{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Realization of Recursive Filters\n", "\n", "*This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Quantization of Filter Coefficients\n", "\n", "The finite numerical resolution of digital number representations has impact on the properties of filters, as already discussed for [non-recursive filters](../nonrecursive_filters/quantization_effects.ipynb#Quantization-Effects). The quantization of coefficients, state variables, algebraic operations and signals plays an important role in the design of recursive filters. Compared to non-recursive filters, the impact of quantization is often more prominent due to the feedback. Severe degradations from the desired characteristics and instability are potential consequences of a finite word length in practical implementations.\n", "\n", "A recursive filter of order $N \\geq 2$ can be [decomposed into second-order sections (SOS)](../recursive_filters/cascaded_structures.ipynb). Due to the grouping of poles/zeros to filter coefficients with a limited amplitude range, a realization by cascaded SOS is favorable in practice. We therefore limit our investigation of quantization effects to SOS. The transfer function of a SOS is given as\n", "\n", "\\begin{equation}\n", "H(z) = \\frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}\n", "\\end{equation}\n", "\n", "This can be [split into a non-recursive part and a recursive part](../recursive_filters/introduction.ipynb#Recursive-Filters). The quantization effects of non-recursive filters have already been discussed. We therefore focus here on the recursive part given by the transfer function\n", "\n", "\\begin{equation}\n", "H(z) = \\frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}\n", "\\end{equation}\n", "\n", "This section investigates the consequences of quantization in recursive filters. As for non-recursive filters, we first take a look at the quantization of filter coefficients. The structure used for the realization of the filter has impact on the quantization effects. We begin with the direct form followed by the coupled form, as example for an alternative structure." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Direct Form\n", "\n", "Above transfer function of the recursive part of a SOS can be rewritten in terms of its complex conjugate poles $z_{\\infty}$ and $z_{\\infty}^*$ as\n", "\n", "\\begin{equation}\n", "H(z) = \\frac{1}{(z-z_{\\infty}) (z-z_{\\infty}^*)} = \\frac{z^{-2}}{ 1 \\underbrace{- 2 r \\cos(\\varphi)}_{a_1} \\; z^{-1} + \\underbrace{r^2}_{a_2} \\; z^{-2} }\n", "\\end{equation}\n", "\n", "where $r = |z_{\\infty}|$ and $\\varphi = \\arg \\{z_{\\infty}\\}$ denote the absolute value and phase of the pole $z_{\\infty}$, respectively. Let's assume a [linear uniform quantization](../quantization/linear_uniform_quantization_error.ipynb#Quantization-Error-of-a-Linear-Uniform-Quantizer) of the coefficients $a_1$ and $a_2$ with quantization step $Q$. Discarding clipping, the following relations for the locations of the poles can be found\n", "\n", "\\begin{align}\n", "r_n &= \\sqrt{n \\cdot Q} \\\\\n", "\\varphi_{nm} &= \\arccos \\left( \\sqrt{\\frac{m^2 Q}{4 n}} \\right)\n", "\\end{align}\n", "for $n \\in \\mathbb{N}_0$ and $m \\in \\mathbb{Z}$. Quantization of the filter coefficients $a_1$ and $a_2$ into a finite number of amplitude values leads to a finite number of pole locations. In the $z$-plane the possible pole locations are given by the intersections of\n", "\n", "* circles whose radii $r_n$ are given by $r_n = \\sqrt{n \\cdot Q}$ with\n", "* equidistant vertical lines which intersect the horizontal axis at $\\frac{1}{2} m \\cdot Q$.\n", "\n", "The finite number of pole locations may lead to deviations from a desired filter characteristic since a desired pole location is moved to the next possible pole location. The filter may even get unstable, when poles are moved outside the unit circle. For illustration, the resulting pole locations for a SOS realized in direct form are computed and plotted." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM1MS4wNDA2MjUgMzM4LjI3MTg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJztXUuPJMdxvvevqKN0mNrMyPfBBxG0CBvwgQ/IZ3pN0iS0FEiaFiDD/93fl9XdEdlTOT1LTbek5ZAgwI2tiYz3Kx/jl+8Ofvlmcct3+O/Pi18+wX/fHBz+9O4Qkl9ddFkS/vhH+8cQ6irF15IAd+Mf/+tw+Prw5ndA8xN+7JPDIdW1Hn+srHX7DMj5h0vwHwewT6s7wQ0SC+6L/bDsLSGl4b+yyvLjV8u/L98vb34npMmDT9C1vPn4q//59u1Xn33y0fL2p8PBt7qGDYcveY0nOvfh7wN9+4rjA8YBC/z88Ony4jYY/Nok+lhhg+LdKrD7kC1cxK85FCcF0LxmX1opiwQHL00ewBjXdiJT4KIxheDjAjxrkFRKWCSG1ZeSJSw+xzWnkusAtJxaeIXD1+y4nOJt7TER4oohQikWn89EKHf8wPmWnVh5Gyh0VkFSBMo4fF0QFGIUCRazzxBLyK6OZHioSqAailNppliSC5niPLNngYPlGPhZcBavyliJGBRiKDbaM9wZTe/bxe1szweNf4Jw61NuXiwc+qKECqHiVu9aSzJYjqVTEnjNNQVwhU9KqCFCUdmvhbxSXG0tOVJRBjgYn4E3rtIyjEjximuruBRpkkrFYDmGZgmyVqSahgWVPwltx9sNlNbn14QFQh2+zmkNDW5QLWZjI6MFR3iBF7JiqPYBxkEviIZBCxzMz8DPojN4jZStpVqdGJqNBg1/Rtv7tnEz+4NPBi/tGPoqOM1SiwEz6EBjEMni4djwotqwGDiVFJNr4AicevjiZjqgyZcaffe0UME6KMurcy5VSpD/21ytA3SwPgNvGQTFnGEviphBJ2Xxlgjam0NgPMffI8kSEzTiauKPnbnjD+bg6kXoUyhDRoEPxJbD8HVCaGvOlWgx0wIiCCRtlg4vUFUG9qY0U/+5upyz5c5CB9szcJWcwatCNkQMGjEkG/0Z9lTVu2ZxM8urZQ1wJsgElieyguAYiwELQ3gIIHiBpB6HLOsdUirkm51jNHSnkIXU4nzsYk8IFTFEGJWFDnancHF0UicQu0FMIh9RMUQsQ7FAXUcqlDdBHEi5BGmD3SmUdhfXlGrleubrxAVLFTGITWAa4yYM3YPhWAzJ3sEn8A+QGe4MdLQ7A1fJGcQqZBserUYMyWftGeZUzbsmcTOrA5coNmDa3epAujR4sEIluTVC5HkjEdQydGSkjoBgTh+CG4ZUwO7RZEIKjNXAVeCjLMOwWmpNHM0OtRkiVPADdDA7hYuDqGsT3xaDWYSVTvUhWDokInggJsEEmfPPRHejqaXH6DN7PaTWkEdpGyjtDupCERmHj7GIxNpDpuJF2kMYKZDESEU3mpjaSDPWc1VcbJY9BQ6yMGAVnEFrhGyIGFRiSFb9KXOq6F2buJnZZdLC6NzNDqTngjhswCyvIjiHuyDi1ASRepsibUCGomEyGcKHy6EiKeAdZEJOPtfQkE5iWdknyAi1ojZwFEVr9JtJKGYJgR84P+TvIUcamgWe7VpIlWZ3Zk8qjKYh7eTB7hTK0ggm7UMjt+ZrlFdYNTCQKmaTDcdcjYCGROxctFTDgxIyZaqWQQUO0jBgFZ1Ba8RsiLA6MRSr/gxzquldq7iZ4QFbdi0jUNPw2grROF8NWFDTohvyCIIoXaQGdolV4L4wBmReyDO44lq3mQjN1tpL04RIBEBcAkobfOkL7Q5QRCcUtxY62J3C2ScWQYSqi8Es4BpuXRhdlAxSiXDiou92dyIZIQaVTgpsg5U5qGRFFkYQG8xOoTQ7+DysJ8jwNaqpgjWiRew9aEuIKDJS0UAcAtJIcoGdUF7VcqfAQRQGrHJTrEbEhgSrDyVXVWcYUx3v2sPtTM6ZjpZtUCExZ6Cghxf6SUbfFHuho5WXrQCCR9RuObKxwv/CDytUjpSIHhIsll7yOlTViEsWOpibwtn/1VpQby8GM1o0lC+1hWbJGEqyM8EIaatviaZ7Yisgpz1u3AyUpoakhUg1gD1a14iaKhmktkSz69cIumNnQYkt7B2lc6B8KXA0NAWrxBSrEa4hwWpCqT3rTLlSze7awM3MLKKakJpb6GaGJIFqAwFcwZJZhDT4NUrmxshAZ0eJmtAnwdS8DogCKttc+k+xSXLAhKATOF9Inv1ZpIM15jQDHAztDBbP0BEjljBo2S4+pkGKMxO7M71Mw0caDGfBO5bfLg0ObaC0NYH+UKXJ8LVwbuijWMTeoXlGQck0balA9kJvkFKxJEPtdSsvlbkzbJCDQlVkitII16xvNaG0qtIMV6rdXUu4mbEFliYNRWg3NsglQlHFgKUI9ITWP3fbj+gbk635bY3ZgxJiUs2bFAr6pLBgJfSJJVN2aOc8unhEeQsd7E3hqDDWioXjMThumCU2urKUoSEZan5DM0MTKp3GaY1hzyMIxOhTHS3uDKXFOU6/BHTYr1GoZyQplOQGs2kFLBkIT7GRfksztJ8SrL5Y9hQ4yMKAVXCK1chYKbD6MNSq7ixjZy3vWsTNjA6uUFBblN6rssYokIMFS0nI5hmxe4nIUXBMJhlElya9GIFftepb7PHJI563kHsrgaoBeQTGBXdE4O+zblBYa0Ytb6GjyZ3hHOTmxJJ5MYj7PC5UfGGpkIroElNKvVNVitmB5MTBsbIWoAn0h4gGg6gVum0oNASWMH7NoW9JaDEVL0ulWhObZUsCZ7EIKzVbeml4W9VvWFPgIAcDVqEpVhWvEmA1YUg9K80wpdrdtYTbGZugUIpuG8fBjdB6N3rqGQzUUD8Kd6gOMRquJtG2l7aZ4c6yNCSfzOEPeeS37NkyunoGOHhPRAMnA3SwNoULA0srkUajiDkIo54lWyqG5tKSjBI6IajJNrI7cofyekVeKeM8wEC3+amHOhE87dcgKYeW6C6K2bSclgx0DaFmat/QzEoMPQKrOmVPgaPFKVgFp1hVxEqA1YYl9qw5w5fqeNcebrf3lVAyIRXQ4tg+g7C+ZXqEsv0LIbcGBQsiBKyBSUYoQZYNqAqgDNdbBZQAaBNZO8HpnC+ROQ0RHHVHIV8BOaQkeOMAHexN4YgpfasrMxaeEfeuE+mAOU2JkMbd103OA8FIz7n4uBXtR9Zova65dmFtJyCNLXF2AiT2WxgY8qqkaNGifkfL14tIQwKcpniUVWUgN7MKTewrDGdn4IUYzmCVmWJV6er6Rg8DqSeVGabOut2zgtvtcdFrUXB3O+OWIYpqBXZXdWXLp3QaGYcatmMOEf6DH0Axg7atsmiAIPPqXZ9UgmcICfWFBY7SPYGFY6SS4cuLQQp9ITfk3qLqnMQOLgy1LPYQY1Kfw57YCtyQBVtuLNkUuu2no/NrfvgYhb0vSPHe4jXjDEsECBYElzoQ7NZUEmOc4ewEuxg9nqAqL8V4lquubTVg6FRtKUdnre6p/3bdAbpy+Fqv05DTA/9koBwsJPK5hVqPRIVAhjLAo0FkJI8QztYZMOm1jLC7VBSoUoAfFLJ6CH1EwAzEHfQwQAfpKpy7P4LaJ5XFIBbaoM+BVq40sEeIaOhPO2FHepnyKuqk3g4qZyiBnEPCGss0hdLIsHYt4eJrJmrPmbHFXJjTGvOfpYKRF0olVClmpV5LpkEqcwq8OENzBqvYFKsKWNdXTRhKVWeWqZNy98zgZob24MFHc6FvI7A9d5HrKRh1AIqRzPEfkv7j4Zidy6BjWkvz6HGWGs6jMdCVUcZ6NnGcXicHT7XQ0djOcBEkCXThqMwMYu5YPaZimI8ZkgOqmyMdhrsArbAprHHsv85QWptjtkGJPXztuGLiSNhg1mnYQAbVgzzPkYvSzCMDTKJi2VPguGeqYCu4E1YVsRJgtWGIVc0ZvlTHu/bw/iYXTibnFx5B/ex1pPs60n3vke7RjNzyDczouwUh/RjDADFE2sPIBoqEcjpcfPjoAFs8/HCgNT64pQ970CMjdKMK4hx0hU+z6X777vDRF8ub35O15YuvDyAQ+f14cvqL/zz8hqz/dvniu8M/fwF8qI03Az//DxDgpx8+/uq7L//w8+dffv/Tw7tvv//5p+XjPx0+xb+dh4MZT1riLfhJ6iFr0IQ6yPfJyPOph8Onv556PZQxUG/AT1LP/c7sUfL71PrpqvcgP72A8M/HOAfqFfo08cmvYBKZ38WU3o94eQHZm6BhqbeF0iPyB7rwVzD9jWalfiNwM+0FBG6r6elfu5iBXlmrn4rzgjIMJfLj5TZ5mOX05NOwngFfWxBxJPvMpOWaf7RguuRPN0uGBQ342oLsyrm7ijqFx54vFiwXHNoyxV6hMOArC3Ig5NB+txj6ds+woDcatDZLIk/tijVXXg9Zt7/Aj+siv/msGyqaxFjR/XVyNiP+6vgXKFbR353B/3sEB1RaLubz929+LyeUf+mfpFVic/Znzar/d3KPk7VrsWFrBHT8j7LGnqui/5AlcuRwr7iu9Oquk6VXoVN6CzqD59D7IpFc6R1OiivBBjyl2KOeeJaIXyR6G5L1EP5AsoLnJEf/XCm/QMw2JNv7SIZkBU+iTONQA99Jl/R+sNZlzB0Ju4wBP7mMuNilsx+kzTJ6LnRYRsFPL4OuSbm5DM1mGd1AHpZR8NPL5GK4uQzIpp3RYtsuY8BPL9PqmZsxDNPqHmguvJ8gx2sGuif+ZBz+l258ghWGKPyugxuyYt+OvGEcft+WT5Z/7bU6ynDW6mtLyyeHsfV7RgljLwb+gr7zH4UIcehCehk/lh8GfA9JwPRYwFz0IgZ8B0mgqvE8zjEW5RZ8B0mgTEIdF3jA0ErCgO8giT4Q7FOXQRIGfAdJ8Ch9RoM2FuIWfAdJXGs+7iCHa63iPaTQk3Zwl2JQ8B3kwJmrY88xCsKA7yCJmLgVeDnxseB7SIK79OGygbPgO0iCO1LST+1ZQSj0DnLgniCnIKMYFHoHKVyfFtxBDtdnYfeQRO/A6kXisuA7SEIKyt4ULlK4Bd9BEtwycv5ysGrBd5AEz0GUdjlVsuA7SIJb+dJHPYMkDPgekkCfncIlERZ8B0lcH/LdQRLXJ/63JyI4vyJHXbqoBd+eiMazjO4yVhnoPeTQsFq+DNoWfHsi+n5ZvMxeBnoHOfjCjcqLJG6gtyehNG4UXlQyCryDDK5P5O8ghWt7mX8lCRxV+uXHbRt1OwhCwGefHE5/cxyR8g9n/aPN4qaNuJWneDyP/YTl7bvlzb85DjhP37vlAVabm0gFGTHvfPJQeFrQh8x/F6Ygn4uU5PLe10QY1hC958Yyj+vsfOIdZ6HOlR40dpH0lwoQWkuKLu1hGclqaGa4l+0ahx67GHmWJ8QQc7+WuoPQ8bisz60AY5iR5fNaXfJYGVrbZy541NHc0O93CHax9MvRaMYRNZHCrjHnHQpSpFzvXAx7nwNl3tduzatLLfMHeRxmlxjHmxGNtPD5nF2WeF+8pcID063MeHKwZNiRpCoTtfO0aCnoexOnQvto2J+jE4IP91P9zxCNLzmmwsNX+yj5IEtxqQYeat79pLh+FiQ5HvjfxcHRYqKjxhL3KOf2hKeBJTqSm6Hh2YriPcJj629w7AmJ19RLjQl198yU+doMv4g8S7S/FC+2468Lz09NuH7gcAw+FnPw/fTmNVn3G9St+lj6uaK/ne+7fh83Bb6t00/rT6TkeaQ586Zt3KfX517CZajN5ZlhI3DAeVIpUdq+9/nuZnBPGMhU2HzrwpcYMgi+HtD6Sy4JumE0n8iJGxENAa8UJ/vuVCOnn05Cld01u/tzGJUTryztBhGatoS1VXQe3vFOysS0G75hVHPIDhP/55F5qQhG0U3iGB9EaoFnhDMfptk37bJitYSA3+/t7Js29wIkQ6suTIJa3y4oJXuRNKFGHP0eakfs2xfOqLTI2zgR/o1YOrHKikaSBypi3FcJxQ2VJFDGKwe70ab7yD7nDMOe4SVXvmQ2cYyIqqDUFArSysQxMh9QChURq8zclNvdrT88lPaZpRYKzAGOIVNGWoMLBiTlBOPZ/YZaQNZoKK15CWNfU77yxhbsqoCtZ8QyHmOqLcbCu/O/yL0eXsa/Xsi9Hj5I/3L9DhSwNCLyk6yDEL5mF9AFR0j6uvITTxkIMlGtkyz8msh+eSKjw+Y1gBSUMahaZw6btqK2tVks4zNFpXpwjmw4Q4OiJEMV/UjTM1SPfitH3vyDwU2s6R714gdZLrr+ZiKsMKcWZVKSwOcDGzG0SCVMelLxfSsCndh242Pf52X1Fc0LutFJTyL9VqbzNaTYJiLmgRekQYgXafsZeQOuCNfIAUmhTeznV9OKbamiPh0mYTaT4gA+wl67Oshzph3kB8T0wHdZZV9oTPwO1hSRz8LEcvnwFJwZ7IZ+22vXVuCOhQVEqpNw9MAnTVtDzQS/3w1rl7bCN0EzSric/ATltaHE39FMwnWGQmoIEy2mmdEgkNR+PLxOU17tJ+FQeDk3i8EMJIm3kXm7eRIkEEcCMaTk4zTJhJUlU+LbDvuMM444171uFoYZR1p0ARpwEyUwjMCEkuuF3sx8+IAY0nNjzLpuPqjUIsUdtsvir1XKB1yluH7dh1hKyqB9goZvH7JXqrXtVuaXFsQZQoGMGB4mFnRl+uv6I4pUGFq9abnjJaEigrjZUM1CEDwk8wmaJ5TGV5I9lnKNh2P