine(other: Combiner[Elem, To]): Combiner[Elem, To]

}

Copyright c⃝ 2014 soulmachine
Github: https://github.com/soulmachine/scala-cheat-sheet
My blog: http://www.soulmachine.me
Last update: March 29, 2014

http://docs.scala-lang.org/overviews/parallel-collections/concrete-parallel-collections.html
http://docs.scala-lang.org/overviews/parallel-collections/conversions.html
https://github.com/soulmachine/scala-cheat-sheet
http://www.soulmachine.me

	Scala Class Hierarchy
	Scala Collections
	Scala Collections Hierarchy
	Trait Traversable
	Trait Iterable
	Seq
	Set
	Map
	Performance Characteristics

	Scala Parallel Collections
	Creating a Parallel Collection
	Semantics
	Concrete Parallel Collection Classes
	Performance characteristics
	Parallel Collection Conversions
	Architecture of the Parallel Collections Library


