{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Random Signals\n", "\n", "*This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Important Distributions\n", "\n", "Analytic cumulative distribution functions (CDFs) and probability density functions (PDFs) are frequently used as models for practical random processes. They typically describe the statistical properties of a random process by a few parameters. These parameters may be fitted to an actual random process and used in algorithms for statistical signal processing. Alternatively the parameters may be used to generate sample functions with a given distribution. For the following, a real-valued wide-sense stationary (WSS) random process $x[k]$ is assumed.\n", "\n", "First a function is defined which plots the PDF and CDF of a given model." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy.stats as stats\n", "\n", "\n", "def plot_pdf_cdf(x, distr):\n", " \"\"\"Plot PDF and CDF of given distribution.\"\"\"\n", "\n", " plt.figure(figsize=(10, 5))\n", "\n", " plt.subplot(121)\n", " plt.plot(x, distr.pdf(x))\n", " plt.xlabel(r\"$\\theta$\")\n", " plt.ylabel(r\"$p_x(\\theta)$\")\n", " plt.title(\"PDF\")\n", " plt.grid()\n", "\n", " plt.subplot(122)\n", " plt.plot(x, distr.cdf(x))\n", " plt.xlabel(r\"$\\theta$\")\n", " plt.ylabel(r\"$P_x(\\theta)$\")\n", " plt.title(\"CDF\")\n", " plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Uniform Distribution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definition\n", "\n", "The PDF of the [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29) is given as\n", "\n", "\\begin{equation}\n", "p_x(\\theta) = \\begin{cases} \\frac{1}{b - a} & \\text{for } a \\leq \\theta \\leq b \\\\ 0 & \\text{otherwise} \\end{cases}\n", "\\end{equation}\n", "\n", "where $a$ and $b$ with $a \\leq b$ denote the lower and upper bound for the amplitude of the random signal $x[k]$. The uniform distribution implies that all amplitudes between these bounds occur with the same probability $\\frac{1}{b - a}$. Its CDF can be derived from the PDF by integration over $\\theta$\n", "\n", "\\begin{equation}\n", "P_x(\\theta) = \\begin{cases} 0 & \\text{for } \\theta < a \\\\ \n", "\\frac{\\theta - a}{b - a} & \\text{for } a \\leq \\theta < b \\\\\n", "1 & \\text{for } \\theta \\geq b \\end{cases}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The PDF/CDF of a uniformly distributed random signal with $a=0$ and $b=1$ is plotted for illustration" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMC4zMDYyNSAzMzcuMDY4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicxZlNc9s2EIbv+BU4OgdBWHzjGNe1Z3ppnGjaSy6uqzj2WG5dx3V/fhcQRS4okRAzEyoee6w1+BJ4uAR23wB/YMDvuOQP+P3GgV/h9x2T+GnDHEihpVMWPz2ST1p7IV3wFqOy+PSVsS9s+R4lXvCaK8aMFbC9xgtrNA7aMBWD8EY5MF30sYiCwV+34U6ABPNtnvm+uLJaON18Ga68F4r/s+a/8ye+fK/StBT/BZeIyxWBvzEpXJQQnfTB4NqXF+t/72/XH6/O+e0Lsw7FLHhHZ0+CZEbsE7vmz7t7SETa3iOBSJGqnBFyp3aOT+WNPeNPyRcStYwRJhprpYMYuFIiWn67YecrvrwEDpKvvrAgtA+xeV6rP9mZFPYdXz2wn1coJYVMavi1+wWvx4sXF+uHm99eP908vSw290+vL/ziL3advviPJwyIUPkYpKFMaHQi47rgHuWCIa5WaOWcDx5iw3mLUiaUHFHOwsWDiMoYrYplkOhULlXBChenRfSA73+AoAowdk4wSkVh8e/FO0SCE7HU5MahKAXCgY3aRPCGQIF5s0UFvBy0C6FYBolOxVIVrIDxUSgnrdMSnC3AtNlCNjdwQZiUhpCTC6/1AVSzweXdi+/tXviW7sYsLxXdxH794/H++XW9+PZ1/e1mzs2s1bdSwP5Z10aPewaH1AzmWxkbSkxch8GdzORz+QQbWKsPUh46+LvwRBpUr8VRqA3xiA5vTnio0/DARxcP8GjDU3kQvY4HVRviAcZjEhEg5iRAlATM0z0gXXgiEKrXAinUBoHEtFQCxJ0GiIVmsy6BtOGpQIheB4SqDQFRmCGRAgknAaKlOrSfduGJQKheC6RQGwSCdyd7Kjnmsb7GWy7S0QQ25RLWSy7LbQ8xcmLhlXhiNbJnf+cKPW3V3tk0kQXOyOQpNQN9HvdfHoddADgJeWA5bjfPs89neSSkgzJaDW038Pld2wz0jlOsDpyzUje9w9xHKxYFORdA4cKCUz7Nwbjmn8cPXtoQlLYq8o/9NCEdFDkpU8WPM3LR07MyRbFdtam0I887F3wA2oa9MOYauEKDVEHVaJmWab1dSg4le1dvHWx9UfJQ/7wZ6p9x/PE9eDG4FRnTlmlNzesGeWV37Xujto0DnrTaxaa200o2l6eU/HBxuXuBGtOAmhGyMSMY1teYDzGEokx3UvfX9UiDZKJUoG8jpAfU/T1l6/duaAynPLahaUQR8SZQ9GA0OrFMrwuOWQraBBEsPhVcuLbzeQrzwDYQ0gZsineEBCeirsmN90MG8lw11mVBuWFbYSY03gkVArbyxWJIdCqcqmAFD/Z/Gte+bQCHzYV58FitRdTKxdKnI9Gpvl9VcByPVVZEH60HPJeHXYaZ6EQ8rr3XqngTaHQqnapghU7A5SkDMeogVdVrMF4Jn7My59qP8hpmOlG6c43UPt0ZONFyOCynsSSIvejhR4HZLGy7unEDYnZA1DjoCE31IQYECaOaF9GDNOpKzA+JuAkE0kRzYkCQQqoYFD1I41bF7JSoxdBRmupYDAgSSjXXok9p1L+YnxLxHQiliTbGgCClVLEyepTGTY3ZKVEzgjQvE72NAUFCqeZv9Ckd43SkZs4Em1rnnH/Heh4fGs9D4qT8NsFP43q0psuJjngsUXKqfKfzQTq94j8JgjBeaq3peZ2iXgKYPBbLzuAdhlMVGryJceunSfBYS+V4ckqcA11kDi3L6uHj7Y/DHf5A246yB3r/zUDvj6Mn+Ae90cQDGVSvWiDGmZzq1qais2eB/NRZINfsf+DoDq0KZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxMzQ1CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3NCA+PgpzdHJlYW0KeJw9j0tyBDEIQ/c+BUcwID4+T6ey8tx/O0AqvbFUwkbPvpU2SdThmynk0A8v9jP2s/TEuLvgOs4YFKxkOOQp9CxLJTeeBb591BA1aQcPsjDCBpmA1HdNEELKnVb7UdIdo8/i2tbuLhYvrLuG7r5QFZiQIwuPzyENVKai/y7+MkhVZBLqNrhxULhAldankD5qGJx2/SYbfxd0KZ+eoJzmbOhOTR59Xoq7fr8yhD3CCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjggPj4Kc3RyZWFtCnicNZJLjsQgDET3nMIXiIR/fM4zo1l13387z9AtJbFDGbuqYHhKl8d4+pRcW3J0+dUWe4j7lPfNVkrUayoxiDHlp0WExDQJjYP6vFU/zWPdFQOdS2zzPwLEJrXZxRLEVcz577XHtDpssd7F6a+QcVUQrQ701unU7xu7H8RFs2qJzLIewiiaWUhVZchgyPYK8II/SbUfk2kq6yzvlA0PHaLq8ApR5qAQllp6qdY90QI/r8mx0TC2HHeY+vWrdFyt72aBRlrb7JKKGjinH3/4ZkIE98rw0BvpO9bJEuUZ9YIcfxI9B8WX0HtYnkW/MoNdFrvIs1/hAxJkiE1UKdNjIjyPMBcUhuEqbSBZ5Q72lA6Xhx3OSVREE6ZVZrbkQVDHln78H7jAEQxIMsllGctr3vv0at+b9WrKZcmorI78k32serW/f25+ePcKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicRVC7bUQxDOs9BRcIoL/teQ5Iddm/DaWXQyrRFkVSWpEJj42fpfGg91JXWFx01SPojvrFa2k5zoHeApHxn+W17HoD9+qu7/ijhxQFAuEkp+Njxs4W/gptYx+kGWJvZHOL2jqcOKg6CKXNDThx19dyfZDRqRnmfPOPSeQiqdSuqcxRNj7/ju/lx7A5Re+SQc3czJhB72qH1sibTKRIEWRu7tUOObsUgjtrKTUTt4/gHDGmlIMvFWaSqTxa2qA7fa730HPG+9RU68OM/L7jp3rHXyn6JDIOdEYXn8yfLV7r+xcZ21THCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgODAgL1AgMTEyIC9wIDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvUCAxNiAwIFIgL3AgMTcgMCBSIC94IDE5IDAgUiA+PgplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIzIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MiAvZm91ciAvZml2ZQovc2l4IDU2IC9laWdodCA2NyAvQyAvRCA3MCAvRiA4MCAvUCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjEgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMjAgMCBSID4+CmVuZG9iagoyMSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjIwIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIzIDAgb2JqCjw8IC9DIDI0IDAgUiAvRCAyNSAwIFIgL0YgMjYgMCBSIC9QIDI3IDAgUiAvZWlnaHQgMjggMCBSIC9maXZlIDI5IDAgUgovZm91ciAzMCAwIFIgL29uZSAzMiAwIFIgL3BhcmVubGVmdCAzMyAwIFIgL3BhcmVucmlnaHQgMzQgMCBSCi9wZXJpb2QgMzUgMCBSIC9zaXggMzYgMCBSIC90d28gMzcgMCBSIC96ZXJvIDM4IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjIgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzEgMCBSIC9GMi1EZWphVnVTYW5zLU9ibGlxdWUtdGhldGEgMTggMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozOSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAxMTI2MTYzMDU2KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy4xKSA+PgplbmRvYmoKeHJlZgowIDQwCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEwNTI5IDAwMDAwIG4gCjAwMDAwMTAyNjAgMDAwMDAgbiAKMDAwMDAxMDMwMyAwMDAwMCBuIAowMDAwMDEwNDAyIDAwMDAwIG4gCjAwMDAwMTA0MjMgMDAwMDAgbiAKMDAwMDAxMDQ0NCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxODE3IDAwMDAwIG4gCjAwMDAwMDM1NTEgMDAwMDAgbiAKMDAwMDAwMzM0MyAwMDAwMCBuIAowMDAwMDAzMDE0IDAwMDAwIG4gCjAwMDAwMDQ2MDQgMDAwMDAgbiAKMDAwMDAwMTgzOCAwMDAwMCBuIAowMDAwMDAyMDg1IDAwMDAwIG4gCjAwMDAwMDI0ODYgMDAwMDAgbiAKMDAwMDAwMjg1MCAwMDAwMCBuIAowMDAwMDA5MDA0IDAwMDAwIG4gCjAwMDAwMDg4MDQgMDAwMDAgbiAKMDAwMDAwODQwNCAwMDAwMCBuIAowMDAwMDEwMDU3IDAwMDAwIG4gCjAwMDAwMDQ2NTYgMDAwMDAgbiAKMDAwMDAwNDk2MSAwMDAwMCBuIAowMDAwMDA1MTk0IDAwMDAwIG4gCjAwMDAwMDUzNDAgMDAwMDAgbiAKMDAwMDAwNTU3OCAwMDAwMCBuIAowMDAwMDA2MDQzIDAwMDAwIG4gCjAwMDAwMDYzNjMgMDAwMDAgbiAKMDAwMDAwNjUyNSAwMDAwMCBuIAowMDAwMDA2Njk1IDAwMDAwIG4gCjAwMDAwMDY4NDcgMDAwMDAgbiAKMDAwMDAwNzA2NyAwMDAwMCBuIAowMDAwMDA3Mjg5IDAwMDAwIG4gCjAwMDAwMDc0MTAgMDAwMDAgbiAKMDAwMDAwNzgwMCAwMDAwMCBuIAowMDAwMDA4MTIxIDAwMDAwIG4gCjAwMDAwMTA1ODkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzOSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDAgPj4Kc3RhcnR4cmVmCjEwNzQ2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:56.809611\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_pdf_cdf(np.linspace(-0.5, 1.5, num=1000), stats.uniform(loc=0, scale=1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The [linear mean](ensemble_averages.ipynb#Linear-mean) is derived from the PDF as\n", "\n", "\\begin{equation}\n", "\\mu_x = \\frac{a+b}{2}\n", "\\end{equation}\n", "\n", "and the variance as\n", "\n", "\\begin{equation}\n", "\\sigma_x^2 = \\frac{(b-a)^2}{12}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Derive the linear mean and the variance from the PDF.\n", "* What values does the linear mean and variance for the above plotted example PDF/CDF take?\n", "\n", "Solution: The linear mean and the variance can be derived by introducing the PDF into their definitions in terms of ensemble averages. This yields\n", "\n", "$$\\mu_x[k] = E\\{ x[k] \\} = \\int\\limits_{a}^{b} \\theta \\, \\frac{1}{b -a} \\; \\mathrm{d}\\theta = \\frac{a + b}{2}$$\n", "\n", "and\n", "\n", "$$\\sigma_x^2 = E\\{ x[k] \\} - \\mu_x^2 = \\int\\limits_{a}^{b} \\theta^2 \\, \\frac{1}{b -a} \\; \\mathrm{d}\\theta - \\frac{(a+b)^2}{4} = \\frac{(b-a)^2}{12}$$\n", "\n", "It can be concluded from the example PDF that $a=0$ and $b=1$. Introducing these values in above equations derives $\\mu_x = \\frac{1}{2}$ and $\\sigma_x^2 = \\frac{1}{12}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example\n", "\n", "Most software frameworks for numerical mathematics provide functionality to draw samples from a random process for a given PDF. So does [`Numpy`](http://docs.scipy.org/doc/numpy/reference/routines.random.html) or [`scipy.stats`](http://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions). \n", "\n", "In the following example a large but finite number of samples is drawn from a random process which generates uniformly distributed samples. First a function is defined that estimates the PDF by computing the histogram over the given random samples. The CDF is computed from the estimated PDF by cumulative summation. Both the estimated PDF and CDF are plotted for illustration." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def estimate_plot_pdf_cdf(x, nbins=100):\n", " \"\"\"Estimate and plot PDF/CDF of a given sample function.\"\"\"\n", "\n", " plt.figure(figsize=(10, 6))\n", " plt.hist(x, nbins, density=True)\n", " plt.title(\"Estimated PDF\")\n", " plt.xlabel(r\"$\\theta$\")\n", " plt.ylabel(r\"$\\hat{p}_x(\\theta)$\")\n", " plt.grid()\n", "\n", " plt.figure(figsize=(10, 6))\n", " plt.hist(x, nbins, cumulative=True, density=True)\n", " plt.title(\"Estimated CDF\")\n", " plt.xlabel(r\"$\\theta$\")\n", " plt.ylabel(r\"$\\hat{P}_x(\\theta)$\")\n", " plt.grid()\n", "\n", " print(\"Estimated linear mean: {0:2.5f}\".format(np.mean(x)))\n", " print(\"Estimated variance: {0:2.5f}\".format(np.var(x)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the standard uniform distribution ($a=0$, $b=1$) we get the following results" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Estimated linear mean: 0.49922\n", "Estimated variance: 