Task-parallel in situ data compression of large-scale
computational fluid dynamics simulations

Heather Pacella Alec Dunton
Dept. of Mech. Engineering Dept. of Appl. Mathematics
Stanford University
Stanford, USA
hpacella@stanford.edu

Boulder, USA
alec.dunton @colorado.edu

Abstract—Present day computational fluid dynamics simula-
tions generate extremely large amounts of data; most of this
data is discarded because current storage systems are unable
to keep pace. Data compression algorithms can be applied to
this data to reduce the overall amount of storage while either
exactly retaining the original dataset (lossless compression) or
an approximate representation of the original dataset (lossy
compression). Interpolative decomposition (ID) is a type of lossy
compression that factors the original data matrix as the product
of two (smaller) matrices; one of these matrices consists of
columns of the original data matrix, while the other is a coefficient
matrix. The structure of ID algorithms make them a natural fit
for task-based parallelism. Our presented work will specifically
focus on using the task-based Legion programming model to
implement a single-pass ID algorithm (SPID) in several fluid
dynamics applications. Performance studies, scalability, and the
accuracy of the compressed results will be discussed in detail
during our presentation.

Index Terms—Computational Fluid Dynamics, Data Compres-
sion, Regent, Legion, Task Based Parallelism

I. INTRODUCTION AND MOTIVATION

Advances in supercomputing over the past several years
have introduced a computational bottleneck. Soon-to-be-
deployed exascale computers offer a 10 — 10*-fold increase
in floating point performance, but provide a mere 10-fold
increase in the amount of memory available and access
speed [1]. This asymmetric technological progress leads to the
following issue: floating point operations (FLOPs) are cheap,
while memory, communication, and input/output (I/O) are not.
For example, the amount of data generated on these computers
will easily exceed 1 TB/s; if this is not reduced, storage
systems will easily become overloaded and practitioners will
not be able to use the data for visualization, analysis, or other
post-processing operations. This has inspired work in the field
of data compression, in which an accurate, memory-reduced
version of an original dataset is stored.

All data compression algorithms may be categorized as
either lossless or lossy. Lossless compression methods enable
exact reconstruction of datasets, but with a small compression
factor, defined as the ratio of the size of the original dataset
to the size of the compressed dataset. Due to the exorbitant
size of data generated on modern supercomputers, in particular
in the physical simulations with which we are interested [2],
we are instead interested in lossy data compression. Lossy

Alireza Doostan Gianluca Iaccarino

Smead Aerospace Engr. Sciences Dept. of Mech. Engineering
University of Colorado Boulder University of Colorado Boulder

Stanford University
Stanford, USA
jops@stanford.edu

Boulder, USA
alireza.doostan @colorado.edu

compression methods, unlike their lossless counterparts, do
not enable exact reconstruction of datasets. They do, however,
allow for much larger compression factors. In this work,
low-rank matrix approximations are used to achieve lossy
compression.

II. INTERPOLATIVE DECOMPOSITION

The data matrices we are concerned with, which gener-
ally are computed from the simulation of partial differential
equations, have the form A € R™*" such that each column
corresponds to a specific time in the simulation, where each
entry of the column contains data for a physical quantity of
interest (Qol) (such as pressure, velocity, or flux) at a discrete
location within the spatial domain. Our data matrix is therefore
structured as shown in Figure 1.

PDE data block

—
temporal direction

Fig. 1: Schematic of PDE data block

spatial direction

If the spatial or temporal variation of the Qol is smooth,
the matrix A may admit a low-rank structure; its rows or
columns may contain redundant information. An assumption
crucial to this work is that A is numerically low rank: that its
singular value decay is sharp and the matrix may therefore be
approximated with minimal reconstruction error. Equivalently,
this means that the the Qol may be accurately reconstructed
from a linear subspace much smaller than that spanned by the
original data columns.

One direct consequence of this assumption is that we may
obtain an approximation to the original PDE data matrix A
via the matrix-matrix product

A~ A(,I)P, (1)

where P € RFX™ is referred to as the coefficient matrix
and A(:,Z) € R™**, which is a subset of the columns

of A indexed by Z, is called the column skeleton of A.
The decomposition (1) is the so-called column interpolative
decomposition (column ID) of a matrix A [3]. The number
of columns used in the decomposition, k, is determined by
the user by providing either (1) an error tolerance stopping
criterion or (2) fixing k ahead of time. The columns are
selected using a pivoted QR routine based on a modified Gram-
Schmidt procedure.

There are numerous schemes to produce a column ID; we
present two different algorithms: the sub-sampled ID (SubID)
and the single-pass ID (SPID). SublID is a two pass algorithm
for computing the column ID of a PDE data matrix: one pass
is needed to compute the indices Z and coefficient matrix P
using a coarse grid representation of the data —compatible with
the PDE solver— to expedite computation, then a second pass
to obtain the column skeleton A(:,Z). When the amount of
data generated in the PDE solve exceeds the storage available
in RAM or disk, the user may be required to run a second
simulation in order to construct A(:,Z). In order to avoid this
second pass over A — or need to run a second simulation — we
present a single-pass variation of SubID: the so-called single-
pass ID (SPID) [4]. In SPID, the column skeleton is computed
by interpolating the coarse grid data back onto the fine grid, as
opposed to running a second simulation to obtain the original
fine grid column skeleton. Our presentation will focus solely
on the in situ implementation of the SPID algorithm, since it
is more efficient than the subID algorithm.

III. ID METHODS AND TASK-BASED PARALLELISM
A. Parallelism of CFD codes

Computational fluid dynamics (CFD) simulations are con-
cerned with the numerical solution of a set of partial dif-
ferential equations on a discretized grid representation of
the physical domain of interest. For large simulations, this
discretized domain is partitioned into subdomains (blocks)
of data, and the blocks are distributed across the available
computing resources. This strategy of extracting concurrency
from a given computational approach is referred to as data-
parallelism. In general, each “step” of the simulation consists
of two coupled processes: first, identical sets of instructions
are executed on each block (independent of the other blocks),
and then there is a communication stage as relevant data is
exchanged between the blocks of the domain (e.g., information
from stencil points for a finite difference method). This “back-
and-forth” repeats until the simulation is completed. Often,
these simulations are implemented using a synchronous or
bulk-synchronous programming model; that is, a barrier is
inserted after each step of the simulation to prevent the
simulation from proceeding until all current processes are
complete.

B. Parallelism of ID methods

From a computational perspective, ID greatly differs from
CFD simulations. ID algorithms can be applied independently
to each block of the decomposed domain, so that no com-
munication between the blocks is required. (In fact, applying

ID individually to blocks of data can help to increase the
overall compression. Generally, due to the structure of the data
matrices of interest, adjacent entries in the matrix correspond
to adjacent points in the spatial domain. Because of this, there
tends to be more correlation (low-rankness) between adjacent
data in the matrices (due to neighboring spatial points) than
the entire matrix, so partitioning the data matrix is a favorable
approach.

For CFD analyses, the independence of the ID algorithm
means that, in theory, the computations required to perform the
ID analysis on the most recent solution step can be performed
while waiting for the data synchronization required to compute
the fluid solver update for the next simulation step. Thus,
the overhead cost of performing the ID approximation can
be hidden if the computing system has a large amount of
communication latency (as is often the case for extremely
large simulations). Additionally, if the quantity of interest
across the domain is highly variable, the number of calcu-
lations required to find the ID low-rank approximation for
each block can vary by a large amount. For both of these
reasons, implementing ID within a synchronous or barrier-
synchronous parallelization model (traditionally implemented
using OpenMP, MPI, CUDA, etc.) like those mentioned above
will lead to large reductions in performance as the simu-
lation becomes increasingly complex and/or large. Instead,
we use an asynchronous parallelization model that removes
these barriers. We select a programming model that is well-
suited to simulations that are run on modern, heterogeneous
supercomputers, as ID is generally applied to large simulations
that require data compression.

