{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "$G_\\mathrm{2D}(\\mathbf{x},\\mathbf{x_0},\\omega) = -\\frac{\\mathrm{j}}{4}\\,H_0^{(2)}(\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|)$\n", "\n", "$H_0^{(2)}(\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|)\\approx \\sqrt{\\frac{2}{\\pi\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}}\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}\\,\\mathrm{e}^{+\\mathrm{j}\\,\\frac{\\pi}{4}}$ for $ \\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}| \\gg 1$\n", "\n", "Thus, \n", "$$G_\\mathrm{2D}(\\mathbf{x},\\mathbf{x_0},\\omega) \\approx -\\frac{\\mathrm{j}}{4}\\,\\sqrt{\\frac{2}{\\pi\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}}\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}\\,\\mathrm{e}^{+\\mathrm{j}\\,\\frac{\\pi}{4}}$$\n", "and rearranging\n", "$$G_\\mathrm{2D}(\\mathbf{x},\\mathbf{x_0},\\omega) \\approx \\sqrt{\\frac{1}{8\\,\\pi\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}}\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}\\,\\mathrm{e}^{+\\mathrm{j}\\,\\frac{\\pi}{4}}\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\pi}{2}}$$\n", "\n", "$$G_\\mathrm{2D}(\\mathbf{x},\\mathbf{x_0},\\omega) \\approx \\sqrt{\\frac{1}{8\\,\\pi\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}}\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\pi}{4}}$$\n", "\n", "If we want a magnitude of 1 at a certain distance $r_\\mathrm{ref}=|\\mathbf{x_{ref}}-\\mathbf{x_0}|$ we have to compensate with\n", "$\\sqrt{8\\,\\pi\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}$, which reduces to\n", "$\\sqrt{8\\,\\pi\\,\\frac{\\omega}{c}}$ for $r_\\mathrm{ref}=1\\,\\mathrm{m}$.\n", "\n", "If we want to compensate for the frequency independent phase shift $-\\frac{\\pi}{4}$ to obtain the same phase relation as the 3D Green's function we just have to apply a phase correction term $\\mathrm{e}^{+\\mathrm{j}\\,\\frac{\\pi}{4}}=\\mathrm{e}^{-\\mathrm{j}\\,\\frac{7\\,\\pi}{4}}$.\n", "\n", "Note that these correction terms are only valid if $ \\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}| \\gg 1$ is fulfilled. In the nearfield of the 2D Green's function a correction term must be obtained from the Hankel function. Nevertheless, we obtain reasonable results if we write\n", "\n", "$$G_\\mathrm{2D}(\\mathbf{x},\\mathbf{x_0},\\omega) = -\\frac{\\mathrm{j}}{4}\\,H_0^{(2)}(\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|)\\,\\mathrm{e}^{-\\mathrm{j}\\,\\frac{7\\,\\pi}{4}}\\,\\sqrt{8\\,\\pi\\,\\frac{\\omega}{c}},$$\n", "\n", "which then yields comparable results of a magnitude 1 @ 1 m corrected 3D Green's function\n", "\n", "$$G_\\mathrm{3D}(\\mathbf{x},\\mathbf{x_0},\\omega)=\\frac{\\mathrm{e}^{-\\mathrm{j}\\,\\frac{\\omega}{c}\\,|\\mathbf{x}-\\mathbf{x_0}|}}{4\\,\\pi\\,|\\mathbf{x}-\\mathbf{x_0}|}\\cdot 4\\,\\pi\\,.$$\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }