{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Random Signals and LTI-Systems\n", "\n", "*This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linear Mean\n", "\n", "In the following we aim at finding a relation between the linear mean $\\mu_x[k]$ of the input signal $x[k]$ and the linear mean $\\mu_y[k]$ of the output signal $y[k] = \\mathcal{H} \\{ x[k] \\}$ of a linear time-invariant (LTI) system." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Non-Stationary Input Signal\n", "\n", "Let's first impose no restrictions in terms of stationarity to the input signal. The [linear mean](../random_signals/ensemble_averages.ipynb#Linear-mean) of the output signal is then given as\n", "\n", "\\begin{equation}\n", "\\mu_y[k] = E\\{ y[k] \\} = E\\{ x[k] * h[k] \\}\n", "\\end{equation}\n", "\n", "where $h[k]$ denotes the impulse response of the system. Since the convolution and the ensemble average are linear operations, and $h[k]$ is a deterministic signal, this can be rewritten as\n", "\n", "\\begin{equation}\n", "\\mu_y[k] = \\mu_x[k] * h[k]\n", "\\end{equation}\n", "\n", "The linear mean of the output signal $\\mu_y[k]$ is given as the convolution of the linear mean of the input signal $\\mu_x[k]$ with the impulse response $h[k]$ of the system." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example\n", "\n", "The linear mean $\\mu_y[k]$ of the output of an LTI system with given impulse response $h[k]$ and non-stationary random input signal $x[k]$ is computed. The estimated linear means $\\hat{\\mu}_x[k]$ and $\\hat{\\mu}_y[k]$ of the input and output signals are plotted." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYyMC42ODEyNSAyMjguMDYzNzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicrVhbTx43EH3fX+FH+oDxjO+PpUmQKlUVCWofUB7ShFAIkAKl6c/v8a53196LIVKREN93mJ3r2ZmxSVx3JC6FEtf4/SbOxXv8/SRInOD3slP4dts5VtIFYotvN8U35iCV094CVdW3P7vuc3f0I1Q84pmTrrNWmv4Z7aU1SQhqSS/BmwJkpWXI+qbHSzAb4cHIJRxGEDIUYcB0+s+m9RkzUmXj3TGy8a07PhNHb0iQEmefO8tSK7Kuj1dGK84+dQfqB3F2LV6fdb29jgxL54KvDBRg2wLpCFeiqk3Y2gRzlKH3ojBRgG0TzMhq7J2ZLdAiCk0+KylMFGDbhKZEi16gMLGIwigjWS8qUYDPmIheBk91FLyIwkSShha1KMC2CROsVDbWUfAiCuuDdGpRiwJ8hlCeJZtFLfQUxT2eUOJQgc5aU+ZolOz7Dx9voSy9ltL0tvDs0RvOmg++JCUdlJyOno4kt9CksqMkY41Nfha2GTURxqeQkqe93SKIILXPlFVDpaUajd/DuEqKkpv5A54/enVx/eG3p3cf7h4Pb6/unh7Fq69wdOVqcKjAwtUJ23U1IKn2Za4qaf8nVwmt0C/TOoM7LGZp8U8iJ+OQ3MGpBY9nI/iklwmZwbYRPGBtYWTJ5MlIhAOrSCawbQTV4TkSkgWXU30OU17RRkBTGlMz8NhJ7Vir4WWARz4TejRwcN4XSiNRpN3w5qtNzlvpI+U2rRZK3k/VFnW1nXRWK+/IUxS8LPzT3ZXSiofSLx9V2d3FM7/+cXN1/3QxPHv800ibe7GeQNYGQQ4ZYPFwIX4XdwKlwuxSkhhxBMd9TozLP75LubMhsLYcxdsTAcP/XH28eHtyLD4+7pCyAo1CF0m1fNehB8U+naV0BWqrfDCDdExf3UJ3BRoy3vIgTcqjGnqhvEAJ847xUWd5trn/V/IzCvmggiKX5afBWsnPKKV26TWP+h1yqpbulygoy87aUd6PNarkCxTyGpka441m9erfLlDnUTUa5Jk4D6NSvkBTfoyLepSfpnwlX6Mx2JDzw2jbvMp/ibKkGO2YH3ZG+lX+azQYNjTKo9fSKv8FCv8pGBVtlo8xT8ZKfkZTfSPylfXPK0cpX6NghlE+y2PgrqlfoGBq5Ii5m+VTg1vlv0ats8Fm/7WLG/Sv0aitcaP/6Idr/tcom6jGeOf9p5QvUOQnEvkYszz4t+Z/iRLyH1jld91gv1zzv0CTfqxvcZS3boP/JQpLrJ0e/fF6g/81apT1I5/nZaySr1DnsegN4laFDfrXqI6ROdPBstugf4kSCseeMh0Q1Ab9SxSNWSs1ltc62qB/gSKdzjA6dpafFsNKvkYD+k8Wj26D/QuUbODcm0/Fy6bLC+fKw+W+pFhOoFKy25d8uMzrWtoG1iPJR5WGrzj6RaWBOQrife9DOUR5QzRRR4PptS+n0ukzOu99Wxk6pcaygOnT0oWd0Zm0OLq2NjADnVoFbRtyhEBB0Bi8aQdA7DhyiC1lKR/OOocVkJpyJBmsSqsT3tSWc2h9mH6Yf60ypMOCirDsXasKh0mdRzMxxlBbDi1WUzrMt5Pi0x4SknvtgoEfqH+MLe88OguakrNISisnhz4lWXvyGNwtBiSx6FTAfvIMUfCWGFbetGuW4vBsoLRdMvYOA5a9ab45kEMtsBf7Zo5RisjWEBv7TMkYU0gFtqElh+nmOaKBw3Q7VvbRQJtpEg9vrNUmUcC1rSJKLK0BB6t2ECF4jW2gpQy9HFRCjyV6pjUpzFy2NlLJztMXd2UWP097f9Bx6KYavZTQOGHduz6yocem8rxw798YItO0SDbV6q5sR+vWjVl5CQedG/d4tzv3eGm+vfQmsJSddTQ0qz6u4R6QqlvAy+q6QI2LOauYn5+vVeZbFZSZ+/Pj6/78CMewUmmarhEeexhbhSUQdMb/7nGTBqDyYcav8llWo1MN92QDftvjhJcQU65U9CHbxTnfFifbXQMXo3zgAv2U0XTKnc7PByI7E8hUNm92nNxz/m7Urmw+xTdc2QvoIQcUtR6u3to+7ibs+6zuuC5G7dYNV2zoGNFNVxMsgjQ9Lf7NFw84yPCwt5ZyE3vOc3AOY8eo4n6CR4kvmUjYcbi84phUvN9WsZugr2PEBu26CO1z1sNsnHpBor+z6H9tMu1pW3iPxHu+7L1tez5ebjqz4/keRW7qmyOe7n9QOxynA84cVqerxX47cry6D9q4Q6qVqHSTMJRUbinYuVA67f4DC8w6SgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE2ODkKZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODcgPj4Kc3RyZWFtCnicNY3BDcAwCAP/mcIjxBAg2afqq93/W0jUj32yjLFY6FBLcQrCOy42Tt34NolDT2YBZSSNZbBRVCeHxCdkWpKxFrPFvp0REK8OxXaix/4nT7s/uE4ZxAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwMwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw9UkuuxDAI2+cUvkAlIHySY7wzVJrVzOLdf/NM2zeqVFMTDCYdv1AIn/t9fsahhsOk8Bk6HeGF9zD7jzQWOttRQveGRhCV6NA1cTIzoUW2MfNG1j0ZW2QNKn1esTphIiiDWSEdlrPhHFO1g+kbVZjFbhLkXRhNgxuxJtyFtS0UYs+ksb+R0p9lR8LeJgg6UPUH5apjJHkzrUHc60lwxGDHxUKdqGxaC6UI46QbwVkIpGfc3/sCjz5EOhQcM2J3dZS0VtOJ1WM510GthYOHNHDUY+XgAnxtIk1yBY20z5VfzGRFcguJLnA6ojmnSfZvyD49t3B1mEnvBGeLa7XVbYzeWsp4e7e40VJHurPFtfwS1+D18JZbqZcv4B2eo2e6/4fvj/Mer/Ez/gDTlW91CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA3IC9rIDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTQgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvayAxNyAwIFIgL3ggMTkgMCBSID4+CmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RqrB/GxsiQmM/6U46wQ4V3OKwGGh3uFrxpVGYfeqZEpJQcz1EWDMlOoSkX/rLMMOY2Mi277dW7hfeGxwZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcxID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhSgMA8bQWIwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjcgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrjSAM6DFdMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic49I1sjBVsDAwUMjl0jUyNAYzc7h0LY0VzAzNQCxDM0MY08jEUsHcGMw0NjaHiZoYmMIVQM2CqjU1gxgLZeZwpQEAk4MVTgplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgNTMgL2ZpdmUgNjkgL0UgOTEKL2JyYWNrZXRsZWZ0IDkzIC9icmFja2V0cmlnaHQgOTcgL2EgMTAwIC9kIC9lIC9mIC9nIDEwNSAvaSAxMDggL2wgL20gL24gL28KL3AgMTE0IC9yIC9zIC90IC91IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMCAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjAgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjMgMCBvYmoKPDwgL0UgMjQgMCBSIC9hIDI1IDAgUiAvYnJhY2tldGxlZnQgMjYgMCBSIC9icmFja2V0cmlnaHQgMjcgMCBSIC9kIDI4IDAgUgovZSAyOSAwIFIgL2YgMzAgMCBSIC9maXZlIDMxIDAgUiAvZyAzMiAwIFIgL2kgMzMgMCBSIC9sIDM0IDAgUiAvbSAzNSAwIFIKL24gMzcgMCBSIC9vIDM4IDAgUiAvb25lIDM5IDAgUiAvcCA0MCAwIFIgL3BlcmlvZCA0MSAwIFIgL3IgNDIgMCBSCi9zIDQzIDAgUiAvc3BhY2UgNDQgMCBSIC90IDQ1IDAgUiAvdGhyZWUgNDYgMCBSIC90d28gNDcgMCBSIC91IDQ4IDAgUgovemVybyA1MCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIyIDAgUiAvRjIgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLU9ibGlxdWUtdW5pMDNCQyAxOCAwIFIgL0RlamFWdVNhbnMtbWludXMgMzYgMCBSCi9EZWphVnVTYW5zLXVuaTAzMDIgNDkgMCBSIC9NMCAxMiAwIFIgPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9CQm94IFsgLTMuNSAtMy41IDMuNSAzLjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago1MSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkxMjA5MTMyMzUyKzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4xKSA+PgplbmRvYmoKeHJlZgowIDUyCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzNzY5IDAwMDAwIG4gCjAwMDAwMTMyMDQgMDAwMDAgbiAKMDAwMDAxMzI0NyAwMDAwMCBuIAowMDAwMDEzMzQ2IDAwMDAwIG4gCjAwMDAwMTMzNjcgMDAwMDAgbiAKMDAwMDAxMzM4OCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyMTYxIDAwMDAwIG4gCjAwMDAwMTM1MDcgMDAwMDAgbiAKMDAwMDAwMzQ3MyAwMDAwMCBuIAowMDAwMDAzMjY1IDAwMDAwIG4gCjAwMDAwMDI5NDIgMDAwMDAgbiAKMDAwMDAwNDUyNiAwMDAwMCBuIAowMDAwMDAyMTgyIDAwMDAwIG4gCjAwMDAwMDIzNDEgMDAwMDAgbiAKMDAwMDAwMjc3OCAwMDAwMCBuIAowMDAwMDExODM1IDAwMDAwIG4gCjAwMDAwMTE2MzUgMDAwMDAgbiAKMDAwMDAxMTE4MyAwMDAwMCBuIAowMDAwMDEyODg4IDAwMDAwIG4gCjAwMDAwMDQ1NjggMDAwMDAgbiAKMDAwMDAwNDcxOSAwMDAwMCBuIAowMDAwMDA1MDk2IDAwMDAwIG4gCjAwMDAwMDUyMzkgMDAwMDAgbiAKMDAwMDAwNTM3OCAwMDAwMCBuIAowMDAwMDA1Njc4IDAwMDAwIG4gCjAwMDAwMDU5OTYgMDAwMDAgbiAKMDAwMDAwNjIwMiAwMDAwMCBuIAowMDAwMDA2NTIyIDAwMDAwIG4gCjAwMDAwMDY5MzMgMDAwMDAgbiAKMDAwMDAwNzA3MyAwMDAwMCBuIAowMDAwMDA3MTkwIDAwMDAwIG4gCjAwMDAwMDc1MTggMDAwMDAgbiAKMDAwMDAwNzY4OCAwMDAwMCBuIAowMDAwMDA3OTIyIDAwMDAwIG4gCjAwMDAwMDgyMDkgMDAwMDAgbiAKMDAwMDAwODM2MSAwMDAwMCBuIAowMDAwMDA4NjcwIDAwMDAwIG4gCjAwMDAwMDg3OTEgMDAwMDAgbiAKMDAwMDAwOTAyMSAwMDAwMCBuIAowMDAwMDA5NDI2IDAwMDAwIG4gCjAwMDAwMDk1MTUgMDAwMDAgbiAKMDAwMDAwOTcxOSAwMDAwMCBuIAowMDAwMDEwMTMwIDAwMDAwIG4gCjAwMDAwMTA0NTEgMDAwMDAgbiAKMDAwMDAxMDY5NSAwMDAwMCBuIAowMDAwMDEwOTAwIDAwMDAwIG4gCjAwMDAwMTM4MjkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTIgPj4Kc3RhcnR4cmVmCjEzOTgzCiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYyMC42ODEyNSAyMjguMDYzNzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicrVnLbh03Et33V/TSWZiqB1+1HE8SAwEGgRNhZmF44bFljRxJia1Rgvn7OezLvpds3VZ3gARQIp2wWK/DqiKbx88Dj9cjjZ/x88f4dnyH/34ceXyNn+uB8NfdEIVczCwBf902f4lkR1FTAErdX/8Zhk/Dxd+wxQNkXg9DCM5PMppc8GURtmVdgrcNKKQu1/2O4i1YlchByTUMhhMuN25Adfk/Z7WfMO+oKh9eIRp/DK8ux4vveWQaLz8NQZwShzj56yyMlx+HF/TNePl5/O5ymPQNLOqCEmmroAGf18AIqAZSL5ZTbrSEhRZjF1LOzJ2aBt3Qk4MTNq/BUoiNHl64I8FclBSsU9SizyuSoE5iFo4+qm8VLTxSSS4mpFNaRS36vCIVdsrRLFpgaRTJwiO14JIEDr2iBt1QlM1pDCklr9bqWTgEf11KatoxoUWf1+NDcp59CMkQwEaRLhwKyi6LJO4UtegWq0H/qKoZ6lou6MKjYOZyYm++U9SgG4oMp4CFORtJywV/9OgLpGh8STjACgcOp9KcpOmXD3fYsBQi56kcQshefC919xe/lE0GbPJmtnc+1gE7UbWWnfXY0dZGt3gnowf1KOZU9TaOZKcJPsSpCk5kdjQr/wLlVDYqZtZfIH/x7dXn9/98/Pn9/cPLu5v7x4fx219h6BNTc3QUFqYesVVTszgJ+0wlF/4iU0utSsuwnsC1Y4oKhWUcnR2CezBqyemjEvymy4CcwOeVQCCERsmSz0clBgOeeHIEn1eC7MjJE3YNl0t+Xpa4ckKSmOfQHHgcUUZEyU+ysChVQs8KXrydEqUIFGtMPC07y3mULuPamGixybtjtsc+29FFtKQUOTHK2DLxj/c3pCSH1C9FqZq7kPnx37c3Xx6vDrKv/j7T5sv4tOeGkEeOiICMX6/Gf433I1KFbk0O9QEpK82lHPNY/0lDiV3IWTSIjT+9HqH495sPVz+9fjV+eFghZQd6QhUpufx5iOYIAaPYLe9RTd5LOKzH8UqEUEm3vkfBA0TzsN7gGFPg3K1vUEZJUxWzw3omcyawz3cCLQwJSuSrA6d5olt/Qjmjy6DhSl2PwLNayqkX6GH1KSO7B4lQQmbIVi/RwqWCTg3mIBE9DqUVpzqJFsbpwLihs1UpObRrCn3aWrgEKmIg8lXiNOB0Eg0MCcABjWySEApITQ6x97yDMdXFpNUNKaGzrNI73sHsEkee2SGoBJ4ypd7xFoZwyOBi5Yd4VHROWXvHW7hUDPijsxungauTaGA4bqDIzHFJGLw0qe9J2MJWJoToZxYKKln2ialnYQvHUusgXtMBrjlfTmsn0KCwyafieV3PGBBwmnkh0MCEoYDEUqVhM/91Ej1sRNlmCc+IHLLT+93CGFMsqMWacZDFZUNt6f1u4eIH4kw14xqRTwpxIXBCcTPxyQJVoitKBXNR2Qv0MCoDJsMqcRpHO4kGjsEZuJuqDo9ioeqNehYuYHAFga4SZQDzKLE9CzsYRxxHhWu+vUY0VNTFnoUdjLMhkedseNQLVAAc6V6igXkaH4PV2DYDcifRwwQqzqXKo15oRvQXnvcwCo/yHCu0djP1fuF5C3PpNyI1VqhAGAZVqPd8CSuGhsp1ZBM3LLHQe76AlY+hagb2TqCHlTPPxA0eDU7FLzQ0KK5E4K/NTqBaENIrPQ07mMu1kObqGZJgSmDLPQ0XMLEnnt0u4xBmCu2P3xIOKIY14c39oZNYwDgosUq8GfeNFDuHia/X6yvH5djRrhzWV369rjN6GQGfziEJNQ7T03jxDypT0ryQFWwqF3L8K2K8L/fMjOuZ6Z7FXBpgRin0e1ZbmRRyKEHds3dEN8qZUNR3rBbzGC1SqeJbq0vjxiU3e922GtND8FYukLvigSYxtV9N26txxrCvZAlp20Ok3RNOjKLwbS7GSUGfyqj1uMTvsBrnSjDngUfbqxXTGysVq3f5qIRySCgh23vDbPAOxT/vSGLCnYnLYsx223ZIwN6exaO07aAThiJ0lIDqITvODO6VqE45RdvFPkyaljBj4/K0g3++3MMpoW3lPabg2IOtAdWbdviJ5WW+xPAje85CcqQGhuNn20+0BLROTHqyi4VYHhUNFrPhtp/s2HuMeBgRt7fGqQRJUkRt2HUo0cwMf2J62d4ZZYRQgZm3bUbPCiA2847qx2CrGa5J4neVHcNVglHPdhV4zwYCJvN7HKTyjCOGIXBPqUQjhSG4Zu6r74bolda2Jy046GhiVkarbavR8JBtZGZ7MQwhBA5TlXZJfLO75cv4w/ElISNlU6tWNGqMzGhKnGLp77WB+8B7XxLOzSjHWaQopScfHFa2PffZof2SUZ4nnn4MuVv5GDJNdTs/p7RrT3s8szNNfh0+pnD3KeW6e4Es970qb1X+9FJ7eqgtM/L0JPXd9CQFwzIU8vFl8mGCMSdisgwN/t8J92W8opRP+E19HgPNLU8+HvC7CWec22y+3eh91atBQ/NYtqrgal6fpUE/VrQ8nB2f5F6M1ZiMYtjqvF0xcs34+3l3jDrxtP15U9Yc+lodwm0Js+OmjasB+3NaV0wf591xM57IgAJi8fjaKWN2fqLF/+pbJqqtTJHt1h3Z87Y6F3ER8tQ8ecq84pdKJFRVaV9Nj1u8O7/FaoB+nT3GjdUa1z7VfUQ8Cth2oNf2eTwfuTVe/naWgX9ykzUb107hGmGvzxqzwoU16tz2j9Qyzk/NyKlP0/03aPmKMXL99LP9XN1vQmVcOqTandtg5e36zfB/4wdLtwplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjIwNzkKZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODcgPj4Kc3RyZWFtCnicNY3BDcAwCAP/mcIjxBAg2afqq93/W0jUj32yjLFY6FBLcQrCOy42Tt34NolDT2YBZSSNZbBRVCeHxCdkWpKxFrPFvp0REK8OxXaix/4nT7s/uE4ZxAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwMwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw9UkuuxDAI2+cUvkAlIHySY7wzVJrVzOLdf/NM2zeqVFMTDCYdv1AIn/t9fsahhsOk8Bk6HeGF9zD7jzQWOttRQveGRhCV6NA1cTIzoUW2MfNG1j0ZW2QNKn1esTphIiiDWSEdlrPhHFO1g+kbVZjFbhLkXRhNgxuxJtyFtS0UYs+ksb+R0p9lR8LeJgg6UPUH5apjJHkzrUHc60lwxGDHxUKdqGxaC6UI46QbwVkIpGfc3/sCjz5EOhQcM2J3dZS0VtOJ1WM510GthYOHNHDUY+XgAnxtIk1yBY20z5VfzGRFcguJLnA6ojmnSfZvyD49t3B1mEnvBGeLa7XVbYzeWsp4e7e40VJHurPFtfwS1+D18JZbqZcv4B2eo2e6/4fvj/Mer/Ez/gDTlW91CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzkgPj4Kc3RyZWFtCnicPY+xDcUwCER7prgFkAAbG8+T6Ff++7fBcZIC8XSgO/BhELDVLOloUuC141SyGmAX/MmkgdUE2i2hFWhdSigOWjrrCETbFvXpB32uk3jkUrGkai+1viliuTv0jtFtWsCjZ072rtDm4HJPRkEmTspT1qGTNH02mQfUIsllPNr70Pz+mfS7ALu8LdsKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA3IC9rIDEyMSAveSBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTQgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvayAxNyAwIFIgL3kgMTkgMCBSID4+CmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RqrB/GxsiQmM/6U46wQ4V3OKwGGh3uFrxpVGYfeqZEpJQcz1EWDMlOoSkX/rLMMOY2Mi277dW7hfeGxwZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcxID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhSgMA8bQWIwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjcgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrjSAM6DFdMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic49I1sjBVsDAwUMjl0jUyNAYzc7h0LY0VzAzNQCxDM0MY08jEUsHcGMw0NjaHiZoYmMIVQM2CqjU1gxgLZeZwpQEAk4MVTgplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgNjkgL0UgOTEKL2JyYWNrZXRsZWZ0IDkzIC9icmFja2V0cmlnaHQgOTcgL2EgMTAwIC9kIC9lIC9mIC9nIDEwNSAvaSAxMDggL2wgL20gL24gL28KL3AgMTE0IC9yIC9zIC90IC91IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMCAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjAgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjMgMCBvYmoKPDwgL0UgMjQgMCBSIC9hIDI1IDAgUiAvYnJhY2tldGxlZnQgMjYgMCBSIC9icmFja2V0cmlnaHQgMjcgMCBSIC9kIDI4IDAgUgovZSAyOSAwIFIgL2YgMzAgMCBSIC9maXZlIDMxIDAgUiAvZm91ciAzMiAwIFIgL2cgMzMgMCBSIC9pIDM0IDAgUiAvbCAzNSAwIFIKL20gMzYgMCBSIC9uIDM4IDAgUiAvbyAzOSAwIFIgL29uZSA0MCAwIFIgL3AgNDEgMCBSIC9wZXJpb2QgNDIgMCBSCi9yIDQzIDAgUiAvcyA0NCAwIFIgL3NwYWNlIDQ1IDAgUiAvdCA0NiAwIFIgL3RocmVlIDQ3IDAgUiAvdHdvIDQ4IDAgUgovdSA0OSAwIFIgL3plcm8gNTEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMiAwIFIgL0YyIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1PYmxpcXVlLXVuaTAzQkMgMTggMCBSIC9EZWphVnVTYW5zLW1pbnVzIDM3IDAgUgovRGVqYVZ1U2Fucy11bmkwMzAyIDUwIDAgUiAvTTAgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC0zLjUgLTMuNSAzLjUgMy41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNTIgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MTIwOTEzMjM1MyswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMSkgPj4KZW5kb2JqCnhyZWYKMCA1MwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNDM4NSAwMDAwMCBuIAowMDAwMDEzODIwIDAwMDAwIG4gCjAwMDAwMTM4NjMgMDAwMDAgbiAKMDAwMDAxMzk2MiAwMDAwMCBuIAowMDAwMDEzOTgzIDAwMDAwIG4gCjAwMDAwMTQwMDQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjU1MSAwMDAwMCBuIAowMDAwMDE0MTIzIDAwMDAwIG4gCjAwMDAwMDM5MTEgMDAwMDAgbiAKMDAwMDAwMzcwMyAwMDAwMCBuIAowMDAwMDAzMzgwIDAwMDAwIG4gCjAwMDAwMDQ5NjQgMDAwMDAgbiAKMDAwMDAwMjU3MiAwMDAwMCBuIAowMDAwMDAyNzMxIDAwMDAwIG4gCjAwMDAwMDMxNjggMDAwMDAgbiAKMDAwMDAxMjQzOCAwMDAwMCBuIAowMDAwMDEyMjM4IDAwMDAwIG4gCjAwMDAwMTE3ODMgMDAwMDAgbiAKMDAwMDAxMzQ5MSAwMDAwMCBuIAowMDAwMDA1MDA2IDAwMDAwIG4gCjAwMDAwMDUxNTcgMDAwMDAgbiAKMDAwMDAwNTUzNCAwMDAwMCBuIAowMDAwMDA1Njc3IDAwMDAwIG4gCjAwMDAwMDU4MTYgMDAwMDAgbiAKMDAwMDAwNjExNiAwMDAwMCBuIAowMDAwMDA2NDM0IDAwMDAwIG4gCjAwMDAwMDY2NDAgMDAwMDAgbiAKMDAwMDAwNjk2MCAwMDAwMCBuIAowMDAwMDA3MTIyIDAwMDAwIG4gCjAwMDAwMDc1MzMgMDAwMDAgbiAKMDAwMDAwNzY3MyAwMDAwMCBuIAowMDAwMDA3NzkwIDAwMDAwIG4gCjAwMDAwMDgxMTggMDAwMDAgbiAKMDAwMDAwODI4OCAwMDAwMCBuIAowMDAwMDA4NTIyIDAwMDAwIG4gCjAwMDAwMDg4MDkgMDAwMDAgbiAKMDAwMDAwODk2MSAwMDAwMCBuIAowMDAwMDA5MjcwIDAwMDAwIG4gCjAwMDAwMDkzOTEgMDAwMDAgbiAKMDAwMDAwOTYyMSAwMDAwMCBuIAowMDAwMDEwMDI2IDAwMDAwIG4gCjAwMDAwMTAxMTUgMDAwMDAgbiAKMDAwMDAxMDMxOSAwMDAwMCBuIAowMDAwMDEwNzMwIDAwMDAwIG4gCjAwMDAwMTEwNTEgMDAwMDAgbiAKMDAwMDAxMTI5NSAwMDAwMCBuIAowMDAwMDExNTAwIDAwMDAwIG4gCjAwMDAwMTQ0NDUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTMgPj4Kc3RhcnR4cmVmCjE0NTk5CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "L = 32 # number of random samples\n", "N = 10000 # number of sample functions\n", "\n", "# generate input signal (white Gaussian noise)\n", "np.random.seed(2)\n", "x = np.random.normal(size=(N, L))\n", "x[:, L//2] += 1\n", "# generate output signal\n", "h = 2*np.fft.irfft([1, 1, 1, 0, 0, 0])\n", "y = np.asarray([np.convolve(x[n, :], h, mode='full') for n in range(N)])\n", "\n", "\n", "def estimate_plot_linear_mean(x):\n", " # estimate and plot linear mean\n", " # estimate linear mean by ensemble average\n", " mu = 1/N * np.sum(x, 0)\n", " # plot linear mean\n", " plt.stem(mu, use_line_collection=True)\n", " plt.xlabel(r'$k$')\n", " plt.ylabel(r'$\\hat{\\mu}[k]$')\n", " plt.axis([0, x.shape[1], -1.2, 1.2])\n", "\n", "\n", "plt.figure(figsize=(10, 3))\n", "plt.title(r'Estimated linear mean $\\hat{\\mu}_x[k]$ of input signal')\n", "estimate_plot_linear_mean(x)\n", "\n", "plt.figure(figsize=(10, 3))\n", "plt.title(r'Estimated linear mean $\\hat{\\mu}_y[k]$ of output signal')\n", "estimate_plot_linear_mean(y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Can you estimate the impulse response $h[k]$ of the system from above plots of $\\hat{\\mu}_x[k]$ and $\\hat{\\mu}_y[k]$?