{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Sascha Spors,\n", "Professorship Signal Theory and Digital Signal Processing,\n", "Institute of Communications Engineering (INT),\n", "Faculty of Computer Science and Electrical Engineering (IEF),\n", "University of Rostock,\n", "Germany\n", "\n", "# Data Driven Audio Signal Processing - A Tutorial with Computational Examples\n", "\n", "Winter Semester 2024/25 (Master Course #24512)\n", "\n", "- lecture: https://github.com/spatialaudio/data-driven-audio-signal-processing-lecture\n", "- tutorial: https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise\n", "\n", "Feel free to contact lecturer frank.schultz@uni-rostock.de" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercise 5: Linear Regression Toy Example\n", "\n", "## Objectives\n", "\n", "When no assumption on an underlying data generation process is being made, pure linear algebra is used to solve for model parameters. Hence, we should link\n", "- linear regression model (simple line fit)\n", "- left inverse of a tall / thin, full column (feature) matrix\n", "- (residual) least squares\n", "- projection matrices to the 4 subspaces\n", "\n", "to the very same playground using the following simple toy example." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from scipy.linalg import svd, diagsvd, inv, pinv, norm\n", "from numpy.linalg import matrix_rank\n", "\n", "np.set_printoptions(precision=3,\n", " floatmode='maxprec',\n", " suppress=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X = np.array([[1, 1],\n", " [1, 2],\n", " [1, 3],\n", " [1, 4]])\n", "print(X, X.shape, matrix_rank(X))\n", "y_col = np.array([[1],\n", " [3],\n", " [5],\n", " [7]])\n", "print(y_col, y_col.shape)\n", "[U, s, Vh] = svd(X)\n", "V = Vh.T\n", "y_left_null = (-U[:,2]+U[:,3])[:, None] # [:, None] makes it a (4,1) array\n", "print(y_left_null, y_left_null.shape)\n", "y = y_col + y_left_null\n", "print(y, y.shape)\n", "M, N = X.shape\n", "print(M, N)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y_col.T @ y_left_null # column space is ortho to left null space" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# magnitudes of vectors\n", "np.sqrt(y_col.T @ y_col), np.sqrt(y_left_null.T @ y_left_null)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X.T @ X # this is full rank -> invertible" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "inv(X.T @ X)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# left inverse for tall/thin, full column rank X\n", "Xli = inv(X.T @ X) @ X.T\n", "Xli" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# left inverse via SVD option 1 -> invert singular values & reverse space mapping: U -> V\n", "S = diagsvd(s, M, N)\n", "Sli = inv(S.T @ S) @ S.T\n", "Xli_svd_1 = V @ Sli @ U.T" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# left inverse via SVD option 2 -> invert singular values & reverse space mapping: U -> V\n", "# s / s^2 = 1 / s might be nicer seen here\n", "Xli_svd_2 = V @ diagsvd(s / s**2, N, M) @ U.T\n", "\n", "np.allclose(Xli_svd_2, Xli_svd_1), np.allclose(Xli, Xli_svd_1), np.allclose(Xli, pinv(X))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "theta_hat = Xli @ y # it is rarely called that way in this context, but: we actually train a model with this operation\n", "theta_hat # fitted / trained model parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Xli @ y_col # we get same theta_hat if using only column space stuff of y " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Xli @ y_left_null # this must yield zero, as X cannot bring left null to row space" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y_hat = X @ theta_hat\n", "y_hat # == y_col" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "e = y - y_hat # e == y_left_null\n", "e, e.T @ e" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# recap: y_hat = y_col, e = y_left_null\n", "# y = y_col + y_lef_null = y_hat + e\n", "# hence\n", "y_hat.T @ e # column space is ortho to left null space" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# projection matrices:\n", "P_col = X @ Xli\n", "P_col, P_col @ y, y_col" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# check P_col projection in terms of SVD\n", "S @ Sli, np.allclose(U @ (S @ Sli) @ U.T, P_col)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "P_left_null = np.eye(M) - P_col\n", "P_left_null, P_left_null @ y, e" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# check P_left_null projection in terms of SVD\n", "np.eye(M) - S @ Sli, np.allclose(U @ (np.eye(M) - S @ Sli) @ U.T, P_left_null)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "P_row = Xli @ X # == always identity matrix for full column rank X\n", "P_row, P_row @ theta_hat" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# check P_row projection in terms of SVD\n", "Sli @ S, np.allclose(V @ (Sli @ S) @ V.T, P_row)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "P_null = np.eye(N) - P_row # == always zero matrix for full column rank X\n", "P_null # null space is spanned only by zero vector" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# check P_null projection in terms of SVD\n", "np.allclose(V @ (np.eye(N) - Sli @ S) @ V.T, P_null)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(8,4))\n", "\n", "# residuals\n", "for m in range(M):\n", " plt.plot([X[m, 1], X[m, 1]],\n", " [y[m, 0], y_col[m, 0]], lw=3, label='error '+str(m+1))\n", "# data\n", "plt.plot(X[:,1], y, 'C4x',\n", " ms=10, mew=3,\n", " label='data')\n", "# fitted line\n", "plt.plot(X[:,1], theta_hat[0] * X[:,0] + theta_hat[1] * X[:,1], 'k', label='least squares fit (interpolation)')\n", "x = np.linspace(0, 1, 10)\n", "plt.plot(x, theta_hat[0] + theta_hat[1] * x, 'C7:', label='least squares fit (extrapolation)')\n", "x = np.linspace(4, 5, 10)\n", "plt.plot(x, theta_hat[0] + theta_hat[1] * x, 'C7:')\n", "\n", "plt.xticks(np.arange(6))\n", "plt.yticks(np.arange(11)-1)\n", "plt.xlim(0, 5)\n", "plt.ylim(-1, 9)\n", "plt.xlabel('feature x1')\n", "plt.ylabel('y')\n", "plt.title(r'min the sum of squared errors solves for $\\hat{\\theta}=[-1,2]^T$ -> intercept: -1, slope: +2')\n", "plt.legend()\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Copyright\n", "\n", "- the notebooks are provided as [Open Educational Resources](https://en.wikipedia.org/wiki/Open_educational_resources)\n", "- the text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/)\n", "- the code of the IPython examples is licensed under the [MIT license](https://opensource.org/licenses/MIT)\n", "- feel free to use the notebooks for your own purposes\n", "- please attribute the work as follows: *Frank Schultz, Data Driven Audio Signal Processing - A Tutorial Featuring Computational Examples, University of Rostock* ideally with relevant file(s), github URL https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise, commit number and/or version tag, year." ] } ], "metadata": { "kernelspec": { "display_name": "myddasp", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 4 }