0.08373\n" ] }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMi4zMDYyNSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczZ1LkxXHEUb3/St6iRYU9X4sRSCI8MaWRVgbbTAaIQgGGwGWf74z+w5zv6rMYRhHACkFiplDd94+daursrqzW2F/tYX9xe73V/Tnzz3sT+jPi83Tb5dbDdElX2Oh317Db2lEV3xvhaiffvt9237bHnxPId7RPk+2LTcXTvs0V3KijSisLyt8PUHvQj9R2P0Mjw95u8vQpfQ9pehq3v+42H/e3+y0Uwyl9hrpr73L9eqftnnXfOk9phLH/seLm7fcly23rUX669F7RanGP8YaMkoBjMOF1tI48DkA4sPrx/1bmkmJy63Tx4aSckAzgCW7JH2BfnsvRYG8mqu9+9onrzNM3o2Sek6zLmIDZlLicqMTslXfxnSCAaSjJRefZl+g395LUSCv5nqiTdLkdYapuNFboO436SI2YCYlLrfgoxvrkAgwB+ejTzRiTMKIv72ZIsFmzY3WR2uz2pmm6mjySGnMyogtuEkNkgvJ+RJo20kOKOFcW+59lQZuwE7xYLtOIXJOcbY7U/qOShux5tUauAU76UF2MbkwWihjsgMa+YAzjRyLNXIDdooH23UXlyTl9URjdTHUmttqDdyCnfQgu5Qou1izLaSpu0qdsbfFGrkBO8WD7brLIuNCGunIqpQGbMFNWpBbTi6LrAtpji76XPvqjNyAneLBdt0VkXkhJRxayEcugjGQW7CTHmRXkqsi/0KaeSXoWxmLNXIDdooH23XacE3BzjAG11opsS7OyC24CQtSq4mOUeRgQGn877n7PBZnwAbcFA2W667LHAxoytT7KNkKizRyC3bSg+xackPmYEBpDVBDLGm1Rm7ATvFgu+6GzMGAZk67auir9BlbcJMW5Naz8zIDA0rD/+iUNqfVGbgBO8WD7YYLMgMDOtndYG3BTnqQ3ciUBIsMDCjNaG3UnvJqDdyAneLBdsNFmYMBTfRjTiO1xRq5BTvpcblRkuiSyMGQ4vWgydrUdSLNg+2GyyIHQ0rfUaf9jmtCkzVwC3bSg+zCMSXPORhAWpt239toizNyA27SgtWGKyIHQ4qXhCCErStFmgbJxXwsq+ccDOnUK1HaVq9UPNhuuCZyMKS08E61VWGN3IKd9CA7SoObyMGQ0ioglmPtNjlfUwNmigObUecSGRhSMFN9LZhJBzLL2Q2RfSGN3pURYmyrMXADdooH2RXvvMi+kNJMnUYedbVGbsBO8WC74rzIvpCmSilJoqxytQZuwU56kF2lEDL7AkonWvexB2EN3ICd4sF2xUWZfQGlU61k70NcrYFbsJMeZNf8xwIPkDvDFCj7H+NYdU/OwA24SQtWo5FBZl9AI/VEGvlzn50RW3CTGiTXaS+ZfQGdxkuIYWy8VDzYrrgisy+gk90N1hbspAfZDZ6QRfYFlHLIUUaPqzVyA3aKB9sVV2UGBpTWOamlWtpijdyCnfS43JKnDUUWhnRa9UAMW6sezYPtiusiC0Mam6uj+RgWa+QW7KQH2QXvusjCkKbkRsiULC/WyA3YKR5sV9wQWRhSWoKPMXxrizVyC3bSg+xioEl5zcKQ0qydYs8xLdbIDdgpHmxXZXUsQDqukHo46g8xAnILbsKC1ChTDCILQ4rpFoSwlYVpGixHyzORhSGd5G6QtmAnPcguBzp11iwMKdbrYQxbdXyaB9tVShXXLAwp7TZovg6LNGALbtKC3EoQ5eqvJ4p5MsawlT9rHmxXnay7R4qVNZO1qYobzYPsalBq75GG6nI+3QjHEIANuCkW7FaV+nukObvYWvR9cUZuwU56kF0LSg0+UrwPPlmbuj+uebBdVSrxkeJ98Mna1P1xzYPsepDF+ACjd7SYCyUuzsgNuEkLVqtKNT5SOrl6HelYeEMIxBbcpAbJjahU4yOdcmeIYSx3VjzYrinV+Eixchtj2Kro1jwut+yjUo2PlG891lFyXq2Bf3s7zYPtmlKNjzR552upYSzWyC3YSQ+y4wdDRQ6GNHeXY4xltUZuwE7xYLumVOMjTd2lUlpIizVyC3bSg+xiVOrxkQaavH0fPS/WyA3YKR5s15R6fKQlUi55dT8cYyC3YCc9yI4/WGRhSOnHTL0xtMUauQE7xYPtmqzHB0hdMVFa4vPijNyCm7AgNc6CRRaGlL6r7P3IdXZGbMBN0WC5ptTjI6U5rZZGk/YijdyCnfQgOxoYZD0+0jwoZ441jsUauQE7xYPtmlKPj3T67iCGse9O8SC7mpSKfKR8ZS/U01kHIQAbcFMs2K0r9fhIQ3Wh+OBXZ+QW7KQH2bWk1OMjjd2VXmJerZEbsFM82K4r9fhIpzEFYhgbUxQPsutJqcdHinfDMYatu+SaB9t1pR4faQqu58hCizVwC3bSg+xGkvX4AKccDCIYy8GkBat1pR4facw0itB6Ls/OiC24SY3Lrfik1OMjxSd5MIatJ3w0D7brSj0+0tBdD5nyysUauQU76UF2ISn1+Egx18IYtnIwzYPtulKTjxSvCWEMW9eKNA+yi0mpy0eKVysxhq2rmJoH2w2lLh8pv4siUm+MizVyC3bSg+xSVurykeJ9R4xh636k5sF2Q6nLR5r4MU9PMRdr5BbspAfZ8VcgsjCk03kHMYydd4oH2w1Zlw9wGjEhgrERU1qQGr8mUGRhSLF8CELYqirSNFhuKHX5SGlcpOVbqm2VBm7BTnqQXc1KXT7S2U63NmCneLDdUOrykdI6oCWKnxZr5BbspAfZtazU5SPlMy343MZijdyAneLBdkOpy0eKz+VijP/7ed0H30d+5W3c/7IHfpWu6/uf9N86fODa4563J/uDRxf/efn84u9PHu7P353eAZtrnF8iC9Bfv+92++k4jqvP8PsL/Iz9CZNbw9F8ftUO28Mt7H9uD5/uDx6HPfj96W8bd9/AVwEpo4n78WTJ/vTX7Z53/rv96av9h6dfsCVO73UJ0c+vT0F6t7a4PeCnWyNUrhjvvudUSp2aI3755jg9n9XaWJ7NA3q35rg94KebI9ZGeQSdho31sDXyl2+NU30VhZurPpHerTVuD/jp1kj8iqUeYvGt0mSGzVG/fHMcl0eHH8uNDaR3a47bA366OTI/KklpC2VifBkam6N/+eY4jemt5CjH/yt6t+a4PeCnm6NwqePIOTQaRBI0RziPpG9pN7/f9/vVixyPZhm0hORetT+/pIgbb7bzk987v4n94w/88MrVNg8ex/uPLl49+8eHn569eXf/r/98/fLth4v773+/eP9sf/Sv7Uf+9wt2w898q/vndUEZLKerdsFY2thEqx2yoW+n8gvov9qcdR11VNdKK5RUYAuc6R2bAMNdt8EU7aZGGJGfcqqpj5zC15utrqOGQpNmC9SLp5YAfMemmAJet8Uc76bGCCW60HL2kdK69PVmq+uolMDSuFM8jRjYGoDv2BpTwOvWmOPd1BoxBJdozqq1x5G/5mT18eApxU6DryfNrXHGd20NDHhujSneja1BU0KlY06+tfgV56pzVBqv+M2MbR40r+ldR00Idx42MdqN42Yc/FRrHZnWdk1OUzxD3eeJJzQ+pwb1ouPtwqcpiuej05BLc9FV2Hv/5r03fvgkpTJ44/uBWu04pqst27Hhf48Ns8uBvotynNnTdh8P9N4v944tA8+BoySe/vxxqL98d/yFMlNWijRyOEWLp9ky4Gz54c1Ln3w8zZPr3iEfDyvkGPqx/myfPd9yZ/DXX9TtMyawKUtRZtLLG/7/KLT1XeZi5RM/EdkfPqfOF46u9+K6F8WjF/XI3Yhy59Ne/LX88O79y8tn7y9+3f/26PH1WbX9Dxd/2RQKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyODQ1CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyOCA+PgpzdHJlYW0KeJw1kkuOxCAMRPecwheIhH98zjOjWXXffzvP0C0lsUMZu6pgeEqXx3j6lFxbcnT51RZ7iPuU981WStRrKjGIMeWnRYTENAmNg/q8VT/NY90VA51LbPM/AsQmtdnFEsRVzPnvtce0Omyx3sXpr5BxVRCtDvTW6dTvG7sfxEWzaonMsh7CKJpZSFVlyGDI9grwgj9JtR+TaSrrLO+UDQ8dourwClHmoBCWWnqp1j3RAj+vybHRMLYcd5j69at0XK3vZoFGWtvskooaOKcff/hmQgT3yvDQG+k71skS5Rn1ghx/Ej0HxZfQe1ieRb8yg10Wu8izX+EDEmSITVQp02MiPI8wFxSG4SptIFnlDvaUDpeHHc5JVEQTplVmtuRBUMeWfvwfuMARDEgyyWUZy2ve+/Rq35v1asplyaisjvyTfax6tb9/bn549wplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMAovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxFULttRDEM6z0FFwigv+15Dkh12b8NpZdDKtEWRVJakQmPjZ+l8aD3UldYXHTVI+iO+sVraTnOgd4CkfGf5bXsegP36q7v+KOHFAUC4SSn42PGzhb+Cm1jH6QZYm9kc4vaOpw4qDoIpc0NOHHX13J9kNGpGeZ8849J5CKp1K6pzFE2Pv+O7+XHsDlF75JBzdzMmEHvaofWyJtMpEgRZG7u1Q45uxSCO2spNRO3j+AcMaaUgy8VZpKpPFraoDt9rvfQc8b71FTrw4z8vuOnesdfKfokMg50RhefzJ8tXuv7FxnbVMcKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTIgL3AgMTIwIC94IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9wIDE2IDAgUiAveCAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3OSA+PgpzdHJlYW0KeJxNzbsNwCAMBNCeKTwC4P8+UaqwfxsbIkJjP+lOOsEOFdzisBhod7ha8aVRmH3qmRKSUHM9RFgzJTqEpF/6yzDDmNjItu+3Vu4X3hscGQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic49I1sjBVsDAwUMjl0jUyNAYzc7h0LY0VzAzNQCxDM0MY08jEUsHcGMw0NjaHiZoYmMIVQM2CqjU1gxgLZeZwpQEAk4MVTgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyCi9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0IDY4IC9EIC9FIC9GIDgwIC9QIDk3IC9hIDEwMCAvZCAvZSAxMDUgL2kgMTA5IC9tIDExNQovcyAvdCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9EIDIzIDAgUiAvRSAyNCAwIFIgL0YgMjUgMCBSIC9QIDI2IDAgUiAvYSAyNyAwIFIgL2QgMjggMCBSIC9lIDI5IDAgUgovZWlnaHQgMzAgMCBSIC9mb3VyIDMxIDAgUiAvaSAzMiAwIFIgL20gMzMgMCBSIC9vbmUgMzQgMCBSCi9wYXJlbmxlZnQgMzUgMCBSIC9wYXJlbnJpZ2h0IDM2IDAgUiAvcGVyaW9kIDM3IDAgUiAvcyAzOCAwIFIgL3NpeCAzOSAwIFIKL3NwYWNlIDQwIDAgUiAvdCA0MSAwIFIgL3R3byA0MiAwIFIgL3plcm8gNDQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy11bmkwMzAyIDQzIDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRoZXRhIDE3IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMTEyNjE2MzA1NyswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMSkgPj4KZW5kb2JqCnhyZWYKMCA0NgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzYwNSAwMDAwMCBuIAowMDAwMDEzMzM0IDAwMDAwIG4gCjAwMDAwMTMzNzcgMDAwMDAgbiAKMDAwMDAxMzQ3NiAwMDAwMCBuIAowMDAwMDEzNDk3IDAwMDAwIG4gCjAwMDAwMTM1MTggMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzMxNyAwMDAwMCBuIAowMDAwMDA0Nzk4IDAwMDAwIG4gCjAwMDAwMDQ1OTAgMDAwMDAgbiAKMDAwMDAwNDI2NyAwMDAwMCBuIAowMDAwMDA1ODUxIDAwMDAwIG4gCjAwMDAwMDMzMzggMDAwMDAgbiAKMDAwMDAwMzczOSAwMDAwMCBuIAowMDAwMDA0MTAzIDAwMDAwIG4gCjAwMDAwMTIwMDcgMDAwMDAgbiAKMDAwMDAxMTgwNyAwMDAwMCBuIAowMDAwMDExMzYzIDAwMDAwIG4gCjAwMDAwMTMwNjAgMDAwMDAgbiAKMDAwMDAwNTg5MyAwMDAwMCBuIAowMDAwMDA2MTI2IDAwMDAwIG4gCjAwMDAwMDYyNzcgMDAwMDAgbiAKMDAwMDAwNjQyMyAwMDAwMCBuIAowMDAwMDA2NjYxIDAwMDAwIG4gCjAwMDAwMDcwMzggMDAwMDAgbiAKMDAwMDAwNzMzOCAwMDAwMCBuIAowMDAwMDA3NjU2IDAwMDAwIG4gCjAwMDAwMDgxMjEgMDAwMDAgbiAKMDAwMDAwODI4MyAwMDAwMCBuIAowMDAwMDA4NDIzIDAwMDAwIG4gCjAwMDAwMDg3NTEgMDAwMDAgbiAKMDAwMDAwODkwMyAwMDAwMCBuIAowMDAwMDA5MTIzIDAwMDAwIG4gCjAwMDAwMDkzNDUgMDAwMDAgbiAKMDAwMDAwOTQ2NiAwMDAwMCBuIAowMDAwMDA5ODcxIDAwMDAwIG4gCjAwMDAwMTAyNjEgMDAwMDAgbiAKMDAwMDAxMDM1MCAwMDAwMCBuIAowMDAwMDEwNTU0IDAwMDAwIG4gCjAwMDAwMTA4NzUgMDAwMDAgbiAKMDAwMDAxMTA4MCAwMDAwMCBuIAowMDAwMDEzNjY1IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDUgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ2ID4+CnN0YXJ0eHJlZgoxMzgyMgolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:57.309661\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMi4zMDYyNSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczZ1Pk9Y2Eofv/hQ+ksMItf7rGJZA1V52s6F2L7mwZEKgGLYIsOzH32775dVPbs0McxhGSZFinrH1+unXllpy26H17ULr69Wub/nPl5XW5/zn9WL5p6slkTPeJhf5p3fwk6/ORFtyZGq7n/5Ylt+Xxz9yEx95n+fLErKhfZ9sYvC8ETdr4xG+66A1VHYKuze4fciHVTcdY1m9dyaF9c/L9V/r+5V3chRTSY5/bU1Ip3/yYk22sRTno6vrn6+v33I9bLks2fGvaykJpbL81SUKKNVgsCal4LzA8+4AN6ef14e00gJXS+GPpegDoVWDIRgbfa29aoMPbzUQYKtsUik2lc7qDOVgqw+59K5AJ/DSClcLX4g52Vy7C6vBaE0k63PobJE+vNdAgb2yKZ438Z3XGUbPrfhMpbcFOoGXVrhayDpTjx1hgzGZGm3dvZot0If3GiiIVzY1l5pzL3amiT8h+pxS54t0BjMtwWrkuXcj3rZTazR545OrR+FGJzAbOIhZ4SZC8K43O9OUTEwu+YNvozOYaQc2c5677kyxdmaNpsrjsOXO/SAMeAK3gYW4FeMOycg7pJxt5FDz7taaQDyDm7ZgN89XjcqpgOZodpveuNEJzAYOYlZMUHkV0FyNdW4flFEY8Axu2oLdgjdBZVdAOaVyxbmQemXEE7gNLMStcG93zLCAlih7ueQOyoBncNMW7MYJU1JZFtBSTI7krTsoA57AbWAhbnyQKtE6w0omVxeL64URz2CmHFiME4usM61GazCFvyhfemGgE5gNJESt8EGqTKvRWozlLyq4gzHgGdy0Bbtlb6rOtRolS9wbZrvNNqGNjk9gN/AQu2KqzrcaJRt4Vm09HaUbnsFNW7BbCcbqfKtRSfpLqVSPyg1P4DawELdqSOdbjRKR4ZPR5oMy4BnctAW7cZfndMbVKFEwgdOs/YpDZ+AT2A08xK5yt6ByrkaJMs9lXMhH6YZncNMWV4vjXsGrnAsoOcvdYywUDs7IH95u5CF2lU+vY9YFlOeixlbrt/GsswY+g532YDu+eOIx72qQHB9uifuaaucMfAI3bSFq1USVeQHllNj4yu263hnxDG5ag+X45Eoq9wIqc9Lk9uGsc254AreBhbhVk1XuBZR8MinzeJaOzsBnsNMebOcDT1qOuRdQ8ryb99WlozXwCewGHmJXTVHZF1AetHk3TiTTwRr5DHbag+1CMFXlX0ApRFOophiO1sAnsBt4sF20xqoMDCiFaqxNpw4TrYFPYDfwELtorMrAgFJ0xvHcZlu7Q2vkM9hpD7aTWzM6B2uUeDdffNmvO7QGPoHdwEPsonE6B2tUFk4Sf1H7iIDWwGew0x5sl+3Xsg2QO0NKZDIP3/tVB87IJ3DTFqLGZ5fOwRqlFOS26VaLgMqNzmCmJVit8F46A2tUFoUs58y1HJWBT2A38BC7aKLOwRqlTNwrFrtfcWCNfAY77cF21Zqoc7BGubM3PLTVWI7WwCewG3iIXTRJ52CNUs6G0+Z9dbmzBj6Dnfa4WrzlDVUOBpS2k7HErUoBrZE/vN3IQ+wkUTzmYECpeBOT30e0zhr4DHbag+3ImqJyMKBUEs9xwn7/tLMGPoHdwEPsoqkqBwMqi5aZz78t1+qsgc9gpz3YztF226bPwYBSdTxox7qtd6E18gnsBh5il3TFa4Pc4xvuRGi7h9o5A5/BTVmwmidDKgcDKiuy9lTlisqNTmA2kBC1ZJzKwYA66wzxgLaN19BGx2ew0x5sF8h4lYMBddxBcqd4GgvQGvgEdgMPsUvGqxwMKGeRnJjUSkfphmdw0xbsFkkVoL9D6ojnbiXtNaLojHwCu4GH2CWjK+mBylp6rW6vy+usgc9gpz3YjqfVuqIeqCMpGs3bEnon3fAEbgMLcUuDunqgjoc2F6vbZgDojHwGO+3Bdjz11NX1QOVWQfSF9qsOrYFPYDfwELs0qLEH6lw2xXIXmY7WwGew0x5sV0gX2jfoPCfLru6V5+iMfAI3bSFqaVBrD1TugvC5R0flRmcw0xKsxqm9rrUH6hi7vBcMdcYNT+A2sBC3PKi2B+qCNTytITooA57BTVtcLUHSX5V7AXVbZWzc7zV2zsAf3m7kIXZ5UHEP1HHCxQPblkJ20g3P4KYt2E0e8VS5F1AXqtyW83RUbngCt4GFuOVBzT1QF73c2NlXztEZ+Qx22oPtnBtU3QN1nEvaGvb1yc4a+AR2Aw+xy4O6e6CcPXKzjpR0wzO4aQt2kw9WmRdQl+QZ1LxXQ6Ez8gnsBh5il3XlfYNywzER7Zl/5wx8BjdlwWpSU6IyL6AuFZPJZTooNzqB2UBC1PKg9h4oH74poVp/MAY8g5u2YLfoBrX3QOVmKlX+ho7KDU/gNrAQtzyovAfqcjGeW69H5YZncNMW7Jb8oPIeqOPJTcx5v3uKzsgnsBt4iF0Z1N4DdSWYGOtewdZZA5/BTnuwXfaD6nugTt5HkP22vNVJNzyB28BC3Mqg9h6oqyTFXsEflAHP4KYt2K34Qe09UCfPEoR6uubQGfgEdgMPsSuD2nugjqemvpaqpBuewU1bsFv1uvIeoJUq9FNqAg0AnsBMO4hYGdTdI7XehFj9dhsAjQHP4KY1rpbIB6nr7pFaWVbOcVsh6aSBP7zdyEPsyqDyHqmtJvGgvVl01sBnsNMebEd+UHmPlKRSwYeQDtbIJ7AbeIhdGVTeI6VkeJ+90rezBj6DnfZgO+cHlfdISR4rS3sNemcNfAK7gYfY1UHlPVJZMYkUajhYI5/BTnuwnQ+DynukLsqTLfsT4Z018AnsBh5iVweV90hdMdXmsq0CddbAZ7DTHmwXwqDyHikfmfUh7WcmtIF8AruBh9hVXXkP0EfOKMnubugMfAY3ZcFqMQwq75F6eUGI38vy0BnwBG4DDZGrg9p7pIF48I5pq4DCNpDPYKc92C6FQe09Uj4VS8nbQlcn3fAEbgMLcauDynukfMA12a3ssFNueAY3bcFuOQzq7pFGMq4m2mY42AbyCewGHmJXB3X3SOUyG0k3fCe3xz86eUmtW/+6krz81pT1C/83VUtSWVzC8nx9/PTyv29eXf7j+ZP11cf9va0huf61rwDt+Q21yy/bcZw+w66v8TPW50JubY5H8pPX8mSh9cvy5MX6+BmtZNcXvy9y7hJFy39k/dYZHhRf/LY8ssb+sL54u/704h4jsb+zhZztX42C9G6xuL3Bm6NBSerBiy3Bx5i6cLj7D8f+9FXO9fDcHdC7heP2Bm8Oh0vZBMcXYRY9jEa4/2js9VPcXF/VifRu0bi9wZuj4eX1SYVctDnJfRwIR7r/cGyLotXWw80MpHcLx+0N3hyOIM9BcsLifU3cJWM4yv2HY+/Rs0y6VO9/oncLx+0N3hyOKKWMNQTK3Il4CAe1nvQD72bXC7vuU+W0v0PNuCxn1frqiltcZLNVnupe5d3pX/9ieBp22ubxM3fx9PLty39+/uXl+48Xf/v3uzcfPl9efPrj8tPL9el/lp/l33s8Db/xPezfdgrqxoI/xQXbGvVNPM9hG/52ZL3y+41Z51bJWp4YHyPQ6B1DgM2dY9C1dl0Q6tZEC8J3GKnaUSd50lQF4UzvGgRorgUBW7suCDyfl2yxReE7jFDnVqV2ObljFBq9YxSwuXMUutaui4Jz3hQHUfguA9PXw658shYVhTO9axSguRYFbO3aKBR57RNE4TuMR63V80Si6xhhenG3nhGaa10jtnZt3ygv5G+dYzcMyQh0IQPL9pJqkm2okvHbVbaPQ9vYc96dB51T24/+Ls0siffjeWGKcjwXxLHbjuy0ad62/N+2ZTCBL07aNuy3+3q4j359tG1JMtrV6GWgs9tB//rD9ovBmJhMzJZ7PXlic/X7uEg4Ln5+/8bKy2S3EfG4t7yLT25VVr9NM0+e3zi4yllhz9/Y7cMjsC4lGQybV9f870t467sMvINPvKFlu/nsZyFt5+Dr8+nkttOpkLyNa4uRpMv7vvL9/PTx05url58uf1v/8vTZ+SJb/g/JHcbsCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMzAyMwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicPY9LcgQxCEP3PgVHMCA+Pk+nsvLcfztAKr2xVMJGz76VNknU4Zsp5NAPL/Yz9rP0xLi74DrOGBSsZDjkKfQsSyU3ngW+fdQQNWkHD7IwwgaZgNR3TRBCyp1W+1HSHaPP4trW7i4WL6y7hu6+UBWYkCMLj88hDVSmov8u/jJIVWQS6ja4cVC4QJXWp5A+ahicdv0mG38XdCmfnqCc5mzoTk0efV6Ku36/MoQ9wgplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMAovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxFULttRDEM6z0FFwigv+15Dkh12b8NpZdDKtEWRVJakQmPjZ+l8aD3UldYXHTVI+iO+sVraTnOgd4CkfGf5bXsegP36q7v+KOHFAUC4SSn42PGzhb+Cm1jH6QZYm9kc4vaOpw4qDoIpc0NOHHX13J9kNGpGeZ8849J5CKp1K6pzFE2Pv+O7+XHsDlF75JBzdzMmEHvaofWyJtMpEgRZG7u1Q45uxSCO2spNRO3j+AcMaaUgy8VZpKpPFraoDt9rvfQc8b71FTrw4z8vuOnesdfKfokMg50RhefzJ8tXuv7FxnbVMcKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA4MCAvUCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL1AgMTYgMCBSIC94IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzkgPj4Kc3RyZWFtCnicTc27DcAgDATQnik8AuD/PlGqsH8bGyJCYz/pTjrBDhXc4rAYaHe4WvGlUZh96pkSklBzPURYMyU6hKRf+ssww5jYyLbvt1buF94bHBkKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrjQAA3EYkwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic49I1sjBVsDAwUMjl0jUyNAYzc7h0LY0VzAzNQCxDM0MY08jEUsHcGMw0NjaHiZoYmMIVQM2CqjU1gxgLZeZwpQEAk4MVTgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyCi9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0IDY3IC9DIC9EIC9FIC9GIDk3IC9hIDEwMCAvZCAvZSAxMDUgL2kgMTA5IC9tIDExNSAvcwovdCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9DIDIzIDAgUiAvRCAyNCAwIFIgL0UgMjUgMCBSIC9GIDI2IDAgUiAvYSAyNyAwIFIgL2QgMjggMCBSIC9lIDI5IDAgUgovZWlnaHQgMzAgMCBSIC9mb3VyIDMxIDAgUiAvaSAzMiAwIFIgL20gMzMgMCBSIC9vbmUgMzQgMCBSCi9wYXJlbmxlZnQgMzUgMCBSIC9wYXJlbnJpZ2h0IDM2IDAgUiAvcGVyaW9kIDM3IDAgUiAvcyAzOCAwIFIgL3NpeCAzOSAwIFIKL3NwYWNlIDQwIDAgUiAvdCA0MSAwIFIgL3R3byA0MiAwIFIgL3plcm8gNDQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy11bmkwMzAyIDQzIDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRoZXRhIDE3IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMTEyNjE2MzA1NyswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMSkgPj4KZW5kb2JqCnhyZWYKMCA0NgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzY5MiAwMDAwMCBuIAowMDAwMDEzNDIxIDAwMDAwIG4gCjAwMDAwMTM0NjQgMDAwMDAgbiAKMDAwMDAxMzU2MyAwMDAwMCBuIAowMDAwMDEzNTg0IDAwMDAwIG4gCjAwMDAwMTM2MDUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzQ5NSAwMDAwMCBuIAowMDAwMDA0ODIxIDAwMDAwIG4gCjAwMDAwMDQ2MTMgMDAwMDAgbiAKMDAwMDAwNDI5MSAwMDAwMCBuIAowMDAwMDA1ODc0IDAwMDAwIG4gCjAwMDAwMDM1MTYgMDAwMDAgbiAKMDAwMDAwMzc2MyAwMDAwMCBuIAowMDAwMDA0MTI3IDAwMDAwIG4gCjAwMDAwMTIwOTQgMDAwMDAgbiAKMDAwMDAxMTg5NCAwMDAwMCBuIAowMDAwMDExNDUzIDAwMDAwIG4gCjAwMDAwMTMxNDcgMDAwMDAgbiAKMDAwMDAwNTkxNiAwMDAwMCBuIAowMDAwMDA2MjIxIDAwMDAwIG4gCjAwMDAwMDY0NTQgMDAwMDAgbiAKMDAwMDAwNjYwNSAwMDAwMCBuIAowMDAwMDA2NzUxIDAwMDAwIG4gCjAwMDAwMDcxMjggMDAwMDAgbiAKMDAwMDAwNzQyOCAwMDAwMCBuIAowMDAwMDA3NzQ2IDAwMDAwIG4gCjAwMDAwMDgyMTEgMDAwMDAgbiAKMDAwMDAwODM3MyAwMDAwMCBuIAowMDAwMDA4NTEzIDAwMDAwIG4gCjAwMDAwMDg4NDEgMDAwMDAgbiAKMDAwMDAwODk5MyAwMDAwMCBuIAowMDAwMDA5MjEzIDAwMDAwIG4gCjAwMDAwMDk0MzUgMDAwMDAgbiAKMDAwMDAwOTU1NiAwMDAwMCBuIAowMDAwMDA5OTYxIDAwMDAwIG4gCjAwMDAwMTAzNTEgMDAwMDAgbiAKMDAwMDAxMDQ0MCAwMDAwMCBuIAowMDAwMDEwNjQ0IDAwMDAwIG4gCjAwMDAwMTA5NjUgMDAwMDAgbiAKMDAwMDAxMTE3MCAwMDAwMCBuIAowMDAwMDEzNzUyIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDUgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ2ID4+CnN0YXJ0eHJlZgoxMzkwOQolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:57.682724\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "np.random.seed(1)\n", "estimate_plot_pdf_cdf(stats.uniform.rvs(size=100000, loc=0, scale=1), nbins=100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Why is the estimate of the CDF smoother that the estimate of the PDF?\n", "* Change the parameters `loc` and `scale` in above example. How are these parameters related to the upper $b$ and lower bound $a$?\n", "* What changes if you change the length `size` of the random signal?\n", "\n", "Solution: The estimate of the CDF is smoother as compared to the estimate of the PDF since the integration performed to compute the CDF from the PDF can be interpreted as low-pass filter. This attenuates the 'fine-structure' in the PDF. The lower bound $a$ is equal to `loc` the upper bound $b$ to `loc+scale`. Increasing the length of the random signal lowers the statistical uncertainty when estimating the PDF." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Normal Distribution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definition\n", "\n", "The PDF of the [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution)/Gaussian distribution is given as\n", "\n", "\\begin{equation}\n", "p_x(\\theta) = \\frac{1}{\\sqrt{2 \\pi} \\sigma_x} \\mathrm{e}^{- \\frac{(\\theta - \\mu_x)^2}{2 \\sigma_x^2}}\n", "\\end{equation}\n", "\n", "where $\\mu_x$ and $\\sigma_x^2$ denote its linear mean and variance, respectively. The central limit theorem states that averages of random variables independently drawn from independent distributions become normally distributed when the number of random variables is sufficiently large. As a result, random signals that are expected to be a combination of many independent processes often have distributions that are approximately normal. Normal distributions are often used to model random processes whose internal structure is not exactly known but can be assumed to be a combination of various random processes. Note that a normal distributed random signals shows a small but finite probability that samples with very high amplitudes occur. This is in contrast to the facts that technical systems can only generate and process signals of finite amplitude. However, the normal distribution is often assumed to provide a reasonable approximation in such cases.\n", "\n", "The maximum value of the PDF is located at $\\theta = \\mu_x$ and is given as\n", "\n", "\\begin{equation}\n", "p_x(\\mu_x) = \\frac{1}{\\sqrt{2 \\pi} \\sigma_x}\n", "\\end{equation}\n", "\n", "The CDF of the normal distribution is derived by integrating the PDF over $\\theta$\n", "\n", "\\begin{align}\n", "P_x(\\theta) &= \\frac{1}{\\sqrt{2 \\pi} \\sigma_x} \\int\\limits_{—\\infty}^{\\theta} \\mathrm{e}^{- \\frac{(\\zeta - \\mu_x)^2}{2 \\sigma_x^2}} \\mathrm{d}\\zeta \\\\\n", "&= \\frac{1}{2} \\left( 1 + \\text{erf}\\left( \\frac{\\theta-\\mu_x}{\\sqrt{2} \\sigma_x} \\right)\\right)\n", "\\end{align}\n", "\n", "where $\\text{erf}(\\cdot)$ denotes the [error function](https://en.wikipedia.org/wiki/Error_function)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The PDF and CDF are illustrated for the standard zero-mean normal distribution ($\\mu_x=0$, $\\sigma_x^2=1$)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxNi42NjU2MjUgMzM3LjA2ODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nM2by5JcxRGG9/0UZykWKlVl3ZdgGSK8MWCFvWGDsbgoJGxZYPz4/jLr9HRVMzM9jcMzRoHQJOfkqforL39mlsL25hC27za/veHfX7awfca/3x08P707lFBcKblI5se3848xVudLqxmxX376/nD49vDiY5R84KXPDoccXNpfqi6nyFPvDtFnF3zorZ+kbxdpSK7u4knDJLUPvd9uUS85uhL3X2mTWp1s/3y9/WX7cXvxsejKZPsD+2TPrm2/HLwrnc8WX1sCgBcvX//rh29ef/nZJ9s3Hw6tOJ8leZnXPwmnJR3+dPhie3/8hgfXm28oFiq5qC45f9T2CUfzy+E9v/vtuUdXba60LCHF3NmmOH7/5t3hk1fbi0/DFvz26ttDc7G27seZvfrb4Vn6aHv15vD7Vyjyzqsufh3/wNu8+vzl6zdf//nnP33944fn73748ecP28u/H77QX9sjAByiuFBa8GmGZJZeCfFlhfeBHCS55n3n2djaQ1GW/3uUMR5hR74uoEzSa1G+qPBXKC8QhqrOnkLoMTTZcVYovUK5AeWj4CIcd+w9+z5vY5ZeictlhffjIhKcEAMl1F7zhIs8Li7VuxwINkugmqXX4nJR4QVcSnUxZsKk1NInXNIRl9mJK4tTM8ThMa7upLYgux+bm26/clMX5fjMi09l9tY//vXtD+9/fv38p+9f//T1o3rt6QPZu5BY4Jo8b6QPO4Nb1aXq+pnwLstkK6m4mHKPCWTT8FfnH9dlTx9owdVSaj5D5SS+FpZZ4QmXRd9dwFR9vEOCCvHvCEx+ImBCiIQbX7qsyEzya6FZVJ6wWTXeBU7w3WE0LZRcs+zohKcym5AyPp9KjGfonORXozOrnNBZNN6JTtKQX6tiI+GIzpPZToXmx5brOTon+dXozCondBaNd6JTxbUU8C1iTt/RkaeyHfEQHP5A8FvQmeTXorOoPKGzarwLHfHJ9MSeQm5HdJ7KdiR211pJ+azIm+RXozOrnNBZNN6JTqSyaj03H4vUHZ34ZLZTA2THx17O0DnJr0ZnVjmhs2i8Ex0oVQ0R9hU9T+7oPJXtRB9diCnGetYgOMmvRWdReUJn1XgnOr1DOGsqIrnspYlL/sQ2lWg+V+oYsoapAiwG0CCZE6PkVRjlrvvZP6xUVBpVx3KeB160WnJ/sNpz/7bn8O5QfBjxcnnuuNhnXz2zJ4MS2Z5juClKv/ropio9o7tw91Kyj3sJ++jUF+s0wwjCzhquqYtIZf+n8kP1uTXBNvv25bnNHArkv+P6YVDWUUqUzDbMzU2Yoto+Fl4yRYYMYY4aTEt3vZFv2xCSVfRR0kwMvuU0pFBcfZZCgtjaowkB10ggeQuu530ZUqzbpJQZvfk2vlVqt49BHlmTxmaVthCrfqxFypci0T4mUASvttgKxXPGGU3Kf01Bc4U9NuPnUtP4WPeuJ1i4QRBjCRoHe+QBjsEgSJKamDQ7LKgE20NOvXf9Vscdoi+jiKiSIK5Ig9fs0bFMFfeiTmticZwHaVgPXlh6GuLkOnVqqCpmafqeijn5VDqcMIsWbZLH05DAWvjmhqUE8dpfQRyC6540BxZJz0iPUMUJCJKgI2MaXbKYtDiSnXBiuQJ9K8GWHZprXWLlaU6h9W5VTNBaWtDctsJHUh2bkehy1obbhs2IxGBHggO4VnvufcNABJXeviikYd+g/xu24IMvlpAJmQ6gtSjg3ImibRdDVkppbIHDBJDWookJZ6j2cevsseQWu4nxHUm9wq6IST55o9FBc1tOPg967VlSNy1JsKAY4uhSQRn5XyZPRHsRbCiQ8FKp0dRQq3Fi0pRhskYR6YYKP/Bq5FA0aEGr0sBFfbqrVW3axsG7fbWT4LQadslXMbCOtQZTnwsHUDkCSAihsiQZq8nNJTAo2tTBe2pN1Z4vhGleiM2St2YdM1pdgx4R+GkEycS7YRccTuJpTZCFcNkkmUfiWY6jIZZbiKneh2bLrPhXhA+FTRq2UWFE9jyOjZ8EjFQAP6fqq61TewSamKKF+tww6qGHl0OXoqlH9vCi4u5YJcXvKtbikC3C21ctjXP2hbM9+6qaRcwZSNZV4ua1JPWrdVc9ON8x7HSGAkeBc7QzzPB1TLJh0CvGvcGDfM9nZyK4e8LnVc98hsIOa+zaLF3OXEjL2lNRg51NBNOjCiT05NWkVGkVyp+wmqAEwaxzOrNYXJUdKsqrgQter0Ql99UhJHScBv158R9tocUaKoFy9jY8XXGtbfVNETgigRt7nT0ZbOFCjaJ18XuisgNrIvYSJSTyeZbbl5BC/nIao0uZ4w9hihPQRtYSrCRpJyXF0JbQxmOE0Ai/XwIhZkAK1yi7RE0EpMaQsdI5xhJjSI4k+7BEZIoLKAWpbI3falIdmKjL5mgPDYI7Q+L6khtQpWm/jwbSTSaRMp7xYUk7HJZqVLOZc5QAG7sJWeZ8pgQVRqNmPuc+bRoS1aJPc54k85EoOb4lpfISwHvwWfKvkZOiupdkLVX7FK34tmR22BE+UEtLCw0QfBxQau4LZRCsizjQYl74heDhnYdCmLkI/kCujL0ttEVwOiKlL/HEcM7Jr3KpE/G9k1Wfeq23z9FQets07t1d0ziev2Kktz59o+Y+7V73tRP7YLv77oadi00OiIO5l7g3d7Hr/XXlvJ+//PTI0Pcp5Dzf9Pt880AsIacR5MO8h0K4Ot/Z20U6LXVWcT6X1GM6/X/lw7+1fjqw6PvqJyi8VQiY/XwYk/TKPv1lhfdNz2LTMNwaDk4QfKwZ5eNAjWtC+aANi83M0iuhvqzwPqiTQOO0AYIDyIPHwf/toPKRoG7E8lSJhgsyk/RaqC8qvH/6lJT9QZty1qBz17TyccDJolQRBMoS3SfpleBcVng/OLAJEh7MuFFlyl0jy0cCh3zfYHZpCV+z9FpwLiq8AE6FY0HJqHup6C7MLdXMghlkUDP7X80tHyk1nRLkIDEFvrgk2ZP4gbnpdo1ROe25+PbTiNTnHcYYxs5tmlmg8Bj6sXn+BB497UsbMPoJX1eoJvnVWC06J7BWnZfR6lRhoBWtojqOGp4WrWxtsBrLGVon+fVozTpntBadl9HCj438FwpdORpXelK4qIqwdyqgtMI1ya+Ga9E5wbXqfABcXbdPad2T9iYGXOVp4bKiOFIbnsF1kl8P16xzhmvReRku0XEG1X8g74bjZKs9KVx7W6yJnJVSJ/nVcC06J7hWnQ+AqzeN9B3TimVYV3C3zXKiaNOUCqYMq3zoVOfzfarjWVmN9sbTzHVuxkpPRAyCy2Yzv3G0E/WaF0Ty2A/Zy8/SXWnaSTxKu3b0YhV2XWLcGzCj2RWropBT2AlG8sGkxRWYVd9JQtKrFiruzvuYS9nF2SbKsRG9sIV0HBx500x1W0qoYZ8cWXMytux697Xvg6PKgkyMxYWbvk4frUmto0sixu2jI/GWfGMX7bh5GZ/LoDzEWTtuvo/vFRn2HgmVPBHqQKOKtGTirhNOGf25QOLRDSY8Rchbg26Jz9V0JJ+czp9Ge0500BlNXOCnBJc6Om7UoSbVPmWg1LTunDRvndMUsNyA5doHkwdLUx2i66zR2xezr8GaaNi7Ew6x2RcLJmEN8RSay+x9NOhajNEaqknItlK6NuiC9q6jtV+TRG25eW3QBf1kH1ItQDijpFJsS89NxVU7bqFY07NIGjuPXjtuPKQtUp90nSoVl7VnISrt3lpLKk78ENSwMn9iGdZKxgC175jUHrUpGorF7aQ994yvdm3hdpzIGqcpsSgiihpkd3ouZYitxU0M34oOdkrLpgRSSiKsWEBJBmSyBaZGxZEbx1QatjBsPWmD1mPUfas6RgujDZx0KBD1wumG2Qe2k4cY9y5YVNA7bZ4/DVAzCrtopaetS4516C5eJwgCapgnH5RWTCwOrImom07ItYtv6ytZpxnYEfELV2s+m278WQ9GR1mJQ6o73Dh0w7eFEMuR+lioqFRe9ZZ2KdhAiGwIl7fmKTWRSz0rsdfbUphgNI8k2HHeqYKcjq+8oHPIu/ZpiWVbsEZ0T9Zk53dH1d+93j5SCFiZPY9ntxC0E68THQGyYUIAwgfxmk0nMZRlxGKTN4flhBiN6BCY6nge/yY2ie+bELh75mSGXLvxOkWjAsSFQmre9ouHpwyn1F4ZTpYJE7ZfXLy2ot1gGxf0Xrv9XQgoe8ARtcxOOtcd8HAcDnPKemEdW8dr/P44xS7aNWZjeiXpKZscbkqi0qFSVlIfbbyTNWlr6VnsBokIRmfqg96A9I2tUCk531EYTZ70ek3HnIkJjkjY6pAX0hsQgo7OwSznqrjxLYXZZl9kqmrBFiNzvtagf6mh671AP2ZoGcvQxFh1tsYGCUc2JtJ+Q42Z9222BiVvecgbJ0pk14keQZnlWHTNeHzsMZEzBFzV/kswuehIKmuCU35Q9Sq6ybPz7CGPmZ7o+MDEvItGKSbuHFYdj3enMVr/+obO0/RKm8kT2Qk35SGVtxZtMJJxe8J7xz2img6rGSDj94WoGU2s+asPLSQo0TBrcphCs8SFDajzWQccOckjtm5yclRLOuBROV+t5imZQKX2God+LDNZbM9ZmRF7HONOIoJdViTGki4x08HfPJu3EEJqIl/6vHMwP+5RqFyvX3T8YHAz9Nhq7AJGqyEOsV71ts3aHQxe3YeskkbNnu0WBrxhp40xhLEcvYeRdM27HFiGnHxVM3Fvl7c0dov/xzEPHFTRj9s+Wa9jRP3CLh+r0esYRc19l4o5c9b7GETxow6MzexAb2SIXa7aaahYJst2J0Mp5lE+ILBbGS2n4yd3Z7BrGZUcfDNPtnyd7WJGweOXOfPDZz+3jzbumFag9rahx7u7hh46LbpidHL2+DT/uVv/xfkPcRc/PA6AzuY/vzvNf744/Ad8vFOrCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMzY4NQplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicPY9LcgQxCEP3PgVHMCA+Pk+nsvLcfztAKr2xVMJGz76VNknU4Zsp5NAPL/Yz9rP0xLi74DrOGBSsZDjkKfQsSyU3ngW+fdQQNWkHD7IwwgaZgNR3TRBCyp1W+1HSHaPP4trW7i4WL6y7hu6+UBWYkCMLj88hDVSmov8u/jJIVWQS6ja4cVC4QJXWp5A+ahicdv0mG38XdCmfnqCc5mzoTk0efV6Ku36/MoQ9wgplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzI4ID4+CnN0cmVhbQp4nDWSS47EIAxE95zCF4iEf3zOM6NZdd9/O8/QLSWxQxm7qmB4SpfHePqUXFtydPnVFnuI+5T3zVZK1GsqMYgx5adFhMQ0CY2D+rxVP81j3RUDnUts8z8CxCa12cUSxFXM+e+1x7Q6bLHexemvkHFVEK0O9Nbp1O8bux/ERbNqicyyHsIomllIVWXIYMj2CvCCP0m1H5NpKuss75QNDx2i6vAKUeagEJZaeqnWPdECP6/JsdEwthx3mPr1q3Rcre9mgUZa2+ySiho4px9/+GZCBPfK8NAb6TvWyRLlGfWCHH8SPQfFl9B7WJ5FvzKDXRa7yLNf4QMSZIhNVCnTYyI8jzAXFIbhKm0gWeUO9pQOl4cdzklURBOmVWa25EFQx5Z+/B+4wBEMSDLJZRnLa9779Grfm/VqymXJqKyO/JN9rHq1v39ufnj3CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nEVQu21EMQzrPQUXCKC/7XkOSHXZvw2ll0Mq0RZFUlqRCY+Nn6XxoPdSV1hcdNUj6I76xWtpOc6B3gKR8Z/ltex6A/fqru/4o4cUBQLhJKfjY8bOFv4KbWMfpBlib2Rzi9o6nDioOgilzQ04cdfXcn2Q0akZ5nzzj0nkIqnUrqnMUTY+/47v5cewOUXvkkHN3MyYQe9qh9bIm0ykSBFkbu7VDjm7FII7ayk1E7eP4BwxppSDLxVmkqk8WtqgO32u99BzxvvUVOvDjPy+46d6x18p+iQyDnRGF5/Mny1e6/sXGdtUxwplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDgwIC9QIDExMiAvcCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL1AgMTYgMCBSIC9wIDE3IDAgUiAveCAxOSAwIFIgPj4KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHwPh/nnS6Su6/rQ2dbLAYhPTAfWIioxYngq/EhwalwyTwbBWEezDZEXKE5ARNhrKDJHENDQalwqZjme/JpnXSSqy80X7ZdzRmnXSKLUWHdiH/5/Ui3KPgGusZPA9gMcjaSqXsmTBaZaau8qjotR/T4T0PRKvF5fUGrvDaRzepKCpL6v5EdzTY/pG3+x7fH5llOCQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrjQAA3EYkwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyCi9maXZlIC9zaXggNTYgL2VpZ2h0IDY3IC9DIC9EIDcwIC9GIDgwIC9QIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMCAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjAgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjMgMCBvYmoKPDwgL0MgMjQgMCBSIC9EIDI1IDAgUiAvRiAyNiAwIFIgL1AgMjcgMCBSIC9laWdodCAyOCAwIFIgL2ZpdmUgMjkgMCBSCi9mb3VyIDMwIDAgUiAvb25lIDMyIDAgUiAvcGFyZW5sZWZ0IDMzIDAgUiAvcGFyZW5yaWdodCAzNCAwIFIKL3BlcmlvZCAzNSAwIFIgL3NpeCAzNiAwIFIgL3RocmVlIDM3IDAgUiAvdHdvIDM4IDAgUiAvemVybyAzOSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIyIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDMxIDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRoZXRhIDE4IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDAgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMTEyNjE2MzA1OCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMSkgPj4KZW5kb2JqCnhyZWYKMCA0MQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzI5OSAwMDAwMCBuIAowMDAwMDEzMDMwIDAwMDAwIG4gCjAwMDAwMTMwNzMgMDAwMDAgbiAKMDAwMDAxMzE3MiAwMDAwMCBuIAowMDAwMDEzMTkzIDAwMDAwIG4gCjAwMDAwMTMyMTQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk4IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNDE1OCAwMDAwMCBuIAowMDAwMDA1ODkyIDAwMDAwIG4gCjAwMDAwMDU2ODQgMDAwMDAgbiAKMDAwMDAwNTM1NSAwMDAwMCBuIAowMDAwMDA2OTQ1IDAwMDAwIG4gCjAwMDAwMDQxNzkgMDAwMDAgbiAKMDAwMDAwNDQyNiAwMDAwMCBuIAowMDAwMDA0ODI3IDAwMDAwIG4gCjAwMDAwMDUxOTEgMDAwMDAgbiAKMDAwMDAxMTc2MCAwMDAwMCBuIAowMDAwMDExNTYwIDAwMDAwIG4gCjAwMDAwMTExNTYgMDAwMDAgbiAKMDAwMDAxMjgxMyAwMDAwMCBuIAowMDAwMDA2OTk3IDAwMDAwIG4gCjAwMDAwMDczMDIgMDAwMDAgbiAKMDAwMDAwNzUzNSAwMDAwMCBuIAowMDAwMDA3NjgxIDAwMDAwIG4gCjAwMDAwMDc5MTkgMDAwMDAgbiAKMDAwMDAwODM4NCAwMDAwMCBuIAowMDAwMDA4NzA0IDAwMDAwIG4gCjAwMDAwMDg4NjYgMDAwMDAgbiAKMDAwMDAwOTAzNiAwMDAwMCBuIAowMDAwMDA5MTg4IDAwMDAwIG4gCjAwMDAwMDk0MDggMDAwMDAgbiAKMDAwMDAwOTYzMCAwMDAwMCBuIAowMDAwMDA5NzUxIDAwMDAwIG4gCjAwMDAwMTAxNDEgMDAwMDAgbiAKMDAwMDAxMDU1MiAwMDAwMCBuIAowMDAwMDEwODczIDAwMDAwIG4gCjAwMDAwMTMzNTkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDEgPj4Kc3RhcnR4cmVmCjEzNTE2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:58.102085\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_pdf_cdf(np.linspace(-5, 5, num=100), stats.norm(loc=0, scale=1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example\n", "\n", "For the standard zero-mean uniform distribution we get the following numerical results when drawing a large number of random samples" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Estimated linear mean: 0.00490\n", "Estimated variance: 0.99375\n" ] }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxOC42NjU2MjUgMzkyLjUwODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nM2dTZMUxxFA7/0r+ogOW1RmZX0dRSCI8MWWRdgXXTBarSBYbAQY/3xn9ux2Z1XWAOMIrUsEBPvozumXXV2dNZPTgvXNAuvN6tc3/PvzCutz/n2zeP7pdklQXEoxYeQf3+ofQ0UXfcmRsW9++m1Zfl0ef89BPvBOz5clBkd3O2UXKfBWEhkMfdtS76CcsI5w0O2F3q+D8DGWNQR0idbfr9e/r+9W3gshppKQ/9nzDnf/5cW77GMpGCLW9feb81uu3ZbLkosrWDGBFivBVQ+1VO3VwMQBAjBt9t/ppvXj+v8UGziwWHE1U4bUiGm4K4x1ZxCzDrdLJecpEwUt1sBDbKg7gdjAgcUqB/CQGy/FMqYMoZfd6QxaxuB2AU8OKpZatFdLD7OR7gRiIwlRqw7NpKhpcZ4njFA6Y4WnkLMaLAfkQii8VSOnaCM3dJ5BbqAhctURgG/H5AGL48jJgzHe8RRqRoLNkByVUHwzjWjauI2MZ1AbWIhbdTGmGKh1O2hxFEvkg+uVdzyFnNVguUAudeXJ24YWl0PwvhjnHc8gN9AQucob9mWWptVVREypc1Z4CjmrwXJELptSS1HyDkuBCq2zxjPIDTRErrpiyi1F2cJD4P2M846nkLMaLBeJx1dXch2Q0PGFlQt0xgrPoGYlxIyvHFt1HZSC4xeItTNWdAo1a8FuKTpvy66D8igMEELGTlnhGeQGGiwnK2Zbdh2UIi/dub7qlA86g9pAQtQij66+6NohFcdDL/LE2PoqPIWakWCzIlO5KboOSrz8rAVKaI0VnUFtYCFu0QVbdB2UJ48UfU65VdZ4CjmrwXKV97JF10G3mTHy6TLOO55BbqAhcjIpmKLroDw1lhTR984KTyFnNW4X9N5FU3QpynNj9Vhzap01nkBupCFykV+4L7oUzeA4XvChddZ4CjmrwXLAG/ZF1wFlBkk84WNrrPEMalZCzKLLpuhStCR5eyukVviAU4hZBzZDL3NCV3IpWrkmJvA1tMIazyA30BA5nhNMyaUoeD5FkU4Vv4rR8Cn0rAjrBeClWFd2HRCAaak1hk5a8xnkrIa4JedN4aUoYHbgyUNqpTWeQs56sB0Bj6++9FJU3ikhPmeYOmvNZ9AbiIhecmiKL0V5Fz5fuH0IoK0VnkLOarBcBBdM8aUoJMah5BI6ac1n0BuIiF5ywZZfB5VVToDt7R8tfdAp1KwEqyVwZIuvg0KVN18zbu8na2XNZ9AbiIhectGUXztEKK5GCKcJ84jQ8CnkjAa7cQEcbQF2UET5dKrS6WZ3SGs8g9zAQ+zS3s6h7XaKxNN+pgS1s9Z8Cj0rwnoFXLZl2EH5wnI8LVKhTlvzGfQGIqKXXDFl2A4xZ76+UvHYSWs+hZzRYLcKrtgy7KB8a3OpxOCpldZ4BrmBh9glOQV9GaYoL1NJKpLOuuFT6FmR2yV4dN6UYZpC4MKS9+usFZ5AbqQhclLo92WYplw151zDVirrGJpPoWdFWA/QgSnDNMXqCqZM2GlrPoPeQET0skNTimnKZwl5+ti6TXQMzafQsyKsh+hCX4opGFFWcYmgk9Z8BjmrIW7ZBVOKaRrJhYHzQadQsxbsxi9sm2E15TOUfEzbfa1xVnwGvYGI6G0r0K4Q01Q6F2JMUDptzafQsyKsR/zCfSGmYCh8jkqN1ElrPoOc1RC3zAVVX4hp2kyYSnqy+XLgwXZ8+WRTiGmKcrpq9rmz1nwGvYGI6GXToP62oYGXBZRLb63wFHJWg+USDhrtNeXihO8DAUMnrfkMegMR0cuDdntFsXgXoeD2WYGK0fAp9KwI6+UwaLpXFAsJpgS9tuIz6A1ERK/Y1vsDYqwOK6VtDa6lNZ9CzmiwWwmD/ntFke8CvibYPjVW0hrPIDfwELsyaMFXlOtk+eZHjtBZaz6FnhVhvRoGTfiKymetPE/603WntDWfQW8gInrFtuEfEL20I6a4vW+ppTWfQs5o3C7EB2kb8RWVdiK+uvBUrOwhGjyB3MhD7MqgFV9RyLykKxlr6qw1n0LPirAehEEzvqJAyVEtfmtv09qaz6A3EBG9MmjHV1Q+QMZQ49ZQqrU1n0LPirAehkFDvqIgkz/H9bXT1nwGvYGI6JVBS76iALw2ICDqrBWeQs5qsFwItiX/gOAjl8tEW+elVtZ8BjmrIW5l0JSvaM0clHyrrOAUYtaBzYgGLfmK8jLAQ8JSWmGNZ5AbaIhcHbTkK1qAF6s+h95Z4SnkrAbLRbJN+Qfku3XmwZdra6zxDGpWQszqoClf0ZR4EV4xQ2Os6RRq1oLdEg2a8hXVPdwqxGSt3SMNkauDpnxFI58iXqhuX1bVzgpPIWc1WC7ToClfUT7gxJPI9i0l7azwDHIDDZGrg6Z8RSNHJUxInbPCU8hZDZbjm5VtyleUMi9QEWNunTWeQW6gIXLVNuUfkKKryZ+a1LWxwlOoGQk2qzRoyleUb9iIsH2/TAkfcAaxgYOY1UFTvqLEB1z59NROWOEp5KzG7RI9DZryFZV+YIB4mkqUs8ITyI00WA68bck/IPEL1LRVIFr4oDOIWQXxioN2fEXZIVOMtfS+O51CzVqwG/pBM76m1YUcQs6tssYzyA00RC4OWvE1VU+Z0CHmevjESIPlgh+04msqb995T9Z5xzPIDTRELg4a8VvK65lknBWeQs5qsBz5QSu+psVBIcBO+aAzqA0kRC3aNnwFldhQdwoxo8BeXMvbFvyW7k/2aiLM9LyvkYW4xUEDvqbFeb6lbaW+DqHwFHJWg+WSH7Tfn6HDRMygNjhcUYu29b6BBQpUMr47nkLNSLBZ9oPG+5buzz1sIsz0NMSRhbjFQdv9OTrKwxRq9nBZrcCg5f4MHQrPoDY4XFFLg4b7lh4jsgnxPw7Jx9+jPLsW1z+tIE/FdWX9zH8mabBKPhdanq+Pn17/+/Wr678+f7K++rDwKp9NILQPglXQ7w+tXX7aDuTuNfx6o19jfS7kq+HkaZ130Z4ssH5e3vOffr3yHKsgV5u+Uoh8V0fkM72+ul2evFgfP4MV/Pri16VwWVOqlyzwz78sj+i79cWb5YcXHEdWUKs8+3f/C+/Nu149vX7z8m+ffnr57sPV7et3nz6sT/+5/Ci//risoucj5ZFT268banpZXr8e8EuZ5bJC7rqRBy2W9K25xTlzKw2sQBVj25Wn6WW5/XpAk9smcQGDq0m+mAYU70euJNBLAldO4B+YDZL3HVGenNR+TKfoZdn4esAvZ4NImnE9BE/S/H5kAx8gG1G+/gg+tIWBgpfl4mvhvpyJmMDxKjNVzHysKhN0nwl1iQYsPIhOzw9xmAvg3RW6XYCruQAd73C3zeNnqK/DP//j7ev3n66vPv52/fHlA1yPFzwj/ZtyPgpH9T45Otog50hOvp7gMiV5pPt2FfLU9xBDbw8r38YF5MBtHg58aSJ0wCMTTbxzqcjIZW7k7dHHep+O+KDp4MWe46mRD7XNh+KXJqQJeWSkjXguJQDypVRCqgQ8QZ1yAg87ROQpk5l4OsUuJwe/OCc6pMpJE/FsTniBXrmYDSlBzvc5eeBxUoMsMqnWLicHvzgnOqTKSRPxbE4qXyoICQMX+ukuJ/iw4wQ5UikZuGhrcqL4pTlpQh45aSOeywlidb76wCtnvC9yHD7sOJGHOVQOmUOXk4NfnBMdUuWkiXg2J0meyllqlfUg3eUkPOw44RPCY5ViN0wOfPG9VwVUN18d7+zd12dex+VUIhGE+3w87BgJPJ/5GpBKl5CDX5wRHVKlpIl4NifyTKOagjwQJ+NdTsgfdaCUgFdS2MlXm3nqAV7XSVpOJaDUe6dqhmu9u7iP/rUtz5IjCiFW2fgKOH3bAu5uy7xt+J9tQ3IEideA2wTYbHd/pI9+frRtuX0WWWOAfSX483f7UrCrRKVHmO+jp2g4WBV+evfaB4+nOrTfG/jexKeSEMr2Fkv+5npWRoXfz9Y3FKQaNouAUaV6e+7/5sPbX1bujl72S9H95nUaibCNw5t9OOE2nIp8Ered7sAV4GlXOUc/fPj4+vblx+tf1r88fbZfbMt/AUJ1cScKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagozMDQ1CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyOCA+PgpzdHJlYW0KeJw1kkuOxCAMRPecwheIhH98zjOjWXXffzvP0C0lsUMZu6pgeEqXx3j6lFxbcnT51RZ7iPuU981WStRrKjGIMeWnRYTENAmNg/q8VT/NY90VA51LbPM/AsQmtdnFEsRVzPnvtce0Omyx3sXpr5BxVRCtDvTW6dTvG7sfxEWzaonMsh7CKJpZSFVlyGDI9grwgj9JtR+TaSrrLO+UDQ8dourwClHmoBCWWnqp1j3RAj+vybHRMLYcd5j69at0XK3vZoFGWtvskooaOKcff/hmQgT3yvDQG+k71skS5Rn1ghx/Ej0HxZfQe1ieRb8yg10Wu8izX+EDEmSITVQp02MiPI8wFxSG4SptIFnlDvaUDpeHHc5JVEQTplVmtuRBUMeWfvwfuMARDEgyyWUZy2ve+/Rq35v1asplyaisjvyTfax6tb9/bn549wplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMAovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxFULttRDEM6z0FFwigv+15Dkh12b8NpZdDKtEWRVJakQmPjZ+l8aD3UldYXHTVI+iO+sVraTnOgd4CkfGf5bXsegP36q7v+KOHFAUC4SSn42PGzhb+Cm1jH6QZYm9kc4vaOpw4qDoIpc0NOHHX13J9kNGpGeZ8849J5CKp1K6pzFE2Pv+O7+XHsDlF75JBzdzMmEHvaofWyJtMpEgRZG7u1Q45uxSCO2spNRO3j+AcMaaUgy8VZpKpPFraoDt9rvfQc8b71FTrw4z8vuOnesdfKfokMg50RhefzJ8tXuv7FxnbVMcKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTIgL3AgMTIwIC94IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9wIDE2IDAgUiAveCAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3OSA+PgpzdHJlYW0KeJxNzbsNwCAMBNCeKTwC4P8+UaqwfxsbIkJjP+lOOsEOFdzisBhod7ha8aVRmH3qmRKSUHM9RFgzJTqEpF/6yzDDmNjItu+3Vu4X3hscGQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU1ID4+CnN0cmVhbQp4nEWRS5IDIAhE956CI4D85DyZmlVy/+00mEw2dpeo/YRKI6YSLOcUeTD9yPLNZLbptRyrnY0CiiIUzOQq9FiB1Z0p4sy1RLX1sTJy3Okdg+IN566cVLK4UcY6qjoVOKbnyvqq7vy4LMq+I4cyBWzWOQ42cOW2YYwTo81Wd4f7RJCnk6mj4naQbPiDk8a+ytUVuE42++olGAeCfqEJTPJNoHWGQOPmKXpyCfbxcbvzQLC3vAmkbAjkyBCMDkG7Tq5/cev83v86w53n2gxXjnfxO0xru+MvMcmKuYBF7hTU8z0XresMHe/JmWNy031D51ywy91Bps/8H+v3D1CKZogKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOPSNbIwVbAwMFDI5dI1MjQGM3O4dC2NFcwMzUAsQzNDGNPIxFLB3BjMNDY2h4maGJjCFUDNgqo1NYMYC2XmcKUBAJODFU4KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUKL2ZvdXIgL2ZpdmUgNjggL0QgL0UgL0YgODAgL1AgOTcgL2EgMTAwIC9kIC9lIDEwNSAvaSAxMDkgL20gMTE1IC9zIC90IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOSAwIFIgPj4KZW5kb2JqCjIwIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTkgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjIgMCBvYmoKPDwgL0QgMjMgMCBSIC9FIDI0IDAgUiAvRiAyNSAwIFIgL1AgMjYgMCBSIC9hIDI3IDAgUiAvZCAyOCAwIFIgL2UgMjkgMCBSCi9maXZlIDMwIDAgUiAvZm91ciAzMSAwIFIgL2kgMzIgMCBSIC9tIDMzIDAgUiAvb25lIDM1IDAgUiAvcGFyZW5sZWZ0IDM2IDAgUgovcGFyZW5yaWdodCAzNyAwIFIgL3BlcmlvZCAzOCAwIFIgL3MgMzkgMCBSIC9zcGFjZSA0MCAwIFIgL3QgNDEgMCBSCi90aHJlZSA0MiAwIFIgL3R3byA0MyAwIFIgL3plcm8gNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNCAwIFIgL0YxLURlamFWdVNhbnMtdW5pMDMwMiA0NCAwIFIKL0YyLURlamFWdVNhbnMtT2JsaXF1ZS10aGV0YSAxNyAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQ2IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDExMjYxNjMwNTgrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjEpID4+CmVuZG9iagp4cmVmCjAgNDcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTM4NzMgMDAwMDAgbiAKMDAwMDAxMzU3NCAwMDAwMCBuIAowMDAwMDEzNjE3IDAwMDAwIG4gCjAwMDAwMTM3MTYgMDAwMDAgbiAKMDAwMDAxMzczNyAwMDAwMCBuIAowMDAwMDEzNzU4IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDM1MTggMDAwMDAgbiAKMDAwMDAwNDk5OSAwMDAwMCBuIAowMDAwMDA0NzkxIDAwMDAwIG4gCjAwMDAwMDQ0NjggMDAwMDAgbiAKMDAwMDAwNjA1MiAwMDAwMCBuIAowMDAwMDAzNTM5IDAwMDAwIG4gCjAwMDAwMDM5NDAgMDAwMDAgbiAKMDAwMDAwNDMwNCAwMDAwMCBuIAowMDAwMDEyMjQ2IDAwMDAwIG4gCjAwMDAwMTIwNDYgMDAwMDAgbiAKMDAwMDAxMTYxMCAwMDAwMCBuIAowMDAwMDEzMjk5IDAwMDAwIG4gCjAwMDAwMDYwOTQgMDAwMDAgbiAKMDAwMDAwNjMyNyAwMDAwMCBuIAowMDAwMDA2NDc4IDAwMDAwIG4gCjAwMDAwMDY2MjQgMDAwMDAgbiAKMDAwMDAwNjg2MiAwMDAwMCBuIAowMDAwMDA3MjM5IDAwMDAwIG4gCjAwMDAwMDc1MzkgMDAwMDAgbiAKMDAwMDAwNzg1NyAwMDAwMCBuIAowMDAwMDA4MTc3IDAwMDAwIG4gCjAwMDAwMDgzMzkgMDAwMDAgbiAKMDAwMDAwODQ3OSAwMDAwMCBuIAowMDAwMDA4ODA3IDAwMDAwIG4gCjAwMDAwMDg5NzcgMDAwMDAgbiAKMDAwMDAwOTEyOSAwMDAwMCBuIAowMDAwMDA5MzQ5IDAwMDAwIG4gCjAwMDAwMDk1NzEgMDAwMDAgbiAKMDAwMDAwOTY5MiAwMDAwMCBuIAowMDAwMDEwMDk3IDAwMDAwIG4gCjAwMDAwMTAxODYgMDAwMDAgbiAKMDAwMDAxMDM5MCAwMDAwMCBuIAowMDAwMDEwODAxIDAwMDAwIG4gCjAwMDAwMTExMjIgMDAwMDAgbiAKMDAwMDAxMTMyNyAwMDAwMCBuIAowMDAwMDEzOTMzIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDYgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ3ID4+CnN0YXJ0eHJlZgoxNDA5MAolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:58.660077\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMi4zMDYyNSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczd1LkxTHEQfwe3+KPqLDFvV+HIURRPhiyyLsiy4YrVYQDA4EGH98Z1bPdGdV5rLsATalkEL7p7tmfrX9yO7Jabn1zeLWm9Wub+Cfz6tbn8M/N4uFn05Ldt4Em32Cn96Sn0LzJtlaEqR2+OmPZfl9efwjDPEB1nm+LLEYt61TTIoBFoJhbZrDt0NojatbSlY/wv4i71c+dEp1DcGbHNc/r9d/re9WWMm7lGv28MfWxHz+qyzWFJtq9SH5tv55c/uS67TkshQPf9xqzRRV8D99dpGipjA3VzEd1z+nXfXz+pAuTjgtFV7WpRAddY1hshYss/aSPrxLIICrmFyrzXVwDWEKPkWuPacKXJxwWmBnLNmWNuxcY5haahy7hQ+vEgCgKqYGWCQMqiHMqfnMrJdUgYsTTouz3rT5UDiGNbYQmfaSPrxLIKCrmFZqK2WE0TTb0KKfvXuqQcYRQHPB2ORg2YE2pNk33w9+k/gSK7AJCrRVGCLG4EcbTTOcsQIXn1MNMm4AmQ/GteLgIEdlQwrDB8e951SBTDCgrBo/lSNvp7T4Eltk4D3WYOMKsIVgAquqxrTaBi/AyHuswCYo0FZNZJXVmDYbm/WMvMcabFwBthhMZNXVmDZQhMrJl1iBTVCgrUJZMVdYNIWjR4IDY5zIJNZg4wqwpWAyq7NoWk1IrleKo/iSKpAJBpRVWHAutI4QLDVb7xl3jzXImAFgOZjCKy2SVlMz/Fxn8J4qkAkIpMGb5JUWSZvxvrle4NMhSKzBxhVgK8E0XmmRtMGmZ8t2FBnIe6zAJijQVuEwzmqtI43wEiW4NopJqkHGDSCr0Vheax0pGEpJzjHvJVUgEwwoa8bxSutIo4O0uq0aIWASa7BxBdhaNJ5XWkcavUnBuuonMokV2AQF2uBgxyutI4UCpMAFTcwTmcQabFxxWryNJrBKi6QxwcWMC9s2ScgkfnibpEBbM5FVWiSN2dQCVdUkPlINMm4AmYsmzZXWEULVWGDL67d4KJfECmTcgDA497JKi6TJwZGjnGn7CDTVIOMIoPloMqu0SAolcYN96kw7xCRWYBMUaGumsEqLpKkY6y0e8EcyiTXYuAJsIZrCKi2SZmsgS70UJkPQWIFNUKCtwSXKXGuRNEcTS90+ZKJkEmuwcQXYYjSNVVskhYK/lVa3bZKQSazAJijAlqyxrNoiKVT8JdnaL6rJEDRWYBMUaEvGsmqLpKXBmdqFWXykGmTcADI4JDheax1pTfDGwna7mAxBYwU2QYG2ZDyvtY60eeOj3247kiForMHGFWAr9tKUQWh7CEVxtDX2D6wpmMQKZNyAsATnKFZtHSl+tOZLKTkP4iHWYOMMwFVYi9dbR+pcwk9CfZnMJFZgExRoSybxeutIHdRYsFOdTwDETHMNOu4AXbMm8YrrSPGTGqj2y1ZyETXNFegEB+pg++I115Hi5xk+5bJdCBA1zTXouOO0BAsLsqqLpP3Ov2vbXkfQJH54m6RAWzKVVV0k7ffHo7NhIpNYg40rwOasqazqIqkr0eDpbCaTWIFNUKAtmcbqLpLivdbW15vMNNeg4w7QeWcsq7xI6mAva+fWM4omsQKboEBb5l2sR+gt3qo73z0mIwy5BhtTAC0441jtRVLvigkp2F72EzONFdgEBuIynKrm2ouk3pf+SeL2myNommvQcQfoojOBVV8k9diH4OHi1E9qmivQCQ7UZRNY9UVSH0GR8cbrpKa5Bh13gC451lj+lqY+YaNFCDOaxApsggJt2fD+eJL6XExuqWx7HTHTXIOOO0CXndAlT1Jf8BjZWpvQJFZgExRoy0KnPEk9VCI5h+0cTsgk1mDjCrAVJ3TLk9Q3j3132zUpNdNcgU5woC4LXfMk9XgfyOdYZvQRa7BxBdiq443zJISrgFbOV9t0BJorsHEF0rLQO09T540L1k1kkmqQcQTQYLfhvfM0hQqy5hJanckkV6ATHKgrQvc8Tb0HUAnbOY6MQXMNOu44LdF6oYOeplAfw0HD9k+nBjXJH14nOVBXhC56msKFQPR263SiY9Bcg447QOe80EdPU/z8FF6g1FlNcgU6wYG6InTS0xTiCrmb0UeswcYVYINDA++kp2nEG+g19vtAdAyaK9AJDtQVoZeeptGbCpelYUYfsQYbV4ANX5hVXzSN0dRa+m3lgXzECmyCAm2Fd9OTEK5NY8tb78wgJrkGG1MADTYt3k9P01iNhRK5l5DUTGIFNoGBuCJ01NM0NuPhV7QdTSia5Bp03AG65IWeepomCye2nPo3Z+kYNFegExyoK0JXPU0T3mRuW1fXoCa5Bh13gC4HobOepqAo7twhOqn3XIFOcKCuCt31NIVfl8+1uBl9xBpsXAG2EoTuepoCAn5V27XbZN5zBTrBgboq9NfTNOHXoCGPs5rkGnTcAboahA57mib83mmqgaMvsQKboEBbFTrsaQqIVMr2adVk3nMNOu4AXQu8y56EYCg1bNfck3nPFdi4AmlV6LOnKbad25x6i9do3mMNNs44LckGodOepqhodes6nNGX/OF1kgN1Vei1p2mK+IFH6E88GtQk16DjDtC5IHTb0xQVxW93S2b1JVegExyoq0K/PU0Tfnss1P4Z6qTecw067gCdD0LHPU1REbdSa0ZHLRWYpEBbEzruaYqI7Lb7y7P5kmvQcQfoQhR67mmKihrwTXL1JVegExyoa0LfPU1BEWwq/dp0Uu+5Bh13gC5GofOepqhw3hYBfY4V2AQF2hrvvCchEnxpTgCfYw0yZgAYvkVWf9F0oElgBTIBgbQm9N3TFFeDa7ZeH8/kS65Bxx2gy1HovKcpKiIM5QX1JVegExyoa0LnPU0H3S1qDTruAF2JQuc9TUedrFagExyoa0LnPU274hb0Ft/L9vhHj4+g9etfV4ePtjV1/Qz/zs06bDGucXm+Pn56/d/Xr67/8fzJ+urDAtf/3teShvdNQ7s/f3b5pb+P82vY9Ya+xvockzuHg/P42bU8Wdz6eXkP/7brlYWxSsJn88B8J+dXbA1I66vT8uTF+viZW51dX/y+1H5g6rMAP/+2PIo/rC/eLD+9gHHwa4crPsB3/w9YG1a9enr95uU/P/3y8t2Hq9Prd58+rE//s/yMf3+zSfXWG7td1pFpGNL7TevdA35pYvH5FznCtYqt+BzGr5xar3Jqg4d9r8JeMjbr0fR+U3v3gGxqh3nDFp3s4P0GF9Nlu8X5szh/K8zft5uMiI9FKhYO9+OnlCS932TcPeCXJyMG7M61BUqIDFvlMRn+209G6u3Azk7FAU3vNxl3D/jlyUgpGVccbCAF3i+ZjHiZDLKPYi9U3r67anypzp/30L4DrmwHhJLzsszjZ57uh3/799vX7z9dX3384/rjy2+/P371g86/avMTBovhPC90LGG2PVxrrPhlw5jxmex9DzTfYx+8jAqbhGl2noEjvecU0OH2ORhGu20SWh/imITvsO8d7zrjrRU2CXt630kgwx2TQEe7bRLgihoLtmMW4necBfzKTPbzLBzpPWeBDrfPwjDabbPgfTDVk1nI33MWGmyslc3Cnt53FshwxyzQ0W6dhQpjVDIL9TvOwlHLDwdGUuHf78hIhjsOjXS0W4+NyYJvnwV3HByhwIOXvMITS38EtMNlXHMm9L1sOw/1c8++Opx0zmM/+nuvEzOsB5dmOeH7uXIwd/2dnRctfcn/9SWjibBzur7guNzl7T769VFf0uHZrqXg9pr01x/2onQ6J2asUOCoF1KDyyqhPv307rXFZ6P1M+K8toM3hR8VttCv9M7Orzy54lZh99/Y3adHkg0FiXDaPN3y/weBpe9z4hVe8Qsj2+7ZtkLXt8GbfXPyfXOqDp/p3ucIv2SwrYu/n58+fHx9evnx+rf1L0+f7TvZ8n+OfKiYCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjkzMAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicPY9LcgQxCEP3PgVHMCA+Pk+nsvLcfztAKr2xVMJGz76VNknU4Zsp5NAPL/Yz9rP0xLi74DrOGBSsZDjkKfQsSyU3ngW+fdQQNWkHD7IwwgaZgNR3TRBCyp1W+1HSHaPP4trW7i4WL6y7hu6+UBWYkCMLj88hDVSmov8u/jJIVWQS6ja4cVC4QJXWp5A+ahicdv0mG38XdCmfnqCc5mzoTk0efV6Ku36/MoQ9wgplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMAovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxFULttRDEM6z0FFwigv+15Dkh12b8NpZdDKtEWRVJakQmPjZ+l8aD3UldYXHTVI+iO+sVraTnOgd4CkfGf5bXsegP36q7v+KOHFAUC4SSn42PGzhb+Cm1jH6QZYm9kc4vaOpw4qDoIpc0NOHHX13J9kNGpGeZ8849J5CKp1K6pzFE2Pv+O7+XHsDlF75JBzdzMmEHvaofWyJtMpEgRZG7u1Q45uxSCO2spNRO3j+AcMaaUgy8VZpKpPFraoDt9rvfQc8b71FTrw4z8vuOnesdfKfokMg50RhefzJ8tXuv7FxnbVMcKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA4MCAvUCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL1AgMTYgMCBSIC94IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzkgPj4Kc3RyZWFtCnicTc27DcAgDATQnik8AuD/PlGqsH8bGyJCYz/pTjrBDhXc4rAYaHe4WvGlUZh96pkSklBzPURYMyU6hKRf+ssww5jYyLbvt1buF94bHBkKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrjQAA3EYkwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MgovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzj0jWyMFWwMDBQyOXSNTI0BjNzuHQtjRXMDM1ALEMzQxjTyMRSwdwYzDQ2NoeJmhiYwhVAzYKqNTWDGAtl5nClAQCTgxVOCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIKL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgNjcgL0MgL0QgL0UgL0YgOTcgL2EgMTAwIC9kIC9lIDEwNSAvaSAxMDkgL20gMTE1IC9zCi90IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOSAwIFIgPj4KZW5kb2JqCjIwIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTkgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjIgMCBvYmoKPDwgL0MgMjMgMCBSIC9EIDI0IDAgUiAvRSAyNSAwIFIgL0YgMjYgMCBSIC9hIDI3IDAgUiAvZCAyOCAwIFIgL2UgMjkgMCBSCi9laWdodCAzMCAwIFIgL2ZvdXIgMzEgMCBSIC9pIDMyIDAgUiAvbSAzMyAwIFIgL29uZSAzNSAwIFIKL3BhcmVubGVmdCAzNiAwIFIgL3BhcmVucmlnaHQgMzcgMCBSIC9wZXJpb2QgMzggMCBSIC9zIDM5IDAgUiAvc2l4IDQwIDAgUgovc3BhY2UgNDEgMCBSIC90IDQyIDAgUiAvdHdvIDQzIDAgUiAvemVybyA0NSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIxIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDM0IDAgUiAvRjEtRGVqYVZ1U2Fucy11bmkwMzAyIDQ0IDAgUgovRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRoZXRhIDE3IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDYgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMTEyNjE2MzA1OSswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMSkgPj4KZW5kb2JqCnhyZWYKMCA0NwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzc5NyAwMDAwMCBuIAowMDAwMDEzNDk4IDAwMDAwIG4gCjAwMDAwMTM1NDEgMDAwMDAgbiAKMDAwMDAxMzY0MCAwMDAwMCBuIAowMDAwMDEzNjYxIDAwMDAwIG4gCjAwMDAwMTM2ODIgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzQwMiAwMDAwMCBuIAowMDAwMDA0NzI4IDAwMDAwIG4gCjAwMDAwMDQ1MjAgMDAwMDAgbiAKMDAwMDAwNDE5OCAwMDAwMCBuIAowMDAwMDA1NzgxIDAwMDAwIG4gCjAwMDAwMDM0MjMgMDAwMDAgbiAKMDAwMDAwMzY3MCAwMDAwMCBuIAowMDAwMDA0MDM0IDAwMDAwIG4gCjAwMDAwMTIxNzEgMDAwMDAgbiAKMDAwMDAxMTk3MSAwMDAwMCBuIAowMDAwMDExNTMwIDAwMDAwIG4gCjAwMDAwMTMyMjQgMDAwMDAgbiAKMDAwMDAwNTgyMyAwMDAwMCBuIAowMDAwMDA2MTI4IDAwMDAwIG4gCjAwMDAwMDYzNjEgMDAwMDAgbiAKMDAwMDAwNjUxMiAwMDAwMCBuIAowMDAwMDA2NjU4IDAwMDAwIG4gCjAwMDAwMDcwMzUgMDAwMDAgbiAKMDAwMDAwNzMzNSAwMDAwMCBuIAowMDAwMDA3NjUzIDAwMDAwIG4gCjAwMDAwMDgxMTggMDAwMDAgbiAKMDAwMDAwODI4MCAwMDAwMCBuIAowMDAwMDA4NDIwIDAwMDAwIG4gCjAwMDAwMDg3NDggMDAwMDAgbiAKMDAwMDAwODkxOCAwMDAwMCBuIAowMDAwMDA5MDcwIDAwMDAwIG4gCjAwMDAwMDkyOTAgMDAwMDAgbiAKMDAwMDAwOTUxMiAwMDAwMCBuIAowMDAwMDA5NjMzIDAwMDAwIG4gCjAwMDAwMTAwMzggMDAwMDAgbiAKMDAwMDAxMDQyOCAwMDAwMCBuIAowMDAwMDEwNTE3IDAwMDAwIG4gCjAwMDAwMTA3MjEgMDAwMDAgbiAKMDAwMDAxMTA0MiAwMDAwMCBuIAowMDAwMDExMjQ3IDAwMDAwIG4gCjAwMDAwMTM4NTcgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0NiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDcgPj4Kc3RhcnR4cmVmCjE0MDE0CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:59.041726\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "estimate_plot_pdf_cdf(stats.norm.rvs(size=100000, loc=0, scale=1), nbins=100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Change the linear mean $\\mu_x$ and the variance $\\sigma_x^2$ by changing the `loc` and `scale` parameter. How is the mean and variance related to these parameters?\n", "* Assume you want to model measurement noise with zero-mean and a given power $P$. How do you have to chose the parameters of the normal distribution?\n", "\n", "Solution: The linear mean $\\mu_x$ is equal to `loc` and the standard deviation $\\sigma_x$ is equal to `scale`. The quadratic mean $E\\{x^2[k]\\}$ quantifies the average power of a random process. For a zero-mean process the quadratic mean $E\\{x^2[k]\\}$ is equal to the variance $\\sigma_x^2$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Laplace Distribution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definition\n", "\n", "The PDF of the [Laplace distribution](https://en.wikipedia.org/wiki/Laplace_distribution) is given as\n", "\n", "\\begin{equation}\n", "p_x(\\theta) = \\frac{1}{\\sqrt{2} \\sigma_x} \\mathrm{e}^{- \\sqrt{2} \\frac{|\\theta - \\mu_x|}{\\sigma_x}}\n", "\\end{equation}\n", "\n", "where $\\mu_x$ and $\\sigma_x^2$ denote the linear mean and variance, respectively. Laplace distributions are often used to model the amplitude distribution of a speech or music signal. The maximum value of the PDF is located at $\\theta = \\mu_x$ and is given as\n", "\n", "\\begin{equation}\n", "p_x(\\mu_x) = \\frac{1}{\\sqrt{2} \\sigma_x}\n", "\\end{equation}\n", "\n", "\n", "The CDF can be derived by integrating the PDF over $\\theta$\n", "\n", "\\begin{equation}\n", "P_x(\\theta) = \\begin{cases}\n", "\\frac{1}{2} \\mathrm{e}^{\\sqrt{2} \\frac{\\theta - \\mu_x}{\\sigma_x}} & \\text{for } \\theta \\leq \\mu_x \\\\\n", "1 - \\frac{1}{2} \\mathrm{e}^{- \\sqrt{2} \\frac{\\theta - \\mu_x}{\\sigma_x}} & \\text{for } \\theta > \\mu_x\n", "\\end{cases}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the zero-mean, unit-variance Laplace distribution the PDF/CDF is illustrated. Note the scale parameter in [`scipy.stats.laplace`](http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace.html#scipy.stats.laplace) is related to the variance by $\\lambda = \\frac{\\sigma_x}{\\sqrt{2}}$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMC4zMDYyNSAzMzcuMDY4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczZpJk5y3DYbv/Su+o33QJxJccbSj2FW5xIsqufjiOPKikpwosuP8/DwAe6bJ9ox62imPoq2mITZIvtgBxu3lIW7fbWF7yd9ftrh9yt/vDoFPrw81hj2FKoVPr6ZPKbU91N4K1LB8+v5w+Pbw9CNYvOU7nx4OuexxfKftJScWvT6I9r1lqTGfqK8Wasz8OMgnBhPRt3mz/Zq5lLTXdPydN2ltl+1fL7a/bj9uTz8SO5Zsf+KKXHfv2y+HsFcNUWtoPXP3p89e/PuHb1588enH2zdvD0353xSkzaefiNOJDl8ePt/e3OwRgPR2DwPCKBfZ5T3ccPsYqfxyeMO/YXsS4NVkT1J60lSUa8rOv9+8Pnz8fHv6Sdxi2J5/e+h7al2P8nr+98MH+cPt+cvDH5/DKOzBePH75ge+zVefPHvx8uu//Pzl1z++ffL6hx9/frs9+8fhc/u9/f74Ril7D72JzojM1CsRvszwXRjH2PecY8mxp94fCrL8v4Pc4q6Sc5IFk4l6LcgXGf4K5AXBWM3QM39S7HKE2ZAMhuQGko8BiyDskENMeXFNE/VKWC4zfDcswn69hpxr01YmWORRYal5jwVHszipmXotLBcZXoClhl0bUUGlVZ1gyTewzBaMamVxxTLV0l1ax/qHEbuNbr+yUfzqzZqnn8hsqn/+26sf3vz84slP37/46evHNNlb/ll3janCcYmaJ/LDZHAnvxz3eka8RwLCXXLdY6yt99bD0Vr3R7XXW/697wLrUldMTuQrMZn53WKycLsPk55Rtp5Ne+oNJvG9YBKl7iW1kHUFZaJficrC8RaWld99uET+bfi8lho5yxGYR/Vip2vgZ5BQy/EMmBP9WmBmjidgFn73AlPjHkrstUroN8Ck9wKMhLRHok06cy0T/UpgFo63wKz87gVGded+BITa8w0w+f0Aw9FzEzT9DJgT/VpgZo4nYBZ+9wEjXLe2IgXne+t3y/sBhkqlkRjHMx8z0a8FZuZ4Ambhdy8wrezaq+ZxyQFMPaUElg08sfgeixsekDg4IxOYwj7fJOwfWX/wT0/m655yq8VO84RjZT/XcWHzdf/xdfh/xBJ94bru5qwffPWBr4yWbWhJ8bZs+OrD27rhLCchwaq1hHQsMh47P4l7cZ2IwsV6BWjOkOvxV+NDC6V3SYV66otzdTmUykYltroVeBzTvdJ3rVmKOLFp6NEbCrtoSpS+UCUqQjcqJxXJITm11l6SURF3ibmpUZNEyjmjEqbJR0pxak/VssiGIgStKRox41NckyigNfUWfLMCuM2OgBZJbaibUe3cwcwRdIqysW/WMrd1DuRJUhRPBrW3VMkwXx062lgKYiv4donGlLyg9Bx6NVrUSEVp1GppVqxiVE7CJYxKjppFuDnUShpmREUGjbXZiASVmg0YTbsG1GIrAoalGQBayVMU6RixSIrJzoRxcu2SxagK82QQxsCxO6k0ECROgLllJyfAr1WTkTWSZw9yQXeK5dyF+yQMTZzc7ETmpQvY5WTIRNQbR6/cCPGjeUl9w8iZkqiyYdtDqMUxj17oSGhsSHGkpXlwiLE5WOQWhWhQqIeKk5WLBTRioxLoIeZuIkI7CbhsUwU3mpLLIgpVBcJE+YjHOUjw/SxpCYhRtopyIm8d5L6bxkjfqrJzYhMjJ2SG7YdsPZdo2c4gpz0DdN9QGeyiu6LEVHYsoZEnoh0l9CRjceebwifLEUPB3ExYMaOPaCM6aGLXEqrDlGXvMaD+mxY8j6TkvM2KcwhoYQyyW60cutMb5ogq4XOsI8cNBqzk8U27qaBhhs5QdRrd1EWaYDAxsb7UOMBCrLmYQ9jsBA19deXD6vG/xSRrPyIezS4fpIJ0imVPDf1R7N/PgxlTcdkxVYx9i35Z7Lg17LduVtmipW0IDhlEcsNswU25CR7UdchKt4Rj6JvwI2x0yB9zbkW7UkADQzyWinaEgF22M2rBJfeQ6zmThh03EtOzTTseF4uAzXpIrDqb3NLZpRAn2prQ0RWDbi1QRFfOMEPOmEVxrz5jjIUT+82GV5moqQuGks5kiJ2nptbBWmVuYRgYUNZFR1D8PSSqtUWjLBejzlO0ddY/wdIr0f9MW+GEQ8Mj9kW3xfa3FlleLIFEZq8sqYvVcEUimm8/25hg6inHHFeLFLsyxQWaOpmvYOmqHHq1dRyCRcaKms5+QTB2/EyLZfEigrGTLtg+s8/BYQIaWefqoTgw2GPuafFnhLxdrbDRyffhXfcUUkA/Zz9JACOeyPC1t04VV08gxE3VxQULpi4aDODZYQuWjm4mVGz27mIFOx4YjlMkILjuSM5C4RQzhDOxCRDP8UVMR1MxGc2xiOBGNMwm/jlwkeURDpPF4VOME8xbsRfRJRpi74RDwWstodONER/X4xJnBdtWnEFZgzJmtwM5UlgiuAx9A+o52lsqgxtIPS+ZAWkB5lxzXbIIwa7JFkqqS8pBEU9kxCus+QkukzXcrJ9ymfMU17KmU3p7T+o8Nb7uHGfA8q6ZyOv7ZiKsf/hcZVl8y+RdvIPd6Zi6R7/Zd7cZuIwOLuAlMobRZsOqj1+3xPazZ5/cpOHHQdA8YArHAdMBH2phrGO10xWqlYvrvV7NxOmgM4Pz0ZAJ6PT/lvP+1vLowJHfVR4ld5lEuTRfY6Ze2S+9zPBdIwxSH9ywZpwC7uKx5kSPAzXZAbaJ3i0aM1OvhPoyw3dBTdZO2KHSIebKg0dy/+u06JGgRo3EIntfkJmo10J9keG7pwCEfVwA3pq1sd83M3occIpYcpjIMea7zNQrwbnM8N3gFPImq5g71WWU+yZHjwSORXrS2La4r5l6LTgXGV4Ap5IBJ/L6UsnoL8yPMslr60PJULPfa370SKHpFCBJX4JNePISYk/UB4amuxkm0gs9J98tjGSl+O0NbahEntcIWEqud8dQ6dGBsh5JpnjrdUFqIl8N1cJywmrleRkstchOuhaT1rtmKo+PFdKmBEiiK1Yn8vVYzSxnrBael7GyHgk2malDlXLgjnnCo6NlJTkVS2xxQWsiX43WwnJCa+X5ALS0WWElWsXaDWe99PeDlhWxwar6Fa0T+Xq0ZpYzWgvPy2hJ7nh+zNAeaxzB6u8VLOuASQm9rE5rIl8N1sJyAmvl+QCwKDKxQqX2D3UYYjy5+GlMYzVk7qWAq6vkQwc2nx0HNsGe0CX/xvsZ2dxOjN5TQhD34irzG8c2yZ7ZcIBjC+Sm7EQMiRzo2AEBOLXmCs5l57Ja87FfEqs6uVmTLTgVVxKK1+ktWI8txtFzkZq8rZdItUgUonpLSErJkp2cd21o0RgKUTuJU9uOgFNOo8nTWktOVuCJOY6OUJPcrJ2TekRfQ1ZPceAb8iBnY2gtPiP3VLwrih3vNfaaRxOqSBzUvpNeUgeOjtVovSWNpIS1qePR7DKOhyIm0G1jNCSNnMbJ2E06HkOz+qsJbMGabGF05ELX6k3YTDZQNMXRksMnjU4d6yzwUWQaOVtLV51cbA0Rztt6JdmUwMgoTg/JG3W4jtEkzkH5oKi69wt7K2qnyxFTTvZ8xbuL8YY1ulxqK9aTo8BVJOBMYt39rD4lSnwvjtVWepRmPbm094wUnSyoY0EaxZqiVNTiDdQsrKGI42rFWlIZhk4mD4wsaUZmgfgziizk+NlDko8kwMY0xOrz3igGu/Vse0S7u5MTOhei6aSag05ZnFx2NH5Mj1L3UZlR+WaxemmrINXU+585B4MnqWzofY8pNKcaOtVGPzaElI5LcLK9+OCScKbKrxzbT2eZR8sVrxN3e0c6pJutg56wmK0ZHjEWP7OFHtPmuLXO14DRTwdmVHIdjbQ5hHbJY3XlQ1BUsjf0V3TAVDpnVX5tan3TZI4WMheLLMeOVXebO3hfOnMz5II9bjbKM7H7hCFXeyOLRrcNS8WbZRtmGJ2D4QZCGo9/UN2BVTPvQn7VN5t2oWlDwlZAaeYG5GxcThCykxE3rgcm+IhcAr7IyfZBKpppk5WOA9FBtycA0VrKEtyLZccFNCKnBjub1uDFi9/U3mFhVuCPKu6tssSVEMO22iJu3rhHb8aD8o56IHIL/ciwIRTvGGdsO0sLKKf10rlm8uZwBtVWakQ7rUEekLh351FezBd3kTZ7zdgDyuDbWsiLKK9Ct3uozb1fHUrwLql1rQUl4CLZsUEvdoDHFbp/J7QOzS3YeOaOkX1xaBH1cWcDeHszg2ffbrOFXl2niwUsTBs9FW6eCuaqThcUH98EPDg1f3frZO5uzStitL3r7zIWN6ppQLPQHc38g6u1tRgICdpseTIfODSY61tcMQeLOsLcxkRORz4JF8OmeMEScK9+SHSIexgXlDmgY74rll5xc812xX46cc93TT5vSCir0Xtp4iZZsPXEpiirJxg4Cfd0BTmbCqGsRsfhjkZ+QUMDskItxF4a9V7U98XgUyJuF6ebKvhwA6+zW9DE0BNSC9jWEBX6ooqHbU7HuGWghtHjtHABTq9mPYOPmnPmG07v+Ya/ueeeDNrkkzq0y/lg+OQbMTqZWNuHxO1NRY7R869ozjcMLlyxEUjEyblocQdZ/F2FmvYavdQ8nFDxlxU47rFrtaGjk+1pRSM4GbWlI/T+tII1Y0/UQH1UVex1BRlGHmeEcx7abe8rcH6xOV2p2GTQiVSNQJ0G3VTI74Sq18AOY1tSD/dxxR5ZpGhTW0s1A2nh0Bt7ZoFhSxx0cBwStLcWGsJxDhwI4z7vK/7aQqP1h2w+jFq61y7+3sIdqtM5WnBs/MkFecc6ZX74rOfuccY9MwrY3jHoeH3PoIPVVwxLzlZPA597uV+c9+SaPcFGEa0tts57/nCa93x++C9fZM0nCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMzYzOAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicPY9LcgQxCEP3PgVHMCA+Pk+nsvLcfztAKr2xVMJGz76VNknU4Zsp5NAPL/Yz9rP0xLi74DrOGBSsZDjkKfQsSyU3ngW+fdQQNWkHD7IwwgaZgNR3TRBCyp1W+1HSHaPP4trW7i4WL6y7hu6+UBWYkCMLj88hDVSmov8u/jJIVWQS6ja4cVC