C. Task-based Parallelization of ID methods in CFD codes

Task-based (or functional) parallelism is one such model
that meets these requirements [5]. A task-parallel CFD code
will have a layout like that shown in Fig. 2. Each processor
contains local data about a subsection of the physical domain.
At the i*" time step of the simulation, the j'" processor P,
receives data from the other compute processors, Py ;, which
is used in addition to its local data to advance the fluid solver
in time. This process repeats until the final simulation time is
reached.

while
t; <tfinal

fluid
update

Fig. 2: CFD Analysis

As shown in Algorithm 1, this can be represented as a for-
loop nested within a while-loop. The task update_fluid_step
is launched on all V 4 1 processors at each time step of the
simulation. This task requires both the local processor’s block

of fluid domain data, as well as the data from the stencil
regions of the block. As expected, there are no synchronization
barriers in this implementation; dependencies in execution
time only depend upon the communication of the stencil data
between processors.

Algorithm 1 Task-Parallel CFD Solver

1: while t < {74 do

2: for id =0, N do

3: update_fluid_step(block[id], stencil[id])
4: end for

5: end while

To compute the SPID, each processor must again per-
form the fluid update at each time step, but now the data
must also be stored, which requires the addition of the
store_subsampled_data task. Often, if the number of time
steps, n, is very large (on the order of the number required
for an explicit time-advancement scheme), then the amount of
memory required to store and perform ID on the fluid data
matrix A greatly exceeds what is available, even on large
distributed-memory systems. To circumvent this problem, we
apply the ID algorithm in a two-step, piece-wise manner. The
first step applies the ID algorithm to N individual blocks of
time steps of the domain, so that the following matrix, which
we denote A, is formed:

[Ao(:,Zo)Po - - AN—1(:, Zn—1) Pn—1],)

where index O corresponds to the first + time steps, index 1
corresponds to the next successive - time steps, and so on
until index N — 1.

We may then decompose A' to be the product of the

following two matrices
Al = AV pY 3)
=[A0(:,T0) - AN—1 (L Iv)IPY, (@)

where PY € RFWW=UXN g g gparse matrix comprised of
rectangular blocks given coefficient matrices P;:

PY =P P. (5)

To eliminate any redundant columns in the horizontally
concatenated column skeleton matrix A" and achieve further
compression, we apply the ID algorithm to AY to obtain the
following approximation:

AY ~ A% P2, ©6)

where

AY = AV, Ty), (7)
such that 7y indexes the columns of the original matrix A%
extracted following the second application of column ID; the
subscript U suggests that these indices come from the union

of the index vectors Z; in AY A similar approach to this is
employed in [6].
Then, the final ID approximation of the domain is

A=AV PY ~ AZ p2pY — A% p? (8)

Where A2 € R™*Zvl and P?’ ¢ RITvlxn

The structure of a CFD solver with this ID implementation
is shown in Fig. 3. The first stage of the SPID implementation
is performed during the fluid solve, with only the second stage
taking place after the completion of the fluid solve.

while
t; < tfinal

Fig. 3: CFD Analysis with modified SPID

This is shown in Algorithm 2. The update_fluid_step and
save_subsampled_data tasks are launched for each processor
at each time step; however, there is now an additional task,
first_SPID, which is launched if the solver time is at some
critical time t.,.;;, where the time step at ¢.,.;; is some multiple
of %. This implementation reduces both memory overhead
and computation time; since the ID algorithm is applied to
each processor independently of the others, the computations
for the first stage of the SPID can be performed while the
flow solver is waiting for the communication of stencil data
from neighboring regions for the next time step. Though the
second_SPID is not launched until the completion of the
fluid solve, it is operating on a much smaller matrix than the
entire original data matrix.

IV. IMPLEMENTATION AND NUMERICAL RESULTS

Legion, an open-source, collaborative effort between Stan-
ford University, LANL, NVIDIA Research, and SLAC, is
a parallel programming model that uses task-based paral-
lelism to create highly efficient and portable code for high-
performance computing applications. The main unit of ab-
straction in Legion is the logical region. These logical regions
allow precise definition of how data is being used by the
various tasks of an application, and can be further partitioned
into subregions. Legion builds a task graph that analyzes
the relationship between tasks and these subregions, and the
Legion runtime dynamically assigns tasks to computing units
(CPUs, GPUs, etc.) [7]. We chose the Legion programming

Algorithm 2 Task-Parallel CFD Solver with modified SPID

1: while t < 7,4 do

2 for id =0, N do

3 update_fluid_step(block[id], stencil[id])
4: save_subsampled_data(block[id])

5: if t == t.,;; then

6 first_SPID(subsampled_block[id])
7 end if

8 end for

9: end while

0: for id =0, N do

11: second_SPID(subsampled_block[id])

12: end for

—

model to implement our CFD + ID applications for several
reasons:

o Legion, unlike applications using MPI+X, allows the user
to write a single code that can then be ported to multiple
architectures. A single Legion application can be run on
a laptop or a leadership-class machine, on CPUs, GPUs,
or a combination of the two.

o Regent, a high-level programming language within Le-
gion, allows for implicit parallelism to be extracted from
a serial code.

e The Legion runtime dynamically schedules tasks; this
allows for dynamic load balancing with little to no user
input.