2TYi3nAVVFSPizIQKX3iJLCEmPPH2V+R1eWTSmSFub+O0CBuZ6YxXQRG8ebN/0kg/sH/JuQU4fphkUbYvWIUkh1nPzvzk2UdmNJuTgIj0BEXFfsV3hgZOmpgo0bY/Z7yKSjc4PguR82TVqwMN9zrPuMU8YzMbTmMR2fOkrO9mA1oj3/WfVJQ0Gz5UgyRTZ2Nd2c0dl9GGXQbKnfjL95peo82vOtpkSFLwb82zgfZrxfNa8TxpQXxbBtlCMu9Nv7ZcZ/t5bbme03KlhKwBt0eAnZU7r9Od1+nOttfHh5UiYnurs+rrdZI8M5rXSbLPfg2oc+AEqb6Odz7sYucydBSk0Qh3RWkzO8/1azzb8eB+DZvPTKrId3naxN1yokIRv45Ufp1HRF7IS1/ISR9eyEsvY2uCe/F3XyC1vh5SfOm0eiFsz+fMYEloe2a74ddq4IfXIvh5p2+Fn3M3MM26nP3e9OFDbE4vZeNXChEhKU7myv9IY59LJ+PTI/DIAPXMKoa/wZULHr2HG+SAqDTLJbN5/6f2iUDesdHnAcfLNfu/tXzya8gPn+//PvN3099njp94r9+LPn6vmJ5cwZG/xd7f+WZ4zVDOP9jf/794WaYWfVdG+gsvHx8fkOGkzr7j9W2HwxLgB9XAf+zw/vsnk3luZnsNDJ1I3a6UbtC3x0do0jb9P4H/+4gDkfz4/NwGX45rVv6OqqDwr4/fIwdn+8bNn06LRv6OyHqNxu2tHI8UUtuAf7buhPzZsvsymBE/g88EPyFm9vk+Md8fofyFB4by91XIDyc0vpi3iH7eR/7liRJkVG8of09aZoz+5SgXBKuB1dmy74t/pu0J+TORzZadoZ/g6c83bZ77582c5eIFPuPb/3T6gq9p20XTifYQB2OaEf8fu/qeSWzG6k/mManD/wMeO4coCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKNTY2NAplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4OSA+PgpzdHJlYW0KeJw1jLERwDAIA3tPwQgIg4F9cqmS/dtgx27QSzoUCGIKmwdJpk4XWvlJb4ProqchncCTlLEzYzvUbbcuubOzV+3I2q/Pob92J7VeJBIrgcjSOIP3B8+aHY8KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgxID4+CnN0cmVhbQp4nDWMwQ3AMAgD/0zBApUCwaEDVX0l+39rofLAOlnm4NChlzMQk5f6mJitwiNdboGnxgLJDJpOCDSEUbClPBxMvaumPLJehjf96i3vB7J/F7QKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTE5IC93IDEyMiAveiBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTQgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvdyAxNyAwIFIgL3ogMTggMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicM7I0VTBQsLQAEoaW5grmRpYKKYZcQD6IlcsFE8sBswyANFhpDkxFDlcaAKVEDOQKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJxFkEuOAyEQQ/ecwkeg/nCejrLq3H87LjrRbLAlKNczuQMTe/HITJRuvGS4O8wVn+EZMHP4SphsxEzoTlwjlK4U4VSfCI7L3rzpoIl7RM6jngVZ1c4NagFnkuaC7YIu54wVN87JrUblzfSj1xC+aXcf13mH9kjj3sNUvs451c67ighpC1nVtL6QbBTJDms/Kk3bzssQseBsGlboHN4Iu1d3J0sYfr/yMCUTPw/d+lF8XTej6xRnJ1cma8956EnpX/XKow/FcSnoF7HtzCT3X6dTkqlTe2fvaf2nuMf7D5BuVjkKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nEVRSXIEIQy79yv0ganCK/CeTs2p8/9rLDNJThZgazFpgYEteIkh1sDMgS+5fE3oNHw3MtvwOtkecE+4LtyXy4JnwpbAV1SXd70vXdlIfXeHqn5mZHuzSM2QlZU69UI0JtghET0jMslWLHODpCmtUuW+KFuALuqVtk47jZKgIxThb5Qj4ekVSnZNbBqr1DqgoQjLti6IOpkkonZhcWrxliEin3VjNcf4i04idsfj/qww61EkktJnB91xJqNNll0DObl5qrBWKjmIPl7RxoTqdKqBY7zXtvQTaeC59l/hBz59/48Y+rneP8buXCIKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI3OSA+PgpzdHJlYW0KeJw9UjuSxSAM63MKX4AZ8BfOk52tsvdvV4K8V2SsREaSHdJSugwNaSNVYgyp7PIzLsK2VP4OIvtcPr/Q1jrQnIeji40JoCn3pasDdhWtkha+6ygyBOYQ2GiaaE5RcAoJtX3acJCH+gDrMiJ2vS8GJXo2sq1D9iD2E6kZUkE58I6EUISHzb5j+DhxPO3NE2BOngw4I3v1M04pXTlhORQwMrfDLbDe12dfz0a5iLzmB2EOIscicmJTEwySQLEcXo508NRTozYD5FFcMFHHbLHAz71nPugxpFPoke3YXC6kXmTwhfnZofBgP7cABiqqtZ0GO1i9v45jvYYNv4/hWuSO24otHKBNFw7EO8ERWe/vLXmu338Hcm4GCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNzYgPj4Kc3RyZWFtCnicPVJLjugwCNvnFFwgUvgmPU9Hs+q7//bZtJoVFmBjSMpLlqilTC2TVJVdS350dO4y+Tc0r0bPsPXmzEPmSbE4MrfKPQzkmVus0Gtv1KsLALFI7tQS2yXGlkvFkmSHrO0Qd2TQ4cUq2cz42sION2uOR1IXKl6nBwX5jDDwTsx9vollITRXGW23wEEPFqgDPTALE7ki491rEz2NeAugrA+Zv4guN9Rcj2xMgFO42gveqZTWMQ8ViaIc7EYavZ+j5jihw9s9Yjn2cglHBt7iaMd78EWInkZWRKx+yLMR+YYNqUiPmMob6m4fevyNrdhof3YmScHXX9bbTDXSueDUXK3WX4NHaPDeqOHz90ue8fsfISZuEgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicszC2UDBQMDQwUzA0N1IwNzZSMDE1UUgx5AIJgZi5XDDBHDDLGKgsByyLYEFkQSwjU1OoDhALosMQrg7BgsimAQDr5xgyCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicTY9BEsMwCAPvfoWegLEB8550ekr+fy2QNu4F7YyAkYYwCDxiDOswJbx6++FVpEtwNo75JRlFPAhqC9wXVAVHY4qd+Njdoeyl4ukUTYvrEXPTtKR0N1Eqbb2dyPjAfZ/eH1W2JJ2CHlvqhC7RJPJFAnPYVDDP6sZLS4+n7dneH2Y+M9cKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjEgPj4Kc3RyZWFtCnicRZBLEsMgDEP3nEJH8EcGfJ50ukrvv60hTbOAp7FABncnBKm1BRPRBS9tS7oLPlsJzsZ46DZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+Udw9V/1R7HunM3EwGTlDoRm9SnufJsdUV3dZH/SY27Wa38V9qqwtKyl5YTbzl0zoATuqRzt/QWpczqECmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTQgPj4Kc3RyZWFtCnicPVC7EUMxCOs9BQvkznztN8/Lpcv+bSScpEI2QhKUmkzJlIc6ypKsKU8dPktih7yH5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+tcvdS3O89HG+iiJR08K755fTLzy28Tj2ORLq9+YprcaY6CkRwRmryinRhxbLIQ6TVBDU9A2u1AK7eevk3aEd0GYDsE4njNKUcQ//WuMfrA4eKUvQKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNyA+PgpzdHJlYW0KeJxNUTluBDEM6/0KfWAA67TnPRtsNfl/G1LeBKlEQxRJyeUpUzLlsrkkIyRrypcOjS22XL4PQlNLRcHUvUV1yWuYpqxbLF3Q86ksr+EY4Ht3N9Q/9IjZApHRgl1hgQ6QO7hg+D17JmxTCyJRJdQMYJqwwhyuRAxBBmOdGQalCoNT9XeV47MNOwXWDmZTpEdSE510g+aFt95yIYKtU7mpN9KE3NmnGGJl475Kl+MD4GCiy0RkxOZlOJ4OYWjwzjRghbMexASZ1pHSi5mRMQ036cjVV4uKzzYZS57R//aH+iufbv+DEHzG+wdJVVx+CmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgutIAcvgSkQplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzEgPj4Kc3RyZWFtCnicTZBNDkIhEIP3nKIXMKHzA4/zaFzp/bd28PnigvRLIUOnwwMdR+JGR4bO6HiwyTEOvAsyJl6N85+M6ySOCeoVbcG6tDvuzSwxJywTI2BrlNybRxT44ZgLQYLs8sMXGESka5hvNZ91k35+u9Nd1KV199MjCpzIjlAMG3AF2NM9DtwSzu+aJr9UKRmbOJQPVBeRstkJhailYpdTVWiM4lY974te7fkBwfY7+wplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicPYzBDYAwDAP/nSIjNIlNMhDiBft/aQrtxz6dZNMoXeAVaUKEnNrISU9b7p6Eg4MUkLBfbejVvipLe6ogajL+Nnx31wt3HBdOCmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUzIC9maXZlIDU1IC9zZXZlbiA2MSAvZXF1YWwgNjgKL0QgNzMgL0kgODIgL1IgOTcgL2EgL2IgL2MgMTAxIC9lIC9mIDEwNSAvaSAxMDkgL20gL24gL28gMTEzIC9xIC9yIC9zIC90IC91CjEyMiAveiAvYnJhY2VsZWZ0IDEyNSAvYnJhY2VyaWdodCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9EIDIzIDAgUiAvSSAyNCAwIFIgL1IgMjUgMCBSIC9hIDI2IDAgUiAvYiAyNyAwIFIgL2JyYWNlbGVmdCAyOCAwIFIKL2JyYWNlcmlnaHQgMjkgMCBSIC9jIDMwIDAgUiAvZSAzMSAwIFIgL2VxdWFsIDMyIDAgUiAvZiAzMyAwIFIgL2ZpdmUgMzQgMCBSCi9pIDM1IDAgUiAvbSAzNiAwIFIgL24gMzggMCBSIC9vIDM5IDAgUiAvb25lIDQwIDAgUiAvcGVyaW9kIDQxIDAgUgovcSA0MiAwIFIgL3IgNDMgMCBSIC9zIDQ0IDAgUiAvc2V2ZW4gNDUgMCBSIC9zcGFjZSA0NiAwIFIgL3QgNDcgMCBSCi90d28gNDggMCBSIC91IDQ5IDAgUiAveiA1MCAwIFIgL3plcm8gNTEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDAuMDUgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC4wNSA+PgovQTMgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNyAwIFIgL00wIDEyIDAgUiA+PgplbmRvYmoKMTIgMCBvYmoKPDwgL0JCb3ggWyAtNiAtNiA2IDYgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMiAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkDEOgCAMRfeeggt80oqIro5ew8WYeP/VNiKpwYWU38/rpxJO4rCRHpBwEcdhygMnu3HMsuQ5gOO8jFMaVSlchItJtdqpdfE+ECsrRzHqMVgVHOxxN9SH+faa2fFEHX4COjv+oOhGw+XCkxQ+PPq/4XcH6HeFLxkW+iBa6QZfuEVDCmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNTIgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDEyNTE0NDU0NyswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMikgPj4KZW5kb2JqCnhyZWYKMCA1MwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNzg1MyAwMDAwMCBuIAowMDAwMDE3MzA5IDAwMDAwIG4gCjAwMDAwMTczNTIgMDAwMDAgbiAKMDAwMDAxNzQ5NiAwMDAwMCBuIAowMDAwMDE3NTE3IDAwMDAwIG4gCjAwMDAwMTc1MzggMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNjEzOCAwMDAwMCBuIAowMDAwMDE3NTk4IDAwMDAwIG4gCjAwMDAwMDcwMDQgMDAwMDAgbiAKMDAwMDAwNjc5NiAwMDAwMCBuIAowMDAwMDA2NDczIDAwMDAwIG4gCjAwMDAwMDgwNTcgMDAwMDAgbiAKMDAwMDAwNjE1OSAwMDAwMCBuIAowMDAwMDA2MzIwIDAwMDAwIG4gCjAwMDAwMTU5MTAgMDAwMDAgbiAKMDAwMDAxNTcxMCAwMDAwMCBuIAowMDAwMDE1MjM1IDAwMDAwIG4gCjAwMDAwMTY5NjMgMDAwMDAgbiAKMDAwMDAwODA5OSAwMDAwMCBuIAowMDAwMDA4MzMyIDAwMDAwIG4gCjAwMDAwMDg0NTMgMDAwMDAgbiAKMDAwMDAwODc1MyAwMDAwMCBuIAowMDAwMDA5MTMwIDAwMDAwIG4gCjAwMDAwMDk0NDAgMDAwMDAgbiAKMDAwMDAwOTc5MiAwMDAwMCBuIAowMDAwMDEwMTQxIDAwMDAwIG4gCjAwMDAwMTA0NDQgMDAwMDAgbiAKMDAwMDAxMDc2MiAwMDAwMCBuIAowMDAwMDEwOTA1IDAwMDAwIG4gCjAwMDAwMTExMTEgMDAwMDAgbiAKMDAwMDAxMTQzMSAwMDAwMCBuIAowMDAwMDExNTcxIDAwMDAwIG4gCjAwMDAwMTE4OTkgMDAwMDAgbiAKMDAwMDAxMjA2OSAwMDAwMCBuIAowMDAwMDEyMzAzIDAwMDAwIG4gCjAwMDAwMTI1OTAgMDAwMDAgbiAKMDAwMDAxMjc0MiAwMDAwMCBuIAowMDAwMDEyODYzIDAwMDAwIG4gCjAwMDAwMTMxNzMgMDAwMDAgbiAKMDAwMDAxMzQwMyAwMDAwMCBuIAowMDAwMDEzODA4IDAwMDAwIG4gCjAwMDAwMTM5NDggMDAwMDAgbiAKMDAwMDAxNDAzNyAwMDAwMCBuIAowMDAwMDE0MjQxIDAwMDAwIG4gCjAwMDAwMTQ1NjIgMDAwMDAgbiAKMDAwMDAxNDgwNiAwMDAwMCBuIAowMDAwMDE0OTUyIDAwMDAwIG4gCjAwMDAwMTc5MTMgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTMgPj4Kc3RhcnR4cmVmCjE4MDcwCiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-01-25T14:45:46.858881\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM1MS4wNDA2MjUgMzM4LjI3MTg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJztfU2zJMdt7f7+il7Ki+7J74+FF2LQYtgRbyGKYa/lMUWLoZGDomVF+MX77+8cVHclsm5h7gw53ZoZlh20OWBPFhJAAgdIZKY/ff/kT9+d3Ol7/PO3kz99hX++e3L405unmP3FJVdCxh//pP8YY7uE6lvNoLv5j//59PSHp1e/xjA/4q999fSU26Vd/1q9tOVnGJx/2JL/NJF9vrgbXQ2iyfKxH057nwi14596Cae/fHv6t9OfT69+HciTxzzB1+nVl9/+zx9ff/v1V1+cXv/49OR7u8RlDF/LJd343Ke/D/X1McZnPAYs8HdPvz19cBtM6dJvNhhcudTUaumaHny6NB+LULEAu+s+nUJwl5q7D+nkc7pgSOc9+AwBY7iU28kXd/EuewfeosOSzr6C2C7e116rJuqJKnLDh0OuNZ7UqD1cWmwl+YkFzKimXGPnCIPh4NKl5NBiOanJBVdvk1OiUFSorPVLjyE1P/26+UsrNQt1HdnXfOkh+FBmPnzBGLWUqpn2pVxKLK7p6SniZDeDPMSmRh0C1ixobSiGle7U5JSe963ifpYXPVhOYIuW590lwONSmoOOCWH+1QXMNUIUz+xGsxkQHFKOkfPL8RKvhpPixddaAoVMjdXSJuJkeoreIK1WHD83xu39OROT2SiOgy8rE2N2/IHzvbgwmd6gUmdgKWHINP0aGnYphRD1yMNCZuuFqgJUQ3EOnimW7GKhONfpaeJke4q+Ck6PO2SszFQrRHGstKdmpzS9bxf3sz3IFX4jLF7Ph0t3seeq6fQ4rWJ48BnqpRTvPKSMr/vqiiP3YISMBrGcekmlpZhlnXkYjcMYkFHIKXOBlnBxLsy0yfYUvbtLx7j48RiW/qZBmSlrJgJBSvYARlfXe2U5hAz9hhrDSU0PNnhxMOSN3xtUGl+81FpDj9Ov4XOaa6kWPbLP/QLvU1KZ+fCpX/DV5ieuPRZXCqXSB64T1MTJ+hT9Jjk1rJKxYmLSiGJZ6U9NT+l63zLuZ30+DtxHyflc8E1Np+yxPiupgV6+9xwmv6VXSciQfmk5JhFojS0m6K94xCKstCJCqiXRTSjiZH6K3vmVjgCjxg0Ownc50SEOLia/pXgOkfEu1t5Oan4h9h2Uo6hLvMr4QGzTr0u+RNiQUNeRlYea/WeCD4bOfdFc+wjXRB+c1AQ1cTI/RV9Fp8ZVUtZ+UutE8aw0qOantL1vG/ezPyAhFwFSktgfnEnyzRVNDxFaqznVhSHQGEoRCEvvnmsH/rwUt+idplPgo+i7sehqKvRAWH8hQhgUYb3UDi8QJupsfoPeaTD4+NVYl5ED2HClO3qgwQc9HmRQl1Ww8iymA7RF57fOLqQCPwhcVCbrG1RGLPgSKA1c6F+Di+xybWpcAVMQTawzD2I4AGt94pgOKGGulPGYnaZOxqfoQ3JqZCVlxcekk8Hz0J+andL0vl3czfaARqIP/Qr6GlZZCa0qMuEWvIWn2BwFEVrvU9TUHhohAvGlNsYJYIzYsOzAGebhXG40Pf4rFNkm6mR6it6h9JhKoaGuAxNu5RK8ZmKKmYrlkDLk7lrmX1tnx79YIqxpBn2DStODpoGLSpx+Df337hzX0xhZBcc5dgeoqmD0Pnim7ykw/1L07DR1Nr1BH5JT4w4h6witNaJYVvpT0xuq3jWL+1kenH50FZOA5WGeGQu5BUWG56b7DpS7kxnRa2A6JafIeANfwlBSJc2tgL8tZVmOGKKAd6iuBeDj0AUqp0ssHQtuok6Wp+jgM9eEpXxSIweP2FMpZc0H/VxyoVfJdQfTIYstML8d0wsIX8iFnaAuZXorlaYHTfckiZH6NfivGTl3UwPT87gARBBmLoDFkFuWkieePfJwpOyYpp6fpk62p+hDdmpkJWfFx6QVxfRQoZrfUPauYdzN9lq9RAQyrEfaXgB2DfDwihyYOMWIxXLCKn0O1TQqCBWypKOnHNwNqiGhcz7Jks+ASCkmODRNnS1vpQdHcAJhwtbHwGTyGRcTUlMcB7iKKxdjbgH4JxekCZOsFZWGly45t8bvqV9nfrC2ENTACpDNeNGzLgJEVRXL3jVGwhK6np2iznan6ENyauAhZA0LtUYUy6v21OSGmndN4n5W51VpD+soF0CCoshML2vuFcRONwJP7RdVdABdusEOp+NCS2IzmDGLRl2QS6zw9JB6J7zAcveiuMQsK0zUye4GPWB95hgzvc4YmdllrkBtUfPBjCNI6Lqm2lemaZuOwY9/cZ1fqG6vujeotDyseWCknqZfA0z1gDQz6ZGJ6hl2Q5v5oAUE1hO95to7UIFmOZcxQ0Xd2N6gD+mpkZWkFR+TXhTXQ4lqgkPdu6ZxN+vDPFtxCOpifVg4oQO7DGrIjlonJOBawFohaFJ5gEaj4rBijpKhw8cDnbD0xqgCcOxofO6CRC9HP1Fn41vpCJeX1iC1flIjh8DqFuJf1HxMGYJiWuyzVUGn6/QETLZY5rWuqLQ9OAtkAGn6MT4ClQtYHOOqTGDOU+iygBBmnvE914JLXU9vECdZKPIQnBpWCVmnI1oliuWhvzG5oehdm7if2cGye6Phv5GCGGAp/IsiBzh5eI8Ms0OC5oj1awB+T5FLBJKDb2nI5mkwAUsy0hEyrjVm86eIJZs6vEYRf1FLxsKcqFrOis5SGBKKQptbB2YZGSkrYJTmglYWqYgoJnfjl0bZ8d+X4uR1YqGxlpZzntPaQaXFOVawF5gwfs0aBlLEoMYl2uqttC0PHrwDbjFQD4aJm1rLXCJjaoM429sgD6GNUZV8FQuTMga7N7WpaQ3t7lrC3Yyt0PCZBImxsVYLnXRFZgUtYZlB1QBXLWP9ep2J6rwHXoUBL7CSKSAaCw1sYlEi7Y8sASDycSMizNTZ3lZ6cJkBRaxhjBwERMOPTGnylIoqngNAjOsxS2RepxcaI7OXyoY2uZW6VF8DUDpnq36NZAVfjQylY2SVdM4pMbAbAp5jmXtwDXfNGMjq0JjgIE7SUOQhOjWsErNiQutEcTz0pyY3NL1rFfczPDj4Xt2ST8BrA7b7NqjMFjErR7YTc/cu4aZjlXqgbKJUX0L0TUwGM0cYoqv31DGEAIfmA7c3BZnA0ceM/9sn6mR2g85tVngNhKSTGlmyxQbNds0G8X1tWNmL2a08MxFx3C0qJzW70LnltpH1INLo8Ndg5Nz0GL+NgEfIdMSa12Ela3RdEKxmAoJx3B2ImuMGU0VaKqB1ndwgziY3yENsY1QlYcWCVofid6hOzWzV8Z413M3eMFpxnZvONDjurMh2yiCzcgDJIr+H24UEYp2qITrHjnD7qbQm1e4MmAVCgmkB4JTmK/0cqIBeyO41dTa4lc6NTwgXxndSI3OPDJhFAu9gY6p7DJYD4TDSOlrDmBxcwAUJrmO9QRvcSl026JHiBbG48esozQrcvx0Dq/LGxAWgQADamlnGEqmUV9OzG8RJFIo85DZGVSJWLGh9DHaH6tTEho537eF+Jgdm65I9AHN0lwF6VmKAyXsEqbQEW0STtkQa+BUH5Izlj/BAtHCNicA3BLusyQNxA77H4CECL1XWlNhcEengFHWyt0EPGA4LPIqDW0dmVQLQ1hHADzbIZo2sI0uteuWZPylY8mVpjblOjglKqohNs73diMueErwXPIH+bUwsgDXn9bDeI/lE9JKcSjGBkIjMMvPHg+OKCI38kaW+MblBnM1tkIfYxqhKwooFrQ7F71CdmtlNxTumcD9bc2pDlrt43N4exFAAVIkBSmQLEWHwKKDpQk7ElGsvKS2zB8ZocC/ILS+epaAqoNvlwsxdU2dTW+ncvmzc6SknNbKUfGPrsWs2psrayjDgGixUQP5tWhGo+vm+o6LSzpD9Oe6u6x9H/Gtq7D9YB9WVNv19dja1JFMYzFZufQaZwZjXIM5WNshDYmNUJVzFgtbE4HbV2ZjV0OyuDdzNzBLRQ3LL5ldkGtPA9qAGeN1QABXSqWDF1Fb7gnBqTalkCqDEFCX0sD0V6pcCN0QA6IWUDNK/OGAlaZEIcOYYIk7U2dJWOjuUEKgaApUamPWujujVNBPI2C4R0F18v+KYSW0pqTM9XecWAZhiAjYJs7GtVBobMD9Wd5l+DK+Y4DLEK67jeiD+7kptGy4QZWOXEDc4hm9h+StOcxvESRCKPKQ2Bh3yVQxoXShuh97GvIaCd23hfuYGWBha6VHMDcDURyRcikwhAvBgDsDA/VnpVhcJEfswG/lb3NZzS10zshsjeybjidiB1UdNnKxtJQdPVARjYpqxDssNzuc8TGXbwS8z2isPamYRmgbecXnCKopKa6M11dbD9OvAHj/PhoExsC7lai6YRTgkyVWzDGW3pSw4JrfSZmNbqUNkY0glXPV9rYnB61CamtXQ7q4l3M3YgCY8t+na1dh6B7JIikwZQi7sQ5MsP0oDB8VdXMbaAo6NDVlXusKtzg6jIkuOUJX+AUAVazvLOmXVEqGgT9TZ3lY6W+BaQ3TyJzUyNxIaEv2cNBvcfs2F2b1sta08B5YFHGyvnvT0vPST+T77t0FdWjFKd4hM068DuSvSZzdGZm2iwPOy2Kf5qIxcgFdJM83u38TNAT2/QZyNbpCH5MaoSsiKBa0Rxe/Qnp7aquddm7if2bG41JGTi9lhOSb4h6rILKsin0PCKBE+BYkeYytAl6QFegF5tbIsPkQ8hk9IzIcqkJYz8oEd15o6md2gswOo4cPpCgGXkUPqBCyhTvsX0xaB4pkALDukWvmkp+cBdRKg9SzuQaXZOaL+wFRH/TogbCE1iUmPrHYONBsAYamTf80znE7GmmKeM6Y3iJMsFHkIboyqZDw40PpQ3A7d6YmtWt61iPsZHXe5HVtfaHRsuqVsB5VrFz4e8f2E5crkmzpzcPfIkUDEwkvw90s1BO48Ajuwdo1fsLGN+wnAMVhs3i0FLN96BuzV1NnmVjrPPrA+nwj71pHZwZGYA3bNhuz3A/WkW0PLlefomEZGSljPzuG/Rzf3Tigqt8FZO2E9Xv84LGE/Fz1ux78BeuYyM0FQBzrJg+PMBADzKnpygzhb3CAPsY1RlYQHB1obituhOT2vm4p3reFuBgdN1hBrXaohFUEEC0+TQ5XpEE4iK4cppKz3pPRWSEQiGNnCL7sPFWsuQruYLfMp6b+vxP8lhIk629tKZ3svPDx3pdXA0ikXG36huZg2pRTHLKOUzHbiMbWIpR88MPdG1Ct1OeTQAaDi/Osg9s2GqHVctVOlWWCHLuBTK5pferplo0BNbRAnOSjyENoYdYh3MKA1oVhdlaYmNbS7awn3MzZu/0TCyjdLa2NJy97MjcxhYwrAGydAWKx1dpdycbdMBFWkOWEpN8UonVyxhlPn+ZTOrvHIrcUu7QusPSbgDqYNijoZ26BLV2PMbIxQA4cMOIYoFKpigj0llKKUnBTDrKOAB+eXgz3XucUgTWS5zPF0UBdrc3AMUrkZv/bASLGVFvXInd4vhzZzAYyO3zRm04NjbqJ3VlL15AZxNrdBHmIbow4Br9/XqlCsDq2pWQ397trC/cwN7hPSXHrjIluUsTq6InPDyCVf6WIa9817SHoDVG+38VgvghjbgHqRJcXfErEC3bOaRHSQSqR3UNTZ3lY6u8e5/0IfNQbmhhHdSiiai2n7U7OMmMWdsbD0z11nF7mN3vqmzqmoSyOth/dwfvo1WCqxZ3rnMbLaFNVsZAL4pctp8Mx6GpTP2tyY3iDOFjfIQ3Bj1CHiwYDWhmZ21Zya19Dxrj3c7wBEU41xwOuAGZF1npXMMFG5M75gTGBQ2fxk7w/cPV28X9L1K94vjo25nSWh5hh6M1Es0vilb786+Jo6UWeLW+lsGg8QVLmmHcvAIbPYlavLionQeIIdq1qaRBTDXsqghRsiY24xxp02MEWlwVGdSGzL9GtEwV7lCI0auUnvDxN4zQXxfnDSHaw47tJIL0eBxuRW4iyJQR5iG6MOAa/f16rQrK5aU7Ma+t21hfuZG4MSMiuxNi+tA3JI9Url/mRELGOFI3AXBErXO+1qdxdBjNuerIABUsCxJ6aISIiAXyuXEfQGXoE1Juok4kFnqzaPdxUivXVg2RYFRmeKqLb11T77xDCNtPq0VPqvU6OzdJ0bYJOt3Yg0tcxmEgyifwt/BlNFcNTDqs13xQJ8dAVWv208X9ktrCVmbkaoma3EjRhW8pDZGHVId3xf6WFi9aYyNalVt3tWcMdTrRfAb7d0I7GQHd1yBORGJhwBZHKsg0GWLG9nCSMN/4JVKZl1TG3B+BlIM7mlNzixooHfFu7uBZkZa/xF9j41dZbxSqdCWnOOwWwMzC5bJFvcxVRcBNm8dqEsneqD5cCDrClxB2rMTtxkdmUWtqIupwIAg7hFpH9NuSQE6a5H5nl5/HeWNzQbwKA9V3/tDL7xHBFqm7TWqOmtxE01ciUPwY1Rh4gHA1obmtlVc2peQ8e79nC/QzXEJcjIrxbXYsA6XIkCRlxdElTCgjA3eugugshTffgLFAE3ptmbEEvhBQdsFcQyw7oMLmnibGw3Mk+/QMFAKyc1aKAxVgH7qndEN3MoblmuA4rKsgd2mxarLBB5cHOSMKjLofmWWvfTj5EY+Iqc2etxVYuHZoLn+TJPtmiG3SVXKeOomd1om/a/G3XIa4y4ynV8W2tA8Tm0NWa0anVP/fdrdIPwu2+LS4vcpmtFUQk/HJfLSRqWQ6VHFucPy79Ch8iOi9fLtUIt+y7tgpHN3QizyJCwQNr19G5q0vKvqbONrXSeOE5Zeu3VwNx3pzwFLK1ccHcBlhAldAyOWZ9DvsgwqqYWE+045bLxZyt1sTJXfGzzr3kogJhLD1y5swm4GGcmkhytcHnimKfkXUnXY93XyQ3i5tDkSh5iG6MOAQ8GtC4Gr0NtalarevcM4X5VXQSazt6ZN3K4KfJPispei8wlteQtHuxMXUSjSUUySOT3IAKnwloSIbVUfqQUwO1iNtfz7yvqZGmDznNNAfieih0Dc+Pd+yLQXvUmqWYhxS/zxxZYXDjpmaXOJgppv9GWtlJpafh2q3Hza2a97GTqemTVRKS4IK6E/7g2N1w5Zlm/1ULfNyY3iJs7WVbyENsYdQh4fH9oQnE6dKYndVPunhncD6fBXVR29NHQ2Owj4HOlCs7N9AVwIVjZbMFHAAIgRkDJJ3CP9R6yv2aOWMEQKWIXgFVm7JK2UXyJvfTAxrlHbkAp6mxoK526gFR5zHeMy3PQAC5egtfKAzt7UwOEkWajlV+mjUgQxT+OidE/IgSzLXHaplmpywE6xCh29etfO4B0Nsapcbkr6rvklZoHwDqAdaa8g18sC/7/VvXMBnG2skEeMlsHHcIdn9dqWBkdClMzWhW7ZwJ3M7Kzx2LpbrnjgX0KLtGoBzl04ZAtnr7uNKXpfqgI3mqHb5bTF7eWNPr21tiaTaEFL5tKmjob2krnWb0ammwJjYF5CuU5F1NfmmI5IsO/8qFmF4mIS6hz6FBUmho7mUpn+6b6tRNzZduvGnl0oU1sUD2NZ1Q0z6wjMA8NenqDOB/7G2QtuNuoQ8SDAa0NxezQnJrX0PGuPby/ycWbyfkTb2z8+milPFop37uV8mpG7vQdzOj7E3DD1YeBopjUd3cqauIxWFL/9PT0xRNs8emHJ1rj2Z2k/SC4AHwAZ82GMLbgcVfu9ZunL745vfoNp3b65g9PYBD5irCIP//H06849X84ffP90z99g/EQxhYDX/8FA+Bvn7/89vvf/+tff/f7P/94fvPHP//1x9OX//X0W/yvzEEf4tXMa/JbuYeswRPyOi9bp+/OPU/i/Xzux5n2iXtFfiv33FYq3iNlyF0uRnkP9vMHEP5699zE/aC+nXlEaUwS8BI5VH4/5sMHkL1yGpp7jcafsT/xhf8E0194HtwvDC6mfQKDy9fGlYX6Y4r6wrfkQhsfgPV7Ts8/t8hDfW5cHDF9T5Ff+iD8SPFsMANy888+mLfzG12j0wcV+aUPsrDNEzTAKWwQ3HywbmaoYYq+cViRX/ggq54u5N7TsrE+fdArDWqbJZO38os2V96mfFn+A/76+MivvhZDLZeeWoBLJzuLEX97/Q+eiXlcyf/3So7czk5l/f2r34TbkP8rP8mXkLrTf1d99f/dlsfN2gfY0Bgh5+dRY2+pAqEHboyX+ii/PvjVF2kMfgfV5Lc23kj2IE8++J0uGBwMK7LJsVRm3o3lD+C9Fcv6HmLF8iDbLCf/rlL+AD5bsayv71YsD7LhZTqLtPhdEEnvO+vxGXWxq/6MIr/1M8vZfMtJq8+Ma3Wmzwzy2z+DrGnMZuua1WdGJ/30mUF++2dKVbPZOmSVzgywrT+jyG//TG/rbGY3TKs701x4reXiS9mQettCfqsf/mcxvrBchDW88Bshd0RFaZC9ox9+35QvnP5FsDpgOLH6pefTV09z6vcOEEbfo/8T8s5PhQleuhJdXKq6Cn4o8iMkQcRR2Q8xS2KQHyEJVg9L3QIxRX6EJFi9S2mblSnyAyTBi7/lwNIkiEF9gBx437YcF5rEMKiPkAJvpA9s65nFMMiPkANcf2tsspoFMciPkERj5a6XTU6kyA+QBDvu2R66yfgV+QGSkP0YqUdOklDkR0gi8ZbUsElRNfkRkuCRG3aabCQxyI+QhOOpGV5dPUtikB8giZcKFA+Qw0vlpEdIIcnh6dg3YhjkR8iByUnkIyKzIAb5EZKQFCe6rUEM8gMkwR0qxwrNLAlFfoAkpPQv8H6ShCI/QhIJOYqkIbMkBvkRksjswtzuFGjyIyTBfvy4Lfxp8iMkIfe35M0S1eQHSCKx/8LVjbPS5AdIgj1qQS4A0IIY1EfIgecGa9kYxKA+QgoV1ldK2ophkB8gh4jxeiobMKPJD5DEyzsPj5DEi/tqj5BElva6DdTX5EdIwrHfNm2SHk1+hCSkrt026Z8mP0ASoQLD5bhJhDX5AZKovL9BLkDRghjUR8ghAtKHuIFUg/oIKbCD1W837TX5AXJgj3Dt2x1LTX6AJPgkUZFrcCZJKPIjJJGX+8o3JqHIj5BEvuQgG6qzJAb5EZLwF4SHLROa/AhJ9EvqfqsOTX6AJFy9+O62hqnJD5DEy00Fj5DEix1Gj5BEvSRfN05bUe/PQu+XUOImcg3i/Rng5SnI77YBXJMfIAVeMOG2SEZRHyEHbqnGLaTT5AfIAUKPdYttFfURcuDVXWUL8jX5/kxIr2baZjuK+gA58MWS0rdpnyY/QA5wyQALm/xXUR8hh8pm4U0ZQFHvz0LtbNbd1EIG8QEy4HGknrclIU1+gBR4eXve1sYU9RFyeLE78AFyeKmv+meywLYpf/rL0tK9HEoh4euvnm7/5dquxT+sJsDuynS92pzXSMUSTq/fnF79H8deq9vP3elceEVdbvBj3Pd4/pNzvPSytH3z+QO+PRPwh8DncPYHhJR6T61WvjOw95PKk/3QTwu8GXt3ELjWwkcAIJtUXuSqMqutKeQuT3PuDQiJJxcyX77Iu9MEW3IrSow84mbMrcndtIDH3Zob72vxLZdS5CDp3iA8yoQ0A9wkXif30uSau8jbQaHzsPD+5PgOGmKAS7Ht/6Q0mK6LLUaeUt6fW4RW4MZL6MZPAMi7g5hj5iF7Y248GIiPuNYNi5OntyLf++ChHGOYIHd4yU0jeY+ZjYj4nFPnexfBG7NLfBGjRz62Y/BeKETXk/PZWiuV92CEHGAAPJS2JyKHhZ24S1K9NTfHF3crb1osbd9EvHc83pQjfmONwjMBkDFwGE827Rq0PCsFZTjw7C1jjPkScoWx1v4O65+30JfkrjXefUl7XiiZW+QNRLs/kRPxIfHxTGesf540FZgrb+Tszq6x2xoAEO4tGkpnc1qme03ydPCepOEgc/P4SAyWQ8OauDSXPTLR6o1heMY6NzAL52FKOlyqh29oXZ5x3Rsmyi2IfEmep9f3h5FXykoIyETKnhE+Uxj8MK/DK80YkTdrd5hsbNnvL43sLgEGHbn5Z9gj37fi41JImMv+IC2w2aJ7Xsaxv3jOnX20PvJyZmP1MB+HRcNPwScao9DBIF3kIVK5O3xXX7z60vnuoC/DBHlusEQep4zF73+Kd8QhRGVIJmTLeviEA0YohS5xfxhuaiJqN74cbQ2TK3scnYMX6y+rvfJaRozLDcL9AdkPjf8Jka/n7P0i8nlr3rfiq7W+yv7YvOA21coLkIxld2794njEJaXQjWADhw3mQ+UStzwpb7ztXAnVWC7yAtDbQyMUbagl8s3M4hMswVssJDj8CqAScgvGoua7WLKgfTO9OV/j9RUev3bDkNgCTX306K3IepYmmgZHBiRUXzYShhksNV7y06rhtTKfimvApnwkzoIWfJe1lpKscN7k5qtQIyx4f7UBWmQAUF5kbapJuuxLynw6wIIW/BDv25Ybf0xoAT8G28sl7zPDlc/71gIDo6UxAHduIHQsW8N8klzwxtsDm4kFsPKB1EMvvVbDgnmXXy1YTDVaaJnvICSEldToyA3z6Re+uosoUM1hEHXhMAArMPGXUTfPsiZeUl6CszzEQ8DAB8EC588SDDi58yUC30XvvbGCz3L7csou8Zy8sbRKlvcNAkB5tay58ooHHlNt+6jdySP1gPQRkS4bcefMfmGA/wSW3W783pohX4MoyDeRvhjK513ZMcON57qbTjrezgknjdQuy5MCu9GOj80hgYClRSOx5TPBlbO3PCEvIevIQXyWK512EY6/8GVEAA8TmfA8OaELEYOBk5AeJEcHFZxpg4GPoQFRtVyNxcnswMHhIgLwGmDDBgPfsqw8CZaNOSV5BQe+AsvPdIVsmGi8Is7SEd9CaHy0GTmPCf6KXNGbOl++NIbhPnxHlk53YU2K5TzeTI4o4Yxl3hLf64GE5dHA/WH68rhF6QxtL5tyCHIpWONRoyPV1/G4yJXzrljunfE48m66Uq0agCDxVnkTAy+lNKzQ81bLwtcAjWqLIPEqhf/ULb8sDxO15jz7kMyATHYbL9g2rTBfoOYMMwu7oJ9WSABKX0COLYdKzyUPAhcD53le+xLhcVgLtPxFL1ihyBMLltc7GDNL8rAgOkMD25yhNKxmLMiQjPCV+Z6BAwYvyfAK58p9YoQ3ron9QfhaIGyxZLmQe98xY24Fdsw3QQwROV6uBUvlLcKWiHyWvLIg2zPqI2zBYaSFzcvLWvvGTG20BLxslZHY7gcrhR26tAv1xTMjZie+O+ngpAxjpsfhkxTAw+aaaMxxkMcgfzGGKUlu1nERSMREl058Ch8xtyZVeYEd5NK8N91O4xOPmDkSTGNlNb6mDqACUGSm050PNsIgAiZuIOZe+RIGjDd3IwScefKwVi+K2C8rz0sCem28PN8FMz95SPnc8Sb7xut1pd5tOXiGUsQt5Di7mT4hM+Bw6sBdMLNgmWEAiKBCYWRWkhPloRxEgMprfo1F0flEHNCuq8FQGeAwPViUG/kta+b9YlznvLfVWBSduyZ8ZK4YbvdMPMygnrDSDVMlHK6e71kHmxvi4c4baOsuTKOICYcJjEpIBtrDouAxXN6FVp2BTX2XmwkAT2FXFjfLY0mdRmEE2sC3RnhtUc8mN3zhdEXb7wDgeQwLNhYdUJ2x0BKvSC2I4DEbBS2smwilVjZPGRZUaR2ATlCaYfO8oCrUjjVajZLfmb0wnc+glLrrviWPRGIMrQqsMev3cokeawNWwsF1g0jR+CCVVcWTGpXn5aKpWuiJd+zB7XpCYjOP5NvtjTfzegOMeKkEwZKRUZhxq/CRRgQTmKGhBJaoeMEWsGk1nXMVGFx5X/Tu2qKMsXCYisUemuWdgfAhQOB3yNj4FhdOLaE0ZFLmMJ2vH3a+PVOspd67tBezwmAtLq6cznv4InK3fePiwuHWUWdcshYXbxihIkrPuwniNuTwQYAOVINhjQl+7GVciTOfRx2XU/kQhVwnd5tgVhINLcPl3ThY9VgABraTFfJ2BWIVGX+XuzUM68gizc0PessQWQrj6xC78uDtKa5lhFskIWb9Bkktk03k5QaS5brIXKTwDAY38jgGzAfROO/WoZ+jNQB1QDskplZ985OJS0dYuntYOqLSW6KSk7dpWFLj3c9GzfvMywmAQCOLSrtrYbNEE+8ZhbyZTxsL4zH9SB8mo/osE6rzR5VRfZYJ1RL+YBM+AFVYouFjZKX0GPk2irHWeTkIwmzLy5t8+2sU4MRFFxGRyzvUAfl4Z8seHy1WBDzqgMYKPeqAP7UOSK/zERUCnfTi5hyQhTQTYvCV8cinPAAZDZfMNyw7H61xwdoDk7dFGu+/Y1OAsc5hEhWLEjDC+NCZt8IAg8CAY3+HTjPZB/SM3DystD/ksXtlLfRj9+rvvXvFFerZ8RcrX/E0M1E+uI7cPWZvKDx4fwm5BHldz1qifEeRwQqw1QgifIkq0ay4220Bg5Aughv4jxXRkRg2vujQgxV+Q+TbSHAovN/yXbapK7J6eF6PgGFN8Oi42PMWR8fF37vjgt4iw3zhK5BH2fHcXSKQJGOxgUgDnwhJWBKR71lawzDFivQXzlqfnq+DVa4TK5k78+1DRGPEhtqM7mq+iFIKw0OwSiXwFu0C4wutAP8bIAVgHeEhikc2vQXwP1NuJHT7Cd8G//cLZscHUa2I/ul0CbqjSfATaRJ0UkVjDS2DLWtlMYnPfDPb7pSXHF7Sq251HEgVLbPmkOGUjQQdOTxBDg/1mEGTSTxyT7ilYMQzyeEhvErnZXHDJL7R45RqRDTm8JluB2mPWXTn7UEJLhDJnOFueSU57KIx47bmBAuFt+H7g363TLLNIrjzEau8s2Qddzt60s0s4hfXk74kETAWoDfkhKa7KHKjSWLqbCiK1xowY2buaWGdLui/8i1OA7U7easTyozmCUDmEHxuBYvGCvnMIVhQxQ/MI43MIeD7U+MGnJXmE8ZAl13ezDZzCD7MBxxjAE6mEGQEg1gnUJlBJGAzpMreqn/AOpEHQ0tIfCxegAS4sF3guYKXnUWWkkNnIclYNx/95rb7bPa23bG1vfUFH8/O9lLaL4jnBcHIWsXITwHBK0KilSzzYb7Ex+IDb0C1nIE8Pw9gASUa/o24tfC1WGcaHF9shuOCWTa/iy62eQb7jRGq4eqspXAcdTW8yyd11JWORl6rTUjQu2WFRBc8it9bt7AOwQVyNZe8HWWJLgAlA2J6McxKwAUEgww3m3swrENBj8E7y3l22flF8gloZdYT/AUOrfAhRnO3nkWzyNzT2kI4C7qAnqKD9zLWOcBFhWSQpAWrDiXoInfZrDD3GViy4cPC9S3bFQiRTe4yNna8BV0AaTZe32HuVvDxW1Z9gFwNRyrdAhjC1WTukcot18ibCrT6Dh3d8FGVG1W98BXjo7pxczpHdeOobhzVjcXryD2WsJlSqul12OjmCgPeflf5xutwIWfHrMcY8Rd33437MNfdONnHhu+D+3ob0gH455kFV6w2Ge6uYAi4LuQQFjfFQ62Je0oxGd6i8IKwDPHim1ZyWBmEuIEHuGh1TsFOYS5BWoQsp5Mu3FuOvVk9Y9xdYZhm45mdGEHEiMPcEDKG4e4KwhT7LqKFsrm9gpXJ11iqER5kd4V9SK4aGdhZdlfgZtnVaYiGmyvIQ3qFszW3WSFgT30HqyuIeysOARGxwawWcnMFiTriItyohXTYW1UCFGCnjMjn4SgoYmdsRsLvUZWxNm9naXAina+Sw+e8S3qVsYwjIhtguVUxOdo7LK9ztHcc7R1bh/HxtHcsxVnkMYCv1Wzck6eQAKs6Uthd/Hum48kXOV4ATGB1NfLNcd471Vvbj4xbx5MuzHeRrHaLtZdud/yILnek42HjAKYG+G7V09kdWiU6slZiJEeeL6mHyK0wa6nzUZjKclaxzmqwORTZeQ9ICs3iBevsHYkj8jkjZZHHulKHG7TBTmIj/nI3qVX4hb9Ahs++daNuf2ZvKONsTMFa6MyegKVrwJKwgAF7QzP3sBJt3nA7gS0VBZ/qprrZ9e/pApvl2aU11DOiI+ibpzD4JkZFdl/SbkrNpeWBSxHP+dKQYRJnaQ7NzKjhBo3KK+uBjL6JJSvL72ApQMZwgdFyX2wODVjjsE8Dup75nh5ySyy7YlVKg7QvI21kT5RZB+YTTwh+sGPLJ/MxrIq8MrOYZ7ud1hH0knHcYet2IIOEZepas5KsT+isvvscT5a442DJL+pgyeJ2uuNhZh7Us9wO4isXA0CR4SilbAPZMUMwj7QlaWBwPLdpbBaxbMNTb5599FaRPPMeTbaZAL28S5rFh6rY3d8sAPrild1wO4jpgWiIdTLD7TBesyzTjDwBFlaZWSezBHnmidLGtyiAeIxcTW4BgtfBT0zoDqdTuVXIa66tQjByNYgkeutoj+xyI4vg7p6zeIG6eJqG5TrTkWZu/TI9AoazDrnwSG+BLyjmiuAuN1AD2AnN0AB3uQOff4I3SKbPaVh8yGLZR2OBHZgpdB1rjWaBqFFPyJ2wIixQyqQ6ezZEmSYj50mBq3gs1cg15DhpjPCSAMnWiuB5UoaHBruwmmIxKTbZAL/ZpR3IBsk9GLaQDtYJol2o1nYw97uZBTcLJnK3W7YiGxDKW3a7uT0fi7klB29DLmOuVouNeBsimMgkxfY2jQ1XQOFmbQjehqEQei77F8o88zas1RS+lviJ3g7hjgaaPddyNNBM3uTnNtB8jv0zi0t5ob553u8QeO5HArcO6k9+Z+QALQdoOUDLAVreBbQUgpbguDotb3NUZo7KjPY3R2XmqMz83MrMshmXSu+GDI59qGMfauN1fvY+1Nl9VBtRxz7Uw/ehgjzhWGowbyE8+m4st3P03Rx9N1u/8/H03Zw/UOPNffpuEhaY8zAyVyy8c3QZG37n6DI+uow33uvoMn6XLmP4scCqDSKk9QTScZ7KcDrHearjPNXW6xznqd7lPBW+Co+DsGV61ePkuJGoHSfHj5PjG59znBx/l5PjOUGtsObGexMNf3G03hytN59w68356L15x7trmCXB8vDVbl1vf9x6Z+U9x613x613s7f4vG+9IxiB74ZvrlZSd9RIjhrJUSP5hdZItsUNR6QfpHvA3PY/buvfwSfHbf3Hbf1bZ/G539bPNizWBbnxa2UiR7uJmYkc7SZ2KnK0m9i5yN/hFZ/IhsvGdmarR+94l89a6Me7fD/1XT73UT3Ld3a/gHf5sETZaRSc2dvzCR2XObvjvIx5XobCOQ7MfAoHZp7HYoSA3MGYVZ956an582f31jyt+Xhs/nhs/vkafeGxeXeft+YDGyKLaOQX+NgMV+OxY3/s2L/Ljv02unnYfwAGd+YRppei2wcJbuePKbp9lsHtfES3u0e393/26KX07vxB8rvzcR+Cmd9xXXx+CR65+RAZ3vkDpXjbZ8q59+u4Y2big6PAaSyLT6rAKVHnqHDuVzg3awJaK7kAIDVrw/qXt71H+zn29z6J/b2NORNPVd7qEIqFFH5hvS205aO5xWhuEfj08XS3bIyZu8nM0Eowb1B6SF/n+TNs7KTmP6LOTkEsH09r59YQG7OHWHlTlQUSXjiNcP6IjiOISzzOI+wXE9yHOZAwWxBLBY6oojmrwdddHP8nwA3ti4ApCH8BIP5e5+POH6Tefv77F9zd51hvn+1ECgMEIexONDL0T+bgNZfScfLaOHm90TvcaCvcg6iW3o8TLD8N6HwgnPNsnTpWLnspBu/HVVCWvl64Cmoj6AS1QLlckYb/+AWWZ2YRwd0juUUOZ9XNPqVrWDe4SW5b5QXr5ogPadWbuYIX5duLPC5p1keM2/1/+/Tb0w+nV7+Op+9+PIXTv5ywfE9/w9/46vTqy2//54+vv/36qy9Or398Yok3wSHlU+RVZB5h6/RGU5Ecu4X8p6en3z1F/uz5X9Dkzd/Y/8LuONvfj5He+gXH+Z2+g0S+xz+c5XdPP4iUCA1OOax/ERZ//Yuv3zx98Q3+JkFcPn3zH0+vfuPhWE7f/OHpV1/+w+mb75/6hWfpEMXw3x1/8as/Cj2yI7U3Rf+L0BPvss99kL8VMl8RwCoMN+procI6l/uYb+T/vo6B0Ouq+vnp+s3mech30P9w/T3rIE599L9uH02ICqW9xOMbIXtPlzuNb33XYN/67L4MLOYtuiV4gxnr5/vM/PlK5RUHivP3VcgPt2H8YmAL9a/7g//+xknmQYjyU3mxJvq/V7mEpQ8ivPTZ9x3f0rbBviUy67PW8MY4r34Tbiv3b4s5M8jolavW9j/efhGZUauPlhvvMU3GZDH/77v6tiRmTfVHof/TN3TYT/8f3x8Y4QplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjEyMjE3CmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg5ID4+CnN0cmVhbQp4nDWMsRHAMAgDe0/BCAiDgX1yqZL922DHbtBLOhQIYgqbB0mmThda+Ulvg+uipyGdwJOUsTNjO9Rtty65s7NX7cjar8+hv3YntV4kEiuByNI4g/cHz5odjwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODEgPj4Kc3RyZWFtCnicNYzBDcAwCAP/TMEClQLBoQNVfSX7f2uh8sA6Webg0KGXMxCTl/qYmK3CI11ugafGAskMmk4INIRRsKU8HEy9q6Y8sl6GN/3qLe8Hsn8XtAplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTkgL3cgMTIyIC96IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC93IDE3IDAgUiAveiAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVxoApUQM5AplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nEWQS44DIRBD95zCR6D+cJ6OsurcfzsuOtFssCUo1zO5AxN78chMlG68ZLg7zBWf4Rkwc/hKmGzETOhOXCOUrhThVJ8IjsvevOmgiXtEzqOeBVnVzg1qAWeS5oLtgi7njBU3zsmtRuXN9KPXEL5pdx/XeYf2SOPew1S+zjnVzruKCGkLWdW0vpBsFMkOaz8qTdvOyxCx4GwaVugc3gi7V3cnSxh+v/IwJRM/D936UXxdN6PrFGcnVyZrz3noSelf9cqjD8VxKegXse3MJPdfp1OSqVN7Z+9p/ae4x/sPkG5WOQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcgPj4Kc3RyZWFtCnicRVFJcgQhDLv3K/SBqcIr8J5Ozanz/2ssM0lOFmBrMWmBgS14iSHWwMyBL7l8Teg0fDcy2/A62R5wT7gu3JfLgmfClsBXVJd3vS9d2Uh9d4eqfmZke7NIzZCVlTr1QjQm2CERPSMyyVYsc4OkKa1S5b4oW4Au6pW2TjuNkqAjFOFvlCPh6RVKdk1sGqvUOqChCMu2Log6mSSidmFxavGWISKfdWM1x/iLTiJ2x+P+rDDrUSSS0mcH3XEmo02WXQM5uXmqsFYqOYg+XtHGhOp0qoFjvNe29BNp4Ln2X+EHPn3/jxj6ud4/xu5cIgplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjc5ID4+CnN0cmVhbQp4nD1SO5LFIAzrcwpfgBnwF86Tna2y929XgrxXZKxERpId0lK6DA1pI1ViDKns8jMuwrZU/g4i+1w+v9DWOtCch6OLjQmgKfelqwN2Fa2SFr7rKDIE5hDYaJpoTlFwCgm1fdpwkIf6AOsyIna9LwYlejayrUP2IPYTqRlSQTnwjoRQhIfNvmP4OHE87c0TYE6eDDgje/UzTildOWE5FDAyt8MtsN7XZ1/PRrmIvOYHYQ4ixyJyYlMTDJJAsRxejnTw1FOjNgPkUVwwUcdsscDPvWc+6DGkU+iR7dhcLqReZPCF+dmh8GA/twAGKqq1nQY7WL2/jmO9hg2/j+Fa5I7bii0coE0XDsQ7wRFZ7+8tea7ffwdybgYKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI3NiA+PgpzdHJlYW0KeJw9UkuO6DAI2+cUXCBS+CY9T0ez6rv/9tm0mhUWYGNIykuWqKVMLZNUlV1LfnR07jL5NzSvRs+w9ebMQ+ZJsTgyt8o9DOSZW6zQa2/UqwsAsUju1BLbJcaWS8WSZIes7RB3ZNDhxSrZzPjawg43a45HUhcqXqcHBfmMMPBOzH2+iWUhNFcZbbfAQQ8WqAM9MAsTuSLj3WsTPY14C6CsD5m/iC431FyPbEyAU7jaC96plNYxDxWJohzsRhq9n6PmOKHD2z1iOfZyCUcG3uJox3vwRYieRlZErH7IsxH5hg2pSI+Yyhvqbh96/I2t2Gh/diZJwddf1ttMNdK54NRcrdZfg0do8N6o4fP3S57x+x8hJm4SCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJyzMLZQMFAwNDBTMDQ3UjA3NlIwMTVRSDHkAgmBmLlcMMEcMMsYqCwHLItgQWRBLCNTU6gOEAuiwxCuDsGCyKYBAOvnGDIKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nE1ROW4EMQzr/Qp9YADrtOc9G2w1+X8bUt4EqURDFEnJ5SlTMuWyuSQjJGvKlw6NLbZcvg9CU0tFwdS9RXXJa5imrFssXdDzqSyv4Rjge3c31D/0iNkCkdGCXWGBDpA7uGD4PXsmbFMLIlEl1AxgmrDCHK5EDEEGY50ZBqUKg1P1d5Xjsw07BdYOZlOkR1ITnXSD5oW33nIhgq1Tuak30oTc2acYYmXjvkqX4wPgYKLLRGTE5mU4ng5haPDONGCFsx7EBJnWkdKLmZExDTfpyNVXi4rPNhlLntH/9of6K59u/4MQfMb7B0lVXH4KZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJw9jMENgDAMA/+dIiM0iU0yEOIF+39pCu3HPp1k0yhd4BVpQoSc2shJT1vunoSDgxSQsF9t6NW+Kkt7qiBqMv42fHfXC3ccF04KZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTMgL2ZpdmUgL3NpeCAvc2V2ZW4gNjEgL2VxdWFsCjY4IC9EIDczIC9JIDgyIC9SIDk3IC9hIC9iIC9jIDEwMSAvZSAvZiAxMDUgL2kgMTA5IC9tIC9uIC9vIDExMyAvcSAvciAvcyAvdAovdSAxMjIgL3ogL2JyYWNlbGVmdCAxMjUgL2JyYWNlcmlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvRCAyMyAwIFIgL0kgMjQgMCBSIC9SIDI1IDAgUiAvYSAyNiAwIFIgL2IgMjcgMCBSIC9icmFjZWxlZnQgMjggMCBSCi9icmFjZXJpZ2h0IDI5IDAgUiAvYyAzMCAwIFIgL2UgMzEgMCBSIC9lcXVhbCAzMiAwIFIgL2YgMzMgMCBSIC9maXZlIDM0IDAgUgovaSAzNSAwIFIgL20gMzYgMCBSIC9uIDM4IDAgUiAvbyAzOSAwIFIgL29uZSA0MCAwIFIgL3BlcmlvZCA0MSAwIFIKL3EgNDIgMCBSIC9yIDQzIDAgUiAvcyA0NCAwIFIgL3NldmVuIDQ1IDAgUiAvc2l4IDQ2IDAgUiAvc3BhY2UgNDcgMCBSCi90IDQ4IDAgUiAvdHdvIDQ5IDAgUiAvdSA1MCAwIFIgL3ogNTEgMCBSIC96ZXJvIDUyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAwLjA1IC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAuMDUgPj4KL0EzIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzcgMCBSIC9NMCAxMiAwIFIgPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9CQm94IFsgLTYgLTYgNiA2IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZAxDoAgDEX3noILfNKKiK6OXsPFmHj/1TYiqcGFlN/P66cSTuKwkR6QcBHHYcoDJ7txzLLkOYDjvIxTGlUpXISLSbXaqXXxPhArK0cx6jFYFRzscTfUh/n2mtnxRB1+Ajo7/qDoRsPlwpMUPjz6v+F3B+h3hS8ZFvogWukGX7hFQwplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUzIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTAxMjUxNDQ1NDcrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjIpID4+CmVuZG9iagp4cmVmCjAgNTQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjQ4MTEgMDAwMDAgbiAKMDAwMDAyNDI2NyAwMDAwMCBuIAowMDAwMDI0MzEwIDAwMDAwIG4gCjAwMDAwMjQ0NTQgMDAwMDAgbiAKMDAwMDAyNDQ3NSAwMDAwMCBuIAowMDAwMDI0NDk2IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMTI2OTEgMDAwMDAgbiAKMDAwMDAyNDU1NiAwMDAwMCBuIAowMDAwMDEzNTU4IDAwMDAwIG4gCjAwMDAwMTMzNTAgMDAwMDAgbiAKMDAwMDAxMzAyNyAwMDAwMCBuIAowMDAwMDE0NjExIDAwMDAwIG4gCjAwMDAwMTI3MTMgMDAwMDAgbiAKMDAwMDAxMjg3NCAwMDAwMCBuIAowMDAwMDIyODU2IDAwMDAwIG4gCjAwMDAwMjI2NTYgMDAwMDAgbiAKMDAwMDAyMjE3OSAwMDAwMCBuIAowMDAwMDIzOTA5IDAwMDAwIG4gCjAwMDAwMTQ2NTMgMDAwMDAgbiAKMDAwMDAxNDg4NiAwMDAwMCBuIAowMDAwMDE1MDA3IDAwMDAwIG4gCjAwMDAwMTUzMDcgMDAwMDAgbiAKMDAwMDAxNTY4NCAwMDAwMCBuIAowMDAwMDE1OTk0IDAwMDAwIG4gCjAwMDAwMTYzNDYgMDAwMDAgbiAKMDAwMDAxNjY5NSAwMDAwMCBuIAowMDAwMDE2OTk4IDAwMDAwIG4gCjAwMDAwMTczMTYgMDAwMDAgbiAKMDAwMDAxNzQ1OSAwMDAwMCBuIAowMDAwMDE3NjY1IDAwMDAwIG4gCjAwMDAwMTc5ODUgMDAwMDAgbiAKMDAwMDAxODEyNSAwMDAwMCBuIAowMDAwMDE4NDUzIDAwMDAwIG4gCjAwMDAwMTg2MjMgMDAwMDAgbiAKMDAwMDAxODg1NyAwMDAwMCBuIAowMDAwMDE5MTQ0IDAwMDAwIG4gCjAwMDAwMTkyOTYgMDAwMDAgbiAKMDAwMDAxOTQxNyAwMDAwMCBuIAowMDAwMDE5NzI3IDAwMDAwIG4gCjAwMDAwMTk5NTcgMDAwMDAgbiAKMDAwMDAyMDM2MiAwMDAwMCBuIAowMDAwMDIwNTAyIDAwMDAwIG4gCjAwMDAwMjA4OTIgMDAwMDAgbiAKMDAwMDAyMDk4MSAwMDAwMCBuIAowMDAwMDIxMTg1IDAwMDAwIG4gCjAwMDAwMjE1MDYgMDAwMDAgbiAKMDAwMDAyMTc1MCAwMDAwMCBuIAowMDAwMDIxODk2IDAwMDAwIG4gCjAwMDAwMjQ4NzEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTQgPj4Kc3RhcnR4cmVmCjI1MDI4CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-01-25T14:45:47.346003\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.patches import Circle\n", "import scipy.signal as sig\n", "import itertools\n", "\n", "\n", "def compute_pole_locations(Q):\n", " \"\"\"Compute grid of potential pole locations for direct form.\"\"\"\n", " a1 = np.arange(-2, 2 + Q, Q)\n", " a2 = np.arange(0, 1 + Q, Q)\n", "\n", " p = np.asarray([np.roots([1, n, m]) for (n, m) in itertools.product(a1, a2)])\n", " p = p[np.imag(p) != 0]\n", "\n", " return p\n", "\n", "\n", "def plot_pole_locations(p, Q):\n", " \"\"\"Visualize potential pole locations.\"\"\"\n", " ax = plt.gca()\n", " for n in np.arange(np.ceil(2 / Q) + 1):\n", " circle = Circle(\n", " (0, 0),\n", " radius=np.sqrt(n * Q),\n", " fill=False,\n", " color=\"black\",\n", " ls=\"solid\",\n", " alpha=0.05,\n", " )\n", " ax.add_patch(circle)\n", " ax.axvline(0.5 * n * Q, color=\"0.95\")\n", " ax.axvline(-0.5 * n * Q, color=\"0.95\")\n", "\n", " unit_circle = Circle((0, 0), radius=1, fill=False, color=\"red\", ls=\"solid\")\n", " ax.add_patch(unit_circle)\n", "\n", " plt.plot(np.real(p), np.imag(p), \"b.\", ms=4)\n", " plt.xlabel(r\"Re{$z$}\")\n", " plt.ylabel(r\"Im{$z$}\")\n", " plt.axis([-1.1, 1.1, -1.1, 1.1])\n", "\n", "\n", "# compute and plot pole locations\n", "for w in [5, 6]:\n", " Q = 2 / (2 ** (w - 1)) # quantization stepsize\n", " plt.figure(figsize=(5, 5))\n", " p = compute_pole_locations(Q)\n", " plot_pole_locations(p, Q)\n", " plt.title(r\"Direct form coefficient quantization to $w=%d$ bits\" % w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* What consequences does the distribution of pole locations on the desired characteristics of a filter have for e.g. low/high frequencies?\n", "\n", "Solution: Quantization of the original filter coefficients leads to a limited number of possible pole and zero locations. These locations are not uniformly distributed over the $z$-plane, as can be observed from above illustrations. The density of potential locations is especially low for low frequencies and close to the Nyquist frequency. The properties of a designed filter having poles and/or zeros at low/high frequencies will potentially deviate more when quantizing its coefficients, as a consequence." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Coupled Form\n", "\n", "Besides the quantization step $Q$, the pole distribution depends also on the topology of the filter. In order to gain a different distribution of pole locations after quantization, one has to derive structures where the coefficients of the multipliers are given by other values than the direct form coefficients $a_1$ and $a_2$. \n", "\n", "One of these alternative structures is the coupled form (also known as Gold & Rader structure)\n", "\n", "![Coupled form second order section](coupled_form.png)\n", "\n", "where $\\Re\\{z_\\infty\\} = r \\cdot \\cos \\varphi$ and $\\Im\\{z_\\infty\\} = r \\cdot \\sin \\varphi$ denote the real- and imaginary part of the complex pole $z_\\infty$, respectively. Analysis of the structure reveals its difference equation as\n", "\n", "\\begin{align}\n", "w[k] &= x[k] + \\Re\\{z_\\infty\\} \\, w[k-1] - \\Im\\{z_\\infty\\} \\, y[k-1] \\\\\n", "y[k] &= \\Im\\{z_\\infty\\} \\, w[k-1] + \\Re\\{z_\\infty\\} \\, y[k-1]\n", "\\end{align}\n", "\n", "and its transfer function as\n", "\n", "\\begin{equation}\n", "H(z) = \\frac{\\Im\\{z_\\infty\\} \\; z^{-1}}{ 1 - 2 \\Re\\{z_\\infty\\} \\; z^{-1} + (\\Re\\{z_\\infty\\}^2 + \\Im\\{z_\\infty\\}^2) \\; z^{-2} }\n", "\\end{equation}\n", "\n", "Note that the numerator of the transfer function differs from the recursive only SOS given above. However, this can be considered in the design of the transfer function of a general SOS.\n", "\n", "The real- and imaginary part of the pole $z_\\infty$ occur directly as coefficients for the multipliers in the coupled form. Quantization of these coefficients results therefore in a Cartesian grid of possible pole locations in the $z$-plane. This is illustrated in the following." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM1OC4wNDA2MjUgMzM4LjI3MTg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJztXUtvG0cMvu+vmKN78HjIeR96SOrGaIEe4hjpOVWc1Ibt1HbTACn638vZh5Yj7cpR66RqxBgCtPxmhx85JHdWkbigLhtQb5VRl/T6oECd0OttY+jourE+aeNMQE+HV/zQ2qQxQoqe5KY+/LVp3jRHT2iaezrtpGnotNSfFnXqhtHk5WBVfFWJwWszyNkkXNwqu1VTKjBmekWN6u5c/axu1NETLJygtbNYeHqijo7P/7hYnJ+ePFWL+6aBnLTtJvJGu4ErWtA5WmRCDE6jxaSC1dElYxUmcg+4gKBS1DYGR+8WjQXQMQfnrAJ6a4xLAMqi1+BTMlGBs9r4gMlV0hgGVTTHKEeTdUrRhaDYzOiIoE3ZZk4Dg9c+EO9McywJY8oaso+olmZZg4My5gEmXTRAp0eTTCUGS29dcp5NCibpQP9IaaU/OeLtWhNGshG0R2wtGO0ahZUTmHj02Dgrcy6jwFdiZLtcs9GqcWUnY2BRIu1F81zdDmFkKG2gpI1OFFAU6EXCSPJYZ1JHfPrYbZ5S7n1obpsSjYeGZvNBo0GwJiSghbKUVAmIx+K6eXqmjp4V09TZm4YIxpT7xDx73RwU079RZ5fN92c0n6EAaAN8+YYmoLMPj88vX718/+LVzf3h9cXN+3t1/K55Tn+tDQ0YUoghp1yR5+KN7MnXxCnEADa4bdgbHf2/Z0/kMtUG62r2TLyRPUDWAQARfDZ5O/r+EZwfgg42mFSzH6WbyXvQZGQM0TjvtyOPj+B7VjQ4eyZep1/xIohCv+M8su8IdqGtiGCnDS3JnIdYKWPSB3QhJJ0BrY/Zu3V1nT+YukBl1uUIodbHxA8ppDoSIGRDzsiwptCv2petdt6RglohEz+kMKG2CFTsEkXPmsK4YiG7vFRXaCZ+QKEFpw36nJ2FhCsKga0gj9lCsouOXIVr2X3oDqDTRyUHp22gBp1dQirphU4XxOc9AB6ts0vxn73YBgoOF5bjj57hMOXHdojX6LLh5zKtfw3pMUT7uNngewTv168aU6mKQDsSR2kdv1RdH/mmcr1f4ztKZ/nGpOFT+D5KJR/5AtgpBzPxLGOg/cQnufhRqjej7NyUj5l4njLtiz7Ry49QsxnlcZdVUR7FM1Uma1/2SxFbT08X61ENlfcpzzDxRjVoXOud6SLN1Ng8ZQ0Tb1ZjPbNmtTQzNdFMWjOKN6sJkVmzWpDZ7cy42eZqmHizGroCD9bUZbhE3WEJF7qbgq6WQlhy31yHf2iDD0lDVYWvW3GmqyJNaPJnrMNlG77NLV9JClB33YYd2u16EZyeNAPSJ2M5WG7WoWzC+S3ItTr6yZQsWg7VGctut/ypQ4owOznMqMJwv5HaVdnp3aS5P0i9IIBhJ1kK8pnX3dE2CXeTqSC7gKzES/BykRPk88YY3ZCC1CRB/nNkJS5z2FmmggiyTSyXT1N2lKgggmwVyoByCyPIHiEr8Y9GPkwTZG+Q1ehP8oGEIIJskzM2aNkwCSKIpIwggkjKCCKIpIwgguw+spIyzsl/FgsiiOSZIILsVs7Idk4QQSRlBBFEUkYQQSRlBBHkf4HI92wE2WdEvmUpyP4i8h17Qb4WRH76JMhXgsgvUgXZRUR+wS/IF44x6UQiyDbxIp2O9giR7ma7hUj7v3/kqLWWks95C3pUP7L28/WjDKYfujDzFIXmxfTjGK5nH8dAZ2z1WId6/DjTRg2m2Kd41863vGmu88sTEYYTx86l5WjoIIptB9Hv2g6ia+1037XiqK2DmMfupAfve3kwnjUtPfhtEENkzU+vWqnV1tqcWA/q82HyhG2H6076enIO1c+RwDlvx9FvWrnTiC7wvqpzxO/68dlaz4Z3/VkBdEi5mn9O76Lv2+pzDP5hf02bOkd+Tn4x48gZMnPDp8ncTC/p7z2XaHzfg36zY24nl28mXl4NTLz1wJhvyWXO0I+9XzCnytQ5tdvOP7faM/TnXDandm76mXnalsFdNn/owhlXur6zfP92GGEzeq7UD9ytq4Jpjvwvk+s957E5U+9ZA+Pmb30v2GoKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxNTMyCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg5ID4+CnN0cmVhbQp4nDWMsRHAMAgDe0/BCAiDgX1yqZL922DHbtBLOhQIYgqbB0mmThda+Ulvg+uipyGdwJOUsTNjO9Rtty65s7NX7cjar8+hv3YntV4kEiuByNI4g/cHz5odjwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODEgPj4Kc3RyZWFtCnicNYzBDcAwCAP/TMEClQLBoQNVfSX7f2uh8sA6Webg0KGXMxCTl/qYmK3CI11ugafGAskMmk4INIRRsKU8HEy9q6Y8sl6GN/3qLe8Hsn8XtAplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTkgL3cgMTIyIC96IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC93IDE3IDAgUiAveiAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVxoApUQM5AplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nEWQS44DIRBD95zCR6D+cJ6OsurcfzsuOtFssCUo1zO5AxN78chMlG68ZLg7zBWf4Rkwc/hKmGzETOhOXCOUrhThVJ8IjsvevOmgiXtEzqOeBVnVzg1qAWeS5oLtgi7njBU3zsmtRuXN9KPXEL5pdx/XeYf2SOPew1S+zjnVzruKCGkLWdW0vpBsFMkOaz8qTdvOyxCx4GwaVugc3gi7V3cnSxh+v/IwJRM/D936UXxdN6PrFGcnVyZrz3noSelf9cqjD8VxKegXse3MJPdfp1OSqVN7Z+9p/ae4x/sPkG5WOQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcgPj4Kc3RyZWFtCnicRVFJcgQhDLv3K/SBqcIr8J5Ozanz/2ssM0lOFmBrMWmBgS14iSHWwMyBL7l8Teg0fDcy2/A62R5wT7gu3JfLgmfClsBXVJd3vS9d2Uh9d4eqfmZke7NIzZCVlTr1QjQm2CERPSMyyVYsc4OkKa1S5b4oW4Au6pW2TjuNkqAjFOFvlCPh6RVKdk1sGqvUOqChCMu2Log6mSSidmFxavGWISKfdWM1x/iLTiJ2x+P+rDDrUSSS0mcH3XEmo02WXQM5uXmqsFYqOYg+XtHGhOp0qoFjvNe29BNp4Ln2X+EHPn3/jxj6ud4/xu5cIgplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjc5ID4+CnN0cmVhbQp4nD1SO5LFIAzrcwpfgBnwF86Tna2y929XgrxXZKxERpId0lK6DA1pI1ViDKns8jMuwrZU/g4i+1w+v9DWOtCch6OLjQmgKfelqwN2Fa2SFr7rKDIE5hDYaJpoTlFwCgm1fdpwkIf6AOsyIna9LwYlejayrUP2IPYTqRlSQTnwjoRQhIfNvmP4OHE87c0TYE6eDDgje/UzTildOWE5FDAyt8MtsN7XZ1/PRrmIvOYHYQ4ixyJyYlMTDJJAsRxejnTw1FOjNgPkUVwwUcdsscDPvWc+6DGkU+iR7dhcLqReZPCF+dmh8GA/twAGKqq1nQY7WL2/jmO9hg2/j+Fa5I7bii0coE0XDsQ7wRFZ7+8tea7ffwdybgYKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI3NiA+PgpzdHJlYW0KeJw9UkuO6DAI2+cUXCBS+CY9T0ez6rv/9tm0mhUWYGNIykuWqKVMLZNUlV1LfnR07jL5NzSvRs+w9ebMQ+ZJsTgyt8o9DOSZW6zQa2/UqwsAsUju1BLbJcaWS8WSZIes7RB3ZNDhxSrZzPjawg43a45HUhcqXqcHBfmMMPBOzH2+iWUhNFcZbbfAQQ8WqAM9MAsTuSLj3WsTPY14C6CsD5m/iC431FyPbEyAU7jaC96plNYxDxWJohzsRhq9n6PmOKHD2z1iOfZyCUcG3uJox3vwRYieRlZErH7IsxH5hg2pSI+Yyhvqbh96/I2t2Gh/diZJwddf1ttMNdK54NRcrdZfg0do8N6o4fP3S57x+x8hJm4SCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJyzMLZQMFAwNDBTMDQ3UjA3NlIwMTVRSDHkAgmBmLlcMMEcMMsYqCwHLItgQWRBLCNTU6gOEAuiwxCuDsGCyKYBAOvnGDIKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nE1ROW4EMQzr/Qp9YADrtOc9G2w1+X8bUt4EqURDFEnJ5SlTMuWyuSQjJGvKlw6NLbZcvg9CU0tFwdS9RXXJa5imrFssXdDzqSyv4Rjge3c31D/0iNkCkdGCXWGBDpA7uGD4PXsmbFMLIlEl1AxgmrDCHK5EDEEGY50ZBqUKg1P1d5Xjsw07BdYOZlOkR1ITnXSD5oW33nIhgq1Tuak30oTc2acYYmXjvkqX4wPgYKLLRGTE5mU4ng5haPDONGCFsx7EBJnWkdKLmZExDTfpyNVXi4rPNhlLntH/9of6K59u/4MQfMb7B0lVXH4KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago1MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNTMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJw9jMENgDAMA/+dIiM0iU0yEOIF+39pCu3HPp1k0yhd4BVpQoSc2shJT1vunoSDgxSQsF9t6NW+Kkt7qiBqMv42fHfXC3ccF04KZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTMgL2ZpdmUgNTUgL3NldmVuIDYxIC9lcXVhbCA2NwovQyA3MyAvSSA4MiAvUiA5NyAvYSAvYiAvYyAvZCAvZSAvZiAxMDUgL2kgMTA4IC9sIC9tIC9uIC9vIC9wIC9xIC9yIC9zIC90Ci91IDEyMiAveiAvYnJhY2VsZWZ0IDEyNSAvYnJhY2VyaWdodCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9DIDIzIDAgUiAvSSAyNCAwIFIgL1IgMjUgMCBSIC9hIDI2IDAgUiAvYiAyNyAwIFIgL2JyYWNlbGVmdCAyOCAwIFIKL2JyYWNlcmlnaHQgMjkgMCBSIC9jIDMwIDAgUiAvZCAzMSAwIFIgL2UgMzIgMCBSIC9lcXVhbCAzMyAwIFIgL2YgMzQgMCBSCi9maXZlIDM1IDAgUiAvaSAzNiAwIFIgL2wgMzcgMCBSIC9tIDM4IDAgUiAvbiA0MCAwIFIgL28gNDEgMCBSIC9vbmUgNDIgMCBSCi9wIDQzIDAgUiAvcGVyaW9kIDQ0IDAgUiAvcSA0NSAwIFIgL3IgNDYgMCBSIC9zIDQ3IDAgUiAvc2V2ZW4gNDggMCBSCi9zcGFjZSA0OSAwIFIgL3QgNTAgMCBSIC90d28gNTEgMCBSIC91IDUyIDAgUiAveiA1MyAwIFIgL3plcm8gNTQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzOSAwIFIgL00wIDEyIDAgUiA+PgplbmRvYmoKMTIgMCBvYmoKPDwgL0JCb3ggWyAtNiAtNiA2IDYgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMiAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkDEOgCAMRfeeggt80oqIro5ew8WYeP/VNiKpwYWU38/rpxJO4rCRHpBwEcdhygMnu3HMsuQ5gOO8jFMaVSlchItJtdqpdfE+ECsrRzHqMVgVHOxxN9SH+faa2fFEHX4COjv+oOhGw+XCkxQ+PPq/4XcH6HeFLxkW+iBa6QZfuEVDCmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNTUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDEyNTE0NDU0OCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuMikgPj4KZW5kb2JqCnhyZWYKMCA1NgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNDUwNSAwMDAwMCBuIAowMDAwMDE0MDA2IDAwMDAwIG4gCjAwMDAwMTQwNDkgMDAwMDAgbiAKMDAwMDAxNDE0OCAwMDAwMCBuIAowMDAwMDE0MTY5IDAwMDAwIG4gCjAwMDAwMTQxOTAgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjAwNiAwMDAwMCBuIAowMDAwMDE0MjUwIDAwMDAwIG4gCjAwMDAwMDI4NzIgMDAwMDAgbiAKMDAwMDAwMjY2NCAwMDAwMCBuIAowMDAwMDAyMzQxIDAwMDAwIG4gCjAwMDAwMDM5MjUgMDAwMDAgbiAKMDAwMDAwMjAyNyAwMDAwMCBuIAowMDAwMDAyMTg4IDAwMDAwIG4gCjAwMDAwMTI1NzcgMDAwMDAgbiAKMDAwMDAxMjM3NyAwMDAwMCBuIAowMDAwMDExOTAxIDAwMDAwIG4gCjAwMDAwMTM2MzAgMDAwMDAgbiAKMDAwMDAwMzk2NyAwMDAwMCBuIAowMDAwMDA0MjcyIDAwMDAwIG4gCjAwMDAwMDQzOTMgMDAwMDAgbiAKMDAwMDAwNDY5MyAwMDAwMCBuIAowMDAwMDA1MDcwIDAwMDAwIG4gCjAwMDAwMDUzODAgMDAwMDAgbiAKMDAwMDAwNTczMiAwMDAwMCBuIAowMDAwMDA2MDgxIDAwMDAwIG4gCjAwMDAwMDYzODQgMDAwMDAgbiAKMDAwMDAwNjY4NCAwMDAwMCBuIAowMDAwMDA3MDAyIDAwMDAwIG4gCjAwMDAwMDcxNDUgMDAwMDAgbiAKMDAwMDAwNzM1MSAwMDAwMCBuIAowMDAwMDA3NjcxIDAwMDAwIG4gCjAwMDAwMDc4MTEgMDAwMDAgbiAKMDAwMDAwNzkyOCAwMDAwMCBuIAowMDAwMDA4MjU2IDAwMDAwIG4gCjAwMDAwMDg0MjYgMDAwMDAgbiAKMDAwMDAwODY2MCAwMDAwMCBuIAowMDAwMDA4OTQ3IDAwMDAwIG4gCjAwMDAwMDkwOTkgMDAwMDAgbiAKMDAwMDAwOTQwOCAwMDAwMCBuIAowMDAwMDA5NTI5IDAwMDAwIG4gCjAwMDAwMDk4MzkgMDAwMDAgbiAKMDAwMDAxMDA2OSAwMDAwMCBuIAowMDAwMDEwNDc0IDAwMDAwIG4gCjAwMDAwMTA2MTQgMDAwMDAgbiAKMDAwMDAxMDcwMyAwMDAwMCBuIAowMDAwMDEwOTA3IDAwMDAwIG4gCjAwMDAwMTEyMjggMDAwMDAgbiAKMDAwMDAxMTQ3MiAwMDAwMCBuIAowMDAwMDExNjE4IDAwMDAwIG4gCjAwMDAwMTQ1NjUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1NSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTYgPj4Kc3RhcnR4cmVmCjE0NzIyCiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-01-25T14:45:47.903619\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM1OC4wNDA2MjUgMzM4LjI3MTg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJzt3c9z1DYUB/C7/wod4RCtnn7r0AMpJdPO9EDYac90CSkZQhtSykw7/d/7bK/XsmJvSBtYO3xhMpN9H1t6kmXJ3mwcEhcViXOhxAV/fRQkTvjrvFL86rIyLkplldeOX77NXxoTpQ4Ug+O4Gr78tapeV6snXMw173ZSVbxb3O4WZGw348LrF2X47SBMTqounhWSh5vKrsRYFTok/gpSi/dn4mfxTqye6DonatpZt/D0RKyenv35ZnN2enIsNtdVRSlK0xbklLRdrtqQTMHoLKi9ldroKLyRwUZlhI7cPWS9JhGDNMFb/m5TGSIZkrfWCOJvlbKRSBjtJLkYVRBkjVTO62gH0eC7qriMPq5VkjEG673IStaWEzQxmZSnob2TznPeicvYJaxjkpRc0GLXLKN0V1nWA1l0UxHvHlRUgzAZ/tZG67JCSUXp+R9XOqg/Ws7bNk3okw0kndZNC/p29cFBJ2Thvsf6UrPOzVLIj0Sf7e6Y9a3qj+zoGNjUI+1F9VxcdcNI8WlD9WkjIw8oHuh1JEsyH+tZ1HI+27FbHfO597G6qurReKS4NOelVpqM8pH4QBk+qSJxHpvL6ngtVs/qpon164oTDDFtT8z1q+pR3fTHYn1Rfbfm8hQPgGaA777hAnjvo6dnFy9/+vDi5bvro8s37z5ci6e/Vc/5f9OGihRXqH2KaZB8Ht6bPfc15+SDJ+PtXbJXMrj/nz0nl3huMHaYfRbemz1Rkp5Ia3JJpbul7+6h872X3ngVh9n30f3JO5LcyOCDss7dLXl9D32fTRp59ln4ZvqDvJh46Lc599m3CbZDW3CCbW3acMw6CoPKsugtdWmKMpE2LiRnb1bX9kdWnedp1qZAflhfFr6tQp5HPPmkuDMS3ajQle1LRlpnuYJhhVn4tgqjlkYTT3aRR8+NCkPRwmx5GazQWfiWCg1ZqbRLyRqKuqiQsiOYj9k6yXZ0pMFwra8+ZAu8e1/Jo9NmoHqZbNQ8pdfptIP4bAvktLFmF/57GzaeB4f1u+1Xz3RX5F/NJk5qm1S+b1brP93p0Y32/mIjv0Zw7uaqMXaqauIrEsundfhS83qfb6zX+xv59tHJfEOU9Cn53stM3udLZMY6OAtPZkx8PfFJXXwvs3eWsrVjfZyFp1Pm66JP7OV7mLOzlPurrEHKfXhilknS1ddLQTc9PT5Z99Xw9D7WM1l4bzVa2aZ3xifprBqTxlqThfdXY1zWmnJqzqoJarQ1fXh/NT5krSkn5Ox2pr/YzqvJwvur4RW4a81wGq5H3VE9XPhuitq5lPwu9/3z8PfN4NNcw2AWvmzCiVdFLlClzzgP15fhd7nlq08KEu/bC3ZqLtfrwOlJ1cn2ZKxf7C7Wqb4Iz29BLsXqR1WfRd2mRibfXqzzlkc68N2OHttO1Vua0SJAn5WGR4hPzvEDOZNsQQ+GhgMvWXnohECgzznEieqrsvlmCwLNnIoTSvv5pgoCgabO3PqOlLAYgkAPmIqT3jrp8e4CCAS6ZapwAW8HgUCg+cxJPkmDexYQCLQ8KiazEOTEj+xnki8IBAJ9vikwOqnwaSQQCATaR+XEmeabKggEAh2cijkz6TkkBQKBQA+PhtOtVgqfLwOBQKD5UDlJR3weEAQCgZZOxdROWuJHayAQCLRsKmd2j2e4gEAg0NdJxYKgFX5VCwQCgb5CKlcDK+3hkwKBQCDQUqhcRupHeh86JxAIBAIthYpVxGg8sQMEAoFAX3rx8XjaOwgEAoGw9IBAIBDoQRGWHhAIBAIddumxCo80BoFAINA8qVyyrMTnE0AgEAg0R8KKBQKBQKBlEFYsEAgEAi2DsGKBQCAQaBmEFQsEAoFAyyCsWCAQCARaBpUrVpQKf3gBBAKBQA+HsNCBQCAQaCFULll4NxEEAoFA8ySsWCAQCARaBmHFAoFAINAyCCsWCAQCgZZBWLFAIBAItAzCigUCgUCgZVC5YuHPlIBAIBDoSy8++POMIBAIBMLSAwKBQKAHRlh6QCAQCHTgpUdLgw8ogEAgEOg/LiM6ysPnBAKBQKClULmKWGkPnxQIBAKBDr8gKHnojEAgEAh08NWAvHT4wwsgEAi0bCqndi0xs4NAINCyqZjZVZQev04OAoFAc6FyklYy4lOgIBAIdP80nG4p6TkkBQKBQHOmYuKMab6pgkAg0MGpnDOdVPjZGggE+lqomAJDwCONQSDQEqmYzHzCEztAINCspiUX8KtaIBBo/zxhHT4PCAI9bCpOehPw+TIQaClUnL7azzdVEGjmVJxNpPC0d9BDo+EgTxbvBoG++LALSuK9hXnR8ADpUD7C5Xn1XFyJ1RMtzq+FFj8IPoTiI+96IlZPz/58szk7PTkWm+vKRRlt80mm+m4yND/Qv8yj5KRqw2+r6kVl6s1u7pCHiz3Gaxgtp9y+L2lvDapunzjnbrngr7qV59VV01VHdV9Zt9tRU7fj5rI6XvOe7dBev6pWz0iQFuvX1aNvH4v1RVU/ezmmZj9Vb/DotyYcpLEUUvNuWxv/sI175WwW/r0LU1tjG33bRI00xqTYPJazjZ91hUfd3NO30VejZYhtGZGsdabf+nUTt1Jr61Xqy55K/P12+2SMyza/bMJE0sc0KH+q3k0T99Kl4N3t/TXe1Knkp+JvJjpyIpmpzceTeTd+SP/Y5hKUUyHe3jFXo4dvYry87DJxxlGW+R1zmWroX9t+0SkOmjpV7V3LnzraE+lPddlUtVPFT5Szeqa7s/ljO5y1JKdNn3B2vn/TbWGSdnmlvsvd2MFgmkr+l9HjPdVjU029buLfretJvPoXf1SLsQplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjIxMTAKZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODkgPj4Kc3RyZWFtCnicNYyxEcAwCAN7T8EICIOBfXKpkv3bYMdu0Es6FAhiCpsHSaZOF1r5SW+D66KnIZ3Ak5SxM2M71G23Lrmzs1ftyNqvz6G/die1XiQSK4HI0jiD9wfPmh2PCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MSA+PgpzdHJlYW0KeJw1jMENwDAIA/9MwQKVAsGhA1V9Jft/a6HywDpZ5uDQoZczEJOX+piYrcIjXW6Bp8YCyQyaTgg0hFGwpTwcTL2rpjyyXoY3/eot7weyfxe0CmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDExOSAvdyAxMjIgL3ogXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL3cgMTcgMCBSIC96IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDOyNFUwULC0ABKGluYK5kaWCimGXEA+iJXLBRPLAbMMgDRYaQ5MRQ5XGgClRAzkCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicRZBLjgMhEEP3nMJHoP5wno6y6tx/Oy460WywJSjXM7kDE3vxyEyUbrxkuDvMFZ/hGTBz+EqYbMRM6E5cI5SuFOFUnwiOy9686aCJe0TOo54FWdXODWoBZ5Lmgu2CLueMFTfOya1G5c30o9cQvml3H9d5h/ZI497DVL7OOdXOu4oIaQtZ1bS+kGwUyQ5rPypN287LELHgbBpW6BzeCLtXdydLGH6/8jAlEz8P3fpRfF03o+sUZydXJmvPeehJ6V/1yqMPxXEp6Bex7cwk91+nU5KpU3tn72n9p7jH+w+QblY5CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNyA+PgpzdHJlYW0KeJxFUUlyBCEMu/cr9IGpwivwnk7NqfP/aywzSU4WYGsxaYGBLXiJIdbAzIEvuXxN6DR8NzLb8DrZHnBPuC7cl8uCZ8KWwFdUl3e9L13ZSH13h6p+ZmR7s0jNkJWVOvVCNCbYIRE9IzLJVixzg6QprVLlvihbgC7qlbZOO42SoCMU4W+UI+HpFUp2TWwaq9Q6oKEIy7YuiDqZJKJ2YXFq8ZYhIp91YzXH+ItOInbH4/6sMOtRJJLSZwfdcSajTZZdAzm5eaqwVio5iD5e0caE6nSqgWO817b0E2ngufZf4Qc+ff+PGPq53j/G7lwiCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNzkgPj4Kc3RyZWFtCnicPVI7ksUgDOtzCl+AGfAXzpOdrbL3b1eCvFdkrERGkh3SUroMDWkjVWIMqezyMy7CtlT+DiL7XD6/0NY60JyHo4uNCaAp96WrA3YVrZIWvusoMgTmENhommhOUXAKCbV92nCQh/oA6zIidr0vBiV6NrKtQ/Yg9hOpGVJBOfCOhFCEh82+Y/g4cTztzRNgTp4MOCN79TNOKV05YTkUMDK3wy2w3tdnX89GuYi85gdhDiLHInJiUxMMkkCxHF6OdPDUU6M2A+RRXDBRx2yxwM+9Zz7oMaRT6JHt2FwupF5k8IX52aHwYD+3AAYqqrWdBjtYvb+OY72GDb+P4VrkjtuKLRygTRcOxDvBEVnv7y15rt9/B3JuBgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjc2ID4+CnN0cmVhbQp4nD1SS47oMAjb5xRcIFL4Jj1PR7Pqu//22bSaFRZgY0jKS5aopUwtk1SVXUt+dHTuMvk3NK9Gz7D15sxD5kmxODK3yj0M5JlbrNBrb9SrCwCxSO7UEtslxpZLxZJkh6ztEHdk0OHFKtnM+NrCDjdrjkdSFypepwcF+Yww8E7Mfb6JZSE0Vxltt8BBDxaoAz0wCxO5IuPdaxM9jXgLoKwPmb+ILjfUXI9sTIBTuNoL3qmU1jEPFYmiHOxGGr2fo+Y4ocPbPWI59nIJRwbe4mjHe/BFiJ5GVkSsfsizEfmGDalIj5jKG+puH3r8ja3YaH92JknB11/W20w10rng1Fyt1l+DR2jw3qjh8/dLnvH7HyEmbhIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcxID4+CnN0cmVhbQp4nLMwtlAwUDA0MFMwNDdSMDc2UjAxNVFIMeQCCYGYuVwwwRwwyxioLAcsi2BBZEEsI1NTqA4QC6LDEK4OwYLIpgEA6+cYMgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMzID4+CnN0cmVhbQp4nE2PQRLDMAgD736FnoCxAfOedHpK/n8tkDbuBe2MgJGGMAg8YgzrMCW8evvhVaRLcDaO+SUZRTwIagvcF1QFR2OKnfjY3aHspeLpFE2L6xFz07SkdDdRKm29ncj4wH2f3h9VtiSdgh5b6oQu0STyRQJz2FQwz+rGS0uPp+3Z3h9mPjPXCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU1ID4+CnN0cmVhbQp4nEWRS5IDIAhE956CI4D85DyZmlVy/+00mEw2dpeo/YRKI6YSLOcUeTD9yPLNZLbptRyrnY0CiiIUzOQq9FiB1Z0p4sy1RLX1sTJy3Okdg+IN566cVLK4UcY6qjoVOKbnyvqq7vy4LMq+I4cyBWzWOQ42cOW2YYwTo81Wd4f7RJCnk6mj4naQbPiDk8a+ytUVuE42++olGAeCfqEJTPJNoHWGQOPmKXpyCfbxcbvzQLC3vAmkbAjkyBCMDkG7Tq5/cev83v86w53n2gxXjnfxO0xru+MvMcmKuYBF7hTU8z0XresMHe/JmWNy031D51ywy91Bps/8H+v3D1CKZogKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNiA+PgpzdHJlYW0KeJxNUEtuRCEM23OKXOBJJCEBzkPVVef+27HDVO0qhhh/SA/pslUe61NidYns8qVNl8oyeRWo5U/b/1EMAm7/0MhBtLeMnWLmEtbFwiQ85TQjGyfXLB+PO08bZoXGxI3jnS4ZYJ8WATVblc2BOW06N0C6kBq3qrPeZFAMIupCzQeTLpyn0ZeIOZ6oYEp3JrWQG1w+1aEDcVq9Crlji5NvxBxZocBh0Exx1l8B1qjJslnIIEmGIc59o3uUCo2oynkrFcIPk6ER9YbVoAaVuYWiqeWS/B3aAjAFtox16QxKgaoAwd8qp32/ASSNXVMKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcgPj4Kc3RyZWFtCnicTVE5bgQxDOv9Cn1gAOu05z0bbDX5fxtS3gSpREMUScnlKVMy5bK5JCMka8qXDo0ttly+D0JTS0XB1L1FdclrmKasWyxd0POpLK/hGOB7dzfUP/SI2QKR0YJdYYEOkDu4YPg9eyZsUwsiUSXUDGCasMIcrkQMQQZjnRkGpQqDU/V3leOzDTsF1g5mU6RHUhOddIPmhbfeciGCrVO5qTfShNzZpxhiZeO+SpfjA+BgostEZMTmZTieDmFo8M40YIWzHsQEmdaR0ouZkTENN+nI1VeLis82GUue0f/2h/orn27/gxB8xvsHSVVcfgplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILrSAHL4EpEKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcxID4+CnN0cmVhbQp4nE2QTQ5CIRCD95yiFzCh8wOP82hc6f23dvD54oL0SyFDp8MDHUfiRkeGzuh4sMkxDrwLMiZejfOfjOskjgnqFW3BurQ77s0sMScsEyNga5Tcm0cU+OGYC0GC7PLDFxhEpGuYbzWfdZN+frvTXdSldffTIwqcyI5QDBtwBdjTPQ7cEs7vmia/VCkZmziUD1QXkbLZCYWopWKXU1VojOJWPe+LXu35AcH2O/sKZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nD2MwQ2AMAwD/50iIzSJTTIQ4gX7f2kK7cc+nWTTKF3gFWlChJzayElPW+6ehIODFJCwX23o1b4qS3uqIGoy/jZ8d9cLdxwXTgplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MyAvZml2ZSAvc2l4IC9zZXZlbiA2MSAvZXF1YWwKNjcgL0MgNzMgL0kgODIgL1IgOTcgL2EgL2IgL2MgL2QgL2UgL2YgMTA1IC9pIDEwOCAvbCAvbSAvbiAvbyAvcCAvcSAvciAvcwovdCAvdSAxMjIgL3ogL2JyYWNlbGVmdCAxMjUgL2JyYWNlcmlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvQyAyMyAwIFIgL0kgMjQgMCBSIC9SIDI1IDAgUiAvYSAyNiAwIFIgL2IgMjcgMCBSIC9icmFjZWxlZnQgMjggMCBSCi9icmFjZXJpZ2h0IDI5IDAgUiAvYyAzMCAwIFIgL2QgMzEgMCBSIC9lIDMyIDAgUiAvZXF1YWwgMzMgMCBSIC9mIDM0IDAgUgovZml2ZSAzNSAwIFIgL2kgMzYgMCBSIC9sIDM3IDAgUiAvbSAzOCAwIFIgL24gNDAgMCBSIC9vIDQxIDAgUiAvb25lIDQyIDAgUgovcCA0MyAwIFIgL3BlcmlvZCA0NCAwIFIgL3EgNDUgMCBSIC9yIDQ2IDAgUiAvcyA0NyAwIFIgL3NldmVuIDQ4IDAgUgovc2l4IDQ5IDAgUiAvc3BhY2UgNTAgMCBSIC90IDUxIDAgUiAvdHdvIDUyIDAgUiAvdSA1MyAwIFIgL3ogNTQgMCBSCi96ZXJvIDU1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzkgMCBSIC9NMCAxMiAwIFIgPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9CQm94IFsgLTYgLTYgNiA2IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZAxDoAgDEX3noILfNKKiK6OXsPFmHj/1TYiqcGFlN/P66cSTuKwkR6QcBHHYcoDJ7txzLLkOYDjvIxTGlUpXISLSbXaqXXxPhArK0cx6jFYFRzscTfUh/n2mtnxRB1+Ajo7/qDoRsPlwpMUPjz6v+F3B+h3hS8ZFvogWukGX7hFQwplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjU2IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTAxMjUxNDQ1NDgrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjIpID4+CmVuZG9iagp4cmVmCjAgNTcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTU0ODcgMDAwMDAgbiAKMDAwMDAxNDk4OCAwMDAwMCBuIAowMDAwMDE1MDMxIDAwMDAwIG4gCjAwMDAwMTUxMzAgMDAwMDAgbiAKMDAwMDAxNTE1MSAwMDAwMCBuIAowMDAwMDE1MTcyIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDI1ODQgMDAwMDAgbiAKMDAwMDAxNTIzMiAwMDAwMCBuIAowMDAwMDAzNDUwIDAwMDAwIG4gCjAwMDAwMDMyNDIgMDAwMDAgbiAKMDAwMDAwMjkxOSAwMDAwMCBuIAowMDAwMDA0NTAzIDAwMDAwIG4gCjAwMDAwMDI2MDUgMDAwMDAgbiAKMDAwMDAwMjc2NiAwMDAwMCBuIAowMDAwMDEzNTQ3IDAwMDAwIG4gCjAwMDAwMTMzNDcgMDAwMDAgbiAKMDAwMDAxMjg2OSAwMDAwMCBuIAowMDAwMDE0NjAwIDAwMDAwIG4gCjAwMDAwMDQ1NDUgMDAwMDAgbiAKMDAwMDAwNDg1MCAwMDAwMCBuIAowMDAwMDA0OTcxIDAwMDAwIG4gCjAwMDAwMDUyNzEgMDAwMDAgbiAKMDAwMDAwNTY0OCAwMDAwMCBuIAowMDAwMDA1OTU4IDAwMDAwIG4gCjAwMDAwMDYzMTAgMDAwMDAgbiAKMDAwMDAwNjY1OSAwMDAwMCBuIAowMDAwMDA2OTYyIDAwMDAwIG4gCjAwMDAwMDcyNjIgMDAwMDAgbiAKMDAwMDAwNzU4MCAwMDAwMCBuIAowMDAwMDA3NzIzIDAwMDAwIG4gCjAwMDAwMDc5MjkgMDAwMDAgbiAKMDAwMDAwODI0OSAwMDAwMCBuIAowMDAwMDA4Mzg5IDAwMDAwIG4gCjAwMDAwMDg1MDYgMDAwMDAgbiAKMDAwMDAwODgzNCAwMDAwMCBuIAowMDAwMDA5MDA0IDAwMDAwIG4gCjAwMDAwMDkyMzggMDAwMDAgbiAKMDAwMDAwOTUyNSAwMDAwMCBuIAowMDAwMDA5Njc3IDAwMDAwIG4gCjAwMDAwMDk5ODYgMDAwMDAgbiAKMDAwMDAxMDEwNyAwMDAwMCBuIAowMDAwMDEwNDE3IDAwMDAwIG4gCjAwMDAwMTA2NDcgMDAwMDAgbiAKMDAwMDAxMTA1MiAwMDAwMCBuIAowMDAwMDExMTkyIDAwMDAwIG4gCjAwMDAwMTE1ODIgMDAwMDAgbiAKMDAwMDAxMTY3MSAwMDAwMCBuIAowMDAwMDExODc1IDAwMDAwIG4gCjAwMDAwMTIxOTYgMDAwMDAgbiAKMDAwMDAxMjQ0MCAwMDAwMCBuIAowMDAwMDEyNTg2IDAwMDAwIG4gCjAwMDAwMTU1NDcgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1NiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTcgPj4Kc3RhcnR4cmVmCjE1NzA0CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-01-25T14:45:48.233165\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def compute_pole_locations(w):\n", " \"\"\"Compute potential pole locations for coupled form.\"\"\"\n", " Q = 1 / (2 ** (w - 1)) # quantization stepsize\n", " a1 = np.arange(-1, 1 + Q, Q)\n", " a2 = np.arange(-1, 1 + Q, Q)\n", "\n", " p = np.asarray(\n", " [n + 1j * m for (n, m) in itertools.product(a1, a2) if n ** 2 + m**2 <= 1]\n", " )\n", "\n", " return p\n", "\n", "\n", "def plot_pole_locations(p):\n", " \"\"\"Visualize potential pole locations.\"\"\"\n", " ax = plt.gca()\n", "\n", " unit_circle = Circle((0, 0), radius=1, fill=False, color=\"red\", ls=\"solid\")\n", " ax.add_patch(unit_circle)\n", "\n", " plt.plot(np.real(p), np.imag(p), \"b.