4QJXWp5A+ahicdv0mG38XdCmfnqCc5mzoTk0efV6Ku36/MoQ9wgplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzI4ID4+CnN0cmVhbQp4nDWSS47EIAxE95zCF4iEf3zOM6NZdd9/O8/QLSWxQxm7qmB4SpfHePqUXFtydPnVFnuI+5T3zVZK1GsqMYgx5adFhMQ0CY2D+rxVP81j3RUDnUts8z8CxCa12cUSxFXM+e+1x7Q6bLHexemvkHFVEK0O9Nbp1O8bux/ERbNqicyyHsIomllIVWXIYMj2CvCCP0m1H5NpKuss75QNDx2i6vAKUeagEJZaeqnWPdECP6/JsdEwthx3mPr1q3Rcre9mgUZa2+ySiho4px9/+GZCBPfK8NAb6TvWyRLlGfWCHH8SPQfFl9B7WJ5FvzKDXRa7yLNf4QMSZIhNVCnTYyI8jzAXFIbhKm0gWeUO9pQOl4cdzklURBOmVWa25EFQx5Z+/B+4wBEMSDLJZRnLa9779Grfm/VqymXJqKyO/JN9rHq1v39ufnj3CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nEVQu21EMQzrPQUXCKC/7XkOSHXZvw2ll0Mq0RZFUlqRCY+Nn6XxoPdSV1hcdNUj6I76xWtpOc6B3gKR8Z/ltex6A/fqru/4o4cUBQLhJKfjY8bOFv4KbWMfpBlib2Rzi9o6nDioOgilzQ04cdfXcn2Q0akZ5nzzj0nkIqnUrqnMUTY+/47v5cewOUXvkkHN3MyYQe9qh9bIm0ykSBFkbu7VDjm7FII7ayk1E7eP4BwxppSDLxVmkqk8WtqgO32u99BzxvvUVOvDjPy+46d6x18p+iQyDnRGF5/Mny1e6/sXGdtUxwplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDgwIC9QIDExMiAvcCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL1AgMTYgMCBSIC9wIDE3IDAgUiAveCAxOSAwIFIgPj4KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHwPh/nnS6Su6/rQ2dbLAYhPTAfWIioxYngq/EhwalwyTwbBWEezDZEXKE5ARNhrKDJHENDQalwqZjme/JpnXSSqy80X7ZdzRmnXSKLUWHdiH/5/Ui3KPgGusZPA9gMcjaSqXsmTBaZaau8qjotR/T4T0PRKvF5fUGrvDaRzepKCpL6v5EdzTY/pG3+x7fH5llOCQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrjQAA3EYkwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyCi9maXZlIC9zaXggNTYgL2VpZ2h0IDY3IC9DIC9EIDcwIC9GIDgwIC9QIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMCAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjAgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjMgMCBvYmoKPDwgL0MgMjQgMCBSIC9EIDI1IDAgUiAvRiAyNiAwIFIgL1AgMjcgMCBSIC9laWdodCAyOCAwIFIgL2ZpdmUgMjkgMCBSCi9mb3VyIDMwIDAgUiAvb25lIDMyIDAgUiAvcGFyZW5sZWZ0IDMzIDAgUiAvcGFyZW5yaWdodCAzNCAwIFIKL3BlcmlvZCAzNSAwIFIgL3NpeCAzNiAwIFIgL3RocmVlIDM3IDAgUiAvdHdvIDM4IDAgUiAvemVybyAzOSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIyIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDMxIDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRoZXRhIDE4IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDAgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMTEyNjE2MzA1OSswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMSkgPj4KZW5kb2JqCnhyZWYKMCA0MQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzI1MSAwMDAwMCBuIAowMDAwMDEyOTgyIDAwMDAwIG4gCjAwMDAwMTMwMjUgMDAwMDAgbiAKMDAwMDAxMzEyNCAwMDAwMCBuIAowMDAwMDEzMTQ1IDAwMDAwIG4gCjAwMDAwMTMxNjYgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNDExMCAwMDAwMCBuIAowMDAwMDA1ODQ0IDAwMDAwIG4gCjAwMDAwMDU2MzYgMDAwMDAgbiAKMDAwMDAwNTMwNyAwMDAwMCBuIAowMDAwMDA2ODk3IDAwMDAwIG4gCjAwMDAwMDQxMzEgMDAwMDAgbiAKMDAwMDAwNDM3OCAwMDAwMCBuIAowMDAwMDA0Nzc5IDAwMDAwIG4gCjAwMDAwMDUxNDMgMDAwMDAgbiAKMDAwMDAxMTcxMiAwMDAwMCBuIAowMDAwMDExNTEyIDAwMDAwIG4gCjAwMDAwMTExMDggMDAwMDAgbiAKMDAwMDAxMjc2NSAwMDAwMCBuIAowMDAwMDA2OTQ5IDAwMDAwIG4gCjAwMDAwMDcyNTQgMDAwMDAgbiAKMDAwMDAwNzQ4NyAwMDAwMCBuIAowMDAwMDA3NjMzIDAwMDAwIG4gCjAwMDAwMDc4NzEgMDAwMDAgbiAKMDAwMDAwODMzNiAwMDAwMCBuIAowMDAwMDA4NjU2IDAwMDAwIG4gCjAwMDAwMDg4MTggMDAwMDAgbiAKMDAwMDAwODk4OCAwMDAwMCBuIAowMDAwMDA5MTQwIDAwMDAwIG4gCjAwMDAwMDkzNjAgMDAwMDAgbiAKMDAwMDAwOTU4MiAwMDAwMCBuIAowMDAwMDA5NzAzIDAwMDAwIG4gCjAwMDAwMTAwOTMgMDAwMDAgbiAKMDAwMDAxMDUwNCAwMDAwMCBuIAowMDAwMDEwODI1IDAwMDAwIG4gCjAwMDAwMTMzMTEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDEgPj4Kc3RhcnR4cmVmCjEzNDY4CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:59.444584\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_pdf_cdf(np.linspace(-5, 5, num=100), stats.laplace(loc=0, scale=1 / np.sqrt(2)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example\n", "\n", "For the standard zero-mean Laplace distribution we get the following estimates when drawing a large number of random samples" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Estimated linear mean: -0.00654\n", "Estimated variance: 1.00171\n" ] }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMi4zMDYyNSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczZ1Lc9xGDoDv/BU8Oge1+v04xuVYVXvZzca1ueTidRRFLo0TR/Z6f/4C1JBEE6Ck2SpJiMsu6zMH0x9IdoMccOLGj4Mbr0Y7foTf30Y3XsDvq8HCT4chO2+CzT7BTzfkp9C8SbaWBNR2P/0+DL8N599DiFt4zcUwxGLc3WuKSTHARhDWpi286aA1rt5R8vIVTm/yeeShU6pjCN7kOP51Of48fhrhRd6lXLOHf7Ym5uN/ZbCm2FSrD8m38a+r/S3HzZbDUDz8c6s1U6mCf/XZRSrVweZ9bgUpff1CJ6sfx5f04gqHocLbuhSio14iFDPw8lbCWMGqmFyrzbWzEqGkqsCKj/UwwIlYsi2tO7FEKKq+vJUwVrAqpgbYJHRWIpRUFVjxsR4GZ71p20lQhKLqy1sJY0UrmNFKbaX0WjIVZDV48cGCmAvGJgfbdgoyFXUVmAmjRbMKIWIMvjdbaYVl3+W4FSZYgxu3ADcfjGvFpda5EVphHrSpeaa8YAVuggW6VeM3ZcjNhi7FRR9CUc0hWYBbCCawWmKHinlQYCaMFs2qiaye6Om617oQmvaaYAFuMZjIqgpKG0weLYW2USZYgZtggW7VJFZb7FEpDxrM+GjBLAWTWX1BKd1rJISuvSZYoFuFDbdFFoXrudYF0HSucQcQy8EUXlERShftNYKuNVuQQLVqKq+pCG2muhJD3BgTrMGNW4BbCXBosVqro+sR2YXQdEQKFuhWTeO11kojvEXLofpemWINbtwC3Go0ltdahDYTQ4219MoUK3ATLNCtGcerqpVGZwq8R3G9MsUa3LgFuLVoPK+2Vhq9sc1B5b9RJliBm2CBbs14Xm0RSo9JEkLXMSlYHAZvowmsriIUJo1UUvCtV6b45d0kC3TDHbCttwiNGQqR4w6iygRrcOMW4OaiSdt6a4URZWK1YSNMsAIz7oBiDY6sbb1FaEymzncMiDChGsy4BKj5aDKrtwiF8Zb5pKLGBCtwEyzQrZnC6i1CYzO5WJvzRplgDW7cAtxCNIXVW4QmB5dq89m2hqBYgZtggW5QzLN6i9CEy9mx2KfKBGtw4xbgBtNdY/UWoTmaGJt1oVemWIGbYAFuyRrL6i1CszdumUuIMsEK3AQLdEvGsnqL0JzhFDtepFFlgjW4cQtwyxCC11srrQ7eYnFbQlCswE2wQLdkPK+3VlohkGC8Ug1m3AHMip0bMojYAmsh8z/RLarmf+6AYskEXm2t1Fln2uK2hOiwBjeuAXJwZEVeb63U2WpKTTUxacIV2AkeaJdM4hXXSqdPohY7Yk25BjvuAXYNLjB5zbVSB1egbb6bRa0pV2AneKBdMplXXSvFG8l2KU2INeUa7LjHYQgWZ/Rt3UWoq9nU1W61pvzl7SQPtINLTVZ5Eerh/PK+tOx6645rsOMeYOcsXEhvay9CPVyxlRR9yRtryhXYCR5ol2DZ2lZfhHo4Ah0Mz8eNNeUa7LgH2HlnLKu/KI3BhGXfkRiUK7ATPNAu815WAuGKNAjKBGswYw4gFqC2ZzUYpTBx5HlaJCEoVuAmaKBcNp7VYIT6FNZP3EiMjmuw4x5gF50JrAYj1Htv4nx/i1pTrsBO8EC7bAKrwQh1zZs2fzJFYnRcgx33ALvkWHP5DaUO7yfM1zjUmnIFdoIH2mXDe8QJdTGaaHOzdWNNuQY77gF22Qm94oQ6b8mRSawpV2AneKBdFnrGCYX4613zztppupsueYBdcULvOKHOBlPnfidqTbkCO8ED7bLQQ05o9bAGzHJrCIo1uHELcKuOt5GvEP6S5pYnKkywAjPugGJZaCMntMAF+DKbLBEo1WDGJUANlmLeN09oryYaK3ATLNCtCP30hCZsM2HGhGow4w6HIVovdNMTClc1ab7JRYUJfnk3yQLditBFTiis1m4+9KgywRrcuAW44YObrOoiFOqsJhivVIGZ4IBmReimJzRB1PnmFhUmWIMbtwA3vBhj9RahMa0fvpEQFCtwEyzQrQh984TSxpleWVE/jWQBbvjGrNYiNPr1djJV9pruMksW6FZ4P/0KOzNZWIMZcwAxGCPvpycUP7+Z70USYUIVmAkSqFaEfnpCOzXZWIMbtwC35IV+ekJpc3mvrKjnXLJAtyL00xNKm117ZUU9sJIFuOUg9NNTSh7moCFUPeMhWaBbFfrpCe2OyTWEsmNSsAC3EoR+ekrJQ2E0hKpnxSQLdKtCPz2l1E1W1uDGLcCtBqGfnlLyUECvrOhZAckC3arQT9/T5SObPoSiT3IkC3BrgffTd5CYicIKzLgDilWhn76nq5oorMGMSxyGZIPQTy9TOQ0vbyaNFs2q0E3f02X39CEU7TXJAtxcELrpe0rcRGUFboIFulWhm36PSnnQYMZHC2Y+CL30O1T0VWAmjBbNmtBJv0clXw1mfLRgFqLQR79DRV8FZsJo0awJXfR7VPLVYMZHC2YxCj30O1T0VWAmjBbNGu+h34GSrQYvNljQwgYzVljsUMlWgZcwWBRrQvf8HpV0NZjx0YJZjkLn/A4VfRWYCaNFsyZ0ze9RyVeDGR8tmJUodMzvUNFXgZkwWjRrQrd8T9d6uAvx/9XD5997/NJYP/5tdPhltKaO3+DP3KzDfuAah4vx/M3lf64/XP7z4vX44XaoyRRIauvmcwrt8o2xw0/TOI7vYccr+h7jBZIHw8F6fczC8Hpw47fhM/xpxzMLsUo1obZqky+hjN4bWPw+HIbX78bzt250dnz321CnuWhKA/z86/Aqfze++zj88A4C4cOCI37n7vIXeDW89OzN5cf3//r60/tPt2eH609fb8c3fww/4q8ny6qDE9BF12r/ZROUnpbXhwPel1k4iE0psTTwKuGxqY0qU+ujh7ktt9w/dUPpaal9OOB9qYUpwMBsVKoL1T02s15lZsPUQOla6ruMKD0tsw8HZJnt8hZcMSXgRBhDnGcEzJ/F/I2QvydMBn4fCuz9uGlLIvTEZDwY8IFkNGySKR6WiVoDSYZ/+mTEgt907GD66O/1E3paMh4OeH8yYsEvB/E+QnXqSS7i0+ciwVxqYZ32/fU4pafl4uGA9+ciJW9qLXhV1VImychzMsh0BWeTyVNS4LiDScsfZ6tpMhrZZGSCn7c5f+vpnPT3f99cf/56efbl98sv759+bnr0N+A/7ujjwWI45oXGErLt4foVbKCAy/hl/dNsZJ5hPlqi1gwFsAtwXNAMrPTEFNBwSw66aHtJqN6UFmPMMdp8TIR7xkQ4WHlzqBXKSpoJgk9MRRdwyUUfby8ZLjhTo7euVKgEjtl4lpl5HnyFq4eaYW/02VjxqdmgAddsdPF2s1Hx6cqWIGnetWM2wjNmw+MZGqINucsGwSdmowu4ZKOPt5cN/NqgFgrezst+PlOeYaVaB4+nasX377Ox4lOzQQOu2eji7WYDv9ixRqzrbPDHbKRnzAY+iFh9c6X1a8iKT11FaMB1Heni7a4kvhpIQ4BDKIZ6zAZZuHHNPsOlGEphfPjOmZAxI3eLNq7Qd4sQrM7HsK/+nC4uson4QXbDjc8cZG4a1HHLMm3432nDaCLsMrhCxLO7224e6KtfXk1bOqwKWgpuuY755bvlQmZTO2R8fDW6u2heuKb5+unaBuvvKoftq12cnp2J3tXpzkt5dAWCB4RddtXDNQRhXdUm1BaHnf+7Dmx9SnUivOM9ke3kc3f4uengu1qOIj8dRfh00YjP5Ny9CnfLD7dfrg/vv1z+Ov7jzdvlzBr+B+A4WiwKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyODE1CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyOCA+PgpzdHJlYW0KeJw1kkuOxCAMRPecwheIhH98zjOjWXXffzvP0C0lsUMZu6pgeEqXx3j6lFxbcnT51RZ7iPuU981WStRrKjGIMeWnRYTENAmNg/q8VT/NY90VA51LbPM/AsQmtdnFEsRVzPnvtce0Omyx3sXpr5BxVRCtDvTW6dTvG7sfxEWzaonMsh7CKJpZSFVlyGDI9grwgj9JtR+TaSrrLO+UDQ8dourwClHmoBCWWnqp1j3RAj+vybHRMLYcd5j69at0XK3vZoFGWtvskooaOKcff/hmQgT3yvDQG+k71skS5Rn1ghx/Ej0HxZfQe1ieRb8yg10Wu8izX+EDEmSITVQp02MiPI8wFxSG4SptIFnlDvaUDpeHHc5JVEQTplVmtuRBUMeWfvwfuMARDEgyyWUZy2ve+/Rq35v1asplyaisjvyTfax6tb9/bn549wplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMAovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxFULttRDEM6z0FFwigv+15Dkh12b8NpZdDKtEWRVJakQmPjZ+l8aD3UldYXHTVI+iO+sVraTnOgd4CkfGf5bXsegP36q7v+KOHFAUC4SSn42PGzhb+Cm1jH6QZYm9kc4vaOpw4qDoIpc0NOHHX13J9kNGpGeZ8849J5CKp1K6pzFE2Pv+O7+XHsDlF75JBzdzMmEHvaofWyJtMpEgRZG7u1Q45uxSCO2spNRO3j+AcMaaUgy8VZpKpPFraoDt9rvfQc8b71FTrw4z8vuOnesdfKfokMg50RhefzJ8tXuv7FxnbVMcKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTIgL3AgMTIwIC94IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9wIDE2IDAgUiAveCAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3OSA+PgpzdHJlYW0KeJxNzbsNwCAMBNCeKTwC4P8+UaqwfxsbIkJjP+lOOsEOFdzisBhod7ha8aVRmH3qmRKSUHM9RFgzJTqEpF/6yzDDmNjItu+3Vu4X3hscGQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU1ID4+CnN0cmVhbQp4nEWRS5IDIAhE956CI4D85DyZmlVy/+00mEw2dpeo/YRKI6YSLOcUeTD9yPLNZLbptRyrnY0CiiIUzOQq9FiB1Z0p4sy1RLX1sTJy3Okdg+IN566cVLK4UcY6qjoVOKbnyvqq7vy4LMq+I4cyBWzWOQ42cOW2YYwTo81Wd4f7RJCnk6mj4naQbPiDk8a+ytUVuE42++olGAeCfqEJTPJNoHWGQOPmKXpyCfbxcbvzQLC3vAmkbAjkyBCMDkG7Tq5/cev83v86w53n2gxXjnfxO0xru+MvMcmKuYBF7hTU8z0XresMHe/JmWNy031D51ywy91Bps/8H+v3D1CKZogKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOPSNbIwVbAwMFDI5dI1MjQGM3O4dC2NFcwMzUAsQzNDGNPIxFLB3BjMNDY2h4maGJjCFUDNgqo1NYMYC2XmcKUBAJODFU4KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUKL2ZvdXIgL2ZpdmUgL3NpeCA2OCAvRCAvRSAvRiA4MCAvUCA5NyAvYSAxMDAgL2QgL2UgMTA1IC9pIDEwOSAvbSAxMTUgL3MgL3QKXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvRCAyMyAwIFIgL0UgMjQgMCBSIC9GIDI1IDAgUiAvUCAyNiAwIFIgL2EgMjcgMCBSIC9kIDI4IDAgUiAvZSAyOSAwIFIKL2ZpdmUgMzAgMCBSIC9mb3VyIDMxIDAgUiAvaSAzMiAwIFIgL20gMzMgMCBSIC9vbmUgMzUgMCBSIC9wYXJlbmxlZnQgMzYgMCBSCi9wYXJlbnJpZ2h0IDM3IDAgUiAvcGVyaW9kIDM4IDAgUiAvcyAzOSAwIFIgL3NpeCA0MCAwIFIgL3NwYWNlIDQxIDAgUgovdCA0MiAwIFIgL3RocmVlIDQzIDAgUiAvdHdvIDQ0IDAgUiAvemVybyA0NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIxIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDM0IDAgUiAvRjEtRGVqYVZ1U2Fucy11bmkwMzAyIDQ1IDAgUgovRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRoZXRhIDE3IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDcgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMTEyNjE2MzEwMCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMSkgPj4KZW5kb2JqCnhyZWYKMCA0OAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNDA0OSAwMDAwMCBuIAowMDAwMDEzNzUwIDAwMDAwIG4gCjAwMDAwMTM3OTMgMDAwMDAgbiAKMDAwMDAxMzg5MiAwMDAwMCBuIAowMDAwMDEzOTEzIDAwMDAwIG4gCjAwMDAwMTM5MzQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzI4NyAwMDAwMCBuIAowMDAwMDA0NzY4IDAwMDAwIG4gCjAwMDAwMDQ1NjAgMDAwMDAgbiAKMDAwMDAwNDIzNyAwMDAwMCBuIAowMDAwMDA1ODIxIDAwMDAwIG4gCjAwMDAwMDMzMDggMDAwMDAgbiAKMDAwMDAwMzcwOSAwMDAwMCBuIAowMDAwMDA0MDczIDAwMDAwIG4gCjAwMDAwMTI0MTAgMDAwMDAgbiAKMDAwMDAxMjIxMCAwMDAwMCBuIAowMDAwMDExNzY5IDAwMDAwIG4gCjAwMDAwMTM0NjMgMDAwMDAgbiAKMDAwMDAwNTg2MyAwMDAwMCBuIAowMDAwMDA2MDk2IDAwMDAwIG4gCjAwMDAwMDYyNDcgMDAwMDAgbiAKMDAwMDAwNjM5MyAwMDAwMCBuIAowMDAwMDA2NjMxIDAwMDAwIG4gCjAwMDAwMDcwMDggMDAwMDAgbiAKMDAwMDAwNzMwOCAwMDAwMCBuIAowMDAwMDA3NjI2IDAwMDAwIG4gCjAwMDAwMDc5NDYgMDAwMDAgbiAKMDAwMDAwODEwOCAwMDAwMCBuIAowMDAwMDA4MjQ4IDAwMDAwIG4gCjAwMDAwMDg1NzYgMDAwMDAgbiAKMDAwMDAwODc0NiAwMDAwMCBuIAowMDAwMDA4ODk4IDAwMDAwIG4gCjAwMDAwMDkxMTggMDAwMDAgbiAKMDAwMDAwOTM0MCAwMDAwMCBuIAowMDAwMDA5NDYxIDAwMDAwIG4gCjAwMDAwMDk4NjYgMDAwMDAgbiAKMDAwMDAxMDI1NiAwMDAwMCBuIAowMDAwMDEwMzQ1IDAwMDAwIG4gCjAwMDAwMTA1NDkgMDAwMDAgbiAKMDAwMDAxMDk2MCAwMDAwMCBuIAowMDAwMDExMjgxIDAwMDAwIG4gCjAwMDAwMTE0ODYgMDAwMDAgbiAKMDAwMDAxNDEwOSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ3IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0OCA+PgpzdGFydHhyZWYKMTQyNjYKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:30:59.940675\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMi4zMDYyNSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczd1NkxNHEgbge/+KPuIDRX1/HM1iiNjLrtfE7sUXFo8xBGIDA8v+/M0sdauyOnMYdIBJO0zMvEg1elJSdfYoJbv1zeLWV6td38B/n1e3PoP/Xi0Wvjst2XkTbPYJvntLvgvNm2RrSZDa6bs/luX35dGPsMQHuM6zZYnFuPN1ikkxwIVgWZuO4dsptMbVc0quPsL+Q96vfOmU6hqCNzmuf96s/1rfrXAl71Ku2cNfWxPz9k9ZrCk21epD8m3989Xtl1wPl1yW4uGvW62Zogp+6bOLFDWHBWIMp6tvYTf9vN6nigNOS4Uf61KIjqrmcFdJ1PtXCQBQFZNrtblOqincACJVgYoDTgs8DUu2pU1PqzncVRL1/lUCAFTF1AAXCZNqCjeASFWg4oDT4qw37bgFzuGukqj3rxIAqCqmldpKmVlTuhFErAYXJwDMBWOTg8tOsDm9wCSuAplgQFmFJWIMfpbRNIdaGvPuqQYZN4DMB+NacalNsiktIdTAvHuqQCYYUFaNPzQgbw9pySk57t1SDTJuAFkIJrAuak6HTPIqkAkGlFUTWSc1pwXup8a9W6pBxg0gi8FE1k3NafOhOebdUwUywYCyahLrqOb0IhO9GmTcALIUYP8+dlU0rbDT2xwO3pEqkAkGlFW44LGxGiEIYA3HtVuqwcUEwMrBFN5ZkRQOYDHBegftHipwCQSEVVN5Z0XSauBOErh7qkHGDSArAfYB1lmRFAy5nHvG2bulCmSCAWXVNN5ZkRR2jNrOx7LJu6caZNwAshqN5Z0VSeGpFUtqzLunCmSCAWUN9gLWWZG0Gdtgmz94R6pBxg0ga9F43lmRtJlYsg/Mu6cKZIIBZc143lmRtMERLJ6P0pN3TzXIuOG0eBthlzt2VjRtpsK1CvPu6f3LJAPK4HHFOiuSRgs3rIY2e0mqQcYNIHPRpGNnNcLo4PFX+6OOakeqwMUFyGomsc6KpEBoLvXNfdLuoQYXJwDMR5NZZ0XS6KGbsu3IHakCmWBAWTOFdVYkhXOxUmNxB+9INci4AWQh9vP9ubMiaYymwQ8oB+9IFcgEA8pg72adFUljNiHZ/htF6h2pBhk3gAyrzzorksL5c7a2H7Wod6QKZIIBZMkayzorksJXOTVfZi9JFcgEA8oSnPEfOyuSpgB973Y0I96RapBxA8gyLME7q5GmDOcqroaDd6QKZIIBZcl43lmNFK4VEnw5e0mqQcYNICt2H6wgsEuYoekIybmDdqQKXFyArGQC76xGmptp3p4P00M7Qg0uTgBYhWvxzmqkcK2KL0jMXJIqkAkGlCWTeGc10go7YDifNZMVSKpBxg0ga9Yk3lmNtDmTazx3VmMFkiqQCQaUJZN5ZzVSZ50pqZ03kLEEjTXYuOK0BAsXZL0VSR2ckfnobDiQSXz/NkmBNtgPWHdFUocNfo79aUXJJNZg4wqwOdt/UzP3VyR1cIOTTTYcyCRWYBMUaEumsQ6LpPjLfF9Lf2JRMok12LgCbN7BTn7ssUjqWjA1+b4hUjKJFdgEBdoynzodoffQgYQSDmAaa5AxA8CCM471WSTFczPo9Y9gkiqQCQikZbiNx06LpD57E+K2jxAxiTXYuAJs0ZnAei2S+lJMtefmg5JJrMAmKNCWTWDdFkmxDykt9JemKZnEGmxcAbbk2Pj32ymFxiq1c6NPlyCxApugQFs2fIqdpnA8S8H2UQm6BIk12LgCbNkJs+w0dcXE1po7kkeswCYo0JaFiXaaevx1wXbcJkuQWIONK8BWnDDXTtNgjS15s40lSKzAJijQloXpdpqGgL3xuZek5BFrsHEF2KrjI+4khDRWeF4dwSNWIOMGhGVhyp2m0cLZJzzFZjBJNcg4AmjNC3PuNI3BWHselZvEI1ZgExRoK8KkO02hIa72PF4wkUeswcYVpyVaL8y60xT6EB+2fouSR3z/NkmBtiJMu9MUbnCpqW8ZE3nEGmxcATZ8SyXrt2gaq2m19RdmJvKIFdgEBdqKMPFOU3xhLed2JJNYg40rwOa9MPNO04Qr2SSQ91iBTVCgrQhT7zSFvh/2kP52i4k8Yg02rgAb/mDWb9EUEHX7xfGBXNX8PllSoK3wyXcSJm98jYmBR6xBxgwA6yNJx36LpmBIufWj2AzeUwUyAYG0Iky/0xQQNcU+AHMQ77EGG1eADW4jn3+nKY5TbC+ITuQRK7AJCrQVYQKepoAI/nwacyDvsQYbV4AtB2EGnqaASP48unQg77ECm6BAWxWm4GkKiH0Q5kDWMx8jKcBWgjAHT1NA1FyTQN5jBTZBgbYqTMLTFBCtpT50diDvsQYbV4CtBmEWnqYpGuCcD2+UPGIFNkGBtipMw9MUETUFibzFGmxcAbYW+Dw8CRO+IaOcO8kZvMcKZNyAsCpMxNMUDbH2Ga0DeEs1yDjitCQbhJl4mk40UXz/NkmBtipMxdMUEdX2N5kcyVuswcYVYHNBmIunKSCC8735OJD3WIFNUKCtCpPxNKU2mazBxhVg80GYjafpZBPJCmyCAm1NmI6nKbXJZA02rgBbiMJ8PE0nm0hWYBMUaGvChDxNqU0ma7BxBdhwpof1WzSdbCJZgU1QoK3xKXkSUpkM1iBjBoDhTWT9Fk0nmgRWIBMQSGvCpDxNKU0Wa7BxBdjwHRi83yLpZBPJCmyCAm1NmJanKbXJZA02rgBbicK8PE0nm0hWYBMUaGvCvDxNEXELeYuvsj360eNHvfr1r6vDj5A1df0Mf+ZmHY4G17g8Wx89ufnv65c3/3j2eH35YanJFKhqm/Z2GtrL57wuv/Tbsf0Mu76iP2N9hsmdy8Hhe3Mtjxe3fl7ew592fWhhrVJNqK3a5Esoq/cGjoQvT8vj5+ujp251dn3++1L7ltTLAN//tjzIP6zP3yw/PYeF8H2BK35S7uULuDZc9eGTmzcv/vnplxfvPjw8vX736cP65D/Lz/jvN6uqg+egi67V+QMkaHpdXe9e8EuVdfh+whJLA1cJX1vaqLK0PnrY3nLL87tuaHpdae9e8EulhS3AwHZUqgtwL3xlZb3KygZvTXOupXkGiabXVfbuBVllp7rhqGcJHu6FGOK+I2D9LNZvhfp9w2Lgx5zAvR8PQ0skvbIYdy54RzFaNs4VD4eJWgMphv/2xYgFP6HYwfYxvwpA0uuKcfeCXy5GLPjJH95HaFI9qUX89rVIsJfiPIyfz9Bpel0t7l7wy7VI+OJzLXiC1VImxch7Mch2Bc8mk3tR4HEHm5bfdqu+Ga1sMzLB75d59NTTPelv/377+v2nm4cf/7j5+OLb701f/bn1X/fo44vFsNWFriVU28OpLGiggcv4Eft9NzLfYT+6rOosbJ/2WIGRXlkCutylBtNqtxWh9SVGEb7LPrTfamh8fGZFuKTXFoEsN4pAV7utCC7384JRhe+wA11W9R72S3+swkivrAJd7lKFabXbquB9MNWTKuTvWYUGD9bKqnBJr60CWW5Uga52axUqrFFJFep3rMI4ZZw2RnIied3OSJYbWyNd7da9MVnwXargxuYIzS78yId4YOmf7+3wMq45E/qz7Hwc6seey9XhoLOt/eDvvWeGHshDt50T3p6HDmrXb9l20dIv+b9+yWgiPDldv+B8uf3mPvj1Qb+kw6NdS8Fd+vNff7g06IdjYjapWNj14FgLZ+9Cr/7p3WsbrD8fEY/XdnCj8IXnFvovFDbnVx5c8VFhL/fY3YdHkk0NiXDYPN3yv3uBS19z4BV+4hdWtt1zfhS6/hh8dXk4+f5wqnC/QXOMNcK3pJyvi/fPTx8+vj69+Hjz2/qXJ08vT7Ll/+U+DSQKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyODYzCmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3NCA+PgpzdHJlYW0KeJw9j0tyBDEIQ/c+BUcwID4+T6ey8tx/O0AqvbFUwkbPvpU2SdThmynk0A8v9jP2s/TEuLvgOs4YFKxkOOQp9CxLJTeeBb591BA1aQcPsjDCBpmA1HdNEELKnVb7UdIdo8/i2tbuLhYvrLuG7r5QFZiQIwuPzyENVKai/y7+MkhVZBLqNrhxULhAldankD5qGJx2/SYbfxd0KZ+eoJzmbOhOTR59Xoq7fr8yhD3CCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nEVQu21EMQzrPQUXCKC/7XkOSHXZvw2ll0Mq0RZFUlqRCY+Nn6XxoPdSV1hcdNUj6I76xWtpOc6B3gKR8Z/ltex6A/fqru/4o4cUBQLhJKfjY8bOFv4KbWMfpBlib2Rzi9o6nDioOgilzQ04cdfXcn2Q0akZ5nzzj0nkIqnUrqnMUTY+/47v5cewOUXvkkHN3MyYQe9qh9bIm0ykSBFkbu7VDjm7FII7ayk1E7eP4BwxppSDLxVmkqk8WtqgO32u99BzxvvUVOvDjPy+46d6x18p+iQyDnRGF5/Mny1e6/sXGdtUxwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDgwIC9QIDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvUCAxNiAwIFIgL3ggMTggMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3OSA+PgpzdHJlYW0KeJxNzbsNwCAMBNCeKTwC4P8+UaqwfxsbIkJjP+lOOsEOFdzisBhod7ha8aVRmH3qmRKSUHM9RFgzJTqEpF/6yzDDmNjItu+3Vu4X3hscGQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU1ID4+CnN0cmVhbQp4nEWRS5IDIAhE956CI4D85DyZmlVy/+00mEw2dpeo/YRKI6YSLOcUeTD9yPLNZLbptRyrnY0CiiIUzOQq9FiB1Z0p4sy1RLX1sTJy3Okdg+IN566cVLK4UcY6qjoVOKbnyvqq7vy4LMq+I4cyBWzWOQ42cOW2YYwTo81Wd4f7RJCnk6mj4naQbPiDk8a+ytUVuE42++olGAeCfqEJTPJNoHWGQOPmKXpyCfbxcbvzQLC3vAmkbAjkyBCMDkG7Tq5/cev83v86w53n2gxXjnfxO0xru+MvMcmKuYBF7hTU8z0XresMHe/JmWNy031D51ywy91Bps/8H+v3D1CKZogKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOPSNbIwVbAwMFDI5dI1MjQGM3O4dC2NFcwMzUAsQzNDGNPIxFLB3BjMNDY2h4maGJjCFUDNgqo1NYMYC2XmcKUBAJODFU4KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MgovZm91ciA1NCAvc2l4IDU2IC9laWdodCA2NyAvQyAvRCAvRSAvRiA5NyAvYSAxMDAgL2QgL2UgMTA1IC9pIDEwOSAvbSAxMTUgL3MKL3QgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvQyAyMyAwIFIgL0QgMjQgMCBSIC9FIDI1IDAgUiAvRiAyNiAwIFIgL2EgMjcgMCBSIC9kIDI4IDAgUiAvZSAyOSAwIFIKL2VpZ2h0IDMwIDAgUiAvZm91ciAzMSAwIFIgL2kgMzIgMCBSIC9tIDMzIDAgUiAvb25lIDM1IDAgUgovcGFyZW5sZWZ0IDM2IDAgUiAvcGFyZW5yaWdodCAzNyAwIFIgL3BlcmlvZCAzOCAwIFIgL3MgMzkgMCBSIC9zaXggNDAgMCBSCi9zcGFjZSA0MSAwIFIgL3QgNDIgMCBSIC90d28gNDMgMCBSIC96ZXJvIDQ1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzQgMCBSIC9GMS1EZWphVnVTYW5zLXVuaTAzMDIgNDQgMCBSCi9GMi1EZWphVnVTYW5zLU9ibGlxdWUtdGhldGEgMTcgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0NiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAxMTI2MTYzMTAwKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy4xKSA+PgplbmRvYmoKeHJlZgowIDQ3CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzNzMwIDAwMDAwIG4gCjAwMDAwMTM0MzEgMDAwMDAgbiAKMDAwMDAxMzQ3NCAwMDAwMCBuIAowMDAwMDEzNTczIDAwMDAwIG4gCjAwMDAwMTM1OTQgMDAwMDAgbiAKMDAwMDAxMzYxNSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMzM1IDAwMDAwIG4gCjAwMDAwMDQ2NjEgMDAwMDAgbiAKMDAwMDAwNDQ1MyAwMDAwMCBuIAowMDAwMDA0MTMxIDAwMDAwIG4gCjAwMDAwMDU3MTQgMDAwMDAgbiAKMDAwMDAwMzM1NiAwMDAwMCBuIAowMDAwMDAzNjAzIDAwMDAwIG4gCjAwMDAwMDM5NjcgMDAwMDAgbiAKMDAwMDAxMjEwNCAwMDAwMCBuIAowMDAwMDExOTA0IDAwMDAwIG4gCjAwMDAwMTE0NjMgMDAwMDAgbiAKMDAwMDAxMzE1NyAwMDAwMCBuIAowMDAwMDA1NzU2IDAwMDAwIG4gCjAwMDAwMDYwNjEgMDAwMDAgbiAKMDAwMDAwNjI5NCAwMDAwMCBuIAowMDAwMDA2NDQ1IDAwMDAwIG4gCjAwMDAwMDY1OTEgMDAwMDAgbiAKMDAwMDAwNjk2OCAwMDAwMCBuIAowMDAwMDA3MjY4IDAwMDAwIG4gCjAwMDAwMDc1ODYgMDAwMDAgbiAKMDAwMDAwODA1MSAwMDAwMCBuIAowMDAwMDA4MjEzIDAwMDAwIG4gCjAwMDAwMDgzNTMgMDAwMDAgbiAKMDAwMDAwODY4MSAwMDAwMCBuIAowMDAwMDA4ODUxIDAwMDAwIG4gCjAwMDAwMDkwMDMgMDAwMDAgbiAKMDAwMDAwOTIyMyAwMDAwMCBuIAowMDAwMDA5NDQ1IDAwMDAwIG4gCjAwMDAwMDk1NjYgMDAwMDAgbiAKMDAwMDAwOTk3MSAwMDAwMCBuIAowMDAwMDEwMzYxIDAwMDAwIG4gCjAwMDAwMTA0NTAgMDAwMDAgbiAKMDAwMDAxMDY1NCAwMDAwMCBuIAowMDAwMDEwOTc1IDAwMDAwIG4gCjAwMDAwMTExODAgMDAwMDAgbiAKMDAwMDAxMzc5MCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ2IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0NyA+PgpzdGFydHhyZWYKMTM5NDcKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:31:00.392298\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "estimate_plot_pdf_cdf(stats.laplace(scale=1 / np.sqrt(2)).rvs(size=10000), nbins=100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example - Amplitude Distribution of a Speech Signal\n", "\n", "Lets estimate the PDF and CDF of a recorded speech signal in order to see if we can model it by one of the PDFs introduced above." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Estimated linear mean: -0.00007\n", "Estimated variance: 0.01855\n" ] }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYwOS4xMTg3NSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczZ1Nk9RGEkDv+hU64gNFVdb30QSGiL3sek2sL76weIwhGHYxsN6fv5nqbnVWZc4MvRHMJAREz0PK1ktJVanulAjruyWsb1a/vsM/f65hfYF/3iwef7peiu8uhFYz/vSe/RQ7uOzp1Xtckv/0+7L8tjz5HkN8wnVeLEuKrh/WqS6niC8obJjh+wF6F9qBstXPcHuTj6sMnXNbYwRX0vrH1frz+mHFlSDk0gqQhEvl+Ksu3lWfW4OYoa9/vLl5yXVacllKd4A/tsKlanIx5xASlxpgKaFvpnz1E9ycflwf0EoRQKvuEtSWwmA1wB58nFVP0ICVFLheWsID1mMAbjXAEhJGm1RP8OGtFAG06i7XCH04rXSo+Ruwktt6vfSEb1s8RL6tIyw1dqF6hA9vpQigVXd1HgEHdtx8VdSAk9j86yX45GoPqVYuNdISWwyT6ok9vJVmQF7dtZLA59GL0+o7RGF7ohbMpAOaheR6LD3CYDbQs5nma8BMcUAz8M77XnIfzAZamw+K75EaMFMcyCw7PxUf7ydac8lB+h6pBTPpgGYRQ4gKaqTNx9qF74kaMFMcyCw7EFXUSFtNNUjfI7VgJh3QLHkXRSUx0paDr9L3SA2YKQ5kll0UhdNIG9QUpe+RWjCTDmiWcS1RUY20Q+hd+J6oATPFgcyyy3NVxWBzOH2Vw2nGAjBswUw4oFjxdEk1l1aMNueTDz3Mwjs1YKZIkFrGa2BRXTHK99pgbGmvKRboVnFBWV8x2lwKLcUglHdswE2xILeM866osBjFHQQ9hiCUd2zBTVqgW/OuyRqLUdxBrcdDkTUo79iAm2JBbtl1WWUx2p2P0VeYlBm24CYt0K0H52WdxWjDa2h8HSZlhg24KRbkVlyQlRajHU8snKBhUmbYgpu0uF7ABxdErcVpdxghBxDKO354N82C3IoDUW1x2nHQAIgglHdswU1aoFsILs71FoPd4fyMMYTwjg2YSQcSKy6KeovT7fOrcthpXHinFsykBKpBwLXmeotRvJZJPoUeR2OODbgpFuRWXBb1FqMoUXOrPQnlHVtwkxboFoMrot5iNOFR6CGHNCkzbMBNsSC34oqotxhFiVwgZ6m8Ywtu0gLdcCOrqLcYTeBwvI99VmbYgJtiQW6FPu2Y6i1GUSLhSN+LUN6xBTdpgW45uC7qLUZxe3FcjL1OygwbcFMsyK24LuutM03JYZhU26TMsAU3aYFuBZyX9daZpoyFVanbB1lcmWEDbooFudVTAwZXO0E8CFOENOnu0IKV2H6UquCCrLXONDVXcsoljrKMGjBTJEitOpC11plmj8N9LX4y5tiCm7RAtwYuylrrTPM2OUMrkzLDBtwUC3KrWOyKWutMc8SLGV+hTcoMW3CTFujWgS4s51rrTGlIhJa3D3q4MsMG3BQLcsPXstY609xdj77lWZlhC27S4nrBIt4VUWsxWrB0BN9bHJU5fng3zYLcqKNgrrUYpY+PWyjbicVCcGzBTVqgWwBXRa3FaKUeQI/D/aTMsAE3xYLcqmui1mKUPqpLNdY6KnNswU1aoBuA7FFlMCcXpTDHBsykA4lV10W9xSlennWsjEMdjTm24CY1UC5G50XFxWjwDTcY+vadKIsxcAN2igfZNRdEzcUoTmml5x7jKM2xBTdpgW64PSBqLkYrTtK15t5GZY4NuCkW5NZEw/h7Tmt0sYHfvvDlygxbcJMW6IZFr+x7ZxQva3Bs3Hp9uPGZGjBTHMisKb3vjGJpFVvKW2nFQnBswU1aoFuJSgc4o7hWC3hipVGZYwNuigW5NaXlnVF+mcaVTV29aRbohkOC7IZnNHvXoKc0KzNswE2xILcme+LPMOGlaKX6YxTm2IKZcECxFpXGeEbRAWIJRzUmvFMDZooEqTWlN57RRF/7xsOpxoTP1IKZdECzHpXeeEZTcpW+n2mTMMMG3BQLcutKdzyjiQbF4GOdlBm24CYtrpfkk9Ifzyhur6f2yCKUd/zwbpoFuXWlQ55R+ooNj74wKzNswU1aoFtISo88o/RlbzveLDkq79iAm2JBbl3pkmeUmisq6sRJmWELbtIC3SApffKMooTHVzEK5R0bcFMsyK0rnfKcdtdwRx32GwvBsAU3aYFuMcleeQa7yzRigBDesQEz6UBiXemV5xTH/OYP/WeD8E4tmEkJVMPiQvbKc4q1Y+px+xCLh2DYgJtiQW5d6ZXndPvC93Cr6Ki8Ywtu0gLdclJ65TnFC2y0qUEo79iAm2JBbl3plee0Odi6dIXyji24SQt0K0nplee04aBxvEVvVPZ27tzTLNCteqVXnlN289CkbOeeIs2C3LLSKz/S0z2jYwQ7d5JqDmjWvNIpP9LTHcxjBDv3NWsOZJaVPvmRnu5gnnzN3NesOaBZ97JLfoD7Hhtt7ewxaUBaWemRHynuo1aF7RFa8JIK10v2XumQn+jx+TZTBDNPvdEcyCwr/fETPTrovhbMpAOaBa90x0/0+PSUKYKZZ6poDmSWld74iZ7MVF8LZtIBzcArnfEjPT1xaYxg5zlMmgOZZaUvfqS7meprwUw6oFn0Slf8RE8jyBjBzgiiOJBZVnriJ3o6z8YIds4zxQHNUlA64ie6m2m+BswUBzIrsh/+BqjlwIKX2FjUykHpiL+BarYGvJSNJbGi9MPfRDVdC2Zya9GsBKUb/gaq+howU7aWzIrSC38T1XwtmMmtRbMalE74G6jqa8BM2VoyK0of/ERPs/QY4f+ZpZ98D/S4V1j/sgZ6jKxr65/4d+k+9OKxAFherE+eXf3n7eurv794ur7+pD9AlUO/P+t1+WnbjuN7+PUNf4/1BZE7wyUc+4/Rni5h/XP5iH/79bHHWBkFC/iKC8ayUrdrXl9fL09frk+ehzX49eVvS3Oxtu4L4O5YX/66PMLJxH+3vny3/PASY3nnKRz+Pr3AALj242dX717948tPrz58enz99sOXT+uzfy0/0u9vlthA63egRh+WioFeltq7A96W3BAqpg4Cfc8X09dmlwpim9ndHj0B2Y9PneL0wuzeGfDW7Da6/wFCpy+u4Ouzm20eu5C7ywFyGe/F4vSy7N4d8Lbs4tGNBQhA6lDj1ycXbB66Wx8/wJgKDi9L7V3hRGKHtMUQ8MDtzdeaoB1ze0jfYVxdMX3fMBetYJkCpY5N2pxemI07A96RD/qkvvdWCgQoQz4Oh9O3zcf2jWPCo3z6spnRy/Jxd8Db85HoS13fcYIpDdKQj3wPx0cO0YUMtY9FFaeX5ePugLfnI3vAAQQPEOq8gCEf9R6Oj61wLNDy+CEXpxfm486Ad+SjZJei9ymUIR2BDR9sJI+h0/P0MByWhLXh2H8YyLdBehWDtItwWubJc+Bj9V//+f7txy9Xjz//fvX51bcfs7/6v074qnNSCUb9ZSKWNj7heZc7/XuMeAoXWmU7/O5hbDpF7QHL+Y77fEjCmV6YBR5uT8MQ7dY80H3RHQfrVmsOWy7gHnNBT2X1MQHG5Mlg+MJsDAH3dIzxbs1HSJi6iBdRkHGw2hKS7jMhvblaO17bjgk540sTwgOeEzLEuz0hPbneAK8pI+RDQso9JgTf02VItYxjBsMXJmQIuCdkjHdrQiBh7oCq5eDxwoYS0u4xIZGeP1c9LjgOomd86TDKA54H0iGekhBIDstjnM9TjQHrnIqz3TZ13edYGgvNdZmua4ZknPGlyeABz8kY4t2YDPo4FKuHjkeRP87jcJ7FaQJ/TPNyqLgwPdgST6l6msFpuj5MRjhVH6M++vd2BVZcSjEeDr7HARO3XaYdl6zbgv/dFky4uZgEepLYOi532s5Hvzzalgzk03MM+/XeL9/tV3tTIVEwUk/hEA2UC78vH956PBAOZcS8dkiu4k5MsCVyc/zKcoSOB7/vqbsLCsaGIk4pNK5v+D+acOlLShXlHW+J7Defw9EXtmPvzX4QwXYQ1Y4ZA1qxHFekPfPDp89vr199vvp1/duz5/u5tfwP1yDZxwplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI5OTQKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzI4ID4+CnN0cmVhbQp4nDWSS47EIAxE95zCF4iEf3zOM6NZdd9/O8/QLSWxQxm7qmB4SpfHePqUXFtydPnVFnuI+5T3zVZK1GsqMYgx5adFhMQ0CY2D+rxVP81j3RUDnUts8z8CxCa12cUSxFXM+e+1x7Q6bLHexemvkHFVEK0O9Nbp1O8bux/ERbNqicyyHsIomllIVWXIYMj2CvCCP0m1H5NpKuss75QNDx2i6vAKUeagEJZaeqnWPdECP6/JsdEwthx3mPr1q3Rcre9mgUZa2+ySiho4px9/+GZCBPfK8NAb6TvWyRLlGfWCHH8SPQfFl9B7WJ5FvzKDXRa7yLNf4QMSZIhNVCnTYyI8jzAXFIbhKm0gWeUO9pQOl4cdzklURBOmVWa25EFQx5Z+/B+4wBEMSDLJZRnLa9779Grfm/VqymXJqKyO/JN9rHq1v39ufnj3CmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