Our presentation will focus on the successful Legion im-
plementation of the SPID algorithm into two fluid dynamics
examples: the analytical solution of the incompressible 2D
Taylor-Green vortex, and the numerical solution of a com-
pressible 3D Taylor-Green vortex using a high-order Cartesian
Navier-Stokes solver [8].

Results presented for the incompressible 2D Taylor-Green
vortex solution will demonstrate that, for both a structured and
an unstructured grid, the ID implementation will reconstruct
to machine precision the exact vortex solution independent of
physical partitions in the domain.

More extensive attention will be paid to the Navier-Stokes
+ ID solver. This implementation is of particular interest be-
cause of the communication-intensive nature of the numerical
scheme used for the fluid solver, a high-order three-stage
Runge-Kutta method. This discussion will include:

e The accuracy of the reconstructed ID solution.

 Visualizations from the Legion Prof profiling tool, which
visualizes exactly how the application runs of the ma-
chine (how the tasks are executed across the available
processors), as well as overall resource utilization.

o Performance and scaling studies. An example of this is
Fig. 4, which shows strong scaling results (normalized to
the single node Navier-Stokes solve) for both the Navier-
Stokes solver and the ID-augmented Navier-Stokes solver
for 10 time steps of a 128 point domain with 43 domain
partitions. The increase in runtime due to the introduction

of the ID algorithm was, at most, 10% that of the Navier-
Stokes solver.

-& f(N)=N
81 -~ NS /"E‘
. Pty
7] —%— N-S+ID Normalized JEetn
P
Pete
”J’
6 /’I’</
P
-
55 s
o Pt
[L2
i) P
o 4 L
) Lot
ot
v
3 P
-7 e
"-”.
2 -
e
1{-¢
01— ‘ ‘ T 1 T ‘ ‘
1 2 3 4 5 6 7 8

Number of Nodes

Fig. 4: Strong scaling normalized w.r.t. one node runtime; runs
were performed on Stanford University’s Yellowstone cluster

REFERENCES

[1] J. Ang, K. Evans, A. Geist, M. Heroux, P. Hovland,
O. Marques, L. McInnes, E. Ng, and S. Wild, “Report
on the workshop on extreme-scale solvers: Transitions to
future architectures,” Office of Advanced Scientific Com-
puting Research, US Department of Energy, pp. 8-9, 2012.

[2] H. Torres, M. Papadakis, L. Jofre, W. Lee, A. Aiken,
and G. Iaccarino, “Soleil-x: Turbulence, particles, and
radiation in the regent programming language,” in Parallel
Applications Workshop, Alternatives To MPI+X, 2019.

[3] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin,
“On the compression of low rank matrices,” SIAM Journal
on Scientific Computing, vol. 26, no. 4, pp. 1389-1404,
2005.

[4] A. M. Dunton, L. Jofre, G. Iaccarino, and A. Doostan,
“Pass-efficient methods for compression of high-
dimensional turbulent flow data,” 2019.

[5] T. Rauber and G. Riinger, Parallel Programming for
Multicore and Cluster Systems. Springer, 2010.

[6] Y. Pi, H. Peng, S. Zhou, and Z. Zhang, “A scalable ap-
proach to column-based low-rank matrix approximation,”
in Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, 2013, pp. 1600-1606.

[71 M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Le-
gion: Expressing locality and independence with logical
regions,” in Supercomputing Conference (SC12), 2012.

[8] J. Leffell, J. Sitaramen, V. Lakshminarayan, and
A. Wissink, “Towards efficient parallel-in-time simulation
of periodic flow,” in The 54th AIAA Aerospace Sciences
Meeting, 2016.