\", ms=4)\n", " plt.xlabel(r\"Re{$z$}\")\n", " plt.ylabel(r\"Im{$z$}\")\n", " plt.axis([-1.1, 1.1, -1.1, 1.1])\n", "\n", "\n", "# compute and plot pole locations\n", "for w in [5, 6]:\n", " plt.figure(figsize=(5, 5))\n", " p = compute_pole_locations(w)\n", " plot_pole_locations(p)\n", " plt.title(r\"Coupled form coefficient quantization to $w=%d$ bits\" % w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Excercise**\n", "\n", "* What is the benefit of this representation in comparison to the direct from discussed in the previous section?\n", "\n", "Solution: A befit of the coupled form is a uniform distribution of potential pole and zero locations in the $z$-plane. This holds especially for low frequencies and close to the Nyquist frequency." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example - Influence of coefficient quantization\n", "\n", "The following example illustrates the effects of coefficient quantization for a recursive [Butterworth filter](https://en.wikipedia.org/wiki/Butterworth_filter) realized in cascaded SOSs in transposed direct form II." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYyMy44NTMxMjUgMjI2LjE4ODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nNWZT28jxxHF7/Mp5igf1Orqrv53XGHjDQIEge2Fc8lF0MrKCittNrJiIMiHz696hpwhRYVmYAv2CguQxZ7q6tevXlWRMt4NMt6Ofrzj/0+jjO/4fzt43t0POURXU5SQePtp/TaE7KTWkjD7nXd/H4Yfhos3OHnkoXfDkKrL00OxuKSRVXiW/Mz6aW0Nnr3yZF48rK19oy/jAfcp1VFydjGM/7wZ/zo+jBdvgsUTxj9xOk7qKmf1LjcvLftSlUAv3t786+P1zbfvLsfrx6Gq85JLlnXUi3EdyPDd8M34ZbOHB83VHuCJ5Zi7yKsZg+GSC/lpuHw/Xnwto/jx/Q9Dyc7nOP+BtmtpfP9hOPPOfzW+vxv/8L5H8MtAMbwbd6GQrK75VqSsg19ZTwXjqMMjcEjKIJBTC5pa2cEjvQIe7OqqD7noOvyV9VQ8jjo8gkfgqaotaU0prfGQV+FHJPsz9xHX0S/GU9E44u4IFlGqKxqS15xkF4vX4IZ6vNWaal5Hv7KeisZRh8fwaM3lmJRwtdQVHuFVuKG1Oq2SNOyEv1hPxuOYwyN4aEUkQlXJVeMuHq/Bj5Sbi0W11XX4K+upeBx1eASPlMVpkFhCgyorPOLCjy885sdzz/Yxxg0uzYVS7cX1PS4HW0ds3pb67QuXpwVseP725u7q+6fvrh4ez/9yf3N7Nb79PHxjf78i3Fu3WgnXq+72HlvrzwT7kLuUnDz3NkG9Qi6oC6Oq0xJT1lxJ3Q7c6i4qd1abz73dsjtQ3++gYzs8w/YArvcfH54eXxXXmowGJZddYBfzqciuHS7Q7vg7jG0Vk4DaaEZzOo5t/O1jK2RjqMW3vY55ZT8V3R2XC7y7Hg/jK1RWbT5Iq6rxOMDhdwBwQsTom0LYA3ixnwzw2uUK4B2PLwDMchQ7Kf0L644CLL8DgBue/LORbzGfDO/K4Qrdtb9DRR/1aPaxNMq8zzap9nlhqXB2C+cGnBTTEpS8+5tqm6FakyHPU4vbs/90/KOLuYkuN3Pxddis+GNfAbjSNnP0rou/nc0+gDPmIhbavpObvgT0GJFSpQTTBbsaevGdV5a+8G6zWy5x/vx8d+Wy71cv7PvSoc7G2S7osPgO5/TBx/5BcKXUCGrbU549zHHHPeK+6OnD5gEtOS3rL7c0N3b7suE5rwJxJolBsmge1VlXV361joMZonNfAiNozaEk8k7z/I+4XPG05SGm0MZv99NiNe+vaUwn6mLDPPE4eC2pQWQphhydKjxoibaMv2r2ilY3zVq7PSHGKt0Oc1OVUrAzSlMIJZq9RRdElTdmFy8l2vrggxOlpuaeFtosmcweveNOAt2xuRQNTazsBtqb6lNT4uQkwkbF/Ad6zZxCyQ07ecKoZmESIr2OV55lJZla2R17xH1ANthLChFI9D38SM7h0U6V4SyBGQhE7Ti4BDMDPPcVup0+lPY2KN7t2wDzYtmvyXN9abJD7ioxdntGAoghctgkMI9wLBpmIrtNb+BwPo6RpK9v8CtGrYqdOZxdJ/+MU6geoGMnBCF4iyd5wGlaG/sqY7ePdHhmR/TYtK+PxrjawSFASxdwx5ydL/SN3U0Ux2uCxs7JMyH0b8DgaCbzDWOWCC61+yGGDHk87gPhR2pz98NZMqkYzY5/4Ex2VymhfyU2Izqp04A6TPZsRCIi7LA8sMQqVQJzAOHAvfxTmxglu52zd5JgR5gCgUq3Zy4deuBH4Egq2qb1za6r7yviuOt+KwkCaKi+cCsAGKLGCZ4CdwgeCMUb+jVMYVpKtAoITEkmNRP23CF5Ei1RPBxpU5VNkBHALEbSqtC3zOaAZKAZTDDBJDX6yazIDhdbRkifWpjvj8YTvQ2gxwJur5EuZjaVsIy0tpNU0M6mxKNRqvWfUN4jn62jArWJNRYZi/TEnBYzo3km+TJCzgQlOyQQL6AGNY7cSeTOS9+wCQ2aEWyEjjLXusPWuaL+/wInpmqt+thIGVM1YJmqfT2iaskVpbG23kcK8NcwyVEyheDAXdbACDRkki/1wfeDw2lrQY1fXb6omDF3O8QgveokX9yoD5OsqemIUcAUTlPUTn3000Edagt2cVlbiQZ3CMU01EjShTKo72ZGMsgI67uqxaaxhwmjaXEAkHBssiBBfVdBbj4Rp6laJXHRFBMvgSbImeId7pJvzXd7Zp6mugYInovjilv3bt/fZLKgcSgGcAMt5S5rEF+tV0CmiNfUUbqsIV+VXU3WkA6hRnR7iT3JTKaQtZJ88QaOfR/ilcQyWWvOVFs6y8kPnFvLpJyDJZNckJNA78XswBdKhz4hBdVzbu2iVsj32mkXGiFzXDCLiL+0KYWifUfnczbxsiaklVmMFpGKdg743c3NpN1CR+p8SaY+JkXkWWobqfO+hg4lNoCH7a1LHeW25X0pQuoSKdOnGHogSrMm2gIJVvYQlB4lvFRlRtQ+9ZCk9Azdjh8rTDbpcCiKeJ00x0iarXiR566KFcRuh8cIqMc/t19KmMpnKvbVS/HGb4qXRhSor4dF0MEeFqFREJ/9JAPR+p0umbBCJU/hL3pkEoio5kkIFkHqIkhmzGqyVSQTwQzT/Z4ktWLozPq1VaTWC2zaUyQ+J4H95HqRJDtbK2kS6UV8it3kM0laWXebfFObpcF/aXZYf5118AcgnB76Gen+pZ+RWH/Cb1E7qxc3/8u7t3PNA4z0091u55DQv6infuU+fQTf5ietwf3z1e3Dxx+fPtwgy4//+PzweLMZTC7eRENs+xMdqE0/0A05bb+LCstvKNT3shhQSbLJxz4ybK1dQUa1rnBqz6b3On98PUwGavP8k978Hr0lFa01WZxi7IumjTfvrlfRbWyfhgyjpRV6no0tx9Wq2fnKFrbetrZtlJ/Wxu1Rli22pz2A07X9dng5HG3ux5/Z3A/wFrWZt6G+ljb/wPfcuEeUZcbdGVjbNmhOOY2uxpPrzw8/MsN/fnrc8KMHPxXt8YSivUTLvXHguhfuYj01Xms8pyct4C9PV0T875sP26/Wh/8C/UZTcgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjIyNzMKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODggPj4Kc3RyZWFtCnicPY25EcAwCARzqqAEgXikfjyO5P5Tn/ATADvs3Fy6cmNNrFTHTD6EJGbhRRqjaJFKY+sN5Pg9FBqv/cKwo/N2Nqyuo6FbgmTaR8htV73rr1t03skLG84KZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyNyA+PgpzdHJlYW0KeJw9kkuOxDAIRPc5BRdoyfz8OU9Gs+q5/7YfdnoWUaEARVG4a0qT6PJSlxwq2Zv86BVTxc3k74mGxDRxN9DBKfe1owj+BLgOZu4M0UqJQb11icrykbHz19fTlwfvy9thsFF6lphXn5KxBgvydHTxAebc2u5/le8rk44svUpPRe9LvViWqA8x+2L1KdzG5hvbejCeTPFrNlGrmVPW2iK6DNRFSjex1QtQ7VGB41xHbxVtAxCBO0EHlQm1amzBSEi0RdYvzGlC98T/7QG6X9rEdeyD2LSNZ3xFGkPQ3bhHWcPMMep8anPD2tPZJuuU4kwu17I4Vgk0SstYakvwrHpdFGODGWilEM3RamxlaHbo62V4P8gMbzuKsailSs+eN6fgXH3s1xR68DyLHcGbnNgt6OeQrEIGLTZh6ixdr/A55339fgAqPX1GCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTIgPj4Kc3RyZWFtCnicPU/LEUMhCLxbxTbAjCCC1vMyOZn+rwFNPLGyuB/xgQpiFpBUh7jDreLFhbWjq+NTpB20CouD5gaWvxKxgryB69bpGD1mm3iK58YYOmOGsHDMkQxZ2sUz7rYvRY4NgrthVqHpKZY+5HphGwdSerO0XaGmcC6mImOGcdtpn1sl0o7TL0r9mq4ivcPUkrWLxp99fwG89zZnCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDcyIC9IIDEwMSAvZSAxMDYgL2ogXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL0ggMTYgMCBSIC9lIDE3IDAgUiAvaiAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU5ID4+CnN0cmVhbQp4nD1SSXLDMAy7+xV8AndJ70mnJ+f/1wL01JcQY4oACKZ3i8rZ+GkrWX7kxy47SyK3fAdtk/uKqgekboLMJcclV4hZyudKkFi0lJlYn6kOys81qFX4wk/MTEyHJBFLyEk9irB+Xgf3oH69pPNbZPyjY4PSW5JMBZ0a7pWjlNiwVJ8a5B403ZRWn5l2ZQcsjTdkpSZ1+vXT4wdLMKUvEtFBiMSf5HKHLAspB/F2rt5AeFe7INVTKw87RJqPkd5SBas5MwFLRtMOI2Bt1pggVQK8RWsItBbi8oVOKyI+OTd0ME1VnoXIsFLhWHvPaA0Xuoa80nB6knH/+R+8K97X7x/a82ZkCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4NyA+PgpzdHJlYW0KeJw9jrsRwDAIQ3umYATzCYZ9cqmc/duAP2nQQzpOuAk2DM/R7cLOgTdB7kUvsC5vgAohiyQZ+fbOxaJWmcWvpkXqhDRJnDdR6E6LSucD4/QOeD66dR16CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nD1Ru3HFMAzrPQVG4Ef8aJ53lyrZvw0oOSl4gCkRBOSnLNGFn2eI4PtZ7v/IA5KtUG2EJzQVkQ3TwOdJEVhupCbcXtznhGyVI/biXCDCEO08CWmkCxY7GQveFz+Pqx5mrLlh/L4zmn1UdNVRHbx7DuNmTT9OlN3rzayOW5v7dO+uE4drSCaf9x+clEqnlyyDOku4sDaaGtbjvCjGWMw4/ieqsE2ytqMKwdIlSCrQgBhKEsaAxS3+IidaDgvamxtp653JTqo0ioYXowzeoPVGOIp0kXyYayuDsamYNr755CU36Ptnv5+vXwNrWusKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzY2VzBQMDQyV9A1MjZVMDI0UDA3M1FIMeSCMXPBLLBsDhdcIYQJks+Bq8zhSgMATJAPFQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNiA+PgpzdHJlYW0KeJxNUEtuRCEM23OKXOBJJCEBzkPVVef+27HDVO0qhhh/SA/pslUe61NidYns8qVNl8oyeRWo5U/b/1EMAm7/0MhBtLeMnWLmEtbFwiQ85TQjGyfXLB+PO08bZoXGxI3jnS4ZYJ8WATVblc2BOW06N0C6kBq3qrPeZFAMIupCzQeTLpyn0ZeIOZ6oYEp3JrWQG1w+1aEDcVq9Crlji5NvxBxZocBh0Exx1l8B1qjJslnIIEmGIc59o3uUCo2oynkrFcIPk6ER9YbVoAaVuYWiqeWS/B3aAjAFtox16QxKgaoAwd8qp32/ASSNXVMKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nE1ROW4EMQzr/Qp9YADrtOc9G2w1+X8bUt4EqURDFEnJ5SlTMuWyuSQjJGvKlw6NLbZcvg9CU0tFwdS9RXXJa5imrFssXdDzqSyv4Rjge3c31D/0iNkCkdGCXWGBDpA7uGD4PXsmbFMLIlEl1AxgmrDCHK5EDEEGY50ZBqUKg1P1d5Xjsw07BdYOZlOkR1ITnXSD5oW33nIhgq1Tuak30oTc2acYYmXjvkqX4wPgYKLLRGTE5mU4ng5haPDONGCFsx7EBJnWkdKLmZExDTfpyNVXi4rPNhlLntH/9of6K59u/4MQfMb7B0lVXH4KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzEgPj4Kc3RyZWFtCnicTZBNDkIhEIP3nKIXMKHzA4/zaFzp/bd28PnigvRLIUOnwwMdR+JGR4bO6HiwyTEOvAsyJl6N85+M6ySOCeoVbcG6tDvuzSwxJywTI2BrlNybRxT44ZgLQYLs8sMXGESka5hvNZ91k35+u9Nd1KV199MjCpzIjlAMG3AF2NM9DtwSzu+aJr9UKRmbOJQPVBeRstkJhailYpdTVWiM4lY974te7fkBwfY7+wplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicPYzBDYAwDAP/nSIjNIlNMhDiBft/aQrtxz6dZNMoXeAVaUKEnNrISU9b7p6Eg4MUkLBfbejVvipLe6ogajL+Nnx31wt3HBdOCmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlCi9mb3VyIC9maXZlIDY2IC9CIDc3IC9NIDk3IC9hIDk5IC9jIC9kIC9lIDEwMyAvZyAxMDUgL2kgMTEwIC9uIC9vIC9wIC9xIC9yCi9zIC90IC91IDEyMiAveiAxMjQgL2JhciBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CIDIzIDAgUiAvTSAyNCAwIFIgL2EgMjYgMCBSIC9iYXIgMjcgMCBSIC9jIDI4IDAgUiAvZCAyOSAwIFIgL2UgMzAgMCBSCi9maXZlIDMxIDAgUiAvZm91ciAzMiAwIFIgL2cgMzMgMCBSIC9pIDM0IDAgUiAvbiAzNiAwIFIgL28gMzcgMCBSCi9vbmUgMzggMCBSIC9wIDM5IDAgUiAvcGFyZW5sZWZ0IDQwIDAgUiAvcGFyZW5yaWdodCA0MSAwIFIgL3BlcmlvZCA0MiAwIFIKL3EgNDMgMCBSIC9yIDQ0IDAgUiAvcyA0NSAwIFIgL3NwYWNlIDQ2IDAgUiAvdCA0NyAwIFIgL3RocmVlIDQ4IDAgUgovdHdvIDQ5IDAgUiAvdSA1MCAwIFIgL3ogNTEgMCBSIC96ZXJvIDUyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAwLjggL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLU9tZWdhIDI1IDAgUiAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUzIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTAxMjUxNDQ1NDgrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjIpID4+CmVuZG9iagp4cmVmCjAgNTQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTUyNDEgMDAwMDAgbiAKMDAwMDAxNDkzNyAwMDAwMCBuIAowMDAwMDE0OTgwIDAwMDAwIG4gCjAwMDAwMTUxMjIgMDAwMDAgbiAKMDAwMDAxNTE0MyAwMDAwMCBuIAowMDAwMDE1MTY0IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDI3NDYgMDAwMDAgbiAKMDAwMDAwNDA4OSAwMDAwMCBuIAowMDAwMDAzODgxIDAwMDAwIG4gCjAwMDAwMDM1NTIgMDAwMDAgbiAKMDAwMDAwNTE0MiAwMDAwMCBuIAowMDAwMDAyNzY3IDAwMDAwIG4gCjAwMDAwMDI5MjcgMDAwMDAgbiAKMDAwMDAwMzMyNyAwMDAwMCBuIAowMDAwMDEzNTM3IDAwMDAwIG4gCjAwMDAwMTMzMzcgMDAwMDAgbiAKMDAwMDAxMjg3MSAwMDAwMCBuIAowMDAwMDE0NTkwIDAwMDAwIG4gCjAwMDAwMDUxOTQgMDAwMDAgbiAKMDAwMDAwNTUyNiAwMDAwMCBuIAowMDAwMDA1Njg1IDAwMDAwIG4gCjAwMDAwMDYwNTYgMDAwMDAgbiAKMDAwMDAwNjQzMyAwMDAwMCBuIAowMDAwMDA2NTU5IDAwMDAwIG4gCjAwMDAwMDY4NjIgMDAwMDAgbiAKMDAwMDAwNzE2MiAwMDAwMCBuIAowMDAwMDA3NDgwIDAwMDAwIG4gCjAwMDAwMDc4MDAgMDAwMDAgbiAKMDAwMDAwNzk2MiAwMDAwMCBuIAowMDAwMDA4MzczIDAwMDAwIG4gCjAwMDAwMDg1MTMgMDAwMDAgbiAKMDAwMDAwODY4MyAwMDAwMCBuIAowMDAwMDA4OTE3IDAwMDAwIG4gCjAwMDAwMDkyMDQgMDAwMDAgbiAKMDAwMDAwOTM1NiAwMDAwMCBuIAowMDAwMDA5NjY1IDAwMDAwIG4gCjAwMDAwMDk4ODUgMDAwMDAgbiAKMDAwMDAxMDEwNyAwMDAwMCBuIAowMDAwMDEwMjI4IDAwMDAwIG4gCjAwMDAwMTA1MzggMDAwMDAgbiAKMDAwMDAxMDc2OCAwMDAwMCBuIAowMDAwMDExMTczIDAwMDAwIG4gCjAwMDAwMTEyNjIgMDAwMDAgbiAKMDAwMDAxMTQ2NiAwMDAwMCBuIAowMDAwMDExODc3IDAwMDAwIG4gCjAwMDAwMTIxOTggMDAwMDAgbiAKMDAwMDAxMjQ0MiAwMDAwMCBuIAowMDAwMDEyNTg4IDAwMDAwIG4gCjAwMDAwMTUzMDEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTQgPj4Kc3RhcnR4cmVmCjE1NDU4CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-01-25T14:45:48.734577\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxNS40OTM3NSAyMjYuMTg4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniczZlPbxy5EcXv/Sl49B5EsfifRxtODOSS7K6QXPaiyFpbhiRHqygL5NPnV+yZ6e6ZtseziAXZEGbmNbtYfFV8rOoW82kQ88E484m/342Yd/x9GBy/7oYsycYWSuLX7eyX99lKrXy7ZeT818dh+HU4f42JR+55NwzJWd/vCcWmqF8w6+o+eDsDvQu25hHd3T4H+yQP5tB0StVIzjZ489u1+Ye5N+evvbrizV9YFku0lUU6m5uTll2pER/P317/5+bq+qd3b8zV41CSzamEmuceT+Dcj+Hn4UfzsJ3DQeNsDogEOWYuROs2BAxviMTvw5sLc/5nMeLMxa9DLra46LOEHJjb25bMxfvhlbPuB3Pxyfzponvwf2FieGeWTEjKNiUXop/7PkNP5eKowSNsSKw2teKlRD4WdKTvT4fHWozBtzb3foaeSsdRg0fo8L6xH52UkFKa0yHPkR1Bqg0h+7TY2jP0VDqOGjxCRxBnQw3iW06ypOMZsiO0ZgmIF1l4P6En03HM4DE6mlhfUNVUYqkzOvxzZEeszor3ksvc+xl6Kh1HDR6hIxZvBYej1BiWdDxDdqTMnpQkPsy9n6Gn0nHU4BE6UgrWZWmttKDStaMjTNnxwG3OnDmmDz5taCH9ShWfzNUdFgcdhmtOR7rdF5vHAcx39vb60+Xfn36+vH88++vd9YdL8/bz8KP+/35kb63GZlNm4LLmmNBvpHrNXMy2HFobiZ7xBq/exGRLcc636kMYeZtFAnkrtTllzI1y5TUAndnhgNkVVu9u7p8en5HVQmb54GJesDqhJ7I6N7djdWFtndWCAQqj4nLN8g2supfNaqs2lia1LFid0BNZnZvbsbqwdsgqxVUax0WbyVWRFGs7Tm192cyKiltIwS+pncEncrswuCN3ae8r7Io0K6HG5KNIPk5vfuH0xmKpNWKuS3on+FR65wYnehf2vkZvDDQJNAhEIsbj9MYXTm8RWyN1XFvSO8Gn0js3ONG7sPc1enO1LrkSooTij9P7wg8zBtjg9h9LTOip5M7MTdzOra1V6hnhiONIqlEOtLJpa6dKTINwpqQJhZhpwfpucCzC6J9bzqX1G52NnX4MTFO8+uVVj4PQC0W/Gdjn+OWHfiFYyAq5yHTFbC5IqUXc5imQXrjpFzxFTQ24IbtY3/cLLHYvB75o6bd+IVoRCb5Ohi43hsSXtvD2/S6bVorOcd09p/yi7Pzn7c3D0/XZvz7ejJm1fzONY2yVamPO3/cpX+G/56Z4SRQuviS2Rcybf4UrxaXK4Zt8Mz/tp+3swdE808Rho+gjFCOV1IDnqPsYVumInTaLUmCz+KQFlfiI35T+BV8bhX9wrQ8P3EsiBuBIStUcvcIRd4l0wUrmK/fVEcdkaGiB0Uc44ERQ8USH2eg6sZPENryQ2vGCcjSPauiDHBdxobuTGe89fnbtrgm4dJx9QU8UmDc0FksNLYrTybXIUpgXjyMbpvR56QVrjV5ggXYlw2PodmrEKOwQGo8/FTe7nVpt9YkgcCRXKh4SrfvDJmQv5apHNaW7D7WEjrOhMzQ3o8Qya+z2PewTkqC8kUlUTiRQxyPBbCybBEM/6dp96nizeKyTiYM3cVQNigtlV8g0s+BBl0gJrLh3BMPHpIkqrIsrfV7Pvo+VpDWNJkSjq6hS0kr21TROTGoM5YYPGwPcZ9OSdbTAsZumeyFBGvMgKY4upUcEUmwgjDqahlL3hRKGy9ZHJsimNkIWXehGCvUMbhOcSoTRA+mw3lpiIjZ1nDKof0GXVlohQUlVaZ1CfchTC+aqqcIckpJOyB22RDKgGebwvSZVOEEUzjKmsEQntfPBXiAZmJD2IdlADdBRfWBSWiIFC7uhaKYBQyHeJV+j4eTzNeXOdWTlNYoGPGuVxlLUaQjl/CvRRUNSFmz3Z9Psf/qPiukcLNJJN6IwedhiZCZDO96IXA9MYmWsNrqqcFJcOqxloxOylj5RNsfEOro5iv6w7MgwCh2JoFmJ9qU4npH1D2uND6x1RWuqNFdWxCb3tNoXmyx6khyKDXvCpxWxwf82bso9semn0aHWFEkrSlODjL7sKQ2+lLaiNAhcXlOagFDKvtLoVM6NOrxUmoILfk1pSJFQD5VGnB8Vd09pyLgqaUVpOEjcmtLEJk1WlKZuhGlPaBIFQT4UGgSo7849pcmt9YReSg1x7WK+VBohBtIOlIbcGrfyntKwynE9S6Vhjv6AYKk0OnZUj4XS+ExrFg+0JkhrXSGXWoPEtNoOtaZpB3KgNez14PyB2HDA5X6wRghkZalUFZvE6vuWiSQywhOzqNjwoZtKxUZFntawmcyUpHY/TmgXIRkxRoPIOXKnByfpxmB/NWBcjRqGrk2Vk8VTWSjMroBahbnVZTZZGWFXu4Qn5nfBq7wCR1KmCy2MUh7hVVW45D6UhTU2XFYvqNvGMwoiSCNhw3TnGgnQUfYVCcu6s6afCxuzBR3IqY5qmr3rTySgh1qEek+XzeEaRxNaoIhWCirIXojjUmNhNCMYexKr9HP8hz0xJa+E5fQy6Avwst5XAZ1q/S80EfMnsGvvKzG58srz7guvPBn9zS9N52MnG1+x7HQ9mx5G+qo+7JoRP75FYVOMbYDKx3irlt5/+3j5eL1tSM5fB2Vn9+YYhsb3xgRs+7TUT2/4Irk2VtU7VCWdTCloep1QlfntSC1kXeRInYNxM/BqmKGk6eb18xzk3PE9v2cTAfaRM4+20NXk+hbSbUSmdie2WErToI39CfI7U1to5/DtDNutbDK/Y+CQvyt93/1mONpImG9sJAZN3baZJW+b1LuhHGB7GTP1u8uWf+sxRdD4RdPl6vP9v+nlPz89bnOmez7WIeaEOmTnKic9i61LXyfwRGepCvJ4o3r78HSJu/+9fr97FTT8Dz/i5XQKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyMTg1CmVuZG9iagoxNiAwIG9iago8PCAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyODEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicPZE5ckQxCAVznYILuEqsks4zVY7G90/d6I8daQEezWNEhcQK+RkRdm9hSyKnhG6J6fIani615T1830tHdpJUonpIiDNF40iqi02VRMJWl6Yf8eDHS/w4GSXh89YglEdi69P2A0JkoZQKUlreWxan8XtA20VOOVUxpVq/jpTZp2NNqKDLBZNyapDVsqUCX0yTL1VxX/d8DTtHvmwuBjSd/9fYN/4eup8KdW8BnfMRBEp5twv4AvoDcAwi/oz5vGPYunsugzHxyyBLPHGrOx0G0zZW97LNhKhbuxG4yIxBHdUzxNHR3ey0rvNpqBA0sxYTZ94MZUVEmIwSoxFra83qb8fK3iwLpUWyMMfYRvmz/jW+fwF7j2RQCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8ID4+CmVuZG9iagoyMSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicPVG7ccUwDOs9BUbgR/xonneXKtm/DSg5KXiAKREE5Kcs0YWfZ4jg+1nu/8gDkq1QbYQnNBWRDdPA50kRWG6kJtxe3OeEbJUj9uJcIMIQ7TwJaaQLFjsZC94XP4+rHmasuWH8vjOafVR01VEdvHsO42ZNP06U3evNrI5bm/t0764Th2tIJp/3H5yUSqeXLIM6S7iwNpoa1uO8KMZYzDj+J6qwTbK2owrB0iVIKtCAGEoSxoDFLf4iJ1oOC9qbG2nrnclOqjSKhhejDN6g9UY4inSRfJhrK4OxqZg2vvnkJTfo+2e/n69fA2ta6wplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZC5dQQxDENzVYESeIA66hk/R7P9pwtpvN5A+niEeIg9CcNyXcWF0Q0/3rbMNLyOMtyN9WXG+KixQE7QBxgiE1ejSfXtijNU6eHVYq6jolwvOiISzJLjq0AjfDqyx0Nb25l+Oq9/7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmravwi7IpS2fVxOZZy6ewe0wmcrV/t9A6jnOoAKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjEgPj4Kc3RyZWFtCnicRZBLEsMgDEP3nEJH8EcGfJ50ukrvv60hTbOAp7FABncnBKm1BRPRBS9tS7oLPlsJzsZ46DZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+Udw9V/1R7HunM3EwGTlDoRm9SnufJsdUV3dZH/SY27Wa38V9qqwtKyl5YTbzl0zoATuqRzt/QWpczqECmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTQgPj4Kc3RyZWFtCnicPVC7EUMxCOs9BQvkznztN8/Lpcv+bSScpEI2QhKUmkzJlIc6ypKsKU8dPktih7yH5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+tcvdS3O89HG+iiJR08K755fTLzy28Tj2ORLq9+YprcaY6CkRwRmryinRhxbLIQ6TVBDU9A2u1AK7eevk3aEd0GYDsE4njNKUcQ//WuMfrA4eKUvQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcgPj4Kc3RyZWFtCnicTVE5bgQxDOv9Cn1gAOu05z0bbDX5fxtS3gSpREMUScnlKVMy5bK5JCMka8qXDo0ttly+D0JTS0XB1L1FdclrmKasWyxd0POpLK/hGOB7dzfUP/SI2QKR0YJdYYEOkDu4YPg9eyZsUwsiUSXUDGCasMIcrkQMQQZjnRkGpQqDU/V3leOzDTsF1g5mU6RHUhOddIPmhbfeciGCrVO5qTfShNzZpxhiZeO+SpfjA+BgostEZMTmZTieDmFo8M40YIWzHsQEmdaR0ouZkTENN+nI1VeLis82GUue0f/2h/orn27/gxB8xvsHSVVcfgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJw9jMENgDAMA/+dIiM0iU0yEOIF+39pCu3HPp1k0yhd4BVpQoSc2shJT1vunoSDgxSQsF9t6NW+Kkt7qiBqMv42fHfXC3ccF04KZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjAgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUKL2ZvdXIgL2ZpdmUgL3NpeCA1NiAvZWlnaHQgODAgL1AgOTcgL2EgOTkgL2MgL2QgL2UgMTA0IC9oIC9pIDExMCAvbiAvbyAxMTMKL3EgL3IgL3MgL3QgL3UgMTIyIC96IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNyAwIFIgPj4KZW5kb2JqCjE4IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTcgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjAgMCBvYmoKPDwgL1AgMjIgMCBSIC9hIDIzIDAgUiAvYyAyNCAwIFIgL2QgMjUgMCBSIC9lIDI2IDAgUiAvZWlnaHQgMjcgMCBSCi9maXZlIDI4IDAgUiAvZm91ciAyOSAwIFIgL2ggMzAgMCBSIC9pIDMxIDAgUiAvbiAzMyAwIFIgL28gMzQgMCBSCi9vbmUgMzUgMCBSIC9wYXJlbmxlZnQgMzYgMCBSIC9wYXJlbnJpZ2h0IDM3IDAgUiAvcGVyaW9kIDM4IDAgUiAvcSAzOSAwIFIKL3IgNDAgMCBSIC9zIDQxIDAgUiAvc2l4IDQyIDAgUiAvc3BhY2UgNDMgMCBSIC90IDQ0IDAgUiAvdGhyZWUgNDUgMCBSCi90d28gNDYgMCBSIC91IDQ3IDAgUiAveiA0OCAwIFIgL3plcm8gNDkgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxOSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTMgPDwgL0NBIDAuOCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtT21lZ2EgMjEgMCBSIC9GMS1EZWphVnVTYW5zLW1pbnVzIDMyIDAgUgovRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXBoaSAxNiAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUwIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTAxMjUxNDQ1NDkrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjIpID4+CmVuZG9iagp4cmVmCjAgNTEKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQ3NDkgMDAwMDAgbiAKMDAwMDAxNDQxMSAwMDAwMCBuIAowMDAwMDE0NDU0IDAwMDAwIG4gCjAwMDAwMTQ1OTYgMDAwMDAgbiAKMDAwMDAxNDYxNyAwMDAwMCBuIAowMDAwMDE0NjM4IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDI2NTcgMDAwMDAgbiAKMDAwMDAwMzYxMCAwMDAwMCBuIAowMDAwMDAzNDAyIDAwMDAwIG4gCjAwMDAwMDMwOTMgMDAwMDAgbiAKMDAwMDAwNDY2MyAwMDAwMCBuIAowMDAwMDAyNjc4IDAwMDAwIG4gCjAwMDAwMTMwMTcgMDAwMDAgbiAKMDAwMDAxMjgxNyAwMDAwMCBuIAowMDAwMDEyMzU0IDAwMDAwIG4gCjAwMDAwMTQwNzAgMDAwMDAgbiAKMDAwMDAwNDY4NSAwMDAwMCBuIAowMDAwMDA1MDU2IDAwMDAwIG4gCjAwMDAwMDUyOTQgMDAwMDAgbiAKMDAwMDAwNTY3MSAwMDAwMCBuIAowMDAwMDA1OTc0IDAwMDAwIG4gCjAwMDAwMDYyNzQgMDAwMDAgbiAKMDAwMDAwNjU5MiAwMDAwMCBuIAowMDAwMDA3MDU3IDAwMDAwIG4gCjAwMDAwMDczNzcgMDAwMDAgbiAKMDAwMDAwNzUzOSAwMDAwMCBuIAowMDAwMDA3Nzc1IDAwMDAwIG4gCjAwMDAwMDc5MTUgMDAwMDAgbiAKMDAwMDAwODA4NSAwMDAwMCBuIAowMDAwMDA4MzE5IDAwMDAwIG4gCjAwMDAwMDg2MDYgMDAwMDAgbiAKMDAwMDAwODc1OCAwMDAwMCBuIAowMDAwMDA4OTc4IDAwMDAwIG4gCjAwMDAwMDkyMDAgMDAwMDAgbiAKMDAwMDAwOTMyMSAwMDAwMCBuIAowMDAwMDA5NjMxIDAwMDAwIG4gCjAwMDAwMDk4NjEgMDAwMDAgbiAKMDAwMDAxMDI2NiAwMDAwMCBuIAowMDAwMDEwNjU2IDAwMDAwIG4gCjAwMDAwMTA3NDUgMDAwMDAgbiAKMDAwMDAxMDk0OSAwMDAwMCBuIAowMDAwMDExMzYwIDAwMDAwIG4gCjAwMDAwMTE2ODEgMDAwMDAgbiAKMDAwMDAxMTkyNSAwMDAwMCBuIAowMDAwMDEyMDcxIDAwMDAwIG4gCjAwMDAwMTQ4MDkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTEgPj4Kc3RhcnR4cmVmCjE0OTY2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-01-25T14:45:49.031260\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "w = 16 # wordlength of filter coefficients\n", "N = 7 # order of filter\n", "\n", "\n", "def uniform_midtread_quantizer(x, w, xmin=1):\n", " \"\"\"Uniform mid-tread quantizer with limiter.\"\"\"\n", " # quantization step\n", " Q = xmin / (2 ** (w - 1))\n", " # limiter\n", " x = np.copy(x)\n", " idx = np.where(x <= -xmin)\n", " x[idx] = -1\n", " idx = np.where(x > xmin - Q)\n", " x[idx] = 1 - Q\n", " # linear uniform quantization\n", " xQ = Q * np.floor(x / Q + 1 / 2)\n", "\n", " return xQ\n", "\n", "\n", "def zplane(z, p, title=\"Poles and Zeros\"):\n", " \"Plots zero and pole locations in the complex z-plane\"\n", " ax = plt.gca()\n", "\n", " ax.plot(np.real(z), np.imag(z), \"bo\", fillstyle=\"none\", ms=10)\n", " ax.plot(np.real(p), np.imag(p), \"rx\", fillstyle=\"none\", ms=10)\n", " unit_circle = Circle(\n", " (0, 0), radius=1, fill=False, color=\"black\", ls=\"solid\", alpha=0.9\n", " )\n", " ax.add_patch(unit_circle)\n", " ax.axvline(0, color=\"0.7\")\n", " ax.axhline(0, color=\"0.7\")\n", "\n", " plt.title(title)\n", " plt.xlabel(r\"Re{$z$}\")\n", " plt.ylabel(r\"Im{$z$}\")\n", " plt.axis(\"equal\")\n", " plt.xlim((-2, 2))\n", " plt.ylim((-2, 2))\n", " plt.grid()\n", "\n", "\n", "# coefficients of recursive filter\n", "b, a = sig.butter(N, 0.2, \"low\")\n", "# decomposition into SOS\n", "sos = sig.tf2sos(b, a, pairing=\"nearest\")\n", "sos = sos / np.amax(np.abs(sos))\n", "# quantization of SOS coefficients\n", "sosq = uniform_midtread_quantizer(sos, w, xmin=1)\n", "# compute overall transfer function of (quantized) filter\n", "H = np.ones(512)\n", "Hq = np.ones(512)\n", "for n in range(sos.shape[0]):\n", " Om, Hn = sig.freqz(sos[n, 0:3], sos[n, 3:6])\n", " H = H * Hn\n", " Om, Hn = sig.freqz(sosq[n, 0:3], sosq[n, 3:6])\n", " Hq = Hq * Hn\n", "\n", "\n", "# plot magnitude responses\n", "plt.figure(figsize=(10, 3))\n", "plt.plot(Om, 20 * np.log10(abs(H)), label=\"continuous\")\n", "plt.plot(Om, 20 * np.log10(abs(Hq)), label=\"quantized\")\n", "plt.title(\"Magnitude response\")\n", "plt.xlabel(r\"$\\Omega$\")\n", "plt.ylabel(r\"$|H(e^{j \\Omega})|$ in dB\")\n", "plt.legend(loc=3)\n", "plt.grid()\n", "# plot phase responses\n", "plt.figure(figsize=(10, 3))\n", "plt.plot(Om, np.unwrap(np.angle(H)), label=\"continuous\")\n", "plt.plot(Om, np.unwrap(np.angle(Hq)), label=\"quantized\")\n", "plt.title(\"Phase\")\n", "plt.xlabel(r\"$\\Omega$\")\n", "plt.ylabel(r\"$\\varphi (\\Omega)$ in rad\")\n", "plt.legend(loc=3)\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Decrease the word length `w` of the filter. What happens? At what word length does the filter become unstable?\n", "* Increase the order `N` of the filter for a fixed word length `w`. What happens?\n", "\n", "Solution: The deviations from the continuous (desired) realization of the filter increase with decreasing word length. The filter with order `N=5` becomes unstable for `w < 10`. Increasing the order `N` of the filter for a fixed word length results also in instabilities. Consequently, for a high order filter also a higher word length is required." ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Digital Signal Processing - Lecture notes featuring computational examples*." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 1 }