nEVQu21EMQzrPQUXCKC/7XkOSHXZvw2ll0Mq0RZFUlqRCY+Nn6XxoPdSV1hcdNUj6I76xWtpOc6B3gKR8Z/ltex6A/fqru/4o4cUBQLhJKfjY8bOFv4KbWMfpBlib2Rzi9o6nDioOgilzQ04cdfXcn2Q0akZ5nzzj0nkIqnUrqnMUTY+/47v5cewOUXvkkHN3MyYQe9qh9bIm0ykSBFkbu7VDjm7FII7ayk1E7eP4BwxppSDLxVmkqk8WtqgO32u99BzxvvUVOvDjPy+46d6x18p+iQyDnRGF5/Mny1e6/sXGdtUxwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDExMiAvcCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL3AgMTYgMCBSIC94IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHwPh/nnS6Su6/rQ2dbLAYhPTAfWIioxYngq/EhwalwyTwbBWEezDZEXKE5ARNhrKDJHENDQalwqZjme/JpnXSSqy80X7ZdzRmnXSKLUWHdiH/5/Ui3KPgGusZPA9gMcjaSqXsmTBaZaau8qjotR/T4T0PRKvF5fUGrvDaRzepKCpL6v5EdzTY/pG3+x7fH5llOCQKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RqrB/GxsiQmM/6U46wQ4V3OKwGGh3uFrxpVGYfeqZEpJQcz1EWDMlOoSkX/rLMMOY2Mi277dW7hfeGxwZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJwzNTdVMFCwtAASpobmCuZGlgophlxAPoiVywUTywGzzEzMgCxDS2SWibEhkGViYYbEMjaxgMoiWAZAGmxNDsz0HK40AANxGJMKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NSA+PgpzdHJlYW0KeJxFjzsSAyEMQ3tOoSOAf8B5NpOKvX8byztJGiyMJT+iKzr2ysNjY8rGa7SxJ8IW7lI6DaepjK+Kp2ddoMthMlNvXM1cYKqwyG5OsfoYfKHy7OaEr1WeGMKXTAkNMJU7uYf1+lGclnwkuwuC6pSNysIwR9L3QExNm6eFgfyPL3lqQVCZ5o1rlpVHaxVTNGeYKlsLgvWBoDql+gPT/0ynvT/c9D2ACmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MgovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzj0jWyMFWwMDBQyOXSNTI0BjNzuHQtjRXMDM1ALEMzQxjTyMRSwdwYzDQ2NoeJmhiYwhVAzYKqNTWDGAtl5nClAQCTgxVOCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIKL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4gL2VpZ2h0IDY4IC9EIC9FIC9GIDgwIC9QIDk3IC9hIDEwMCAvZCAvZSAxMDUgL2kgMTA5Ci9tIDExNSAvcyAvdCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9EIDIzIDAgUiAvRSAyNCAwIFIgL0YgMjUgMCBSIC9QIDI2IDAgUiAvYSAyNyAwIFIgL2QgMjggMCBSIC9lIDI5IDAgUgovZWlnaHQgMzAgMCBSIC9maXZlIDMxIDAgUiAvZm91ciAzMiAwIFIgL2kgMzMgMCBSIC9tIDM0IDAgUiAvb25lIDM2IDAgUgovcGFyZW5sZWZ0IDM3IDAgUiAvcGFyZW5yaWdodCAzOCAwIFIgL3BlcmlvZCAzOSAwIFIgL3MgNDAgMCBSIC9zZXZlbiA0MSAwIFIKL3NpeCA0MiAwIFIgL3NwYWNlIDQzIDAgUiAvdCA0NCAwIFIgL3R3byA0NSAwIFIgL3plcm8gNDcgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNSAwIFIgL0YxLURlamFWdVNhbnMtdW5pMDMwMiA0NiAwIFIKL0YyLURlamFWdVNhbnMtT2JsaXF1ZS10aGV0YSAxNyAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQ4IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDExMjYxNjMxMDErMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjEpID4+CmVuZG9iagp4cmVmCjAgNDkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQ0NDYgMDAwMDAgbiAKMDAwMDAxNDE0NyAwMDAwMCBuIAowMDAwMDE0MTkwIDAwMDAwIG4gCjAwMDAwMTQyODkgMDAwMDAgbiAKMDAwMDAxNDMxMCAwMDAwMCBuIAowMDAwMDE0MzMxIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDM0NjYgMDAwMDAgbiAKMDAwMDAwNDk0NyAwMDAwMCBuIAowMDAwMDA0NzM5IDAwMDAwIG4gCjAwMDAwMDQ0MTYgMDAwMDAgbiAKMDAwMDAwNjAwMCAwMDAwMCBuIAowMDAwMDAzNDg3IDAwMDAwIG4gCjAwMDAwMDM4ODggMDAwMDAgbiAKMDAwMDAwNDI1MiAwMDAwMCBuIAowMDAwMDEyNzkzIDAwMDAwIG4gCjAwMDAwMTI1OTMgMDAwMDAgbiAKMDAwMDAxMjE0MiAwMDAwMCBuIAowMDAwMDEzODQ2IDAwMDAwIG4gCjAwMDAwMDYwNDIgMDAwMDAgbiAKMDAwMDAwNjI3NSAwMDAwMCBuIAowMDAwMDA2NDI2IDAwMDAwIG4gCjAwMDAwMDY1NzIgMDAwMDAgbiAKMDAwMDAwNjgxMCAwMDAwMCBuIAowMDAwMDA3MTg3IDAwMDAwIG4gCjAwMDAwMDc0ODcgMDAwMDAgbiAKMDAwMDAwNzgwNSAwMDAwMCBuIAowMDAwMDA4MjcwIDAwMDAwIG4gCjAwMDAwMDg1OTAgMDAwMDAgbiAKMDAwMDAwODc1MiAwMDAwMCBuIAowMDAwMDA4ODkyIDAwMDAwIG4gCjAwMDAwMDkyMjAgMDAwMDAgbiAKMDAwMDAwOTM5MCAwMDAwMCBuIAowMDAwMDA5NTQyIDAwMDAwIG4gCjAwMDAwMDk3NjIgMDAwMDAgbiAKMDAwMDAwOTk4NCAwMDAwMCBuIAowMDAwMDEwMTA1IDAwMDAwIG4gCjAwMDAwMTA1MTAgMDAwMDAgbiAKMDAwMDAxMDY1MCAwMDAwMCBuIAowMDAwMDExMDQwIDAwMDAwIG4gCjAwMDAwMTExMjkgMDAwMDAgbiAKMDAwMDAxMTMzMyAwMDAwMCBuIAowMDAwMDExNjU0IDAwMDAwIG4gCjAwMDAwMTE4NTkgMDAwMDAgbiAKMDAwMDAxNDUwNiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ4IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0OSA+PgpzdGFydHhyZWYKMTQ2NjMKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:31:00.915907\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxMi4zMDYyNSAzOTIuNTA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczd1NkxNHEgbge/+KPuLDFJX1mXU0iyFiL7teE7sXX1g8xhCIDQws+/M3syW1sjpTo9GBmTJhgnlplfSUWlXZmhwB8/sJ5rezn9/T/99mmF/S/28nT1/tpgLBRV9Cpq8+iK9iCy57rJlS3331xzT9Pj39kYb4TLd5OU2pOtjfprqcIh1Ew/q8DT90oXeA+1Tc/BQud/Jp1kPnjHOMwZU0/3k7/2v+ONONAuSCJdBfe5fK4b86eVd9Rgwxhzb/+fb8kfPmyGmqgf66IRaJqvzHUCBJVB9WKNA47W5/TBfVz/NjujRhNyHdLeSYQLr6EEMtRWmP6eO7DAK5qiuIvmDn6sLWElalPaYDuDRhN9GLsRZfW/fi6sPVZWof32UQyFUdRjokdi4Z0griC2y1azqASxN2E/jg2nYx7MJCjzZq7TF9fJdBYFd1rWKrtYfJtMTQouIewhFcmkAwiM5noGM7WJeWCi0V7T3GA9gMBduQhkgpht4m0wq+laDIazyCTSvIFqKDViG3ztaltGOV1jT5GA9gMxRsQxc2JcmHTYpAdxAVeY1HsGkF2WJ0UVVWfYoVoSZNPsYD2AwF29AlVV31acsl+KLIazyCTSvIlqJLqsKSKTofsJQtWcQD2AwF29BlVWXJlBAtZ0N8SEeQaQPJcqQdeFtnyZQWRkw1Ku8xHUBmGFiGdOC20DqFSC8usiTFXeMRZMpAsBJd1ZWWSOm1lSumuAWv6QAyA8E0dKhrLZEiFcKx+arEazyCTSvIVqNrutYSKd0qeIhFkdd4AJuhYBu6pmstkdKfaG/e79kdeY1HsGkF2TA5r2stkTYXfKohbsgiHsBmKNjWHOhaS6TN0f6FpSnyGo9g0wqyteSCrrVE2hxtZTk2RV7jAWyGgm10cula65QmuosGYUuW8Qg2rdhN9KJxUdVaIiVEyXRdjYq8xo9vsxRsay6pakukCRxAybAli3gEm1aQDZLL23rrFBKhAEIGBV7jAWTawDBa7VS9JdIUHETf4gYs0hFkGkG0kOhFs623REoI9DnmqsRrPIDNULCNFnJVb4mUrtMyVf24JYt4BJtWkC0m2qS29ZZIU3IpteLbhiziAWyGgm3Noaq3RJqyi3SrlDZkEY9g0wqy0RPQVL0l0lQcnYWpbMkiHsBmKMiWvfOq3hIpPd5ScslpQxbxADZDwbbsvKq3RJoalcY0btiQRTyCTSvIVmgIXW+dUuLUkPfffBJDyHgAm6FgW3ZB11unNAeXGyaADVnEI9i0gmzVH9szBG0NM21oLUHcgkU8gEwbGEYrua63TmmuLkKsDXqwSEeQaQTRkG6l661TSqdgouszxF4s4wFshoJt2WVdb51SfrsO0EPakEU8gk0ryNY8LQiq3jqlpdITRE9V2pBFPIDNULAt0was6q1TWsE1bCliT5bxCDat2E3R04Gq3hJprS6Uum9ckmQRP77NUrAtO1T1lkgx0V3EtDTDiCFkPIJNK8gG3qGqt0Ta6OQrHmLsyTIewGYo2Jb5QW7qLZGCB1416vJdejFGl4+g0w7SBXBeVVwiBeBapPil3pdqmQ+gMxysK7qT9RTyu8gttIJtY5b5CDalIFoEB6rqEiktHq5FCL515i4ewGYwGFdcUHWXSKm2cjVjBNygZT6CTjtIl8BFVXmJNNC6WAvg8t6IVMt8AJ3hYF1Z3tjpay+Zejh1bMkxZD6CTjtIl0E1l3/oUtoAApSEcaOW+QA6w8G64nSXvEwBXUqIy1Vbpxb5CDrtIF0Bo1depoH2NFKktlHLfACd4WBdMTrmZRrpDCw5LO+SyDFkPoJOO0hXweibl2mMVJoUqGGrFvkAOsPBumJ0z8uUYt+w7J87qRb5CDrtIB2CbqEXYeTvLraMW/IpHkCmDQwrRg+9TGl3q7RyQOjFMh7BphmEa8Hoo5dp4n6u3FLdokU+gM5wsK4anfQyTdklUix9XJ1a5CPotGM3JR+MXnqZUmFC62Pe189SLfLH11kO1lWjm16mCemCoEHDrVrkI+i0g3T8Y5yqBpNpaqSgi9O6VYt8AJ3hYF01Ouplmj33Yfild16OIfMRdNpBuhCMnnqZkgKp0loqyY16zQfQGQ7WVaOrXqZ8QQB134vXqUU+gk47SMd3rGowmWZ+t7LFg65Tr/kAOsPBuqq760WY6clKdI1atmaRj2BTCqKlYPTXyzTv25+WNxZ68xoPYDMYjKtGh71Mc3QeW8ltixb5CDrtIB09BbrHXqakoNcXP2KlXvMBdIaDddXospdpXnrXaC3R6jUfQacdpCvR6LOXKSlq9GW/XvbqNR9AZzhYh0anvUxJgTRQNNRrPoJOO0hXo9FrL1NStMoMrV7zAXSGg3VodNvLNCfnY4Wm1CIfQacdpMNo9NvLlBUttBgM9TEfQGc4WIdGx71MSQEp+la0es1H0GkH6VrUPfciZAOtIsv3w7fmYz6ATSuYhkbXvUwJERJtalGZ13gEm2bspuyj0XcvU1bktDTYb82H+PFtloJtaPTdy5QRJdflPaGt+ZiPoNMO0kE0Ou9lyooKYfnO1VZ9zAfQGQ7WodF7L9NFQfdgqg/5CDrtIF2IRve9TFnRYsZiqI/5ADrDwbpm9N/LlBR05R09avWaj6DTDtLFZHTgy5QVAVK21Md8AJ3hYF0zevBluiiqD81SH/IRdNpBupSMLnyZsiKG4qOhPuYD6AwH65ruwxdhZztjHsGmFETjx6hqMJn2ONM8gM1gMK4Zvfgy7XBn0CPotIN0JRnd+DLtdbZ6AJ3hYF0z+vFl2unOqEfQaQfpajI68mXa62z1ADrDwbpm9OTLlBVn0If4KtvTHwN/PG2Y/zoDf+ytw/kb/V6aB+49xjS9nJ8+v/3vuze3/3j5bH7z+cwHvorQr59NO/2yPI7Dffj5rbyP+SUnF4ej3fzgmp5NMH+bPtHvfr7xNFYmYGq5RiyxzCE42hbf7KZnr+anL2AGP7/6fcJlZVqmgb7+bXoCzvsf5lfvp59e0Vj804gzf8Dv+gcagG598/z2/et/fv3l9cfPN7t3H79+np//Z/qZf323iYWYHdbWUrdWdel1U3t5wLsmF4J3tPSVSHtyTPedXTrP85izyx+G0bz3/edgyfTK2b044J2zi9wpR788em5Cvu/s5jHP3VACLXCeBpaT0aXXze7lAe+a3UDKSFffqYUa7z+5YcxTd/l5AvDQd36L8LqpvTScmthu2iIkR4Ve9JV2JDzM7X769uvqTNP3HecCaUMPHmrfKC7TK2fj4oAX5qPSiYQ1lhIglG4+9qfT952P5RuZ0YfYfyNbptfNx+UB756PxO2W9MoLqWBI3XzkBzg/MhT+jMLQ+rJKptfNx+UB756P7LMLviaMkEPo5qM+wPmxlI7ZU32oysxjeuV8XBzwwnwU/jjCmhOUbjpALB9iJY90RFmmhfbVihAOC/mySM9qkXYxHI95+iLItfpv//7w7tPX25svf9x+ef391+x7/1MP93pNGoOleJgXOZYx3yE5WtMjXT8U/lcpDiv1AyxMx1HBe9f8dgZO6ZVTIIdb56Ab7dwktGWI0ySEh5yEwt++UZOwptdOghjuNAlytHOTAGW5LD3NQnrAWQihuhK2s3BKr5wFOdw6C91o52YhhOgwiFkoDzkLjU5WVLOwptfOghjuNAtytLOzgDQGilnAB5yF0zsW3cIo3se4bmUUw52WRjna2bUxU2VyWhzBiW2Id6Ab3liWT8AHPgYauLi8yvb70LL3rDenTecw9pO/L9cSVFWH3GrJ/HhugOZueWSHQ+ty5P+WI5OjLdHDcmB/3PHhPvn1yXIk8G7XcoT10uXXH9YLl82eWFymC6aCMTfamo1rmK8f33kq7PY74vbWwB+JFum2cXk/6+C85+bKZ4Vfn7HL26PIupLE2DZ3Z/6FJDr6mo3XuMc7RvaLZ38WwnIOvl1Pp7CcTkjPG/8ke+XblsNt+fn56fOXd7vXX25/m//y/MX6Ipv+D34IuWEKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyOTk4CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3NCA+PgpzdHJlYW0KeJw9j0tyBDEIQ/c+BUcwID4+T6ey8tx/O0AqvbFUwkbPvpU2SdThmynk0A8v9jP2s/TEuLvgOs4YFKxkOOQp9CxLJTeeBb591BA1aQcPsjDCBpmA1HdNEELKnVb7UdIdo8/i2tbuLhYvrLuG7r5QFZiQIwuPzyENVKai/y7+MkhVZBLqNrhxULhAldankD5qGJx2/SYbfxd0KZ+eoJzmbOhOTR59Xoq7fr8yhD3CCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nEVQu21EMQzrPQUXCKC/7XkOSHXZvw2ll0Mq0RZFUlqRCY+Nn6XxoPdSV1hcdNUj6I76xWtpOc6B3gKR8Z/ltex6A/fqru/4o4cUBQLhJKfjY8bOFv4KbWMfpBlib2Rzi9o6nDioOgilzQ04cdfXcn2Q0akZ5nzzj0nkIqnUrqnMUTY+/47v5cewOUXvkkHN3MyYQe9qh9bIm0ykSBFkbu7VDjm7FII7ayk1E7eP4BwxppSDLxVmkqk8WtqgO32u99BzxvvUVOvDjPy+46d6x18p+iQyDnRGF5/Mny1e6/sXGdtUxwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDgwIC9QIDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvUCAxNiAwIFIgL3ggMTggMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3OSA+PgpzdHJlYW0KeJxNzbsNwCAMBNCeKTwC4P8+UaqwfxsbIkJjP+lOOsEOFdzisBhod7ha8aVRmH3qmRKSUHM9RFgzJTqEpF/6yzDDmNjItu+3Vu4X3hscGQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MgovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzj0jWyMFWwMDBQyOXSNTI0BjNzuHQtjRXMDM1ALEMzQxjTyMRSwdwYzDQ2NoeJmhiYwhVAzYKqNTWDGAtl5nClAQCTgxVOCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIKL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4gL2VpZ2h0IDY3IC9DIC9EIC9FIC9GIDk3IC9hIDEwMCAvZCAvZSAxMDUgL2kgMTA5IC9tCjExNSAvcyAvdCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9DIDIzIDAgUiAvRCAyNCAwIFIgL0UgMjUgMCBSIC9GIDI2IDAgUiAvYSAyNyAwIFIgL2QgMjggMCBSIC9lIDI5IDAgUgovZWlnaHQgMzAgMCBSIC9maXZlIDMxIDAgUiAvZm91ciAzMiAwIFIgL2kgMzMgMCBSIC9tIDM0IDAgUiAvb25lIDM2IDAgUgovcGFyZW5sZWZ0IDM3IDAgUiAvcGFyZW5yaWdodCAzOCAwIFIgL3BlcmlvZCAzOSAwIFIgL3MgNDAgMCBSIC9zZXZlbiA0MSAwIFIKL3NpeCA0MiAwIFIgL3NwYWNlIDQzIDAgUiAvdCA0NCAwIFIgL3R3byA0NSAwIFIgL3plcm8gNDcgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNSAwIFIgL0YxLURlamFWdVNhbnMtdW5pMDMwMiA0NiAwIFIKL0YyLURlamFWdVNhbnMtT2JsaXF1ZS10aGV0YSAxNyAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQ4IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDExMjYxNjMxMDErMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjEpID4+CmVuZG9iagp4cmVmCjAgNDkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQzNTkgMDAwMDAgbiAKMDAwMDAxNDA2MCAwMDAwMCBuIAowMDAwMDE0MTAzIDAwMDAwIG4gCjAwMDAwMTQyMDIgMDAwMDAgbiAKMDAwMDAxNDIyMyAwMDAwMCBuIAowMDAwMDE0MjQ0IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDM0NzAgMDAwMDAgbiAKMDAwMDAwNDc5NiAwMDAwMCBuIAowMDAwMDA0NTg4IDAwMDAwIG4gCjAwMDAwMDQyNjYgMDAwMDAgbiAKMDAwMDAwNTg0OSAwMDAwMCBuIAowMDAwMDAzNDkxIDAwMDAwIG4gCjAwMDAwMDM3MzggMDAwMDAgbiAKMDAwMDAwNDEwMiAwMDAwMCBuIAowMDAwMDEyNzA2IDAwMDAwIG4gCjAwMDAwMTI1MDYgMDAwMDAgbiAKMDAwMDAxMjA1OCAwMDAwMCBuIAowMDAwMDEzNzU5IDAwMDAwIG4gCjAwMDAwMDU4OTEgMDAwMDAgbiAKMDAwMDAwNjE5NiAwMDAwMCBuIAowMDAwMDA2NDI5IDAwMDAwIG4gCjAwMDAwMDY1ODAgMDAwMDAgbiAKMDAwMDAwNjcyNiAwMDAwMCBuIAowMDAwMDA3MTAzIDAwMDAwIG4gCjAwMDAwMDc0MDMgMDAwMDAgbiAKMDAwMDAwNzcyMSAwMDAwMCBuIAowMDAwMDA4MTg2IDAwMDAwIG4gCjAwMDAwMDg1MDYgMDAwMDAgbiAKMDAwMDAwODY2OCAwMDAwMCBuIAowMDAwMDA4ODA4IDAwMDAwIG4gCjAwMDAwMDkxMzYgMDAwMDAgbiAKMDAwMDAwOTMwNiAwMDAwMCBuIAowMDAwMDA5NDU4IDAwMDAwIG4gCjAwMDAwMDk2NzggMDAwMDAgbiAKMDAwMDAwOTkwMCAwMDAwMCBuIAowMDAwMDEwMDIxIDAwMDAwIG4gCjAwMDAwMTA0MjYgMDAwMDAgbiAKMDAwMDAxMDU2NiAwMDAwMCBuIAowMDAwMDEwOTU2IDAwMDAwIG4gCjAwMDAwMTEwNDUgMDAwMDAgbiAKMDAwMDAxMTI0OSAwMDAwMCBuIAowMDAwMDExNTcwIDAwMDAwIG4gCjAwMDAwMTE3NzUgMDAwMDAgbiAKMDAwMDAxNDQxOSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ4IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0OSA+PgpzdGFydHhyZWYKMTQ1NzYKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2020-11-26T16:31:01.327687\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from scipy.io import wavfile\n", "\n", "fs, x = wavfile.read(\"../data/speech_8k.wav\")\n", "x = np.asarray(x, dtype=float) / 2**15\n", "estimate_plot_pdf_cdf(x, nbins=100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Which analytic PDF/CDF can be used to model a speech signal?\n", "* How would you chose the parameters of the distribution to fit the estimated PDF?\n", "\n", "Solution: The Laplace distribution fits very well to the estimated PDF. It is frequently used to model the amplitude distribution of a speech signal. For the given speech signal its mean and variance can be approximated as $\\mu_x = 0$ and $\\sigma_x^2 = 0.02$." ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Digital Signal Processing - Lecture notes featuring computational examples*." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 1 }