\n", "* You can check your results by plotting the impulse response $h[k]$, for instance with the command `plt.stem(h)`.\n", "\n", "Solution: Inspecting above plot, the linear mean of the input signal can be approximated as $\\mu_x[k] = \\delta[k]$. The linear mean of the output is then given as $\\mu_y[k] = \\delta[k] * h[k] = h[k]$. It follows that the impulse response of the LTI system can be estimated from the linear mean $\\mu_y[k]$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stationary Input Signal\n", "\n", "For a (wide-sense) stationary process, the linear mean of the input signal $\\mu_x[k] = \\mu_x$ does not depend on the time index $k$. For a (wide-sense) stationary input signal, also the output signal of the system is (wide-sense) stationary. Using the result for the non-stationary case above yields\n", "\n", "\\begin{equation}\n", "\\begin{split}\n", "\\mu_y &= \\mu_x * h[k] \\\\\n", "&= \\sum_{\\kappa = -\\infty}^{\\infty}\\mu_x[k-\\kappa]h[\\kappa] \\\\\n", "&= \\mu_x \\cdot \\sum_{\\kappa = -\\infty}^{\\infty}h[\\kappa] \\\\\n", "&= \\mu_x \\cdot \\sum_{\\kappa = -\\infty}^{\\infty}h[\\kappa]\\cdot\\mathrm{e}^{-\\mathrm{j}\\Omega\\kappa} \\hspace{5mm} \\text{for}\\,\\,\\Omega=0 \\\\\n", "&= \\mu_x \\cdot H(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) \\big\\vert_{\\Omega = 0}\n", "\\end{split}\n", "\\end{equation}\n", "\n", "where $H(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) = \\mathcal{F}_* \\{ h[k] \\}$ denotes the discrete time Fourier transformation (DTFT) of the impulse response. The linear mean of a (wide-sense) stationary input signal is weighted by the transmission characteristics for the constant (i.e. DC, $\\Omega = 0$) component of the LTI system. This implies that for a system which just attenuates the input signal $y[k] = A \\cdot x[k]$, e.g. an ideal amplifier, the linear mean at the output is given as $\\mu_y = A \\cdot \\mu_x$. Furthermore, if the input signal is zero-mean $\\mu_x = 0$, the output signal is also zero-mean $\\mu_y = 0$." ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Digital Signal Processing - Lecture notes featuring computational examples." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" } }, "nbformat": 4, "nbformat_minor": 1 }